Computational Fluid Dynamics, 온실

USO DE CFD COMO HERRAMIENTA PARA LA MODELACIÓN Y  PREDICCIÓN NUMÉRICA DE LOS FLUIDOS: APLICACIONES EN  ESTRUCTURAS HIDRÁULICAS Y AGRICULTURA

Cruz Ernesto Aguilar-Rodriguez1*; Candido Ramirez-Ruiz2; Erick Dante Mattos Villarroel3 

1Tecnológico Nacional de México/ITS de Los Reyes. Carretera Los Reyes-Jacona, Col. Libertad. 60300.  Los Reyes de Salgado, Michoacán. México. 

ernesto.ar@losreyes.tecnm.mx – 3541013901 (*Autor de correspondencia) 

2Instituto de Ciencias Aplicadas y Tecnología, UNAM. Cto. Exterior S/N, C.U., Coyoacán, 04510, Ciudad  de México. México.  3Riego y Drenaje. Instituto Mexicano de Tecnología del Agua. Paseo Cuauhnáhuac 8532, Progreso,  Jiutepec, Morelos, C.P. 62550. México.

Abstract

공학에서 유체의 거동은 설명하기에 광범위하고 복잡한 과정이며, 유체역학은 유체의 거동을 지배하는 방정식을 통해 유체 역학 현상을 분석할 수 있는 과학 분야이지만 이러한 방정식에는 전체 솔루션이 없습니다. . 전산유체역학(Computational Fluid Dynamics, 이하 CFD)은 수치적 기법을 통해 방정식의 해에 접근할 수 있는 도구로, 신뢰할 수 있는 계산 모델을 얻기 위해서는 물리적 모델의 실험 데이터로 평가해야 합니다. 수력구조물에서 선형 및 미로형 여수로에서 시뮬레이션을 수행하고 배출 시트의 거동과 현재의 폭기 조건을 분석했습니다. 침강기에서 유체의 특성화를 수행하고 필요한 특성에 따라 사체적, 피스톤 또는 혼합의 분수를 수정하는 것이 가능합니다. 농업에서는 온실 환경을 특성화하고 환경에 대한 재료의 디자인, 방향 및 유형 간의 관계를 찾는 데 사용할 수 있습니다. 발견된 가장 중요한 결과 중 온실의 길이와 설계가 환기율에 미칠 수 있는 영향으로 온실의 길이는 높이의 6배 미만인 것이 권장됩니다.

키워드: Computational Fluid Dynamics, 온실,

Spillway, Settler 기사: COMEII-21048 소개 

CFD는 유체 운동 문제에 대한 수치적 솔루션을 얻어 수리학적 현상을 더 잘 이해할 수 있게 함으로써 공간 시각화를 가능하게 하는 수치 도구입니다. 예를 들어, 수력 공학에서 벤츄리(Xu, Gao, Zhao, & Wang, 2014) 워터 펌핑(ȘCHEAUA, 2016) 또는 개방 채널 적용( Wu et 알., 2000). 

문헌 검토는 실험 연구에서 검증된 배수로의 흐름 거동에 대한 수리학적 분석을 위한 CFD 도구의 효율성을 보여줍니다. 이 검토는 둑의 흐름 거동에 대한 수리학적 분석을 위한 CFD의 효율성을 보여줍니다. Crookston et al. (2012)는 미로 여수로에 대해 Flow 3D로 테스트를 수행했으며, 배출 계수의 결과는 3%에서 7%까지 다양한 오류로 실험적으로 얻은 결과로 허용 가능했으며 연구 결과 측면에 저압 영역이 있음을 발견했습니다. 익사 방식으로 작업할 때 위어의 벽. Zuhair(2013)는 수치 모델링 결과를 Mandali weir 원형의 실험 데이터와 비교했습니다.  

최근 연구에서는 다양한 난류 모델을 사용하여 CFD를 적용할 가능성이 있음을 보여주었습니다. 그리고 일부만이 음용수 처리를 위한 침적자의 사례 연구를 제시했으며, 다른 설계 변수 중에서 기하학적인 대안, 수온 변화 등을 제안했습니다. 따라서 기술 개발로 인해 설계 엔지니어가 유체 거동을 분석하는 데 CFD 도구를 점점 더 많이 사용하게 되었습니다. 

보호 농업에서 CFD는 온실 환경을 모델링하고 보조 냉방 또는 난방 시스템을 통해 온실의 미기후 관리를 위한 전략을 제안하는 데 사용되는 기술이었습니다(Aguilar Rodríguez et al., 2020).  

2D 및 3D CFD 모델을 사용한 본격적인 온실 시뮬레이션은 태양 복사 모델과 현열 및 잠열 교환 하위 모델의 통합을 통해 온실의 미기후 분포를 연구하는 데 사용되었습니다(Majdoubi, Boulard, Fatnassi, & Bouirden, 2009). 마찬가지로 이 모델을 사용하여 온실 설계(Sethi, 2009), 덮개 재료(Baxevanou, Fidaros, Bartzanas, & Kittas, 2018), 시간, 연중 계절( Tong, Christopher, Li, & Wang, 2013), 환기 유형 및 구성(Bartzanas, Boulard, & Kittas, 2004). 

