Figure 8. Wave formation and propagation in the impact area using the second-order approach for the density evaluation. Observation gauges P1, P2, and P3 are set to verify the water surface elevation and flow speed. Their trends are shown in the graphs for different grid resolutions (R: 5, 10, 20 m). More accurate results are obtained using the grid resolution of 5 m (sky-blue line, R5).

본 소개 자료는 Nat. Hazards Earth Syst. Sci에 게재된 논문 “The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D”의 연구 내용입니다.

Figure 8. Wave formation and propagation in the impact area using the second-order approach for the density evaluation. Observation gauges
P1, P2, and P3 are set to verify the water surface elevation and flow speed. Their trends are shown in the graphs for different grid resolutions
(R: 5, 10, 20 m). More accurate results are obtained using the grid resolution of 5 m (sky-blue line, R5).
Figure 8. Wave formation and propagation in the impact area using the second-order approach for the density evaluation. Observation gauges P1, P2, and P3 are set to verify the water surface elevation and flow speed. Their trends are shown in the graphs for different grid resolutions (R: 5, 10, 20 m). More accurate results are obtained using the grid resolution of 5 m (sky-blue line, R5).

1. 서론

  • 리투야 베이(Lituya Bay)는 1958년 거대한 암석 산사태에 의해 발생한 세계에서 가장 높은 쓰나미(최대 런업 524m)가 기록된 지역.
  • 이 연구는 FLOW-3D를 이용하여 산사태 유발 충격파(impulse wave) 시뮬레이션의 정확도를 평가하는 것을 목표로 함.
  • 모델의 공간적 범위, 격자 해상도(grid resolution), 계산 시간 및 정확도의 상관관계를 분석하고, 실험적 검증을 통해 쓰나미 형성과 전파 과정을 재현하고자 함.

2. 연구 방법

FLOW-3D 기반 3D 수치 모델링

  • VOF(Volume of Fluid) 기법을 사용하여 자유 수면을 추적.
  • RANS(Reynolds-Averaged Navier-Stokes) 방정식RNG k-ε 난류 모델을 적용하여 난류 해석 수행.
  • FAVOR(Fractional Area/Volume Obstacle Representation) 기법을 활용하여 지형 및 해저 지형을 정밀하게 모델링.
  • 사전 지형 복원
    • 1958년 쓰나미 발생 이전의 리투야 베이 지형을 복원하기 위해 기존 측량 데이터(U.S. Coast and Geodesic Survey, 1926, 1942, 1959)를 활용.
    • 최대 수심 -220m로 추정하며, 쓰나미 발생 전후 해저 침전물 변화 분석.

3. 연구 결과

쓰나미 형성과 파랑 전파 분석

  • 암석 산사태의 충격 속도(약 93m/s)와 충돌로 인해 생성된 최대 쓰나미 파고는 약 208m.
  • 암석 충격 후 약 24초 이내에 주요 쓰나미가 형성되며, 파고는 초기 208m에서 전파 과정에서 감소.
  • 쓰나미의 전파 및 최대 런업 분석
    • 쓰나미가 기울어진 해안선을 따라 524m까지 상승하여, 1km 거리를 흐르며 해안선을 따라 이동.
    • 최대 런업이 발생한 지역에서의 유속은 약 50~70m/s로 계산됨.
  • 격자 해상도에 따른 정확도 분석
    • 격자 크기 5m일 때 가장 정확한 결과를 제공하며, 최대 런업을 가장 잘 재현.
    • 격자 크기 20m에서는 쓰나미의 전파 및 침수 범위가 과소평가됨.

4. 결론 및 제안

결론

  • FLOW-3D를 이용한 쓰나미 시뮬레이션이 리투야 베이의 역사적 데이터를 성공적으로 재현.
  • 밀도가 높은 유체(denser fluid) 개념을 사용하여 산사태에 의한 충격파를 효과적으로 모델링 가능.
  • 격자 해상도와 계산 시간 간의 균형이 중요하며, 5m 격자 해상도가 가장 정확한 결과를 제공.

