Hydraulic Characteristic Analysis of Buoyant Flap Typed Storm Surge Barrier using FLOW-3D Model
FLOW-3D 모델을 이용한 부유 플랩형 폭풍 해일 방어벽의 수리 특성 분석
1. 서론
본 연구는 부유 플랩형 폭풍 해일 방어벽의 수리학적 특성을 수치적으로 분석하는 것을 목적으로 함.
폭풍 해일 제어 및 연안 홍수 완화에서 방어벽의 효과를 평가하기 위해 수행됨.
FLOW-3D 소프트웨어를 이용하여 방어벽의 유체역학적 거동을 모델링함.
2. 연구 방법
전산유체역학(CFD) 기법을 적용하여 부유 플랩형 방어벽을 모델링함.
수치 모델의 주요 구성 요소:
레이놀즈 평균 나비에-스토크스(RANS) 방정식을 이용한 난류 모델링.
VOF(Volume of Fluid) 기법을 사용하여 자유 수면 추적.
실제 조석(tidal) 및 폭풍 해일(storm surge) 조건을 반영한 경계 조건 적용.
기존 실험 데이터를 활용하여 모델 검증 수행.
3. 연구 결과
주요 연구 결과:
방어벽이 수위 감소 및 파랑 에너지 저감에 효과적임을 확인.
방어벽 각도에 따라 와류(vortex) 형성 및 난류 강도가 변화함.
파고, 방어벽 유연성, 유속에 따라 구조적 안정성이 영향을 받음.
실험 데이터와의 비교를 통해 모델의 예측 정확성이 높음을 확인함.
4. 결론
부유 플랩형 폭풍 해일 방어벽은 연안 홍수 완화에 효과적인 대안이 될 수 있음.
CFD 시뮬레이션을 통해 방어벽 설계 최적화에 유용한 정보를 제공할 수 있음.
향후 연구에서는 장기적인 구조적 내구성 및 실제 환경에서의 적용 가능성을 중점적으로 다뤄야 함.
Figure 1. Location of the study area
Reference
Mahtabi, G.; Chaplot, B.; Azamathulla, H.M.; Pal, M. Classification of hydraulic jump in rough beds. Water 2020, 12, 2249.
Maleki, S.; Fiorotto, V. Hydraulic Jump Stilling Basin Design over Rough Beds. J. Hydraul. Eng. 2021, 147, 04020087.
Dey, S.; Sarkar, A. Response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds andits application to scour downstream of an apron. J. Fluid Mech. 2006, 556, 387–419.
Bayon-Barrachina, A.; Lopez-Jimenez, P.A. Numerical analysis of hydraulic jumps using OpenFOAM. J. Hydroinform. 2015,17, 662–678.
Bai, R.; Ning, R.; Liu, S.; Wang, H. Hydraulic Jump on a Partially Vegetated Bed. Water Resour. Res. 2022, 58, e2022WR032013.
Li, P.; Zhu, D.Z.; Xu, T.; Zhang, J. Air Demand of a Hydraulic Jump in a Closed Conduit. J. Hydraul. Eng. 2022, 148, 04021058.
Bantacut, A.Y.; Azmeri, A.; Jemi, F.Z.; Ziana, Z.; Muslem, M. An experiment of energy dissipation on USBR IV stilling basin—Alternative in modification. J. Water Land Dev. 2022, 53, 68–72.
Mazumder, S. Hydraulic jump control using stilling basin with Adverse slope and positive step. ISH J. Hydraul. Eng. 2020,28, 18–20.
Macián-Pérez, J.F.; Bayón, A.; García-Bartual, R.; López-Jiménez, P.A.; Vallés-Morán, F.J. Characterization of Structural Propertiesin High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. J. Hydraul. Eng. 2020, 146, 04020079.
Elsayed, H.; Helal, E.; El-Enany, M.; Sobeih, M. Impacts of multi-gate regulator operation schemes on local scour downstream.ISH J. Hydraul. Eng. 2018, 27, 51–64.
Ead, S.A.; Rajaratnam, N. Hydraulic Jumps on Corrugated Beds. J. Hydraul. Eng. 2002, 128, 656–663.
Ead, S.A.; Rajaratnam, N. Plane Turbulent Wall Jets on Rough Boundaries with Limited Tailwater. J. Eng. Mech. 2004, 130, 1245–1250.
