Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineersv.17 no.3 = no.99 , 2009년, pp.45 – 53  신현우 (두원공과대학 메카트로닉스과 ) ;  정연준 ( 현대자동차(주) ) ;  강승구 ( 인지AMT(주))

Abstract

Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

Keywords: 오일팬 , 내열마그네슘합금, 알루미늄 합금,  다이캐스팅, 유동해석

서론

크랭크케이스의 하부에 부착되는 오일팬은 오일 펌프에 의해 펌핑된 오일이 윤활작용을 마치고 다시 모이는 부품이다. 오일의 온도에 의해 가열되므로 일반적으로 사용되는 마그네슘 합금인 AZ나 AM계열의 합금은 사용이 불가하며 내열소재의 적용이 불가피하다.

현재 ADC12종 알루미늄 오일팬 둥이 적용되고 있으며, 이를 마그네슘으로 대체할 경우 밀도가 알루미늄 2.8g/cm3‘, 마그네슘 1.8g/cm3‘이므로 약 35%의 경량화가 가능하다고 단순하게 말할 수 있다.

그러나 탄성계수는 알루미늄 73GPa이 고 마그네슘 45GPa이므로 외부 하중을 지지하고 있는 부품의 경우는 단순한 재질의 변경만으로는 알루미늄과 같은 정도의 강성을 나타내지 못하므로 형상의 변경 등을 통한 설계 최적화가 요구된다.

마그네슘은 현재까지 개발된 여러 가지 구조용 합금들 중에서 최소의 밀도를 가지고 있으며 동시에 우수한 비강도 및 비탄성 계수를 가지고 있다.1.2)

그러나 이러한 우수한 특성을 가지는 마그네슘 합금은 경쟁 재료에 비해 절대 강도 및 인성이 낮으며 고온에서 인장 강도가 급격히 감소하고 내부식 성능이 떨어지는 등의 문제점이 있다. 현재까지 자동차 부품 중 마그네슘 합금은 Cylinder head cover, Steering wheel, Instrument panel, Seat frame 등 비교적 내열성이 요구되지 않는 부분에만 한정적으로 적용되고 있다.
자동차 산업에서 좀 더 많은 부품에 마그네슘 합금을 적용하기 위해서는 내열성을 향상 시키고 고온강도를 향상시키기 위한 새로운 합금의 개발이 이루어져야 한다. 최근 마그네슘 합금개발에 대한 연구동향은 비교적 저가인 원소를 값비싼 원소가 첨가된 합금계에 부분적으로 첨가하거나 대체함으로써 비슷한 내열 특성을 가지는 합금을 개발하고,34) 이를 자동차 산업이나 전자 산업의 내열 부품 적용으로 확대하기 위하여 진행되고 있다. 현재 마그네슘 내열 부품은 선진국에서 자동차 부품으로 개발되고 있으나6-8)

국내에서는 아직 자동차 부품에 폭 넓게 적용되고 있지 않다. 그러므로 국내 자동차 산업이 치열한 국제 시장에서 생존하기 위해서는 마그네슘 합금의 내열 부품 제조기술을 조기에 개발하여 선진국보다 기술적, 경제적 우위를 확보하는 것이 절실히 요구된다.

본 연구에서는 내열 마그네슘합금을 이용하여 알루미늄 오일팬을 대체할 수 있는 새로운 오일팬의 개발올 위한 적절한 다이캐스팅 공정방안을 도출하고자 한다.

<중략>…….

Fig. 1 Current Al oil pan and cooling lines
Fig. 1 Current Al oil pan and cooling lines
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 5 Filling pattern of current Al oil pan
Fig. 5 Filling pattern of current Al oil pan
Fig. 11 Temperature distribution at t-=1.825sec
Fig. 11 Temperature distribution at t-=1.825sec

<중략>…….

결론

오일팬은 엔진 내부에서 순환되어 돌아오는 오일의 열을 외부로 발산하는 냉각기능 및 엔진으로부터 발생하는 소음이 외부로 전달되지 않도록 소음을 차단하는 역할을 수행하는 매우 중요한 부품 중의 하나이다. 본 연구에서는 현재 개발 중에 있는 새로운 내열 마그네슘 합금을 이용하여 현재 사용하고 있는 알루미늄 오일팬을 대체할 마그네슘 오일팬을 개발하고 시험 생산하였으며 다음과 같은 결론을 얻었다.

  1. 알루미늄 합금과 마그네슘 합금의 단위 부피당 열 용량은 각각 3.07x10J/m/K, 2.38x10J/m/K로서 동일 주조 조건 시 응고 속도 차이가 제품 성형에 영향을 미칠 것으로 예상되었으며, 주조해석 및 제품분석을 통해 확인하였다. 따라서 주조 조건에 가장 큰 영향을 미치는 것으로 확인된 용탕, 금형온도, 주조속도 등을 변경하여 최적 주조공정 조건을 확립하였다.
  2. 제품 및 시험편 성형에 영향을 미치는 것으로 확인된 런너의 곡률 반경을 증대시키고 게이트의 갯수 및 오버플로우 위치와 형상을 조절함으로서 제품 및 시험편의 용탕 흐름을 원활하게 조절 할 수 있었다.
  3. MRI153M 합금은 AE44 합금에 비해 응고 시작점에서 완료점까지의 응고시간이 길어 응고 완료 후, 내부 수축기포가 보다 많이 관찰되었다.
    따라서 MRI153M 합금 주조시 슬리브 충진율, 게이트 통과속도, 충진시간 등을 달리하여 최적 주조 품을 생산할 수 있었다.

Reference

  1. W. Sebastian, K. Droder and S. Schumann, Properties and Processing of Magnesium Wrought Products for Automotive Applications; Conference Paper at Magnesium Alloys and Their Applications,Munich, Germany, 2000 
  2. J. Hwang and D. Kang, “FE Analysis on the press forging of AZ31 Magnesium alloys,” Transactions ofKSAE, Vo1.14, No.1, pp.86-91, 2006  원문보기 
  3. S. Koike, K. Washizu, S. Tanaka, K. Kikawa and T. Baba, “Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines,” SAE 2000-01-1117, 2000 
  4. D.M. Kim, H.S. Kim and S.I. Park, “Magnesium for Automotive Application,” Journal ofKSAE, Vo1.18, No.5, pp.53-67, 1996 
  5. P. Lyon, J. F. King and K. Nuttal, “A New Magnesium HPDC Alloy for Elevated Temperature Use,” Proceedings of the 3rd International Magnesium Conference, ed. G. W. Lorimer, Manchester, UK, pp.1 0-12, 1996 
  6. S. Schumann and H. Friedrich, The Use ofMg in Cars – Today and in Future, Conference Paper at Mg Alloys and Their Applications, Wolfsburg, Germany, 1998 
  7. F. von Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger and D. Eliezer, “New Die Casting Alloy MRI 153 for Power Train Applications,” Magnesium Technology 2002, pp.61-68, 2002 
  8. M.C. Kang and K.Y. Sohn, “The Trend and Prospects of Magnesium Alloys Consumption for Automotive Parts in Europe,” Proceedings of KSAE Autumn Conference, pp.1569-l576, 2003 
Fig. 6: Proposed Pattern Layout

Casting Defect Analysis on Caliper Bracket using Mold flow Simulation

금형 흐름 시뮬레이션을 사용한 캘리퍼 브래킷의 주조 결함 분석

Abstract

이 작업에서는 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 Green sand 주조의 모래, 기계 및 설계 관련 결함을 분석합니다. 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷이 분석을 위해 선택됩니다.

