Figure 13 | 3D illustration of Fr variation in the old stilling basin at (a) 129.10 m tailwater, (b) 129.70 m tailwater, and (c) 130.30 m tailwater. In the new stilling basin at (d) 129.10 m tailwater, (e) 129.70 m tailwater, and (f) 130.30 m tailwater
Figure 13 | 3D illustration of Fr variation in the old stilling basin at (a) 129.10 m tailwater, (b) 129.70 m tailwater, and (c) 130.30 m tailwater.
In the new stilling basin at (d) 129.10 m tailwater, (e) 129.70 m tailwater, and (f) 130.30 m tailwater
Figure 13 | 3D illustration of Fr variation in the old stilling basin at (a) 129.10 m tailwater, (b) 129.70 m tailwater, and (c) 130.30 m tailwater. In the new stilling basin at (d) 129.10 m tailwater, (e) 129.70 m tailwater, and (f) 130.30 m tailwater

이 소개자료는 “2023, Water Supply”에서 발표된 “Hydraulic investigation of stilling basins of the barrage before and after remodelling using FLOW-3D” 논문에 대한 소개자료입니다.

연구 목적

  • 본 연구는 FLOW-3D를 사용하여 보의 감세지의 개조 전후 수리학적 성능을 조사하는 것을 목적으로 함.

연구 방법:

모델링 설정

  • FLOW-3D 소프트웨어를 사용하여 개조 전후의 감세지에서 자유 표면, 수심, 프루드 수, 롤러 길이, 유속, 도수 효율, 난류 운동 에너지와 같은 수리학적 매개변수를 시뮬레이션하고 비교 분석하였음.
  • 개조 전 감세지에는 방해벽과 마찰 블록이 있었고, 개조 후에는 슈트 블록과 톱니 모양의 여울로 대체되었음.
  • 문헌 결과와의 비교를 통해 모델의 정확성을 검증하였음.

모델 검증

  • FLOW-3D 모델을 사용하여 개조 전후 감세지의 수리학적 특성을 분석하고, 문헌 결과와 비교하였음.
  • 감세지에서 발생하는 도수 현상의 특성을 파악하고, 개조가 도수에 미치는 영향을 평가하였음.
  • 다양한 수리학적 매개변수를 비교 분석하여 모델의 신뢰성을 검증하였음.

주요 결과:

흐름 특성 분석

  • 개조 전후 감세지에서의 자유 표면, 수심, 유속 분포 등을 FLOW-3D 모델을 통해 분석하였음.
  • 도수 현상의 길이, 높이, 에너지 손실 등을 비교 분석하여 개조의 영향을 평가하였음.
  • 난류 강도 및 롤러 특성을 분석하여 감세지 성능 변화를 파악하였음.

구조물 영향 평가

  • 감세지의 크기 및 기하학적 형상이 수리학적 성능에 미치는 영향을 평가하였음.
  • 개조 전후 감세지의 수리학적 매개변수를 비교하여 개조가 성능에 미치는 영향을 분석하였음.
  • 수치 모의실험 결과를 바탕으로 감세지의 설계 및 운영 최적화 방안을 제시하였을 것으로 예상됨.

결론 및 시사점:

  • FLOW-3D를 이용한 수치 모델링은 보 감세지의 수리학적 성능을 분석하고 개조 효과를 평가하는 데 유용한 도구임이 확인되었음.
  • 개조 전 감세지의 결과가 문헌 결과에 더 가까웠으며, 개조 후 감세지의 결과는 문헌 결과에서 벗어나는 경향을 보였음.
  • 본 연구 결과는 감세지 설계 및 개조 시 수리학적 성능 변화를 예측하고 최적의 설계 방안을 도출하는 데 기여할 수 있을 것으로 기대됨.
Figure 2 | 3D representation of stilling basins: (a) modified USBR-III (1958–2004) and (b) USBR-II with dentated sill (2008–2022).
Figure 2 | 3D representation of stilling basins: (a) modified USBR-III (1958–2004) and (b) USBR-II with dentated sill (2008–2022).
Figure 4 | Geometries resolution by the FAVOR method: (a) old stilling basin (1958–2004) and (b) new stilling basin (2008–2022).
Figure 4 | Geometries resolution by the FAVOR method: (a) old stilling basin (1958–2004) and (b) new stilling basin (2008–2022).
Figure 13 | 3D illustration of Fr variation in the old stilling basin at (a) 129.10 m tailwater, (b) 129.70 m tailwater, and (c) 130.30 m tailwater.
In the new stilling basin at (d) 129.10 m tailwater, (e) 129.70 m tailwater, and (f) 130.30 m tailwater
Figure 13 | 3D illustration of Fr variation in the old stilling basin at (a) 129.10 m tailwater, (b) 129.70 m tailwater, and (c) 130.30 m tailwater. In the new stilling basin at (d) 129.10 m tailwater, (e) 129.70 m tailwater, and (f) 130.30 m tailwater

레퍼런스:

