Figure 8. Numerical simulation results for the gate discharge test conditions, Case 1. (a) Case 1 surface velocity distribution. (b) Case 1 longitudinal velocity distribution of gate center.

이 소개자료는 Sustainability에서 발표한 FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures 논문에 대한 소개자료입니다.

Figure 8. Numerical simulation results for the gate discharge test conditions, Case 1. (a) Case 1
surface velocity distribution. (b) Case 1 longitudinal velocity distribution of gate center.
Sustainability 2022, 14, 10493 8 of 1(a)
(b)
Figure 8. Numerical simulation results for the gate discharge test conditions, Case 1. (a) Case 1
surface velocity distribution. (b) Case 1 longitudinal velocity distribution of gate cen
Figure 8. Numerical simulation results for the gate discharge test conditions, Case 1. (a) Case 1 surface velocity distribution. (b) Case 1 longitudinal velocity distribution of gate center.

연구 목적

  • 본 연구는 하류 수리 구조물의 흐름 특성을 분석하기 위해 FLOW-3D 모델을 개발하는 것을 목표로 함.

연구 방법

모델링 설정

  • FLOW-3D 모델을 사용하여 3차원 비정상류 해석을 수행하였음.
  • 하류 수리 구조물의 형상 및 주변 지형을 고려하여 계산 영역을 설정하였음.
  • 적절한 난류 모델 및 경계 조건을 적용하여 모델의 정확도를 높였음.

모델 검증

  • 실험실 또는 현장 측정 데이터를 확보하여 모델 예측 결과와 비교 분석하였음.
  • 수위, 유속 등 주요 흐름 변수에 대한 모델의 적합성을 평가하였음.
  • 모델 파라미터 민감도 분석을 통해 모델의 신뢰성을 검증하였음.

주요 결과

흐름 특성 분석

  • 하류 수리 구조물 주변에서 발생하는 복잡한 흐름 패턴(예: 재순환, 박리)을 시각적으로 확인하였음.
  • 구조물 특정 지점에서의 유속 및 압력 변화를 정량적으로 분석하였음.
  • 설계 변수 변화에 따른 흐름 특성 변화를 파악하여 최적 설계 방안 도출의 기초 자료를 제공하였음.

구조물 영향 평가

  • 하류 수리 구조물의 존재 유무에 따른 상하류 흐름 변화를 비교 분석하였음.
  • 구조물 형상(예: 높이, 폭) 변화가 흐름 특성에 미치는 영향을 평가하였음.
  • 특정 흐름 조건에서 구조물의 안정성 및 기능성을 예측하였음.

결론 및 시사점

  • 본 연구에서 개발된 FLOW-3D 모델은 하류 수리 구조물의 흐름 특성 분석에 효과적인 도구로 활용될 수 있음.
  • 모델링 결과를 바탕으로 하류 수리 구조물의 안정성 및 효율성을 향상시킬 수 있을 것으로 기대됨.
  • 향후 다양한 형태의 하류 수리 구조물에 대한 모델링 및 실험 연구를 통해 모델의 적용 범위를 확대할 필요가 있음.
Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 8. Numerical simulation results for the gate discharge test conditions, Case 1. (a) Case 1
surface velocity distribution. (b) Case 1 longitudinal velocity distribution of gate center.
Figure 8. Numerical simulation results for the gate discharge test conditions, Case 1. (a) Case 1 surface velocity distribution. (b) Case 1 longitudinal velocity distribution of gate center.

레퍼런스

  • Kim, S.H.; Kim, W.; Lee, E.R.; Choi, G.H. Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River. J. Korean Water Resour. Assoc. 2005, 38, 401–413. [CrossRef]  
  • Kim, K.H.; Choi, G.W.; Jo, J.B. An Experimental Study on the Stream Flow by Discharge Ratio. Korea Water Resour. Assoc. Acad. Conf. 2005, 05b, 377–382.  
  • Lee, D.S.; Yeo, H.G. An Experimental Study for Determination of the Material Diameter of Riprap Bed Protection Structure. Korea Water Resour. Assoc. Acad. Conf. 2005, 05b, 1036–1039.  
  • Choi, G.W.; Byeon, S.J.; Kim, Y.G.; Cho, S.U. The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom. J. Korean Soc. Hazard Mitig. 2008, 8, 117–122.  
  • Jung, J.G. An Experimental Study for Estimation of Bed Protection Length. J. Korean Wetl. Soc. 2011, 13, 677–686.
  • Kim, J.H.; Sim, M.P.; Choi, G.W.; Oh, J.M. Hydraulic Analysis of Air Entrainment by Weir Types. J. Korean Water Resour. Assoc. 2006, 39, 109–119.
  • French, R.H. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1985.
  • Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959.
  • Henderson, F.M. Open Channel Flow; Macmillan: New York, NY, USA, 1966.
  • Montes, J.S. Hydraulics of Open Channel Flow; ASCE Press: Reston, VA, USA, 1998.
  • Liggett, J.A. Fluid Mechanics; McGraw-Hill: New York, NY, USA, 1994.
  • Anderson, J.D. Fundamentals of Aerodynamics; McGraw-Hill: New York, NY, USA, 2010.
  • Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998.
  • Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [CrossRef]  
  • Rodi, W. Turbulence Models and Their Application in Hydraulics—A State-of-the-Art Review; IAHR: Delft, The Netherlands, 1980.
  • Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
  • Fluent Inc. FLUENT 6.3 User’s Guide; Fluent Inc.: Lebanon, NH, USA, 2006.
  • FLOW-3D. FLOW-3D User’s Manual, Version 10.5; Flow Science: Santa Fe, NM, USA, 2010.
  • Kim, Y.D.; Park, J.H.; Lee, J.H.; Kim, K.H. Numerical Analysis of Hydraulic Characteristics around Fishway using FLOW-3D. J. Korean Soc. Civ. Eng. 2012, 32, 1–10. [CrossRef]
  • Kim, K.H.; Choi, G.W.; Jo, J.B. An Experimental Study on the Stream Flow by Discharge Ratio. Korea Water Resour. Assoc. Acad. Conf. 2005, 05b, 377–382.  
  • Lee, D.S.; Yeo, H.G. An Experimental Study for Determination of the Material Diameter of Riprap Bed Protection Structure. Korea Water Resour. Assoc. Acad. Conf. 2005, 05b, 1036–1039.  
  • Choi, G.W.; Byeon, S.J.; Kim, Y.G.; Cho, S.U. The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom. J. Korean Soc. Hazard Mitig. 2008, 8, 117–122.  
  • Jung, J.G. An Experimental Study for Estimation of Bed Protection Length. J. Korean Wetl. Soc. 2011, 13, 677–686.
  • Kim, S.H.; Kim, W.; Lee, E.R.; Choi, G.H. Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River. J. Korean Water Resour. Assoc. 2005, 38, 401–413. [CrossRef]  
  • Kim, J.H.; Sim, M.P.; Choi, G.W.; Oh, J.M. Hydraulic Analysis of Air Entrainment by Weir Types. J. Korean Water Resour. Assoc. 2006, 39, 109–119.