향후 연구 방향

  • 다양한 지형 및 쓰나미 조건을 고려한 추가 시뮬레이션 수행 필요.
  • 고해상도 위성 데이터 및 최신 측량 기술을 활용하여 모델 검증 필요.
  • 3D 유체-지형 상호작용 모델을 개선하여 향후 자연재해 예방에 기여 가능.

5. 연구의 의의

본 연구는 1958년 리투야 베이 쓰나미를 3D 수치 모델링을 통해 재현하고, FLOW-3D를 이용한 충격파 및 파랑 전파 해석 기법의 신뢰성을 평가하였다. 이를 통해 지진 및 산사태로 인한 쓰나미 예측 모델의 정밀도를 높이는 데 기여할 수 있는 실질적인 데이터 및 분석 방법을 제공한다.

Figure 1. (a) Location of Lituya Bay, in southeastern Alaska (modified from Bridge, 2018). (b) View of Lituya Bay: the yellow line represents
the shoreline before July 1958, and the red line shows the trimline of the tsunami. (c) Gilbert Inlet, showing the situation in July 1958 preand post-tsunami: the rockslide dimension (orange), the maximum bay floor depth of −122 m (light blue), and the maximum run-up of
524 m a.s.l. (Miller, 1960) on the opposite slope with respect to the impact area are indicated (topography data from © Google Earth Pro
7.3.2.5776; last access: 24 April 2020).
Figure 1. (a) Location of Lituya Bay, in southeastern Alaska (modified from Bridge, 2018). (b) View of Lituya Bay: the yellow line represents the shoreline before July 1958, and the red line shows the trimline of the tsunami. (c) Gilbert Inlet, showing the situation in July 1958 preand post-tsunami: the rockslide dimension (orange), the maximum bay floor depth of −122 m (light blue), and the maximum run-up of 524 m a.s.l. (Miller, 1960) on the opposite slope with respect to the impact area are indicated (topography data from © Google Earth Pro 7.3.2.5776; last access: 24 April 2020).
Figure 8. Wave formation and propagation in the impact area using the second-order approach for the density evaluation. Observation gauges
P1, P2, and P3 are set to verify the water surface elevation and flow speed. Their trends are shown in the graphs for different grid resolutions
(R: 5, 10, 20 m). More accurate results are obtained using the grid resolution of 5 m (sky-blue line, R5).
Figure 8. Wave formation and propagation in the impact area using the second-order approach for the density evaluation. Observation gauges P1, P2, and P3 are set to verify the water surface elevation and flow speed. Their trends are shown in the graphs for different grid resolutions (R: 5, 10, 20 m). More accurate results are obtained using the grid resolution of 5 m (sky-blue line, R5).

