図3 He ガスストリッパー装置の図と全景.

He Gas Stripper and Rotating Disk Stripper at the RIKEN RIBF

理研 RI ビームファクトリーにおける He ガスと回転ディスクストリッパー

今尾 浩士 *・長谷部 裕雄 *

서론

우라늄 빔 등 중원소 빔의 대강도화는 다양한 단수명 원자핵을 생성·이용하고 우주에서의 원소 합성을 이해하기 위한 필수 과제이다. 중이온의 가속에 있어서는, 복수의 가속기를 이용하여, 고에너지까지 캐스케이드상으로 가속해 가지만, 효율적인 가속을 위해 도중의 하전 변환 과정은 필수 과정이라고 할 수 있다.

리켄 RI 빔팩토리(RIBF) 1)에서는 가장 무거운 우라늄 등의 가속에 있어서, 2회의 하전 변환을 실시하고 있다.

그러나 기존에 사용해 온 고정형 탄소막 스트리퍼 2)의 내구성은 대강화의 원리적 병목이며, 미국 FRIB 계획 3) 등을 포함한 차세대 RI 생성 시설의 공통 문제에서도 있었다. RIBF는 가스 4-7)과 회전형 디스크 8, 9)를 사용하여 고강도 우라늄을 견딜 수있는 스트리퍼를 개발했다.

RIBF에서 238U 빔의 가속도를 그림 1에 나타내었다. 28 GHz의 초전도 ECR 이온 소스 (10, 11)로 생성 및 선별 된 238U35 +는 입사기 RILAC2와 4 개의 링 사이클로트론 (RRC, fRC, IRC, SRC)을 사용하여 345 MeV / u까지 가속된다.

스트리퍼는 RRC 가속 후 11 MeV / u와 fRC 가속 후 51 MeV / u에서 두 번 사용된다. 첫 번째 단계는 He 가스 스트리퍼를 사용하며 U35 +에서 U64 +로 변환한다. 두 번째 단계는 회전 흑연 시트 디스크 스트리퍼이며 U64 +에서 U86 +로 변환한다.

중이온 스트리퍼는 총 열 부하, 파워 손실이라는 의미에서는 전혀 작지만, 특히 큰 것은 단위 길이 에너지 손실 dE/dx이며, 이에 특유의 어려움이 있다. 우라늄의 dE / dx는 특히 크고, 수 MeV / u-50 MeV / u 정도까지의 스트리퍼는 dE / dx가 크고 두께가 고체로서는 얇아지기 때문에 어렵다.

우리의 11 MeV / u에서의 목표 강도 10 pA는 dE / dx로 정규화 된 경우, 예를 들어 400 MeV의 양성자 빔이라면 500 mA라고 불리우는 강도에 해당한다. 또한 우라늄의 국부적 인 에너지 손실로 인한 비선형 피해도보고되었으며 상황은 더욱 심각하다.

예를 들어 제1 스트리퍼로 탄소막을 사용했을 경우, 1 µm 정도 이하의 박막을 사용하지 않을 수 없고, 취약성, 불균일성과의 싸움으로, 열 제거도 어렵다. 실제로 RIBF 초기에 사용 된 고정형 탄소막 2)에서는 우라늄 빔 20pnA 정도의 조사 강도에서도 사용 가능 시간은 반일 정도였다. 그런 다음 두 번째 스트리퍼에서도 비슷한 상황이 발생했다.

현재 사용하고 있는 He 가스 스트리퍼와 회전형 그라파이트 디스크 스트리퍼는 당시의 약 100배의 강도라도 사용 시간을 거의 신경쓸 필요가 없을 정도의 내구성을 가지고 있다.

본 논문에서는 He 가스 스트리퍼와 회전형 스트리퍼에 대해 개요와 고출력 표적으로서의 측면을 중심으로 설명한다.

図1 He ガスと回転ディスクストリッパーを用いた現在の RIBF ウラン加速スキーム.
図1 He ガスと回転ディスクストリッパーを用いた現在の RIBF ウラン加速スキーム.
図2 様々な厚さの He ガスによる11 MeV/u 238U の荷電分布.
図2 様々な厚さの He ガスによる11 MeV/u 238U の荷電分布.
図3 He ガスストリッパー装置の図と全景.
図3 He ガスストリッパー装置の図と全景.
図4 かく乱板の写真(上)と位置依存性(下).
図4 かく乱板の写真(上)と位置依存性(下).
図5 オリフィスから噴出する He のマッハ数の CFD 計算 (Solidworks flow simulation).
図5 オリフィスから噴出する He のマッハ数の CFD 計算 (Solidworks flow simulation).
図6 238U ビームによる He ガス温度上昇の実験値と計算値 の比較.実験値は輸送条件の異なる幾つかの RUN の データをプロットしている.
図6 238U ビームによる He ガス温度上昇の実験値と計算値 の比較.実験値は輸送条件の異なる幾つかの RUN の データをプロットしている.
図7 マクロパルスの長さと周期を変えた時のΔt の変化 (上)とマクロパルスの構造(下).
図7 マクロパルスの長さと周期を変えた時のΔt の変化 (上)とマクロパルスの構造(下).
図8 ガスジェットカーテン法コンセプト.
図8 ガスジェットカーテン法コンセプト.
図9 シール効果とガス置換効果(上)とオリフィスの大口径 化(下).
図9 シール効果とガス置換効果(上)とオリフィスの大口径 化(下).
図10 2 次元ラバール式ノズルによるガスジェットカーテ ンの計算例(Solidworks flow simulation).図はマッハ 数のプロットである.
図10 2 次元ラバール式ノズルによるガスジェットカーテ ンの計算例(Solidworks flow simulation).図はマッハ 数のプロットである.
図11 4 枚目の Be ディスク.左使用前,右使用後.
図11 4 枚目の Be ディスク.左使用前,右使用後.
図12 40 mg/cm2 グラッシーカーボンディスク
図12 40 mg/cm2 グラッシーカーボンディスク
図13 GS ディスク.左使用前,右使用後.
図13 GS ディスク.左使用前,右使用後.
図14 GTF ディスク.左使用前,右使用後.
図14 GTF ディスク.左使用前,右使用後.
図15 U ビーム照射中の GTF ディスク
図15 U ビーム照射中の GTF ディスク
図16 アクセスドア用ガラス. 左変色したガラス,右新品のガラス
図16 アクセスドア用ガラス. 左変色したガラス,右新品のガラス

