이 소개 자료는 “Water Supply Vol 22 No 10″에 게재된 “Numerical simulation of pollution transport and hydrodynamic characteristics throughthe river confluence using FLOW 3D” 논문을 기반으로 작성되었습니다.

1. 연구 목적
주요 연구 질문:
- 본 연구는 하천망의 지류를 통해 유입되는 오염 물질의 농도와 본류와 지류 간의 수위 차이가 오염 물질 혼합에 미치는 영향을 조사하는 것을 목표로 한다.
- 특히, 90도 각도로 합류하는 지류와 본류를 대상으로 오염 물질의 혼합과 확산, 그리고 그에 따른 수리학적 현상을 분석하고자 한다.
기존 연구의 한계:
- 기존의 합류점에서의 침식 및 퇴적 과정에 대한 연구는 많았으나, 오염 물질의 혼합 및 분포와 관련된 효과적인 매개 변수에 대한 정보는 여전히 부족하다.
- 따라서 본 연구는 오염 물질 혼합 및 분포에 대한 이해를 높이고, 오염 영향을 줄이기 위한 수위 조절 구조의 필요성을 강조하고자 한다.
2. 연구 방법
수치 모델링:
- 본 연구에서는 FLOW 3D 수치 모델을 사용하여 하천 합류점에서의 오염 물질 수송 및 수리학적 특성을 시뮬레이션하였다.
- 모델은 주류 7m, 폭 1m, 지류 길이 1.8m, 폭 1m, 높이 1m의 3차원 형상으로 설계되었으며, 합류점 부근에는 정확도를 높이기 위해 중첩 격자(nested mesh)를 사용하였다.
경계 조건:
- 주류와 지류의 상류에는 일정한 수압 조건(constant pressure)을 적용하였고, 주류 하류에는 자유 유출 조건(free outlet)을 설정하였다.
- 중첩 격자에는 다양한 방향으로부터의 경계 조건 유입을 고려하여 대칭 조건(symmetry boundary condition)을 적용하였다.
3. 주요 결과
수위 차이와 혼합:
- 지류와 본류 간의 수위 차이가 증가할수록 횡방향 혼합이 더 빠르게 일어나는 것을 확인하였다.
- 수위 차이가 없는 경우에는 혼합 곡선 추출 방법을 통해 횡방향 혼합이 완료되는 하천 길이를 파악하였다.
재순환 영역의 특징:
- 합류점의 재순환 영역에서 가장 높은 오염 물질 농도와 유속 벡터가 관찰되었으며, 2차 흐름이 발생하여 오염 물질을 일시적으로 가두는 현상을 확인하였다.
- 이 영역은 높은 전단 속도, 난류 에너지, 난류 강도를 가지며, 때로는 음의 회전 흐름으로 인해 낮은 종방향 유속을 나타냈다.
4. 결론
수위 조절의 중요성:
- 수위 차이는 지류에서 본류로 오염 물질이 유입되는 데 가장 중요한 요인이며, 본류의 오염 영향을 줄이기 위해 합류점에 수위 조절 구조를 설치하는 것이 필요하다.
- 본 연구에서 관찰된 합류점에서의 흐름 패턴과 영역들은 기존 연구와 일치했으며, 각 영역이 오염 물질 확산에 미치는 영향을 논의하였다.
향후 연구 방향:
- 재순환 영역에서 생성되는 와류는 오염 물질을 일시적으로 포획하고 농도를 증가시키는 데 효과적인 매개 변수이다.
- 지류에서 홍수 흐름이 발생하여 지류의 수위가 본류보다 높아지는 경우에만 합류점 상류에서 오염 농도 증가가 관찰되었다.


Reference
- Alizadeh, L. & Fernandes, J. 2021 Turbulent flow structure in a confluence: influence of tributaries width and discharge ratios. Water 13 (4), 465.
- Ashmore, P. E. 1991 How do gravel-bed rivers braid? Canadian Journal of Earth Sciences 28 (3), 326-341.
- Ashmore, P. & Gardner, J. 2008 Unconfined confluences in braided rivers. In Rice, S. P., Roy, A. G. & Rhoads, B. L. (eds) River Confluences, Tributaries and the Fluvial network John Wiley & Sons, Chichester, UK, pp. 119–147.
- Benda, L., Poff, N. L., Miller, D., Dunne, T., Reeves, G., Pess, G. & Pollock, M. 2004 The network dynamics hypothesis: how channel networks structure riverine habitats. BioScience 54 (5), 413–427.
- Best, J. L. 1986 The morphology of river channel confluences. Progress in Physical Geography 10 (2), 157–174.
- Best, J. L. 1987 Flow Dynamics at River Channel Confluences: Implications for Sediment Transport and Bed Morphology. SEPM Special Publication, Tulsa, OK, USA.
- Best, J. L. 1988 Sediment transport and bed morphology at river channel confluences. Sedimentology 35 (3), 481–498.