6.참고 문헌

  1. Basu, D., Das, K., Green, S., Janetzke, R., and Stamatakos, J.: Numerical simulation of surface waves generated by subaerial landslide at Lituya Bay Alaska, J. Offshore Mech. Arct., 132, 041101, https://doi.org/10.1115/1.4001442, 2010.
  2. Braathen, A., Blikra, L. H., Berg, S. S., and Karlsen, F.: Rock- slope failures in Norway: type, geometry, deformation mecha- nisms and stability, Norsk Geol. Tidsskr., 84, 67–88, 2004.
  3. Bridge, T.: When mountains fall into the sea: https://www. hakaimagazine.com/, last access: September 2018.
  4. Chuanqi, S., Yi, A., Qiang, W., Qingquan, L., and Zhix- ian, C.: Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hy- drodynamics model, Adv. Water Resour., 92, 130–141, https://doi.org/10.1016/j.advwatres.2016.04.002, 2016.
  5. Das, K., Janetzke, R., Basu, D., Green, S., and Stamatakos, J.: Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Off- shore and Arctic Engineering, Honolulu, USA, 5, 581–594, https://doi.org/10.1115/OMAE2009-79596, 2009.
  6. DGGS: DGGS Elevation portal – Alaska Division of Geologi- cal and Geophysical Surveys, https://elevation.alaska.gov/#65. 14611:-155.74219:4, last access 24 March 2020.
  7. Evers, F. M., Heller, V., Fuchs, H., Hager, W. H., and Boes, R. M.: Landslide generated impulse waves in reservoirs – Ba- sics and computation, VAW Communications, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 254 pp., 2019.
  8. Flow Science Inc.: Flow-3D®, Version 12.0, User’s Manual, https:// www.flow3d.com (last access: 31 January 2020), Santa Fe, USA, 2018.
  9. Franco, A.: Lituya Bay 1958 Tsunami – pre-event bathymetry reconstruction and 3D-numerical mod- elling utilizing the CFD software Flow-3D, Zenodo, https://doi.org/10.5281/zenodo.3831448, 2020.
  10. Fritz, H. M., Hager, W. H., and Minor, H. E.: Lituya Bay case: Rockslide impact and wave run-up, Sci. Tsunami Hazards, 19, 3–22, 2001.
  11. Fritz, H. M., Mohammed, F., and Yoo, J.: Lituya Bay landslide im- pact generated mega-tsunami 50th anniversary, Pure Appl. Geo- phys., 166, 153–175, https://doi.org/10.1007/s00024-008-0435- 4, 2009.
  12. Furseth, A.: Dommedagsfjellet – Tafjord 1934, Gyldendal Norsk Forlag A/S, Oslo, Norway, 1958.
  13. Gauthier, D., Anderson, S. A., Fritz, H. M., and Giachetti, T.: Karrat Fjord (Greenland) Tsunamigenic landslide of 17 June 2017: initial 3D observations, Landslides, 15, 327-332, https://doi.org/10.1007/s10346-017-0926-4, 2017.
  14. González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D.: The Lituya Bay landslide-generated mega-tsunami- numerical sim- ulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369-388, https://doi.org/10.5194/nhess-19-369-2019, 2019.
  15. Haeussler, P. J., Gulick, S. P. S., McCall, N., Walton, M., Reece, R., Larsen, C., Shugar, D. H., Geertsema, M., Venditti, J. G., and Labay, K.: Submarine deposition of a subaerial landslide in Taan Fjord, Alaska, J. Geophys. Res.-Earth, 123, 2443-2463, https://doi.org/10.1029/2018JF004608, 2018.
  16. Harbitz, C., Pedersen, G., and Gjevik, B.: Numerical simulations of large water waves due to landslides, J. Hydraul. Eng. 119, 1325- 1342, 1993.
  17. Hall Jr., J. V. and Watts, G. M.: Laboratory investigation of the ver- tical rise of solitary waves on impermeable slopes, U.S. Army Corps of Engineers, Beach Erosion Board, 173-189, 1953.
  18. Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time- Dependent Viscous Incompressible Flow, Phys. Fluids, 8, 2182- 2189, https://doi.org/10.1063/1.1761178, 1965.
  19. Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse waves in reservoirs Basics and computation, VAW Communications, 211, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 211 pp., 2009.
