Cad2Stl

FLOW-3D 유틸리티 프로그램 안내

이 문서에서는 FLOW-3D에서 사용할 수 있는 일부 Utility Program에 대해 설명합니다. 유틸리티 프로그램의 목적은 시뮬레이션을 수행할 때 반드시 필요한 것은 아니지만 특정 작업을 쉽게 수행할 수 있도록 돕는 것입니다. 각 개별 유틸리티의 사용법은 다음과 같습니다.

  1. 파일 변환 및 STL 품질 검사 도구

FLOW-3D는 중립 형식인 STL파일 형식만 지원하며 대부분의 CAD 패키지에서 STL형식을 지원하지만 형상을 STL형식으로 만들 수 없는 이유가 있을 수 있습니다. 이로 인해 FLOW-3D 사용자는 여러 파일 변환 유틸리티를 사용할 필요가 있을 수 있습니다. 또한 STL 파일 품질을 확인하는데 사용할 수 있는 여러 유틸리티도 사용할 수 있습니다. 아래 나열된 이러한 유틸리티는 다음 섹션에서 자세히 설명합니다.

  • Cad2Stl : 다양한 CAD 형식에서 변환 파일을 사용하는.STL파일
  • Topo2STL : 파일을topo형식에서.STL파일로 변환하는 데 사용
  • MiniMagics :.STL파일의 오류를 확인하는 데 사용
  • qAdmesh :.STL파일의 오류를 확인하고 사소한 문제를 해결하는데 사용

Cad2Stl

Cad2Stl 은 다른 CAD 파일 형식을 FLOW-3D에서 사용되는 STL 파일 형식으로 변환하기 위한 파일 변환 도구입니다. Cad2Stl 은 다음 파일 형식을 STL 형식으로 변환합니다.

  • Autodesk 3D Max :.3ds
  • Autodesk 별명 :.obj
  • IGES: .igs,.iges
  • BREP :.brep
  • 단계 : .stp,.step
  • 아바쿠스 6.2+ :.inp
  • NASTRAN :.blk
  • Marc Mentat : 고정 형식과 쉼표로 구분.dat

Cad2Stl 은 파일에서 역 법선 벡터를 보정하는 기능도 있습니다. 이 유틸리티는 유지 보수 계약이 유효한 모든 FLOW-3D 고객에게 무료로 제공되며 FLOW-3D Usre Site의 유틸리티 페이지에서 다운로드 할 수 있습니다.

Cad2Stl 은 Flow Science Japan에서 FLOW-3D 사용자를 위해 개발되었습니다 .

Cad2Stl Program
  1. 변환 목록에 변환할 파일 추가
    • 추가 -변환 목록에 파일을 추가합니다.
    • 제거 -변환 목록에서 파일을 제거합니다. 제거하려면 변환 목록에서 파일을 강조 표시하고 제거를 선택하십시오.
    • 기본적으로 파일 이름은 import file 이름과 일치하는 CAD파일을 STL파일 이름으로 지정하는데 변경이 필요하면 더블 클릭하고 이름을 바꾸면 변경할 수 있습니다.
  2. 구체화 옵션을 사용하여 STL 파일의 품질을 선택하십시오. 선택하고 볼 수 있는 네 가지 수준의 정확도가 있습니다. 파일이 변환될 때마다 STL로 작성된 파일이 표시되므로 사용자가 만족스럽거나 더 높은 수준의 세분화가 필요한지 여부를 결정할 수 있습니다. 정확성이 향상되면 파일 크기는 증가하지만 처리 시간은 크게 증가하지 않습니다. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다. 이것은 BREP, IGES및 STEP 파일 형식에만 적용됩니다.
  3. 원하는 작업을 선택하십시오. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다.
    • 변환 -파일을 변환합니다. 한 파일을 변환하려면 로드할 파일 목록에서 해당 파일을 강조 표시하여 변환하십시오.
    • 모두 변환 -모든 파일을 변환
    • 표시 -변환된 파일을 강조 표시합니다
    • 면 방향 수정 -일반 수정 루틴
    • 변환 목록 숨기기 -더 나은 부품 표시를 위해 보기 화면을 증가 시킵니다.
    • 와이어 프레임 오버레이 -각 STL 패싯의 패싯 모서리를 오버레이 합니다. 이것은 오른쪽 하단의 확인란입니다.
    • 로그 지우기 – 변환 로그 텍스트 상자에 대한 모든 데이터 출력을 지웁니다.
  4. 종료 -프로그램을 닫습니다

qAdmesh

qAdmesh는 .STL파일에 오류 가 있는지 확인하는 도구이며 연결이 끊어진 패싯, 반전된 법선, 연결이 끊어진 패싯 및 누락된 패싯과 같은 사소한 문제를 해결하는 데 사용할 수 있습니다. qAdmesh를 시작하려면:

  • GUI에서: Model Setup 탭의 Tools ‣ qAdmesh로 이동하십시오.
  • Windows: 바탕 화면 아이콘을 클릭하거나 시작 메뉴에서 FLOW-3D v12.0 폴더의 형상 도구 하위 디렉토리에 있는 Admesh 항목으로 이동하십시오.
  • Linux의 경우: $F3D_HOME/utilities/qAdmesh을 실행하십시오.

명령: qAdmesh를 열고 찾아보기 버튼을 사용하여 지오메트리 파일을 로드 하십시오. 문제를 해결하고 수정 사항으로 새 형상 파일을 생성하려면 기본 옵션을 그대로 두고 출력 유형을 선택하고 새 형상 파일의 경로를 지정하십시오. 이진 STL 은 ASCII STL 옵션 보다 작은 파일을 생성하므로 권장됩니다 (이진 및 ASCII 형식 만 FLOW-3D 로 인식됨). 그런 다음 적용을 클릭하여 파일을 확인하고 수정하십시오.

qAdmesh program
qAdmesh program

qAdmesh의 출력은 인터페이스의 메시지 섹션에 표시됩니다. 출력에는 감지된 오류와 출력 옵션이 선택된 경우 이러한 문제점을 해결하기 위해 수행할 조치가 표시됩니다.

사용자 정의 검사 옵션은 파일을 고정할 때 프로그램이 어떤 작업을 수행하는지에 대한 자세한 제어를 제공할 수 있습니다. 또한 변형 및 공차 탭에는 .STL 파일의 회전, 미러링, 크기 조정, 변환 및 병합 기능을 제공하는 옵션이 있습니다.

qAdmesh는 무료 유틸리티입니다만 FSI에서 지원하지 않습니다. qAdmesh가 문제를 해결하는 능력은 심각도에 따라 다릅니다. 문제의 수가 증가함에 따라 qAdmesh 가 문제를 해결할 수 있는 가능성이 줄어 듭니다. 문제를 해결할 수 없는 경우 CAD 패키지를 사용하여  .STL 파일을 재생성 하는 것이 좋습니다.

MiniMagics 

MiniMagics 는 무료 STL파일 시각화 및 복구 유틸리티입니다. 설치는 FLOW-3D 홈 디렉토리 의 Utilites 폴더에서 찾을 수 있으며 파일 분석 및 복구를 위한 유용한 도구로 qAdmesh에서 수행된 수정 사항을 시각화하거나 qAdmesh의 대안으로 사용할 수 있습니다.

$F3D_HOME/UtilitiesSTL

  • Topo2STL

FLOW-3D가 지원하는 유일한 CAD 파일 형식은 .STL이지만 형식을 포함하여 다른 형식의 지형 데이터를 갖는 것은 드문 일이 아닙니다. Topo2STL의 유틸리티로 변환할 수 있습니다. Topo2STL 은 Windows 시스템에서만 사용 가능하며 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다.

명령

  1. 지형 파일은 다음 형식의 ASCII 파일입니다. 각 선은 점을 나타내며 동일한 단위 시스템에서 3 개의 좌표 (일반적으로 피트 또는 미터)를 포함합니다. 좌표는 공백으로 구분됩니다. 선의 좌표 순서는 XYZ 여야 합니다. 여기서 Z는 표고입니다. 두 좌표는 동일한 XY 점을 공유할 수 없습니다. 포인트의 순서 (파일의 줄)는 중요하지 않습니다. 좌표를 포함하지 않는 머리글 줄이나 꼬리 줄이 없어야 합니다.
  2. Topo2stl.exe유틸리티가 추출된 위치에 있는 파일을 실행하여 Topo2STL에 액세스 할 수 있습니다.
  3. 유틸리티를 시작하면 변환할 파일을 선택하라는 topo 파일 찾아보기 창이 나타납니다. 파일 찾아보기 창을 이용하여 파일을 선택합니다.
  4. topo파일이 선택되면, Topo2STL의 창이 나타나고, X, Y의 범위와 Z 계산할 topo데이터 익스텐트가 계산되면 Topo 데이터 익스텐트 및 데이터의 총 포인트 수에 대한 정보가 Information: Topo data extents 아래에 표시됩니다.
Topo2STL
Topo2STL
Topo2STL
Topo2STL
  1. 변환에 필요한 사용자 입력은 공간 분해능 및 STL 최소 Z 좌표입니다. 기본적으로 공간 해상도는 0.002 * min (X 범위, Y 범위)이고 STL 최소 Z 좌표는 ZMIN-(ZMAX-ZMIN)입니다. 여기서 ZMIN 및 ZMAX는 Topo 데이터의 범위입니다.
    • 공간 해상도는 STL 파일을 생성하는 동안 Topo 데이터가 얼마나 정밀하게 분석되는지 제어합니다.
    • STL 최소 Z 좌표는 Topo 데이터의 ZMAX보다 작은 값이어야 합니다. 이것은 STL파일의 최소 ​​Z 두께를 효과적으로 설정합니다.
  2. Browse 버튼은 파일 출력 위치를 설정하는 데 사용할 수 있습니다.
  3. 변환을 클릭하면 변환 프로세스가 시작됩니다. 이 시점에서 변환 취소를 사용하여 변환이 완료되거나 종료될 때까지 Topo2STL 창을 닫을 수 없습니다.
Topo2STL
Topo2STL
  1. 변환이 완료 (또는 종료)되면 변환 단추가 변환 추가로 변경되어 사용자가 변환할 다른 Topo 파일을 선택할 수 있습니다.
Topo2STL
  1. FSAI를 사용한 유한 요소 메쉬 파일 형식 변환

