Intel CPU i9

해석용 컴퓨터 CPU에 대한 이해 및 선택 방법

last update : 2021-12-15

자료출처 : 본 기사는 PCWorld Australia의 내용과 www.itworld.co.kr의 기사를 기반으로 일부 가필하여 게재한 내용입니다.

해석용 컴퓨터를 선정하기 위해서는 가장 먼저 선택해야 하는 것이 있다. AMD인가, 인텔인가? 두 업체는 CPU 시장의 양대산맥과도 같다. 인텔이 새롭게 출시한 12세대 앨더 레이크 CPU 시리즈가 벤치마크 기록을 깼지만, 지난해 출시된 AMD의 라이젠 5000 아키텍처를 고수하거나, 다른 신제품을 기다릴만한 이유도 있다. 인텔과 AMD CPU를 자세히 살펴보자.

ⓒ Gordon Mah Ung


비교 대상 제품 

2021.11.09

PC 조립 부품을 예산 기준으로 결정하고, 반도체 수급난에서 CPU를 정가에 구매할 수 있다고 가정했을 때, 인텔과 AMD 제품 선택지를 몇 가지로 압축할 수 있다.

인텔성능/효율 코어쓰레드가격
Core i9 12900K/KF8/824590달러/570달러
Core i7 12700K/KF8/420410달러/390달러
Core i5 12600K/KF6/416290달러/270달러
AMD  성능 코어 쓰레드    가격   
Ryzen 9 5950X1632800달러
Ryzen 9 5900X1224550달러
Ryzen 7 5800X816450달러
Ryzen 5 5600X612300달러

비교적 저렴한 인텔 CPU인 F 시리즈는 통합 그래픽카드가 없어 별도의 GPU가 필요하다. 라이젠 프로세서는 외장 그래픽카드와 짝을 이루어야 한다. 인텔이 ‘한 방’을 노리고 있기 때문에 이 비교에서는 최상급인 16코어 라이젠 9 5950X도 함께 살펴볼 예정이다. 12900KF가 최대 8코어이기 때문에 라이젠 9 5950X와 직접적인 비교 대상은 아니지만, 인텔은 AMD와 꽤 대등하게 싸우고 있다. CPU에만 80만원을 지출할 계획이라면 더 큰 파워 서플라이가 필요하다.

인텔 코어 CPU 에 대한 이해

인텔 코어 CPU에 대한 자료를 찾아보면 쿼드(Quad) 코어, 하이퍼-스레딩(Hyper-Threading), 터보-부스팅(Turbo-Boosting), 캐시(Cache) 크기 같은 용어를 많이 볼 수 있다.
인텔 코어 i3, i5, i7, i9는 각각 어떻게 다를까?
칩셋에는 세대가 있는데, 세대의 의미와 차이는 무엇일까?
하이퍼-스레딩은 무엇이고 클럭 속도는 어느 정도가 적합할까?

새 프로세서를 구입하기 전에 먼저 현재 사용하고 있는 인텔 CPU를 이해해보자.
지금 내 PC 성능이 어느 정도인지 알기 위해서이다.
가장 빠른 방법은 제어판 > 시스템 및 보안 항목에서 시스템을 선택하는 것이다.

여기에서 현재 PC에 설치된 CPU, RAM, 운영체제 정보를 확인할 수 있다.
프로세서 아래에 현재 설치된 인텔 CPU가 무엇인지, 인텔 코어 i7-4790, 인텔 코어 i7-8500U 같은 모델명을 확인할 수 있을 것이다. 또 Ghz가 단위인 CPU 클럭 속도를 알 수 있다. 나중에 이와 관련해 더 자세히 설명을 하겠다.

일단 CPU부터 알아보자.
CPU 모델명에는 숫자가 많아 어려워 보이지만, 이 숫자가 무슨 의미인지 이해하는 것은 어려운 일이 아니다.

모델명의 앞 부분인 “인텔 코어”는 인텔이 만든 코어 시리즈 프로세스 중 하나라는 의미다. 코어는 인텔에서 가장 크고, 인기있는 제품군이다. 따라서 많은 인텔 제품 데스크톱과 노트북 컴퓨터에서 인텔 코어라는 표기를 발견할 수 있다.

참고 : 인텔은 셀룰론(Celeron), 펜티엄(Pentium), 제온(Xeon) 등 다양한 프로세스 제품군을 판매하고 있지만, 이 기사는 인텔 코어 프로세스에 초점을 맞춘다.

그 다음 “i7”은 CPU 내부 마이크로 아키텍처 디자인의 종류이다.
자동차가 클래스와 엔진 종류로 나눠지는 것과 비슷하다. 이들 ‘엔진’이 하는 일은 동일하다. 그러나 차량 브랜드에 따라 일을 하는 방법이 다르다.
인텔의 경우 코어 브랜드 CPU의 클래스인 i3, i5, i7이 각각 사양이 다르다. 여기서 사양이란 코어의 수, 클럭 속도, 캐시 크기, 터보 부스트 2.0과 하이퍼스레딩 같은 고급 기능 지원 여부를 말한다.
코어 i5와 i7 데스크톱 프로세서는 통상 쿼드 코어(코어가 4개)이고, 로우엔드(저가) 코어 i3 데스크톱 프로세스는 듀얼 코어(코어가 2개)다.

이제 SKU와 세대에 대해 알아보자. 앞서 예로 들은 “4790”으로 설명하겠다.
첫 번째 숫자인 “4”는 CPU의 세대이고, “790”는 일종의 일련번호, 또는 ID 번호이다. 즉 인텔 코어 i7이 4세대 CPU라는 이야기이다.

그런데 ‘접미사’가 붙는 경우가 있다. 위에서 예로 든 모델에는 접미사가 없지만 “Intel Core i7-8650U” 같이 끝에 접미사가 붙은 모델이 있다. 여기에서 “U”는 “Ultra Low Power(초저전력)”를 의미한다.
인텔은 모델명에 다양한 접미사를 사용하는데 세대에 따라 의미가 바뀌는 경우가 있다. 따라서 현재 사용하고 있는 CPU 모델을 정확히 해석하려면 링크된 인텔의 ‘접미사 목록’ 페이지를 참고하자.