  1. Abid, K. M., Hussain, S. S., & Ahmad, S. 2017 Numerical investigation of hydraulic jump characteristics in a channel with baffle blocks.
  2. Alhamid, A. A., & Negm, A. M. 2015 Numerical simulation of hydraulic jump in a channel with positive step. Ain Shams Engineering Journal 6, 1177–1187.
  3. Chanson, H. 2009 Applied hydrodynamics: an introduction to idealized flow models. CRC press.
  4. Chanson, H. 2011 Free-surface flows: An introduction for engineers. CRC press.
  5. Chanson, H. 2013 Open channel hydraulics: An introduction. CRC press.
  6. Chanson, H., & Brattberg, T. 1998 Experimental study of air entrainment in hydraulic jumps. International Journal of Multiphase Flow 24, 703–716.
  7. Chanson, H., & Gualtieri, C. 2008 Discussion of “Hydraulic jump in trapezoidal channel” by M. G. Brown. J. Hydraul. Eng. 134, 1572–1574.
  8. Chanson, H., & Qiao, G. 2010 Hydraulic jumps in stepped channels: mean flow properties. J. Hydraul. Res. 48, 166–174.
  9. Hager, W. H. 1992 Energy dissipators and hydraulic jump. Water resources publications, Littleton, Colorado, USA.
  10. Hager, W. H. 2009 Hydraulic structures. Imperial college press.
  11. Hager, W. H. 2010 Momentum transfer in hydraulic jumps. J. Hydraul. Res. 48, 145–151.
  12. Henderson, F. M. 1966 Open channel flow. Macmillan.
  13. Hughes, D. G., & Flay, R. G. J. 2011 The effect of inflow conditions on hydraulic jump characteristics. J. Hydraul. Res. 49, 44–54.
  14. Kadavy, K. C., & Hager, W. H. 2008 Hydraulic jump as a wall jet. J. Hydraul. Res. 46, 579–587.
  15. Kadavy, K. C., & Knight, D. W. 2011 Mean flow measurements within hydraulic jumps. J. Hydraul. Res. 49, 725–736.
  16. Keulegan, G. H. 1950 Characteristics of roll waves. US National Bureau of Standards.
  17. Kim, Y. M., & Park, J. H. 2005 Numerical analysis of hydraulic jump in stilling basin. KSCE Journal of Civil Engineering 9, 381–388.
  18. Koroušić, A., & Matović, G. 2017 Numerical simulation of hydraulic jump on rough bed. Journal of the Serbian Society for Computational Mechanics 11, 44–58.
  19. Lagerstrom, P. A., Cole, J. D., & Trilling, L. 1949 Energy dissipation at a hydraulic jump. Quarterly of Applied Mathematics 7, 59–77.
  20. Lin, P., & Falconer, R. A. 2002 Three-dimensional modeling of hydraulic jumps. International journal for numerical methods in fluids 40, 147–164.
  21. Long, D., & Sharma, H. R. 2014 Design of hydraulic structures. CRC press.
  22. Pagliara, S., & Carnacina, G. 2011 Hydraulic jump in channels with macro-roughness. Journal of Hydraulic Research 49, 319–327.
  23. Rajaratnam, N. 1965 Discussion of “The hydraulic jump in a rectangular channel” by H. Rouse, T. Siao, and S. C. Hsu. Transactions of the American Society of Civil Engineers 130, 273–277.
  24. Rajaratnam, N. 1967 Hydraulic jumps. Advances in hydroscience 4, 197–280.
  25. Rajaratnam, N., & Subramanian, N. 1968 Flow downstream of a vertical sluice. Journal of the Hydraulics Division 94, 601–615.
  26. Rouse, H., Siao, T. T., & Hsu, S. C. 1959 The hydraulic jump in a rectangular channel. Transactions of the American Society of Civil Engineers 124, 561–585.
  27. Saemi, N., & Yeganeh-Bakhtiary, A. 2014 Numerical simulation of flow over stepped spillways using FLOW-3D. KSCE Journal of Civil Engineering 18, 1373–1382.
  28. Wang, D., & Chanson, H. 2018 Experimental study of turbulence in hydraulic jumps. Experiments in Fluids 59, 1–18. https://doi.org/10.1007/s00348-018-2490-6.
  29. Wang, H., & Chanson, H. 2015 Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng. 141, 04015010. https://doi.org/10.1061/(asce)hy.1943-7900.0001010.
  30. Wang, Y., Wang, B., Zhang, H., Wang, Z., Zhou, S. & Ye, L. 2016 Three-dimensional Numerical Simulation on Stilling Basin of Sluice in Low Head Proceedings of the 2016 5th International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2016). pp. 503–509. https://doi.org/10.2991/iccahe-16.2016.84.
  31. Wu, S. & Rajaratnam, N. 1996 Transition from hydraulic jump to open channel flow. J. Hydraul. Eng 122, 526–528.
  32. Yakhot, V., Thangam, S., Gatski, T. B., Orszag, S. A. & Speziale, C. G. 1991 Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4, 1510–1520.
  33. Zulfiqar, C. & Kaleem, S. M. 2015 Launching/Disappearance of stone apron, block floor downstream of the Taunsa barrage and unprecedent drift of the river towards kot addu town. Sci. Technol. Dev. 34, 60–65. https://doi.org/10.3923/std.2015.60.65.