Ead, S.A.; Rajaratnam, N. Plane turbulent surface jets in shallow tailwater. J. Fluids Eng. 2000, 123, 121–127.
Chen, J.-G.; Zhang, J.-M.; Xu, W.-L.; Wang, Y.-R. Numerical simulation of the energy dissipation characteristics in stilling basin ofmulti-horizontal submerged jets. J. Hydrodyn. 2010, 22, 732–741.
Balachandar, R.; Kells, J.; Thiessen, R.; Gunal, M.; Guven, A.; Kells, J.A.; Hagel, K.P. The effect of tailwater depth on the dynamicsof local scour. Can. J. Civ. Eng. 2000, 27, 138–150.
Sarker, M.; Rhodes, D. Calculation of free-surface profile over a rectangular broad-crested weir. Flow Meas. Instrum. 2004,15, 215–219.
Dey, S.; Sarkar, A. Characteristics of Turbulent Flow in Submerged Jumps on Rough Beds. J. Eng. Mech. 2008, 134, 599.
Liu, M.; Rajaratnam, N.; Zhu, D.Z. Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. J. Hydraul. Eng. 2004,130, 511–520.
Habibzadeh, A.; Loewen, M.R.; Rajaratnam, N. Performance of Baffle Blocks in Submerged Hydraulic Jumps. J. Hydraul. Eng.2012, 138, 902–908.
Pagliara, S.; Lotti, I.; Palermo, M. Hydraulic jump on rough bed of stream rehabilitation structures. J. Hydro-Environ. Res. 2008,2, 29–38.
Zobeyer, A.H.; Jahan, N.; Islam, Z.; Singh, G.; Rajaratnam, N. Turbulence characteristics of the transition region from hydraulicjump to open channel flow. J. Hydraul. Res. 2010, 48, 395–399.
Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 2009, 3, 109–117.
Mignot, E.; Cienfuegos, R. Energy Dissipation and Turbulent Production in Weak Hydraulic Jumps. J. Hydraul. Eng. 2010,136, 116–121.
Babaali, H.; Shamsai, A.; Vosoughifar, H. Computational Modeling of the Hydraulic Jump in the Stilling Basin with ConvergenceWalls Using CFD Codes. Arab. J. Sci. Eng. 2014, 40, 381–395.
Habibzadeh, A.; Wu, S.; Ade, F.; Rajaratnam, N.; Loewen, M.R. Exploratory Study of Submerged Hydraulic Jumps with Blocks. J.Hydraul. Eng. 2011, 137, 706–710.
Ali, A.M.; Mohamed, Y.A. Effect of stilling basin shape on the hydraulic characteristics of the flow downstream radial gates. Alex.Eng. J. 2010, 49, 393–400.
Mishra, K. 3DNumerical Modelling of Energy Dissipation in Flexible Apron of Barrages. J. Inst. Eng. Ser. A 2015, 96, 47–56.
Alikhani, A.; Behrozi-Rad, R.; Fathi-Moghadam, M. Hydraulic jump in stilling basin with vertical end sill. Int. J. Phys. Sci. 2010,5, 25–29.29. Elsaeed, G.; Ali, A.; Abdelmageed, N.; Ibrahim, A. Effect of End Step Shape in the Performance of Stilling Basins DownstreamRadial Gates. J. Sci. Res. Rep. 2016, 9, 1–9.
Tiwari, H.L.; Panwar, A.; Gehlot, B.; Singh, J. Study of Shape of Intermediate Sill on the Design of Stilling Basin Model. Int. J. Res.Eng. Technol. 2014, 3, 133–138.
Tiwari, H.L.; Gehlot, V.K.; Tiwari, S. Effect of Height of Triangular Siil on the Performance of Stilling Basin Model. Int. J. Res. Eng.Technol. 2014, 3, 868–873.
Hager, W.H.; Li, D. Sill-controlled energy dissipator. J. Hydraul. Res. 1992, 30, 181.
Herrera-Granados, O.; Kostecki, S.W. Numerical and physical modeling of water flow over the ogee weir of the new Niedówbarrage. J. Hydrol. Hydromechanics 2016, 64, 67–74.
Zulfiqar, C.; Kaleem, S.M. Launching/Disappearance of Stone Apron, Block Floor Downstream of the Taunsa Barrage andUnprecedent Drift of the River towards Kot Addu Town. Sci. Technol. Dev. 2015, 34, 60–65.