  20. Heller, V. and Hager, W. H.: Impulse product parameter in landslide generated impulse waves, J. Waterw. Port Coast., 136, 145-155, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037, 2010. Hinze, J. O.: Turbulence, McGraw-Hill, New York, USA, 1975. Hirt, C.W. and Nichols, B. D.: Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 39, 201- 225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
  21. Hirt, C.W. and Sicilian, J.M.: A Porosity Technique for the Def- inition of Obstacles in Rectangular Cell Meshes, Proceedings of the Fourth International Conference on Ship Hydrodynamics, National Academy of Sciences. Washington, D.C., USA, 25-27 September 1985, 1-19, 1985.
  22. Holmsen, G.: De siste bergskred i Tafjord og Loen, Norge, Svensk geografisk Arbok 1936, Lunds Universitet, Geografiska Institu- tionen Meddelande, 124, 171-190, 1936.
  23. Huber, A. and Hager, W. H.: Forecasting impulse waves in reser- voirs, Dix-neuvième Congrès des Grands Barrages C31, Flo- rence, Italy, Commission International des Grands Barrages, Paris, France, 993-1005, 1997.
  24. Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides, Coast. Eng., 35, 575-588, https://doi.org/10.9753/icce.v12.35, 1970.
  25. Körner H. J.: Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen, Rock Mech., 8, 225-256, 1976.
  26. Li, G., Chen, G., Li, P., and Jing, H.: Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami, Water, 11, 2033, https://doi.org/10.3390/w11102033, 2019.
  27. Mader, C. L.: Modelling the 1958 Lituya Bay mega-tsunami, Sci. Tsunami Hazards, 17, 57-67, 2001.
  28. Mader C. L and Gittings M. L.: Modelling the 1958 Lituya Bay mega-tsunami II, Sci. Tsunami Hazards, 20, 241-250, 2002. Mao J., Zhao L., Liu X., Cheng J., and Avital E.: A three-phases model for the simulation of landslide-
  29. generated waves using the improved conservative level set method, Comput. Fluids, 159, 243-253, ISSN: 0045-7930, https://doi.org/10.1016/j.compfluid.2017.10.007, 2017.
  30. Miller, D.: Giant Waves in Lituya Bay, Alaska: A Timely Account of the Nature and Possible Causes of Certain Giant Waves, with Eyewitness Reports of Their Destructive Capacity, professional paper, US Government Printing Office, Washington, D.C., USA, 49-85, 1960.
  31. Noda, E.: Water waves generated by landslides, J. Waterway Div- ASCE., 96, 835-855, 1970.
  32. Pastor, M.. Herreros, I., Fernndez Merodo, J. A., Mira, P., Haddad, B., Quecedo, M., González, E., Alvarez- Cedrón, C., and Drempetic, V.: Modelling of fast catas- trophic landslides and impulse waves induced by them in fjords, lakes and reservoirs, Eng. Geol., 109, 124-134, https://doi.org/10.1016/j.enggeo.2008.10.006, 2008.
  33. Paronuzzi, P. and Bolla, A.: The prehistoric Vajont rockslide: an update geological model, Geomorphology, 169-170, 165-191, https://doi.org/10.1016/j.geomorph. 2012.04.021, 2012.
  34. Pararas-Carayannis, G.: Analysis of mechanism of tsunami genera- tion in Lituya Bay, Sci. Tsunami Hazards, 17, 193-206, 1999. Quecedo, M., Pastor, M., and Herreros, M.: Numerical modelling of impulse wave generated by fast landslides, Int. J. Numer. Meth. Eng., 59, 1633-1656, https://doi.org/10.1002/nme.934, 2004. Rady, R. M. A. E.: 2D-3D Modeling of Flow Over Sharp-Crested Weirs, J. Appl. Sci. Res., 7, 2495-2505, 2011.
  35. Slingerland, R. L. and Voight, B.: Occurrences, properties, and predictive models of landslide-generated water waves, Devel- opments in Geotechnical Engineering 14B, Rockslides and avalanches 2, Engineering Sites, Elsevier Scientific Publishing, Amsterdam, the Netherlands, 317-397, 1979.
  36. Schwaiger, H. F. and Higman, B.: Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide, Geochem. Geophys. Geosyst., 8, Q07006, https://doi.org/10.1029/2007GC001584, 2007.
