Figure 9. Simulation results (packed sediment height net change) after the steady-state

해당 소개자료는 “Civil & Environmental Engineering and Construction Faculty Publications”에서 발표한 “Sacrificial Piles as Scour Countermeasures in River Bridges A Numerical Study using FLOW-3DNumerical Study using FLOW-3D ” 논문에 대한 소개자료입니다.

Figure 9. Simulation results (packed sediment height net change) after the steady-state
Figure 9. Simulation results (packed sediment height net change) after the steady-state

연구 배경 및 목적

  • 배경:
    • 강이나 하천에서 발생하는 국부적 침식(세굴)은 교량 기초의 안정성을 크게 위협하며, 이로 인한 교량 붕괴 및 유지보수 비용이 증가하고 있다.
    • 전통적 실험 및 현장 조사 방식은 시간과 비용 부담이 크므로, 계산유체역학(CFD) 기법을 이용한 수치 모형이 세굴 현상 예측의 대안으로 주목되고 있다.
  • 목적:
    • 희생말뚝(sacrificial piles)을 교량 기초의 세굴 방지 대책으로 적용하였을 때의 효과를 수치모형(FLOW‑3D)을 통해 평가하고 정량화한다.
    • 다양한 유량 조건과 교각 배치, 말뚝 형상 및 설치 조건이 세굴 깊이, 유동 분포, 난류 특성 및 에너지 소산에 미치는 영향을 분석하여, 최적의 세굴 방지 설계안을 도출하는 데 목적이 있다.

연구 방법

  • 모형 구성 및 수치해석 기법:
    • FLOW‑3D 소프트웨어를 사용하여 자유수면 흐름과 복잡한 교각 및 말뚝 형상, 그리고 침식 과정을 3차원 유한체적법(Finite Volume Method) 기반으로 모사하였다.
    • VOF(Volume of Fluid) 기법과 FAVOR(Fractional Area–Volume Obstacle Representation) 기법을 활용하여 복잡한 경계와 자유수면을 정밀하게 재현하였다.
  • 검증 및 해석 조건:
    • 실험실에서 수행된 그룹 교각 및 희생말뚝 설치 실험 데이터와 동일한 조건(유량, 수로 크기, 말뚝 형상 등)을 모형에 반영하여, 수치해와 측정 자료 간의 RMSE 및 MAPE 등 오차 지표로 모형의 정확성을 평가하였다.

주요 결과

① 세굴 예측 성능

  • 예측 정확도:
    • FLOW‑3D 모형을 통한 계산 결과는 실험실 측정 데이터와 비교할 때, 평균 근사 오차(RMSE)가 매우 낮게 나타나(예, 약 0.0X m, MAPE 약 3% 내외) 모형의 예측력이 우수함을 확인하였다.
  • 세굴 패턴:
    • 교각 전면에서 세굴 깊이가 가장 크게 발생하며, 희생말뚝의 적용에 따라 세굴 저감 효과가 나타나는 것으로 분석되었다.
    • 교각 및 주변 침식 양상은 말뚝의 설치 위치, 형상 및 유동 조건에 따라 달라지는 것으로 나타남.

② 유동장 및 난류 특성 분석

  • 유동 및 난류 분포:
    • 수치해석 결과, 교각 전방에서는 강한 유속과 Horseshoe 와류가 형성되어 침식이 촉진되며, 희생말뚝 배치로 인해 이 와류의 세기가 감소하는 효과가 관찰되었다.
  • 에너지 소산 및 최적 설계:
    • 희생말뚝을 적용한 경우, 에너지 소산(Volumetric Energy Dissipation)이 감소하는 경향을 보였으며, 이는 교량 기초의 장기적 안정성 확보에 기여할 수 있음을 시사한다.
    • 다양한 해석 조건에서, 유량 및 말뚝 배치에 따른 최적의 세굴 저감 조건이 도출되었다.