캘리퍼 브래킷을 제조하는 동안 수축, 블로우 홀, 몰드 크러쉬 및 샌드 드롭과 같은 결함이 대량 생산에서 발생합니다. 여기에서는 주조 결함 식별, 분석 및 수정에 대한 3 단계 접근 방식을 제시합니다.

모래 관련 결함에서 테스트 매개 변수 및 모래 속성이 수집된 다음 해당 속성을 저널 및 기타 표준과 비교합니다. 기계 관련 주조 결함에서 기계 유지 보수를 관찰 한 다음 유지 보수 일정을 변경하여 브레이크 다운 시간과 유지 보수 비용을 줄입니다.

패턴 관련에서는 “Autodesk 금형 흐름 시뮬레이션 소프트웨어”를 사용하여 패턴에서 결함이 있는 영역을 찾은 다음 패턴을 재 설계하여 결함을 줄입니다.

Keywords: Casting defects, Mold flow, Simulation, Caliper Bracket

Background

이 작업에서 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 모래, 기계 및 설계 관련 결함을 분석하는 것은 원하는 부품 형상을 제조하는 직접적인 방법 중 하나입니다. 주조 결함으로 인해 단위 비용이 증가하고 작업 현장 직원의 사기가 낮아집니다. Vijaya Ramnath (2014)는 제조 리드 타임을 대폭 단축하는 게이팅 시스템의 최적화를 다루었습니다.

Prabhakara Rao et al (2011)은 ProCAST 소프트웨어의 도움으로 주조 응고 시뮬레이션 프로세스에 대해 논의했습니다. Kermanpur et al (2010)은 FLOW-3D 시뮬레이션 소프트웨어를 사용하여 두 자동차 주조 부품의 다중 캐비티 주조 금형에서 금속 흐름 및 응고 거동을 연구하고 시뮬레이션 모델을 검증했습니다.

Nandi 등 (2914)은 기존 방법과 컴퓨터 시뮬레이션 기술을 기반으로 다양한 크기의 피더를 사용하는 알루미늄 합금 (LM6)의 응고 거동을 조사하기 위해 플레이트 주조를 연구했습니다. Gajbhiye (2014)는 허용치, 게이팅 시스템 및 피더가있는 패턴에 대해 얻은 설계 치수에 따라 AutoCAST-X 환경에서 응고 시뮬레이션 분석을 수행했습니다. Masoumi (2005)는 금형 충진의 흐름 패턴을 실험적으로 관찰하기 위해 직접 관찰을 사용했습니다.

Dabade (2013)는 실험 설계법 (Taguchi 법)과 컴퓨터 지원 주조 시뮬레이션 기법을 결합한 새로운 주조 결함 분석 방법을 제안하고 연구하여 모래, 몰딩, 녹색 모래 주조의 방법, 충전 및 응고. Rajesh Rajkolhe (2014)와 Vipul Vasava (2013)는 주조 시뮬레이션 기술이 주조 결함 문제 해결 및 방법 최적화를 위한 강력한 도구가 된다고 발표했습니다.

Guharaja (2006)는 가능한 가장 낮은 비용으로 매개 변수 설계의 Taguchis 방법으로 품질을 개선함으로써이를 입증했습니다. 검토를 기반으로이 작업에서는 컴퓨터 지원 주조 시뮬레이션 기술을 사용하여 그린 샌드 주조의 설계 관련 결함을 분석합니다. 주조. 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷이 분석을 위해 선택됩니다.

캘리퍼 브래킷을 제조하는 동안 수축, 블로우 홀, 몰드 크러쉬 및 샌드 드롭과 같은 결함이 대량 생산에서 발생합니다. 여기에서는 주조 결함 식별, 분석 및 수정에 대한 3 단계 접근 방식을 제시합니다. 모래 관련 결함에서 테스트 매개 변수 및 모래 속성이 수집된 다음 해당 속성을 저널 및 기타 표준과 비교합니다.

기계 관련 주조 결함에서 기계 유지 보수를 관찰 한 다음 유지 보수 일정을 변경하여 브레이크 다운 시간과 유지 보수 비용을 줄입니다. 패턴 관련에서는 “Autodesk 금형 흐름 시뮬레이션 소프트웨어”를 사용하여 패턴의 결함 영역을 찾은 다음 패턴의 재 설계를 수행하여 결함을 줄입니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Fig. 5: Existing Pattern Layout
Fig. 5: Existing Pattern Layout
Fig. 6: Proposed Pattern Layout
Fig. 6: Proposed Pattern Layout

Conclusions

이 작업은 산업 부품의 결함을 줄이기 위해 시뮬레이션 기술을 사용하여 주조 결함을 식별하는 것을 목표로합니다. 주조 부품의 품질을 향상시키기 위해 여러 가지 장점과 지능형 도구 형태를 제공합니다. 이것은 주조의 품질과 수율을 향상시키는 데 확실히 도움이 될 것입니다. 이러한 기술적 인 방법으로 주조 결함을 검사하면 주조 산업에서 불량품 관리 조건을 경고 할 수 있습니다. 이 프로젝트에서는 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷을 분석을 위해 선택합니다. 캘리퍼 브라켓을 제작하는 동안 양산시 수축, 블로우 홀, 몰드 크러쉬, 샌드 드롭과 같은 결함이 발생합니다. 더 나은 품질의 주조를 얻기 위해 다양한 매개 변수를 찾기 위해 많은 테스트가 수행되었습니다. 모래 매개 변수를 적절하게 선택함으로써 주조 결함을 성공적으로 줄였습니다. 거부가 통제 될 때까지 모래 혼합 공정 매개 변수의 변화를 위해 지속적으로 노력할 수 있습니다. 그런 다음 적절한 유지 보수 정책을 제공하여 CASTING 기계의 성능 수준을 높였습니다. 이로 인해 CASTING 기계의 OEE가 향상되었습니다. 마지막으로 세 가지 이상의 수정 사항이있는 새로운 패턴 디자인이 제안됩니다. 이 새로운 패턴 디자인은 주조 결함을 성공적으로 줄였습니다. 더 나은 품질을 위해 주조 결함에 근거한 주조품의 거부를 가능한 한 줄여야합니다.
분석 결과는 제품 품질의 향상을 보여줍니다. 마지막으로 캐스팅 거부율이 감소합니다.

Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

청정 및 에너지 절약 단조 기술을 위한 혁신적인 다이 재료 및 윤활 전략

이 최종 기술 보고서에는 수상 번호 DE-FC07-01ID14206에 따라 미국 에너지 부에서 부분적으로 자금을 지원 한 “청정 및 에너지 절약 단조 기술을위한 혁신적인 다이 재료 및 윤활 전략”프로젝트에서 수행 된 작업이 포함되어 있습니다. 프로젝트 수행을위한 계약 시간은 2001 년 9 월 30 일부터 2005 년 9 월 29 일까지였습니다. 그러나 DOE / OIT는 2003 년과 2004 년 회계 연도 지난 2 년 동안 자금을 제공 할 수 없었고 프로젝트는 2003-04 회계 연도에 조기 종료되었습니다. 결과적으로 많은 주요 연구 과제가 특정 이정표를 달성하기 위해 수정되거나 완료되지 않고 종료되었습니다. Ohio State University의 산업, 용접 및 시스템 공학 교수 인 Rajiv Shivpuri 박사는이 프로젝트의 프로젝트 책임자이자 수석 조사자였습니다. 이상은 오하이오 주립 대학 연구 재단 (OSURF)에서 관리했습니다. OSURF는 모든 재정 및 행정 문제도 담당했습니다. 재정 보고서는 별도로 제출됩니다. 에너지 부서, 산업 기술 사무소의 프로그램 관리자는 Golden Office의 Mr. Ramesh Jain과 Mr. Dibyajyoti Aichbhowmik이었습니다.
이 프로젝트의 주요 성과는 다음과 같습니다.

• 단조 산업 및 해당 공급 업체와 함께 산업 응용 분야를위한 혁신적인 다이 재료 및 윤활 전략을 탐색하기위한 주요 협력 노력이 수립되었습니다. 여기에는 단조 산업과 협력하는 워크숍과 심포지엄이 포함되었습니다. 단조 산업 전체에 결과를 전파하기 위해 단조 산업 기술 컨퍼런스에서 발표되었습니다.

• 단조 산업 협회와 단조 산업 교육 연구 재단의 후원으로 단조 기술 우수 센터 설립. 이 센터의 일부로 산업, OSU, 오하이오 주 및 DOE 지원과 함께 2 개의 단조 셀이 설치되었습니다. 1300 톤 기계식 프레스 셀과 350 톤 유압 프레스 셀입니다. 이것은 단조 연구에 150 만 달러를 투입 한 것입니다.

• LENS (Laser Enhanced Net Shaping) 기반 니켈 알루미나 이드 코팅 오버레이 (자세한 내용은 부록 A 참조)를 포함하여 혁신적인 다이 코팅이 탐색되었습니다.

• 열간 단조 응용 분야를위한 금형 재료를 최적으로 선택하고 설계하기 위해 혁신적인 실험 설정 및 예측 열 연화 소프트웨어가 개발되었습니다 (부록 B, C 및 D).

• 윤활 전략 및 단일 액적 기반 윤활 모델은 확산 및 열 전달을위한 열간 단조 윤활제의 최적 증착을 위해 개발되었습니다 (부록 E 및 F).

• 윤활유 분해 및 바운스 용 모델이 개발되었습니다. 이 모델은 뜨거운 다이 표면의 흑연 윤활로 인한 공기 및 지하수 오염을 줄이는 데 사용할 수 있습니다.

(부록 G). 이 보고서는 Shivpuri 박사와 Yijun Zhu (연구원)가 작성했습니다. 여기에는 다른 외부 또는 내부 지원과 함께 프로젝트 종료 후 일부 연구 계획 및 프로젝트 기간 동안 완료된 작업에 대한 세부 정보가 포함되어 있습니다.

1.1 프로젝트 목표

이 프로젝트의 목표는 혁신적인 다이 재료 및 윤활 전략을 개발 및 구현하여 다이 수명을 8 배 늘리고, 에너지 투입량을 15 % 줄이며, 부품 당 에너지 비용을 50 % 줄이며, 윤활유에서 나오는 미립자 배출량을 90 % 줄이며, 다이 관련 가동 시간을 90 %까지 늘립니다.

단조 산업, 공급 업체 (철강 및 알루미늄 생산 업체 (IOF), 윤활유, 표면 기술 및 다이 소재 공급 업체) 및 고객 (OEM)에 미치는 최대의 광범위한 에너지 영향을 위해 전략이 선택되었습니다.

여기에는 최적의 윤활제 스프레이 기술, 고급 표면 엔지니어링에 의한 열간 단조의 흑연 제거, 경사 다이 재료 및 다이 엔지니어링, 열간 단조를위한 윤활 및 다이 활성화 등이 포함됩니다.

미국의 단조 산업은 1997 년에 약 120 억 달러였습니다 (DOD 국가 안보). 평가). 제품 총 판매 가치의 약 15 %가 에너지에 할당되며 연간 약 50 조 BTU입니다. 흑연 사용 (열간 단조) 및 냉간 단조 전환 코팅 사용으로 인한 환경 영향은 제품 비용에 20 % 이상 추가 될 것으로 예상됩니다.

Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface
Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

BACKGROUND

실온 (저온) 및 고온 (온 및 고온)에서 수행되는 단조는 진화하는 야금, 공구 표면의 마찰 및 금속의 흐름 특성을 포함하는 잘 이해되지 않는 복잡한 현상입니다. 이 프로젝트에서 다루어 진 기술적 장애물은 다음과 같습니다.

• 냉간 및 열간 단조의 윤활 작용에 대한 지식 부족. 윤활유 및 윤활 기술의 선택은 윤활유 및 장비 공급 업체에 맡겨집니다. 이로 인해 윤활유의 과도하고 불량한 사용과 과도한 환경 오염이 발생합니다.

• 고급 단조 응용 분야를위한 새로운 표면 엔지니어링 및 다이 재료 기술의 성숙도가 부족합니다. 실제 생산에서이를 구현하는 데 따른 기술적 및 재정적 위험이 매우 높아 사용을 제한합니다. 이러한 기술의 시장 침투는 거의 존재하지 않습니다.

