Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

유체 역학을 이용한 미세 유체 입자 정렬

유체 역학을 이용한 미세 유체 입자 정렬

Microfluidic 입자 분류는 진단, 화학 및 생물학적 분석, 식품 및 화학 공정 및 환경 평가에 응용 분야를 가지고 있습니다.

microfluidic sorting platform을 사용하는 주된 장점은 적은 양의 시료를 필요로하므로 비용과 시간이 줄어든다는 것입니다. 진단에서 환자의 침습을 줄일 수 있습니다. 더욱이, 이러한 소형 플랫폼은 대량 병렬 처리가 가능하여 적은 시간에 더 많은 수의 입자 정렬을 가능하게 합니다.

정렬은 수동 또는 능동 기술을 사용하여 수행 할 수 있습니다. 패시브 기술은 외부 필드를 필요로 하지 않으며 입자, 유동장 및 채널 구조 간의 상호 작용만을 전제로합니다. 반면에 능동 기술은 자기 또는 전기와 같은 외부 필드를 사용합니다. 아래의 애니메이션은 미세 유동 플랫폼의 유체 역학을 기반으로하는 수동 정렬 기법을 사용하여 세 가지 입자 종의 입자 정렬을 보여줍니다.

최첨단 FlowSight에서 후 처리되는 FLOW-3D 의 입자 물리 모델을 이용한 미세 유체 입자 정렬 시뮬레이션

이 페이지에서는 위에서 제시 한 정렬 기법의 물리학과 이러한 시뮬레이션 수행에 FLOW-3D 를 사용합니다.

유체 역학 분류 기술의 물리학

이 기법은 저 레이놀즈 수법에서 입자가 질량 및 직경에 따라 유동장에서 특정 유선을 따를 것이라는 원칙에 따라 작동합니다. 질량이 일정하다는 것을 감안할 때 직경이 작은 입자는 드래그 력이 적고 직경이 큰 입자는 더 큰 드래그력을 경험합니다. 이것은 큰 입자가 주변의 흐름으로 쉽게 옮겨 지도록합니다. 작은 입자와 그 궤적은 유체 역학의 영향을 덜 받습니다.

직경이 모든 입자 종류에 대해 동일하지만 밀도와 질량이 다를 경우 입자 정렬 중에 다른 동작을 보게됩니다. 동일한 직경의 입자에 대해 항력이 동일하더라도 더 무거운 입자는 더 큰 관성력의 영향을 받기 때문에 감속하기가 어렵습니다. 반대로 가벼운 입자는 감속이 더 쉽습니다. 따라서 결과는 더 가벼운 입자가 주변의 흐름으로 쉽게 옮겨지고 더 무거운 입자는 그 과정을 유지한다는 것입니다.

입자 정렬 시뮬레이션을위한 FLOW-3D

FLOW-3D 의 입자 모델은 입자 정렬 시뮬레이션을 매우 쉽게 만듭니다. 모델에는 마커, 질량, 유체, 가스 또는 공극 입자와 ​​같은 다른 입자 클래스를 설정할 수있는 옵션이 있습니다. 이 시뮬레이션을 위해 질량 입자가 사용되었습니다. 입자 종류의 특정 유형은 직경과 밀도에 따라 다른 종을 가질 수 있습니다. 예를 들어 위의 애니메이션에서 질량 입자 클래스에는 세 가지 종류가 있습니다.
질량 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수 및 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 부여받을 수도 있습니다. 사용자가 입자에 동시에 작용하는 여러 힘을 연구하기를 원할 경우 이러한 특성을 완전히 활용할 수 있습니다.

결과

아래 이미지는 질량과 반경이 다른 두 가지 시뮬레이션 사례의 결과를 보여줍니다.

입자 직경과 질량의 두 가지 다른 변화로 인한 시뮬레이션 결과

작은 직경 (왼쪽 창에서 파란색) 또는 더 적은 질량 (오른쪽 창에서 녹색)을 가진 입자는 수축의 상단을 향해 이동하고 발산은 위로 갈라지는 유선을 따릅니다. 더 큰 직경 (왼쪽 창에 녹색) 또는 큰 질량 (오른쪽 창에 파란색)이있는 입자는 수축의 바닥쪽으로 움직입니다. 수축을 빠져 나올 때,이 입자들은 아래로 갈라지는 유선을 따릅니다.

미세 기하학, 입자 매개 변수 및 흐름 특성을 기반으로하는 미세 유체 입자 정렬 장치의 미세 입자 정렬에 대한 정확한 수치 분석은 그러한 미세 장치의보다 나은 설계에 사용될 수 있습니다.

FLOW-3D 의 강력한 입자 모델을 사용하면 미세 유체 입자 정렬 시뮬레이션을 쉽게 설정할 수 있습니다. 블로그 시작 부분의 애니메이션은 서로 다른 입자 종의 깨끗한 분류와 여러 매장의 각 종별 수집을 보여줍니다. microfluidics 입자 정렬에 대한 다음 기고에서 중력 분리를 기반으로하는 정렬 기술에 대해 이야기 할 것입니다.

microfluidics 시뮬레이션 또는이 페이지의 내용와 관련된 의견은 adwaith@flow3d.com으로 연락주십시오.