CPU의 세대는 중요할까?

꽤 중요하다. 간단히 말해, 그리고 일반적으로 세대가 높을 수록, 즉 새로울 수록 더 좋다. 하지만 세대별로 개선된 정도는 각기 다르다.

인텔에 따르면, 최신 8세대 인텔 코어 프로세스는 7세대보다 최대 40%까지 성능이 향상됐다. 물론 비교 대상에 따라 성능 향상치가 크게 다르다. SKU가 세대별로 다를 수 있기 때문이다. 예를 들어, 인텔 코어 i7-8850U는 있지만 인텔 코어 i7-7850U는 없다.

세대가 높을 수록 최신 프로세서라는 것이 기본 원칙이다. 더 발전한 기술과 설계의 이점을 누릴 수 있다는 의미이며, PC 성능도 따라서 향상될 것이다.

코어가 많을 수록 좋을까?
간단히 대답하면, 일반적으로 코어 수가 적은 것보다 많은 것이 좋다. 코어가 1개인 프로세서는 한 번에 스레드 1개만 처리할 수 있다. 그리고 코어가 2개인 프로세서는 2개를, 코어가 4개인 쿼드 코어 프로세서는 4개를 처리할 수 있다.

그렇다면 스레드(Thread)는 무엇일까? 아주 간단히 설명하면, 스레드는 특정 프로그램에서 나와 프로세서를 통과하는 연속된 데이터 데이터 흐름을 말한다. PC의 모든 것은 프로세서를 통과하는 스레드로 귀결된다.

즉, 논리적으로 코어가 많을 수록 한 번에 처리할 수 있는 스레드가 많다. PC가 더 빠르고 효율적으로 데이터를 처리하고 명령을 실행할 수 있다는 이야기이다. 그러나 새 CPU를 조사하면서 코어 수에만 초점을 맞추면 자칫 코어 수만큼 중요한 수치인 클럭 속도를 무시할 위험이 있다.

CPU의 각 코어에는 Ghz가 단위인 클럭 속도가 있다. 클럭 속도는 CPU 실행 속도다. 클럭 속도가 빠를 수록, CPU가 한 번에 처리 및 실행할 수 있는 명령이 많다.

클럭 속도는 통상 높을 수록 더 좋다. 그러나 발열과 관련된 제약 때문에 프로세서의 코어 수가 많을 수록 클럭 속도가 낮은 경향이 있다. 이런 이유로 코어 수가 많은 PC가 최고의 성능을 발휘하지 못하는 경우도 있다.
그렇다면 가장 알맞은 클럭 속도는 어느 정도일까?


클럭 속도는 PC로 하려는 일에 따라 달라진다. 일부 애플리케이션은 싱글스레드로 실행된다. 반면, 여러 스레드를 활용하도록 만들어진 애플리케이션도 있다. 비디오 렌더링이나 일부 게임 환경이 여기에 해당된다. 이 경우, 코어 수가 많은 프로세서가 클럭 속도가 높지만 코어가 하나인 프로세스보다 성능이 훨씬 더 높다.
수치해석의 경우는 계산량이 많은 큰 해석의 경우 멀티코어가 훨씬 유리하다.

웹 브라우징 같은 일상적인 작업에서는 클럭 속도가 높은 i5 프로세서가 i7보다 가격 대비 성능이 훨씬 더 높다는 의미이다. 즉, 코어 수가 많은 프로세서보다 클럭 속도는 높고 코어 수가 적은 프로세서를 구입하는 것이 훨씬 경제적인 대안이 될 수도 있다.

하이퍼-스레딩이란?

앞서 언급했듯, 일반적으로 프로세서 코어 하나가 한 번에 하나의 스레드만 처리할 수 있다. 즉, CPU가 듀얼 코어라면 동시에 처리할 수 있는 스레드가 2개다. 그러나 인텔은 하이퍼-스레딩이라는 기술을 개발해 도입했다. 가상으로 운영체제가 인식하는 코어를 2배 증가시키는 방법으로 하나의 코어가 동시에 여러 스레드를 처리할 수 있는 기술이다.

즉 i5의 물리적 코어 수는 4개이지만, 여러 스레드를 지원하는 애플리케이션을 실행시키면 하이퍼-스레딩이 코어 수를 가상으로 2배 늘려서 성능을 크게 향상하는 방법이다.

터보 부스트(Turbo Boost)란?

인텔의 터보 부스트는 프로세서가 필요한 경우 동적으로 클럭 속도를 높이는 기능이다. 터부 부스트로 높을 수 있는 최대 클럭 속도는 활성 코어의 수, 추정되는 전류 및 전력 소모량, 프로세서 온도에 따라 달라진다.

알기 쉽게 설명하면, 인텔 터보 부스트 기술은 사용자의 프로세서 사용 현황을 모니터링, 프로세서가 ‘열 설계 전력’의 최대치에 얼마나 가까이 도달했는지 판단한 후 적절한 수준으로 클럭 속도를 높인다. 기본적으로 가장 적절하고 우수한 클럭 속도와 코어 수를 제공한다.

현재 터보 부스트 테크놀로지 2.0 버전이 사용되고 있으며, 여러 다양한 7세대 및 8세대 인텔 코어 i7과 i5 CPU에서 이를 지원한다.

i3, i5, i7, i9 프로세서 중 하나를 선택하기 전에 클럭 속도, 코어 수와 함께 기억해야 할 한 가지가 또 있다.

캐시 크기

CPU가 동일한 데이터를 계속 사용하는 경우, CPU는 이 데이터를 프로세서의 일부분인 캐시라는 곳에 저장된다. 캐시는 RAM과 비슷하다. 그러나 메인보드가 아닌 CPU에 구축되어 있어 훨씬 더 빠르다.
캐시 크기가 크면 더 빨리 더 많은 데이터에 액세스 할 수 있다. 클럭 속도 및 코어 수와 다르게, 캐시 크기는 무조건 클 수록 더 좋다. 메모리가 많을 수록 CPU 성능이 향상된다.

