A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*Shin Taek Jeong,**Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University
고동휘*, 정신택,**, 오남선***

*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과

Abstract

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords 세굴일방향 흐름왕복성 조류 흐름해상 자켓구조물FLOW-3D최대 세굴심, scouruni-directional flowbi-directional tidal current flowoffshore jacket substructureFlow-3Dmaximum scour depth

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

1. 서 론

최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009)ABS(2013)BSH(2007)MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010)CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.

2. 수치해석 모형

본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.

2.1 FLOW-3D의 지배방정식

수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.

2.1.1 연속방정식

직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.

(1)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.

2.1.2 운동방정식

본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.

(2)

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu

(3)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv

(4)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw여기서, RSOR은 질량생성/소멸(Mass source/sink)항, VF는 체적비 (Volume fraction), p는 압력, Gx, Gy, Gz는 방향별 체적력항, fx, fy, fz는 방향별 점성력항, bx, by, bz는 다공질 매체에서 방향별 흐름 손실이다.그리고 점성계수 µ에 대하여 점성력항은 다음 식 (5)~(7)과 같다.

(5)

ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}

(6)

ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}

(7)

ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.

(8)

τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(9)

τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(10)

τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(11)

τxy=−μ{∂v∂x+R∂u∂y−ζvx}τxy=−μ{∂v∂x+R∂u∂y−ζvx}

(12)

τxz=−μ{∂u∂y+∂w∂x}τxz=−μ{∂u∂y+∂w∂x}

(13)

τyz=−μ{∂v∂z+R∂w∂y}τyz=−μ{∂v∂z+R∂w∂y}

2.1.3 Sediment scour model

Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.

2.1.3.1 The critical Shields parameter

무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).

(14)

θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.

(15)

R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.

(16)

θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.

(17)

θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.

2.1.3.2 동반이행(Entrainment)과 퇴적

다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.

(18)

ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.

(19)

d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.

(20)

usettling,i=νfds,i[(10.362+1.049d3∗)0.5−10.36]usettling,i=νfds,i[(10.362+1.049d*3)0.5−10.36]여기서, νf는 유체의 운동점성계수이다.

2.1.3.3 하상이동 모델(Bedload transport)

하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.

(21)

Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.

(22)

qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.

(23)

δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.

(24)

ubedload,i=qb,iδifb,iubedload,i=qb,iδifb,i

2.2 모델 구성 및 해역 조건

2.2.1 해역 조건 및 적용 구조물

본 수치해석은 위도와 안마도 사이의 해양 조건을 적용하였으며 지점은 Fig. 1과 같다.

jkscoe-27-6-373f1.gifFig. 1.Iso-water depth contour map in western sea of Korea.

본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.

jkscoe-27-6-373f2.gifFig. 2.A photo of HeMOSU-1.

2.2.2 모델 구성

본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.

jkscoe-27-6-373f3.gifFig. 3.Comparison of current speed conditions.

2.2.3 구조물 형상 및 격자

HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.

jkscoe-27-6-373f4.gifFig. 4.3 Dimensional plot of jacket structure.
Table 1.

Grid information of jacket structure

Xmin/Xmax(m)Ymin/Ymax(m)Zmin/Zmax(m)No. of x gridNo. of y gridNo. of z grid
−100/100−40/40−9/2031015560
Download Table

한편, 계산영역의 격자 형상은 Fig. 5와 같다.

jkscoe-27-6-373f5.gifFig. 5.3 dimensional grid of jacket structure.

2.3 계산 조건

계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.

Table 2.

Basic information of two scour simulation tests

CaseStructure typeVelocityDirectionAnalysis time
Case 1Jacket1 m/sUnidirectional10,000 sec
Case 2−1~1 m/sBidirectional
Download Table

FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to : Goto

3. 수치모형 실험 결과

3.1 Case 1

본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.

jkscoe-27-6-373f6.gifFig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f7.gifFig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).

이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.

jkscoe-27-6-373f8.gifFig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.

일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.

jkscoe-27-6-373f9.gifFig. 9.Scour phenomenon around jacket substructure(Case 1).

3.2 Case 2

서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.

jkscoe-27-6-373f10.gifFig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f11.gifFig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).

양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.

jkscoe-27-6-373f12.gifFig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.

Fig. 13은 3차원 수치해석 모의 결과이다.

jkscoe-27-6-373f13.gifFig. 13.Scour phenomenon around jacket substructure(Case 2).

3.3 현장 관측

본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.

jkscoe-27-6-373f14.gifFig. 14.Time series of tidal data at Wido (2013.7.1).

2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.

jkscoe-27-6-373f15.gifFig. 15.Iso-depth contour map around HeMOSU-1.

대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to : Goto

4. 결론 및 토의

본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : GotoInternational Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

감사의 글

본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to : Goto

References

American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.

API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.

Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.

Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.

FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.

International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.

Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean).

Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean).

KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).

Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.

U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.

van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.

Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)

Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation

Alexandre Reikher
A Dissertation Submitted in
Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
In Engineering
at
The University of Wisconsin Milwaukee
December 2012

ABSTRACT

얇은 벽 부품의 주조는 오늘날 다이 캐스트 산업의 현실이 되었습니다. 전산 유체 역학 분석은 생산 개발 프로세스의 필수적인 부분입니다. 일반적으로 에너지 방정식과 결합 된 3 차원 Navier-Stokes 방정식은 유동 및 응고 패턴, 유동 선단의 위치, 함수로서 고체-액체 인터페이스의 위치를 ​​이해하기 위해 해결되어야 합니다.

캐비티 충전 및 응고 과정에서 시간. 얇은 벽 주조에 대한 지배 방정식의 일반적인 솔루션에는 많은 수의 계산 셀이 필요하므로 솔루션을 생성하는 데 비현실적으로 오랜 시간이 걸립니다.

Hele Shaw 유동 모델링 접근법을 사용하면 평면 외 유동을 무시함으로써 얇은 캐비티의 유동 문제 해결을 단순화 할 수 있습니다. 추가적인 이점으로, 문제는 3 차원 문제에서 2 차원 문제로 축소됩니다. 그러나 Hele-Shaw 근사는 흐름의 점성력이 관성력보다 훨씬 더 높아야하며,이 경우 Navier-Stokes 방정식은 Reynolds의 윤활 방정식으로 축소됩니다.

그러나 다이 캐스트 공정의 빠른 사출 속도로 인해 관성력을 무시할 수 없습니다. 따라서 윤활 방정식은 흐름의 관성 효과를 포함하도록 수정되어야 합니다.

이 박사 학위 논문에서는 얇은 공동에서 응고와 함께 액체 금속의 정상 상태 및 과도 흐름을 모델링하기 위한 빠른 수치 알고리즘이 개발되었습니다. 설명된 문제는 저온 챔버, 고압 다이 캐스트 공정, 특히 얇은 환기 채널에서 관찰되는 금속 흐름 현상과 밀접한 관련이 있습니다.

채널의 금속 흐름 속도가 고체-액체 계면 속도보다 훨씬 높다는 사실을 사용하여 두께에 따른 열 전달을 처리하면서 금속 흐름을 주어진 시간 단계에서 안정된 것으로 처리하여 새로운 수치 알고리즘을 개발했습니다.

일시적인 방향. 얇은 캐비티의 흐름은 채널 두께에 대한 운동량과 연속성 방정식을 통합 한 후 2 차원으로 처리되고 열 전달은 두께 방향의 1 차원 현상으로 모델링 됩니다. 엇갈린 격자 배열은 유동 지배 방정식을 이산화하는데 사용되며 결과적인 편미분 방정식 세트는 SIMPLE (Semi-Implicit Method for Pressure Linked Equations) 알고리즘을 사용하여 해결됩니다.

상 변화를 수반하는 두께 방향 열 전달 문제는 제어 볼륨 공식을 사용하여 해결됩니다. 고체-액체 계면의 위치와 모양은 솔루션의 일부로 Stefan 조건을 사용하여 찾을 수 있습니다. 시뮬레이션 결과는 응고와 함께 전체 3 차원 흐름 및 열 전달 방정식을 해결하는 상용 소프트웨어 FLOW-3D®의 예측과 잘 비교되는 것으로 나타났습니다.

제안된 수치 알고리즘은 또한 얇은 채널에서 일시적인 금속 충전 및 응고 문제를 해결하기 위해 적용되었습니다. 움직이는 고체-액체 인터페이스의 존재는 이제 반복적으로 해결되는 일련의 흐름 방정식에 비선형 성을 도입합니다.

다시 한번, FLOW3D®의 예측과 잘 일치하는 것이 관찰되었습니다.

이 두 연구는 제안 된 관성 수정 레이놀즈의 윤활 방정식과 함께 두께를 통한 열 손실 및 응고 모델을 성공적으로 구현하여 다이 캐스트 공정 중에 얇은 채널에서 액체 금속의 유동 및 응고에 대한 빠른 분석을 제공 할 수 있음을 나타냅니다. CPU 시간을 대폭 절약하여 얻은 이러한 시뮬레이션 결과는 다이 캐스트 다이의 환기 채널을 설계하는 동안 빠른 초기 분석을 제공하는 데 사용할 수 있습니다.

Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a.  plunger pushes metal from the sleeve through the gating system into the cavity; b. after  solidification process is complete, the die opens; c. the part is ejected from the cavity.
Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a. plunger pushes metal from the sleeve through the gating system into the cavity; b. after solidification process is complete, the die opens; c. the part is ejected from the cavity.
Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a.  molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on  plunger; c. plunger pushes metal from the sleeve through the gating system into the  cavity; d. high pressure is maintained during solidification; e. after solidification is  complete, the die opens; f. the part is ejected from the cavity.
Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a. molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on plunger; c. plunger pushes metal from the sleeve through the gating system into the cavity; d. high pressure is maintained during solidification; e. after solidification is complete, the die opens; f. the part is ejected from the cavity.
Figure 4.6 A schematic of a die-cast die with shot sleeve and plunger: 1) Shot  sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die,  5) Mold cavity, 6) Ventilation channel.
Figure 4.6 A schematic of a die-cast die with shot sleeve and plunger: 1) Shot sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die, 5) Mold cavity, 6) Ventilation channel.
Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The  overflows are created when the metal front, after filling the main cavity, fills up the  machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up.
Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The overflows are created when the metal front, after filling the main cavity, fills up the machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up.
Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)
Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)
Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled  with liquid metal at the end of the fill process. (The temperature is in 0C.)
Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled with liquid metal at the end of the fill process. (The temperature is in 0C.)
Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a)  Measured length of metal flow in the ventilation channel after solidification stops it; b)  Enlarged image of the solidified metal in the channel
Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a) Measured length of metal flow in the ventilation channel after solidification stops it; b) Enlarged image of the solidified metal in the channel
Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Adiabatic Bubbles Options

[FLOW-3D 물리모델]Adiabatic Bubbles / 단열 버블

Adiabatic Bubbles / 단열 버블

단일유체 자유표면 유동에서 유체에 의해 둘러싸인 resolved void regions 공간은 버블이라 불린다. 이 버블은 정확한 해석을 위해 10 개 이상의 격자로 구성되어야 타당 하지만, 버블 직경은 최소 3개 이상의 격자를 포함해야 한다. Model Setup–>Physics–>Bubble and Phase Change  창에서Adiabatic bubbles 옵션은 버블에 대한 압력-온도-체적 관계는 단열법칙을 따른다. 이 경우 각 버블에서의 압력은 Gamma 거듭제곱에 대한 볼륨에 반비례한다. 이를테면 모든 압력은 절대값(게이지 압력이 아닌)으로 표기되어야 하고 모든 압력과 비열의 비율인 Gamma는 1.28과 1.67사이의 양수이어야 한다. 단 γ = 1인 등온 버블에 해당하는 특수한 경우도 있다.

단열 조건(가정)에 대한 더 자세한 설명은 이론 부분의Bubble and Void Region Models 섹션을 참조한다.

Adiabatic Bubbles Options
Adiabatic Bubbles Options

이 버블 모델은 유체부분이 0인 지정된 압력경계와 접촉하고 있는 버블에는 적용되지 않는다. 이런 보이드 영역은 항상 경계 압력을 가정합니다.

버블 압력을 계산하는 데는 implicit 알고리즘을 사용하며, 이는 default 이고 Numerics 탭에서 bubble pressure  선택을 수정함으로써 변경할 수 있습니다.

또한 이론 매늉얼의 Bubble and Void Region Models을 참조한다.

Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.

Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces

평면 및 구형 표면의 액적 충돌을위한 고밀도 비율 격자-볼츠만 모델 적용

Duo Zhang1,2, K. Papadikis1∗, Sai Gu1
1Xi’an Jiaotong-Liverpool University, No. 111 Ren’ai Road, Suzhou Dushu Lake Higher Education
Town, Suzhou, China 215123.
2The University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom.
Tel: 0086-512-88161752
Email: Konstantinos.Papadikis@xjtlu.edu.cn
∗Corresponding author

현재 연구에서는 고밀도 비율을 견딜 수있는 3 차원 격자 Boltzmann 모델을 사용하여 액체 방울이 평면 및 구형 타겟에 충돌하는 것을 시뮬레이션합니다. Weber 및 Reynolds 수의 범위에 대해 운동 학적, 확산, 이완 및 평형 단계와 같이 평평한 표면에 대한 액적 충돌의 4 단계를 얻었습니다. 예측 된 최대 확산 계수는 문헌에 발표 된 실험 데이터와 잘 일치합니다. 액체 방울이 구형 타겟에 미치는 영향에 대해 타겟 표면에서 필름 두께의 시간적 변화를 조사합니다. 필름 역학의 세 가지 다른 시간적 위상, 즉 초기 낙하 변형 위상, 관성 지배 위상 및 점도 지배 위상이 재현되고 연구됩니다. 액적 레이놀즈 수와 목표 대 드롭 크기 비율이 필름 흐름 역학에 미치는 영향을 조사합니다.

고체 표면의 물방울 충돌은 땅에 떨어지는 빗방울, 잉크젯 인쇄, 뜨거운 표면의 스프레이 냉각, 스프레이 페인팅 및 코팅, 플라즈마 스프레이, 연소실의 연료 스프레이, 고정식 촉매 처리와 같은 일반적인 현상입니다. 베드 반응기 및 최근에는 미세 가공 및 미세 채널 [1]. 따라서 고체 표면에 영향을 미치는 물방울에 대한 연구는 연구원들의 큰 관심을 끌고 있습니다. Rein [2]은이 현상에 대한 포괄적 인 리뷰를 발표했습니다. Rioboo 등 [3]에 의해 체계적인 연구가 수행되었으며, 여기서 건식 벽에 대한 낙하 충격의 6 가지 가능한 결과, 즉 퇴적, 신속한 스플래시, 코로나 스플래시, 후퇴 이탈, 부분 반동 및 완전 반동이 밝혀졌습니다.

Keywords: Multiphase flow, Lattice Boltzmann, high-density-ratio, droplet impact, spread
factor, film thickness

Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.

References

References
[1] A.L.Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing. . . , Annu. Rev. Fluid Mech. 38(2006) 159-192.
[2] M.Rein, Phenomena of liquid drop impact on solid and liquid surface, Fluid. Dyn.
Res. 12(1993) 61-93.
[3] R.Rioboo, M.Marengo, C.Tropea, Time evolution of liquid drop impact onto solid,
dry surfaces, Exp. Fluids. 33(2002) 112-124.
[4] A.Asai, M.Shioya, S.Hirasawa, T.Okazaki, Impact of an ink drop on paper, J Imaging
Sci Techn. 37(1993) 205-207.
[5] B.L.Scheller, D.W.Bousfield, Newtonian drop impact with a solid surface, AIChE J.
41(1995) 1357-1367.
[6] S. Chandra and C. T. Avedesian, On the collision of a droplet with a solid surface,
Proc. R. Soc. London, Ser. A 432(1991) 13.
[7] M.Pasandideh-Fard, Y.M.Qiao, S.Chandra, J.Mostaghimi, Capillary effects during
droplet impact on a solid surface, Phys Fluids. 8(1996) 650-660.
[8] T.Mao, D.C.S.Kuhn, H.Tran, Spread and rebound of liquid droplets upon impact on
flat surfaces, AIChE J. 43(1997) 2169-2179.
[9] I.V.Roisman, R.Rioboo, C.Tropea, Normal impact of a liquid drop on a dry surface:
Model for spreading and receding, Proc. R. Soc. London, Ser. A 458(2002) 1411-1430.
[10] H.Dong, W.W.Carr, D.G.Bucknall, J.F.Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53(2007), 2606-2617.
[11] L.S.Hung, S.C.Yao, Experimental investigation of the impaction of water droplets
on cylindrical objects, Int. J. Multiphase Flow 25(1999) 1545-1559.

