Filling / 충진

재료 비용을 줄이고 사이클 시간을 개선하기 위해 소비재 회사는 슬로 싱, 튀기 및 공기 혼입을 포함한 많은 자유 표면 유체 문제를 처리해야합니다.

Predicting Entrained Air in a Bottle Filling Example

혼입된 공기는 생산 라인에서 컨테이너가 채워질 때 액체의 부피를 증가시킬 수 있습니다. 아래 왼쪽 이미지는 높이가 약 20cm인 병에 1.2 초 동안 채우는 것을 보여줍니다. 색상 음영은 액체에서 공기의 부피 비율을 나타냅니다. 병에서 짧은 시간과 높은 수준의 혼합으로 인해 공기가 표면으로 올라와 빠져 나갈 시간이 없었습니다. 그러나 오른쪽 이미지에서 볼 수 있듯이 약 1.7 초의 추가 시간이 지나면 표면으로 상승하는 공기로 인한 액체 부피 감소가 명확하게 보입니다. FLOW-3D의 드리프트 플럭스 모델을 사용하면 액체의 기포와 같은 성분을 분리하여 분리 할 수 있습니다.

Air entrainment (left) and separation of air and liquid (right)

In by 9, out by 5 – Rapid evaluation of Tide® bottle filling

FLOW-3D를 사용하여 새로운 Tide 병 디자인의 채우기를 모델링하는 방법을 설명하는이 기사는 The Procter and Gamble Company의 기술 부문 책임자 인 John McKibben이 기고했습니다.

오전 9시에 긴급한 이메일을 받았다고 상상해보십시오.

새로운 Tide® 병 디자인 중 하나가 핸들을 채우고 충전 장비에 문제가있을 수 있음을 방금 깨달았습니다. 프로토 타입 병도없고 몇 주 동안도 없을 것입니다. 디자이너와 소비자는 디자인의 모양을 좋아하지만 그것이 채우는 방식은 우리 생산 시설의 쇼 스토퍼가 될 수 있습니다.
이 상황을 접했을 때 저는 3D 지오메트리 (그림 1)의 스테레오 리소그래피 (.stl) 파일을 요청하여 응답을 시작했고 제가 할 수있는 일을 확인했습니다. FLOW-3D는 .stl 파일을 사용하여 지오메트리를 입력 할 수 있으며 채우기에 대한 자유 표면 문제를 해결할 수 있어야한다는 것을 알고있었습니다. 나는 이것이 잠재적 인 문제에 대한 좋은 질적 이해를 제공 할 것으로 기대했지만,이 응용 프로그램에 대해 얼마나 정확한지에 대해서는 약간 불확실했습니다.

Setting up and Running the Simulation

오후 1 시경에 지오메트리 파일, 유량 및 유체 속성을 받았습니다. 몇 시간 내에 시뮬레이션이 실행되어 예비 결과를 제공했습니다. 저는 제 고객을 초대하여 결과를 간단히 살펴 보았고 그는 “보스의 상사”도 함께 살펴 보았습니다. 그래서 저녁 5 시까 지 예비 결과를보고 원래 우려 사항이 문제가 아니라고 판단했습니다.

그러나 결과는 몇 가지 다른 질문을 제기했습니다. 핸들을 채우면 유입되는 유체 분사가 많이 분리되었습니다. 나는 이것이 동반 된 공기와 거품의 양을 증가시킬 것이라는 것을 알고 있었다 (우리는 결국 세탁 세제를 채우고있다). FLOW-3D 공기 혼입 모델을 테스트하기로 결정했습니다. 이 모델은 원래 난류 제트 용으로 개발되었으며,이 층류 문제를 볼 때 얼마나 잘 수행 될지 확신 할 수 없었습니다.

Figure 2: Filled results
Experimental comparison of bottle filling model with and without the air entrainment model, courtesy of The Procter & Gamble Company.

그림 2는 공기 유입 모델이 있거나없는 병 충전 모델의 결과를 보여줍니다. 혼입 된 공기가 포함되면 충전 레벨이 크게 증가합니다. 혼입 된 공기가 병 상단에서 액체를 밀어 내지는 않지만 공기 혼입 정확도를 확인해야 할만큼 충분히 가깝습니다.

그림 3은 몇 주 후에 실행 된 실험의 이미지와 공기 혼입 수준을 비교합니다 (시제품 병이 제공되었을 때). 제트 분리 및 충진 수준의 정 성적 일치는 우수하며 시뮬레이션이 병 설계를 선별하기에 충분히 정확하다는 것을 확인했습니다.