Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical Simulations
Carina Ludwig? and Michael Dreyer**
*DLR – German Aerospace Center, Space Launcher Systems Analysis (SART),
Institute of Space Systems, 28359 Bremen, Germany, Carina.Ludwig@dlr.de
**ZARM – Center for Applied Space Technology and Microgravity,
University of Bremen, 28359 Bremen, Germany
Abstract
본 연구에서는 발사대 적용을 위한 극저온 추진제 탱크의 능동 가압을 분석하였다. 따라서 지상 실험, 수치 시뮬레이션 및 분석 연구를 수행하여 다음과 같은 중요한 결과를 얻었습니다.
필요한 가압 기체 질량을 최소화하기 위해 더 높은 가압 기체 온도가 유리하거나 헬륨을 가압 기체로 적용하는 것이 좋습니다.
Flow-3D를 사용한 가압 가스 질량의 수치 시뮬레이션은 실험 결과와 잘 일치함을 보여줍니다. 가압 중 지배적인 열 전달은 주입된 가압 가스에서 축방향 탱크 벽으로 나타나고 능동 가압 단계 동안 상 변화의 주된 방식은 가압 가스의 유형에 따라 다릅니다.
가압 단계가 끝나면 상당한 압력 강하가 발생합니다. 이 압력 강하의 분석적 결정을 위해 이론적 모델이 제공됩니다.
The active-pressurization of cryogenic propellant tanks for the launcher application was analyzed in this study. Therefore, ground experiments, numerical simulations and analytical studies were performed with the following important results: In order to minimize the required pressurant gas mass, a higher pressurant gas temperature is advantageous or the application of helium as pressurant gas. Numerical simulations of the pressurant gas mass using Flow-3D show good agreement to the experimental results. The dominating heat transfer during pressurization appears from the injected pressurant gas to the axial tank walls and the predominant way of phase change during the active-pressurization phase depends on the type of the pressurant gas. After the end of the pressurization phase, a significant pressure drop occurs. A theoretical model is presented for the analytical determination of this pressure drop.




References
[1] M.E. Nein and R.R. Head. Experiences with pressurized discharge of liquid oxygen from large flight vehicle
propellant tanks. In Advances in Cryogenig Engineering, vol. 7, New York, Plenum Press, 244–250.
[2] M.E. Nein and J.F. Thompson. Experimental and analytical studies of cryogenic propellant tank pressurant
requirements: NASA TN D-3177, 1966.
[3] R.J. Stochl, J.E. Maloy, P.A. Masters and R.L. DeWitt. Gaseous-helium requirements for the discharge of liquid
hydrogen from a 1.52-meter- (5-ft-) diameter spherical tank: NASA TN D-5621, 1970.
[4] R.J. Stochl, J.E. Maloy, P.A. Masters and R.L. DeWitt. Gaseous-helium requirements for the discharge of liquid
hydrogen from a 3.96-meter- (13-ft-) diameter spherical tank: NASA TN D-7019, 1970.
[5] R.J. Stochl, P.A. Masters, R.L. DeWitt and J.E. Maloy. Gaseous-hydrogen requirements for the discharge of
liquid hydrogen from a 1.52-meter- (5-ft-) diameter spherical tank: NASA TN D-5336, 1969.
[6] R.J. Stochl, P.A. Masters, R.L. DeWitt and J.E. Maloy. Gaseous-hydrogen requirements for the discharge of
liquid hydrogen from a 3.96-meter- (13-ft-) diameter spherical tank: NASA TN D-5387, 1969.
[7] R.F. Lacovic. Comparison of experimental and calculated helium requirements for pressurization of a Centaur
liquid oxygen tank: NASA TM X-2013, 1970.
[8] N.T. van Dresar and R.J. Stochl. Pressurization and expulsion of a flightweight liquid hydrogen tank: AIAA-93-
1966, 1993.
[9] T.L. Hardy and T.M. Tomsik. Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank
experimental simulation using Flow-3D: Nasa technical memorandum 103217, 1990.
[10] G.P. Samsal, J.I. Hochstein, M.C. Wendl and T.L. Hardy. Computational modeling of the pressurization process
in a NASP vehicle propellant tank experimental simulation: AIAA 91-2407. AIAA Joint Propulsion Conference
and Exhibit, 1991.
[11] P. Adnani and R.W. Jennings. Pressurization analysis of cryogenic propulsion systems: AIAA 2000-3788. In
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, USA, 2000.
[12] C. Ludwig and M. Dreyer. Analyses of cryogenic propellant tank pressurization based upon ground experiments:
AIAA 2012-5199. In AIAA Space 2012 Conference & Exhibit, Pasadena, California, USA, 2012.
[13] Flow Science Inc. Flow-3D User Manual – Version 10.0, 2011.
[14] R.F. Barron. Cryogenic heat transfer, 3. ed., Taylor & Francis, Philadelphia, 1999, p. 23
[15] E.W. Lemmon, M.L. Huber and M.O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0, National Institute of Standards and Technology,
Standard Reference Data Program, Gaithersburg, 2010.
[16] E.J. Hopfinger and S.P. Das. Mass transfer enhancement by capillary waves at a liquid–vapour interface. Experiments in Fluids, Vol. 46, No.4: 597-605, 2009.
[17] S.P. Das and E.J. Hopfinger. Mass transfer enhancement by gravity waves at a liquid–vapour interface. International Journal of Heat and Mass Transfer, Vol. 52, No. 5-6: 1400-1411, 2009.
[18] H.D. Baehr and K. Stephan. Wärme- und Stoffübertragung, 6. ed., Springer, Berlin, 2008, p.491, p.302.