Chaudary, Z.A.; Sarwar, M.K.; Barrage, R.T. Rehabilitated Taunsa Barrage: Prospects and Concerns. Sci. Technol. Dev. 2014,33, 127–131.36. Chaudhry, Z.A. Surface Flow Hydraulics of Taunsa Barrage: Before and after Rehabilitation. Pak. J. Sci. 2010, 62, 116–119.37. Witt, A.; Gulliver, J.; Shen, L. Simulating air entrainment and vortex dynamics in a hydraulic jump. Int. J. Multiph. Flow 2015,72, 165–180.
Yoo, S.; Hong, M.; Wang, H. 3-Dimensional numerical study of a flow patterns around a multipurpose dam. In Proceedings of theInternational Conference on Hydro Informatics, Cardiff, UK, 1–5 July 2002; pp. 353–357.39. Aydogdu, M.; Gul, E.; Dursun, O.F. Experimentally Verified Numerical Investigation of the Sill Hydraulics for AbruptlyExpanding Stilling Basin. Arab. J. Sci. Eng. 2022, 48, 4563–4581.
Mukha, T.; Almeland, S.K.; Bensow, R.E. Large-Eddy Simulation of a Classical Hydraulic Jump: Influence of Modelling Parameterson the Predictive Accuracy. Fluids 2022, 7, 101.
El Azim, N.A.; Saleh, O.; Tohamy, E.; Mahgoub, S.; Ghany, S. Effect of Vertical Screen on Energy Dissipation and Water SurfaceProfile Using Flow 3D. Egypt. Int. J. Eng. Sci. Technol. 2022, 38, 20–25.42. Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison between Numerical Flow3d Software and Laboratory Data, for SedimentIncipient Motion. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Baghdad, Iraq, 3–4 November2022; p. 961.
Mirzaei, H.; Tootoonchi, H. Experimental and numerical modeling of the simultaneous effect of sluice gate and bump on hydraulicjump. Model. Earth Syst. Environ. 2020, 6, 1991–2002.
Macián-Pérez, J.F.; García-Bartual, R.; Bayon, B.H.A.; Vallés-Morán, F.J. Analysis of the flow in a typified USBR II stilling basinthrough a numerical and physical modeling approach. Water 2020, 12, 227.
Daneshfaraz, R.; Ghader, A. Numerical Investigation of Inverse Curvature Ogee Spillway. Civ. Eng. J. 2017, 3, 1146.
Anjum, N.; Ghani, U.; Pasha, G.A.; Rashid, M.U.; Latif, A.; Rana, M.Z.Y. Reynolds stress modeling of flow characteristics in avegetated rectangular open channel. Arab. J. Sci. Eng. 2018, 43, 5551–5558.
Dargahi, B. Experimental Study 3DNumerical Simulations for a Free-Overflow Spillway. J. Hydraul. Eng. 2006, 132, 899–907.
Karim, O.A.; Ali, K.H.M. Prediction of flow patterns in local scour holes caused by turbulent water jets. J. Hydraul. Res. 2000,38, 279–287.
Liu, X.; García, M.H. Three-Dimensional Numerical Model with Free Water Surface and Mesh Deformation for Local SedimentScour. J. Waterw. Port Coast. Ocean. Eng. 2008, 134, 203–217.
Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance assessment of OpenFOAM andFLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335.
Bayon-Barrachina, A.; Valles-Moran, F.J.; Lopes-Jiménez, P.A.; Bayn, A.; Valles-Morn, F.J.; Lopes-Jimenez, P.A. Numerical Analysisand Validation of South Valencia Sewage Collection System. In Proceedings of the 36th IAHR World Congress, The Hague, TheNetherlands, 2015; Volume 17, pp. 1–11.52. Nguyen, V.T.; Nestmann, F.; Scheuerlein, H. Three-dimensional computation of turbulent flow in meandering channels and rivers.J. Hydraul. Res. 2007, 45, 595–609.
Riad, P.; Roelvink, D.J.A.; Ahmed, A.; Boeru, P. Use of Mathematical Models to Improve the Design of the Stilling Basin. Availableonline: https://doi.org/10.13140/RG.2.2.34562.94409 (accessed on 27 September 2022).54. Chatila, J.; Tabbara, M. Computational modeling of flow over an ogee spillway. Comput. Struct. 2004, 82, 1805–1812.
