Figure 5. Flow field, eddies and dead zones in S1 and S2 simulations
Figure 5. Flow field, eddies and dead zones in S1 and S2 simulations
Figure 5. Flow field, eddies and dead zones in S1 and S2 simulations

Groynes 주변의 지형 및 수리학적 수치 시뮬레이션

연구 배경 및 목적

문제 정의

  • 하천 및 하구에서 발생하는 침식 문제를 해결하기 위해 Groynes(제방 구조물)이 널리 사용됨.
  • Groynes 주변의 흐름과 침식 현상을 정확히 이해하는 것은 수로 보호 및 유지관리에 필수적임.
  • 실험적 연구는 시간과 비용이 많이 소요되므로 컴퓨터 기반 CFD(전산유체역학) 시뮬레이션을 활용하여 수리학적 특성을 분석하는 연구가 필요함.

연구 목적

  • FLOW-3D를 이용하여 Groynes 주변의 유동 및 세굴(scour) 현상을 수치적으로 분석.
  • 실험 결과와 비교하여 FLOW-3D 모델의 정확성을 검증.
  • SSIIM 2.0 소프트웨어와의 비교 분석을 통해 다양한 모델의 예측 정확도 평가.

연구 방법

FLOW-3D 모델링 및 시뮬레이션 설정

  • VOF(Volume of Fluid) 기법을 사용하여 자유 수면을 추적.
  • RNG k-ε 난류 모델을 적용하여 난류 흐름을 해석.
  • 지형 모델링: Soulsby-Whitehouse 방정식을 이용하여 세굴 예측.
  • 경계 조건:
    • 유입: Froude 수 기반의 흐름 조건 적용.
    • 유출: 자연 배출 경계 조건 설정.
    • 바닥: 이동 가능한 퇴적층으로 설정.

주요 결과

유동 및 세굴 특성 분석

  • Groynes 주변에서 강한 와류(vortex) 발생 → 세굴 형성에 주요 원인.
  • Froude 수가 낮을수록 모델 예측 정확도 향상.
  • SSIIM 2.0 대비 FLOW-3D가 보다 정확한 흐름 및 세굴 패턴 예측.
  • 실험 결과와 비교 시 최대 세굴 깊이 차이가 10% 이내로 나타남.

결론 및 향후 연구

결론

  • FLOW-3D를 활용한 수치 시뮬레이션이 실험 결과와 높은 일치도를 보이며, Groynes 주변의 유동 및 세굴 현상을 효과적으로 예측 가능.
  • Froude 수와 유속 비(Uavg/Ucr)에 따라 모델 정확도가 달라지며, 추가적인 실험 검증이 필요.

향후 연구 방향

  • LES(Large Eddy Simulation)와 같은 고급 난류 모델 적용을 통한 예측 정확도 향상.
  • 다양한 하천 형상 및 유량 조건에서 추가적인 검증 수행.
  • 실제 하천 데이터와의 비교를 통한 모델 보정.

연구의 의의

이 연구는 FLOW-3D를 활용하여 Groynes 주변의 유동 및 세굴 현상을 정량적으로 분석하고, 수치 모델의 정확성을 실험적으로 검증하였다. 하천 관리 및 구조물 설계의 최적화에 기여할 수 있는 데이터와 분석 방법을 제공한다.

Figure 5. Flow field, eddies and dead zones in S1 and S2 simulations
Figure 5. Flow field, eddies and dead zones in S1 and S2 simulations
Figure 6. Morphology bed changes in S1 (a) laboratory experiments and (b) FLOW-3D simulation
Figure 6. Morphology bed changes in S1 (a) laboratory experiments and (b) FLOW-3D simulation
Figure 7. Morphology bed changes in S2 (a) laboratory experiments and (b) FLOW-3D simulation
Figure 7. Morphology bed changes in S2 (a) laboratory experiments and (b) FLOW-3D simulation

References

  1. Acharya, A., and Duan, J.G. (2011). Three dimensional simulation of flow field around series of spur dikes. In: Reston, V.A. (ed.) ASCE copyright Proceedings of the 2011 World environmental and water resources congress, California, USA.
  2. Alemi, M., and Maia, R. (2018). “Numerical simulation of the flow and local scour process around single and complex bridge piers.” Int. J. Civil Eng., 16(5), 475-487. doi:10.1007/s40999-016-0137-8
  3. Barbhuiya, A.K., and Dey, S. (2004). “Local scour at abutments: A review.” Sadhana, 29(5), 449-476. doi:10.1007/BF02703255
  4. Blocken, B., and Gualtieri, C. (2012). “Ten iterative steps for model development and evaluation applied to computational fluid. dynamics for environmental fluid mechanics.” Environ. Model. Softw., 33, 1-22. doi:10.1016/j.envsoft.2012.02.001
  5. Chiew, Y.M. (1992). “Scour protection at bridge piers.” J. Hydraul. Eng., 118(9), 1260-1269. doi:10.1061/(ASCE)0733-9429(1992)118:9(1260)
  6. Choufu, L., Abbasi, S., Pourshahbaz, H., Taghvaei, P., and Tfwala, S. (2019). “Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study.” Water, 11(2), 235. doi:10.3390/w11020235
  7. Daneshfaraz, R., Ghaderi, A., and Ghahremanzadeh, A. (2015). “An analysis of flowing pattern around T-shaped Spur Dike at 90 Arc, based on fluent and flow-3D models.” Int. Bull. Water Resour. Dev., 3(3), 1-9.
  8. Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and Ghaderi, A. (2019). “3-D Numerical simulation of water flow over a broad-crested weir with openings.” ISH J. Hydraul. Eng., 1-9. doi:10.1080/09715010.2019.1581098
  9. Duan, J.G., and Nanda, S.K. (2006). “Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field.” J. Hydrol., 327(3-4), 426-437. doi:10.1016/j.jhydrol.2005.11.055
  10. Flow Science, Inc. (2016). “Flow-3d User Manual: V11.2” Flow Science, Inc.: Santa Fe, NM, USA.
  11. Garde, R.J., Subramanya, K.S., and Nambudripad, K.D. (1961). “Study of scour around spur-dikes.” J. Hydraul. Div., 87(6), 23-37.
  12. Ghaderi, A., and Abbasi, S. (2019). “CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar.” Sadhana, 44(10), 216. doi:10.1007/s12046-019-1196-8
  13. Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M. (2020a). Efficiency of trapezoidal labyrinth shaped stepped spillways, Flow Measurement and Instrumentation, 101711. https://doi.org/10.1016/j.flowmeasinst.2020.101711
  14. Ghaderi, A., Daneshfaraz, R., Abbasi, S., and Abraham, J. (2020b). “Numerical analysis of the hydraulic characteristics of modified labyrinth weirs.” Int. J. Energy Water Resour., 1–12. https://doi.org/10.1007/s42108-020-00082-5
  15. Ghaderi, A., Dasineh, M., Abbasi, S., and Abraham, J. (2020c). “Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD.” Appl. Water Sci., 10(1), 31. doi:10.1007/s13201-019-1112-8
  16. Gualtieri, C. (2010). “RANS-based simulation of transverse turbulent mixing in a 2D geometry.” Environ. Fluid Mech., 10(1–2), 137–156. doi:10.1007/s10652-009-9119-6
  17. Gualtieri, C., Angeloudis, A., Bombardelli, F., Jha, S., and Stoesser, T. (2017). “On the values for the turbulent Schmidt number in environmental flows.” Fluids, 2(2), 17.
  18. Gualtieri, C., Jiménez, L., and Rodríguez, J.M. (2010). “Modelling turbulence and solute transport in a square dead zone.” In 1st European IAHR Congress, Edinburgh (Gran Bretagna). May (Vol. 4, No. 6).
  19. Jakeman, A.J., Letcher, R.A., and Norton, J.P. (2006). “Ten iterative steps in development and evaluation of environmental models.” Environ. Model. Softw., 21(5), 602–614. doi:10.1016/j.envsoft.2006.01.004
  20. Karami, H., Basser, H., Ardeshir, A., and Hosseini, S.H. (2014). “Verification of numerical study of scour around spur dikes using experimental data.” Water Environ. J., 28(1), 124–134. doi:10.1111/wej.12019
  21. Kuhnle, R.A., Alonso, C.V., and Shields, F.D., Jr. (2002). “Local scour associated with angled spur dikes.” J. Hydraul. Eng., 128(12), 1087–1093. doi:10.1061/(ASCE)0733-9429(2002)128:12(1087)
  22. Mastbergen, D.R., and Van Den Berg, J.H. (2003). “Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons.” Sedimentology, 50(4), 625–637. doi:10.1046/j.1365-3091.2003.00554.x
  23. Omara, H., Elsayed, S.M., Abdeelaal, G.M., Abd-Elhamid, H.F., and Tawfik, A. (2019). “Hydromorphological numerical model of the local scour process around bridge piers.” Arab. J. Sci. Eng., 44(5), 4183–4199. doi:10.1007/s13369-018-3359-z
  24. Pandey, M., Ahmad, Z., and Sharma, P.K. (2016). “Estimation of maximum scour depth near a spur dike.” Can. J. Civil Eng., 43(3), 270–278. doi:10.1139/cjce-2015-0280
  25. Pandey, M., Ahmad, Z., and Sharma, P.K. (2018). “Scour around impermeable spur dikes: A review.” ISH J. Hydraul. Eng., 24(1), 25–44. doi:10.1080/09715010.2017.1342571
  26. Pandey, M., Azamathulla, H.M., Chaudhuri, S., Pu, J.H., and Pourshahbaz, H. (2020a). “Reduction of time-dependent scour around piers using collars.” Ocean Eng., 213, 107692. doi:10.1016/j.oceaneng.2020.107692
  27. Pandey, M., Lam, W.H., Cui, Y., Khan, M.A., Singh, U.K., and Ahmad, Z. (2019). “Scour around spur dike in sand–gravel mixture bed.” Water, 11(7), 1417. doi:10.3390/w11071417
  28. Pandey, M., Valyrakis, M., Qi, M., Sharma, A., and Lodhi, A.S. (2020b). “Experimental assessment and prediction of temporal scour depth around a spur dike.” Int. J. Sediment Res. doi:10.1016/j.ijsrc. 2020.03.015
  29. Pourshahbaz, H., Abbasi, S., and Taghvaei, P. (2017). “Numerical scour modeling around parallel spur dikes in FLOW-3D.” Drink. Water Eng. Sci. Discuss. doi:10.5194/dwes-2017-21
  30. Pu, J.H. (2015). “Turbulence modelling of shallow water flows using Kolmogorov approach.” Comput. Fluids, 115, 66–74. doi:10.1016/j.compfluid.2015.03.010
  31. Pu, J.H. (2019). “Turbulent rectangular compound open channel flow study using multi-zonal approach.” Environ. Fluid Mech., 19(3), 785–800. doi:10.1007/s10652-018-09655-9
  32. Pu, J.H., Huang, Y., Shao, S., and Hussain, K. (2016). “Three-gorges dam fine sediment pollutant transport: turbulence SPH model simulation of multi-fluid flows.” J. Appl. Fluid Mech., 9(1), 1–10. doi:10.18869/acadpub.jafm.68.224.23919
  33. Pu, J.H., and Lim, S.Y. (2014). “Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment.” Environ. Fluid Mech., 14(1), 69–86. doi:10.1007/s10652-013-9286-3
  34. Pu, J.H., Pandey, M., and Hanmaiahgari, P.R. (2020). “Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows.” J. Hydro-Environ. Res., 32, 17–25. doi:10.1016/j.jher.2020.06.002
  35. Pu, J.H., Shao, S., and Huang, Y. (2014). “Numerical and experimental turbulence studies on shallow open channel flows.” J. Hydro-Environ. Res., 8(1), 9–19. doi:10.1016/j.jher.2012.12.001
  36. Pu, J.H., Tait, S., Guo, Y., Huang, Y., and Hanmaiahgari, P.R. (2018). “Dominant features in three-dimensional turbulence structure: Comparison of non-uniform accelerating and decelerating flows.” Environ. Fluid Mech., 18(2), 395–416. doi:10.1007/s10652-017-9557-5
  37. Richardson, E.V., Stevens, M.A., and Simons, D.B. (1975). “The design of spurs for river training.” In XVIth, IAHR congress (pp. 382–388). Sao Paulo, Brazil.
  38. Roache, P.J. (1997). “Quantification of uncertainty in computational fluid dynamics.” Annu. Rev. Fluid Mech., 29(1), 123–160. doi:10.1146/annurev.fluid.29.1.123
  39. Roache, P.J. (2009). “Perspective: Validation—What does it mean?” J Fluids Eng, 131, 3. doi:10.1115/1.3077134
  40. Strickler, A. (1923). Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen, Mitt. des Eidg. Amtes fu¨ r Wasserwirt. 16, Bern”
  41. Van Rijn, L.C. (1987). Mathematical modelling of morphological processes in the case of suspended sediment transport, Delft, Water loopkundig Laboratorium.
  42. Wei, G., Brethour, J., Grünzner, M., and Burnham, J. (2014). “The sedimentation scour model in FLOW-3D®.” Flow Sci. Rep., 3–14, Santa Fe, NM: Flow Science.
  43. Weitbrecht, V. (2004). Influence of dead-water zones on the dispersive mass transport in rivers, Ph.D. thesis, www.uvka.de/univerlag/volltexte/2004/11/–, Univ. of Karlsruhe, Karlsruhe, Germany.
  44. Xie, Z. (2011). “Theoretical and numerical research on sediment transport in pressurised flow conditions, Ph.D. Civil Engineering Theses, University of Nebraska, Lincoln., 2011.”
  45. Zhang, Q., Zhou, X.L., and Wang, J.H. (2017). “Numerical investigation of local scour around three adjacent piles with different arrangements under current.” Ocean Eng., 142, 625–638. doi:10.1016/j.oceaneng.2017.07.045
  46. Zheng, X.G., Pu, J.H., Chen, R.D., Liu, X.N., and Shao, S. (2016). “A novel explicit-implicit coupled solution method of SWE for long-term river meandering process induced by dam break.” J. Appl. Fluid Mech., 9(6), 2647–2660. doi:10.29252/jafm.09.06.25969