  37. Schwer L. E.: Is your mesh refined enough? Estimating Discretiza- tion Error using GCI, in 7th German LS-DYNA Forum, Bam- berg, Germany, 2008.
  38. Sepúlveda, S. A., A. Serey, M. Lara, A. Pavez, and Sepúlveda, S. A., Serey, A., Lara, M., Pavez, A., Rebolledo, S.: Landslides in- duced by the April 2007 Aysén Fjord earthquake, Chilean Patag- onia, Landslides, 7, 483-492, https://doi.org/10.1007/s10346- 010-0203-2, 2010.
  39. Sharpe, C.: Landslides and Related Phenomena, Columbia Univ. Press, New York, USA, 1938.
  40. Synolakis, C.: The runup of solitary waves, J. Fluid. Mech., 185, 523-545, https://doi.org/10.1017/S002211208700329X, 1987. Tocher, D. and Miller D. J.: Field observations on effects of Alaska earthquake of 10 July, 1958, Science, 129, 3346, 394-395, https://doi.org/10.1126/science.129.3346.394, 1959.
  41. Tognacca, C.: Beitrag zur Untersuchung der Entstehungsmechanis- men von Murgangen, VAW communications, 164, Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich, Switzerland, 1999.
  42. US Coast and Geodetic Survey: Survey id: H04608: NOS Hy- drographic Survey, 1926-12-31, available at: https://data.world/us-noaa-gov/f6786b28-ea06-4c9a-ac30-53cb5356650c (last ac- cess: 28 September 2018), 1926.
  43. US Coast and Geodetic Survey: Survey id: H08492: NOS Hydrographic Survey, Lituya Bay, Alaska, 1959- 08-27, available at: https://data.world/us-noaa-9401821a-28f5-4846-88db-43e702a5b12b (last access: 28 September 2018), 1959.
  44. U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1942.
  45. U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1969.
  46. U.S. Coast and Geodetic Survey: Chart 16762, Lituya Bay, Washington D.C., USA, 1990.
  47. Vanneste, D.: Experimental and numerical study of wave-induced porous flow in rubble-mound breakwaters, Ph.D. thesis, Gent University, Gent, Belgium, 2012.
  48. Varnes, D.: Landslide type and Processes, In Landslides and Engineering Practice, H R B Special Rep., 29, 22–47, National Research Council (US), Washington D.C., USA, 1958.
  49. Vasquez, J. A.: Modelling the generation and propagation of landslide-generated landslide, CSCE SCGC, Leadership in Sustainable Infrastructure, Annual Conference, May 31–June 3 2017, Vancouver, Canada, 2017.
  50. Yakhot, V. and Smith, L. M.: The Renormalization Group, the eExpansion and Derivation of Turbulence Models, J. Sci. Comput., 7, 35–61, https://doi.org/10.1093/gji/ggv026, 1992.
  51. Wang, J., Ward, S. N., and Xiao, L.: Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada, Geophys. J. Int., 201, 372–376, https://doi.org/10.1093/gji/ggv026, 2015.
  52. Ward, S. N. and Day, S.: The 1958 Lituya bay landslide and tsunami – A tsunami ball approach, J. Earthq. Tsunami, 4, 285–319, https://doi.org/10.1142/S1793431110000893, 2010.
  53. Weiss, R. and Wuennemann, K.: Understanding tsunami by landslides as the next challenge for hazard, risk and mitigation: Insight from multi-material hydrocode modeling, American Geophysical Union, Fall Meeting 2007, San Francisco, CA, USA, S51C-06, 2007.
  54. Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett., 36, L09602, https://doi.org/10.1029/2009GL037814, 2009.
  55. Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J.: The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid Flow Problems Involving Freesurfaces, Los Alamos Scientific Laboratory report LA-3425, Los Alamos, NM, USA, 1966.
  56. Wiegel, R. L.: Oceanographical Engineering, Prentice Hall, Englewood Cliffs, USA, 1964.
  57. Xenakis, A. M., Lind, S. J., Stansby, P. K., and Rogers, B. D.: Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment, P. R. Soc. A, 473, 1–18, https://doi.org/10.1098/rspa.2016.0674, 20