Cassan, L.; Belaud, G. Experimental and Numerical Investigation of Flow under Sluice Gates. J. Hydraul. Eng. 2012, 138, 367–373.
Carvalho, R.F.; Lemos, C.M.; Ramos, C.M. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res.2008, 46, 739–752.
World Bank. Announcement of World Bank Provides United States (U.S.) One Hundred Twenty-Three Million Dollars Loanto Rehabilitate and Modernize Taunsa Barrage in Pakistan on 15 March 2005 (English). Available online: http://documents.worldbank.org/curated/en/099915203252274440/IDU01bcc88300a93504d270b1a20dbc553c584df (accessed on 25 March 2022).58. Zaidi, S.; Khan, M.A.; Rehman, S.U. Planning and Design of Taunsa Barrage Rehabilitation Project. In Proceedings of the PakistanEngineering Congress, 71st Annual Session Proceedings, Pakistan, Lahore, 2004; Paper No. 687. pp. 228–286.59. Aloini, D.; Dulmin, R.; Mininno, V.; Ponticelli, S. Supply chain management: A review of implementation risks in the constructionindustry. Bus. Process Manag. J. 2012, 18, 735–761.
Ullah, F.; Ayub, B.; Siddiqui, S.Q.; Thaheem, M.J. A review of public-private partnership: Critical factors of concession period. J.Financ. Manag. Prop. Constr. 2016, 21, 269–300.
Ayub, B.; Thaheem, M.J.; Din, Z.U. Dynamic Management of Cost Contingency: Impact of KPIs and Risk Perception. Procedia Eng.2016, 145, 82–87.
Muneeswaran, G.; Manoharan, P.; Awoyera, P.O.; Adesina, A. A statistical approach to assess the schedule delays and risks inIndian construction industry. Int. J. Constr. Manag. 2020, 20, 450–461.
Gündüz, M.; Nielsen, Y.; Özdemir, M. Quantification of Delay Factors Using the Relative Importance Index Method forConstruction Projects in Turkey. J. Manag. Eng. 2013, 29, 133–139.
Ahmad, Z.; Thaheem, M.J.; Maqsoom, A. Building information modeling as a risk transformer: An evolutionary insight into theproject uncertainty. Autom. Constr. 2018, 92, 103–119.
Siddiqui, S.Q.; Ullah, F.; Thaheem, M.J.; Gabriel, H.F. Six Sigma in construction: A review of critical success factors. Int. J. Lean SixSigma 2016, 7, 171–186.
Sciences, F. FLOW 3D User Manual, Version 10.1; Flow Sciences: Santa Fe, NM, USA, 2013.67. Yakhot, V.; Thangam, S.; Gatski, T.B.; Orszag, S.A.; Speziale, C.G. Development of turbulence models for shear flows by a doubleexpansion technique. Phys. Fluids A 1991, 4, 1510–1520.
Training, E. Water & Environment Training Guide 1: CFD Project Workflow Guide, n.d. Available online: https://www.flow3d.com/wp-content/uploads/2017/03/cfd-project-workflow-guide-v112.pdf (accessed on 7 August 2021).69. Kometa, S.T.; Olomolaiye, P.O.; Harris, F.C. Attributes of UK construction clients influencing project consultants’ performance.Constr. Manag. Econ. 1994, 12, 433–443.
Nikmehr, S.; Aminpour, Y. Numerical simulation of hydraulic jump over rough beds, Period. Polytech. Civ. Eng. 2020, 64, 396–407.
Savage, B.M.; Johnson, M.C. Flow over Ogee Spillway: Physical and Numerical Model Case Study. J. Hydraul. Eng. 2001,127, 640–649.
Johnson, M.C.; Savage, B.M. Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater. J.Hydraul. Eng. 2006, 132, 1353–1357.
Ebrahimiyan, S.; Hajikandi, H.; Bejestan, M.S.; Jamali, S.; Asadi, E. Numerical Study on the Effect of Sediment Concentration onJump Characteristics in Trapezoidal Channels. Iran. J. Sci. Technol.—Trans. Civ. Eng. 2021, 45, 1059–1075.
Bricker, J.D.; Nakayama, A. Contribution of Trapped Air Deck Superelevation, and Nearby Structures to Bridge Deck Failureduring a Tsunami. J. Hydraul. Eng. 2014, 140, 05014002.