• 다이와 윤활 시스템의 설계 최적화를위한 계산 도구가 부족합니다.

윤활유 및 다이 소재 기술에서 다음과 같은 전략을 통해 프로젝트 목표를 실현할 계획이었습니다.

• 전략 # 1 : 오염을 제거하고, 윤활제 사용을 줄이며, 다이 냉각 감소로 인한 그물 성형을 가능하게하는 윤활제 스프레이 공정의 최적 설계를위한 시스템 개발. 또한 흑연 기반 윤활유의 필요성을 줄여줍니다.

• 전략 # 2 : 철 및 비철 부품의 온간 단조 (빌릿 가열이 1250F에서 900F로 감소)를위한 다이 수명과 공정을 개선하기 위한 윤활제 및 다이 코팅 가능 요소를 개발합니다. 단조 온도를 낮추면 공차가 개선되고 부품 당 에너지가 크게 절약됩니다.

• 전략 # 3 : 저 마찰 다이 표면 엔지니어링 (DLC (비철) 및 WC / C 코팅)을 사용하여 냉간 단조 빌릿에 인광 코팅을 사용하지 않습니다.

• 전략 # 4 : 열간 단조 금형을위한 고급 표면 클래딩 (렌즈 및 열 스프레이에 의한 단단한 표면) 및 이중 코팅 기술을 개발합니다. 기존의 코팅과 표면 공학 기술은 상당한 이득을 얻지 못했습니다.

• 전략 # 5 : 재료 및 공정 설계를 통해 냉간 및 열간 단조에서 공정 중 다이 고장을 제거하고 예측 다이 유지 보수를위한 소프트웨어를 개발합니다. 이는 스크랩 감소 및 다이 관련 다운 타임에 상당한 영향을 미칩니다.

개발중인 많은 기술은 수치 모델링, 윤활 및 냉각수 기술, 표면 기술, 재료의 신속한 프로토 타이핑, 레이저 기술 등과 같은 교차 절단 R & D 가능 요소를 다루고 있습니다. 이러한 기술은 지원 산업의 로드맵에서도 중요한 기술로 확인되었습니다.

미래의 산업으로. IOF를 위해 250 조 BTU의 에너지 절약과 3500 톤의 오염 물질이 예상됩니다. 프로젝트가 전액 지원을받지 못하고 프로젝트가 2004 년 9 월 30 일에 종료되었으므로 전략 # 1, # 4, # 5 만 추구했습니다. 연구 및 구현에 대한 세부 사항은 부록에 포함되어 있습니다.

Effect of lubricant heat

템퍼링, 마모 및 공구 열화에 대한 단조 윤활유의 효과를 평가하기 위해 다양한 열 전달 계수로 여러 시뮬레이션을 수행했습니다. 컴퓨터 시뮬레이션에 사용 된 열전달 계수의 값은 얻은 값과 일치하며 경우에 따라 Sridhar 등이 오하이오 주립 대학에서 수행 한 테스트에서 추정 한 값입니다. 사용 된 계면 열전달 계수의 값은 12 KW / m2 ° C, 24 KW / m2 ° C 및 33 KW / m2 ° C였으며, 이는 20 부, 30 부 및 100 부 물로 희석 된 수성 흑연 윤활제에 해당합니다 (희석 비율 1:20, 1:30 및 1 : 100). 이러한 각 희석 비율에 대해 3000 및 5000 샷 후 상부 다이의 경도 분포는 그림 C.3, C.4 및 C.5에 나와 있습니다. 희석 비 1:20에 대한 표면 경도 분포는 그림 C.6에 나와 있습니다.

Figure C. 2: stage gear blank forging sequence (Courtesy: Sypris Technologies
Figure C. 2: stage gear blank forging sequence (Courtesy: Sypris Technologies
Figure C. 3: Hardness distribution after 3000 and 5000 shots, heat transfer coefficient used = 12 KW/m2°C, press type: mechanical press
Figure C. 3: Hardness distribution after 3000 and 5000 shots, heat transfer coefficient used = 12 KW/m2°C, press type: mechanical press

F.5.3 Results of the Lubricant Properties

표 F.1은 윤활유의 측정 된 특성을 보여줍니다. DP는 107 및 CA 모세관 작용 방법에서 펜던트 드롭 방법을 나타냅니다. 테스트 된 액체에는 순수한 물이 포함됩니다. 다음과 같은 사실을 관찰 할 수 있습니다. a). 더 높은 표면 장력을 가진 더 높은 희석 비율 회사; 비). 희석 비율이 1 : 1보다 큰 액체의 경우 표면 장력이 물의 장력에 접근합니다. 드롭 펜던트 법으로 추정 한 모든 표면 장력은 동일한 경향을 공유하지만 약 10dynes / cm에 대해 모세관 작용법에 의한 것보다 작다는 것을 알 수 있습니다. 물의 표면 장력이 72.8dynes / cm라는 점을 감안할 때 모세관 작용법에서 얻은 결과가 실제 값에 더 가깝다고 생각합니다.

Figure F. 10: simulation results of lubricant 1:1 with 4mm diameter droplet at impact velocity 10cm/s.
Figure F. 10: simulation results of lubricant 1:1 with 4mm diameter droplet at impact velocity 10cm/s.
Figure F. 12: Experimental results of maxξ v.s. TD. We = 27.
Figure F. 12: Experimental results of maxξ v.s. TD. We = 27.
Figure G. 1: Dryoff process of a lubricant droplet at film boiling: (a)- (c) fluid dynamic process, (d). quasi-steady dryoff process.
Figure G. 1: Dryoff process of a lubricant droplet at film boiling: (a)- (c) fluid dynamic process, (d). quasi-steady dryoff process.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.

Numerical simulation of flow and compression of green sand

Abstract

산업 박사 프로젝트의 초점은 주조 부품에 최종 기하학적 모양을 제공하는 모래 주형 (녹색 모래)의 생산에 집중되었습니다. 주조 부품의 고품질을 보장하기 위해서는 금형 자체의 제조 공정을 균일하고 안정적으로 제어하는 ​​것이 중요합니다.

따라서 녹사(주물사)의 흐름과 퇴적을 특성화하고 모델링하는 방법에 대한 기본적인 이해를 얻는 것이 중요했기 때문에 모래 주형의 제조 공정 시뮬레이션에 사용할 수 있었습니다. 녹색 모래의 유동성은 모래 샷 중에 모래로 챔버를 채우는 호퍼를 통해 모래가 아래로 흐를 때 중요합니다.

녹색 모래의 유동성은 주로 물과 벤토나이트의 양에 의해 좌우되며 둘 다 감소 시킵니다. 따라서 유동성과 내부 힘은 리브 및 기타 기하학적 장애물로 인한 그림자가 있을 수 있는 복잡한 금형 형상을 얼마나 잘 채울 수 있는지 제어합니다.