[12] Y.Hardalupas, A.M.K.P.Taylor, J.H.Wilkins, Experimental investigation of submillimeter droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow 20 (1999)
477-485.
[13] S.Bakshi, L.V.Roisman, C.Tropea, Investigations on the impact of a drop onto a
small spherical target, Phys Fluids. 19(2007) 032102.
[14] S.Mukherjee, Numerical simulation of wall impinging drops, Ph.D.thesis, School of
Mechanical Engineering, Purdue University 2006.
[15] G.Trapaga, J.Szekely, Mathematical Modeling of the Isothermal Impingement of
Liquid Droplets in Spraying Processes, Metall. Trans. B. 22(1991) 901-914.
[16] M.Bussmann, S.Afkhami, Drop impact simulation with a velocity-dependent contact
angle, Chem. Eng. Sci. 62(2007) 7214-7224.
[17] A.Gupta, R.Kumar, Droplet impingement and breakup on a dry surface, Comput.
Fluids. 39(2010) 1696-1703.
[18] A.Gupta, R.Kumar, Two-dimensional lattice Boltzmann model for droplet impingement and breakup in ow density ratio liquids, Comm. Comp. Phys. 10(2011) 767-784.
[19] Y.Y.Yan, Y.Q.Zu, A lattice Boltzmann method for incompressible two-phase flows
on partial wetting surface with large density ratio, J. Comput. Phys. 227(2007) 763-
775.
[20] T.Inamuro, T.Ogata, S.Tajima, N.Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198(2004)
628-644.
[21] A.J.Briant, P.Papatzacos, J.M.Yeomans, Lattice Boltzmann simulations of contact
line motion in a liquid-gas system, Philos. Trans. Roy. Soc. Lond. A. 360(2002) 485-
495.

[22] A.Fakhari, M.H.Rahimian, Phase-field modeling by the method of lattice Boltzmann
equations, Phys. Rev. E. 81(2010) 036707.
[23] M.R.Swift, E.Orlandini, W.R.Osborn, J.M.Yeomans, Lattice Boltzmann simulations
of liquid-gas and binary fluid systems, Phys. Rev. E. 54(1996) 5041-5052.
[24] S.Q.Shen, F.F.Bi, Y.L.Guo, Simulation of droplets impact on curved surfaces with
lattice Boltzmann method, Int. J. Heat Mass Tranf. 55(2012) 6938-6943.
[25] X.Shan, H.Chen, Simulation of nonideal gases and liquid-gas phase transitions by
the lattice Boltzmann equation, Phys. Rev. E. 49(1994) 2941-2948.
[26] P.Yuan, L.Schaefer, Equations of state in a lattice Boltzmann model, Phys Fluids.
18(2006) 042101.
[27] D.H.Rothman, J.M.Keller, Immiscible cellular-automation fluids, J. Statist. Phys.
52(1988) 1119-1129.
[28] X.He, S.Chen, R.Zhang, A lattice Boltzmann scheme for incompressible multiphase
flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys.
152(1999) 642-663.
[29] T.Reis, T.N.Phillips, Lattice Boltzmann model for simulating immiscible two-phase
flows, J. Phys. A: Math. Theor. 40(2007) 4033-4053.
[30] S.Leclaire, M.Reggio, J.-Y.Trepanier, Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. 36(2012) 2237-2252.
[31] S.Leclaire, P.Nicolas, M.Reggio, J.-Y.Trepanier, Enhanced equilibrium distribution
functions for simulationg immiscible multiphase flows with variable density ratios in
a class of lattice Boltzmann models. 57(2013) 159-168.
[32] H.B.Huang, H.W.Zheng, X.Y.Lu, C.Shu, An evaluation of a 3D free-energy-based
lattice Boltzmann model for multiphase flows with large density ratio, Int. J. Numer.
Meth. Fluids. 63(2009) 1193-1207.

[33] T.Lee, C.L.Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys.
206(2005) 16-47.
[34] H.W.Zheng, C.Shu, Y.T.Chew, A lattice Boltzmann model for multiphase flows with
large density ratio, J. Comput. Phys. 218(2006) 353-371.
[35] D.A.Perumal, A.K.Dass,Application of lattice Boltzmann method for incompressibe
viscous flows, Applied Mathematical Modelling. 37(2013) 4075-4092.

FLOW-3D 수치해석용 컴퓨터 선택 가이드 (update)

Hardware Selection for FLOW-3D Products – FLOW-3D

2021-04-14 최신 CPU 부분 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

개요

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2021 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU 최신 뉴스

2021년 4월 15일 기준 (https://www.itworld.co.kr/print/190283 기사 원문 발췌)

ⓒ Rob Schultz/IDG
ⓒ Rob Schultz/IDG
  • 현재 라이젠 5000 제품군과 인텔 11세대 코어 CPU가 그 어느 때보다 뛰어난 성능과 코어를 제공한다. 
    하이엔드 프로세서를 구입하고자 한다면, 라이젠 9 5900X가 최고의 선택지다. 인텔의 새로운 8코어 코어 i9-11900K 대표 제품과 동등한 수준의 성능을 제공하지만, 라이젠 칩의 12코어 24스레드 덕분에 훨씬 더 높은 생산성 성능을 제공한다. 데스크탑에서 최고 성능을 원한다면 750달러로 가격이 치솟은 라이젠 9 5950X는 무려 16코어 덕분에 훨씬 더 많은 성능을 제공한다.
    워크스테이션에서 최고 사양은 AMD Ryzen™ Threadripper™ PRO 3995WX 로 CPU 코어 수는 64개이고 스레드 수는 128코어로 거의 슈퍼컴퓨터 수준이다. 가격 조회 사이트인 다나와에서 현재 일자(2021년 4월 15일) 기준으로 검색해 보면 CPU 가격만 700만원대인 매우 고가의 CPU인 것을 알 수 있다.
AMD 3995wx
  • 인텔의 코어 i9-11900K 가격은 550달러이므로, AMD 라이젠 9 5900K와 가격이 동일하지만, 로켓 레이크의 출시 초기에는 약 615달러에 판매되고 있다. 전력 소모가 심하고 AMD 칩보다 속도가 그리 빠르지 않다. 또한 코어 i9-11900K는 8개의 코어 및 16개 스레드만 제공되므로 생산성 작업에서도 크게 뒤쳐진다. 실제로 코어 i9-11900K는 소매 가격이 450달러인 8코어 라이젠 7 5800X와 더 비슷한 성능을 보인다.  
  • CPU는 최근 수개월 동안 그래픽 카드와 함께 부족 현상을 겪고 있어 가용성이 많이 떨어지고 있다. 특히 AMD 라이젠 프로세서의 가격이 인상돼 사용자는 현명하게 구매할 필요가 있다. 
  • 인텔의 최신 칩인 11세대 로켓 레이크(Rocket Lake) 코어 프로세서는 여전히 오래된 14nm 제조 공정을 기반으로 제작됐지만, 아키텍처 자체는 인텔의 최신 10nm 아이스 레이크(Ice Lake) 코어로 만들어졌다. 코어 i9-11900K에서 볼 수 있듯이 이는 흥미롭고, 복합적인 결과를 도출한 필사적인 아이디어다. 
  • 하지만 앞으로 더 밝은 미래가 있다. 인텔의 새로운 CEO 팻 겔싱어는 최근 다른 기업을 위한 x86 칩을 구축하고 수년간 14nm에서 허덕이던 인텔의 ‘틱톡(tick-tock)’ 아키텍처를 되살리는 등 인텔의 장기적인 기술 계획을 발표했다. 
  • 성능을 향상시키는 PCIe 리사이저블 BAR(Resizable BAR) 기능은 AMD의 스마트 엑세스 메모리(Smart Access Memory)와 유사한 형태로 등장한 후에 널리 사용 가능해졌다. AMD가 라이젠 5000에 이 기능을 도입한 이후, 인텔의 최신 로켓 레이크 칩으로 확산됐다. BIOS 업데이트는 양 제조업체의 구형 프로세서 및 메인보드에 이 기능을 추가하고 있다.     

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 Intel 과 AMD의 모델 번호와 사양을 이해하는 것이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

PassMark – CPU Mark High End CPUs

2021년 4월 14일 기준

PassMark - CPU Mark Updated 14th of April 2021
PassMark – CPU Mark Updated (14th of April 2021)

<출처> https://www.cpubenchmark.net/high_end_cpus.html

PassMark – CPU Mark Single Thread Performance

2021년 4월 14일 기준

수치해석을 수행하는 CPU의 경우 예산에 따라 Core가 많지 않은 CPU를 구매해야 하는 경우도 있을 수 있습니다. 보통 Core가 많다고 해석 속도가 선형으로 증가하지는 않으며, 해석 케이스에 따라 적정 Core수가 있습니다. 이 경우 예산에 맞는 성능 대비 최상의 코어 수가 있을 수 있기 때문에 Single thread Performance 도 매우 중요합니다. 아래 성능 도표를 참조하여 예산에 맞는 최적 CPU를 찾는데 도움을 받을 수 있습니다.

출처 : https://www.cpubenchmark.net/singleThread.html

PassMark - CPU Mark Single Thread Performance (Updated 14th of April 2021)
PassMark – CPU Mark Single Thread Performance (Updated 14th of April 2021)

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. FlowSight 또한 CPU에 크게 의존합니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다. 현재 32 코어 옵션에 영향을 주는 Windows 버그가 초기 버전에서 성능을 크게 저하시키는 것으로 알려져 있습니다. Bug Fix가 되었는지 업데이트 하여 확인하고, 해결되지 않은 경우 이러한 CPU에는 Linux를 권장됩니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

PassMark – G3D Mark High End Videocards

출처 : https://www.videocardbenchmark.net/high_end_gpus.html

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. 이는 FLOW-3D 및 FlowSight 모두 성능에 부정적인 영향을 미칩니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. FlowSight POST Processor를 사용하여 후처리 작업을 할 경우 상당한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

PassMark – Disk Rating High End Drives

출처 : https://www.harddrivebenchmark.net/high_end_drives.html

상기 벤치마크 테스트는 테스트 조건에 따라 그 성능 곡선이 달라질 수 있기 때문에 조건을 확인할 필요가 있습니다. 예를 들어 Windows7, windows8, windows10 모두에서 테스트한 결과를 평균한 점수와 자신이 사용할 컴퓨터 O/S에서 테스트한 결과는 다를 수 있습니다. 상기 결과에 대한 테스트 환경에 대한 내용은 아래 사이트를 참고하시기 바랍니다.

참고 : 테스트 환경

페이지 보기

collapsed-raised-fluid-column-figure-1-1

Steady-State Accelerator for Free-Surface Flows

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 다가오는 FLOW-3D  v12.0 릴리스에서 사용할 수있는 새로운 Steady-State Accelerator에 대해 설명합니다  .

일시적인 흐름의 점근 적 상태를 계산하는 것보다 안정된 자유 표면 흐름을 생성하는 더 빠른 방법이 자주 필요합니다. 상황은 압축성 흐름 솔버를 사용하여 비압축성 흐름을 해결하는 것과 유사합니다. 후자의 경우 압축 파는 붕괴하는 데 오랜 시간이 걸리고 결과적으로 비압축성 흐름을 남길 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 비압축성이지만 표면 파동은 안정된 자유 표면 구성을 생성하는 데 오랜 시간이 걸릴 수 있습니다.

비압축성 흐름의 경우, 압축 파를 심각하게 감쇠시키는 반복적 인 프로세스 (즉, 압력-속도 반복)를 사용합니다. 물리적으로 반복은 압력과 같은 파동이 국부적 인 영역에 영향을 미치는 짧은 거리를 이동하도록 허용하지만 압력 장에 상당한 노이즈를 유발할 수있는 장거리 전파 및 반사를 피할 수있을만큼 빠르게 감쇠됩니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 교란에 대한 감쇠력으로 작용합니다. 이 댐핑은 안정적인 자유 표면 구성에 대한 접근을 가속화합니다.

Steady-State Accelerator Idea

유체 인터페이스 또는 자유 표면은  VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D 에서 추적됩니다 . 유체 변수 F의 비율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 된 자유 표면이있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직 인 유체 속도가 0이어야합니다. 물론 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름에 대한 정상 상태 솔버를 사용하려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 유도하는 방법을 찾아야합니다.

이를 수행하는 한 가지 방법은 정상 속도를 0으로 유도하는 방식으로 표면 압력을 조정하는 것입니다. 특히 정상 속도에 비례하는 총 표면 압력에 “댐핑”압력 기여를 추가하는 것입니다. 속도는 표면 밖으로 향하고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 수정 압력도 0이되어야 표면이 고정 위치를 초과하지 않게됩니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 따라서 안정적인 보정 적용을 위해서는 몇 가지 제한 요소가 있어야합니다.

계수 약어 ssacc 을 나타내며, S는 teady- S 테이트 액세서리 elerator이 새로운 옵션을 활성화하는 프로그램 입력에 추가되었다. ssacc 의 값 은 편리한 상한 인 1.0보다 작거나 같아야합니다. 프로그램 내에서 댐핑 압력에 자동으로 적용되는 여러 제한 기가 불안정 해 지거나 일시적인 현상에 악영향을 미치는 것을 방지합니다.

안정성 및 댐핑 리미터에 대한 이전 문제는 강조되어야합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도 현상이 더 이상 완전히 사실적인 것으로 볼 수 없습니다. 댐핑 압력은 물리적 인 힘이 아니라 파동 전파와 반사를 줄이는 메커니즘입니다. 댐퍼는 큰 과도 현상의 발생을 방해하지 않도록 고안되었으며 흐름이 안정됨에 따라 안정된 결과를보다 빠르게 얻는 데에만 기여해야합니다. 그러나 사용자는 리미터가 예상하지 못한 초과 댐핑에 대해 주의를 기울여야 합니다. 이는 댐핑 계수 ssacc 의 입력 값을 줄임으로써 제거 할 수 있습니다 .

두 가지 예는 정상 상태 가속기의 댐핑 메커니즘이 어떻게 작동하는지 보여줍니다.

Steady-State Accelerator Examples

Collapse of Raised Fluid Column

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 물 웅덩이로 구성됩니다. 물을 담은 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 폭 10cm, 높이 3cm의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 떨어지고 충돌 지점에서 멀리 이동 한 다음 탱크 끝에서 반사되는 파도를 생성합니다. 100 초 후에도 반복되는 반사 때문에 여전히 상당한 파동 작용이 있습니다 (그림 1).

새로운 정상 상태 가속기를 계수 ssacc = 1.0 과 함께 사용하면 모든 파동이 빠르게 감쇠되어 거의 평평한 표면이됩니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점도의 작용으로 서서히 감쇠됩니다 (그림 2). 이 예에서 추가 된 댐핑은 특히 인상적입니다.

Figure 1. Column collapse without damping. Times of flow plots are 0.0, 10.0, and 100.0s. Bottom figure is the mean kinetic energy vs. time.
Figure 2. Column collapse with damping coefficient ssacc=1.0 at times of 0.0, 10.0 and 100.0s. Bottom figure is the mean kinetic energy vs. time.

 

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

Figure 3a. Capillary rise in square channel without damping pressures.
Figure 3b. Histories of fluid volume in the two simulations (blue is with damping).

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴된 솔루션을 만듭니다.

뒤쪽 벽에있는 작은 유체 조각은 평형 위치를 초과하는 유체의 오버 슈트에서 발생하며, 이는 점성력으로 인해 정착하는 데 오랜 시간이 필요한 소량의 유체를 벽에 남기고 뒤로 떨어집니다. 이 오버 슈트는 ssacc 가 0이 아닐 때 제거됩니다 .