Soori, S.; Babaali, H.; Soori, N. An Optimal Design of the Inlet and Outlet Obstacles at USBR II Stilling Basin. Int. J. Sci. Eng. Appl.2017, 6, 134–142.
Nguyen, V.T. 3D numerical simulation of free surface flows over hydraulic structures in natural channels and rivers. Appl. Math.Model 2015, 39, 6285–6306.
Geun, K.D.; Jae Hyun, P. Analysis of Flow Structure over Ogee-Spillway in Consideration of Scale and Roughness Effects byUsing CFD Model. KSCE J. Civ. Eng. 2005, 9, 161–169.79. D’Agostino, V.; Ferro, V. Scour on Alluvial Bed Downstream of Grade-Control Structures. J. Hydraul. Eng. 2004, 130, 24–37.
Chen, Q.; Dai, G.; Liu, H. Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow. J. Hydraul.Eng. 2002, 128, 683–688.
Lin, P.; Xu, W. NEWFLUME: A numerical water flume for two-dimensional turbulent free surface flows NEWFLUME: Un canalnumérique hydraulique pour écoulements bidimensional à surface libre turbulents. J. Hydraul. Res. 2006, 44, 79–93.
Chaudhry, Z.A. Performance Assessment of Taunsa Barrage Subsidiary Weir for Long Term Rehabilitation Planning. Pak. J. Engg.Appl. Sci. 2010, 7, 65–70.83. Adduce, C.; Sciortino, G. Scour due to a horizontal turbulent jet: Numerical and experimental investigation. J. Hydraul. Res. 2006,44, 663–673.
Guan, D.; Melville, B.W.; Friedrich, H. Flow Patterns and Turbulence Structures in a Scour Hole Downstream of a SubmergedWeir. J. Hydraul. Eng. 2014, 140, 68–76.
Neisi, M.; Sajjadi, S.M.; Shafai Bejestan, M. Experimental Investigation of Discharge and Flow Energy Dissipation of EllipticalLopac Gate in Free Flow Condition. Irrig. Sci. Eng. 2020, 46, 91–101.
Grimaldi, C.; Gaudio, R.; Cardoso, F.C.A.H. Control of Scour at Bridge Piers by a Downstream Bed Sill. J. Hydraul. Eng. 2009,135, 13–21.
Kabiri-Samani, A.; Ansari, A.; Borghei, S.M. Hydraulic behaviour of flow over an oblique weir. J. Hydraul. Res. 2010, 48, 669–673.
Gaudio, R.; Marion, A. Time evolution of scouring downstream of bed sills. J. Hydraul. Res. 2003, 41, 271–284.
Stojnic, I.; Pfister, M.; Matos, J.; Schleiss, A.J. Hydraulic jump downstream of a stepped chute: An experimental study. InProceedings of the E-Proceedings 38th IAHR World Congr, Panama City, Panama, 1–6 September 2019; pp. 2056–2065.
Wüthrich, D.; Chamoun, S.; De Cesare, G.; Schleiss, A.J. Behaviour of a scour protection overlay with randomly distributedconcrete prisms in plunge pools downstream of mobile barrages for exceptional operation conditions. In Proceedings of the 7thIAHR International Symposium Hydraulic Structures, ISHS 2018, Aachen, Germany, 15–18 May 2018; pp. 150–158.
Marion, A.; Lenzi, M.A.; Comiti, F. Effect of sill spacing and sediment size grading on scouring at grade-control structures. EarthSurf. Process. Landforms 2004, 29, 983–993.
Goel, A.; Pal, M. Application of support vector machines in scour prediction on grade-control structures. Eng. Appl. Artif. Intell.2009, 22, 216–223.
Goel, A. Design of stilling basin for circular pipe outlets Can. J. Civ. Eng. 2008, 35, 1365–1374.
Kucukali, S.; Chanson, H. Turbulence measurements in the bubbly flow region of hydraulic jumps. Exp. Therm. Fluid Sci. 2008,33, 41–53.
Zaidi, S.M.A.; Amin, M.; Ahmadani, M.A. Performance Evaluation of Taunsa Barrage Emergency Rehabilitation and Modernization Project. Paper No. 705. 2011, pp. 650–682. Available online: https://pecongress.org.pk/images/upload/books/PERFORMANCE%2520EVALUATION%2520OF%2520TAUNSA%2520BARRAGE%2520EMERGENCY%2520REHABILIT.pdf (accessed on 3 October 2023).