- Best, J. L. & Ashworth, P. J. 1997 Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature 387 (6630), 275–277.
- Best, J. L. & Reid, I. 1984 Separation zone at open-channel junctions. Journal of Hydraulic Engineering 110 (11), 1588–1594.
- Best, J. L. & Rhoads, B. L. 2008 Sediment transport, bed morphology and the sedimentology of river channel confluences. In Rice, S. P., Roy, A. G. & Rhoads, B. L. (eds) River Confluences, Tributaries and the Fluvial Network John Wiley & Son, Chichester, UK, pp. 45–72.
- Best, J. L. & Roy, A. G. 1991 Mixing-layer distortion at the confluence of channels of different depth. Nature 350 (6317), 411–413.
- Biron, P. M. & Lane, S. N. 2008 Modelling hydraulics and sediment transport at river confluences. In Rice, S. P., Roy, A. G. & Rhoads, B. L. (eds) River Confluences, Tributaries and the Fluvial Network John Wiley & Sons, Chichester, UK, pp. 17–43.
- Biron, P., Best, J. L. & Roy, A. G. 1996a Effects of bed discordance on flow dynamics at open channel confluences. Journal of Hydraulic Engineering 122 (12), 676–682.
- Biron, P., Roy, A. & Best, J. 1996b Turbulent flow structure at concordant and discordant open-channel confluences. Experiments in Fluids 21 (6), 437–446.
- Biron, P. M., Ramamurthy, A. S. & Han, S. 2004 Three-dimensional numerical modeling of mixing at river confluences. Journal of Hydraulic Engineering 130 (3), 243–253.
- Biron, P. M., Buffin-Bélanger, T. & Martel, N. 2018 Mixing processes at an ice-covered river confluence. In E3S Web of Conferences.
- Boyer, C., Roy, A. G. & Best, J. L. 2006 Dynamics of a river channel confluence with discordant beds: flow turbulence, bed load sediment transport, and bed morphology. Journal of Geophysical Research: Earth Surface 111 (F4), 1–22.
- Bridge, J. S. 1993 The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. Geological Society, London, Special Publications 75 (1), 13–71.
- Chabokpour, J. & Samadi, A. 2020 Analytical solution of reactive hybrid cells in series (HCIS) model for pollution transport through the rivers. Hydrological Sciences Journal 65 (14), 2499–2507.
- Chabokpour, J., Azamathulla, H. M., Azhdan, Y. & Ziaei, M. 2020a Study of pollution transport through the river confluences by derivation of an analytical model. Water Science and Technology 82 (10), 2062–2075.
- Chabokpour, J., Chaplot, B., Dasineh, M., Ghaderi, A. & Azamathulla, H. M. 2020b Functioning of the multilinear lag-cascade flood routing model as a means of transporting pollutants in the river. Water Supply 20 (7), 2845–2857.
- Ettema, R. 2008 Management of confluences. In Rice, S. P., Roy, A. G. & Rhoads, B. L. (eds) River Confluences, Tributaries and the Fluvial Network John Wiley & Sons, Chichester, UK, pp. 93–118.
- Fielding, C. R. & Gupta, A. 2008 Sedimentology and stratigraphy of large river deposits: recognition in the ancient record, and distinction from ‘incised valley fills’. In Gupta, A. (ed.) Large Rivers: Geomorphology and Management John Wiley & Sons, Chichester, UK, pp. 97–113.
- Gaudet, J. M. & Roy, A. G. 1995 Effect of bed morphology on flow mixing length at river confluences. Nature 373 (6510), 138–139.
- Ghostine, R., Vazquez, J., Terfous, A., Rivière, N., Ghenaim, A. & Mosé, R. 2013 A comparative study of 1D and 2D approaches for simulating flows at right angled dividing junctions. Applied Mathematics and Computation 219 (10), 5070–5082.
- Holbrook, J. M. & Bhattacharya, J. P. 2012 Reappraisal of the sequence boundary in time and space: case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity. Earth-Science Reviews 113 (3–4), 271–302.
- Ikinciogullari, E., Emiroglu, M. E. & Aydin, M. C. 2022 Comparison of scour properties of classical and Trapezoidal Labyrinth Weirs. Arabian Journal for Science and Engineering 47, 4023–4040.
- Konsoer, K. M. & Rhoads, B. L. 2014 Spatial–temporal structure of mixing interface turbulence at two large river confluences. Environmental Fluid Mechanics 14 (5), 1043–1070.
- Lane, S. N., Parsons, D. R., Best, J. L., Orfeo, O., Kostaschuk, R. & Hardy, R. J. 2008 Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. Journal of Geophysical Research: Earth Surface 113 (F2), 1–16.
- Liu, X., Li, L., Hua, Z., Tu, Q., Yang, T. & Zhang, Y. 2019 Flow dynamics and contaminant transport in Y-shaped river channel confluences. International Journal of Environmental Research and Public Health 16 (4), 572.