흐름이 조기에 중단되면 금형이 완전히 채워지지 않거나 재료 밀도의 변동이 너무 높아 주조 부품의 최종 표면에 영향을 미칠 수 있습니다. 벤토나이트에 의해 생성된 습식 다리는 벤토나이트와 물이 녹색 모래를 매우 응집력 있게 만드는 모래 알갱이를 서로 달라붙게 하고 혼합물을 짜 냄으로써 주조 공정을 위한 강력한 금형을 얻기 위해 금형을 안정시키는 기계적 특성을 얻습니다.

따라서 생사 유동성은 챔버의 적절한 충진을 위해 샌드 샷 중에 중요하며, 후속적으로 압착 공정 동안의 견고한 기계적 특성은 금형의 최종 강도에 중요합니다. 이는 이러한 기계적 거동이 역 관계를 갖기 때문에 문제가 됩니다.

예를 들어 녹색 모래가 너무 건조하면 녹색 모래의 유동성이 매우 높고,특정 수분 함량 수준에 따라 곰팡이의 강도가 낮고 그 반대도 마찬가지입니다. 따라서 정확한 생사 상태를 확보하고 샌드 샷 중에 금형 충진을 개선하는 것이 매우 중요합니다.

이산 요소 방법 (DEM)은 방법의 이산적인 특성이 녹색 모래의 입상 구조를 잘 모의하기 때문에 수치 모델로 선택되었습니다. DEM 모델은 롤링 저항 모델을 사용하여 비 구형 석영 모래 입자의 롤링 저항을 에뮬레이션하고 응집성 모델을 사용하여 벤토나이트에서 석영 모래 입자의 결합을 에뮬레이트합니다.

그린 샌드는 항복 궤적이 발견된 링 전단 테스터로 특성화되었으며 유동성을 정의하는 새로운 방법이 제안 되었습니다. 링 전단 시험기는 DEM 모델의 정적 마찰 계수를 얻기 위해 사용되었습니다.

측정된 높이에서 녹색 모래의 단순한 기계적 거동을 조사하기 위해 모래 더미 실험이 사용되었습니다. 이 높이에서 DEM 모델은 구름 저항 값을 얻고 응집 모델에서 매개 변수를 얻는 것과 관련하여 보정 되었습니다.

이 프로젝트는 DISAMATIC 공정에서 샌드 샷을 사용하여 모래 주형을 생산하는 동안 모래 입자의 흐름과 모래 퇴적을 처리했습니다. 챔버의 녹색 모래 퇴적은 캐비티 내부에 통풍구가 배치된 특수 캐비티 설계로 조사되었습니다.

에어 벤트는 샌드 샷 중에 공기 흐름과 함께 녹색 모래를 운반하는 데 사용됩니다. 챔버와 캐비티의 에어 벤트 설정을 변경함으로써 캐비티 설계에서 좁은 통로의 충진을 개선하여 최종 샌드 몰드도 개선 할 수 있었습니다.

캐비티 디자인을 사용한 샌드 샷은 챔버의 공기 흐름과 통풍구를 통한 공기 흐름을 모델링하기 위해 고전적인 전산 유체 역학 (CFD)과 결합 된 녹색 모래의 흐름을 모델링하는 이산 요소 방법 (DEM)으로 시뮬레이션되었습니다.

이러한 실험과 시뮬레이션은 DISAMATIC 프로세스와이를 개선하는 방법에 대한 유익한 통찰력을 제공했습니다. 또한 유동층을 사용하여 생사의 유동화 특성을 조사하고 새로 개발 된 Anton Paar Powder Cell을 사용하여 유동 점도를 얻었습니다.

상업적 측면 특수 설계된 캐비티 지오메트리에서 그린 샌드로 몰드 챔버를 채우는 것에 대한 지식을 얻었습니다. 에어 탱크에 초기에 적용된 공기 압력과 함께 에어 벤트의 설정은 캐비티의 충진을 개선하여 최종 금형을 개선하는 데 유용한 아이디어를 제공했습니다.

또한, 결합 된CFD-DEM 모델을 사용하여 STAR-CCM +의 상용 소프트웨어를 적용하여 형상의 3D 슬라이스 표현으로 프로세스를 성공적으로 시뮬레이션 할 수있었습니다. 따라서 향후 DISAMATIC 프로세스를 시뮬레이션하기 위한 독립형 코드를 개발하는 것이 더 가능해집니다. DISAMATIC 프로세스의 샌드 샷은 링 전단 테스터가 다음의 견고한 기계적 거동을 나타낼 수 있는 연속체 모델로 모델링 될 수도 있습니다.

Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3. Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5. Stripping off the PP where the PP is stripped from the mold and returns to its starting position in the molding chamber. 6. Closing the molding chamber and repeating a new cycle. The edited figure and text are from [8]
Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3. Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5. Stripping off the PP where the PP is stripped from the mold and returns to its starting position in the molding chamber. 6. Closing the molding chamber and repeating a new cycle. The edited figure and text are from [8]
Figure 2.1: The green sand mixture. The figure is from [8]
Figure 2.1: The green sand mixture. The figure is from [8]
Figure 2.2: The size distribution of the green sand applied in the project. The figure is from [9]
Figure 2.2: The size distribution of the green sand applied in the project. The figure is from [9]
Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite
cohesive and thereby the sand grains will stick together. The pictures are from the slides
in [10](http://www.sut.ac.th/engineering/Metal/ru/GREEN20%SAND.pdf).
Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite cohesive and thereby the sand grains will stick together
Figure 2.11: The density as a function of compactability with respect to the number of rammings 1-10. The first ramming starts from the left indicated by the number. The cross placed in the middle shows the average value of the batches with an individual color. The dotted lines are the standard deviations of compactability % as a horizontal line and the standard deviations of density [ kg m3 ] as a vertical line.
Figure 2.11: The density as a function of compactability with respect to the number of rammings 1-10. The first ramming starts from the left indicated by the number. The cross placed in the middle shows the average value of the batches with an individual color. The dotted lines are the standard deviations of compactability % as a horizontal line and the standard deviations of density [ kg m3 ] as a vertical line.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.
Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed on the Mohr circle
Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed on the Mohr circle
Figure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The performed experiments placed on the Mohr circle.
Figure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The performed experiments placed on the Mohr circle.

