Fig. 9 Velocity vectors for Q = 0.0181 m3 /s in the area of the broad-crested weir.

본 소개 논문은 Engineering Applications of Computational Fluid Mechanics에서 발행한 논문 “Numerical Modeling of Flow Over Trapezoidal Broad-Crested Weir”의 연구 내용입니다.

Fig. 9 Velocity vectors for Q = 0.0181 m3 /s in the area of the broad-crested weir.
Fig. 9 Velocity vectors for Q = 0.0181 m3/s in the area of the broad-crested weir.

1. 서론

  • 넓은 마루 위어(Broad-Crested Weir, BCW)는 수리학적 구조물로서 홍수 조절, 유량 측정 및 관개 시스템에서 활용됨.
  • BCW의 형상, 특히 사다리꼴 형태는 유량 및 에너지 손실에 영향을 미칠 수 있으며, 기존 실험적 연구와 함께 수치 모델링이 중요함.
  • 본 연구에서는 FLOW-3D 및 SSIIM 2 소프트웨어를 사용하여 사다리꼴 BCW의 유동 특성을 분석하고, 수치 결과를 물리 실험 결과와 비교하여 모델링 정확도를 평가함.

2. 연구 방법

FLOW-3D 및 SSIIM 2 기반 CFD 모델링

  • VOF(Volume of Fluid) 기법을 사용하여 자유 수면을 추적.
  • Reynolds-Averaged Navier-Stokes (RANS) 방정식과 k-ε 난류 모델을 적용하여 난류 해석 수행.
  • FAVOR(Fractional Area/Volume Obstacle Representation) 기법을 활용하여 복잡한 구조물 형상을 반영.
  • SSIIM 2는 적응형(adaptive) 격자를 사용하며, Marker-and-Cell(MAC) 접근법을 적용하여 자유 수면을 계산.
  • 경계 조건 설정:
    • 유입부: 부피 유량(Volume flow rate) 조건 적용.
    • 유출부: 자유 배출(Outflow) 조건 설정.
    • 벽면: No-slip 조건 적용.

3. 연구 결과

FLOW-3D와 SSIIM 2 결과 비교

  • 두 모델 모두 물리 실험 결과와 유사한 자유 수면 프로파일을 예측하였으며, 계산된 유량 계수(Discharge Coefficient, Cd)는 실험 값과 ±3% 이내의 차이를 보임.
  • FLOW-3D는 격자가 고정되어 있으며, 평균 435~550초의 계산 시간이 소요됨.
  • SSIIM 2는 적응형 격자를 사용하여 격자 수가 변하며, 계산 시간이 12,500~15,500초로 상대적으로 길었음.
  • 유량 변화(Q = 0.0181 ~ 0.0055 m³/s)에 따른 자유 수면 프로파일 분석 결과, 두 모델 간 수위 차이는 1~1.5% 범위 내에 존재.

압력 및 유속 분포 분석

  • FLOW-3D의 결과에서는 위어 전면부에서 압력이 최대치를 기록하며, 후면부에서는 압력이 급격히 감소.
  • SSIIM 2에서도 유사한 압력 분포가 확인되었으나, 자유 수면 프로파일 계산에서 다소 차이가 발생.
  • 속도 벡터 분석 결과, 위어 전면부에서 흐름이 가속되고 후면부에서 난류 강도가 증가하는 패턴이 관측됨.

4. 결론 및 제안

결론

  • FLOW-3D 및 SSIIM 2를 활용한 시뮬레이션은 사다리꼴 BCW 유동 해석에서 높은 신뢰도를 보였으며, 실험 결과와의 비교를 통해 모델의 타당성이 검증됨.
  • FLOW-3D는 고정 격자와 높은 계산 효율성을 제공하며, SSIIM 2는 적응형 격자를 활용하여 자유 수면의 변화를 보다 세밀하게 반영.
  • 전체적인 Cd 값은 실험 데이터와 잘 일치하며, 실험과의 평균 오차율이 3% 이내임.