- Lyubimova, T. P., Lepikhin, A. P., Parshakova, Y. N., Kolchanov, V. Y., Gualtieri, C., Roux, B. & Lane, S. N. 2020 A numerical study of the influence of channel-scale secondary circulation on mixing processes downstream of river junctions. Water 12 (11), 2969.
- Mackay, J. R. 1970 Lateral mixing of the Liard and Mackenzie rivers downstream from their confluence. Canadian Journal of Earth Sciences 7 (1), 111–124.
- Mosley, M. P. 1976 An experimental study of channel confluences. The Journal of Geology 84 (5), 535–562.
- Parsons, D. R., Best, J. L., Lane, S. N., Orfeo, O., Hardy, R. J. & Kostaschuk, R. 2007 Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio Paraná, Argentina. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 32 (1), 155–162.
- Ramamurthy, A. S., Carballada, L. B. & Tran, D. M. 1988 Combining open channel flow at right angled junctions. Journal of Hydraulic Engineering 114 (12), 1449–1460.
- Ramón, C. L., Hoyer, A. B., Armengol, J., Dolz, J. & Rueda, F. J. 2013 Mixing and circulation at the confluence of two rivers entering a meandering reservoir. Water Resources Research 49 (3), 1429–1445.
- Rhoads, B. L. & Kenworthy, S. T. 1998 Time-averaged flow structure in the central region of a stream confluence. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group 23 (2), 171–191.
- Rhoads, B. L. & Sukhodolov, A. N. 2001 Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resources Research 37 (9), 2393–2410.
- Rhoads, B. L. & Sukhodolov, A. N. 2008 Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface. Water Resources Research 44 (8), 1–17.
- Richards, K. 1980 A note on changes in channel geometry at tributary junctions. Water Resources Research 16 (1), 241–244.
- Riley, J. 2013 The Fluvial Dynamics of Confluent Meander Bends. University of Illinois at Urbana, Champaign, IL, USA.
- Sambrook Smith, G. H., Ashworth, P. J., Best, J. L., Woodward, J. & Simpson, C. J. 2005 The morphology and facies of sandy braided rivers: some considerations of scale invariance. Fluvial Sedimentology VII, 145–158.
- Schindfessel, L., Creëlle, S. & De Mulder, T. 2015 Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water 7 (9), 4724–4751.
- Shit, P. K. & Maiti, R. 2013 Confluence dynamics in an ephemeral gully basin (A case study at Rangamati, Paschim Medinipur, West Bengal, India). Research Journal of Applied Sciences, Engineering and Technology 15 (5), 3895–3911.
- Shin, J., Lee, S. & Park, I. 2021 Analysis of storage effects in the recirculation zone based on the junction angle of channel confluence. Applied Sciences 11 (24), 11607.
- Song, C. G., Seo, I. W. & Do Kim, Y. 2012 Analysis of secondary current effect in the modeling of shallow flow in open channels. Advances in Water Resources 41, 29–48.
- Tang, H., Zhang, H. & Yuan, S. 2018 Hydrodynamics and contaminant transport on a degraded bed at a 90-degree channel confluence. Environmental Fluid Mechanics 18 (2), 443–463.
- Van Rooijen, E., Mosselman, E., Sloff, K. & Uijttewaal, W. 2020 The effect of small density differences at river confluences. Water 12 (11), 3084.
- Webber, N. B. & Greated, C. 1966 An investigation of flow behavior at the junction of rectangular channels. Proceedings of the Institution of Civil Engineers 34 (3), 321–334.
- Xiao, Y., Xia, Y., Yuan, S. & Tang, H. 2019 Distribution of phosphorus in bed sediment at confluences responding to hydrodynamics. Proceedings of the Institution of Civil Engineers-Water Management, 149–162.
- Yu, Q., Yuan, S. & Rennie, C. D. 2020 Experiments on the morphodynamics of open channel confluences: implications for the accumulation of contaminated sediments. Journal of Geophysical Research: Earth Surface 125 (9), 1–25. e2019JF005438.
- Yuan, S., Tang, H., Xiao, Y., Qiu, X., Zhang, H. & Yu, D. 2016 Turbulent flow structure at a 90-degree open channel confluence: accounting for the distortion of the shear layer. Journal of Hydro-Environment Research 12, 130–147.
- Yuan, S., Tang, H., Xiao, Y., Chen, X., Xia, Y. & Jiang, Z. 2018 Spatial variability of phosphorus adsorption in surface sediment at channel confluences: field and laboratory experimental evidence. Journal of Hydro-Environment Research 18, 25–36.
- Yuan, S., Tang, H., Li, K., Xu, L., Xiao, Y., Gualtieri, C., Rennie, C. & Melville, B. 2021 Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resources Research 57 (3), 1–21. e2020WR028284.
- Zhang, T., Feng, M., Chen, K. & Cai, Y. 2020 Spatiotemporal distributions and mixing dynamics of characteristic contaminants at a large asymmetric confluence in northern China. Journal of Hydrology 591, 125583.