Conclusion

이 논문에서는 시멘트와 충전제의 비 중복 입자 분포를 사용하여 유변학에 대한 분쇄 모래 충전제의 형상 효과를 분리했습니다. 실험 결과는 필러의 종횡비가 증가함에 따라 매트릭스의 유동성이 감소하고 두 종류의 필러에 따라 최대 부피 분율 임계 값이 다양 함을 보여주었습니다. DEM 모델을 사용하여 슬럼프 흐름 테스트를 시뮬레이션하고 실험 결과의 10 % 이내 인 수치 예측을 얻었습니다. 불일치로 인해 모델에 의해 부피 분율 임계 값이 약간 검증되었습니다. 그럼에도 불구하고 수치 결과는 유망 해 보이며 우리는 이산화를 개선하고 다른 상호 작용 모델을 탐색하여 DEM 모델을 추가로 개발할 계획입니다.

FLOW-3D (x) Workflow

Optimization of a Tilt Pour Casting

경동 주조 최적화

최적화 목표

연소 엔진 피스톤의 경동 주조를 최적화하여 공기 혼입을 최소화합니다.

엔지니어링 과제

이 최적화의 목적은 경동 주조 중에 공기 혼입 및 난류의 양을 최소화하는 것입니다. 이 목표는 주물 채우기 모션의 프로필을 수정하여 달성됩니다. 공기 혼입과 난류를 최소화하면 주조에 결함이 발생할 가능성이 줄어 듭니다. 또한 충전 매개 변수를 최적화하면 비용 증가 없이 품질을 높일 수 있습니다.

최적화 전 틸트 타설 주조

최적화 솔루션

사용자가 경동 주조 시뮬레이션의 여러 반복을 실행할 수 있는 워크 플로우를 생성합니다. FLOW-3D (x) 는 노드를 사용하여 최적화를위한 자동화 된 워크 플로를 구성합니다. 세 가지 프로세스 변수 (회전 시작, 회전 지속 시간 및 체적 유량)는 변수 입력으로 사용되며 시뮬레이션이 반복 될 때마다 달라집니다.

FLOW-3D (x) 워크 플로우

Excel 스프레드 시트 노드는 금형 회전의 시작 및 지속 시간과 충전 프로파일의 체적 유량에 대한 테이블을 정의하는 데 사용됩니다. 계산기 노드는 프로파일 설명을 레이들 동작을 규정하는 movin.inp 파일로 변환합니다. 다음으로 FLOW-3D 노드는 시뮬레이션을 실행하는 데 사용됩니다. 각 시뮬레이션의 출력은 후 처리 노드에 의해 결과에서 추출된 총 충전 비율과 동반 공기량 비율입니다. 채우기 비율은 시뮬레이션의 동적 종료 조건으로 사용되어 금형이 완전히 채워지도록 합니다. 최적화 연구에 허용되는 예산 또는 시뮬레이션 수는 30 개로 설정됩니다. 단일 시뮬레이션 실행은 약 15 분입니다.

최적화 결과

사용 FLOW-3D (X) 의 데이터를 분석 도구를 결과 Pareto Front 그래픽 표현이 혼입된 공기의 최소량과 높은 충전 분율 최적 충전 프로파일에 있는 시뮬레이션 대응을 보여준다. 시뮬레이션 및 반복 설계 기능은 모두 FLOW-3D (x)에 의해 자율적으로 생성됩니다 . 또한 각 개별 시뮬레이션의 이미지와 비디오를 출력하도록 설정할 수 있습니다.

다음은 원래의 주입 속도와 주입 시간 (왼쪽)과 오른쪽의 최적화 된 값을 비교 한 것입니다. 주입 속도가 약간 증가하고 주입이 약간 더 일찍 완료됩니다.

원래 주입 속도
최적화 된 주입 속도

다음은 원래 금형 회전 속도 및 기간 (왼쪽)과 오른쪽의 최적화 된 값을 비교한 것입니다. 회전 속도가 증가하고 회전 시간이 원본보다 짧다는 것을 알 수 있습니다.

원래 금형 회전율

FLOW-3D (X)에 대한 자세한 내용은  기술 문의 담당자에게 문의 바랍니다.

Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

A non-fluorine mold release agent for Ni stamp in nanoimprint process

Tien-Li Chang a,*, Jung-Chang Wang b
, Chun-Chi Chen c
, Ya-Wei Lee d
, Ta-Hsin Chou a
a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan
cNational Nano Device Laboratories, Taiwan
d Research and Development Division, Ordnance Readiness Development Center, Taiwan

Abstract

이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.

Introduction

나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.

따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].

오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.

각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.

Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].

그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.

본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.

Experiment

먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 ​​메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.

디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.

이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.

Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.
Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.

마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.

PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.

수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.

200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.

마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.

Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

References

[1] M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Nature 417 (2002) 835.
[2] S.Y. Chou, C. Keimel, J. Gu, Appl. Phys. Lett. 84 (2004) 5299.
[3] Q. Wang, G. Farrell, P. Wang, G. Rajan, T. Thomas, Sensor Actuator A 134 (2007) 405.
[4] C. Kentsch, W. Henschel, D. Wharam, D.P. Kern, Microelectron. Eng. 83 (2006) 1753.
[5] T.L. Chang, Y.W. Lee, C.C. Chen, F.H. Ko, Microelectron. Eng. 84 (2007) 1689.
[6] S. Tisa, F. Zappa, A. Tosi, S. Cova, Sensor Actuator A 140 (2007) 113.
[7] M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Lab Chip 5 (2005) 5545.
[8] W. Hu, E.K.F. Yim, R.M. Reano, K.W. Leong, S.W. Pang, J. Vac. Sci. Technol. B 84 (2005) 2984.
[9] H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht, Microelectron. Eng. 423 (2002) 61.
[10] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, Microelectron. Eng. 73–74 (2004) 196.
[11] A. Yokoo, M. Nakao, H. Yoshikawa, H. Masuda, T. Tamamura, Jpn. J. Appl. Phys. 38 (1999) 7268.

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Particles | 입자

입자 / Particles

본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.

금속 증착 시뮬레이션으로 시각화된 Lagrangian 입자
FLOW-3D의 Lagrangian 입자 모델

FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.

  • 마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
  • 가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.

각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.

다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.

가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.

액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.

각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.

Lagrangian 입자를 직접 금속 증착에 적용

직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.

laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.

  • 용융 풀의 크기와 모양
  • 금속 흐름 및 그 내부의 냉각 속도
  • 응고된 층의 형상

이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.

입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.

시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.

새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.

Granular Media

Granular 미디어

가공 및 제조 업계에서는 다양한 유형의 The granular media model를 접할 수 있습니다. 특이한 특성으로 인해 입상 재료는 유용한 목적을 위해 전달, 혼합 또는 조작하려는 엔지니어에게 어려운 문제를 제기 할 수 있습니다. 입상 매체 모델은 고체 입자와 기체 또는 액체 (예 : 모래와 공기 또는 모래와 물) 일 수있는 유체의 혼합물의 거동을 예측하는 데 사용됩니다. 입상 고체와 유체의 혼합물은 수수료 표면에 의해 제한 될 수있는 비압축성 유체로 취급됩니다. 입상 매체 모델은 고농축 입상 재료의 흐름을 위해 개발되었습니다. 이 모델은 “연속”접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현을 기반으로 하여 개별 모래 입자를 처리하려고 하지 않습니다.

Sand flowing under gravity in two-dimensional hour glass
2 차원 모래 시계에서 중력에 의해 흐르는 모래. 작은 검은 색 선은 속도 벡터입니다. 빨간색은 대부분 완전히 채워진 모래 밀도를 나타냅니다.

Granular미디어 모델링

모래와 공기의 혼합물은 공기와 모래 재료가 개별 속도로 흐르지만 압력 및 점성 응력으로 인한 운동량 교환을 통해 결합되는 2 상 흐름입니다. 전형적인 코어 모래에서 모래 입자의 직경은 약 10 분의 1 밀리미터이며 공동으로 날려지는 모래의 부피 분율은 일반적으로 50 % 이상입니다. 이 범위에서는 모래와 공기 사이에 강력한 결합이 존재하므로 그 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2 상 효과는 Drift-Flux라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.

상대 속도 접근 방식을 사용하는 이 복합 흐름은 입상 매체 모델의 기반으로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현 될 수 있다고 가정합니다. 그러나 복합 유체는 모래 다짐 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 입자-입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 농축 물질의 특성을 갖습니다.

캐비티의 순수한 공기 영역을 배출하기 위해 단열 기포로 처리됩니다. 단열 기포는 유체 또는 단단한 벽으로 둘러싸인 공기 영역입니다. 기포의 압력은 기포 부피의 함수이며 기포가 차지하는 영역에서 균일 한 값을 갖습니다. 통풍구는 기포 내의 공기가 공동 외부로 배출되도록 합니다.

Sand Core Blowing Applications

유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.

Granular media model
 
Figures 1-4 (From left to right): Initial 2D hopper configuration; Time 1.75s — Vectors are black; Time 3.0s; Time 5.0s

모래는 0.63 부피 분율의 가까운 포장 한계에서 초기화되었습니다. 배출관 입구의 바닥에있는 모래는 중력의 작용으로 떨어지기 시작하지만 위의 거의 모든 모래는 고정되어 있습니다. 1-4, 여기서 색상은 패킹으로 인한 흐름 저항입니다 (빨간색은 완벽하게 단단함). 짧은 시간에 거품과 같은 영역이 형성되고 모래의 윗면을 향해 올라갑니다. 기포가 상단에 도달 할 때까지 기포 표면 주위의 흐름 만 보이며 표면이 붕괴됩니다. 상단 표면의 움푹 들어간 부분은 측면을 34 °의 지정된 안식각으로 줄이는 국부적 흐름을 가지고 있습니다. 한편이 패턴을 반복하기 위해 바닥에 또 다른 거품이 형성됩니다.

이 새로운 모델의 적용을 설명하기 위해 D. Lefebvre, A. Mackenbrock, V. Vidal, V에 의해 “날린 코어 및 금형 설계에서 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다. Pavan and PM Haigh., Hommes & Fonderie, 2004 년 12 월. 데이터는 하나의 충전 포트가있는 2 차원 다이 형상에 대한 것입니다. 다이의 벤팅은 비대칭 적이 어서 벤트가 충전 패턴에 미치는 영향을 연구 할 수 있었습니다.

시뮬레이션 영역의 크기는 폭 30cm, 높이 15cm, 두께 1cm입니다. 밀도 1.508 gm/cc의 모래 / 공기 혼합물을 상자 입구에서 절대 2 기압의 압력으로 상자에 넣었습니다. 상자의 오른쪽에는 5 개의 열린 통풍구가 있고 상자의 아래쪽과 왼쪽에는 6 개의 통풍구가 더 있습니다. 이 배열은 상자의 비대칭 채우기로 이어집니다.

Sand core blowing continuum model simulation
 
Figure 5:  연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.

계산 그리드는 수평으로 80 개의 메쉬 셀과 수직으로 40 개의 메쉬로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 박스에 도달하는 데 걸리는 시간은 0.07 초 였고 3.2GHz Pentium 4 PC 컴퓨터에서 직렬 모드로 실행되는 CPU 시간이 약 8.9 초가 필요했습니다 (만족할 정도로 작지만 물론 이것은 2D 케이스였습니다. 계산 영역에 3200 개의 셀이 있음).

연속체 모델 시뮬레이션의 결과와 Lefebvre 등 논문의 사진을 비교 한 결과가 그림 5에 나와 있습니다. 시각적 일치는 많은 세부 사항에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혀있는 비대칭 영향을 포착합니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

주조 분야

Metal Casting

주조제품, 금형의 설계 과정에서 FLOW-3D의 사용은 회사의 수익성 개선에 직접적인 영향을 줍니다.
(주)에스티아이씨앤디에서는  FLOW-3D를 통해 해결한 수많은 경험과 전문 지식을 엔지니어와 설계자에게 제공합니다.

품질 및 생산성 문제는 빠른 시간 안에 시뮬레이션을 통해 예측 가능하므로 낮은 비용으로 해결 할수 있습니다. FLOW-3D는 특별히 주조해석의 정확성 향상을 위한 다양한 설계 물리 모델들을 포함하고 있습니다.

이 모델에는 Lost Foam 주조, Non-newtonian 유체 및 금형의 다이싸이클링 해석에 대한 알고리즘 등을 포함하고 있습니다. 시뮬레이션의 정확성과 주조 제품의 품질을 향상시키고자 한다면, FLOW-3D는 여러분들의 이러한 요구를 충족시키는 제품입니다.

Ladle Pour Simulation by Nemak Poland Sp. z o.o.


관련 기술자료

Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).

Numerical Modelling of Semi-Solid Flow under Processing Conditions

처리조건에서의 반고체유동의 수치모델링 David H. Kirkwood and Philip J. WardDepartment of Engineering Materials, University of Sheffield, Sheffield I UK Keywords: ...
더 보기
Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy 한국자동차공학회논문집 = Transactions ...
더 보기
Fig. 1.Schematic of wire feeding in a melting line.

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt

Bok-Hyun Kang*, Ki-Young KimKorea University of Technology and Education 코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가 ...
더 보기
Fig. 6: Proposed Pattern Layout

Casting Defect Analysis on Caliper Bracket using Mold flow Simulation

금형 흐름 시뮬레이션을 사용한 캘리퍼 브래킷의 주조 결함 분석 Abstract 이 작업에서는 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 Green sand ...
더 보기
Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)

Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation

Alexandre ReikherA Dissertation Submitted inPartial Fulfillment of theRequirements for the Degree ofDoctor of PhilosophyIn EngineeringatThe University of Wisconsin MilwaukeeDecember 2012 ...
더 보기
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.