향후 연구 방향

  • 3D 모델링을 활용하여 더욱 정밀한 유동 분석 수행.
  • LES(Large Eddy Simulation) 및 다른 난류 모델과의 비교 연구 필요.
  • 자연 하천 환경에서의 적용 가능성을 평가하기 위한 추가 연구 필요.

5. 연구의 의의

본 연구는 FLOW-3D 및 SSIIM 2를 이용하여 사다리꼴 BCW에서의 유동 특성을 분석하고, 실험 결과와 비교하여 모델 신뢰성을 검증하였다. 이를 통해 수리 구조물 설계 및 유량 측정 기술 향상에 기여할 수 있는 실질적인 데이터 및 분석 방법을 제공한다.

Sketch of the orthogonal, structured and nonadaptive grid (hexahedral), used in Flow-3D.
In the computations a finer grid is used.
Sketch of the orthogonal, structured and nonadaptive grid (hexahedral), used in Flow-3D. In the computations a finer grid is used.
Fig. 9 Velocity vectors for Q = 0.0181 m3
/s in the
area of the broad-crested weir.
Fig. 9 Velocity vectors for Q = 0.0181 m3/s in the area of the broad-crested weir.

6. 참고 문헌

  1. Azimi AH, Rajaratnam N (2009). Discharge characteristics of weirs of finite crest length. Journal of Hydraulic Engineering, 135(12):1081–1085.
  2. Bazin H (1898). Expériences nouvelles sur l’écoulement en d’éversoir. Annales des Ponts et Chaussées, 68(2):151-265.
  3. Bos MG (1976). Discharge measurement structures. Laboratorium voor Hydraulica an Afvoerhydrologie, Landbouwhogeschool, Wageningen, The Netherlands, Rapport 4.
  4. Bhuiyan F, Hey R (2007). Computation of three-dimensional flow field created by weir-type structures. Engineering Applications of Computational Fluid Mechanics, 1(4):350–360.
  5. Flow-3D (2010). User Manual Version 9.4. Flow Science Inc., Santa Fe.
  6. Fritz HM, Hager WH (1998). Hydraulics of embankment weirs. Journal of Hydraulic Research, 124(9):963–971.
  7. Hager WH (1986). Discharge measurement structures. Communication 1, Chaire de constructions hydrauliques, Département de Génie Civil, EPFL, Lausanne.
  8. Hager WH, Schwalt M (1994). Broad Crested Weir. Journal of Irrigation and Drainage Engineering, 120(1):13–26.
  9. Hargreaves DM, Morvan HP, Wright NG (2007). Validation of the volume of fluid method for free surface calculation: the broad-crested weir. Engineering Applications of Computational Fluid Mechanics, 1(2):136–147.
  10. Hirt CW, Nichols BD (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39:201–225.
  11. Launder BE, Spalding DB (1972). Lectures in mathematical models of turbulence. Academic Press, London.
  12. Olsen NRB (1999). Computational Fluid Dynamics in Hydraulic and Sedimentation Engineering. Class Notes, Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology.
  13. Olsen NRB (2009). A three-dimensional numerical model for simulation of sediment movements in water intakes with multiblock option. User’s Manual, The Norwegian University of Science and Technology.
  14. Patankar SV (1980). Numerical Heat Transfer and Fluid Flow. McGraw-Hill Book Company, New York.
  15. Sargison JE, Percy A (2009). Hydraulics of Broad-Crested Weirs with Varying Side Slopes. Journal of Irrigation and Drainage Engineering, 135(1):115-118.
  16. Sarker MA, Rhodes DG (2004). Calculation of free-surface profile over a rectangular broad-crested weir. Flow Measurement and Instrumentation, 15:215-219.
  17. Schlichting H (1979). Boundary layer theory. McGraw-Hill Book Company, New York.
  18. Williams JJR (2007). Free-surface simulations using an interface-tracking finite-volume method with 3D mesh movement. Engineering Applications of Computational Fluid Mechanics, 1(1):49–56.
  19. Woodburn JG (1932). Tests on broad crested weirs. Trans. ASCE, 1797 96:387–408.