CFD 거래 프로그램은 사용자 친화적인 플랫폼으로 설계되어 결과를 쉽게 관리하고 이해할 수 있습니다.  

Figura 1. Distribución de presiones y velocidades en un vertedor de pared delgada.
Figura 2. Perfiles de velocidad y presión en la cresta vertedora.
Figura 3. Condiciones de aireación en vertedor tipo laberinto. (A)lámina adherida a la pared del
vertedor, (B) aireado, (C) parcialmente aireado, (D) ahogado.
Figura 4. Realización de prueba de riego.
Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario  (Ramirez-Ruiz, 2019).
Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario (Ramirez-Ruiz, 2019).

Referencias Bibliográficas

Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Ojeda-Bustamante, W.; Rojano, F.; Iñiguez-
Covarrubias, M. 2020. Valuation of the energyperformance of a greenhouse with

an electric heater using numerical simulations. Processes, 8, 600.

Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Rojano, F.; Ojeda-Bustamante, W.; Iñiguez-
Covarrubias, M. 2020. Estimación del ciclo de cultivo de tomate (Solanum

lycopersicum L.) en invernadero, con base en grados días calor (GDC) simulados
con CFD. Tecnología y ciencias del agua, ISSN 2007-2422, 11(4), 27-57.
Al-Sammarraee, M., y Chan, A. (2009). Large-eddy simulations of particle sedimentation
in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects
of baffles. Chemical Engineering Journal, 152(2-3), 315-321.
doi:https://doi.org/10.1016/j.cej.2009.01.052.
Bartzanas, T.; Boulard, T.; Kittas, C. 2004. Effect of vent arrangement on windward
ventilation of a tunnel greenhouse. Biosystems Engineering, 88(4).
Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. 2018. Yearly numerical evaluation of
greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–

  1. DOI: https://doi.org/10.1016/j.compag.2017.12.006.
    Crookston, B. M., & Tullis, B. P. 2012. Labyrinth weirs: Nappe interference and local
    submergence. Journal of Irrigation and Drainage Engineering, 138(8), 757-765.
    Fernández, J. M. 2012. Técnicas numéricas en Ingeniería de Fluidos: Introducción a la
    Dinámica de Fluidos Computacional (CFD) por el Método de Volumen Finito;
    Reverté, Barcelona, pp. 98-294.
    Goula, A., Kostoglou, M., Karapantsios, T., y Zouboulis, A. (2008). The effect of influent
    temperature variations in a sedimentation tank for potable water treatment— A
    computational fluid dynamics study. Water Research, 42(13), 3405-3414.
    doi://doi.org/10.1016/j.watres.2008.05.002.
    Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. 2009. Airflow and microclimate
    patterns in a one-hectare Canary type greenhouse: an experimental and CFD
    assisted study. Agricultural and Forest Meteorology, 149(6-7), 1050-1062.
    Ramirez-Ruiz Candido (2019). Estudio hidrodinámico de sedimentadores de alta tasa en
    plantas potabilizadoras utilizando dinámica de fluidos computacional (CFD).
    Universidad Nacional Autónoma de México. Tesis de maestría.
    Sánchez, J. M. C., & Elsitdié, L. G. C. 2011. Consideraciones del mallado aplicadas al
    cálculo de flujos bifásicos con las técnicas de dinámica de fluidos computacional.
    J. Introd. Inv. UPCT., 4, 33-35.
    Sethi, V.P. 2009. On the selection of shape and orientation of a greenhouse: Thermal
    modeling and experimental validation, Sol. Energy, 83, 21–38.
    ȘCHEAUA, F. 2016. AGRICULTURAL FIELD IRRIGATION SOLUTION BASED ON
    VENTURI NOZZLE γ 2 g γ 2 g. JOURNAL OF INDUSTRIAL DESIGN AND
    ENGINEERING GRAPHICS, 2(1), 31–35.

Tong, G.; Christopher, D.; Li, T.; Wang, T. 2013. Passive solar energy utilization: a review
of cross-section building parameter selection for Chinese solar greenhouses.
Renewable and Sustainable Energy Reviews, 26, 540-548.

Xu, Y., Gao, L., Zhao, Y., & Wang, H. 2014. Wet gas overreading characteristics of a long-
throat Venturi at high pressure based on CFD. Flow Measurement and

Instrumentation, 40, 247–255. https://doi.org/10.1016/j.flowmeasinst.2014.09.004
Wu, W., Rodi, W y Wenka, T. 2000. 3D numerical modeling of flow and sediment transport
in open channels. ASCE Journal of Hydraulic Engineering. Vol 126 Num 1.
Zuhair al zubaidy, Riyadh. 2013. Numerical Simulation of Two-Phase Flow.
En:International Journal of Structural and Civil Engineering Research. Vol 2, No 3;
13p