Structured FAVOR™ grid in cylindrical coordinates

CFD Modeling Techniques | CFD 모델링 기술

Modeling Techniques

CFD를 폭넓게 사용한 적이 있는 사람이라면 누구나 사용할 최적의 수치 기법이 뭔가에 관한 개인적인 취향이나 선입견을 가지고 있습니다.  이 절에서는 저자가 사용한 모델링 기법의 일부와 그들이 다른 기법보다 나은 선택이라고 생각하는 이유에 대해 설명합니다.

Anyone who has used CFD extensively will have his own preferences and prejudices for what are the best numerical methods to use.  The articles in this section explain some of the modeling techniques the author has used and why he believes they are good choices with respect to other methods.

Structured FAVOR™ grid in cylindrical coordinates
Structured FAVOR™ grid in cylindrical coordinates

이 절에서는 FAVOR (Fractional-Area-Volume-Obstacle-Representation ) 법과 VOF (Volume-of-Fluid) 법에 중점을두고 있습니다.  복잡한 장애물 주위의 유체 흐름을 모델링하는 경우 많은 숙련자는 장애물의 형상으로 변형된 계산 격자를 사용하는 것을 선호합니다.  이러한 계산 격자는 일반적으로 물체 적합 격자(body-fitted grids)라고합니다.  대조적으로, FAVOR 법은 요소에 면적 점유율 및 체적 점유율이 할당된 생성이 용이한 사각형 격자가 사용됩니다.  이러한 방식의 관련성에 대해서는 FAVOR와 물체 적합 좌표계 및 No Loss with FAVOR의 절에서 논의되고 있습니다.

These articles center on the FAVOR (Fractional-Area-Volume-Obstacle-Representation) method and the VOF (Volume-of-Fluid) method.  When modeling fluid flow around complex obstacles many practitioners prefer to use computational grids that are deformed to the shape of the obstacles, these are generally referred to as body-fitted grids.  The FAVOR method, in contrast, employees easy to generate rectangular grids whose elements are assigned fractional areas and volumes.  The connection between these approaches is discussed in the articles FAVOR vs. Body-Fitted Coordinates and No Loss with FAVOR.

Structured FAVOR™ Grids

VOF와 FAVOR ™은 모두 표면 기반의 계산 방법과 달리 볼륨 기반입니다. 경계 조건이 규정되는 유체 및 장애물 표면을 직접 설명하는 것이 논리적으로 보이지만 더 나은 방법은 유체 및 고체 영역의 볼륨을 사용하는 것입니다. 볼륨에는 많은 장점이 있습니다. 시간 종속적인 계산 시뮬레이션에서 움직이고 변화하는 유체 표면을 고려하십시오. 이를 자유 표면이라고하며 그 결정은 유체 역학 솔루션의 필수적인 부분이됩니다. 유체 표면은 시간이 지남에 따라 생성 및 파괴 될 수있을뿐만 아니라 유체 볼륨을 완전히 둘러 쌀 수도 있고 그렇지 않을 수도 있습니다.

Both VOF and FAVOR™ are volume-based, as opposed to surface based, computational methods. Even though it seems logical to directly describe fluid and obstacle surfaces on which boundary conditions are to be prescribed, a better method is to use the volumes of fluid and solid regions. Volumes have many advantages. Consider fluid surfaces that move and evolve in time-dependent computational simulations. These are referred to as free surfaces and their determination becomes an integral part of a fluid dynamic solution. Fluid surfaces can not only be created and destroyed over time, but may or may not completely enclose fluid masses.

간단한 예로는 호스를 빠져나가는 물이 있다고 가정하면 물의 표면적은 바깥쪽으로 흐르면서 커지고 있습니다. 만약 그것이 방울로 분해된다면, 서로 연결되지 않은 여러 표면이 있게 됩니다. 두 개 이상의 낙하물이 충돌하고 이들의 개별 표면이 더 이상 존재하지 않는 경우, 결합 낙하물을 둘러싼 단일 표면으로 대체됩니다. 또는 단순한 유체 강하가 임의로 변형되어 표면적이 변경될 수 있지만 유체가 압축할 수 없을 때는 부피에 변동이 없습니다. 이러한 종류의 행동은 개별 표면의 규격을 문제가 되게합니다.

A simple example is water exiting a hose. The surface area of the water is growing as it flows outward. If it breaks up into drops there are then multiple surfaces that are not connected to one another. Should two or more drops collide and coalesce their individual surfaces no longer exist being replaced by a single surface surrounding the combined drops. Or a simple fluid drop can arbitrarily deform resulting in a changing surface area, but its volume is unchanged when the fluid is incompressible. This sort of behavior makes the specification of individual surfaces problematic.

 한편, 유체나 고형물의 부피를 정의하는 것은 질량의 보존(그리고 불변의 부피 형태의 비압축성)이 유지하기가 더 쉽기 때문에 이치에 맞습니다. 유체 용적은 그들이 원하는 대로 결합하고 분리될 수 있으며, 결과 표면을 쉽게 평가할 수 있습니다. Volume methods에서 표면의 위치는 부피 영역이 끝나는 위치에 있습니다.

On the other hand, defining volumes of fluids or solids makes sense because conservation of mass (and incompressibility in the form of unchanging volumes) is easier to maintain. Fluid volumes may coalesce and breakup as they will, allowing easy evaluation of their resulting surfaces. In volume methods the location of a surface is wherever the volume region ends. 

Volume methods은 강력한 numerical 도구입니다. VOF 및 FAVOR™ 기법에 이러한 기법을 구현하는 방법은 첨부된 기사에 자세히 설명되어 있다.

Volume methods are powerful numerical tools. How they are implemented in the VOF and FAVOR™ techniques is described in detail in the accompanying articles.

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Figure 5. 3D view of scour under square tide conditions (every 300 s).

조수 흐름이 있는 복잡한 교각에서 scour CFD 시뮬레이션

CFD simulation of local scour in complex piers under tidal flow

J. A. Vasquez1,2, and B. W. Walsh1,3
1 Northwest Hydraulic Consultants, 30 Gostick Place, North Vancouver, BC, Canada,
V7M 3G3; PH (604) 980-6011; FAX (604) 980-9264;
2 email: JVasquez@nhc-van.com
3 email: BWalsh@nhc-van.com

ABSTRACT

우리는 상용 CFD (Computational Fluid Dynamics) 모델 Flow-3D를 사용하여 조수 흐름 아래의 복잡한 교각에서 지역 scour의 질적 시뮬레이션을 보고합니다. 이 모델은 대형 piles 캡과 10 개의 원통형 piles로 구성된 복잡한 부두에서 scour 개발의 초기 단계를 계산하는 데 적용되었습니다. Flow-3D는 piles 사이에서 예상되는 상호 작용을 정확하게 재현 할 수있었습니다. CFD 모델은 또한 조류 역류 하에서 3- piles 그룹의 scour 시뮬레이션을 위해 적용되었습니다. 그 결과는 문헌에보고 된 측정치와 질적으로 일치하여 Flow-3D가 다양한 흐름 조건에서 복잡한 교각을위한 유압 설계 도구로서의 잠재력을 가지고 있음을 보여줍니다.

INTRODUCTION

캐나다 밴쿠버에 있는 프레이저 강과 피트 강 모두에서 현재 여러 다리가 건설 중이거나 최종 설계 단계에 있습니다. 이 다리는 상대적으로 크고 300m에서 1000m 사이의 수로 폭에 걸쳐 있으며 강바닥에 위치한 여러 개의 큰 교각에서 지원됩니다.

일반적으로 케이슨 또는 코퍼 댐을 사용하여 지어진 말뚝 위에 세워진 거대한 단단한 교각이 있는 오래된 교량과 달리, 새로운 교각은 일반적으로 떠 다니는 바지선에서 원통형 말뚝을 땅으로 밀어내어 지어집니다.

말뚝 상단의 수평 말뚝 캡은 수면에 위치하며 상부 구조에서 말뚝 기초까지 힘을 전달하고 선박 충돌을 방지하는 데 사용됩니다. piles 캡의 높이는 하단 및 상단 높이가 최저 및 최고 수위를 덮도록 설계되어 모든 흐름 조건에서 볼 수 있습니다.

piles 캡의 기하학적 구조와 piles의 레이아웃은 다소 복잡 할 수 있으며, 반드시 로컬 scour 예측 변수에서 가정 한 고전적인 교각 모양을 따르는 것은 아닙니다. 그림 1은 6 각형 패턴으로 배열된 두 그룹의 piles 위에 아령 모양의 piles 캡이 있는 프레이저 강의 교각 부두의 예를 보여줍니다.

지속 가능한 환경을 위한 물 공학 (그림 2) 두 개의 다른 직경으로 만들어진 10 개의 piles 위에 둥근 끝이 있는 직사각형 piles 캡으로 만들어진 피트 강의 교각 부두. 복잡한 교각에서 scour을 계산하기위한 일부 분석 공식이 존재합니다.

예를 들어, HEC-18 매뉴얼 (Richardson and Davis 2001)은 교각 스템, piles 캡 및 piles 그룹에 의해 생성된 세 가지 scour 구성 요소를 추가하여 총 scour 깊이를 계산합니다.

말뚝 그룹은 폭이 그룹에 있는 말뚝의 투영된 폭과 동일한 솔리드 말뚝으로 대체되고 말뚝 간격 및 정렬된 행 수의 효과에 대한 수정 계수를 곱합니다. Ataie-Ashtiani와 Beheshti (2006)는 지역 scour (piles 캡이 없는)에서 piles 그룹화의 효과를 연구했습니다.

그들의 실험 결과는 나란히 배열된 매우 밀접하게 배치된 말뚝의 경우 scour 깊이가 50 % 증가할 수 있음을 보여주었습니다. 탠덤 배열의 경우 전면 piles의 scour이 증가하고 후면 차폐 piles의 경우 감소합니다.

어쨌든 말뚝 사이의 간격 S가 말뚝 직경 D의 4 배 (S/D> 4)보다 크면 scour 증폭 효과가 사라지는 경향이 있습니다. 그러나 이러한 공식은 piles이 격자 모양의 레이아웃으로 균일하게 배치되어 있다고 가정합니다.

이는 그림 1과 2에 표시된 교각에서는 분명히 해당되지 않습니다. 문제를 더욱 복잡하게 하기 위해 프레이저 강과 특히 피트 강이 대상입니다.

Figure 1. Example of bridge pier with dumbbell-shaped pile cap and hexagonal pile layout, showing also scour hole measured in a physical model.

교각의 조석 scour은 단방향 scour과 동일한 세부 사항으로 연구되지 않았지만 실제로 주제에 대한 몇 가지 주목할 만한 연구가 있습니다.

Escarameia (1998)는 흐름 방향, 조수주기 기간, 수심, 교각 모양 및 퇴적물 크기에 대한 역전의 영향을 단일 원형 및 직사각형 교각의 국부 scour에 미치는 영향을 평가하여 조류 흐름 조건 하에서 국부 scour의 실험적 조사를 수행했습니다. 예상대로 퇴적물 크기는 국부 scour 깊이에 영향을 미치지 않았습니다.

조수 조건에서 최대 수세 깊이는 베드 폼이 존재하지 않는 경우 일방향 흐름에 대해 항상 평형 scour 깊이 아래로 유지되었습니다 (맑은 물 수세미). 직사각형 교각의 scour 깊이는 정사각형 교각보다 10 ~ 14 % 더 작은 것으로 나타났습니다. 정사각형 교각에서는 조수주기 동안 교각의 상류와 하류에 생성된 scour 구멍이 병합되는데 교각이 직사각형 인 경우에는 발생하지 않습니다.

May and Escarameia (2002)는 정사각형 및 정현파 조수를 사용하여 조수 조건 하에서 지역 scour의 시간적 진화를 연구했습니다. 그들은 맑은 물 scour에서 조수 흐름의 수력 학적 구조에서의 평형 scour이 일방향 유동을 사용하는 scour보다 훨씬 적을 수 있다고 결론지었습니다. 그러나 라이브 베드 scour에서 평형 깊이는 각 조수주기에서 scour 구멍이 더 빠르게 발생하고 구조물 주변에 모래 언덕이 형성되어 단방향 흐름 값에 가까울 수 있습니다.

Margheritini et al. (2006) 은 퇴적물 이동 (살상 조건)과 함께 단방향 및 조수 흐름에서 대 구경 말뚝 주변의 국부 scour 실험을 수행했습니다. 두 경우의 최종 평형 scour은 비슷했습니다. 조수 흐름의 scour 구멍은 대칭이며 원형 모양이고 일방향 scour 구멍보다 부피가 더 큽니다.

현재 물리적 모델링은 사용 가능한 scour 방정식의 가정을 따르지 않는 복잡한 모양을 가진 교각에서 로컬 scour를 평가하기위한 유일한 실용적인 엔지니어링 도구로 보입니다.

3 차원 (3D) 수치 모델링은 단일 원통형 말뚝에서 국부 scour을 재현하기 위해 성공적으로 적용되었지만, 복잡한 교각의 모델 scour이나 조류 역류 하의 말뚝 그룹에는 적용되지 않았습니다. 이 논문의 목적은 상업적으로 이용 가능한 3D 전산 유체 역학 (CFD) 모델을 사용하여 실제 복잡한 부두와 조수 역전 하에서 이상적인 3 파일 그룹에서 지역 scour의 예비 정성 결과를 제시하는 것입니다.

NUMERICAL MODELING OF PIER SCOUR

Olsen과 Melaan (1993)의 초기 작업 이후 여러 3D 수치 모델이 단일 원통형 부두에서 국소 scour을 모델링하는 데 성공적으로 적용되었습니다 (Roulund et al. 2005의 검토 참조). 그러나 복잡한 교각에서 3D scour 시뮬레이션은 거의 시도되지 않았습니다. 그 이유는 두 가지입니다.

대부분의 모델은 복잡한 교각의 형상을 수용하기 어려운 구조화된 곡선 형 경계 맞춤 그리드를 기반으로 합니다. 또 다른 중요한 제한 사항은 계산 시간이며, 이는 실제 모델에서 로컬 scour 테스트를 수행하는 데 필요한 시간보다 훨씬 큽니다.

그럼에도 불구하고 수치 모델은 귀중한 정보를 제공할 수 있으며 컴퓨터 속도가 더욱 향상될 것으로 예상되는 미래에 큰 잠재력을 가지고 있습니다. 여기에 사용된 CFD 모델은 뉴 멕시코 주 산타페의 Flow Science에서 개발한 Flow-3D입니다. Flow-3D는 유압 엔지니어링 애플리케이션을 위한 특수 모듈이 포함된 상용 CFD 패키지입니다.

구조화된 직교 그리드를 사용함에도 불구하고, 직사각형 계산 셀이 장애물에 의해 부분적으로 차단될 수 있도록 하는 FAVOR (fractional area/volume method)를 적용하여 복잡한 형상을 모델링 할 수 있습니다. 날카로운 자유 표면 (예: 수압 점프, 공기 중 자유 제트)은 VOF (Volume-of-Fluid) 방법으로 모델링 됩니다.

Flow-3D는 Brethour (2001)에 의해 자세히 설명된 대로 지역 scour을 모델링하는 고유 한 기능도 가지고 있습니다. 이러한 기능은 그림 2에 설명되어 있으며, 모델이 맑은 물 조건에서 복잡한 부두의 형상과 scour 개발의 초기 단계를 재현할 수 있는 방법을 보여줍니다.

그림 2에 표시된 복잡한 부두는 길이 51.5m, 너비 12.5m, 두께 6.7m의 끝이 둥근 파일 캡을 포함합니다. 파일 캡 아래에는 세 개의 개별 파일 그룹이 있습니다. 직경이 2.4m 인 3 개의 파일로 구성된 두 그룹 (U & D)은 파일 캡의 상류 및 하류 끝에 위치하며, 4 개의 작은 1.8m 파일 (C)은 중앙 주위에 있습니다.

파일 캡의 바닥은 침대 위 약 13m입니다. 수치 메쉬는 길이 115m, 너비 50m, 높이 22m였으며 균일 한 셀 크기는 0.5m (46,176 셀)입니다. 시뮬레이션은 수심 15.8m, 일정한 유속 1.5m/s, 퇴적물 크기 0.35mm에 대해 수행되었습니다. Flow-3D는 지역 scour에 대한 파일 간섭의 영향을 평가하는 데 사용되었습니다. 과도한 계산 시간이 필요하여 장기 시뮬레이션을 수행할 수 없었기 때문에 처음 1 시간 동안 scour 시작 만 시뮬레이션 했습니다.