FSAI의 도구에서 유한 요소 메시를 변환하는 유틸리티입니다 Abaqus6.2 이후 형식과 NASTRAN 벌크 형식에 사용되는 형식을 변환하는 FSAI는 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다. FSAI를 사용하려면 다음을 수행하십시오. EXODUS II

  • 적절한 모드에서 유틸리티를 엽니다 (초기 메쉬의 Abaqus 형식인지 NASTRAN 형식인지 여부에 따라 다름 )
  • 파일에서 생성 필드에서 입력 유한 요소 메쉬를 찾습니다.
  • 생성된 파일 위치 필드에서 원하는 출력 위치를 찾으십시오.
  • 생성된 파일 이름 필드에서 원하는 출력 파일 이름을 설정하십시오.
  • 생성을 누릅니다.

 노트

이 FSAI 프로그램을 사용하려면 FLOW-3D 와 별개의 라이센스가 필요합니다. 자세한 내용은 FLOW-3D 영업 담당자에게 문의하십시오.

  1. 계산기

유틸리티 드롭 다운 메뉴에 여러 계산기가 추가되어 알려진 매개 변수 (예: 유체 속성 등)를 기반으로 입력 수량을 추정할 수 있습니다. 사용 가능한 계산기는 다음을 계산합니다.

  • 냉각 채널의 열전달 계수
  • 재료 특성 및 시뮬레이션 시간에 따른 열 침투 깊이
  • 샷 슬리브의 유체 높이
  • 고압 다이캐스팅을 위한 피스톤 속도
  • 밸브 압력 계수
  1. MPDB (Material Properties Database) 확장

MPDB (Material Properties Database)는 FLOW-3D 와 별도로 Flow Science, Inc 에서 구입할 수 있는 타사 데이터베이스입니다. 여기에는 문헌의 다양한 온도 의존성 고체 재료 특성이 포함되어 있습니다. FLOW-3D 용 MPDB는 사용자가 FLOW-3D의 기본 데이터베이스와 호환되는 파일 형식을 내보낼 수 있도록 하여 데이터를 FLOW-3D 로 편리하게 가져올 수 있는 MPDB 독점 버전입니다. MPDB의 재료 특성은 대부분 고체상입니다. 따라서 FLOW-3D 모든 모델 고체 특성을 요구하는 데이터, 특히 유체 구조 상호 작용, 응고 및 열 응력 진화 모델을 활용할 수 있습니다.

MPDB는 다양한 형식으로 데이터를 내보낼 수 있는 독립형 데이터베이스로 사용될 수 있습니다. MPDB에 대한 일반적인 지침은 JAHM Software, Inc.를 방문하십시오. 여기에서는 FLOW-3D 와 함께 MPDB를 사용하는 방법에 대한 지침을 제공합니다. FLOW-3D 와 제대로 통합하려면 MPDB 용 실행 파일이 Windows와 Linux에 있어야 합니다. 실행 파일은 FLOW-3D GUI에 의해 감지되며 재료 메뉴 아래 MPDB에서 재료 가져오기 메뉴 항목 이 활성화됩니다. 이러한 조건 중 하나라도 충족되지 않으면 FLOW-3D GUI를 통해 액세스 할 수 없습니다. MPDB%F3D_HOME%\Utilities$F3D_HOME/UtilitiesMPDB_for_FLOW-3D

FLOW-3D MPDB
FLOW-3D MPDB

material를 클릭 MPDB에서 가져오기 및 사용자 인터페이스 MPDB는 별도의 창에서 열립니다. 재료는 주요 요소로 분류되었습니다. Materials 탭, 테이블에서 요소를 마우스 오른쪽 버튼으로 클릭하여, 사용자는 해당 요소를 포함하는 물질의 목록을 볼 수 있습니다.

(Material Properties Database)
(Material Properties Database)

예를 들어 다음 그림은 철 (Fe)이 포함된 데이터베이스의 재료 목록을 보여줍니다.

FLOW-3D MPDB(Fe)
FLOW-3D MPDB(Fe)

사용자는 다른 합금, 세라믹, 유리 또는 기타 분류되지 않은 재료를 분류하는 다른 탭으로 전환할 수도 있습니다. 다음 그림은 Al & Cu 합금 목록을 보여줍니다.

FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Fe,Ni - 1006 (UNS G10060))
FLOW-3D MPDB(Fe,Ni – 1006 (UNS G10060))

재료가 식별되면 재료를 두 번 클릭하면 해당 재료에 사용할 수 있는 속성 목록이 있는 별도의 창이 나타납니다. 예를 들어 Fe 및 Ni 합금에서 1006 (UNS G10060)을 엽니다. 이러한 속성이 모두 FLOW-3D에 사용되는 것은 아닙니다.

FLOW-3D MPDB(1006(UNS G10060))
FLOW-3D MPDB(1006(UNS G10060))

각 속성은 이 창의 오른쪽에서 선택할 수 있는 다른 형식으로 파일에 표시, 플로팅 또는 저장할 수 있습니다. 그러나 이러한 속성 중 일부가 FLOW-3D 로 인식되는 것은 아닙니다. 

FLOW-3D 와 호환되는 파일 형식을 생성하려면 재료 창을 닫고 FLOW-3D/SolidWorks/ANSYS 메뉴에서 시작하십시오. 재료의 특성으로 FLOW-3D로 가져올 수 있는 세 가지 파일 형식이 있습니다.  유체 데이터베이스 형식(.f3d_dbf 확장), 고체 데이터베이스 형식 (.f3d_dbs 확장), 일반 쉼표로 구분된 값(CSV형식)으로 부터 시뮬레이션에 적합한 FLOW-3D 호환 형식을 선택하십시오. MPDB의 재료는 대부분 고체이지만 사용자가 응고된 유체의 특성을 가져오려면 FLOW-3D에서 응고된 유체 특성이 유체 특성의 일부이므로 Fluids 데이터베이스 형식을 선택해야 합니다. 솔리드 및 유체 데이터베이스 파일 형식과 파일은 현재 사용자의 문서 폴더와 Windows 및 Linux에 저장됩니다.

CSV<My Documents>\FLOW-3D\gui\MaterialsDatabase/home/<user>/FLOW-3D/gui/MaterialsDatabase

이러한 위치는 FLOW-3D의 데이터베이스가 사용자 정의 재료를 찾는 곳입니다. MPDB에서 이러한 위치로 내보낸 모든 자료는 FLOW-3D의 기본 데이터베이스에 의해 선택됩니다.

1006 (UNS G10060) 철 합금을 선택하십시오.

FLOW-3D MPDB(UNS G10060)
FLOW-3D MPDB(UNS G10060)

이전에 사용 가능했던 일부 특성은 FLOW-3D 와 관련이 없기 때문에 사용 불가능 합니다. 각 속성이 처리되자 마자 플롯 되거나 해당 데이터가 표시되면 참조 및 메모 섹션이 활성화됩니다. 참조 탭 속성에서 찍은 위치를 나타내는 참고 섹션은 일반적으로 데이터의 구성과 정확성에 관한 사항이 포함되어 있습니다. 

온도에 따른 특성의 동작을 이해하는 데 도움이 되도록 각 특성을 플롯 할 수 있습니다. 또한 데이터의 유효성에 대한 경고가 있을 수 있습니다. 

예를 들어 열전도도를 먼저 플로팅하면 저온 경고가 표시됩니다. 온도의 함수로 플롯을 표시하기 전에 .f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 

재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Temperature Plot)
FLOW-3D MPDB(Temperature Plot)

.f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

경우에 따라 재료에 사용자에게 필요한 속성이 없습니다. 데이터베이스에 사용 가능한 속성을 추가한 후 이러한 상황에서 누락된 속성은 유사한 속성을 가진 합금 (사용자의 위험 부담)에서 얻을 수 있습니다. 데이터베이스가 열려있는 동안 FLOW-3D에서 사용될 하나의 재료에 대해 속성을 혼합하고 일치시킬 수 있습니다.