7세대 코어 i3 및 코어 i5 프로세서 U 및 Y 시리즈 캐시 크기는 3MB, 4MB이다. 코어 i7의 캐시 크기는 4MB이다. 현재 8세대 프로세서의 캐시 메모리는 6MB, 8MB, 9MB, 12MB이다.

코어 i3, i5, i7, i9의 차이점은 무엇일까?
일반적으로 코어 i7은 코어 i5, 코어 i5는 코어 i3보다 나은 프로세서이다. 코어 i7의 코어 수는 7개가 아니다. 코어 i3 역시 코어 수가 3개가 아니다. 코어 수나 클럭 속도가 아닌 상대적인 연산력의 차이를 알려주는 수치다.

2017년 출시된 코어 i9 시리즈는 고가의 고성능 프로세서이다. 최상급인 코어 i9-7980X의 코어 수와 클럭 속도는 18개와 2.6GHz, 한 번에 처리할 수 있는 스레드는 32개이다. 가장 저렴한 코어 i9-7900X의 경우 각각 10코어, 3.3GHz(기본 클럭 속도), 20 스레드이다.

수치해석 측면에서 구입해야 할 컴퓨터를 고려한다면 CPU 성능은 현재 최신코어인 i7과 i9을 구입하는 것이 원하는 성능을 정확히 제공하는 CPU를 선택하는 방법이지만 예산과 성능이라는 선택의 문제가 존재한다.

editor@itworld.co.kr


AMD CPU 에 대한 이해

썸네일
썸네일

AMD CPU 이름 규칙 및 코드명, 종류, 세대, 소켓 알아보기

AMD 1600, AMD 2400G, Athlon 240GE, AMD 3990X 등 AMD에 다양한 종류의, 다양한 모델명을 가진 cpu들이 있습니다. AMD cpu, apu의 종류와 세대, 소켓에 대해서 알아보도록 하며 이 글에서는 2017년 3월 3일 이후 나온 ‘라이젠’ 시리즈의 cpu, apu에 대해서만 다루도록 하겠습니다.

AMD 라이젠 시리즈는 현재 3세대까지 출시되었으며, 크게 일반 cpu, 하이엔드 cpu(스레드리퍼), 일반 APU, 모바일 APU으로 나뉩니다. 또한 소켓은 현재까지 나온 cpu 중 하이엔드 cpu를 제외한 cpu는 모두 am4소켓입니다.

AMD CPU 이름 규칙

이름 규칙

 

이름 규칙

AMD 라이젠 시리즈는 ‘AMD 라이젠 7 1700X’를 예로 들면, 앞의 ‘AMD’는 회사 이름을 나타내며

뒤에 ‘라이젠 7’은 성능을 나타냅니다.
‘라이젠 3’은 메인스트림,
‘라이젠 5’는 고성능,
‘라이젠 7’은 최고 성능입니다.

그리고 뒤에 ‘1’은 세대를 나타냅니다.
‘1700’은 Zen 1세대이며,
‘AMD 라이젠 5 2400G’와 같이 APU는 기존 세대에 비해 조금 개선되긴 했지만, 다음 세대 정도까지에 개선은 아니라서 세대는 같지만, ‘400G’앞에 붙는 숫자는 1이 더해져서 나옵니다.

그리고 두번째 자리 ‘7’은 성능을 나타냅니다.
‘2,3’은 메인스트림,
‘4,5,6’은 고성능,
‘7,8’은 최고 성능입니다.

그리고 세네번째 자리는 세세한 기능의, 세세한 성능의 변화 정도로 생각하시면 됩니다.

출처: https://minikupa.com/52 [미니쿠파]

 

인텔 코어 i9-12900K 리뷰 | 왕좌 탈환 노리는 ‘인텔의 귀환’

2021.11.09

Gordon Mah Ung | PCWorld구원 서사를 좋아하지 않는 사람은 없다. 인텔 12세대 코어 i9-12900K는 오랫동안 회자될 귀환 이야기의 주인공이다. 한때 강력하고 득의양양했던 챔피언은 수 년 전 부활한 AMD 라이젠 프로세서의 손에 굴욕적인 패배를 겪었고 어떻게 해서든 다시 한번 싸울 방법을 찾아 마침내 승리를 외치려고 한다. 이제 카메라가 페이드아웃 되면서 엔딩 크레딧으로 넘어간 셈이다.

인생이나 기술은 그런 헐리우드식 결말을 맺기 어렵지만, 인텔 코어 i9-12900K는 그런 드라마의 주인공 역할을 상당히 잘 해낸 것 같다. 지난 몇 년 동안 AMD 프로세서에 두들겨 맞은 후 태어난 12900K는 경쟁 제품인 라이젠 9 5950X보다 훨씬 더 나은 CPU로 더 많은 사용자에게 활용 가능성을 안겼다. 화끈한 KO 승리를 거둔 것은 전혀 아니지만, 인텔 12세대 앨더 레이크 프로세서의 뛰어난 장점과 기능을 고려할 때 바로 오늘 구입할 수 있는 하이엔드 데스크톱 프로세서다. 

ⓒ Gordon Mah Ung


12세대 앨더 레이크는 어떤 CPU?

인텔 12세대 앨더 레이크는 근본적으로 인텔 7 공정을 기반으로 만들어진 하이브리드 CPU 설계다. 사실 이것만으로도 엄청난 일이다. 14나노 트랜지스터 기술에 5년 이상을 허비한 끝에, 앨더 레이크는 마침내 하나의 노드를 뛰어넘었다. (기존 10나노 공정이 리브랜드된 후 인텔 7이라는 이름으로 불린다.)

새롭게 설계된 고성능 CPU 코어와 더 작아진 효율 코어를 혼합하여 성능 대 전력 비율의 균형을 최적화했다. 완전히 재설계된 큰 코어를 가진 인텔의 첫 번째 인텔 7 프로세스 데스크톱 CPU라고 이해하는 것이 가장 쉽다. 그리고 여기에 더해 여러 개의 나머지 효율성 코어 성능이 이전 10세대 코어만큼 우수하다. 또한, 12세대 앨더 레이크는 PCIe 5.0, DDR5 메모리, LGA1700 소켓을 비롯해 새로운 표준을 다수 지원한다.