References

1) Y. Yano: Nucl. Instrum. Methods 261, 1009 (2007).
2) ACF-Metals Arizona Carbon Foil Co. Inc.: http://www.
techexpo.com/firms/acf-metl.html
3) J. Wei et al.: “Progress towards the Facility for Rare Isotope Beams,” in Proceedings of 2013 North American
Particle Accelerator Conference (NA-PAC’13), Pasadena,
CA, U.S.A., September 2013, pp. 1453–1457.
4) H. Kuboki, H. Okuno, S. Yokouchi, H. Hasebe, T. Kishida,
N. Fukunishi, O. Kamigaito, A. Goto, M. Kase and Y.
Yano: Phys. Rev. Spec. Top. Accel. Beams 13, 093501
(2010).
5) H. Okuno, N. Fukunishi, A. Goto, H. Hasebe, H. Imao, O.
Kamigaito, M. Kase, H. Kuboki, Y. Yano, S. Yokouchi and
A. Hershcovitch: Phys. Rev. Spec. Top. Accel. Beams 14,
033503 (2011).
6) H. Imao, H. Okuno, H. Kuboki, S. Yokouchi, N. Fukunishi,
O. Kamigaito, H. Hasebe, T. Watanabe, Y. Watanabe, M.
Kase and Y. Yano: Phys. Rev. Spec. Top. Accel. Beams
15, 123501 (2012).
7) H. Imao et al.: “R&D of Helium Gas Stripper for Intense
Uranium Beams,” in Proceedings of the Twentieth International Conference on Cyclotrons and their Applications
(CYC2013), Vancouver, BC, Canada, September 2013, pp.
265–268.
8) H. Hasebe, H. Okuno, A. Tatami, M. Tachibana, M. Murakami, H. Kuboki, H. Imao, N. Fukunishi, M. Kase and O.
Kamigaito: AIP Conf. Proc. 1962, 030004 (2018).
9) H. Hasebe, H. Okuno, A. Tatami, M. Tachibana, M. Murakami, H. Imao, N. Fukunishi, M. Kase and O. Kamigaito:
EPJ Web of Conferences 229, 01004 (2020).
10) T. Nakagawa, M. Kidera, Y. Higurashi, J. Ohonishi, A.
Goto and Y. Yano: Rev. Sci. Instrum. 79, 02A327 (2008).
11) Y. Higurashi, J. Ohnishi, K. Ozeki, M. Kidera and T. Nakagawa: Rev. Sci. Instrum. 85, 02A953 (2014).
12) 小山亮,内山暁仁,今尾浩士,渡邉環:RIBF にお
けるシステム統合のためのガスストリッパー制御の
更新,PASJ2019, FRPH003 (2019).
13) H. Imao et al.: “Development of gas stripper at RIBF,” in
Proceedings of the 9th International Particle Accelerator
Conference (IPAC2018), Vancouver, BC, Canada, April
2018, pp. 41–46.
14) A. Akashio, K. Tanaka, H. Imao and Y. Uwamino: EPJ
Web of Conferences 153, 01022 (2017).
15) H. Imao et al.: “Charge Stripper Ring for Cyclotron
Cascade,” in Proceedings of the Twenty-first International Conference on Cyclotrons and their Applications
(CYC2016), Zurich, Switzerland, September 2016, pp.
155–159.
16) H. Imao: JINST 15, P12036 (2020).
17) H. Kuboki, H. Okuno, A. Hershcovitch, T. Dantsuka, H.
Hasebe, K. Ikegami, H. Imao, O. Kamigaito, M. Kase,
T. Maie, T. Nakagawa and Y. Yano: J. Radioanal. Nucl.
Chem. 299, 1029 (2014).
18) N. Ikoma, Y. Miyake, M. Takahashi, H. Okuno, S. Namba,
K. Takahashi, T. Sasaki and T. Kikuchi: Rev. Sci. Instrum. 91, 053503 (2020).
19) H. Ryuto, H. Hasebe, N. Fukunishi, S. Yokouchi, A. Goto,
M. Kase and Y. Yano: Nucl. Instrum. Methods Phys. Res.
A 569, 697 (2006).
20) H. Hasebe, H. Okuno, H. Kuboki, H. Imao, N. Fukunishi, M.
Kase and O. Kamigaito: J. Radioanal. Nucl. Chem. 305,
825 (2015).
21) Crystal Optics Inc.: http://www.crystal-opt.co.jp.
22) TANKEN SEAL SEIKO Co., LTD.: http://www.tanken
seal.co.jp.
23) Kaneka Corporation: http://www.elecdiv.kaneka.co.jp.
24) H. Hasebe, H. Okuno, H. Imao, N. Fukunishi, M. Kase and
O. Kamigaito: Proceedings of the 16th annual meeting of
PASJ, p. 9 (2019).
25) A. Tatami, Y. Kawashima, M. Murakami, K. Murashima
and M. Tachibana: Proceedings of the 14th annual meeting of PASJ, p. 159 (2017).