FLOW-3D MPDB(Select properties to write to file)
FLOW-3D MPDB(Select properties to write to file)

데이터베이스를 닫은 후 파일 이름을 묻는 메시지가 사용자에게 표시됩니다. 기본값은 MPDB 가 재료에 지정하는 것입니다. FLOW-3D 가 재료를 사용자 정의 재료로 인식하도록 파일의 위치와 확장자가 미리 설정되어 있습니다.

FLOW-3D MPDB(File locate position)
FLOW-3D MPDB(File locate position)

CSV파일을 선택한 경우에도 동일한 프로세스가 적용됩니다. 데이터가 파일에 기록되면 각 테이블 형식 속성 창의 값 가져오기 버튼에서 데이터를 검색할 수 있습니다.

첫 번째 열은 항상 온도입니다.

FLOW-3D MPDB(csv file)
FLOW-3D MPDB(csv file)
  1. grfedit를 사용하여 flsgrf 파일 편집

명령 줄 유틸리티이므로 runscript와 같은 적절한 환경에서 실행해야 합니다 ( Runscripts 사용 참조 ).


Runscripts 사용

실행 스크립트는 작업 문제 디렉토리에서 실행되도록 설계되었습니다. 스크립트는 $F3D_HOME/local디렉토리에 있습니다. 스크립트를 사용하려면 다음 환경 변수를 설정해야합니다.

  • F3D_HOMEFLOW-3D 설치 디렉터리 의 경로를 지정합니다 .
  • F3DTKNUX_LICENSE_FILEFLOW-3D 라이선스 서버 의 위치를 ​​지정 합니다.
  • PATHPATH포함하도록 환경 변수를 수정해야합니다. $F3D_HOME/local그렇지 않으면 실행 스크립트를 찾을 수 없습니다.
  • F3D_VERSION: 사용할 솔버 버전을 지정합니다. 유효한 옵션은 double배정 밀도 버전 및 prehyd사용자 지정 배정 밀도 솔버입니다.

명령 줄에서 실행하려면 :

  1. 명령 프롬프트 또는 터미널을 엽니 다.
  2. 필요한 환경 변수를 설정하십시오.
    • Windows : FLOW-3D 를 시작하는 데 사용되는 배치 파일에서 환경을 복사하여 수행 할 수 있습니다 . 배치 파일의 내용은 FLOW-3D 아이콘 을 마우스 오른쪽 버튼으로 클릭 하고 편집을 선택 하여 액세스 할 수 있습니다 .
    • Linux : 설치 디렉토리 에서 파일을 flow3dvars.sh가져옵니다 local.
  3. 솔버가 실행중인 디렉토리로 변경하십시오.
  4. 원하는 runscript 명령을 입력하십시오. runhyd <ext2>

  • grfedit를 연 후 사용자에게 소스 파일 (flsgrf.*데이터가 복사될 파일)의 경로를 묻는 메시지가 표시됩니다. 파일의 전체 경로 (예 c:\users\username\FLOW-3D\simulation\flsgrf.simulation:)를 입력하고 <enter>를 누르십시오.
  • 이제, 파일 입력 확장의 목표 예를 들어, (데이터를 기록할 위치로 파일) 파일을 new_output. 데이터가 파일에 기록됩니다 c:\users\username\FLOW-3D\simulation\flsgrf.new_output. 대상 파일이 존재하면 파일을 덮어쓰거나 대상 파일에 데이터를 추가하라는 메시지가 표시됩니다. 대상 파일의 시간보다 늦게 시뮬레이션 시간을 가진 소스 파일 편집 만 추가됩니다.
  • 이 시점에서 프로그램은 어떤 히스토리 데이터 편집, 데이터 편집 재시작 및 대상 파일에 쓰기 위해 선택된 데이터 편집을 묻습니다. 프롬프트에 따라 작성할 데이터 편집을 선택하십시오.
  • 대상 파일을 작성한 후 프로그램이 닫히고 다른 flsgrf.*파일처럼 사용할 수 있습니다.

 노트

  • grfedit는 FLOW-3D v11.1 이상에서 작성된 결과 파일에서만 작동합니다.
  • 소스 flsgrf.*파일은 grfedit에 의해 수정되지 않습니다
  • FLOW-3D/MP의 출력 파일로 작업할 때는 flsgrf1의 위로 flsgrf 교체 하십시오 .
  • 소스 및 대상 파일 모두에 허용되는 유일한 이름은 flsgrf및 flsgrf1입니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너

등록비

  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐

여행

컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0
info.mun@maritim.de

뮌헨

뮌헨의 모든 것

뮌헨 도시지도 다운로드

High pressure die casting workspace:Advanced simulation options / 고압 다이캐스팅 workspace : 고급 시뮬레이션 옵션

고압 다이 캐스팅의 이점

  • 고압 다이캐스팅 기술은 매우 큰 경합금 부품을 대량으로 생산가능
  • 높은 정밀도, 우수한 표면 조도, 우수한 균일성 및 최적의 기계적 특성
  • 고압 다이캐스팅 공정은 또한 얇은 벽을 가진 부품과 스크류 및 라이너와 같은 다른 유형의 인서트를 가진 “공동 주조된”부품을 생산하여 제품 자체의 필수 부품이 될 수 있음

PQ2 해석

  • 다이 캐스팅 기의 기능과 게이트 속도를 일치시키는 표준 절차
  • 작동 시간은 충전 시간, 게이트 속도 및 금속 압력 등에 따라 다름
  • 기계 기능 내에서 유지되도록 샷 프로파일의 속도 변경
  • 정확한 샷 슬리브 모델링
  • No adjustment
  • With adjustment

Filling

Thermal die cycling

Spray cooling model

Filling with shot sleeve – fast shot activation

Solidification and porosity prediction

고압 다이캐스팅 문제 해결을 위한 설계 개선 사례

이 기사의 내용은 Littler Diecast Corporation 의 Mark Littler가 제공했습니다.

고압 다이 캐스팅 주조업체인 Littler Diecast 회사는 최근 항공 우주 분야에 사용될 제품을 위한 전기 스위치 프레임을 재 설계하고 다이캐스팅 할 수 있었습니다. 이전에는 다른 제조업체에 위탁 생산을 했지만 많은 주조 결함 문제가 있었으며 낮은 스크랩 비율을 달성하기 위해 새로운 디자인이 필요했습니다. Littler Diecast는 이 문제에 대한 사전 지식없이 FLOW-3D를 이용한 CFD 시뮬레이션을 통해 결함을 찾아 낼 수 있었습니다. 이것은 그들이 수주에 성공할 수 있을 만큼 고객에게 충분한 인상을 주었습니다.

  1. 문제 파악

문제가 된 제품 스위치는 A380 알루미늄으로 주조되며, 크기는 약 1 ¼”x 1”x 1/2”입니다. Littler Diecast는 다공성 공기 갇힘 문제가 플레이트와 기둥의 두 위치에서 부품 결함을 유발하고 있음을 발견했습니다. 이것은 고객에 의해 확인되었습니다. 부품이 충진되는 방식으로 인해 각 위치에 구멍이 형성되었습니다. 용탕 흐름은 그림1과 같이 단일 게이트를 통해 유입되어 플레이트의 먼쪽으로 분사된 다음, 백 채우기를 하여, 초기 응고로 인해 항상 배출되지 않은 에어 포켓을 포집합니다. 기둥에서도 동일한 문제가 발견되었습니다. 유체가 가장 먼 곳까지 분사된 다음 역류하여 파팅 라인을 통해 배출되지 않는 공기가 갇히게 됩니다.


다공성 문제를 보여주는 원래 부품의 X-ray 사진


그림 1: 단일 게이트를 사용한 원래 디자인 (속도 분포)


그림 2: 게이트가 3개인 최종 디자인(속도 분포)

  1. 오리지널 부품 디자인

부품의 원래 디자인에는 다른 문제들이 있었습니다. 잠금 와셔의 슬롯 주위와 플레이트 바닥의 씰링 표면에는 많은 다이 부식이 있었습니다. 부품의 모서리에 있는 오버플로는 결함이 밖으로 유출될 정도로 크지 않았습니다.

FLOW-3D를 사용하여, Littler Diecast는 유동 현상을 분석하고 시각적으로 분석할 수 있었습니다. 이러한 작은 부품의 경우, 얇은 부위의 빠른 냉각으로 인해 조기 응고가 문제가 됩니다. 유동이 부품을 가로 질러 분사되는 경우, 용탕이 냉각되고 공기 갇힘이 생성되어 더 많은 시간이 걸립니다. 가장 뜨거운 용탕이 마지막에 주입되는 것이 가장 좋습니다. 이를 염두에 두고 Littler Diecast는 많은 아이디어를 테스트하고 문제 발생 가능성을 최소화하는 디자인을 만들었습니다.

