Figure_1._Flow_velocity_on_seawall_in_A1_modeling.

본 소개 자료는 ‘Open Journal of Marine Science’에서 발행한 ‘Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3D Software’ 논문을 기반으로 합니다.

Figure_1._Flow_velocity_on_seawall_in_A1_modeling.
Figure_1._Flow_velocity_on_seawall_in_A1_modeling.

1. 서론

  • 해안 방파제(Seawalls)는 파랑 에너지를 감소시키고, 항만 및 연안 구조물을 보호하는 역할을 수행.
  • 파랑이 방파제 크라운(crown)을 넘을 때의 유속 변화는 구조물 안정성 및 침식 위험을 평가하는 중요한 요소.
  • 본 연구에서는 FLOW-3D를 이용하여 다양한 장애물 배치 및 방파제 경사 조건에서의 유속 변화를 수치적으로 분석함.

2. 연구 방법

FLOW-3D 기반 CFD 모델링

  • VOF(Volume of Fluid) 기법을 사용하여 자유 수면을 추적.
  • RNG k-ε 난류 모델을 적용하여 난류 해석 수행.
  • FAVOR(Fractional Area/Volume Obstacle Representation) 기법을 활용하여 복잡한 구조물 형상을 반영.
  • 총 68개의 서로 다른 형상을 모델링하여 비교 분석:
    • 4가지 경사 조건(45°, 51°, 56°, 61°)
    • 4가지 장애물 배치(A, B, C, D)
    • 4가지 장애물 높이(10cm, 20cm, 30cm, 50cm)
    • 장애물이 없는 경우도 포함하여 시뮬레이션 수행

3. 연구 결과

방파제 경사 및 장애물 배치에 따른 유속 변화 분석

  • 장애물이 없는 경우, 방파제 크라운에서의 유속이 가장 높게 나타남.
  • 장애물 높이가 증가할수록 유속이 감소하는 경향을 보임.
  • 10cm 장애물 대비 50cm 장애물 적용 시 유속 감소 효과가 가장 크며, 흐름의 운동에너지 일부가 위치에너지로 변환됨.
  • 경사가 45°일 때(A형 배치) 가장 낮은 유속이 나타났으며, 경사가 클수록 유속 감소 효과가 큼.

4. 결론 및 제안

결론

  • FLOW-3D를 이용한 수치 시뮬레이션을 통해 방파제 크라운을 넘는 유속 변화를 정량적으로 분석할 수 있음.
  • 경사가 45°이며, 장애물 높이가 50cm인 경우 유속이 가장 효과적으로 감소함.
  • 장애물 배치에 따라 유속 저감 효과가 달라지며, 최적의 설계를 위해 추가 연구 필요.

향후 연구 방향

  • 다양한 유속 및 파랑 조건에서 추가 시뮬레이션 수행 필요.
  • LES(Large Eddy Simulation) 모델을 적용하여 난류 해석의 정밀도 향상.
  • 실제 현장 데이터를 활용한 모델 검증 수행.

5. 연구의 의의

본 연구는 FLOW-3D를 활용하여 다양한 방파제 경사 및 장애물 배치 조건에서의 유속 변화를 수치적으로 분석하고, 방파제 설계 최적화를 위한 실질적인 데이터를 제공하였다. 이를 통해 연안 보호 구조물의 설계 및 유지보수 전략 수립에 기여할 수 있음.

Figure_1._Flow_velocity_on_seawall_in_A1_modeling.
Figure_1._Flow_velocity_on_seawall_in_A1_modeling.

Figure 2. Flow velocity on seawall in A2 modeling.
Figure 2. Flow velocity on seawall in A2 modeling.

6. 참고 문헌

  1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.
  2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York.
  3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam.
  4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop—Wave Overtopping of Seadefences and Related Structures Assessment Manual. http://www.overtopping-manual.com/manual.html
  5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771.
  6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London.
  7. Fenton, J.D. (1988) The Numerical Solution of Steady Water Wave Problems. Computers & Geosciences, 14. http://dx.doi.org/10.1016/0098-3004(88)90066-0
  8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.
  9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall.
  10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague.