Graphical Abstract

FLOW-3D를 이용한 다양한 정수지(Stilling Basin)에서의 수력 도약(Hydraulic Jump) 수치적 연구

Graphical Abstract
Graphical Abstract

연구 배경 및 목적

문제 정의

  • Taunsa Barrage(파키스탄)의 정수지는 기존의 USBR Type-III Basin을 개량한 형태로, 충격 바플(Impact Baffle)과 마찰 블록(Friction Block) 포함.
  • 하지만 운영 초기부터 바플 블록이 뽑히는 문제 발생 → 기존 사각형 바플 블록이 흐름 재부착(Flow Reattachment)과 낮은 항력(Drag) 문제를 가짐.
  • 기존 연구에서는 쐐기형(Wedge-Shaped) 분리 블록(Splitter Blocks)의 사용이 제한적이었으며, 이들의 수력 도약(HJ) 및 에너지 소산 성능이 충분히 검토되지 않음.

연구 목적

  • FLOW-3D를 활용하여 USBR Type-III 및 쐐기형 바플 블록을 적용한 정수지에서의 수력 도약 및 유동 특성을 비교 분석.
  • 자유 수면 프로파일, 롤러 길이(Roller Length), 상대 에너지 손실(Relative Energy Loss), 유속 분포 및 난류 운동 에너지(TKE) 분석.
  • 새로운 정수지 설계가 HJ를 안정화하고 에너지 소산 성능을 향상시키는지 평가.

연구 방법

FLOW-3D 모델링 및 실험 검증

  • VOF(Volume of Fluid) 기법을 사용하여 자유 수면 추적.
  • RNG k-ε 난류 모델을 적용하여 유동장 해석 수행.
  • Taunsa Barrage의 USBR Type-III 및 개량된 쐐기형 바플 블록 정수지 모델을 구축하여 비교 실험.

수치 모델 설정

  • 세 가지 정수지 유형 비교
    1. Type-A: 기존 USBR Type-III 정수지
    2. Type-B: 쐐기형 바플 블록 적용 정수지
    3. Type-C: USBR 바플과 쐐기형 바플 블록을 혼합한 정수지
  • 시험 조건
    • 두 가지 유량 조건(44 m³/s, 88 m³/s)에서 실험 수행.
    • 유입 Froude 수(Fr) 범위: 5.75까지 고려.
    • 경계 조건: 유입부와 유출부는 압력(P), 벽면은 No-Slip 조건 적용.

주요 결과

자유 수면 프로파일 분석

  • Type-B 및 Type-C 정수지에서 수력 도약(HJ)이 더 짧고 안정적으로 형성됨.
  • 유량 증가 시 HJ의 롤러 길이가 감소하는 경향을 보임.
  • Type-B 및 Type-C 정수지는 USBR Type-A보다 더 높은 상대 에너지 손실을 기록하여 효율적인 에너지 소산을 확인.

유속 및 난류 운동 에너지(TKE) 분석

  • Type-B 및 Type-C 정수지에서 난류 운동 에너지(TKE)가 빠르게 감소하여 난류 제어 효과가 우수함.
  • 유속 분포 결과, Type-B 및 Type-C 정수지에서 바플 블록이 흐름을 효과적으로 분산시켜 유속 감소 효과를 제공.
  • 전반적으로 Type-C(혼합형 정수지)가 가장 효과적인 유동 제어 및 에너지 소산을 제공함.

결론 및 향후 연구

결론

  • 쐐기형 바플 블록을 포함한 Type-B 및 Type-C 정수지는 기존 USBR Type-III 모델보다 더 높은 에너지 소산 효과를 제공.
  • HJ 길이가 짧아지고, 전단 응력이 감소하여 침식 가능성이 줄어듦.
  • FLOW-3D를 이용한 시뮬레이션이 정수지 설계 최적화 및 유지보수 비용 절감에 기여할 수 있음.

향후 연구 방향

  • LES(Large Eddy Simulation) 및 더 정밀한 난류 모델을 적용하여 연구 정밀도를 향상.
  • 보다 높은 유량(예: 100~500 m³/s)에서의 테스트 수행.
  • 다양한 바플 블록 형상(예: 삼각형, 원형 등) 및 배열 최적화를 통한 추가 연구 진행.

연구의 의의

이 연구는 FLOW-3D를 활용하여 다양한 정수지 설계에서의 수력 도약(HJ) 및 에너지 소산 효과를 분석한 연구로, 기존 USBR Type-III 정수지의 문제점을 개선하고, 새로운 설계 방안을 제시함으로써 대형 수리 구조물의 안정성 향상 및 침식 저감에 기여할 수 있는 실질적인 데이터를 제공하였다.

Figure 12  At 44 m3 s, 2D illustration of the velocity contour after the HJ and at basin’s end in the Type-A stilling basin (a and b), Type-B stilling basin (c and d), and Type-C stilling basin (e and f)
Figure 12 At 44 m3 s, 2D illustration of the velocity contour after the HJ and at basin’s end in the Type-A stilling basin (a and b), Type-B stilling basin (c and d), and Type-C stilling basin (e and f)
Figure 14  At 88 m3 s, 2D illustration of the velocity contour after HJ and at basin’s end in the Type-A stilling basin (a and b), Type-B stilling basin (c and d), and Type-C stilling basin (e and f)
Figure 14 At 88 m3 s, 2D illustration of the velocity contour after HJ and at basin’s end in the Type-A stilling basin (a and b), Type-B stilling basin (c and d), and Type-C stilling basin (e and f)
Figure 15  2D illustration of turbulent kinetic energy (TKE) and turbulent intensity (TI) at 44 m3 s discharge in (a and b) Type-A, (c and d) Type-B, and (e and f) Type-C stilling basins, respectively
Figure 15 2D illustration of turbulent kinetic energy (TKE) and turbulent intensity (TI) at 44 m3 s discharge in (a and b) Type-A, (c and d) Type-B, and (e and f) Type-C stilling basins, respectively

References

  1. Ali, C. Z. & Kaleem, S. M. 2015 Launching/disappearance of Stone Apron, block floor downstream of the Taunsa Barrage and unprecedent drift of the river towards Kot Addu Town. Sci. Technol. Dev. 34, 60–65. https://doi.org/10.3923/std.2015.60.65.
  2. Al-Mansori, N. J. H., Alfatlawi, T. J. M., Hashim, K. S. & Al-Zubaidi, L. S. 2020 The effects of different shaped baffle blocks on the energy dissipation. Civ. Eng. J. 6, 961–973. https://doi.org/10.28991/cej-2020-03091521.
  3. Aydogdu, M., Gul, E. & Dursun, O. F. 2022 Experimentally verified numerical investigation of the sill hydraulics for abruptly expanding stilling basin. Arabian J. Sci. Eng. 48 (4), 4563–4581. https://doi.org/10.1007/s13369-022-07089-6.
  4. Bakhmeteff, B. A. & Matzke, A. E. 1936 The hydraulic jump in terms of dynamic similarity. Trans. ASCE 100, 630–680.
  5. Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. J. & López-Jiménez, P. A. 2016 Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Modell. Software 80, 322–335. https://doi.org/10.1016/j.envsoft.2016.02.018.
  6. Bayon-Barrachina, A. & Lopez-Jimenez, P. A. 2015 Numerical analysis of hydraulic jumps using OpenFOAM. J. Hydroinf. 17, 662–678. https://doi.org/10.2166/hydro.2015.041.
  7. Bayon-Barrachina, A., Valles-Moran, F. J., Lopes-Jiménez, P. A., Bayn, A., Valles-Morn, F. J. & Lopes-Jimenez, P. A. 2015 Numerical analysis and validation of south valencia sewage collection system. In: E-proceedings 36th IAHR World Congr, 28 June–3 July, 2015, Hague, Netherlands, Numer. 17, pp. 1–11.
  8. Bradley, J. N. & Peterka, A. J. 1958 Discussion of ‘Hydraulic design of stilling basins: Hydraulic jumps on a horizontal apron (Basin I)’. J. Hydraul. Div. 84, 77–81. https://doi.org/10.1061/jyceaj.0000243.
  9. Chachereau, Y. & Chanson, H. 2011 Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35, 896–909. https://doi.org/10.1016/j.expthermflusci.2011.01.009.
  10. Chanel, P. G. & Doering, J. C. 2009 Assessment of spillway modeling using computational fluid dynamics. 35, 1481–1485. https://doi.org/10.1139/L08-094.
  11. Chanson, H. & Gualtieri, C. 2008 Similitude and scale effects of air entrainment in hydraulic jumps. J. Hydraul. Res. 46, 35–44. https://doi.org/10.1080/00221686.2008.9521841.
  12. Chaudary, Z. A. & Sarwar, M. K. 2014 Rehabilitated taunsa barrage: Prospects and concerns. Sci. Technol. Dev. 33, 127–131.
  13. Ead, S. A. & Rajaratnam, N. 2002 Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 128, 656–663. https://doi.org/10.1061/(asce)07339429(2002)128:7(656).
  14. Ebrahimiyan, S., Hajikandi, H., Shafai Bejestan, M., Jamali, S. & Asadi, E. 2021 Numerical study on the effect of sediment concentration on jump characteristics in trapezoidal channels. Iran. J. Sci. Technol. – Trans. Civ. Eng. 45, 1059–1075. https://doi.org/10.1007/s40996-02000510-w.
  15. Eloubaidy, A., Al-Baidhani, J. & Ghazali, A. 1999 Dissipation of hydraulic energy by curved baffle blocks. Pertanika J. Sci. Technol. 7, 69–77.
  16. Frizell, K. & Svoboda, C. 2012 Performance of Type III Stilling Basins-Stepped Spillway Studies. US Bur. Reclam, Denver, CO, USA.
  17. Gadge, P. P., Jothiprakash, V. & Bhosekar, V. V. 2018 Hydraulic investigation and design of roof profile of an orifice spillway using experimental and numerical models. J. Appl. Water Eng. Res. 6, 85–94. https://doi.org/10.1080/23249676.2016.1214627.
  18. Ghaderi, A., Daneshfaraz, R., Dasineh, M. & Di Francesco, S. 2020 Energy dissipation and hydraulics of flow over trapezoidal-triangular labyrinth weirs. Water (Switzerland) 12. https://doi.org/10.3390/w12071992.
  19. Goel, A. 2007 Experimental study on stilling basins for square outlets. In: 3rd WSEAS International Conference on Applied and Theoretical Mechanics, Spain, pp. 157–162.
  20. Goel, A. 2008 Design of stilling basin for circular pipe outlets. Can. J. Civ. Eng. 35, 1365–1374. https://doi.org/10.1139/L08-085.
  21. Habibzadeh, A., Wu, S., Ade, F., Rajaratnam, N. & Loewen, M. R. 2011 Exploratory study of submerged hydraulic jumps with blocks. J. Hydraul. Eng. 137, 706–710. https://doi.org/10.1061/(asce)hy.1943-7900.0000347.
  22. Habibzadeh, A., Loewen, M. R. & Rajaratnam, N. 2012 Performance of baffle blocks in submerged hydraulic jumps. J. Hydraul. Eng. 138, 902–908. https://doi.org/10.1061/(asce)hy.1943-7900.0000587.
  23. Hager, W. H. & Sinniger, R. 1985 Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise. J. Hydraul. Res. 23, 101–113. https://doi.org/10.1080/00221688509499359.
  24. Hirt, C. W. & Nichols, B. D. 1981 A computational method for free surface hydrodynamics. J. Press. Vessel Technol. Trans. ASME 103, 136–141. https://doi.org/10.1115/1.3263378.
  25. Ikhsan, C., Permana, A. S. & Negara, A. S. 2022 Armor layer uniformity and thickness in stationary conditions with steady uniform flow. Civ. Eng. J. 8, 1086–1099. https://doi.org/10.28991/CEJ-2022-08-06-01.
  26. Jesudhas, V., Balachandar, R., Roussinova, V. & Barron, R. 2018 Turbulence characteristics of classical hydraulic jump using DES. J. Hydraul. Eng. 144, 1–15. https://doi.org/10.1061/(asce)hy.1943-7900.0001427.
  27. Johnson, M. C. & Savage, B. M. 2006 Physical and numerical comparison of flow over ogee spillway in the presence of tailwater. J. Hydraul. Eng. 132, 1353–1357. https://doi.org/10.1061/(asce)0733-9429(2006)132:12(1353).
  28. Jones, W. P. & Launder, B. E. 1972 The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15, 301–314. https://doi.org/10.1016/0017-9310(72)90076-2.
  29. Kamath, A., Fleit, G. & Bihs, H. 2019 Investigation of free surface turbulence damping in RANS simulations for complex free surface flows. Water (Switzerland) 3, 456. https://doi.org/10.3390/w11030456.
  30. Kucukali, S. & Chanson, H. 2008 Turbulence measurements in the bubbly flow region of hydraulic jumps. Exp. Therm. Fluid Sci. 33, 41–53. https://doi.org/10.1016/j.expthermflusci.2008.06.012.
  31. Lueker, M. L., Mohseni, O., Gulliver, J. S., Schulz, H. & Christopher, R. A. 2008 The Physical Model Study of the Folsom Dam Auxiliary Spillway System. Associates California Engineers LLC, Walnut Creek, CA and Sacramento District of the US Army Corps of Engineers Minneapolis, Minnesota.
  32. Macián-Pérez, J. F., Bayón, A., García-Bartual, R., Amparo López-Jiménez, P. & Vallés-Morán, F. J. 2020a Characterization of structural properties in high reynolds hydraulic jump based on CFD and physical modeling approaches. J. Hydraul. Eng. 146, 04020079. https://doi.org/10.1061/(asce)hy.1943-7900.0001820.
  33. Macián-Pérez, J. F., García-Bartual, R., Huber, B., Bayon, A. & Vallés-Morán, F. J. 2020b Analysis of the flow in a typified USBR II stilling basin through a numerical and physical modeling approach. Water (Switzerland) 12, 6–20. https://doi.org/10.3390/w12010227.
  34. Mirzaei, H. & Tootoonchi, H. 2020 Experimental and numerical modeling of the simultaneous effect of sluice gate and bump on hydraulic jump. Model. Earth Syst. Environ. 6, 1991–2002. https://doi.org/10.1007/s40808-020-00835-5.
  35. Moghadam, K. F., Banihashemi, M. A., Badiei, P. & Shirkavand, A. 2019 A numerical approach to solve fluid-solid two-phase flows using time splitting projection method with a pressure correction technique. Prog. Comput. Fluid Dyn. 19, 357–367. https://doi.org/10.1504/pcfd.2019.10024491.
  36. Moghadam, K. F., Banihashemi, M. A., Badiei, P. & Shirkavand, A. 2020 A time-splitting pressure-correction projection method for complete two-fluid modeling of a local scour hole. Int. J. Sediment Res. 35, 395–407. https://doi.org/10.1016/j.ijsrc.2020.02.004.
  37. Murzyn, F. & Chanson, H. 2009 Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ. Fluid Mech. 9, 143–159. https://doi.org/10.1007/s10652-008-9077-4.
  38. Nikmehr, S. & Aminpour, Y. 2020 Numerical simulation of hydraulic jump over rough beds. Period. Polytech. Civ. Eng. 64, 396–407. https://doi.org/10.3311/PPci.15292.
  39. Peterka, A. J. 1984 Hydraulic design of stilling basins and energy dissipators. Water Resour. Tech. Publ. – US Dep. Inter. 240, 1–240.
  40. Pillai, N. N. & Kansal, M. L. 2022 Stilling basins using wedge-shaped baffle blocks. In: 9th IAHR International Symposium on Hydraulic Structures (9th ISHS). Proceedings of the 9th IAHR International Symposium on Hydraulic Structures, 9th ISHS, 24–27 October 2022, IIT Roorkee, Roorkee, India.
  41. Pillai, N. N., Goel, A. & Dubey, A. K. 1989 Hydraulic jump type stilling basin for low Froude numbers. J. Hydraul. Eng. 115, 989–994. https://doi.org/10.1061/(asce)0733-9429(1989)115:7(989).
  42. Qasim, R. M., Mohammed, A. A. & Abdulhussein, I. A. 2022 An investigating of the impact of bed flume discordance on the Weir-Gate hydraulic structure. HighTech Innov. J. 3, 341–355. https://doi.org/10.28991/HIJ-2022-03-03-09.
  43. Savage, B. M. & Johnson, M. C. 2001 Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 127, 640–649. https://doi.org/10.1061/(asce)0733-9429(2001)127:8(640).
  44. Shirkavand, A. & Badiei, P. 2014 The application of a Godunov-type shock capturing scheme for the simulation of waves from deep water up to the swash zone. Coast. Eng. 94, 1–9.
  45. Shirkavand, A. & Badiei, P. 2015 Evaluation and modification of time splitting method applied to the fully dynamic numerical solution of water wave propagation. Prog. Comput. Fluid Dyn. Int. J. 15, 228–235.
  46. Siuta, T. 2018 The impact of deepening the stilling basin on the characteristics of hydraulic jump. Czas Tech., 173–186. https://doi.org/10.4467/2353737xct.18.046.8341.
  47. Tiwari, H. L. & Goel, A. 2016 Effect of impact wall on energy dissipation in stilling basin. KSCE J. Civ. Eng. 20, 463–467. https://doi.org/10.1007/s12205-015-0292-5.
  48. Tiwari, H. L., Gahlot, V. K. & Goel, A. 2010 Stilling basins below outlet works – an overview. Int. J. Eng. Sci. 2, 6380–6385.
  49. Tohamy, E., Saleh, O. K., Mahgoub, S. A., Abd, N. F., Azim, E., Abd, S. H. & Ghany, E. 2022 Effect of vertical screen on energy dissipation and water surface profile using flow 3D. Egypt. Int. J. Eng. Sci. Technol. 38, 20–25.
  50. Torkamanzad, N., Dalir, A. H., Salmasi, F. & Abbaspour, A. 2019 Hydraulic jump below abrupt asymmetric expanding stilling basin on rough Bed. Water (Switzerland) 11, 1–29.
  51. Verma, D. V. S. & Goel, A. 2003 Development of efficient stilling basins for pipe outlets. J. Irrig. Drain. Eng. 129, 194–200. https://doi.org/10.1061/(asce)0733-9437(2003)129:3(194).
  52. Verma, D. V. S., Goel, A. & Rai, V. 2004 New stilling basins designs for deep rectangular OutletS. IJE Trans. A Basics 17, 1–10.
  53. Wang, H. & Chanson, H. 2015 Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng. 141, 04015010. https://doi.org/10.1061/(asce)hy.1943-7900.0001010.
  54. Widyastuti, I., Thaha, M. A., Lopa, R. T. & Hatta, M. P. 2022 Dam-break energy of porous structure for scour countermeasure at bridge abutment. Civ. Eng. J. 8, 3939–3951. https://doi.org/10.28991/CEJ-2022-08-12-019.
  55. Wilcox, D. C. 2008 Formulation of the k-ω turbulence model revisited. AIAA J. 46, 2823–2838. https://doi.org/10.2514/1.36541.
  56. Yakhot, V., Thangam, S., Gatski, T. B., Orszag, S. A. & Speziale, C. G. 1991 Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4, 1510–1520.
  57. Yamini, O. A., Movahedi, A., Mousavi, S. H., Kavianpour, M. R. & Kyriakopoulos, G. L. 2022 Hydraulic performance of seawater intake system using CFD modeling. J. Mar. Sci. Eng. 10. https://doi.org/10.3390/jmse10070988.
  58. Zaffar, M. W. & Hassan, I. 2023 Hydraulic investigation of stilling basins of the barrage before and after remodelling using FLOW-3D. Water Supply 23, 796–820. https://doi.org/10.2166/ws.2023.032.
  59. Zaidi, S. M. A., Khan, M. A. & Rehman, S. U. 2004 Planning and design of Taunsa Barrage Rehabilitation Project. In: Pakistan Engineering Congress. Lahore. 71st Annu. Sess. Proceedings, Pap.687, pp. 228–286.
  60. Zaidi, S. M. A., Amin, M. & Ahmadani, M. A. 2011 Performance evaluation of Taunsa barrage emergency rehabilitation and modernization project. In Pakistan Engineering Congress. 71st Annu. Sess. Proceedings, Pap. pp. 650–682.