Fig. 3. Control and dissipating culvert end flow velocity in FLOW-3D environment at t = 20 s (a) control (b) ALT 1 and (c) ALT 2

FLOW-3D 기반 CFD 수치 시뮬레이션을 이용한 침식 방지용 소멸형 암거 출구 설계

Fig. 3. Control and dissipating culvert end flow velocity in FLOW-3D environment at t = 20 s (a) control (b) ALT 1 and (c) ALT 2
Fig. 3. Control and dissipating culvert end flow velocity in FLOW-3D environment at t = 20 s (a) control (b) ALT 1 and (c) ALT 2

연구 배경 및 목적

문제 정의

  • 고속 유출수가 암거(culvert) 출구에서 발생시키는 하류 침식(erosion)과 세굴(scouring)은 수리공학 분야에서 중요한 문제임.
  • 암거 시스템의 구조적 손상은 유지보수 비용 증가 및 환경적 문제(수생 생물 이동 장애 등)를 유발할 수 있음.
  • 기존 연구들은 암거 출구에서 발생하는 고속 유출수의 운동에너지 감소 방안이 필요함을 강조해왔음.

연구 목적

  • FLOW-3D CFD 모델을 활용하여 새로운 소멸형 암거 출구 설계를 개발 및 분석.
  • 표준 암거(기존 모델)와 두 가지 대체 설계안(ALT 1, ALT 2)의 비교 분석 수행.
  • 유출수의 속도 및 운동에너지를 측정하여 최적의 암거 출구 설계를 도출.

연구 방법

수치 모델 설정 (FLOW-3D 적용)

  • FLOW-3D v11.1.0 사용
  • VOF(Volume of Fluid) 기법을 활용하여 자유 표면 추적
  • 난류 모델: RNG k-ε 난류 모델 사용
  • 격자(cell) 크기: 0.02m, 총 약 250,000개 셀 적용
  • 경계 조건:
    • 유입부: 일정 유량(0.2 m³/s) 적용
    • 유출부: 자유 방출 조건 적용
    • 바닥 및 벽면: 매끄러운 벽면(smooth wall) 처리

실험 검증 및 보정

  • Taha et al. (2020) 실험 데이터를 활용하여 FLOW-3D 모델 보정 및 검증 수행.
  • 암거 상류 수심 데이터(R² > 0.90, RMSE < 1.9 cm)와 비교하여 신뢰성 확보.

분석 대상

  1. 표준 암거 (기본 설계)
  2. 대체 설계 1 (ALT 1)
  3. 대체 설계 2 (ALT 2)

주요 결과

유속 분석

  • 기본 설계 대비 ALT 1 및 ALT 2의 하류 유속 감소 효과 확인.
  • 중심선 유속:
    • 표준 암거: 1.37 m/s
    • ALT 1: 0.83 m/s
    • ALT 2: 0.73 m/s

운동에너지 분석

  • 하류 평균 운동에너지 비교 결과:
    • 표준 암거: 1.37 J/kg²
    • ALT 1: 0.83 J/kg² (약 39% 감소)
    • ALT 2: 0.73 J/kg² (약 47% 감소)

침식 분석 (Sandbox 실험 기반)

  • 침식된 하류 모래 질량 비교:
    • 표준 암거: 9.4 kg 침식
    • ALT 1: 8.3 kg 침식 (약 11.1% 감소)
    • ALT 2: 9.0 kg 침식 (약 4.2% 감소)

결론 및 향후 연구

결론

  • FLOW-3D 기반 수치 해석을 통해 대체 설계(ALT 1, ALT 2)가 기존 암거 출구 대비 침식 및 세굴 저감 효과가 있음을 확인.
  • ALT 1 설계가 상대적으로 운동에너지 및 침식 감소 효과가 더 우수함.
  • FLOW-3D는 암거 출구 설계 최적화 및 침식 저감 대책 수립에 활용 가능함.

향후 연구 방향

  • LES(Large Eddy Simulation) 난류 모델을 활용한 추가 분석.
  • 실제 현장 실험과의 비교 검증을 통한 모델 정밀도 향상.
  • 다양한 유량 및 암거 형상에 대한 추가 연구 수행.

연구의 의의

이 연구는 FLOW-3D를 활용하여 침식 방지용 소멸형 암거 출구 설계를 수치적으로 분석한 최초 연구 중 하나로, 환경 친화적인 암거 설계 및 유지보수 비용 절감에 기여할 수 있는 실질적인 데이터를 제공하였다.

