FLOW-3D로 해석한 냉각 열 응력과 변형 시뮬레이션

Temperature contour after cooling

Flow Science, INC 소속의 AHG Isfahani & JM Brethour기 발표한 FLOW-3D로 냉각 열 응력과 변형을 시뮬레이션 한 결과입니다.

주조 업계에서는 고형화 및 냉각 중 열응력을 예측하고 그 결과로 변형되는 현상을 예측하는 것이 여전히 어려운 과제입니다.

플로우 사이언스는 최근 이러한 종류의 예측을 고객에게 제공하기 위해 FSI(Fuid-Structure Interaction)와 TSE(Thermal Stress Evolution) 모델을 개발했습니다. Fuid-cocus 모델링 포트폴리오에 솔리드 메카니즘이 추가됨에 따라 FLOW-3D*(www.fow3d.com)는 이제 하나의 소프트웨어 패키지에서 완전히 결합된 Auid-structure 상호 작용 모델을 제공하는 몇 안 되는 시뮬레이션 툴 중 하나가 되었습니다.

내장된 유한 요소 분석과 FLOW-3D의 입증된 자유 표면 Aows 기록은 주조 업계에 매력적인 선택입니다. 많은 사용자들이 주조 프로세스를 포함한 유체 구조 상호 작용 문제를 시뮬레이션하기 위해 여러 소프트웨어 패키지를 결합해 왔습니다.

모델 제작자는 Auid 역학을 별도로 해결한 다음 표면 경계 조건을 고체 역학적 패키지로 가져와 응력과 변형을 얻은 다음 변형된 형상을 다시 조류 해결기로 공급하고 주기는 계속됩니다.

이 프로세스의 수동 구현은 지루함을 증명하고 스크립트 및 래퍼를 통해 프로세스를 자동화하는 것은 어려운 일입니다. 게다가, 대부분의 경우 이 커플링은 사례별로 수행되어야 합니다.

FLOW-3D는 이 프로세스의 두 측면을 단일 시뮬레이션의 결과로 두 솔루션이 모두 제공되는 하나의 패키지로 원활하게 통합했습니다.

이 기사에서는 시뮬레이션 결과를 실제 주조 부품의 변형과 비교하는 경우를 제시한다. 부품 및 실험 결과는 Littler Diecast Corporation의 Mark Littler에 의해 제공되었습니다.

Introduction
In the casting industry, the ability to predict thermal stresses and resulting deformations during solidification and cooling continues to be a challenge. Flow Science has recently developed its fuid-structure interaction (FSI) and thermal stress evolution (TSE) models to provide these kinds of predictions to its customers. With the addition of solid mechanics to its existing fuid focused modeling port- folio, FLOW-3D*(www.fow3d.com) is now one of the few simulation tools that provide a fully coupled Auid-structure interaction model within one software package. The built- in finite element analysis along with FLOW-3D’s proven record in free surface Aows makes it an attractive choice to the casting industry. Many users have been coupling multiple software packages in order to simulate fuid-structure interaction problems including casting processes. The modeler solves the Auid mechanics separately, then imports the surface boundary conditions into a solid mechanics package, obtains the stresses and deformations and then feeds the deformed geometry back into the fow solver and the cycle continues. The manual implementation of this process proves tedious and automating it through scripts and wrappers is challeng- ing. Besides, most of the time, this coupling has to be done on a per case basis. FLOW-3D has seamlessly integrated both aspects of this process into one package where both solutions come out as the result of a single simulation. In this article, a case where the simulation results are compared to deformations from an actual cast part is pre- sented. The part and experimental results were provided by Mark Littler of Littler Diecast Corporation.

결론

FLOW-3D는 최근 고체 역학을 컴퓨팅하면서 Auid Aow를 동시에 시뮬레이션하는 기능을 추가했습니다.

업계에서 단일 시뮬레이션 내에서 완전히 결합된 Auid-Structure 상호 작용을 해결할 수 있는 소프트웨어 패키지는 몇 개 되지 않습니다. 이 모델은 선형 후크 모델을 기반으로 하지만 각 시간 단계에서 스트레스가 점진적으로 계산되기 때문에 큰 변형이 가능합니다.

이 방법에서, 각 작은 증가 동안의 응력-변형 관계는 대부분의 경우 선형으로 가정할 수 있다. 또한 다이 및 응고 합금의 온도 의존성 탄성 특성을 지정할 수 있습니다. 이 모델은 열 잔류 응력으로 인해 냉각 중에 부품이 원하는 형상에서 변형되는 주조 업계에 특히 유용합니다.

캐스터는 이러한 변형을 예측하고 다이를 아주 약간만 변화시켜 최종 변형 기하학이 원하는 형태가 되도록 수정합니다.

이 작업은 FLOW-3D 사용자에게 흥미로운 새로운 경로를 제시하며 향후 릴리즈에서 몇 가지 새로운 기능을 제공하는 토대가 됩니다.

그러한 노력에는 플라스틱 변형과 인접한 고체 구성 요소 간, 그리고 고체 구성 요소와 고체화된 Auid 영역 사이의 완전한 결합이 포함됩니다.

Conclusions

FLOW-3D has recently added the capability of simulta- neously simulating the Auid Aow while computing the solid mechanics. There are only a few software packages in the industry that can solve a fully coupled Auid-struc- ture interaction within a single simulation. Although the model is based on a linear Hookean model, large deformations are possible because the stress is computed incrementally during each time step. In this method, the stress-strain relationship during each small incre- ment can be assumed to be linear in most cases. Fur- thermore, temperature-dependent elastic properties of the die and solidified alloy can be specified. This model is particularly beneficial to the casting industry where thermal residual stresses cause the part to deform from the desired geometry during cooling. Casters can predict these deformations and correct for them by changing the die ever so slightly so that in fact the final deformed geometry is the desired shape. This work represents an exciting new path for FLOW- 3D users and serves as a foundation for several new capabilities in future releases. Such efforts will include plastic deformations and full coupling between neigh- boring solid components and between solid components and solidified Auid regions.