결론 및 제언

  • 본 연구는 FLOW‑3D 기반의 CFD 모형을 활용하여 희생말뚝이 그룹 교각 주변의 지역 세굴 현상을 효과적으로 저감할 수 있음을 수치적으로 확인하였다.
  • 모형의 결과와 실험실 측정 자료 간의 오차가 매우 낮아, CFD 기법이 복잡한 세굴 현상 및 관련 유동장을 예측하는 데 신뢰할 수 있는 도구임을 입증하였다.
  • 향후 연구에서는 다양한 교각 형상, 장기적인 침식 변화, 그리고 실제 현장 조건을 반영한 추가 해석이 필요하며, 희생말뚝의 최적 배치 및 설계 기준에 대한 심층 연구가 요구된다.
Figure 1. Simplified scouring mechanism around a bridge pier
Figure 1. Simplified scouring mechanism around a bridge pier
Figure 9. Simulation results (packed sediment height net change) after the steady-state
Figure 9. Simulation results (packed sediment height net change) after the steady-state

Reference

  1. Hager, W.H., 1989. Discussion of “Scour at Bridge Crossings” by E.V. Richardson and S.R. Davis. Journal of Hydraulic Engineering, ASCE, 115(6): 861–866.
  2. Hager, W.H. and Unger, J., 1986. Temporal Evolution of Local Scour. Proc. Intl. Symposium on River Sedimentation, Beijing, China, 4: 1347–1356.
  3. Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1): 201–225.
  4. Melville, B.W. and Chiew, Y.M., 1999. Time Scale for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, ASCE, 125(1): 59–65.
  5. Melville, B.W. and Coleman, S.E., 2000. Bridge Scour. Water Resources Publications, Highlands Ranch, Colorado, USA.
  6. Olsen, N.R.B. and Melaaen, M.C., 1993. Three-dimensional numerical flow modeling for estimation of maximum local scour depth. Journal of Hydraulic Research, 31(6): 693–708.
  7. Olsen, N.R.B., 2003. Scour around circular piles in sand and gravel. Journal of Hydraulic Engineering, ASCE, 129(10): 805–811.
  8. Roulund, A., Sumer, B.M., Fredsøe, J. and Michelsen, J., 2005. Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics, 534: 351–401.
  9. VOF Theory, Flow Science, Inc. Available at: www.flow3d.com
  10. Vasquez, J.A. and Walsh, M.J., 2009. CFD modeling of local scour around bridge piers. World Environmental and Water Resources Congress 2009, Kansas City, Missouri, USA.
  11. Sheppard, D. M., B. Melville, and H. Demir. “Evaluation of Existing Equations for Local Scour at Bridge Piers.” Journal ofHydraulic Engineering 140, no. 1 (January 2014): 14–23. doi:10.1061/(asce)hy.1943-7900.0000800.
  12. Melville, Bruce W., and Anna C. Hadfield. “Use of sacrificial piles as pier scour countermeasures.” Journal of HydraulicEngineering 125, no. 11 (1999): 1221-1224. doi:10.1061/(ASCE)0733-9429(1999)125:11(1221).
  13. Yao, Weidong, Hongwei An, Scott Draper, Liang Cheng, and John M. Harris. “Experimental Investigation of Local ScourAround Submerged Piles in Steady Current.” Coastal Engineering 142 (December 2018): 27–41.doi:10.1016/j.coastaleng.2018.08.015.
  14. Link, Oscar, Marcelo García, Alonso Pizarro, Hernán Alcayaga, and Sebastián Palma. “Local Scour and Sediment Depositionat Bridge Piers During Floods.” Journal of Hydraulic Engineering 146, no. 3 (March 2020): 04020003.doi:10.1061/(asce)hy.1943-7900.0001696.
  15. Khan, Mujahid, Mohammad Tufail, Muhammad Fahad, Hazi Muhammad Azmathullah, Muhammad Sagheer Aslam, FayazAhmad Khan, and Asif Khan. “Experimental analysis of bridge pier scour pattern.” Journal of Engineering and AppliedSciences 36, no. 1 (2017): 1-12.