Fig. 1. Plan view of control and alternative dissipating culvert end designs (a) control culvert end plan view (b) alternative dissipating culvert end (ALT 1) plan view and (c) alternative dissipating culvert end (ALT 2) plan view
Fig. 1. Plan view of control and alternative dissipating culvert end designs (a) control culvert end plan view (b) alternative dissipating culvert end (ALT 1) plan view and (c) alternative dissipating culvert end (ALT 2) plan view
Fig. 3. Control and dissipating culvert end flow velocity in FLOW-3D environment at t = 20 s (a) control (b) ALT 1 and (c) ALT 2
Fig. 3. Control and dissipating culvert end flow velocity in FLOW-3D environment at t = 20 s (a) control (b) ALT 1 and (c) ALT 2
Fig. 4. Experimental and simulation results on culvert upstream water depth at different flow rates
Fig. 4. Experimental and simulation results on culvert upstream water depth at different flow rates

References

  1. Aguirre-Pe, J., M. 1. A. L. Olivero, and A. T. Moncada. 2003. “Particle densimetric Froude number for estimating sediment transport.” J. Hydraul. Eng. 129 (6): 428-437, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(428).
  2. Azamathulla, H. M., and A. A. Ghani. 2011. “ANFIS-based approach for predicting the scour depth at culvert outlets.” J. Pipeline Syst. Eng. Pract. 2 (1): 35-40. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000066.
  3. Chatila, J., and M. Tabbara. 2004. “Computational modeling of flow over an ogee spillway.” Comput. Struct. 82 (22): 1805-1812. https://doi.org/10.1016/j.compstruc.2004.04.007.
  4. Cheng, A. H.-D., and D. T. Cheng. 2005. “Heritage and early history of the boundary element method.” Eng. Anal. Boundary Elem. 29 (3): 268-302. https://doi.org/10.1016/j.enganabound.2004.12.001.
  5. Flow Science, Inc. 2016. FLOW-3D version 11.2 user manual. Los Alamos, NM: Flow Science.
  6. Günal, M., A. Y. Günal, and K. Osman. 2019. “Simulation of blockage effects on scouring downstream of box culverts under unsteady flow conditions.” Int. J. Environ. Sci. Technol. 16 (9): 5305-5310. https://doi.org/10.1007/s13762-019-02461-w.
  7. Hirt, C. W., and B. D. Nichols. 1981. “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comput. Phys. 39 (1): 201-225. https://doi.org/10.1016/0021-9991(81)90145-5.
  8. Hjulstrom, F. 1939. “Transportation of detritus by moving water: Part 1. Transportation.” In SP 10: Recent Marine Sediments. Tulsa, OK: American Association of Petroleum Geologists.
  9. Hjulström, F. 1935. “Studies of the morphological activity of rivers as illus- trated by the River Fyris.” Ph.D. thesis, The Geological Institution, Univ. of Upsala.
  10. Hotchkiss, R. H., E. A. Larson, and D. M. Admiraal. 2005. “Energy dissipation in culverts by forced hydraulic jump within a barrel.” Transp. Res. Rec. 1904 (1): 124-132. https://doi.org/10.1177/0361198105190400113.
  11. Huang, Y., X. Chen, F. Li, J. Zhang, T. Lei, J. Li, P. Chen, and X. Wang. 2018. “Velocity of water flow along saturated loess slopes under erosion effects.” J. Hydrol. 561 (Jun): 304-311. https://doi.org/10.1016/j.jhydrol.2018.03.070.
  12. Karimpour, S., S. Gohari, and M. Yasi. 2020. “Experimental and numerical investigation of blockage effects on flows in a culvert.” J. Hydraul. 15 (2): 1-14. https://doi.org/10.30482/jhyd.2020.211670.1425.
  13. Khodier, M. A., and B. P. Tullis. 2018. “Experimental and computational comparison of baffled-culvert hydrodynamics for fish passage.” J. Appl. Water Eng. Res. 6 (3): 191-199. https://doi.org/10.1080/23249676.2017.1287018.
  14. Kilgore, R. T., B. Bergendahl, and R. H. Hotchkiss. 2010. Culvert design for aquatic organism passage: Hydraulic engineering circular number 26. Rep. No. FHWA-HIF-11-008. Lakewood, CO: Central Federal Lands Highway Division.
  15. Kim, D. G. 2007. “Numerical analysis of free flow past a sluice gate.” KSCE J. Civ. Eng. 11 (2): 127-132. https://doi.org/10.1007/BF02823856.