ⓒ Intel

CPU 렌더링 성능

인텔의 전통점 강점이 아니었던 3D 렌더링과 모델링부터 시작하자. 지금까지는 PC에서 3D 모델링 애플리케이션 실사용자가 많지 않아서, 이들 전문 애플리케이션의 실행 성능에 큰 의미를 두지 않았다는 것이 인텔의 주장이었다. 라이젠 CPU의 눈부신 성능에 뒤지는 경우에만 렌더링 성능에서 피벗을 뺐다는 점에 주목하는 사람도 많다.

맥슨 시네벤치 R23부터 시작한다. 맥슨 시네마4D 애플리케이션에 사용되는 렌더링 엔진 테스트이며, 같은 렌더링 엔진이 일부 어도비 애플리케이션에도 내장되어 있다.

최신 버전은 10분 쓰로틀링 테스트를 기본값으로 제안한다. 인텔 10세대, 11세대 칩과 윈도우 11 환경을 테스트한 결과는 없지만, 윈도우 10과 10코어 코어 i9-10900K가 1만 4,336점을 받았고 8코어 코어 i9-11900K는 1만 6,264점을 받았다. 사실 둘 다 2만 2,168점을 받은 AMD 12코어 라이젠 9 5900X과는 상대가 되지 않는다. 그래서 굳이 16코어 라이젠 9 5950X와 비교할 필요가 없었다.

눈길을 끄는 것은 코어 i9-12900K의 긴 파란 막대다. 인텔이 앨더 레이크에서 추구한 하이브리드 설계를 추구하는 것에 여러 가지 말이 많았지만, 12900K는 오랫동안 라이젠의 홈그라운드였던 렌더링 벤치마크에서 AMD의 1, 2위 CPU를 아주 약간이나마 능가해 호사가의 입을 단속한다.

ⓒ IDG

하지만 인텔이 옳다. 모든 CPU 코어와 쓰레드를 다 쓰는 애플리케이션을 사용하는 사람은 그다지 많지 않다. 따라서 시네벤치로 단일 쓰레드 성능을 살펴보는 것도 중요하다. 시네벤치 멀티코어 성능은 라이트룸 클래식 올코어 영상 인코딩이나 사진 내보내기 성능을 알려주고, 시네벤치 R23 단일 쓰레드 성능은 그보다는 오피스나 포토샵 실행에 조금 더 가깝다. 다시 한번 강조하지만, 코어 i9-10900K와 윈도우 11 결과는 없지만, 10세대 제품의 기존 점수는 1,325점, 11세대 제품은 1,640점을 기록한 AMD 라이젠과 비슷한 수준이다.

그러나 인텔 최신 성능 코어는 라이젠 9 5950X보다 성능이 19% 높고, 구형 10세대 칩보다 31%나 나아져 당혹스러울 정도였다. 맥북 프로 M1 맥스와 앨더 레이크를 비교하면 어떨지를 궁금해 하는 이에게 알려주자면, 앨더 레이크가 우세하다. 모바일 칩과 데스크톱 칩을 비교하는 단일 쓰레드 성능 테스트에서 12세대 앨더 레이크 CPU는 애플 최신 M1 칩보다 약 20%나 더 빨랐다. 물론 인텔 제품은 노트북용 칩이 아니었지만, 인텔 12세대 CPU를 탑재한 노트북이 출시되면 충분히 맥북 프로의 경쟁자가 될 것이다.

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

압축 성능

CPU의 압축 성능은 인기있고 무료인 7-Zip 내부 벤치마크로 측정했다. 벤치마크는 CPU 쓰레드 수를 살펴보고 테스트하면서 자체적으로 여러 번 스풀링을 반복한다. 압축 테스트에서는 코어를 전부 사용하는 경우 압축 성능에서 24%, 압축 해제 성능에서 35% 더 높은 수치를 보여준 라이젠이 가장 큰 승자다.

7-cpu.com에 따르면, 압축 측면에서는 메모리 지연 시간, 데이터 캐시의 크기 및 TLB(translation look ahead buffer)가 중요한 반면, 압축을 풀 때는 정수 및 분기 예측 실패 패널티(branch misprediction penalties)가 중요하다. 결국, 실제 애플리케이션으로 파일 압축하거나 압축을 푸는 것은 보통 단일 쓰레드에 의존하기 때문에 멀티 쓰레드 성능과의 상관 관계는 이론에 그친다고 할 수 있다.

12세대 코어 i9의 문제는 심지어 압축 성능도 화려하지 않다는 것이다. 실제로 11세대 코어 i9은 윈도우 10 단일 쓰레드 성능에서 7,916으로 약간 더 빠르다. 간단히 요약하면 라이젠 9이 7-zip 테스트에서 압축 성능 우위를 유지했다. 이견은 있을 수 없다. 일부는 초기 DDR5 메모리의 지연 시간과 7-Zip이 특별한 명령을 사용하지 않는 이유도 있겠지만, 어쨌든 압축 테스트에서는 라이젠이 승리했다.

ⓒ IDG

인코딩 성능

CPU 인코딩 테스트는 무료이자 오픈소스인 핸드브레이크 트랜스코더/인코더를 사용하여 무료이자 오픈소스인 4K 티어스 오브 스틸(Tears of Steel) 영상을 H.265 코덱과 1080p 해상도로 변환하는 작업을 수행한다. 라이젠 9은 인코딩을 약 6% 더 빨리 끝내면서 다시 1위를 차지했다. 압도적인 승리는 아니지만 어쨌거나 1등이다. 

ⓒ IDG

합성 테스트

이제 긱벤치 5로 옮겨간다. 이 테스트는 21개의 작은 개별 루프로 구성된 합성 벤치마크인데, 개발자인 프라이메이트 랩스(Primate Labs)는 텍스트 렌더링에서 HDR, 기계 언어 및 암호화 성능에 이르기까지 모든 분야에서 인기있는 애플리케이션을 모델링했다고 한다. 긱벤치는 과거 논란의 중심에 있었지만, 여전히 인기가 높은 벤치마크다. 3D 렌더링과 압축, 인코딩 등에서 순위가 오르내렸던 코어 i9-12900K는 라이젠 9 5950X보다 8%가량 

긱벤치 벤치마크는 과거에 논란의 대상이 되었지만, 오늘날에는 비난받지 않고서 어떤 테스트를 유지하는 것이 어렵다. 하지만 이 제품은 어리석게도 인기가 있고, 당신이 긱벤치 5에 대해 어떻게 생각하든 간에, 사람들은 CPU가 거기에서 어떻게 작동하는지 보고 싶어한다. 3D 렌더링, 압축 및 인코딩을 어느 정도 반복한 결과, 인텔 코어 i9-12900K가 라이젠 9 5950X보다 약 8% 앞서는 것으로 나타났다.

ⓒ IDG
ⓒ IDG

콘텐츠 제작 성능 

전체 점수는 코어 i9-12900K가 라이젠 9 59050X에 비해 4% 더 앞선다. 프로시언 2.0은 이미지 보정(retouch)와 일괄 내보내기라는 2가지 방식으로 결과를 나눈다. 프로시언에 따르면, 이미지 보정에서는 기본적으로 12세대 코어 i9과 라이젠 9이 동점이었다. 주로 라이트룸 클래식 사진 내보내기 성능을 시험한 일괄 처리에서는 코어 i9가 최대 5%까지 앞섰다. 라이트룸 사진 내보내기가 멀티코어 성능에 의존하는 경향이 크기 때문에 마지막 결과에 놀랐다. 라이젠 9의 승리를 예상했기 때문이다. 결과는 그렇지 않았다. 

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

AI 성능

ⓒ IDG
ⓒ IDG

실생활 성능

비싼 컴퓨터로 인디 영화를 위한 특수 효과를 만들거나 이국적인 여행에서 찍은 사진을 편집하는 것을 상상하기 쉽지만, 세상 일의 대다수는 청구서를 지불하는 지루한 작업과 더 연관이 깊다. 따라서 마이크로소프트 오피스 성능을 UL의 프로시언 2.0 오피스 생산성 테스트를로 측정했다. 어도비와 마찬가지로, 다루는 마이크로소프트 워드, 엑셀, 파워포인트 및 아웃룩에서 고품질 미디어를 많이 다루는 작업을 대상으로 한다. 현실이 지루한 것처럼, 이런 작업이 가장 현실적이라고 할 수 있을 것이다.

오피스나 사무적이고 딱딱한 아웃룩 성능에 열광하는 사람에게는 라이젠보다 16% 빠른 코어 i9-12900K가 유리한 것으로 나타났다. 개별 애플리케이션을 결과에 따르면 12세대 코어 i9는 워드에서 14%, 엑셀에서 19%, 파워포인트에서 10%, 아웃룩에서 19% 더 빠르다. 

ⓒ IDG
ⓒ IDG

게이밍 성능

첫 번째 차트의 수직 축 눈금은 60와트에서 340와트까지를 표시하며, 0은 시간 수평 축을 의미한다. 먼저 모든 코어를 사용하여 시네벤치 R20을 실행했는데, 12900K(빨간색) 막대가 320와트의 총소비량까지 올라간 것을 볼 수 있다. 이것은 거의 라이젠 9 5950X(보라색)의 최대치보다 거의 100와트 더 많다. 약 45% 더 많은 양이다. 일단 모든 코어에 대해 두 칩 모두 시네벤치를 완료하면, 단일 코어나 쓰레드를 사용하여 칩을 실행한다. 이제 115와트 범위의 12세대 코어 i9의 총 시스템 전력을 볼 수 있는데, 라이젠 9가 약 10와트를 더 소비한다. 코어 i9가 테스트를 더 빨리 끝내고 라이젠 9 시스템보다 더 적은 전력을 사용한 것도 확인할 수 있다. 

ⓒ IDG

전력 소비

ⓒ IDG
ⓒ IDG

쓰레드 스케일링

인텔의 11세대부터 12세대까지의 세대별 성능 변화는 경이롭다. 단일 쓰레드를 사용함으로써 코어 i9-12900K는 이전 제품보다 42% 더 빠르며 그 속도에서 조금 올라간다. 8개 쓰레드에서 최신 세대의 코어 i9 최대치를 기록할 때 12세대 코어 i9은 놀랍게도 82% 더 빠르다. 지난 3월 출시된 11세대 칩과 비교하면 완전히 놀라운 변화다. 직접 전력 양을 추적해보지는 않았지만, 이전 11세대 코어 i9-11900K는 시네벤치 R20 실행에 거의 380와트 가까이를 사용한 반면, 12세대 코어 i9는 약 320와트를 사용했다. 따라서, 12세대 코어는 훨씬 적은 전력을 사용하면서도 훨씬 더 빠르다.

ⓒ IDG
ⓒ IDG

인텔 코어 i9-12900K, 결론

조금 의외일지도 모르겠다. 최고의 CPU라는 것은 존재하지 않는다는 것이 결론이다.

그보다는 특정 요구에 가장 적합한 CPU가 곧 최고의 CPU다. 이 긴 벤치마크는 각 요구사항을 6개 부문으로 나눠 각 분야에서 어떤 칩이 승리했는지를 확인했다. 인텔에 좋은 소식은 거의 모든 부문에서 좋은 위치를 차지하고 있다는 것이다.

렌더링 / 하이쓰레드 카운트 
하이 쓰레드 카운트 애플리케이션 및 렌더링에서 코어 i9-12900K는 시네벤치 R23 테스트에서 가까스로 승리라는 결과를 냈지만, 다른 CPU 렌더링 테스트에서는 훨씬 미묘한 결과가 나왔다. 솔직히 90% 렌더링 PC용 칩을 선택한다면, 라이젠 9 5950X가 아마 더 나은 선택일 것이다. 
승리 : 라이젠 9 5950X.

콘텐츠 제작
앞서 살펴본 바와 같이, 콘텐츠 제작은 단순히 쓰레드가 제일 많기만 하면 되는 작업이 아니고, 12세대 코어 i9은 라이젠 9 5950X보다 더 많은 역량을 증명했다. 포토샵, 라이트룸 클래식, 프리미어 프로를 주로 다룬다면 인텔이 더 나은 선택이 될 것이다. 
승리 : 코어 i9-12900K.

실생활
오피스 생산성과 크롬의 벤치마크를 통해 반응성이 더 높은 것이 인텔 CPU라는 점을 확인했다. 물론 결과에 동의하지만 동시에 라이젠 9 5950X도 두 사용례를 모두 잘 처리할 수 있다고도 믿는다. 아웃룩, 워드 실행이나 인터넷 검색이 주 작업인 하이엔드 데스크톱을 조립할 경우 약간 등급을 낮춰도 될 것 같다.
승리: 코어 i9-12900K.

게이밍
실제 게임 플레이에서 차이를 보려면 CPU보다 GPU에 더 집중해야 한다. 그렇지만 게임 테스트에서 인텔 12세대 코어 i9은 분명히 라이젠보다 점수가 높거나 거의 동점이었다. 의심의 여지없이 최고의 게임용 CPU다. 하지만 어느 쪽을 택해도 좋은 선택이다.
승리 : 코어 i9-12900K.

기능
인텔 12세대 플랫폼은 PCIe 5.0 및 DDR5 메모리라는 새로운 세계를 열었다. 또한, 필요한 경우 썬더볼트를 사용할 수 있고 와이파이 6E까지도 통합되어 있다. 물론, DDR5의 가치가 없다고 말하는 이들도 있고 그런 주장에도 이유가 있겠지만, 인텔로서는 충분히 새로운 점이 있다. 
승리 : 코어 i9-12900K.

가치
아직도 AMD 라이젠 9 5950X가 그리 대단한 가치가 없다고 생각하는 사람도 있고, 그 전 해에 2,000달러나 했던 CPU와 성능이 동등한데도 가격이 750달러에 불과한 것을 칭찬하는 사람도 있다. 만약 라이젠 9의 가격이 터무니없이 저렴하다고 생각하는 쪽이라면, 589달러라는 코어 i9-12900K의 공격적인 가격표를 보고 당장 구매하겠다고 소리칠 것이다. 하지만 이 가격은 대량 구매시 적용되는 값이다. 그렇지만 전통적으로 대량구매 가격은 초기 수요가 확정되면 시중가와 몇 달러 차이 나지 않는다. 그렇다. 여기서 가격 대비 가치가 높은 제품은 인텔이다. 그야말로 해가 서쪽에서 뜰 기세다.
승리 : 코어 i9-12900K.

코어 i9-12900K는 위대한 과거 명성을 회복하고 다시 왕좌를 탈환하려고 나섰다. 앨더 레이크는 기다릴 가치가 충분했다. 인텔에게 박수를 보낸다, 브라보. editor@itworld.co.kr 

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock
Advanced Analysis, Worley Pty Limited
L7, 116 Miller Street, North Sydney, NSW 2060 Australia
Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au

Abstract

엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.

그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.

이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 ​​차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.

첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.

두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다.
계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.

최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.

Introduction

오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.

일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.

수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].

Validation

결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.

일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.

사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.

분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.

예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.

• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다.
• 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다.
• 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.

품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.

경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.

Applications

일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.

어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.

Case 1 – Deflection of a steel water tank

직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.

물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.

이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.

내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.

그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.

용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :

철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.

Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base

벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.

벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.

계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.

Figure 2 Wall deflection of water tank
Figure 2 Wall deflection of water tank

탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.

사례 2 – 배수로 배출

호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.

Figure 3 Flowchart showing the validation process
Figure 3 Flowchart showing the validation process

미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].

분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).

계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.

Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 7 Upper nappe profile next to pier
Figure 7 Upper nappe profile next to pier

분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.

높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.

사례 3 – 안벽 건설
주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.

시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.

그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.

Figure 8 SPT ‘N’ profiles
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
Figure 9 CPT profiles

이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.

  1. Removal of pockets of soft marine clay by dredging
  2. Dredging of sand to the required level
  3. Vibro-compaction of the sand on which the counterfort units were to be founded
  4. Placement of gravel for the quay wall foundation.
  5. Placement of concrete counterfort units weighing 360 tonne each
  6. Placement of hydraulic sand fill behind the units
  7. Surcharging the fill just behind the capping beam
  8. Construct capping beam and place more sand fill to the finished level
  9. Additional surcharge prior to the operation of container cranes.

Table 1 Soil properties used in the construction
simulation of the quay wall

Table 1 Soil properties used in the construction simulation of the quay wal
Table 1 Soil properties used in the construction simulation of the quay wal

2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.

  1. The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
  2. Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
  3. Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
  4. Apply an equivalent trapezoidal pressure to represent the surcharge.
  5. Placement of capping beam and the sand fill to the required level.
  6. Apply additional surcharge.
  7. Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
Figure 10 Construction sequence

분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.

Figure 11 Wall deformations
Figure 11 Wall deformations

토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.

Figure 12 Wall top movements
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
Figure 15 ‘FOS’ vs. H/V ratio

그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.

끝 맺는 말
세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.

이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.

익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.

자세한 내용은 원문을 참고하시기 바랍니다.

References
[1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172.
[2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580.
[3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry.
[4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195.
[5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603.
[6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225.
[7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580.
[8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649.
[9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846.
[10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74.
[11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies

고성능 컴퓨터(HPC)에 대한 이해

본 자료는 수치해석을 업무로 수행하는 엔지니어들의 고성능 컴퓨터에 대한 이해를 돕기 위해 https://www.amd.com/ko/technologies/hpc-explained 를 인용한 자료입니다.
본 자료의 모든 저작권은 https://www.amd.com에 있습니다.

고성능 컴퓨팅 안내

신약 개발에 걸리는 기간이 수년에서 수일로 단축된다고 상상해 보십시오. 고성능 컴퓨팅(HPC)은 시뮬레이션, 모델 및 분석을 통해 이러한 유형은 물론 기타 첨단 과학 문제를 해결할 수 있습니다. 이러한 시스템은 세계의 여러 주요 문제에 대한 해결책을 제공하여 “4차 산업혁명”으로 가는 길을 제시합니다.1 HPC 시스템은 이미 다음과 같은 용도로 사용되고 있습니다.

  • 여러 유형의 암과 기타 질병 퇴치를 위한 신약 화합물 개발 및 시험2
  • 방탄복과 같은 신소재 개발을 위한 분자 역학 시뮬레이션3
  • 영향을 받는 지역사회가 더 효과적으로 대비하도록 돕기 위한 중요한 기상 변화 예측4

슈퍼컴퓨터는 최첨단 HPC 시스템을 대표합니다. 슈퍼컴퓨터의 고유한 역량은 기능의 발전에 따라 시간이 지나면서 변화하는 표준에 좌우됩니다. 단일 슈퍼컴퓨팅 클러스터에는 수만 개의 프로세서가 포함될 수 있으며 세계 최고 성능의 최고가 시스템의 가격은 1억 달러 이상에 달합니다.5

HPC의 작동 방식

HPC에서 정보를 처리하는 두 가지 주요 방법:

직렬 처리를 중앙 처리 장치(CPU)에서 수행합니다. 일반적으로 각 CPU 코어에서 한 번에 한 작업만 처리합니다. CPU는 운영체제 및 기본적인 애플리케이션(예: 워드 프로세싱, 사무 생산성)과 같은 기능에 있어 필수적입니다.serial processing chart

병렬 처리를 여러 CPU 또는 그래픽 처리 장치(GPU)를 통해 수행할 수 있습니다. 원래는 전용 그래픽 용으로 개발된 GPU는 데이터 매트릭스(예: 화면 픽셀)에 대해 동시에 여러 산술 연산을 수행할 수 있습니다. GPU는 수많은 데이터 계층에서 동시에 작업할 수 있기 때문에 동영상에서 객체를 인식하는 것과 같은 머신 러닝(ML) 애플리케이션 작업에서 병렬 처리를 수행하는 데 적합합니다.parallel processing chart

슈퍼컴퓨팅의 잠재력을 극대화하기 위해서는 다양한 시스템 아키텍처가 필요합니다. 대부분의 HPC 시스템은 초고대역폭 상호 연결을 통해 여러 프로세서 및 메모리 모듈을 취합하여 병렬 처리를 지원합니다. 일부 HPC 시스템은 CPU와 GPU를 결합하는 데 이를 이기종 컴퓨팅이라고 합니다.

컴퓨터의 컴퓨팅 성능은 “FLOPS”(초당 부동 소수점 연산)라는 단위로 측정됩니다. 2019년 초반 현재 최고 수준의 슈퍼 컴퓨터는 143.5페타FLOPS(143 × 1015)를 처리할 수 있습니다. 페타스케일라고 하는 이러한 수준의 슈퍼컴퓨터는 천조 이상의 FLOPS를 수행합니다. 그에 비해, 하이엔드 게이밍 데스크탑은 속도가 1/1,000배 미만으로 약 200기가FLOPS(1 × 109)를 처리하는 데 그칩니다. 프로세싱과 처리 성능 모두에서 슈퍼컴퓨팅 혁신이 이루어지면 머지않아 엑사스케일 수준의 슈퍼컴퓨팅으로 발전하여 페타스케일보다 약 1,000배 빠른 속도가 실현될 것입니다. 이는 엑사스케일 슈퍼컴퓨터가 초당 1018(또는 10억 x 10억)의 연산을 수행할 수 있음을 의미합니다.evolution processing power

“FLOPS”는 이론적 처리 속도를 나타냅니다 – 프로세서에 지속적으로 데이터를 전송하는 데 필요한 속도를 파악합니다. 그러므로, 데이터 처리율이 반드시 시스템 디자인에 반영되어야 합니다. 프로세싱 노드 간 상호 연결과 함께 시스템 메모리가 데이터의 프로세서 도달 속도에 영향을 줍니다.supercomputer representative power

차세대 슈퍼컴퓨터가 구현하는 1 exaFLOP의 처리 성능은 5,000,000대에 달하는 데스크탑 컴퓨터의 성능에 필적합니다.*

*각 데스크탑의 처리 성능을 200기가FLOPS로 가정

스마트한 용어

  • 고성능 컴퓨팅 (HPC): 단일 컴퓨터(예: 1개의 CPU + 8개의 GPU)부터 세계적 수준의 슈퍼컴퓨터를 아우르는 폭넓은 범위의 강력한 컴퓨팅 시스템
  • 슈퍼컴퓨터: 진화하는 성능 표준에 기반한 최고 수준의 HPC
  • 이기종 컴퓨팅: 직렬(CPU) 및 병렬(GPU) 처리 기능을 최적화하는 HPC 아키텍처
  • 메모리: 데이터에 신속하게 액세스하기 위해 HPC 시스템에서 데이터가 저장되는 위치
  • 인터커넥트: 프로세싱 노드 간 통신을 지원하는 시스템 계층, 여러 수준의 상호 연결이 슈퍼컴퓨터 내에 존재
  • 페타스케일: 초당 1,000조(1015)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터
  • 엑사스케일: 초당 100경(1018)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터

새로운 이용 사례

기술 수준이 향상되면서, HPC는 더욱 폭넓은 기능으로 확장되었습니다. 오늘날 처리 능력과 메모리가 그 어느 때보다 향상되어 보다 복잡한 문제를 해결할 수 있게 되었습니다.

  • 머신 러닝: 인공지능(AI), 머신 러닝(ML)의 하위집합으로서 수행 지침을 수동적으로 받아들이는 대신 스스로 학습할 수 있는 시스템을 말합니다. HPC 시스템은 사진에서 흑색 종을 감지하는 암 연구와 같이 방대한 양의 데이터를 분석하는 높은 수준의 ML에 사용할 수 있습니다.6
  • 빅 데이터 분석: 학술, 과학, 금융, 비즈니스, 의료, 사이버 보안 및 정부 애플리케이션 부문의 연구 및 문제 해결을 보완하기 위해 대량의 데이터 세트를 신속하게 비교하고 상관 관계를 분석합니다. 이 작업에는 대규모 처리 및 컴퓨팅 기능이 필요합니다. 매년 50페타바이트의 임무 데이터가 생성되는 NASA에서는 슈퍼컴퓨팅을 활용해 관측을 분석하고 방대한 정보를 바탕으로 시뮬레이션을 실행합니다.7
  • 고급 모델링 및 시뮬레이션: 기업은 초기 단계에서 물리적 구축을 수행하지 않고도, 고급 모델링 및 시뮬레이션을 통해 혁신적인 제품을 더 빨리 출시하고 시간, 재료 및 인건비를 절약할 수 있습니다. HPC 모델링 및 시뮬레이션은 신약 개발 및 시험, 자동차 및 항공 우주 설계, 기후 예측/기상 관측, 에너지 애플리케이션 부문에서 활용됩니다.8

