Coupled thermodynamic-fluid-dynamic solution for a liquid-hydrogen tank
Published Online:23 May 2012 https://doi.org/10.2514/3.26706
Introduction
ROPELLANT 열 성층화 및 외부 교란에 대한 유체 역학적 반응은 발사체와 우주선 모두에서 중요합니다. 과거에는 결합된 솔루션을 제공할 수 있는 충분한 계산 기술이 부족하여 이러한 문제를 개별적으로 해결했습니다.1
이로 인해 모델링 기술의 불확실성을 허용하기 위해 큰 안전 계수를 가진 시스템이 과도하게 설계되었습니다. 고중력 환경과 저중력 환경 모두에서 작동하도록 설계된 미래 시스템은 기술적으로나 재정적으로 실현 가능하도록 과잉 설계 및 안전 요소가 덜 필요합니다.
이러한 유체 시스템은 열역학 및 유체 역학이 모두 중요한 환경에서 모델의 기능을 광범위하게 검증한 후에만 고충실도 수치 모델을 기반으로 할 수 있습니다. 상용 컴퓨터 코드 FLOW-3D2는 유체 역학 및 열 모델링 모두에서 가능성을 보여주었으며,1 따라서 열역학-유체-역학 엔지니어링 문제에서 결합된 질량, 운동량 및 에너지 방정식을 푸는 데 적합함을 시사합니다.
발사체의 복잡한 액체 가스 시스템에 대한 포괄적인 솔루션을 달성하기 위한 첫 번째 단계로 액체 유체 역학과 열역학을 통합하는 제안된 상단 단계 액체-수소(Lit) 탱크의 간단한 모델이 여기에 제시됩니다. FLOW-3D FLOW-3D 프로그램은 Los Alamos Scientific Laboratory에서 시작되었으며 마커 및 셀 방법에서 파생된 것입니다.3 현재 상태로 가져오기 위해 수년에 걸쳐 광범위한 코드 수정이 이루어졌습니다.2
프로그램은 다음과 같습니다. 일반 Navier-Stokes 방정식을 풀기 위해 수치 근사의 중앙 유한 차분 방법을 사용하는 3차원 유체 역학 솔버입니다. 모멘텀 및 에너지 방정식의 섹션은 특정 응용 프로그램에 따라 활성화 또는 비활성화할 수 있습니다.
코드는 1994년 9월 13일 접수를 인용하기 위해 무액체 표면, 복잡한 용기 기하학, 여러 점성 모델, 표면 장력, 다공성 매체를 통한 흐름 및 응고와 함께 압축성 또는 비압축성 유동 가정을 제공합니다. 1995년 1월 15일에 받은 개정; 1995년 2월 17일 출판 승인.
ROPELLANT thermal stratification and fluid-dynamic response to external disturbances are of concern in both launch vehicles and spacecraft. In the past these problems have been addressed separately for want of sufficient computational technology to provide for coupled solutions.1 This has resulted in overdesigned systems with large safety factors to allow for the uncertainty in modeling techniques. Future systems designed to perform in both highand low-gravity environments will require less overdesign and safety factors to be technically and financially feasible. Such fluid systems can be based on high-fidelity numerical models only after extensive validation of the models’ capabilities in environments where both the thermodynamics and the fluid dynamics are important. The commercial computer code FLOW-3D2 has shown promise in both fluid-dynamic and thermal modeling,1 thus suggesting suitability for solving the coupled mass, momentum, and energy equations in thermodynamic-fluid-dynamic engineering problems. As a first step to achieving a comprehensive solution for complex liquidgas systems in a launch vehicle, a simple model of a proposed upper-stage liquid-hydrogen (Lit) tank incorporating the liquid fluid dynamics and thermodynamics is presented here. FLOW-3D The FLOW-3D program originated at the Los Alamos Scientific Laboratory and is a derivative of the marker-and-cell method.3 Extensive code modifications have been made over the years to bring it to its present state.2 The program is a three-dimensional fluiddynamic solver that uses a central finite-difference method of numerical approximation to solve the general Navier-Stokes equations. Sections of the momentum and energy equations can be enabled or disabled depending on the particular application. The code provides compressible or incompressible flow assumptions with liquid free surfaces, complex container geometries, several viscosity models, surface tension, flow though porous media, and solidification, to cite Received Sept. 13, 1994; revision received Jan. 15, 1995; accepted for publication Feb. 17, 1995. Copyright © 1995 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. *Engineer/Scientist, Propulsion Analysis and Hydraulics, Space Transportation Division, MS 13-3, 5301 Bolsa Avenue. Member AIAA. a few of the possibilities. Further information on FLOW-3D’s capabilities and details of the numerical algorithms can be found in Ref. 2