말뚝 사이의 상대적 간격 S/D를 고려할 때, 그림 2에 표시된 Flow3D 결과는 Ataie-Ashtiani와 Beheshti (2006)가보고 한 말뚝 간의 상호 작용에 관한 실험적 관찰과 매우 잘 일치합니다. 결과는 부두 중심 주변의 C 말뚝이 2 쌍처럼 나란히 행동한다는 것을 시사합니다.

왼쪽과 오른짝이었는 두 쌍의 말뚝 사이에 간섭이 없는 것으로 보입니다 (C1-C2 및 C3-C4, S/D = 4); 파일 C1 (C2)은 scour (S/D = 2.3)으로부터 파일 C3 (C4)를 보호하는 것처럼 보입니다.

그림 2는 또한 파일 캡의 양쪽 끝에 있는 3 개 파일 그룹 U 및 D의 수세공 구멍이 이미 병합되어 3 개 파일 간의 강력한 상호 작용을 시사합니다 (S/D = 0.9). 또한 3- 파일 그룹 U는 더 작은 파일 C를 보호하지 않는 것 같습니다 (S/D> 5).

Figure 2. Initial scour development computed by Flow-3D in complex pier.

최대 평형 scour 깊이를 계산할 수는 없었지만, 복잡한 부두에서 말뚝과 말뚝 캡 사이의 상호 작용에 대해 얻은 통찰력은 scour 과정과 scour 대책의 잠재적 설계를 이해하는 데 여전히 중요합니다.

MODELING TIDAL SCOUR OF PILE GROUP

지속 가능한 환경을위한 물 공학 말뚝 그룹의 조수 조사 모델링 불안정한 조수 흐름의 잠재적 영향을 평가하기 위해 Flow-3D를 사용한 정성 시뮬레이션이 수행되었습니다.

전체 교각을 시뮬레이션하는 것이 불가능했기 때문에 이상화된 3- piles 그룹 (piles 캡 없음)이 거친 메시를 사용하여 재현되었습니다. 원통형 piles의 직경은 최소 간격 S / D = 0.95로 삼각형 패턴으로 배열 된 2m였습니다. 메쉬 셀 크기는 0.5m입니다.

이러한 메쉬 크기는 piles 주변 흐름의 모든 3D 세부 사항을 해결하기에 충분한 해상도를 제공하지 않지만 계산 시간을 관리 가능한 수준으로 유지하는 데 필요한 것으로 간주되었습니다.

따라서 이러한 예비 시뮬레이션은 정 성적이며 Flow-3D의 기능을 대략적으로 평가하기위한 탐색 적 특성을 가지고 있습니다. 수로는 길이 40m, 너비 16m, 높이 6.5m였습니다. 입구 / 출구의 첫 번째와 마지막 10m는 난류의 완전한 발달을 허용하기 위해 단단한 거친 베드로 만들어졌습니다.

3 개의 말뚝이있는 수로의 중앙 부분은 0.75mm의 모래로 만들어졌습니다. 수심은 2.5m였습니다. 유속의 조석 반전은 정사각형 및 정현파 조석을 사용하여 시뮬레이션되었습니다 (그림 3). 제곱 조는 Escarameia (1998)와 Margheritini et al. (2006). 단방향 흐름의 경우 조수 피크 (2m / s)를 사용했습니다.

Figure 3. idealized tidal velocity used for numerical simulations.

900 초에서 채널 중심선을 따라 세로로 된 베드 프로piles은 그림 4에서 단방향 흐름과 사인 곡선에 대해 보여집니다. 그림 5는 제곱 조수 시나리오에 대해 300 초마다 일련의 3D 이미지를 보여 주지만 화살표는 흐름 방향을 나타냅니다. 마지막으로, 세 가지 흐름 시나리오에 대한 scour의 시간적 진화가 그림 6에 나와 있습니다.

Figure 4. Computed centerline bed profiles after 900 s for unidirectional flow (left) and sinusoidal tide (right).

Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 6. Temporal evolution of maximum scour depth under steady and tidal flow conditions (grid resolution is 0.5 m)
Figure 6. Temporal evolution of maximum scour depth under steady and tidal
flow conditions (grid resolution is 0.5 m)

단방향 흐름에서 scour는 상류에서 발생하고 퇴적물은 더미 뒤에 축적됩니다 (그림 4). 조수 조건에서 흐름 반전은 이전 조수주기에서 개발 된 scour hole을 일시적으로 채웁니다. scour의 계산 된 시간적 진화 (그림 6)는 Margheritini et al.의 실험과 유사합니다(2006). 조석 수조는 처음에 증가하지만 흐름이 역전되면 약간 감소하여 다음주기에 다시 자라납니다.

Flow-3D는 Escarameia (1998)와 일치하여 시뮬레이션의 맑은 물 조건에 대해 조석 정찰이 단방향 정찰보다 약간 낮다고 예측했습니다. 그러나 사용된 거친 0.5m 메시 해상도로 인해 정확한 scour 감소 크기를 정확하게 해결할 수 없습니다. 또한, 모델은 평형 scour 깊이를 달성 할만큼 충분히 오래 실행되지 않았습니다.

CONCLUSION

Flow-3D는 구조화된 경계 맞춤 그리드의 일반적인 제한없이 복잡한 구조에서 로컬 scour을 모델링 할 수 있는 기능을 갖춘 최초의 CFD 상용 모델 일 것입니다.

큰 piles 캡과 여러 개의 piles로 구성된 복잡한 부두에 적용했을 때 Flow-3D는 piles 간의 상호 작용을 정확하게 예측할 수 있었으며 실제 엔지니어링 응용 프로그램을 위한 설계 도구로서의 잠재력을 보여주었습니다.

Flow-3D를 사용하여 맑은 물의 조수 흐름 하에서 이상적인 3- piles 그룹의 정 성적 시뮬레이션은 동일한 최고 속도의 단방향 흐름에 비해 흐름 반전이 있는 조수 조건에서 scour 깊이가 감소함을 보여주었습니다.

이러한 수치 결과는 실험 데이터와 일치합니다. 그러나 모델을 정량적으로 검증하려면 더 미세한 그리드를 사용하는 추가 연구가 필요합니다. 현재 Flow-3D 및 일반적으로 CFD 모델의 주요 실제 제한은 계산 시간입니다.

구조를 모델링하는 데 매우 큰 그리드가 필요한 경우 장기 평형 조사를 계산하려면 물리적 모델을 실행하는 데 필요한 것보다 훨씬 더 많은 계산 시간이 필요할 수 있습니다.

논문 원본 링크 : CFD simulation of local scour in complex piers under tidal flow

기타 참고 자료 : https://flow3d.co.kr/scouring-knowledge/

REFERENCES

Ataie-Ashtiani, B. and Beheshti, A.A. (2006). “Experimental investigation of clearwater local scour at pile groups”. J. Hyd. Eng., ASCE, 132(10), 1100-1104.
Brethour, J. M. (2001). Transient 3-D model for lifting, transporting and depositing
solid material. 2001 International Symposium on Environmental Hydraulics,
Tempe, Arizona (http://flow3d.info/pdfs/tp/wat_env_tp/FloSci-Bib28-01.pdf).
Escarameia, M. (1998). Laboratory investigation of scour around large structures in
tidal waters. Conf. Basics of Sediment Transport and Scouring. HR
Wallingford (http://kfki.baw.de/conferences/ICHE/1998-Cottbus/55.pdf).
May, R.W.P. and Escarameia, M. (2002). Local scour around structures in tidal flows.
First International Conference on Scour Foundations, Texas A&M University.
Margheritini, L., Martinelli, L., Lamberti, A. and Frigaard, P. (2006). Erosione
indotta da onde e correnti di marea attorno a pali di grande diametro. XXX
Convegni di Idraulica e Construzioni Idrauliche, Rome, September 2006
(http://www.idra2006.it/referee/files/L356.pdf).

[FLOW-3D 이론] 1. 개요

  1. 개요

FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 물리 흐름 문제에 대해 과도적 3차원 해결책을 얻습니다. 다양한 물리적 및 수치 옵션을 통해 사용자는 다양한 유체 흐름 및 열 전달 현상 분석을 위해 FLOW-3D를 적용할 수 있습니다.

유체 운동은 비선형, 과도, 2차 미분 방정식으로 설명됩니다. 이러한 방정식을 풀기 위해 유체 운동 방정식을 사용해야합니다. 이러한 방법을 개발하는 과학을 전산 유체 역학이라고 합니다. 이 방정식의 수치해는 대수적 표현으로 다양한 항을 근사화 합니다. 그런 다음 결과 방정식을 해결하여 원래 문제에 대한 대략적인 해결책을 제시합니다. 이 과정을 시뮬레이션이라고 합니다. FLOW-3D에서 사용할 수 있는 수치해석 알고리즘의 개요는 운동 방정식에 대한 섹션에 나옵니다.

일반적으로 수치 모델은 계산 Mesh 또는 그리드로 시작합니다. 이것은 여러 개의 서로 연결된 요소 또는 셀로 구성됩니다. 이러한 셀은 물리적 공간을 해당 볼륨과 관련된 여러 노드가 있는 작은 볼륨으로 세분화합니다. 노드는 압력, 온도 및 속도와 같은 미지수의 값을 저장하는데 사용됩니다. Mesh는 사실상 원래의 물리적 공간을 대체하는 숫자 공간입니다. 또한 별도의 위치에서 흐름 파라미터를 정의하고, 경계 조건을 설정하고, 유체 운동 방정식의 수치 근사치를 개발하는 방법을 제공합니다. FLOW-3D 접근 방식은 흐름 영역을 직사각형 셀의 격자로 세분하는 것입니다. 이 격자는 brick elements라고도 합니다.

계산 Mesh는 물리적 공간을 효과적으로 이산화 시킵니다. 각 유체 매개 변수는 불연속 지점에서 값 배열에 의해 Mesh로 표시됩니다. 실제 물리적 파라미터는 공간에서 연속적으로 변하기 때문에 노드 사이의 간격이 미세한 Mesh는 더 거친 Mesh보다 현실을 더욱 잘 표현해줍니다. 그런 다음 수치 근사치의 기본 속성에 도달합니다. 그리드 간격이 줄어들면 유효한 모든 유효한 수치 근사가 원래 방정식에 접근합니다. 근사치가 이 조건을 만족하지 않으면 올바르지 않은 것으로 간주해야 합니다.

동일한 물리적 공간에 대해 격자 간격을 줄이거나 Mesh를 조정하면 더 많은 요소와 노드가 생겨 수치 모델의 크기가 커집니다. 그러나 유체 흐름 및 열 전달의 실제 현실과는 별도로, 시뮬레이션 엔지니어들이 적절한 크기의 Mesh를 선택하도록 하는것과 밀접한 관계에 있는 설계 주기, 컴퓨터 하드웨어 및 마감일의 현실적인 문제도 있습니다. 이러한 제약 조건을 만족시키는 것과 사용자가 정확한 결과를 얻는 것 사이에서 타협점을 찾는 것은, CFD 모델 개발 못지않은 중요한 균형 잡힌 행위입니다.

직사각형 그리드는 규칙적이거나 구조적인 특성 때문에 생성 및 저장이 매우 쉽습니다. 균일하지 않은 그리드 간격은 복잡한 흐름 도메인을 매칭할 때 유연성을 더합니다. 연산 셀은 세 개의 지수를 사용하여 연속적으로 번호가 매겨집니다. 즉, x 방향은 i, y 방향은 j, z 방향은 k입니다. 이 방법으로 3차원 Mesh의 각 셀은 물리적 공간의 점의 좌표와 유사한 고유한 주소(i, j, k)로 식별할 수 있습니다.

구조화된 직사각형 그리드는 수치적 방법의 개발의 상대적 용이성, 원래의 물리적 문제와의 관계에 대한 후자의 투명성, 그리고 마지막으로 수치적 해결의 정확성과 안정성의 추가적인 이점을 가지고 있습니다. 유한 차분법과 유한 체적법에 기초한 가장 오래된 수치 알고리즘은 원래 이러한 Mesh에서 개발되었습니다. 이것은 FLOW-3D에서 수치적 접근방식의 핵심을 형성합니다. 유한차분법은 테일러 확장의 특성과 파생된 정의의 직접적인 적용에 기초합니다. 미분 방정식에 대한 수치적 해결책을 얻기 위해 적용된 방법 중 가장 오래된 방법이며, 첫 번째 적용은 1768년 오일러에 의해 개발된 것으로 간주됩니다. 유한체적법은 유체 운동을 위한 보존법의 일체형태에서 직접 파생되므로 자연적으로 보존 특성을 보유합니다.

FLOW-3D는 일반적인 유체 방정식의 다른 제한 사례에 해당하는 여러 모드에서 작동할 수 있습니다. 예를 들어, 하나의 모드는 압축 가능한 흐름을 위한 것이고 다른 하나는 압축할 수 없는 흐름 상황을 위한 것입니다. 후자의 경우 유체의 밀도와 에너지가 일정하다고 가정할 수 있으므로 계산할 필요가 없습니다. 또한 1유체 모드와 2유체 모드가 있습니다. 자유 표면은 단일 유체 비압축 모드에 포함될 수 있습니다. 이러한 작동 모드는 동작 방정식에 대한 다양한 선택에 해당합니다.

자유 표면은 FLOW-3D로 수행된 많은 시뮬레이션에서 존재합니다. 유량 매개변수와 재료 특성(밀도, 속도, 압력 등)이 불연속성을 경험하기 때문에 모든 계산 환경에서 자유 표면을 모델링하는 것은 어렵습니다. FLOW-3D에서는, 액체에 인접한 가스의 관성이 무시되고, 가스에 의해 점유되는 부피는 균일한 압력과 온도로만 표현되는 빈 공간, 질량의 공백으로 대체됩니다. 대부분의 경우 가스 모션의 세부 사항은 훨씬 무거운 액체의 움직임에 중요하지 않기 때문에 이 접근 방식은 계산 노력을 줄이는 이점이 있습니다. 자유 표면은 액체의 외부 경계 중 하나가 됩니다. 자유 표면의 경계 조건에 대한 적절한 정의는 자유 표면 역학을 정확하게 포착하기 위해 중요합니다.

VOF(Volume of Fluid) 방법은 이러한 목적으로 FLOW-3D에 사용됩니다. 유체 함수의 볼륨 정의, VOF 전송 방정식 해결 방법, 자유 표면의 경계 조건 설정 등 세 가지 주요 구성요소로 구성됩니다.

일부 물리 및 수치 모델은 Flow Science의 기술 노트: http://users.flow3d.com/technical-notes/ 에 자세히 설명되어 있으며, 여기에는 예제도 포함되어 있습니다.

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Modeling Methods

An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

자유 표면 모델링 방법

기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

  1. A scheme is needed to describe the shape and location of a surface,
  2. An algorithm is required to evolve the shape and location with time, and
  3. Free-surface boundary conditions must be applied at the surface.

다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

  1. 표면의 형상과 위치를 설명하는 방식
  2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
  3. 표면에 적용할 자유 표면 경계 조건

Lagrangian Grid Methods

Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

라그랑주 격자 법

개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

Surface Height Method

Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

표면 높이 법

낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

Marker-and-Cell (MAC) Method

The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

MAC 방법

시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

Surface Marker Method

One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

표면 마커 법

마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

Volume-of-Fluid (VOF) Method

The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

VOF (Volume-of-Fluid) 법

마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

Variable-Density Approximation to the VOF Method

One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

VOF 법의 가변 밀도 근사

VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

Summary

A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

References

1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조

  • 금형의 모션 제어
  • 최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링
  • 정확한 가스 고립 및 기공 예측

Workspace Overview

경동주조(Tilt Pour Casting) Workspace는 엔지니어가 FLOW-3D  CAST로 경동주조(Tilt Pour Casting)을 성공적으로 모델링 할 수 있도록 설계된 직관적인 모델링 환경입니다 . 작업 공간에는 프로세스별 특정 다이 및 재료 유형이 포함되어 있으며, 정확한 기계 기능에 맞게 회전 동작을 쉽게 정의 할 수 있습니다. 