  1. 최종 부품 설계

세 가지 주요 설계 변경 후 부품 품질이 크게 향상되었습니다. 먼저, 게이트 및 러너를 재 설계하여 유체가 완전히 새로운 방향으로 3개의 게이트를 통해 유입되었습니다. 이는 더 큰 오버플로를 생성하는 두 번째 설계 변경과 결합하여 플레이트에 역류 현상이 훨씬 줄어들어 가장 뜨거운 용탕이 마지막으로 유입될 수 있음을 의미했습니다. 셋째, 게이트의 접근 각도와 위치가 변경되어 기둥의 역류를 방지하는데 도움이 되었습니다.

이 새로운 디자인은 또한 새로운 툴에서 다이 침식의 가능성을 줄였습니다. 대신, 기둥의 중앙 구멍에 사용되는 코어 핀으로 유체가 분출됩니다. 코어 핀은 쉽게 교할 수 있어서 다이를 수리하는 것보다 훨씬 빠르고 비용이 적게 듭니다. 이로 인해 많은 비용이 소모되는 다이 수정을 피할 수 있게 되어 엔지니어링 프로세스가 개선되었습니다.

  1. 물리적 검증

Littler Diecast는 생산 시설을 시험 가동한 short shots, x-ray 및 파괴 검사를 통해 디자인 변경 사항을 확인할 수 있었습니다. 짧은 샷은 균형 잡힌 러너를 보여주었고 x-ray에는 기포가 보이지 않았습니다. 파괴 시험은 기포가 없는 일관된 결정입자 구조를 보여주었으며, 이는 주조 결함이 아니라 재료의 강도에 기인한 것으로 입증되었습니다.


작업 현장에서 가져온 샘플 (최종 부품의 다른 각도에서 X-Rays)

 

FLOW-3D World Users Conference 2023

Home

FLOW-3D WELD Laser Brazing
Simulate the laser brazing process while considering the geometrical dimensions of the parts being joined.
What's New in FLOW-3D 2024R1
What's New in FLOW-3D 2024R1
New results file format, Turbulence model improvements, Compressible flow solver performance
What's New in FLOW-3D CAST 2023R2
What's New in FLOW-3D POST 2023R2
New results file format, New visualization capabilities, Better quantification of model outputs, Improved ray tracing, Representing flow fields with Surface LIC, Animated streamlines
FLOW-3D WELD Spot & Seam Weld
FLOW-3D WELD Spot & Seam Weld
Optimize laser power, pulse duration and pulse repetition rate process parameters.
FLOW-3D WELD Dissimilar Metals
Account for the laser power, heat flux profile and material properties of dissimilar metals.
FLOW-3D WELD Laser Cladding
Analyze the effects of process parameters on the strength and uniformity of the clad part.
FLOW-3D AM LBPF
FLOW-3D AM Laser Power Bed Fusion
Capture complex multiphysics phenomena for LPBF processes to achieve better builds
FLOW-3D WELD Laser Beam Shaping
FLOW-3D WELD Laser Beam Shaping
Understand the role of laser beam shaping on melt pool dynamics and keyhole stability.
What's New in FLOW-3D CAST 2024R1
What's New in FLOW-3D CAST 2024R1
Thermal Die Cycling (TDC) model with extended spray model, using plunger, sub-automatic Valve Position Adjustment...
FLOW-3D WELD Oscillation Welding
FLOW-3D WELD Oscillation Welding
Offering high resolution analysis of oscillation welding techniques and ensuring stable melt pool dynamics.
What's New in FLOW-3D HYDRO 2024R1
What's New in FLOW-3D HYDRO 2024R1
New local coordinate system, Using LandXML
FLOW-3D WELD Keyhole Welding
Understand the role of laser beam shaping on melt pool dynamics and keyhole stability.
FLOW-3D WELD Laser Soldering
Analyze laser soldering at the microscale while capturing complex multiphysics.
FLOW-3D AM
FLOW-3D AM Directed Energy Deposition
Gain insight into complex melt pool dynamics using the powerful and flexible particle model
FLOW-3D AM
FLOW-3D AM Binder Jetting
Optimize binder jetting simulations through process parameters and material properties

CUSTOMER 추천 평가

FLOW-3D는 오늘날 복잡한 자유 표면 및 제한된 흐름 문제를 분석하는 데 사용할 수 있는 가장 강력한 도구 중 하나입니다. 사용하기 쉬운 모델링 인터페이스를 제공하며 지난 15년 이상 제가 작업한 수력 발전, 환경, 수자원 및 처리 관련 프로젝트의 설계에 필수적인 도구였습니다. Flow Science의 기술 지원 팀과 개발자는 함께 작업하기 쉽고, 조언을 제공하고, 코드의 잠재적 개선 사항에 대한 사용자의 의견을 듣고, 발생하는 문제를 신속하게 해결하고자 합니다. Flow Science의 전체 팀은 함께 일하기에 훌륭했고 모든 엔지니어에게 훌륭한 자원입니다.

FLOW-3D is one of the most powerful tools available to analyze complex free surface and confined flow problems out there today. It provides an easy-to-use modeling interface and has been an integral tool in the design of hydroelectric, environmental, water resource and treatment related projects I’ve worked on over the last 15+ years. Flow Science’s technical support team and developers are easy to work with and are eager to provide advice, hear input from its users on potential enhancements to the code as well as quickly resolving issues that arise. The entire team at Flow Science have been great to work with and are a great resource to all engineers.
FLOW-3D CAST는 우리의 품질 프로그램에 엄청난 자산이었습니다. 6가지 주조 시뮬레이션 소프트웨어를 평가한 후 Howell Foundry는 FLOW-3D CAST를 구매하기로 결정했습니다. 이 결정의 일부 요인에는 설정 다양성, 비용 및 가장 중요한 시뮬레이션의 현실 정확도가 포함됩니다. 업데이트된 결과 뷰어와 결합된 FLOW-3D CAST 의 강력한 시뮬레이션 기능은 가장 복잡한 작업에서 특히 첫 번째 타설에서 고품질 주조를 보장하는 데 도움이 되었습니다.

FLOW-3D CAST has been a tremendous asset to our quality program. After having evaluated six different casting simulation software, Howell Foundry made the decision to purchase FLOW-3D CAST. Some of the factors in this decision include its setup versatility, cost, and most importantly its accuracy of the simulation to reality. FLOW-3D CAST’s powerful simulation ability coupled with its updated results viewer has been especially helpful on our most complex jobs to make sure we have a quality casting on the first pour.
우리는 FLOW-3D를 사용하여 지난 20년 동안 많은 소모성 발사체 시스템에 대한 추진제 슬로시 및 풀스루 시뮬레이션을 개발했습니다. 보다 최근에는 Flow Science 지원 직원이 차량 기동으로 인한 ullage collapse effects를 포착하기 위해 극저온 추진제 탱크 시뮬레이션에 열 전달을 추가하는 데 중요한 역할을 했습니다.

We have used FLOW-3D to develop propellant slosh and pull-through simulations for a number of expendable launch vehicle systems over the last 20 years. More recently, the Flow Science support staff has been instrumental in helping us add heat transfer to cryogenic propellant tank simulations in order to capture ullage collapse effects due to vehicle maneuvers.
저는 연구 및 산업 응용 분야에서 유체 흐름 문제를 해결하는 데 15년 이상 FLOW-3D를 사용해 왔습니다 . 우리는 강 및 해안 구조물, 수처리 장치, 댐, 여수로, 깊은 터널 및 CSO 전환 구조물의 설계에 이 소프트웨어를 광범위하게 사용합니다. FLOW-3D는 수치 솔버 기술, 클라우드 컴퓨팅, 전처리 및 후처리 도구의 최신 기술을 통합하여 고객에게 상당한 시간과 비용을 절감합니다. FLOW-3D 영업 및 기술 지원 팀은 훌륭합니다!

I have used FLOW-3D for over 15 years solving fluid flow problems in research and industrial applications. We use the software extensively in the design of river and coastal structures, water treatment units, dams, spillways, deep tunnels, and CSO diversion structures. FLOW-3D integrates state of the art in numerical solver techniques, cloud computing, pre- and post-processing tools resulting in substantial time and cost savings to our clients. FLOW-3D sales and technical support teams are excellent!
FLOW-3D 는 다른 소프트웨어로 시각화하거나 정량화하기 어려운 복잡한 유압 문제에 대한 통찰력을 제공하는 정교한 도구입니다. 정교함에도 불구하고 소프트웨어는 매우 사용자 친화적이며 Flow Science는 훌륭한 문서와 기술 지원을 제공합니다. FLOW-3D 모델 에서 얻은 결과는고객과 사내 비모델러 모두에게 깊은 인상을 남겼습니다.
 