  16. Kim, S., K. Yu, B. Yoon, and Y. Lim. 2012. “A numerical study on hydraulic characteristics in the ice harbor-type fishway.” KSCE J. Civ. Eng. 16 (2): 265-272. https://doi.org/10.1007/s12205-012-0010-5.
  17. Leng, X., and H. Chanson. 2020. “Hybrid modelling of low velocity zones in box culverts to assist upstream fish passage.” Environ. Fluid Mech. 20 (2): 415-432. https://doi.org/10.1007/s10652-019-09700-1.
  18. Mamedov, A. 1., and G. J. Levy. 2019. “Soil erosion-runoff relations on cultivated land: Insights from laboratory studies.” Eur. J. Soil Sci. 70 (3): 686-696. https://doi.org/10.1111/ejss.12759.
  19. Meegoda, J. N., T. M. Juliano, and C. Tang. 2009. “Culvert information management system.” Transp. Res. Rec. 2108 (1): 3-12. https://doi.org/10.3141/2108-01.
  20. Mohammed, S. R., B. K. Nile, and W. H. Hassan. 2020. “Modelling stilling basins for sewage networks.” IOP Conf. Ser.: Mater. Sci. Eng. 671 (1): 012111. https://doi.org/10.1088/1757-899X/671/1/012111.
  21. Montagna, F., G. Bellotti, and M. Di Risio. 2011. “3D numerical modeling of landslide-generated tsunamis around a conical island.” Nat. Hazards 58 (1): 591-608, https://doi.org/10.1007/s11069-010-9689-0.
  22. Olsen, N. R. B., and G. Hillebrand. 2018. “Long-time 3D CFD modeling of sedimentation with dredging in a hydropower reservoir.” J. Soils Sedi- ments 18 (9): 3031-3040. https://doi.org/10.1007/s11368-018-1989-0.
  23. Othman Ahmed, K., A. Amini, J. Bahrami, M. R. Kavianpour, and D. M. Hawez. 2021. “Numerical modeling of depth and location of scour at culvert outlets under unsteady flow conditions.” J. Pipeline Syst. Eng. Pract. 12 (4): 04021040. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000578.
  24. Peter, J. M., and I. D. Moore. 2019. “Effects of erosion void on deteriorated metal culvert before and after repair with grouted slip liner.” J. Pipeline Syst. Eng. Pract. 10 (4): 04019031. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000399.
  25. Pourshahbaz, H., S. Abbasi, and P. Taghvaei. 2017. “Numerical scour mod- eling around parallel spur dikes in FLOW-3D.” Drinking Water Eng. Sci. Discuss. 1-16. https://doi.org/10.5194/dwes-2017-21.
  26. Smith, G. L., and D. E. Hallmark. 1960. New developments for erosion control at culvert outlets. Highway Research Board Bulletin No. 286. Washington, DC: Highway Research Board.
  27. Sundborg, Å. 1956. “The river Klarälven a study of fluvial processes.” Geogr. Ann. 38 (2-3): 125-316. https://doi.org/10.1080/20014422.1956.11880887.
  28. Taha, N., M. M. El-Feky, A. A. El-Saiad, and I. Fathy. 2020. “Numerical investigation of scour characteristics downstream of blocked culverts.” Alexandria Eng. J. 59 (5): 3503-3513. https://doi.org/10.1016/j.aej.2020.05.032.
  29. Tan, S. M., S.-Y. Lim, M. Wei, and N.-S. Cheng. 2020. “Application of particle densimetric Froude number for evaluating the maximum culvert scour depth.” J. Irrig. Drain. Eng. 146 (8): 04020020. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001487.
  30. Van Leer, B. 1977. “Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow.” J. Comput. Phys. 23 (3): 263-275. https://doi.org/10.1016/0021-9991(77)90094-8.
  31. Van Rijn, L. C. 1984a. “Sediment transport, part I: Bed load transport.” J. Hydraul. Eng. 110 (10): 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431).
  32. Van Rijn, L. C. 1984b. “Sediment transport, part II: Suspended load trans- port.” J. Hydraul. Eng. 110 (11): 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613),
  33. Wei, G., J. Brethour, M. Grünzner, and J. Burnham. 2014. The sedimenta- tion scour model in FLOW-3D. Flow Science Rep. No. 03-14, Santa Fe, NM: Flow Science Inc.
  34. Zhang Q., X.-L. Zhou, and J.-H. Wang. 2017. “Numerical investigation of local scour around three adjacent piles with different arrangements under current.” Ocean Eng. 142 (Sep): 625-638. https://doi.org/10.1016/j.oceaneng.2017.07.045.