기포 결함의 완전한 분석을 위해 충진 분석에 벤트 및 배압이 포함되어 있으며, 다이사이클링 및 최신 응고 모델은 작업 공간의 하위 프로세스 아키텍처를 통해 충진시 매끄럽게 연결됩니다. Tilt Pour Casting Workspace는 단순하지만 다양한 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

Tilt Pour Simulation | FLOW-3D CAST
Tilt Pour Casting | FLOW-3D CAST
8-Cavity Tilt Pour | FLOW-3D CAST v5.1

프로세스 모델링

  • 틸트 주입
  • 역 틸트 주입

유연한 격자 생성

  • FAVOR ™ 단순 격자 생성 도구
  • 멀티 블록
  • Conforming mesh

금형 온도 관리

  • 다이 사이클링
  • 열 포화
  • 완전 열전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 열 계수
  • 기계적 특성 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

금형 동작 제어

  • 6 개의 회전축
  • 회전 속도를위한 테이블 형식 입력

결함 예측

  • 매크로 및 미세 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

다이나믹 시뮬레이션 제어

  • 모션 제어를위한 이벤트 프로브 기반 트리거

완벽한 분석 패키지

  • 다중 뷰포트가있는 애니메이션-3D, 2D, 히스토리 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 병렬 시뮬레이션 결과 비교
  • 용융 온도, 고체 분율 측정 용 센서
  • 입자 추적기
  • 일괄 배치 처리
  • 보고서 생성

Coating field – Slot Die Coating (슬롯다이 코팅)

Slot Die Coating (슬롯다이 코팅)

  • 응용
    – 배터리 전극
    – 광학 코팅
    – 전도성 필름
  • 공정 파라미터
    – 유량
    – 롤 속도
    – 기질 속도
    – 유동학
  • 품질 관리
    – 코팅 두께
    – 결함 최소화

슬롯다이 모델링

  • 세밀한 형상
  • 큰 종횡비
  • 간단한 격자 설정

슬롯다이 내부


슬롯다이 외부


슬롯다이 비교

  • 진공 보조 장치가 없는 슬롯 코팅
  • 실험 결과와 매우 일치

Coating field – Roll Coating

Roll Coating (롤 코팅)

  • 응용
    – 접착제
    – 밀폐제
    – 섬유 산업
  • 공정 파라미터
    – 롤 속도
    – 기질 속도
    – 유동학
  • 품질 관리
    – 코팅 두께
    – 결함 최소화

  • 손쉬운 설정의 시뮬레이션
    – STL 가져 오기 또는 기본 요소로 생성
    – 간단한 직사각형 격자

롤의 속도가 코팅에 미치는 영향

  • 전형적으로 유입구에 코팅액이 적당하게 있는 상황
  • 롤의 회전이 역으로 작동하는 상황
  • 유입구에 코팅액이 적게 들어오는 상황

공기가 유입된 롤 코팅


Low Pressure Die Casting Workspace (저압 주조)

저압 주조의 장점

  • 높은 수준의 자동화로 다수확
  • 그물 모양의 주조로 인한 가공비 절감
  • 재료 보존으로 인한 생산 향상 및 불량률 감소

저압 주조의 workflow


재질 및 구성요소 선택

  • 모든 금속 및 금형의 성질은 사용자가 정의할 수 있음
  • 재질 데이터베이스가 준비됨

CAD → MESH

  • FLOW-3D CAST는 어떤 형상일지라도 쉽고 자동적으로 격자를 생성해줌
  • FAVOR 기능
  • 격자 속성의 조정없이도 새로운 형상을 쉽고 빠르게 업로드함

응고 모델

  • FLOW-3D CAST는 두 가지 모델로 다공성을 식별할 수 있음
    – 단순화된 응고 수축
    – 유체의 흐름이 없음
    – 액체 영역의 온도를 기준
    – 인터덴드리틱 옵션
    – 빠른 결과에 사용
    – 주요 수축 모델
    – 유체 및 열의 흐름을 기준
    – 재용해로 인한 부피 팽창
    – 매우 정확한 최종 검증

Output 선택 & 후처리 과정

  • 정확한 출력 변수를 정의
  • FlowSight를 이용하여 고품질의 시각적 데이터를 쉽게 렌더링

Permanent Mold Workspace | FLOW-3D CAST

영구 금형 주조의 장점

  • 높은 생산률에 적합
  • 모래에 비해 복잡한 금형에 용이하고 표면 조도 및 치수 정확도가 높음
  • 재료 보존으로 인한 수율 향상 및 금형 관련 결함 발생이 감소

영구 금형의 workflow


재료와 구성요소의 선택

  • 모든 금속 & 주형의 재질은 사용자로부터 제작될 수 있음.
  • 재질의 데이터는 갖추어짐.

CAD → MESH

  • FLOW-3D CAST는 사용자가 만든 stl파일에 알맞게 쉽고 자동으로 격자를 생성해줌.
  • FAVOR = Fractional Area-Volume Obstacle Representation
  • 격자의 성질의 조정없이 빠르고 쉽게 새로운 모형을 업로드

응고 모델


출력 선택 & 후처리 과정

  • 정확한 출력 변수를 정의
  • FlowSight로 고품질의 시각적 데이터를 쉽게 렌더링

Particle Model(입자모델)

Lagrangian particle model(라그랑지안 입자 모델)

라그랑지안 입자 모델(Lagrangian particle model)은 서브 그리드(Sub-grid) 모델로 계산 셀보다 작은 속성과 크기가 다른 구형(Spherical) 입자의 움직임을 추적할 수 있는 계산 모델입니다.

해석 사례

  • Aeration tank modelling(산기 탱크 모델링)
  • Bubble diffuser system(버블디퓨저 시스템)
  • Drug delivery etc.

Particle options

  • Marker particles – Massless
  • Mass particles – Solid spheres
  • Fluid particles – Droplets of fluid
  • Gas particles – Bubbles of gas

가정 및 한계(Assumptions & Limitations)

  • 입자크기(Particle size) << 격자크기(Mesh size)
  • 입자간의 상호작용을 고려하지 않습니다.
  • 입자 갯수에 제한

Marker Particles(마커 입자)

마커 입자(Marker particles)는 흐름(Flow)에 영향을 미치지 않고 주변 유체의 속도에 따라 움직이지 않는 질량이 없는 상태의 입자입니다. 그러므로, 유체 분자의 시각화로 간주될 수 있습니다.

계산영역에 마커 입자(Marker particles)를 적용함으로써, 개별 유체 분자가 따르는 경로(Paths)를 시각화할 수 있습니다.

Mass Particles(질량 입자)

질량 입자(Mass particles)는 특정 직경과 밀도를 가진 고체 구체(Spheres)로 고려됩니다. 따라서, 질량 입자(Mass particles)는 계산 영역에서 현탁된 고체(Suspended solids)의 운동을 모델링하기 위해 사용됩니다.

Fluid particles(유체 입자)

유체 입자(Fluid particles)는 유체#1의 액적(Droplets of Fluid#1)으로 생각할 수 있습니다. 유체 입자(Fluid particles)는 유체 스프레이(Fluid sprays), 적층 제조(additive manufacturing), 용접(Welding) 등과 같은 계산 셀보다 작은 모델링 유체 부피를 포함하는 수많은 시뮬레이션에 사용될 수 있습니다.

Gas particles(가스 입자)

가스 입자(Gas particles)는 가스의 구형(Spherical) 버블과 유체, 공극(Void) 및 고체 물체와의 상호 작용을 시뮬레이션하는데 사용됩니다.

Overview of Free Surface Modeling Setup

VOF(Volume Of Fluid) : FLOW-3D에서 액체와 기체사이의 계면을 추적하는 방법

  1. 위치한 계면
  2. 격자 내에서 Sharp 인터페이스로 계면을 추적
  3. 자유표면(Free surface)에 경계 조건을 적용

Fluid 2 vs. Void region

  • Fluid 2 : 해당 유체(유체 2)에 대한 지배방정식 계산
  • Void region : 비어있는 영역(Void region)은 자유 표면에서 경계 조건을 제공하는 균일한 특성의 영역

FAVOR(Fractional Area/Volume Representation)

  • FLOW-3D의 검사체적(Control Volume)은 형상을 오버레이(Overlay)하는 좌표 방향의 면(faces)이 있는 직사각형 블록으로 정의됨
  • 6개의 면적분율과 부피분율을 계산하여 각 셀(Cells)의 평면으로 형상을 근사화
  • 격자 해상도는 형상 표현 방법에 영향을 줄 수 있음

FLOW-3D 교육 안내

education_banner

HIGH-END TOP CLASS
FLOW-3D CFD EDUCATION


(주)에스티아이씨앤디에서는 FLOW-3D 제품군의 사용자 교육을 지원하고 있습니다. 홈페이지에 안내되어 있는 교육 일정과 교육신청 절차를 참고하시어 교육을 받으실 수 있습니다.

  • 교육 과정명 : 수리 분야

댐, 하천의 여수로, 수문 등 구조물 설계 및 방류, 월류 등 흐름 검토를 하기 위한 유동 해석 방법을 소개하는 교육 과정입니다. 유입 조건(수위, 유량 등)과 유출 조건에 따른 방류량 및 유속, 압력 분포 등 유체의 흐름을 검토를 할 수 있도록 관련 예제를 통해 적절한 기능을 습득하실 수 있습니다.

  • 교육 과정명 : 수처리 분야

정수처리 및 하수처리 공정에서 각 시설물들의 특성에 맞는 최적 운영조건 검토 및 설계 검토을 위한 유동해석 방법을 소개하는 교육 과정입니다. 취수부터 시작하여 혼화지, 분배수로, 응집지, 침전지, 여과지, 정수지, 협기조, 호기조, 소독조 등 각 공정별 유동 특성을 검토하기 위한 해석 모델을 설정하는 방법에 대해 알려드립니다.

  • 교육 과정명 : 주조 분야

주조 분야 사용자들이 쉽게 접근할 수 있도록 각 공정별로 해석 절차 및 해석 방법을 소개하는 교육 과정입니다. 고압다이캐스팅, 저압다이캐스팅, 경동주조, 중력주조, 원심주조, 정밀주조 등 주조 공법 별 관련 예제를 통해 적절한 기능들을 습득할 수 있도록 도와 드립니다.

  • 교육 과정명 : Micro/Bio/Nano Fluidics 분야

점성력 및 모세관력 같은 유체 표면에 작용하는 힘이 지배적인 미세 유동의 특성을 정확하게 표현할 수 있는 해석 방법에 대해 소개하는 교육 과정입니다. 열적, 전기적 물리 현상을 구현할 수 있도록 관련 예제와 함께 해석 방법을 알려드립니다.

  • 교육 과정명 : 코팅 분야 과정

코팅 공정에 따른 코팅액의 두께, 균일도, 유동 특성 분석을 위한 해석 방법을 소개하는 교육 과정입니다. Slide coating, Dip coating, Spin coating, Curtain coating, Slot coating, Roll coating, Gravure coating 등 각 공정별 예제와 함께 적절한 기능을 습득하실 수 있도록 도와 드립니다.

  • 교육 과정명 : 레이저 용접 분야

레이저 용접 해석을 하기 위한 물리 모델과 용접 조건들을 설정하는 방법에 대해 소개하는 교육 과정입니다. 해석을 통해 용접 공정을 최적화할 수 있도록 관련 예제와 함께 적절한 기능들을 습득할 수 있도록 도와 드립니다.

  • 교육 과정명 : 3D프린팅 분야 과정

Powder Bed Fusion(PBF)와 Directed Energy Deposition(DED) 공정에 대한 해석 방법을 소개하는 교육 과정입니다. 파우더 적층 및 레이저 빔을 조사하면서 동시에 금속 파우더 용융지가 적층되는 공정을 해석하는 방법을 관련 예제와 함께 습득하실 수 있습니다.

  • 교육 과정명 : 해안/해양 분야

해안, 항만, 해양 구조물에 대한 파랑의 영향 및 유체의 수위, 유속, 압력의 영향을 예측할 수 있는 해석 방법을 소개하는 과정입니다. 항주파, 슬로싱, 계류 등 해안, 해양, 에너지, 플랜트 분야 구조물 설계 및 검토에 필요한 유동해석을 하실 수 있는 방법을 알려드립니다. 각 현상에 대한 적절한 예제를 통해 기능을 습득하실 수 있습니다.

  • 교육 과정명 : 우주/항공 분야

항공기 및 우주선의 연료 탱크와 추진체 관리장치의 내부 유동, 엔진 및 터빈 노즐 내부의 유동해석을 하실 수 있도록 관련 메뉴에 대한 설명, 설정 방법을 소개하는 과정입니다. 경계조건 설정, Mesh 방법 등 유동해석을 위한 기본적인 내용과 함께 관련 예제를 통해 기능들을 습득하실 수 있습니다.

기타 고객 맞춤형 과정

상기 과정 이외의 경우 고객의 사업 업무 환경에 적합한 사례를 중심으로 맞춤형 교육을 실시합니다. 필요하신 부분이 있으시면 언제든지 교육 담당자에게 연락하여 협의해 주시기 바랍니다.

고객센터 및 교육 담당자

  • 전화 : 02)2026-0455, 02)2026-0450
  • 이메일 : flow3d@stikorea.co.kr

교육은 정해진 일정에 시행되는 정기 교육과 고객의 요청에 의해 시행되는 특별 교육이 있습니다. 특별 교육이 실시될 경우 홈페이지를 통해 사전 공지를 합니다.

1. 연간교육 일정
FLOW-3D 연간교육일정

2. 교육 내용 : FLOW-3D Basic
  1. FLOW-3D 소개 및 이론
    • FLOW-3D 소개  – 연혁, 특징 등
    • FLOW-3D 기본 개념
      • VOF
      • FAVOR
    • 해석사례 리뷰
  2. GUI 소개 및 사용법
    • 해석 모델 작성법  – 물리 모델 설정
      • 모델 형상 정의
      • 격자 분할
      • 초기 유체 지정
      • 경계 조건 설정
    • 해석 결과 분석 방법  – 해석 모델 설명
  3. 해석 모델 작성 실습
    • 해석 모델 작성 실습  – 격자 분할
      • 물리 모델 설정
      • 모델 형상 및 초기 조건 정의
      • 경계 조건 설정
      • 해석 과정 모니터링
      • 해석 결과 분석
    • 질의 응답 및 토의

3. 교육 과정 : FLOW-3D Advanced
  1. Physics Ⅰ
    • Density evaluation
    • Drift flux
    • Scalars
    • Sediment scour
    • Shallow water
  2. Physics Ⅱ
    • Gravity and non-inertial reference frame
    • Heat transfer
    • Moving objects
    • Solidification
  3. FLOW-3D POST (Post-processor)
    • FLOW-3D POST 소개
    • Interface Basics
    • 예제 실습
Education Banner
  • 교육 신청은 홈페이지의 교육 신청 창에서 최소 3일 전에 신청합니다.
  • 모든 교육과정은 신청 인원이 2인 이상일때 개설되며, 선착순 마감입니다.
  • 교육 신청을 완료하시면, 신청시 입력하신 메일주소로 교육 담당자가 확인 메일을 보내드립니다.
  • 교육 시간은 Basic : 오전10시~오후5시, Advanced : 오후1시30분~오후5시30분까지입니다.
  • 교육비 안내
    • FLOW-3D Basic (2일) : 기업 66만원, 학생 55만원
    • FLOW-3D Basic 레이저용접, 3D 프린팅(2일) : 기업 88만원, 학생 66만원
    • FLOW-3D Advanced (1일) : 기업 33만원, 학생 25만원
    • 상기 가격은 부가세 포함 가격입니다.
  • 교육비는 현금(계좌이체)로 납부 가능하며, 교재 및 중식이 제공됩니다.
  • 세금계산서 발급을 위해 사업자등록증 또는 신분증 사본을 함께 첨부하여 신청해 주시기 바랍니다.
  • 교육 종료 후 이메일로 수료증이 발급됩니다.
고객센터 및 교육 담당자
  • 전화 : 02)2026-0455, 02)2026-0450
  • 이메일 : flow3d@stikorea.co.kr
교육 장소 안내
  • 지하철 1호선/가산디지털단지역 (8번출구), 지하철 7호선/가산디지털단지역 (5번출구)
  • 우림라이온스밸리 B동 302호 또는 교육장
  • 당사 건물에 주차할 경우 무료 주차 1시간만 지원되오니, 가능하면 대중교통을 이용해 주시기 바랍니다.
오시는 길

Interaction Between Waves and Breakwaters

Interaction Between Waves and Breakwaters

This article is an adapted version of an article  published in the journal of the Engineering Association for Offshore and Marine in Italy by Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti. The first three authors are users at the University of Salerno; Mr. Mascetti is an engineer at XC Engineering, Flow Science’s associate for Italy and France.