FLOW-3D is a sophisticated tool that provides insight into complex hydraulic problems that would be difficult to visualize or quantify with other software. Despite the sophistication, the software is very user friendly, and Flow Science provide great documentation and technical support. The results we have obtained from our FLOW-3D models have impressed both our clients and non-modelers in-house.
4C-Technologies에서 우리는 거의 35년 동안 다양한 소프트웨어 흐름 시뮬레이션 솔루션을 사용하는 선구자였습니다. 다양한 금속 합금으로 주조된 HPDC 부품에서 부품 설계 및 도구/러너 설계를 최적화합니다. 2008년부터 우리는 FLOW-3D를 사용하여 지금까지 최고의 정확도를 제공하는 것으로 나타났습니다. 또한 FLOW-3D 팀 의 지원은 탁월합니다.

At 4C-Technologies we have been pioneers in using various software flow simulation solutions for nearly 35 years. We optimize part designs and tool/runner designs on casted HPDC parts in various metal alloys. Since 2008 we have solely been using FLOW-3D as it turned out to give by far the best accuracy. Furthermore, the support from the FLOW-3D team is outstanding.
20년 이상 FLOW-3D 와 함께 CFD 분석을 사용하면서 우리의 신뢰 수준은 이제 일반 연구 목적 및 최종 설계 응용 프로그램에 CFD 모델링을 사용하는 데 확신을 가질 정도로 높아졌습니다. 이 소프트웨어는 개념적 세부 사항과 구성을 신속하게 변경할 수 있는 유연성을 제공하여 설계를 단계적으로 진행할 수 있도록 합니다.

From using CFD analysis with FLOW-3D for over twenty years, our level of trust has increased to the point that we are now confident in using CFD modeling for general study purposes and final design applications. The software gives us flexibility to quickly change conceptual details and configurations allowing the design to advance in stages.
우리는 FLOW-3D AM을 사용하여 기초 과학의 경계를 발전시켜 왔습니다 . FLOW-3D AM은 다중 합금 3D 프린팅 중 복잡한 현상을 지배하는 물리학에 대한 우리의 가설을 테스트하는 훌륭한 도구였습니다. FLOW-3D AM은 우리가 열 프로필의 진화와 관련된 물질 전달 및 복잡한 적층 구조에서 열 응력의 발달을 이해하는 데 도움이 되었습니다.

We have been using FLOW-3D AM to advance the boundaries of fundamental science. FLOW-3D AM has been a great tool to test our hypotheses about the physics governing complex phenomena during multi-alloy 3D printing. FLOW-3D AM has helped us understand the evolution of thermal profiles and the associated mass transport and development of thermal stresses in complicated additively-built structures.
FLOW-3D 는 많은 응용 프로그램이 있는 강력한 도구입니다. 우리는 FLOW-3D를 사용하여 물 전환 구조의 흐름과 수력을 효과적으로 해결했습니다. 우리는 또한 제안된 물고기 통로를 통한 물 흐름을 모델링했습니다. 우리는 정확성, 계산 속도, 특히 사용자 친화적인 GUI에 깊은 인상을 받았습니다. 그리고 우리 고객들은 모델 출력과 포스트 프로세서에 의해 생성된 애니메이션에 깊은 인상을 받았습니다. 우리는 또한 매우 반응이 좋은 지원 직원에게 감사합니다.

FLOW-3D is a powerful tool with many applications. We used FLOW-3D to effectively resolve flow through and hydraulic forces on a water diversion structure. We also modeled water flow through a proposed fish passage. We have been impressed with the accuracy, computational speed, and especially the user friendly GUI. And, our clients have been impressed with the model output, as well as, animations created by the post-processer. We are also appreciative of the highly responsive support staff.
수년에 걸쳐 FLOW-3D는 기존의 유압 모델링 도구로는 해결하기 매우 어려웠을 복잡한 유압 문제를 해결하는 데 도움을 주었습니다. 우리는 FLOW-3D 팀에게 매우 감사합니다 . 그들은 수년에 걸쳐 지속적으로 소프트웨어를 개선해 왔으며 우리의 요구에 매우 신속하게 대응해 왔습니다.

Over the years, FLOW-3D has helped us solve complex hydraulic problems that would have otherwise been very difficult to solve with conventional hydraulic modeling tools. We are very thankful to the team at FLOW-3D. They have constantly been making the software better over the years, and have been very responsive to our needs.
FLOW-3D 는 당사의 우주 공학 연구 및 개발 프로세스에서 필수적인 도구입니다. FLOW-3D는 극저온 연료 역학의 프로세스를 더 잘 이해하여 질량을 줄이고 발사기 성능을 향상시키는데 도움이 됩니다.

FLOW-3D is an essential tool in our space engineering research & development process. FLOW-3D helps us better understand processes in cryogenic fuel dynamics, leading to savings in mass and improved launcher performance.

신규소식기술자료

FLOW-3D HYDRO Workshops

FLOW-3D HYDRO Workshops
Register for a FLOW-3D HYDRO workshop

FLOW-3D HYDRO 디스커버리 워크숍:

2025 워크숍 일정

모든 Discovery Workshop 프레젠테이션은 동부 표준시 기준 오전 11시부터 오후 2시까지 온라인에서 진행됩니다.

  • 1월 30일 목요일
  • 3월 27일 목요일
  • 4월 24일 목요일
  • 7월 17일 목요일

Civil & Environmental Consultants, Inc.

Knoxville, TN

Host a FLOW-3D HYDRO Local Workshop 


European User Conference 2025
European User Conference 2025

FLOW-3D User Conference가 2025년 5월 26일부터 28일까지 사흘간 포르투갈 리스본의 Eurostars Universal Lisboa에서 열립니다.


기술자료 & News

Wave

Three-Dimensional Simulations of Subaerial Landslide-Generated Waves: Comparing OpenFOAM and FLOW-3D HYDRO Models

지표 산사태로 발생한 파랑의 3차원 시뮬레이션: OpenFOAM과 FLOW-3D HYDRO 모델 비교 Ramtin Sabeti, Mohammad Heidarzadeh, Alessandro Romano, Gabriel Barajas Ojeda & Javier L. Lara Abstract The recent destructive landslide tsunamis, ...
Weir

Discharge Formula and Hydraulics of Rectangular Side Weirs in the Small Channel and Field Inlet

소규모 수로 및 유입구에서의 직사각형 측면 위어의 유량 공식 및 수리학 Yingying Wang, Mouchao Lv, Wen’e Wang, Ming Meng Abstract In this study, experimental investigations were conducted on rectangular side ...

Three-dimensional flow structure in a confluence-bifurcation unit

합류 분기 유닛의 3차원 유동 구조 Di Wang, Xiaoyong Cheng, Zhixuan Cao, Jinyun Deng Abstract Enhanced understanding of flow structure in braided rivers is essential for river regulation, flood control, ...

FLOW-3D HYDRO Workshops

Register for a FLOW-3D HYDRO workshop FLOW-3D HYDRO Workshops FLOW-3D HYDRO Discovery Workshop Dates: June 27 July 18 August 22 September 19 October 17 November 14 FLOW-3D HYDRO Local Workshop ...
/ 공지사항
stencil

Experimental and numerical investigation of the squeegee process during stencil printing of thick adhesive sealings

두꺼운 접착제 실링의 스텐실 인쇄 중 스퀴지 프로세스에 대한 실험적 및 수치적 조사 Fabiano I. Indicatti, Bo Cheng, Michael Rädler, Elisabeth Stammen, Klaus Dilger ABSTRACT To reliably compensate fuel cell ...
/ Coating/MEMS/Bio/Nano
WELD_Graph

Processing windows of Ni625 alloy fabricated using direct energy deposition

직접 에너지 증착을 이용한 Ni625 합금의 가공 범위 Yusufu Ekubaru, Takuya Nakabayashi, Tomoharu Fujiwara, Behrang Poorganji Abstract Herein, a process window is developed for Ni625 alloy fabricated using a Nikon ...
Melt pool EBSD and X-ray computed tomography analysis results.

High-speed synchrotron X-ray imaging of melt pool dynamics during ultrasonic melt processing of Al6061

알루미늄 6061의 초음파 용융 처리 중 용융 풀 역학에 대한 고속 동기화된 X선 영상 촬영 Lovejoy Mutswatiwa, Lauren Katch, Nathan J Kizer, Judith A Todd, Tao Sun, Samuel J Clark, ...
European User Conference 2025

FLOW-3D European Users Conference 2025

European User Conference 2025 FLOW-3D User Conference가 2025년 5월 26일부터 28일까지 사흘간 포르투갈 리스본의 Eurostars Universal Lisboa에서 열립니다. Conference Schedule May 26 Advanced Training Sessions Opening Reception & Poster Session ...
/ 공지사항

Propagation Velocity of Excitation Waves Caused by Turbidity Currents

혼탁류에 의한 자극파의 전파 속도 Guohui Xu, Shiqing Sun, Yupeng Ren, Meng Li, Zhiyuan Chen Abstract Turbidity currents are important carriers for transporting terrestrial sediment into the deep sea, facilitating ...
Nozzle Scour

Study on the Sand-Scouring Characteristics of Pulsed Submerged Jets Based on Experiments and Numerical Methods

실험과 수치 해석을 기반으로 한 펄스 잠수 제트의 모래 침식 특성 연구 Hongliang Wang, Xuanwen Jia,Chuan Wang, Bo Hu, Weidong Cao, Shanshan Li, Hui Wang Abstract Water-jet-scouring technology finds extensive ...
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

FLOW-3D POST용 그래픽 카드, 모니터 선택 가이드

High End Graphic Card 안내 원본 출처: https://www.videocardbenchmark.net/high_end_gpus.html Update: 2024-11-28 PCI-Express(또는 PCI-E) 표준을 사용하는 최근 출시된 AMD 비디오 카드(예: AMD RX 6950 XT)와 nVidia 그래픽 카드(예: nVidia GeForce RTX 3090)는 ...
Intel CPU i9

FLOW-3D 수치해석용 컴퓨터 CPU에 대한 이해 및 선택 방법

구매전 주요 CPU 비교 내용 알아보기 우리는 해석용 컴퓨터를 구매하기 전에 수많은 선택지를 고민하게 됩니다. 성능과 가격, 컴퓨터 최신 CPU, Memory, Chipset, HDD/SSD, Power Supply 등, 그 중에서도 당연코 선택 ...
ⓒ ROB SCHULZ / IDG

FLOW-3D 해석용 HDD, SSD 선택 가이드

SSD 성능 평가 안내 아래 차트는 200만 개가 넘는 PerformanceTest 벤치마크 결과를 사용하여 만들어졌으며 매일 업데이트됩니다. 이러한 전체 점수는 하드 디스크 드라이브의 읽기 속도, 쓰기 속도 및 탐색 시간을 측정하는 세 가지 ...

FLOW-3D 수치해석용 컴퓨터 선택 가이드

Top 20 Fastest Desktops for 2024 본 자료는 Computer에 대한 전문적인 지식보다는 수치해석을 주 목적으로 FLOW-3D 를 이용하기 위한 해석용 컴퓨터를 선택할 때 도움을 주기 위한 자료입니다. 흔히 고성능 컴퓨터는 ...
river depth

Ecological inferences on invasive carp survival using hydrodynamics and egg drift models

수리역학 및 알 이동 모델을 활용한 외래종 잉어 생존에 대한 생태적 추론 Ruichen Xu, Duane C. Chapman, Caroline M. Elliott, Bruce C. Call, Robert B. Jacobson, Binbin Wang Abstract Bighead ...
Velocity of pipe

Dynamic Performance of Suspended Pipelines with Permeable Wrappers under Solitary Waves

단일 파동 하에서 투과성 포장지가 있는 현수 파이프라인의 동적 성능 Youkou Dong, Enjin Zhao, Lan Cui, Yizhe Li, Yang Wang Abstract Submarine pipelines are widely adopted around the world for ...
The experimental layout

Strength Prediction for Pearlitic Lamellar Graphite Iron: Model Validation

펄라이트 라멜라 흑연 철의 강도 예측: 모델 검증 Vasilios Fourlakidis, Ilia Belov, Attila Diószegi Abstract The present work provides validation of the ultimate tensile strength computational models, based on full-scale ...
Concrete 3D Printing

Computational fluid dynamics modelling and experimental analysis of reinforcement bar integration in 3D concrete printing

3D 콘크리트 프린팅에서 철근 통합에 대한 전산 유체 역학 모델링 및 실험적 분석 Md Tusher Mollah, Raphaël Comminal, Wilson Ricardo Leal da Silva, Berin Šeta, Jon Spangenberg Abstract A challenge ...
USBR baffle block

Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater

하부 테일워터를 위한 USBR 및 쐐기형 배플 블록 분지를 사용한 유압 점프의 수치적 조사 Muhammad Waqas Zaffar; Ishtiaq Hassan; Zulfiqar Ali; Kaleem Sarwar; Muhammad Hassan; Muhammad Taimoor Mustafa; Faizan Ahmed ...
Overflow water film

Numerical Simulation Study on Characteristics of Airtight Water Film with Flow Deflectors

유동 편향기가 있는 밀폐수막의 특성에 관한 수치해석 연구 Zhang Weikang, Gong Hongwei Abstract In practical use, there is shrinkage in the width direction in existing overflow water film. This study ...
Scouring

Non-Equilibrium Scour Evolution around an Emerged Structure Exposed to a Transient Wave

일시적인 파도에 노출된 구조에서의 비평형 세굴 결과 Deniz Velioglu Sogut ,Erdinc Sogut ,Ali Farhadzadeh,Tian-Jian Hsu Abstract The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour ...
Coating_image

Template-Free Scalable Fabrication of Linearly Periodic Microstructures by Controlling Ribbing Defects Phenomenon in Forward Roll Coating for Multifunctional Applications

다기능 응용을 위한 Forward Roll Coating 공정의 리브 경함 형상 제어를 통한 선형 주기적 미세구조물의 템플릿 프리 제작 Md Didarul Islam, Himendra Perera, Benjamin Black, Matthew Phillips,Muh-Jang Chen, Greyson Hodges, ...
Omega-Liutex Method

Prediction of the Vortex Evolution and Influence Analysis of Rough Bed in a Hydraulic Jump with the Omega-Liutex Method

Omega-Luitex법을 이용한 수력점프 발생시 러프 베드의 와류 진화 예측 및 영향 분석 Cong Trieu Tran, Cong Ty Trinh Abstract The dissipation of energy downstream of hydropower projects is a significant ...
Image_Sacrificial_Pier

Sacrificial Piles as Scour Countermeasures in River Bridges A Numerical Study using FLOW-3D

하천 교량의 파괴 대책으로서 희생파일에 대한 FLOW-3D를 이용한 수치 연구 Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami Abstract Scour is defined as the erosive action of flowing water, as ...
Computational Fluid Dynamics Study of Perforated Monopiles

Computational Fluid Dynamics Study of Perforated Monopiles

Mary Kathryn WalkerFlorida Institute of Technology, mwalker2022@my.fit.edu Robert J. Weaver, Ph.D.Associate ProfessorOcean Engineering and Marine SciencesMajor Advisor Chungkuk Jin, Ph.D.Assistant ProfessorOcean Engineering and Marine Sciences Kelli Z. Hunsucker, Ph.D.Assistant ProfessorOcean ...
Numerical Investigation of the Local Scour for Tripod Pile Foundation

Numerical Investigation of the Local Scour for Tripod Pile Foundation

Waqed H. Hassan | Zahraa Mohammad Fadhe* | Rifqa F. Thiab | Karrar MahdiCivil Engineering Department, Faculty of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, IraqCivil Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala 56001, ...
Investigating effects of lateral inflow characteristics on main flow using numerical modeling

Investigating effects of lateral inflow characteristics on main flow using numerical modeling

수치모델링을 이용한 측면 유입특성이 본류에 미치는 영향 조사 Mohammad Raze Raeisi Dehkordi1*, Amir Hossein Yeganeh Mazhar1, Farzaneh Kheradzare21- PhD. Student in the Department of Construction and Water Management, Science and ...
Difference Analysis of Wave Disaster Characteristics Induced by Landslides of Different Water Entry Scales

다양한 크기의 산사태로 인한 물 침입으로 인한 해일 위험 특성의 차이 분석.

Difference Analysis of Wave Disaster Characteristics Induced by Landslides of Different Water Entry Scales 王雷, 解明礼, 黄会宝, 柯虎, 高强人民珠江 2024年45卷第2期DOI:10.3969/j.issn.1001-9235.2024.02.003 纸质出版日期:2024 Abstract This paper conducts a three-dimensional numerical analysis on ...
Local Scour Depth Around Bridge Piers: Performance Evaluation of Dimensional Analysis-based Empirical Equations and AI Techniques

Local Scour Depth Around Bridge Piers: Performance Evaluation of Dimensional Analysis-based Empirical Equations and AI Techniques

Abstract Artificial Intelligence (AI) techniques, such as Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and dimensional analysis-based empirical equations (DAEEs), can estimate scour depth around bridge piers ...
 

전체 기술자료로 바로가기

Improving High Pressure Die Casting Designs

Improving High Pressure Die Casting Designs

The content for this article was contributed by Mark Littler of Littler Diecast Corporation.

고압 다이캐스팅 생산 업체인 Littler Diecast Corporation은 최근 우주 항공분야에서 전기 스위치 프레임을 재설계하고 다이캐스팅할 수 있었습니다. 이전에는 다른 제조업체에서 생산했기 때문에 많은 수의 주조에 결함 문제가 있었고 스크랩 비율을 낮추기 위해서는 새로운 디자인이 필요했습니다. Littler Diecast는 문제에 대한 사전 지식없이 시뮬레이션을 통해 결함을 찾아낼 수 있음을 입증할 수 있었습니다. 이것은 고객들이 그들에게 일을 맡길 수 있을 만큼 충분한 감명을 주었습니다.

Identifying the Problem

스위치는 A380 알루미늄으로 만들어졌으며 크기는 약 1¼ x 1x 1/2 입니다. Littler Diecast는 다공성 문제가 판과 굴뚝의 두 부분에서 문제가 되고 있음을 발견했습니다. 이는 고객이 확인한 것입니다. 각 부분이 채워지는 길 때문에 구멍이 각 위치에 형성되었습니다. 이 흐름은 그림 1과 같이 하나의 게이트를 통해 들어 와서 플레이트의 먼 쪽으로 분사한 다음 다시 채워지며 조기 응고로 인해 항상 닫히지 않는 현상으로 나타납니다. 굴뚝에서도 같은 문제가 발견되었습니다. 유체가 가장 먼 곳으로 분사되고 다시 채워지면 분리선을 통해 배출될 수 없는 갇힌 공기가 생성됩니다.

X-ray of original part, showing porosity problems

Figure 1: Original design with a single gate. Plot colored by velocity magnitude..

Figure 2: Final design with three gates. Plot colored by velocity magnitude.

The Original Part Design

기존의 부품 설계에는 다른 문제가 있었습니다. lock washer와 플레이트 밑면의 밀봉된 표면주위에 많은 다이의 침식이 있었습니다. 부품 모서리에 있는 overflow는 결함이 흘러 나오기에 충분하지 않았습니다.

FLOW-3D를 사용하여 Littler Diecast는 유동의 거동을 분석하고 현상을 시각적으로 확인할 수 있었습니다. 이러한 분석으로 인해 조기 응고는 얇은 부분의 급속 냉각으로 인해 문제가 되었습니다. 만약 부품과 후면을 가로질러 유동이 흐른다면, 액체는 냉각되고 갇힌 공기를 만들어 낼 시간이 많이 필요합니다. 마지막으로 뜨거운 액체가 들어오는 것이 가장 좋습니다. 이를 염두에 두고 Littler Diecast는 여러 가지 아이디어를 테스트하고 문제의 가능성을 최소화하고 프로세스 창을 극대화 한 디자인을 달성했습니다.

The Final Part Design

세 가지 주요 설계 변경 후 부품 품질이 크게 향상되었습니다. 첫째, 게이트와 러너를 세 개의 게이트를 통해 들어갈 수 있도록 재설계하였습니다. 이것은 큰 오버플로를 생성하는 두 번째 설계 변경과 함께, 온도가 가장 높은 유체가 마지막으로 들어갈 수 있으며 플레이트에 역류가 훨씬 적다는 것을 의미했습니다. 셋째, 진입 각도와 게이트 위치가 변경되어 역류를 방지하는데 도움이 되었습니다.

또한, 이 새로운 디자인은 공구에서 다이의 침식될 수 있는 가능성을 줄였습니다. 대신 유체는 굴뚝의 중심구멍에 사용된 코어 핀 위로 분사됩니다. 코어 핀은 금형 강철을 수리하는 것보다 훨씬 쉽고 빠르게 교체할 수 있습니다. 이러한 금형 설계 변경은 새로운 금형을 절단하기 전에 이루어졌으며 금형 제작이 완료된 후에 문제가 발견되면 비용이 많이 드는 프로세스를 제거하였습니다.

Physical Verification

생산 도구의 시운전 후 Littler Diecast는 short shots, x-rays 및 파괴 테스트를 통해 설계 변경 사항을 확인할 수 있었습니다. short shot은 균형 잡힌 러너를 보여 주었으며 엑스레이에는 다공성이 보이지 않았습니다. 파단 테스트는 공극이 없는 일정한 결정립 조직을 보여 주었고, 파손은 재료의 강도 때문이 아니라 주조 결함 때문인 것으로 나타났습니다.

X-rays at different angles of a sample final part that was picked up from the shop floor.

 

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast >

Increasing Productivity by Reducing Ejection Times

Increasing Productivity by Reducing Ejection Times

This article was contributed by Eugene Moore of Hellebusch Tool & Die

시뮬레이션 소프트웨어는 설계자와 엔지니어가 주조 공정의 세부 사항을 이해하고 경쟁사보다 저렴한 비용으로 고품질 부품을 일관성 있게 제작할 수 있게 해주는 유용한 도구입니다. 고압 다이캐스팅에서 시뮬레이션 소프트웨어는 주조 내로 금속을 공급하고 난류로 인한 공기 유입을 방지하기 위해 샷 슬리브 팁의 타이밍을 개선하고 오버 플로우에 대한 가장 효과적인 위치를 식별하는 더 나은 게이팅 시스템을 설계하는 데 사용됩니다. 이 기사에서는 프로세스 시간을 단축하기 위해 부품을 다이에서 배출하기 전에 시간을 줄이는 방법을 살펴 보겠습니다.

비스킷은 주조 과정에서 고형화 된 마지막 장소이기 때문에 우리의 노력에 집중할 수 있는 자연스러운 곳이며 따라서 부품을 언제 꺼낼 수 있는지를 결정합니다. 따라서 비스킷의 응고 시간을 줄일 수 있다면 전반적인 공정 시간을 줄일 수 있습니다. 이를 수행하는 한 가지 방법은 유체와 접촉하는 영역의 양을 늘려 샷팁을 통해 금속에서 더 많은 열을 제거하는 것입니다. 이 경우 정확하게 적용할 수는 없지만, 아래에 표시된 정상상태 대류 방정식을 사용하면 이 접근법의 기초가 가장 쉽게 표시됩니다.

이 방정식에서 열 흐름은 대류 열 전달 계수이고, 금속 팁과 샷 팁 온도의 차이이며, 금속과 접촉하는 샷 팁의 표면적입니다. 그림 1에서 볼 수 있듯이 오늘날 시장에서 볼 수 있는 다양한 형태의 플런저 팁이 금속과 접촉하는 표면적을 증가시키도록 설계되었습니다.

Figure 1: Plunger tips varying in size and surface area [1]

비스킷에서 제거된 열을 증가시키는 또 다른 방법은 비스켓에서 샷 팁과 금속 사이의 온도 차이를 조절하는 것입니다. 이는 그림 2 에서처럼 냉각 선을 팁에 추가하여 수행됩니다. 이 접근법의 단점은 피스톤 어셈블리에 상당한 복잡성을 추가한다는 것입니다.

Figure 2: Cooling within plunger tip [2]

New design

이 기사에서 FLOW-3D Cast를 사용하여 새로운 플런저 팁 디자인을 분석하고 수정되지 않은 표준 원통형 팁과 비교했습니다. 그림 3에서와 같이 끝 부분에 별 모양의 컷 아웃이 있는 원통형 팁으로 구성된 수정된 팁은 수정되지 않은 샷 팁보다 20 % 더 많은 표면적을 갖습니다. 팁은 분석을 위해 물로 냉각되지 않습니다.

Figure 3: Shape of the modified tip to give 20% increase in area

 

Analysis

각 샷 팁 디자인에 대해 충진 (샷 팁 모션 포함) 및 응고 (플로우 미포함) 시뮬레이션을 실행했습니다. 모든 다른 매개 변수는 사례간에 동일합니다. 주요 관심사는 두 가지입니다. 즉, 충전 중 흐름 패턴과 전반적인 응고 시간입니다. 샷 팁 디자인이 파동 및 공기 유입을 유발하는 경우 팁 또는 샷 슬리브 프로파일을 다시 설계해야 하기 때문에 충진 중 흐름 패턴이 중요합니다.

첫 번째 비교는 그림 4에 표시된 샷 슬리브의 흐름 패턴입니다. 이 그림은 수정 된 팁이 있거나 없는 샷 슬리브 중 유체의 이미지를 보여 주며 팁의 모양이 샷 슬리브에 영향을 주지 않는 것으로 나타났습니다. 흐름 패턴. 샷 프로파일에 거의 영향을 주지 않기 때문에 응고에 집중할 수 있습니다.

Figure 4: Flow patterns in the shot sleeves from both tips.

 

두 번째 비교는 응고 시간입니다. 그림 5는 시간의 함수로서 팁의 평균 온도, 시간의 함수로서 금속으로부터 팁으로의 열 유속 및 추출시의 액체 금속의 온도 프로파일을 비교합니다

Figure 5: The above time plots show the average temperature in tip on the upper left hand corner and the heat flux from the metal to the tip in the upper right hand corner. The images below this show the metal temperature within the biscuit of the two castings.

그림 5에서 볼 수 있듯이, 그래프는 금속에서 더 많은 열을 추출했기 때문에 수정 된 팁의 평균 온도가 더 높음을 보여줍니다. 이것은 또한 열 유속 플롯에 표시됩니다. 그래프 아래의 이미지는 비스킷과 탄환의 경계면에서 액체금속을 보여줍니다. 데이터는 수정된 팁을 사용하여 열 제거가 12.7 % 증가한 것을 보여줍니다.

Conclusions

샷 팁 디자인은 주조 부품의 응고 시간에 눈에 띄는 영향을 미칩니다. 시뮬레이션 소프트웨어는 효과를 분석하고 이 지식을 사용하여 프로세스 매개변수를 최적화하는 방법을 제공합니다.

 

References
[1] http://www.metalminotti.it/copper-alloys-semi-and-finished-products/plunger-tips-for-die-casting/
[2] http://www.castool.com/product/plunger-rod

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast >

High Pressure Die Casting

FLOW-3D CAST 사양

FLOW-3D CAST Feature


Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

스퀴즈(압착) 핀 / Squeeze Pins

스퀴즈(압착) 핀 / Squeeze Pins

주조의 복잡성이 증가함에 따라, 게이팅 및 피딩 시스템 및 적절한 다이 온도 관리가 최적화되어 있음에도 불구하고, 대부분의 경우 절삭유 부족으로 인한 다공성 수축이 불가피합니다. 고압 및 영구 몰드 주조에서 수축 다공성을 감소시키기 위해 국부적으로 금속을 압착하는 데 압착 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 압착의 타이밍과 위치에 따라 크게 좌우됩니다. 이러한 실제 시나리오를 예측하기 위해 스퀴즈 핀 모델이 FLOW-3D 버전 11.1 및 FLOW-3D Cast v4.1에서 개발되어 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움을 줍니다.

주조물의 복잡성이 증가함에 따라 최적화된 탕구계 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고, 많은 부품에서 불량한 공급으로 인한 수축 다공성이 불가피한 경우가 많습니다.

고압 및 영구 금형 주물에서는 squeeze 핀을 사용하여 금속을 국부적으로 눌러 수축 다공성을 낮추는 경우가 많습니다. 단, squeeze 핀의 효과는 그 배치와 가압 시기에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D에서 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는데 도움이 되는 스퀴즈 핀 모델이 개발되었습니다 .

Squeeze Pin Model in FLOW-3D

스퀴즈 핀 모델은 규정 된 moving objects model 을 기반으로하며 열 전달 및 응고 역학 고려 사항을 기반으로하는 단순 수축 모델과 함께 작동합니다. 활성화되면 스퀴즈 핀이 인접한 액체 금속의 수축량을 감지하고 해당 부피를 정확하게 보정하기 위해 이동합니다. 스퀴즈 핀은 최대 허용 거리를 벗어나거나 표면에 너무 많은 굳은 금속을 만나면 멈 춥니 다. 핀에 대한 힘을 정의 할 수 있으며 금속 압력으로 변환됩니다. 그 압력은  thermal stress evolution 및 미세 다공성 모델과 함께 사용할 수 있습니다 .

스퀴즈 핀의 활성화 타이밍은 모델의 구성 요소입니다. 이 모델은 몇 가지 유연한 활성화 제어를 제공합니다. 스퀴즈 핀은 Active Simulation Control 이벤트에 의해 사용자가 지정한 시간에 활성화되거나 자동으로 활성화되도록 설정할 수 있습니다. 후자의 경우 다음 조건이 충족되면 스퀴즈 핀이 활성화됩니다.

  1. 핀은 액체 영역에 인접 해 있습니다.
  2. 핀 사이의 경쟁을 피하기 위해 핀이 인접한 액체 경로를 통해 다른 핀에 연결되어 있지 않습니다.
  3. 인접한 액체 영역에는 게이트가 응고 된 금속으로 밀봉되기 전에 금속이 캐비티 밖으로 밀려 나올 수있는 자유 표면이 없습니다.

자동 활성화 제어는 핀의 정확한 타이밍을 알 수없는 설계 단계에서 유용합니다. 이 경우 핀 활성화 시간은 모델 출력의 일부입니다.

버전 11.1의 새로운 기능인 Active Simulation Control을 사용하여 다이캐스팅 기계에서 실제 스퀴즈 핀 제어 시스템을 모방 할 수 있습니다. 이를 통해 사용자는 주조의 다른 부분에있는 솔루션을 기반으로 핀 타이밍에 더 많은 제어 및 개선을 추가 할 수 있습니다.

Squeeze Pin Model Applications

  • 주물에서 공급이 어려운 부분의 다공성을 줄이거 나 제거하는 스퀴즈 핀의 효과 시뮬레이션
  • 숏 슬리브 피스톤은 응고 수축을 보상하고 강화 압력을 적용하기 위해 응고 중에 스퀴즈 핀으로 정의 할 수 있습니다.
  • 기존 스퀴즈 핀 설계 검증
  • 스퀴즈 핀 배치 최적화
  • 스퀴즈 핀 활성화 타이밍 최적화
  • 실제 다이캐스팅 기계에서 스퀴즈 핀 제어 검증 및 최적화

Sample Results

Squeeze pin configuration

2-캐비티 고압 다이 캐스트에 대한 사례 연구가 수행되었습니다.  두 세트의 시뮬레이션이 실행되었습니다. 하나는 스퀴즈 핀이없는 것이고 다른 하나는 스퀴즈 핀이있는 것입니다. 스퀴즈 핀의 구성은 그림 1에 나와 있습니다. 스퀴즈 핀은 두 개의 주조 부품 각각의 중앙에 배치됩니다. 이 스퀴즈 핀은 자동으로 활성화되도록 설정됩니다. 플런저는 충전 완료 즉시 활성화되도록 설정되는 압착 핀으로도 정의됩니다. 결과 수축 분포는 그림 2에 나와 있습니다. 스퀴즈 핀에 의한 수축 감소는 주물 중앙과 비스킷 중앙에서 분명합니다. 두 시뮬레이션의 총 매크로 수축도 비교되고 그림 3에 그려져 있는데, 이는 스퀴즈 핀에 의한 극적인 수축 감소를 정량적으로 보여줍니다.

Shrinkage distribution squeeze pin model

핀 활성화 시간은 그림 4와 같이 화면, HD3MSG, HD3OUT 및 REPORT 파일에 기록됩니다. 시간 정보는 고압 다이캐스팅 기계에서 스퀴즈 핀 제어 매개 변수로 직접 사용할 수 있습니다. 또한 각 스퀴즈 핀의 이동 거리와 변위량도 일반 이력 데이터에 기록되어 각 스퀴즈 핀의 효과를 확인하는 데 사용할 수 있습니다. 그림 5와 같이 각 스퀴즈 핀의 이동 거리가 표시됩니다. 플런저는 미리 정해진대로 시뮬레이션 시작시 즉시 움직이고, 플런저 근처가 마지막 응고 영역이고 가장 큰 수축을 생성한다는 사실로 인해 가장 멀리 그리고 가장 길게 움직이는 것을 볼 수 있습니다. 두 개의 주조 부품 각각의 중앙에 정의 된 두 개의 스퀴즈 핀이 동시에 활성화됩니다.주조 및 압착 핀 구성의 대칭으로 인해 거의 동일한 거리를 이동했습니다.

Macro-shrinkage volume comparison with and without squeeze pins
Figure 3. Macro-shrinkage volume comparison with and without squeeze pins.
Pin activation output
Figure 4. The output of the pin’s activation in HD3MSG file.
The traveled distance of each squeeze pin
Figure 5. The traveled distance of each squeeze pin.

주조의 복잡성이 증가함에 따라 최적화된 게이팅 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고 공급 불량으로 인한 수축 다공성은 종종 큰 부품 섹션에서 불가피합니다. 고압 및 영구 주형 주조에서 수축 공극률을 줄이기 위해 금속을 국부적으로 누르는데 스퀴즈 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 위치와 가압 타이밍에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D  에서 스퀴즈핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움 이되는 스퀴즈핀 모델이 개발되었습니다 .

Die Erosion Defects (다이캐스팅 금형침식 및 결함)

Die Erosion Defects (다이캐스팅 금형침식 및 결함)

FLOW-3D는 고압 다이캐스팅의 충진해석 시 공동현상(cavitation)으로 인한 금형 침식 결함(die erosion defect)을 정확히 예측할 수 있습니다. 충진 시 매우 빠른 유동 면에서 용탕압력(Metal pressure)가 금형재료의 증기압(metal vapor pressure) 아래 떨어질 수 있습니다 이는 공동현상과(cavitation)과 침식(erosion)을 일으키게 됩니다. 공동현상으로 인한 침식결함을 예측하는 간단한 방법은 실제로는 공동현상을 재현하지 않고 공동현상의 가능성을 예측하는 것 입니다. FLOW-3D는 cavitation pressure와 국지적인 용탕 압력의 차이를 관찰함으로써 잠재적으로 공동현상(cavitation)이 나타날 수 있는 영역을 계산할 수 있습니다. 지정된 어떤 위치에서 캐비테이션 이나 금형 부침식에 대한 가능성은 이 두 압력의 차이가 큰 경우에 존재하는 것으로 해석됩니다. 금형 침식이 가장 있을 만한 곳의 신뢰할 수 있는 지표는 이 차이가 가장 큰 값을 가지는 국소적인 “hot spot” 입니다.

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :

    제목* :

    성명* :

    이메일 주소* :

    연락 전화번호* :

    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거

    Fuel Tank Simulation
    Fuel Tank Simulation
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD

    aerospace-sloshing-simulation
    aerospace-sloshing-simulation