AMD가 엑사스케일에 대한 드라이브를 실현하는 방식

미국에너지국(DOE)/버클리 연구소(Berkeley Lab), 로렌스 리버모어 국립 연구소(U.S. Lawrence Livermore National Laboratory), 슈투트가르트 대학(University of Stuttgart) 및 CSC(핀란드 IT 과학 센터)의 최신 시스템과 같은 세계 최고 성능의 슈퍼컴퓨터가 바로 AMD 기술에 기반합니다.9

가까운 미래에 엑사스케일 수준의 최적의 슈퍼컴퓨터 설계를 실현하기 위해서는 더욱 강력한 처리 성능 및 프로세싱 기능(CPU 및 GPU 모두에서)이 필요합니다. 고성능 컴퓨팅과 그래픽 기술 부문 모두에서 업계 리더인 AMD는 HPC 시스템을 최적화하는 데 있어 몇 가지 고유한 이점을 제시합니다. 미국에너지국(DOE)에서 추진하는 엑사스케일 컴퓨팅 프로젝트의 일환으로, AMD는 미국 최초로 엑사스케일 수준의 슈퍼컴퓨터를 개발하기 위한 기술을 발전시키기 위해 미국 정부와 파트너십을 맺었습니다.10 이 작업에는 CPU 및 GPU 마이크로아키텍처, 메모리 시스템, 구성 요소 통합 및 고속 인터커넥트에 중점을 둔 연구가 포함되었습니다.

exascale desktop icon데스크탑

지역 전력망에 대한 하나의 동적 시나리오를 실시간으로 시뮬레이션합니다.

petascale iconn페타스케일

국가 전력망에 대한 수만 개의 동적 시나리오를 실시간으로 시뮬레이션합니다.

exascale  icon엑사스케일

전 세계 전력망에 대한 수백만 개의 동적 시나리오를 생성 및 수요에 관한 정의되지 않은 변수를 적용해 실시간으로 시뮬레이션합니다.

미래로 나아가는 힘과 자유

엑사스케일 컴퓨팅은 맞춤형 의료, 탄소 포집, 천체 물리학, 시장 경제학 및 바이오 연료 분야의 발전에 기여할 잠재성이 있습니다. 전문가들이 날씨를 더 정확히 예측하고, 더 복잡한 수학적 문제를 해결하며, 우주의 더 먼 곳까지 탐험하고, 에너지 절감형 전력망을 구축하는 데 도움이 될 것입니다.11 차세대 슈퍼컴퓨팅을 위한 공동의 노력과 이러한 시스템이 사회에 기여할 수 있는 긍정적인 영향을 바탕으로, AMD는 미래의 컴퓨팅 시스템의 성능, 에너지 효율성, 신뢰성 및 프로그래밍의 향상을 위한 연구와 자원에 주력하고 있습니다.

자세히 알아보기: https://www.amd.com/hpc

FLOW-3D 해석용 컴퓨터 안내 – 2018년 2분기 업데이트

FLOW-3D 수치해석용 컴퓨터 선택 가이드

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

현재 고성능컴퓨터는 장기적인 전망으로 보는 Quantum Computing, DNA-based Computing, Optical Computing 등의 미래의 컴퓨팅 기술과 단기적인 고성능 컴퓨터 기술인  Symmetric -Multi Processing 기술과 MPP(Massively Pallel Processing)기술이 일반화되고 있습니다. (아래 그림 참조)

일반적으로 슈퍼컴퓨터로 불리는 고성능 HPC는 규모가 큰 운영관리시설과 전문인력이 필요하고 매우 고가이기 때문에, 실제 업무를 수행하는 대부분의 기업이나 기관에서는 단일 SMP 컴퓨터를 많이 사용하고 있습니다.

FLOW-3D에 적합한 일반적인 최소 권장사양은 아래 사양을 참고하시면 됩니다.

다만, 가능하면 최신 CPU의 고성능, 저전력 등 최신기술이 반영된 제품을 선택하는 것은 언제나 투자비와 연관되어 있기 때문에 항상 고민의 대상인 것은 틀림없는것 같습니다.

1) Processors

– FLOW-3D는  x86-64 (Intel/AMD) 프로세스를 지원합니다.

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가되면 인텔과 AMD의 모델 번호와 사양이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

부동소숫점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

2) Operating Systems
  • 64-bit Windows 7, Windows 8, Windows 8.1, Windows 10, Windows Server 2008, and Windows Server 2012
  • 64-bit Red Hat Enterprise Linux 6, Red Hat Enterprise Linux 7 and SUSE 11*

Windows 및 Linux에 대한 시뮬레이션 시간은 대등합니다. 사용자가 사용하기 편리한 운영 체제를 선택하면 됩니다.

3) Graphics Support
FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다. 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.
4) Memory and Processor Speed

프로세서 코어 당 최소 2GB의 RAM을 권장합니다. 예를 들어, 두 개의 6 코어 CPU가 있을 경우 워크스테이션의 메모리는 최소 24 GB가 있어야합니다. 필요한 RAM의 양은 해석 대상 문제에 매우 의존적입니다. 큰 도메인 또는 복잡한 형상에서 좋은 해상도를 원하는 시뮬레이션은 필요한 최소한 RAM보다 훨씬 더 많은 RAM이 필요합니다. 메모리 속도는 시뮬레이션 시간에 영향을 적게 받지만 통상적으로 1333MHz 또는 1600 MHz이면 충분합니다.

5) HDD

수치해석은 해석결과 데이터 양이 매우 크기 때문에 읽고 쓰는데 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.
그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르지만 가격 또한 매우 고가이므로 예산 범위내에서 선택을 고민해야 합니다.

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기 까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.