 

방파제의 설계는 복잡한 자연 시스템 (바다와 해안)과 인공 구조물 (방파제)의 상호 작용에 대한 완전한 이해가 필요합니다. 일반적으로 설계 작업은 광범위한 물리적 모델링을 수반하므로 비용이 많이 들고 시간이 오래 걸릴 수 있습니다. 최근까지 방파제의 복잡한 측면은 상세한 수치 시뮬레이션에 너무 어려웠습니다. 이것은 물이 비정상적인 동작으로 복잡한 경로를 통해 흐르는 콘크리트 또는 암석 블록으로 구성된 방파제의 경우 특히 그렇습니다.

컴퓨팅 기술의 진보로 수치, 물리적 조사 간의 격차가 좁혀졌습니다. 상호 작용하는 개별 블록으로 구성된 견고한 구조를 정확하게 표현할 수 있으므로 블록 사이의 빈 공간 내에 수치적으로 유동 영역을 생성 할 수 있습니다. 이것은 방류수가 균일한 다공성 매질로 근사되는 Classical Darcy 주제에 고려될 수 없는 대류항 및 난류의 영향을 포함한 전체 유체 역학적 거동의 영향을 평가할 수 있게 합니다

Modeling Rubble Mound Breakwaters

The following examples describe cases where rubble mound breakwaters are modelled on the basis of their real geometry, taking into account the hydrodynamic interactions with the wave motion.

잔재물 분쇄기 모델링

다음의 사례는 잔해 분쇄물이 파도 운동과의 유체 역학적 상호 작용을 고려하여 실제 형상을 기반으로 모델링된 경우를 설명합니다.

Figure 1: Artificial blocks

Figure 2a: Submerged Breakwaters

Figures 2b and 2c: Emerged Breakwater – Accropode regular & Accropode irregular

 

방파제의 개략적인 표현을 고려하여 구체 세트로 재현한 것으로 the cube, the modified cube, the antifer, the tetrapod, the accropode, the accropode II, the coreloc, the xbloc,and the xbloc base 등과 같은 일반적으로 사용되는 인공 블록을 고려하기 위해 개발되었습니다. (그림 1).

방파제는 물에 잠기거나 잠긴 경우에는 문헌에 나와 있는 표준 실험식을 사용하여 크기를 결정하고 실제 기하학적 패턴을 따르는 전체 크기, 구조 및 물리적 모델링과 같이 수치적으로 구성했습니다 (그림. 2).

제안된 절차의 품질을 검증하기 위해 침수된 방파제에 대해 세 가지 기하학적 구조를 고려했다. 즉, 부유, 다공성, 고형물과 부유물(그림 2a)이 출현한 방파제의 경우, 두 가지 다른 기하학적 구조를 사용했다(Fig. 2b – 2c).

방파제가 결정되면 기하학적 구조을 FLOW-3D로 가져 와서 유체 역학적 작용을 평가 및 Wave propagation의 연구를 위해 테스트했습니다. 시뮬레이션은 RNG 난류 모델과 coarse격자 안쪽에 중첩된 미세한 격자가 있는 전산메쉬를 사용하여 Navier-Stokes 방정식을 3 차원으로 통합하여 수행되었습니다.

수중 장벽 (계산 영역: 90 × 1.9 × 6.5m)의 경우, 포함된 메쉬 블록은 동일한 크기 (0.30 × 0.27 × 0.30m)의 46,200 개의 요소로 구성되며 중첩된 블록은 2,353,412 개의 요소로 구성하였습니다(0.061 × 0.055 × 0.061m).

방파제에도 동일한 기준이 적용되었습니다. 포함된 격자 블록은 150,000개의 요소(0.50×0.20×0.30m)로 구성되며, 중첩된 블록은 2,025,000개의 요소(0.10× 0.10×0.10m)로 생성되었습니다.

Figures 3a and 3b: Mesh views of submerged breakwater (3a above) & emerged breakwater (3b below)

Figures 4b: Emerged Breakwater – Accropode regular

Figures 4a: Submerged breakwater

결과 중 일부는 다음 이미지에 요약되어 있습니다. 그림 4에서 3 차원 영역의 2 차원 단면을 따른 압력 및 난류 에너지가 나타납니다. 그림 5에는 서로 다른 순간에 잡힌 자유 표면의 3 차원 형상이 나타나있습니다.

유동경로를 따라 개별 솔리드 요소의 윤곽의 유체 역학에 의한 유동 변화는 쉽게 검출 가능합니다. 이것은 자유 표면의 3 차원 재구성에서 가장 잘 드러나며 (그림 5) 방파제에 대한 파동 작용의 효과가보다 자세하게 표현됩니다.

Figures 5a: Submerged breakwater.

Figures 5b: Emerged Breakwater – Accropode regular.

Figures 5c: Emerged Breakwater – Accropode irregular  

Conclusions

잠수함이나 해상 구조물 간의 상호 작용을 정확히 표현하기 위한 Navier-Stoke기반 수치 시뮬레이션을 활용한 방법, 그리고 유체 움직임이 입증되었습니다. 시뮬레이션은 난류 시뮬레이션을 위한 RANS와 자유 표면 계산을 포함하는 첨단 컴퓨터 유체 동적 소프트웨어 시스템(FLOW-3D)을 사용하여 수행되었습니다.

이 결과는 블록 사이의 경로 내에서 유체 운동의 상세한 그림을 제공함으로써 기존의 흐름 방법보다 더 정확한 시뮬레이션을 제공함을 보여줍니다. 블록을 사용하여 기존의 누설 흐름 방법보다 더 정확한 시뮬레이션을 제공합니다. 원칙적으로 모든 관련 부품(필터, 코어 및 토우)에서 구조물이 물에 잠기거나 나타나는 경우 시뮬레이션이 가능하며 제한은 없습니다.

Further studies will be aimed at assessing the stability of individual blocks through the use of the Moving Object model in FLOW-3D.

 

CFD에 대해서

What You Should Know About CFD Modeling when Selecting a CFD Package

유체 흐름 및 열 전달 해석용 소프트웨어 패키지에는 여러 형태가 있습니다. 물리적 근사와 수치 해법의 기법이 패키지마다 크게 다르기 때문에 적절한 패키지를 선택하는 것은 매우 어렵습니다. 다음 설명에서는 열유동 시뮬레이션 소프트웨어를 선택할 때 고려해야 할 중요한 몇 가지를 소개합니다.

Software packages for fluid flow and heat transfer analysis come in many forms. These packages differ greatly in their physical approximations and numerical solution techniques, which makes the selection of a suitable package a challenging proposition. The following discussion covers some important items to consider when choosing flow simulation software.

Meshing and Geometry

유한 요소 또는 “body-fitted coordinates”를 채용하고 있는 수치해석 방법은 유체 영역의 기하학적 형상에 적합한 격자를 생성해야 합니다. 정확한 수치 근사치를 얻기 위해 허용 할 수 있는 요소 크기 및 형상에서 이러한 격자를 생성하는 것은 매우 중요한 작업입니다.

복잡한 경우에는 이와 같은 방법으로 격자를 생성하면 며칠 또는 몇 주가 걸릴 수 있습니다.  어떤 프로그램은 사각형의 격자 요소만을 사용함으로써 문제를 해결하려고 하지만, 그럴 경우에는 경계부분에 계단이 생기고 흐름과 열전달 특성이 달라지는 문제에 직면하게 됩니다.

FLOW-3D는 FAVOR™(면적율 / 부피 비율)법 을 사용하여 지오메트리의 특성을 원활하게 포함하므로써, 간단한 사각형 격자만으로도 두 문제를 해결할 수 있습니다.  또한, 간단하고 강력한 솔리드 모델러가 FLOW-3D 패키지에 기본 포함되어 있으며, CAD 프로그램에서 생성한 기하형상 데이터를 가져올 수 있습니다.

Solution methods that employ finite-element or “body-fitted coordinates” require the generation of a solution grid that conforms to the geometry of the flow region. It is a non-trivial task to generate these grids with acceptable element sizes and shapes for accurate numerical approximations. In complicated cases this type of grid generation may consume days or even weeks of effort. Some programs attemptto eliminate this generation problem by using only rectangular grid elements, but then they must contend with “stair-step” boundaries that alter flow and heat-transfer properties. FLOW-3D solves both problems by using easy-to-generate rectangular grids in which geometric features are smoothly embedded using the FAVOR™ (fractional area/volume) method. A simple and powerful solids modeler is packaged with FLOW-3D or users may import geometric data from a CAD program.

Momentum Equation vs. Approximate Flow Models

유체 운동량의 정확한 처리가 중요한 몇 가지 이유가 있습니다.  첫째, 이것은 복잡한 기하학적 형상에서 유체가 어떻게 흐르는지를 예측하는 유일한 방법입니다.  둘째, 액체에 의하여 걸린 동적인 힘(압력)은 운동량에서만 계산할 수 있습니다.  마지막으로, 열 에너지의 대류 수송을 계산하려면 다른 유체 입자 및 경계에 대한 개별 유체 입자의 상대적인 움직임을 정확하게 파악하는 것이 필요합니다. 이것은 운동량의 정확한 처리를 의미합니다.  운동량 보존을 대충 근사하기만 한 CFD 모델은 FLOW-3D에서는 사용되지 않습니다.  이러한 모델은 현실적인 유체 구성 및 온도 분포 예측에 사용할 수 없기 때문입니다.

An accurate treatment of fluid momentum is important for several reasons. First, it is the only way to predict how fluid will flow through complicated geometry. Second, the dynamic forces (i.e., pressures) exerted by the fluid can only be computed from momentum considerations. Finally, to compute the convective transport of thermal energy, it is necessary to have an accurate picture of how individual fluid particles move in relation to other fluid particles and confining boundaries. This implies an accurate treatment of momentum. Simplified flow models that only crudely approximate the conservation of momentum are not used in FLOW-3D because they cannot be used to predict realistic fluid configurations and temperature distributions.

Liquid-Solid Heat Transfer Area

액체와 고체 사이 (금속 주형 등)의 열전달은 경계면 면적의 정확한 추정이 필요합니다.  경계가 계단 모양으로 되어 있는 경우, 보통 이 면적이 크게 추정됩니다.  예를 들어, 실린더의 표면적은 약 27 %정도 크게 추정됩니다.  FLOW-3D의 경우 정확한 경계면 면적은 FAVOR™법에 따라 FLOW-3D 전처리기에서 컨트롤 볼륨마다 자동으로 계산됩니다.

Heat transfer between a liquid and a solid (e.g., metal-to-mold) requires an accurate estimate of the interfacial area. Stair-step boundaries over-estimate this area; for example, the surface area of a cylinder would be over-estimated by a factor of 27%. Accurate interfacial areas are automatically computed by the FAVOR™ method for each control volume in the FLOW-3D pre-processor.

Control Volume Effects on Liquid-Solid Heat Transfer

컨트롤 볼륨의 크기가 액체와 고체 사이에서 교환되는 열 비율과 양에 영향을 줄 수 있습니다.  이것은 열이 액체와 고체의 경계면을 포함하는 컨트롤 볼륨을 흐를 필요가 있기 때문입니다.  FLOW-3D는 액체와 고체의 경계면에 걸쳐 열 전달률을 계산할 때 컨트롤 볼륨의 크기와 전도율이 고려됩니다.

The size of control volumes can influence the rate and amount of heat exchanged between a liquid and solid because heat must also flow in the control volumes containing the liquid/solid interface. In FLOW-3D control volume sizes and their conductivities are accounted for when computing heat transfer rates across liquid-solid interfaces.

Implicitness and Accuracy

비선형 방정식과 결합 방정식의 Implicit 방법은 반복 될 때마다 under-relaxation 특성을 갖는 반복적 해법이 필요합니다.  이 동작은 상황에 따라 심각한 오류 (또는 수렴 속도의 급격한 하락)가 발생할 수 있습니다.  예를 들어, 비율이 큰 컨트롤 볼륨을 사용하는 경우나, 실제로는 중요하지 않은 효과를 예상하고 암시적인 해법을 사용하는 경우 등입니다.  FLOW-3D는 가능한 명시적인 수치해법이 사용되고 있습니다.  이것은 필요한 계산량이 적고, 수치 안정성의 요구 사항이 요구된 정밀도에 상응하기 때문입니다.  자세한 내용은 “암시적인 수치해법과 명시적인 수치해법“을 참조하십시오.

Implicit methods for nonlinear and coupled equations require iterative solution methods that have the character of an under-relaxation in each iteration. This behavior can cause significant errors (or very slow convergence) in some situations, for example, when using control volumes with large aspect ratios or when the implicitness is used in anticipation of an effect that is not actually significant. In FLOW-3D explicit numerical methods are used whenever possible because they require less computational effort, and their numerical stability requirements are equivalent to accuracy requirements. Read more in the Implicit vs. Explicit Numerical Methods article.

Implicit Numerical Methods For Convective Transport

모든 크기의 타임 스텝 크기를 계산에 사용할 수 있는 암시적인 수치 기법은 CPU 시간을 줄이기 위해 많이 사용되는 방법입니다.  불행하게도, 이 방법은 대류 현상 해석에 대해 정확하지 않습니다.  암시적인 해법은 근사 방정식에 확산 효과를 도입함으로써 시간 단계의 독립성을 획득합니다.  수치 확산을 물리적 확산 (열전도 등)에 추가해도 확산율이 변경될 뿐이므로 심각한 문제가 되지 않을 수 있습니다.  그러나 수치 확산(발산)을 대류 과정에 추가하면 모델링 대상의 물리 현상의 특성은 완전히 다르게 됩니다.  FLOW-3D는 시간의 정확한 근사치를 보장하기 위해 프로그램에 의해 time step이 자동으로 제어됩니다.

Implicit numerical techniques that allow arbitrarily large time-step sizes to be used in calculations are a popular way to reduce CPU time requirements. Unfortunately, these methods are not accurate for convective processes. Implicit methods gain their time-step independence by introducing diffusive effects into the approximating equations. The addition of numerical diffusion to physical diffusion, e.g., to heat conduction, may not cause a serious problem as it only modifies the diffusion rate. However, adding numerical diffusion to convective processes completely changes the character of the physical phenomena being modeled. In FLOW-3D time steps are automatically controlled by the program to ensure time-accurate approximations.

Relaxation and Convergence Parameters

암시적으로 근사치를 사용하는 수치법은 하나 이상의 수렴 및 완화(이완)의 매개 변수를 선택해야 합니다.  이러한 매개 변수를 신중하게 선택하지 않으면 발산하거나 수렴에 시간이 걸리는 경우가 있습니다.  FLOW-3D를 융합하는 매개 변수와 완화(이완) 매개 변수를 하나씩만 사용하여 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다.  수치 해법을 제어하는 매개 변수를 사용자가 설정할 필요는 없습니다.

Numerical methods that use implicit approximations also require the selection of one or more convergence and relaxation parameters. Making poor choices for these parameters can lead to either divergences or slow convergence rates. Only one convergence and one relaxation parameter are used in FLOW-3D, and both parameters are dynamically selected by the program. Users are not required to set any parameters controlling the numerical solver.

Free-Surface Tracking

액체와 기체의 경계면 (자유 표면 등)의 모델링에 사용되는 방법은 두 가지가 있습니다.  하나는 액체, 기체 두 영역의 흐름을 계산하고 경계면을 유체 밀도의 급격한 변화로 처리하는 방법입니다.

일반적으로 밀도의 불연속은 고차 수치 근사를 사용하여 모델링됩니다.  불행하게도 이 프로세스는 소수의 격자 셀에서 경계면이 평탄화되고, 이러한 경계면에 보통 존재하는 유체흐름의 접선 속도의 급격한 변화는 고려되지 않습니다.

기체가 계산 영역에 들어가는 액체로 대체되는 경우에는 이 방법에는 기체의 출구 포트 또는 출구 싱크도 보충 할 필요가 있습니다.  또한 이러한 방법은 일반적으로 유체의 비압축성를 충족하기 위해 더 많은 노력이 필요합니다.  이것이 발생하는 기체 영역에 거의 균일 한 압력 조정이 필요하며, 이를 통해 계산 수렴 시간이 소요되기 때문입니다.

FLOW-3D는 VOF (Volume-of-Fluid) 법 이라는 독창적인 방법이 사용되고 있습니다.  이것은 진정한 3 차원 경계면 추적 방식으로, 경계면을  3 차원 인터페이스로 추적하는 체계입니다.  또한 옵션의 표면 장력을 포함한 일반적인 접선 응력 경계 조건은 경계면에 적용됩니다.  기체 영역은 모델에 포함하도록 사용자가 요청하지 않는 한 계산되지 않습니다.

There are two methods used to model liquid-gas interfaces (i.e., free surfaces). One of these is to compute flow in both the liquid and gas regions and to treat the interface as a sharp change in fluid density. Typically, the density discontinuity is modeled using higher-order numerical approximations. Unfortunately, this treatment allows the interface to smooth out over a few grid cells and does not account for a corresponding sharp change in tangential flow velocity that generally exists at such interfaces. This technique must also be supplemented with escape ports or sinks for the gas if it is to be replaced by liquid entering a computational region. Further, such methods must typically work harder to satisfy the incompressibility of the fluids. This happens because gas regions must have nearly uniform pressure adjustments which tend to slow down the solution convergence rate. A different technique, the Volume-of-Fluid (VOF) method, is used in FLOW-3D. This is a true three-dimensional interface tracking scheme in which the interface is closely maintained as a step discontinuity. Moreover, normal and tangential stress boundary conditions, including optional surface tension forces, are applied at the interface. Gas regions are not computed unless the user requests these regions to be included in the model.

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

CFD가 처음이신가요?

소개

본 자료는 전산유체역학(CFD)를 처음 접하시는 분들의 이해를 돕기 위해 작성되었습니다. 보통 열유동해석, 그냥 유동해석 또는 수치해석 중에서 유체를 다루는 해석이라고 쉽게 이해할 수 있겠습니다.

A general description of how to think about computational fluid dynamics (CFD) is given in the article, Simulating Fluid Flow with Free Surfaces. This article introduces the idea of reducing a simulation region into small volume control elements for which algebraic equations are constructed to describe the conservation of mass, momentum and energy exchanges with neighboring elements. Additionally, a simple method is introduced for a means of describing the motion of free fluid interfaces within the region of control elements.

내용 안내

전산 유체 역학 (CFD)의 개념에 대한 일반적인 설명은 자유 표면의 유동 시뮬레이션에 기술되어 있습니다. 이 절에서는 시뮬레이션 영역을 미소 체적 제어 요소로 세분화하는 아이디어를 적용하여, 볼륨 컨트롤 요소에 대해 질량 및 운동량 보존, 인접 요소와의 에너지 교환을 설명하는 대수 방정식이 구성됩니다. 또한 컨트롤 요소의 영역 내에서 자유롭게 유체 계면의 운동을 설명하는 간단한 방법도 설명되어 있습니다.

Also for beginners, the article, What you should know about CFD modeling when selecting a CFD software, contains brief summaries of a variety of issues that are important considerations for constructing numerical solutions to fluid dynamic problems. Many of these issues, such as meshing, geometry representation, implicit versus explicit numerical methods and relaxation/convergence parameters are explored in greater detail in the remaining articles in CFD-101.

또한 CFD를 처음 접하시는 분들을 위해, CFD 소프트웨어 선택시 전산 유체 역학 모델링에 대해 알아야 할 것에는 유체 역학 문제에서 수치 해석을 수행하기위한 중요하게 고려하는 다양한 이슈에 대한 내용도 포함되어 있습니다. 이러한 많은 이슈에는 메쉬, 기하 형상 표현, implicit 방법과 explicit 방법, relaxation/convergence 매개 변수 등이 있는데 본 CFD-101에 상세히 설명되어 있습니다.

CFD 해석 | 격자(Mesh) 공간

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

CFD + Physical Modeling Results

CFD + Physical Modeling Results

This material was provided by Kevin Sydor, M.Sc., P.Eng., Section Head, Hydrotechnical and Oceanographic Studies, Water Resources Engineering; Manitoba Hydro; Joe Groeneveld, Western Canada Discipline Practice Lead – Hydrotechnical, Hatch Ltd.; Graham Holder, Consultant, LaSalle; D.G. Murray, P.Eng., M.Sc., Discipline Practice Lead – Hydrotechnical, Hatch Ltd.

 

10년이 넘는 기간 동안 Manitoba Hydro는 Flow-3D의 힘으로 수력 발전소 설계의 복잡성을 해결해 왔습니다. 최근 Manitoba Hydro는 급류, 다중 채널, 그리고 natural contours을 포함한 복잡한 장소에서 제안된 Keeyask생성에 대한 사전연구에 집중해 왔습니다. FLOW-3D사용 이전에는 초기 설계를 토대로 시뮬레이션과 물리적 모델링의 결합 결과가 서로의 성능을 검증하고 향상시키는 통합 연구를 수행했습니다.

Water velocities (m/s) as determined in CFD simulation at left, compared with photo of physical model in operation at right, for Stage 1 Cofferdam operation at a construction length of 450m.

 

실제 발전소와 제철소를 건설하기 위해서는 두 단계의 강 유역이 필요했습니다. Manitoba Hydro는 임시 코퍼 댐 건설 중 물리적 조건이 변화함에 따라 다양한 지역에서의 수위와 속도가 어떻게 변할 것인지를 추정하는 시뮬레이션을 수행했습니다. 그런 다음, 그들은 연안 공사, 우회 구조, 하천 폐쇄 및 배수로의 1/120 축척모델에서 측정된 결과와, 배수로 구역의 1/50 축척모델에서 측정된 결과를 비교했습니다. 1/120 축척모델의 연산에서 관찰된 수치는 수정되었고, CFD시뮬레이션 내 경계 조건을 나타내는 STL모델의 변경 사항으로 세부 사항이 피드백 되었습니다. 여러 가지의 상세한 공정은 물리적 축척 모형의 거동을 약 5%이내에서 예측했을 뿐만 아니라 공사비를 절감할 수 있는 설계 변경 사항도 찾아냈습니다.

 

Setting up and Calibrating the CFD Model

Simulation of final Keeyask spillway structure, verifying water velocities (m/s) to compare with physical scale model operation.

 

CFD모델은 약 3km x 2km의 영역을 커버하였으며, 탐지 속도 경계로 설정된 경계 조건을 통해 상류 쪽으로의 흐름을 제어하고 하류 쪽 끝의 지속적인 유출 경계를 설정하였습니다. 설계자들은 교각, 교대, 여수로 구조 및 코퍼댐과 같은 기하학적 객체의 STL AutoCAD파일을 가져와 물리적 경계를 나타낸 다음 매개 변수를 정의 했습니다.

강 급류의 특성과 레일 통로의 평행 부분을 통해 생성되는 예상 유량 범위를 모두 수용하기 위해 CFD모델이 다시 정규화되도록 설정되었습니다. 일반화된 최소 잔류 방법에 기초한 회전 난류 모드 및 implicit의 압력-속도 솔버를 설정했습니다. 메쉬는 데카르트 좌표로 설정되었고 보다 정밀한 메쉬 처리가 필요한 영역에서 grid를 다듬기 위해 중첩된 메쉬 블록을 사용했습니다. 배수로 구조 주위 영역의 격자 간격은 1m x 1m x 1m로 설정되었습니다. 즉, 배수로 및 배수로 용마루의 형상을 포함하는 데 필요했던 것입니다.

시뮬레이션의 목적은 건설 일정상 다양한 지점에서의 방전 용량, 수위, 속도 및 흐름 패턴, 다양한 위치, 경로 게이트(부분에서 완전히 열림)등을 추정하는 것이었습니다.  이 계산된 값들은 코페르담 건축에서 암석 덩어리에 필요한 돌의 크기를 결정하는데 중요합니다. 건축의 모든 단계에서 그들을 제자리와 하류로 이동시키는 항력에 저항할 만큼 암석들은 충분히 커야 합니다.

Excellent agreement in flow-rate prediction of spillway behavior between numeric and measured physical model values.

 

Physical Modeling

수력 발전소 설계로 인해 처음에는 제대로 하지 못하는 일이 너무 많습니다. 중요한 지형에서의 용량, 압력, 속도 및 배수로 게이트 동작(완전 개방)을 검증하기 위해서는 중요한 흐름 영역의 규모 물리적 모델을 구축해야 합니다. Manitoba Hydro는 LaSalle Consulting Group에 1/120 스케일의 하나의 포괄적 인 레이아웃과 1/50 스케일의 2 개의 전체구역과 2 개의 절반 구역을 가진 방수 모델을 구축할 것을 요청했습니다.

 

Integrated Modeling Results

실제 모델의 크기에 대한 힘의 이동 관계를 살펴보면, 바위 크기 예측에 대한 시뮬레이션은 약간 보존적입니다. 그러나 초기 수위 데이터 곡선은 시뮬레이션과 물리적 모델 행동 사이에 일치를 보여주었고 추가 시험을 위한 단계를 설정했습니다. 모델에서 코퍼댐이 서서히 생성됨에 따라 후속 수위 CFD시뮬레이션 결과를 정확하게 예측했음을 보여주었습니다.

완성된 코퍼댐의 테스트에 따르면 제어 구조가 아닌 채널 입구에서 흐름이 제어되고 있는 것으로 나타났습니다. 이것은 원하는 것보다 높은 상류수위가 나타났습니다. 접근 채널의 입구를 낮추도록 물리적 모델을 재구성하여 CFD에 사용된 고도를 반영했습니다. 출입구가 더 낮게 발굴되어, 수로의 왼쪽 둑을 따라 굴착하는 것은 입구 근처의 작은 지역에서만 필요했습니다.

 

Conclusion

Manitoba Hydro는 CFD모델링이 미래의 수력 발전소뿐만 아니라 Keeyask 발전소의 건설과 운영을 계획하는 데에도 여러 가지 이점을 제공한다는 사실을 발견했습니다 두 가지 접근법의 결과간에 매우 잘 일치했을 뿐만 아니라 FLOW-3D 시뮬레이션과 스케일 모델 테스트를 결합하면 두 가지 설계 옵션의 유효성을 개선하는 반복적 인 방법이 제공되었습니다. 또한 시뮬레이션을 통해 사용자는 실제 사용할 수 있는 값의 수가 제한되어 있지 않고 CFD모델 도메인 내의 어디서나 속도, 수위 및 유량을 쉽고 빠르게 추출할 수 있습니다.

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

FLOW-3D 제품소개

About FLOW-3D


HPC-enabled FLOW-3D v12.0

FLOW-3D 개발 회사

Flow Science Inc Logo Green.svg
IndustryComputational Fluid Dynamics Software
Founded1980
FounderDr. C.W. “Tony” Hirt
Headquarters
Santa Fe, New Mexico, USA
United States
Key people
Dr. Amir Isfahani, President & CEO
ProductsFLOW-3D, FLOW-3D CAST, FLOW-3D AM, FLOW-3D CLOUD, FlowSight
ServicesCFD consultation and services

FLOW-3D 개요

FLOW-3D는 미국 뉴멕시코주(New Mexico) 로스알라모스(Los Alamos)에 있는 Flow Scicence, Inc에서 개발한 범용 전산유체역학(Computational Fluid Dynamics) 프로그램입니다. 로스알라모스 국립연구소의 수치유체역학 연구실에서 F.Harlow, B. Nichols 및 T.Hirt 등에 의해 개발된 MAC(Marker and Cell) 방법과 SOLA-VOF 방식을 기초로 하여, Hirt 박사가 1980년에 Flow Science, Inc사를 설립하여 계속 프로그램을 발전시켰으며 1985년부터 FLOW-3D를 전세계에 배포하였습니다.

유체의 3차원 거동 해석을 수행하는데 사용되는 CFD모형은 몇몇 있으나, 유동해석에 적용할 물리모델 선정은 해석의 정밀도와 밀접한 관계가 있으므로, 해석하고자 하는 대상의 유동 특성을 분석하여 신중하게 결정하여야 합니다.

FLOW-3D는 자유표면(Free Surface) 해석에 있어서 매우 정확한 해석 결과를 제공합니다. 해석방법은 자유표면을 포함한 비정상 유동 상태를 기본으로 하며, 연속방정식, 3차원 운동량 보전방정식(Navier-Stokes eq.) 및 에너지 보존방정식 등을 적용할 수 있습니다.

FLOW-3D는 유한차분법을 사용하고 있으며, 유한요소법(FEM, Finite Element Method), 경계요소법(Boundary Element Method)등을 포함하여 자유표면을 포함하는 유동장 해석(Fluid Flow Analysis)에서 공기와 액체의 경계면을 정밀하게 표현 가능합니다.

유체의 난류 해석에 대해서는 혼합길이 모형, 난류 에너지 모형, RNG(Renormalized Group Theory)  k-ε 모형, k-ω 모형, LES 모형 등 6개 모형을 적용할 수 있으며, 자유표면 해석을 위하여 VOF(Volume of Fluid) 방정식을 사용하고, 격자 생성시 사용자가 가장 쉽게 만들 수 있는 직각형상격자는 형상을 더욱 정확하게 표현하기 위해 FAVOR(Fractional Area Volume Obstacle Representation) 기법을 각 방정식에 적용하고 있습니다.

FLOW-3D는 비압축성(Incompressible Fluid Flow), 압축성 유체(Compressible Fluid Flow)의 유동현상 뿐만 아니라 고체와의 열전달 현상을 해석할 수 있으며, 비정상 상태의 해석을 기본으로 합니다.

FLOW-3D v12.0은 모델 설정을 간소화하고 사용자 워크 플로우를 개선하는 GUI(그래픽 사용자 인터페이스)의 설계 및 기능에 있어 중요한 변화를 가져왔습니다. 최첨단 Immersed Boundary Method는 FLOW-3Dv12.0솔루션의 정확도를 높여 줍니다. 다른 특징적인 주요 개발에는 슬러지 안착 모델, 2-유체 2-온도 모델, 사용자가 자유 표면 흐름을 훨씬 더 빠르게 모델링 할 수 있는 Steady State Accelerator등이 있습니다.

물리 및 수치 모델

Immersed Boundary Method

힘과 에너지 손실에 대한 정확한 예측은 솔리드 바디 주변의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. FLOW-3D v12.0의 릴리스에는 이러한 문제 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 포함되어 있습니다. IBM은 내부 및 외부 흐름을 위해 벽 근처 해석을 위해 보다 정확한 솔루션을 제공하여 드래그 앤 리프트 힘의 계산을 개선합니다.

Two-field temperature for the two-fluid model

2유체 열 전달 모델은 각 유체에 대한 에너지 전달 공식을 분리하도록 확장되었습니다. 이제 각 유체에는 고유한 온도 변수가 있어 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도를 향상시킵니다. 인터페이스에서의 열 전달은 시간의 표 함수가 될 수 있는 사용자 정의 열 전달 계수에 의해 제어됩니다.

슬러지 침전 모델 / Sludge settling model

중요 추가 기능인 새로운 슬러지 침전 모델은 도시 수처리 시설물 응용 분야에 사용하면 수처리 탱크 및 정화기의 고형 폐기물 역학을 모델링 할 수 있습니다. 침전 속도가 확산된 위상의 방울 크기에 대한 함수인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능적인 형태와 표 형태로 모두 입력 할 수 있습니다.

Steady-state accelerator for free surface flows

이름이 암시하듯이, 정상 상태 가속기는 안정된 상태의 솔루션에 대한 접근을 가속화합니다. 이는 작은 진폭의 중력과 모세관 현상을 감쇠하여 이루어지며 자유 표면 흐름에만 적용됩니다.

꾸준한 상태 가속기

Void particles

보이드 입자가 버블 및 위상 변경 모델에 추가되었습니다. 보이드 입자는 항력과 압력 힘을 통해 유체와 상호 작용하는 작은 기포의 역할을 하는 붕괴된 보이드 영역을 나타냅니다. 주변 유체 압력에 따라 크기가 변경되고 시뮬레이션이 끝난 후 최종 위치는 공기 침투 가능성을 나타냅니다.

Sediment scour model

침전물의 정확성과 안정성을 향상시키기 위해 침전물의 운반과 침식 모델을 정밀 조사하였다. 특히, 침전물 종에 대한 질량 보존이 크게 개선되었습니다.

Outflow pressure boundary condition

고정 압력 경계 조건에는 이제 압력 및 유체 비율을 제외한 모든 유량이 해당 경계의 상류에 있는 흐름 조건을 반영하는 ‘유출’ 옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속성 경계 조건의 혼합입니다.

Moving particle sources

시뮬레이션 중에 입자 소스는 이동할 수 있습니다. 시간에 따른 변환 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

중력 및 비 관성 기준 프레임 모델에서 시간 함수로서의 무게 중심의 위치는 외부 파일의 표로 정의할 수 있습니다. 이 기능은 연료를 소모하는 로켓을 모델링하고 단계를 분리할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다.  질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Air entrainment model in FLOW-3D v12.0

Tracer diffusion / 트레이서 확산

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 거동을 모방합니다.

모델 설정

시뮬레이션 단위

이제 온도를 포함하여 단위계 시스템을 완전히 정의해야 합니다. 표준 단위 시스템이 제공됩니다. 또한 사용자는 선택한 옵션에서 질량, 시간 및 길이 단위를 정의하여 편리하며, 사용자 정의된 단위를 사용할 수 있습니다. 사용자는 또한 압력이 게이지 단위로 정의되는지 절대 단위로 정의되는지 여부를 지정해야 합니다. 기본 시뮬레이션 단위는 Preferences(기본 설정)에서 설정할 수 있습니다. 단위를 완벽하게 정의하면 FLOW-3D는 물리적 수량에 대한 기본 값을 정의하고 범용 상수를 설정할 수 있으므로 사용자가 필요로 하는 작업량을 최소화할 수 있습니다.

Shallow water model

얕은 물 모델에서 매닝의 거칠기

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 얕은 물 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

메시 생성

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

구성 요소 변환

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

런타임시 스레드 수 변경

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

프로브 제어 열원

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다.  history probes로 열 방출을 제어 할 수 있습니다.

소스에서 시간에 따른 온도

질량 및 질량/모멘트 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

방사율 계수

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터로 출력 할 수 있습니다.
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크는 기존 벽 접착력 출력과 함께 별도의 수량으로 일반 이력 데이터에 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다.
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기는 시뮬레이션이 끝날 때 보고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우, 각 종의 총 부피 및 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 최종 로컬 가스 압력 은 사용자가 가스 포획을 식별하고 연료 탱크의 배기 시스템 설계를 지원하는 데 도움이되는 선택적 출력량으로 추가되었습니다. 이 양은 유체로 채워지기 전에 셀의 마지막 공극 압력을 기록하며 단열 버블 모델과 함께 사용됩니다.

새로운 맞춤형 소스 루틴

새로운 사용자 정의 가능 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름기술
cav_prod_calCavitation 생성과 소산 비율
sldg_uset슬러지 침전 속도
phchg_mass_flux증발 및 응축으로 인한 질량 플럭스
flhtccl유체 # 1과 # 2 사이의 열전달 계수
dsize_cal2 상 흐름에서 동적 액적 크기 모델의 응집 및 분해 속도
elstc_custom점탄성 유체에 대한 응력 방정식의 Source Terms

새로운 사용자 인터페이스

FLOW-3D 사용자 인터페이스는 완전히 새롭게 디자인되어 현대적이고 평평한 구조로 사용자의 작업 흐름을 획기적으로 간소화합니다.

Setup dock widgets

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 지오 메트리 윈도우 주변에서 독 위젯으로 변환되어 모델 설정을 단일 탭으로 요약할 수 있습니다. 이러한 전환으로 인해 이전 버전의 복잡한 접이식 트리가 훨씬 깨끗하고 효율적인 메뉴 프레젠테이션으로 대체되어 사용자는 ModelSetup탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons

새로운 모델 설정 디자인에는 설정 프로세스의 각 단계를 나타내는 새로운 아이콘이 있습니다.

Model setup icons - FLOW-3D v12.0

New Physics icons

RSS feed

새 RSS 피드부터 FLOW-3D v12.0의 시뮬레이션 관리자 탭이 개선되었습니다. FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

RSS feed - FLOW-3D

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv1.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 SimulationManager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
출입문에 유동 표면이 있는 대형 댐
Runtime plots of the flow rate at the gates of the large dam

Conforming 메쉬 시각화

사용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다.Visualize conforming mesh blocks

Large raster and STL data

데이터를 처리하는 데 걸리는 시간 때문에 큰 지오 메트리 데이터를 처리하는 것은 수고스러울 수 있습니다. 대형 지오 메트리 데이터를 처리하는 데는 여전히 상당한 시간이 걸릴 수 있지만, FLOW-3D는 이제 이러한 대규모 데이터 세트를 백그라운드 작업으로 로드하여 사용자가 데이터를 처리하는 동안 완전히 응답하고 중단 없는 인터페이스에서 작업을 계속할 수 있습니다

[FLOW-3D 물리모델] Solidification 응고

응고 모델은 열전달이 활성화되고(Physics Heat Transfer Fluid internal energy advection) 유체비열(Fluids Fluid 1 Thermal Properties Specific heat)과 전도도(Fluids Fluid 1 Thermal Properties Thermal Conductivity) 이 지정될 때 사용될 수 있다. 단지 유체 1만 상 변화를 겪을 수 있다.

Solidification - Activate solidification

응고모델을 활성화하기 위해 Fluids Fluid 1 Solidification Model 을 체크하고 물성 Fluids Fluid 1 Solidification Model 가지에서 Liquidus temperature, Solidus temperature, 그리고 Latent heat of fusion 를 지정한다. 가장 간단한 모델(Latent Heat Release Definition 에 펼쳐지는 메뉴에서 Linearly with constant 를 선택)에서, 잠열은 물체가 Liquidus 에서 Solidus 온도로 냉각될 때 선형적으로 방출된다. 고상에서의 상변화열을 포함하는, 잠열 방출의 더 자세한 모델을 위해 온도의 함수로 잠열방출을 정의하기 위해 Specific energy vs. temperature 또는 Solid fraction vs. temperature 선택을 사용한다. 이 지정에 대한 더 자세한 내용은 이론 매뉴얼의 Heat of Transformation 를 참조한다.

solidification-fluid-properties

응고는 유체의 강직성 및 유동저항을 뜻한다. 이 강직성은 두 가지로 모델링 된다. 낮은 고상율에 대해 즉 Fluids Fluid 1 Solidification Model Solidified Fluid 1 Properties Coherent Solid Fraction 의 coherency 점 밑에서는 점도는 고상율의 함수이다. 간섭 고상율보다 큰 고상율에 대해서는 고상율의 함수에 비례하는 항력계수를 갖는 Darcy 형태의 항력이 이용된다. 이 항력은 모멘텀 방정식에 (bx,by,bz) 로써 추가된다- Momentum Equations 를 보라. 이 항력의 계산은 Solidification Drag Model 에서 기술된다. 항력계수는 사용자가 유동저항에 양을 조절할 수 있는 Coefficient of Solidification Drag 인자를 포함한다. 항력계수는 FLOW-3D 출력에서 기록된 속도에 상응하는 지역 상 평균 속도에 의해 곱해진다.

Fluid 1 Properties)을 지나면 항력은 무한대가 되고 계산격자 관련하여 유동이 있을 수 없다(단 예외로 Moving Solid Phase를 참조).

Note

모든 유체가 완전히 응고하면 모사를 정지시키기 위해 General Finish condition Solidified fluid fraction 를 이용한다. General Finish condition Finish fraction 은 모사를 중지하기 위한 고상율 값을 정한다.

 

Drag in the Mushy Zone, Mushy영역 내 항력

 

주조 시 mushy zone 은 액상과 고상이 혼합물로 존재하는 지역이다. 이 지역 혼합점도는 동축의 수지상 조직(과냉각된 액체 안에서 방사상으로 자라는 결정으로 된 구조) 이 액체 안에서 자유롭게 부유할 때 영향을 미친다.

일단 수지상 조직의 간섭성이 발생하여 고정된 고상 망이 형성되면 액상이 고정된 다공 수지상 구조를 통과해야 하므로 추가의 유동손실이 발생한다. 다른 방법으로는 간섭점을 지난 액/고상 혼합물은 다공물질을 통한 유동 대신에 고점도의 유체로 간주될 수 있다. 점성유체로 간주하는 접근은 예를 들면 연속 이중 롤 주조 과정같이 고상이 계속 이동 및 변형할 때 유용하다.

 

Solidification Drag Models in FLOW-3D, FLOW-3D 내 응고 항력모델

응고에 의한 항력계수를 정의하기 위해 사용자는 우선 열전달 및 응고모델을 활성화 해야 한다. 이들은 Model Setup Physics 탭 에서 활성화될 수 있다. 수축모델 또한 응고모델 창에서 활성화될 수 있다.

Solidification model

일단 Solidification 모델이 활성화되면 항력의 공식이 지정될 필요가 있다. Solidification대화의 밑 좌측 모퉁이에서 Porous media drag-based Viscosity-based 의 항력공식 중의 선택을 한다.

    • Viscosity-based 공식은 점성 유체로 취급하며 Viscosity 영역 내Flow model for solidified metal 입력 밑에서 지정되는 순수 고상 점성을 갖는 고상화된 유체로 간주된다. 이 접근법은 경직성의 항력모델(즉, 응고 금속이 롤러 사이로 압착될 때)을 사용할 수 없는 경우의 모사에 이용된다. 이 점성은 고상율에 따라 선형으로 변한다.고상율이0일 때 점도는 유체1의 점도이다.고상율이1이면 점도는 Solidification 패널에서 지정된 값과 같다.
    • Porous media drag-based 공식은 응고상태를 결정하기 위해 고상율을 사용한다. 고상율이 Critical Solid Fraction 이거나 초과하면 이때 항력은 무한대가 된다-즉, 액상/고상 혼합물은 고체같이 거동한다. 고상율이 Coherent Solid Fraction 보다 작으면 항력은 0이다. 이 두 값 사이에서 유동은 mushy 지역에 있고 이를 통한 유동은 마치 다공질 내에서의 유동같이 처리된다. 또한 모델은 고상율이 Coherent Solid Fraction 보다 작을 때 자동적으로 용융 금속의 점도를 조절한다. 이 상태에서 고상결정은 점도를 올리지만 결합하지는 않는다(즉, 간섭 없음). 일단 유체가 Coherent Solid Fraction 에 도달하면 항력방정식이 고려되고 점도는 간섭성에 도달하기 전의 값으로 일정하게 된다. 임계 및 간섭 고상율은 사용자가 정의하며 논문이나 책 등에서 찾을 수 있다. 이 식에서는 Coefficient of Solidification Drag 가 정의되어야 한다. 이는 Solidification 창 또는 Fluid 1 Solidification ModelSolidified Fluid 1 Properties tree Other 트리를열어 Model Setup Fluids 탭에서 될 수 있다.

How to Calculate Permeability 투과성 계산법

밑에 주어진 Darcy법칙은 수지상 구조를 위한 다공매질내의 수학적 유동기술이다.[Poi87].

(19)\mathbf{u} = - \frac{K}{\mu} \nabla P

여기서 u 는 수지상 구조 내 유동의 속도이고 ∇P 는 지역 압력구배, 그리고 K 는 mushy 구역의 특정 투수성이다. 이 방정식은 단지 유동이 거의 정상 상태이고, 관성효과가 없으며 유체의 체적율이 일정하고 균일하며 액체-액체의 상호작용 힘이 없을 때 유효하다. 투수성을 정의하는데 이용될 수 있는 대 여섯 개의 모델이 있으나 FLOW-3D 는 밑에 보여주는 Blake-Kozeny 을 이용한다. 다른 모델들은 코드와 함께 제공되는 소스코드를 사용자 사양에 맞게 수정하여 추가할 수 있다.

(20)\mathbf{u} = -C_2 \left( \frac{\lambda_1^2 (1-f_s)^3}{\mu f_s^2} \right) \left( \nabla P - \rho \mathbf{g} \right)

여기서

C2 는 전형적으로 와 같은 비틀림

fs 는 고상율이고

λ1는 유동을 위한 특정 치수

이 응용에서 수지상 가지 간격(DAS)이 이용된다.

  • 식 (11.19) 을 식(11.20) 에 적용하면 투수성을 위한 다음 식을 얻는다.

(21)K = \lambda_1^2 \frac{(1-f_s)^3}{180f_s^2}

수지상 가지 간격(DAS)에 대한 일반적인 값들은 밑에 주어져 있다.

Range of Cooling Rates in Solidification Processes
COOLING RATE, K/s PRODUCTION PROCESSES DENDRITE ARM SPACING, \mu m
10^{-4} to 10^{-2} large castings 5000 to 200
10^{-2} to 10^3 small castings, continuous castings, die castings, strip castings, coarse powder atomization 200 to 5
10^3 to 10^9 fine powder atomization, melt spinning, spray deposition, electron beam or laser surface melting 5 to 0.05

Range of cooling rates in solidification processes [CF85]

 

How FLOW-3D Defines the Coefficient of Solidification Drag FLOW-3D 가 응고 항력계수를 결정하는법

FLOW-3D 는 액고상 변화를 모델링하기 위해 다공매질항력을 이용한다. 항력은 고상율의 함수이다. 사용자에게 두 수축모델이 이용 가능하다; 급속 수축 모델 과 완전 유동모델. 급속 수축 모델은 상변화와 연관된 체적변화를 고려하지 않으며 유체는 정지해 있다고 가정한다. 완전 유동모델은 상변화가 관련된 체적변화를 고려한다. 항력은 투수성에 역으로 비례하므로 다음과 같이 표현될 수 있다.

(22)K = \frac{\mu}{\rho F_d}

여기서, Fd FLOW-3D 에서 사용된 항력계수이다. 이 항력계수는 지역 속도에 의해 곱해지고 모멘텀 방정식의 오른쪽에서 차감된다 (Momentum Equations 참조). 식 (11.22) 를 재정리하고 식 (11.21) 로부터의 투수성에 치환하면 다음을 얻는다.

  • The Coefficient of Solidification Drag: \text{TSDRG}=\frac{180 \mu}{\lambda_1^2\rho },
  • The drag force: F_d = \mbox{TSDRG} \frac{ f_s^2}{(1-f_s)^3}.

 

Macro-Segregation during Alloy Solidification 합금응고시 거시적 편절

편절 모델은 대류와 확산에 의한 용질 이동에 따른 이원합금 요소에서의 변화를 모델링 하도록 되어 있다. 이 모델링은 Physics → Solidification 로 부터 될 수 있다.

Solidification

Activate binary alloy segregation model 을 체크하고 편절 모델을 활성화한다.

여러 온도에서 평형에 있는2원합금 요소농도를 정의하는 상태도는 직선의 고상선 및 액상선을 가진다고 가정된다. 상태도는 입력데이터에 의해 구성되고 전처리 그림파일 prpplt 에 포함된다. Analyze Existing 에서 이용 가능하다

Macro-Segregation Model (under Fluids Fluid 1 Solidification Model)에 관련된 일부 유체물성 트리가 밑에 보여진다. 상태도는 Reference Solute Concentration 에서의 the Solidus Liquidus Temperatures 값들에 의해 정의된다. 추가로 Concentration Variables 밑의 Partition coefficient 도 정의되어야 한다. 그렇지 않으면 Pure Solvent Melting Temperature 가 정의될 수 있다. Partition coefficient Pure Solvent Melting Temperature 둘 다가 지정되면 용매 용융 온도는 상태도로부터 재 정의된다.