  16. Yang, Yifan, Bruce W. Melville, D. M. Sheppard, and Asaad Y. Shamseldin. “Clear-Water Local Scour at Skewed ComplexBridge Piers.” Journal of Hydraulic Engineering 144, no. 6 (June 2018): 04018019. doi:10.1061/(asce)hy.1943-7900.0001458.
  17. Moussa, Yasser Abdallah Mohamed, Tarek Hemdan Nasr-Allah, and Amera Abd-Elhasseb. “Studying the Effect of PartialBlockage on Multi-Vents Bridge Pier Scour Experimentally and Numerically.” Ain Shams Engineering Journal 9, no. 4(December 2018): 1439–1450. doi:10.1016/j.asej.2016.09.010.
  18. Guan, Dawei, Yee-Meng Chiew, Maoxing Wei, and Shih-Chun Hsieh. “Characterization of Horseshoe Vortex in a DevelopingScour Hole at a Cylindrical Bridge Pier.” International Journal of Sediment Research 34, no. 2 (April 2019): 118–124.doi:10.1016/j.ijsrc.2018.07.001.
  19. Dougherty, E.M. “CFD Analysis of Bridge Pier Geometry on Local Scour Potential” (2019). LSU Master’s Theses. 5031.
  20. Vijayasree, B. A., T. I. Eldho, B. S. Mazumder, and N. Ahmad. “Influence of Bridge Pier Shape on Flow Field and ScourGeometry.” International Journal of River Basin Management 17, no. 1 (November 10, 2017): 109–129.doi:10.1080/15715124.2017.1394315.
  21. Farooq, Rashid, and Abdul Razzaq Ghumman. “Impact Assessment of Pier Shape and Modifications on Scouring AroundBridge Pier.” Water 11, no. 9 (August 23, 2019): 1761. doi:10.3390/w11091761.
  22. Link, Oscar, Cristian Castillo, Alonso Pizarro, Alejandro Rojas, Bernd Ettmer, Cristián Escauriaza, and Salvatore Manfreda.“A Model of Bridge Pier Scour During Flood Waves.” Journal of Hydraulic Research 55, no. 3 (November 18, 2016): 310–323. doi:10.1080/00221686.2016.1252802.
  23. Karakouzian, Moses, Mehrdad Karami, Mohammad Nazari-Sharabian, and Sajjad Ahmad. “Flow-Induced Stresses andDisplacements in Jointed Concrete Pipes Installed by Pipe Jacking Method.” Fluids 4, no. 1 (February 21, 2019): 34.doi:10.3390/fluids4010034.
  24. Flow Science, Inc. FLOW-3D User’s Manual, Flow Science (2018).
  25. Brethour, J. Modeling Sediment Scour. Flow Science, Santa Fe, NM. (2003).
  26. Brethour, James, and Jeff Burnham. “Modeling sediment erosion and deposition with the FLOW-3D sedimentation & scourmodel.” Flow Science Technical Note, FSI-10-TN85 (2010): 1-22.
  27. Balouchi, M., and Chamani, M.R. “Investigating the Effect of using a Collar around a Bridge Pier, on the Shape of the ScourHole”. Proceedings of the First International Conference on Dams and Hydropower (2012) (In Persian).
  28. Bayon, Arnau, Daniel Valero, Rafael García-Bartual, Francisco José Vallés-Morán, and P. Amparo López-Jiménez.“Performance Assessment of OpenFOAM and FLOW-3D in the Numerical Modeling of a Low Reynolds Number HydraulicJump.” Environmental Modelling & Software 80 (June 2016): 322–335. doi:10.1016/j.envsoft.2016.02.018.
  29. Aminoroayaie Yamini, O., S. Hooman Mousavi, M. R. Kavianpour, and Azin Movahedi. “Numerical Modeling of SedimentScouring Phenomenon Around the Offshore Wind Turbine Pile in Marine Environment.” Environmental Earth Sciences 77,no. 23 (November 24, 2018). doi:10.1007/s12665-018-7967-4.
  30. Nazari-Sharabian, Mohammad, Masoud Taheriyoun, Sajjad Ahmad, Moses Karakouzian, and Azadeh Ahmadi. “Water QualityModeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and SystemDynamics.” Water 11, no. 2 (February 24, 2019): 394. doi:10.3390/w11020394.