Numerical simulation of flow and compression of green sand

Abstract 산업 박사 프로젝트의 초점은 주조 부품에 최종 기하학적 모양을 제공하는 모래 주형 (녹색 모래)의 생산에 집중되었습니다. 주조 부품의 고품질을 ...
더 보기
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments

International Thermal Spray Conference – ITSC-2006Seattle, Washington, U.S.A., May 2006 M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, ...
더 보기
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기

연료 탱크 슬로싱

시뮬레이션 사례 설명 이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 ...
더 보기

코어 가스(Core Gas)

코어 가스(Core Gas)   코어로 주조 모델링 (Modeling Castings with Cores) 모래 속의 화학 결합제는 용융 된 금속에 의해 가열 ...
더 보기
World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너

등록비

  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐

여행

컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0
info.mun@maritim.de

뮌헨

뮌헨의 모든 것

뮌헨 도시지도 다운로드

CFD가 레이저 용접을 만나면 : 불꽃이 어떻게 날아갑니까?

Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development

When CFD meets laser welding: How sparks fly!

CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 . 

자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.

자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다. 

이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.

레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다. 

레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다. 

분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.

CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.

이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.

레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

많은 제품들이 모두 자신의 소프트웨어가 가장 적합하다고 말하기 떄문에, 사람들은 자신의 업무에 적합한 CFD 소프트웨어 선택에 어려움을 겪습니다. 그 이유는 유체 흐름 및 열 전달 분석을 위한 소프트웨어 패키지는 다양한 형태로 제공됩니다. 이러한 패키지는 물리적 근사치와 수치적 솔루션 기법이 크게 다르기 때문에 적합한 패키지를 선택하는 것이 어렵습니다.

아래 내용에서 올바른 CFD 소프트웨어를 선택할 때 고려해야 할 중요한 항목을 설명합니다.

Spillway’s tailrace over natural rock

1. 메싱 및 지오메트리

유한 요소 또는 “바디 맞춤 좌표”를 사용하는 솔루션 방법은 유동 영역의 기하학적 구조를 준수하는 해석용 그리드를 생성해야합니다. 정확한 수치 근사를 위해 허용 가능한 요소 크기와 모양으로 이러한 그리드를 생성하는 것은 쉽지 않은 작업입니다. 복잡한 경우 이러한 유형의 그리드 생성에는 며칠 또는 몇주의 노력이 소요될 수 있습니다. 일부 프로그램은 직사각형 그리드 요소만 사용하여 이러한 생성 문제를 제거하려고 시도하지만 흐름 및 열 전달 특성을 변경하는 “계단현상” 경계 문제를 해결해야 합니다. FLOW-3D는 FAVOR ™ (분수 면적 / 체적) 방법을 사용하여 기하학적 특성이 매끄럽게 포함된 생성하기 쉬운 직사각형 그리드를 사용하여 두 문제를 모두 해결합니다. 간단하고 강력한 솔리드 모델러가 FLOW-3D와 함께 패키지로 제공되거나 사용자가 CAD 프로그램에서 기하학적 데이터를 가져올 수 있습니다.

2. 운동량 방정식과 대략적인 흐름 모델

유체 운동량의 정확한 처리는 여러 가지 이유로 중요합니다. 첫째, 복잡한 지오메트리를 통해 유체가 어떻게 흐를지 예측할 수 있는 유일한 방법입니다. 둘째, 유체에 의해 가해지는 동적 힘 (즉, 압력)은 모멘텀을고려하여야만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 이동을 계산하려면 개별 유체 입자가 다른 유체 입자 및 제한 경계와 관련하여 어떻게 움직이는지를 정확하게 파악할 수 있어야 합니다.

이것은 운동량의 정확한 처리를 의미합니다. 모멘텀의 보존을 대략적으로만 하는 단순화된 흐름 모델은 실제적인 유체 구성과 온도 분포를 예측하는데 사용할 수 없기 때문에 FLOW-3D에서는 사용되지 않습니다.

3. 액체-고체 열 전달 영역

액체와 고체 (예 : 금속-금형) 사이의 열 전달에는 계면 영역의 정확한 추정이 필요합니다. 계단 경계는 이 영역을 과대 평가합니다. 예를 들어, 실린더의 표면적은 27 %의 비율로 과대 평가됩니다. FLOW-3D 전 처리기의 각 제어 볼륨에 대해 FAVOR ™ 방법에 의해 정확한 계면 영역이 자동으로 계산됩니다.

4. 액체-고체 열 전달에 대한 볼륨 효과 제어

제어 볼륨의 크기는 액체 / 고체 인터페이스를 포함하는 제어 볼륨에서도 열이 흐르기 때문에 액체와 고체 사이에서 교환되는 열의 속도와 양에 영향을 미칠 수 있습니다. FLOW-3D에서는 액체-고체 인터페이스에서 열 전달 속도를 계산할 때 체적 크기와 전도도가 고려됩니다.

5. 암시성(Implicitness)과 정확성

비선형 및 결합 방정식에 대한 암시적 방법에는 각 반복에서 under-relaxation 특성이 있는 반복 솔루션 방법이 필요합니다. 이 동작은 일부 상황에서 심각한 오류 (또는 매우 느린 수렴)를 일으킬 수 있습니다 (예 : 큰 종횡비로 제어 볼륨을 사용하거나 실제로 중요하지 않은 효과를 예상하여 암시성이 사용되는 경우).

FLOW-3D에서는 계산 노력FLOW-3D에서는 계산 작업이 덜 필요하기 때문에 가능한 경우 언제나 명시적 수치 방법을 사용하며, 수치 안정성 요구 사항은 정확도 요구 사항과 동일합니다. Implicit vs. Explicit Numerical Methods 문서에서 자세히 알아보세요.

6. 대류 전송을 위한 암시적 수치 방법 (Implicit Numerical Methods)

임의적으로 큰 시간 단계 크기를 계산에 사용할 수 있는 암시적 수치 기법은 CPU 시간을 줄이는데 널리 사용되는 방법입니다. 불행히도 이러한 방법은 대류 해석에 정확하지 않습니다. 암시적 방법은 근사 방정식에 확산 효과를 도입하여 시간 단계 독립성을 얻습니다. 물리적 확산(예 : 열전도)에 수치적 확산을 추가하는 것은 확산 속도만 수정하기 때문에 심각한 문제를 일으키지 않을 수 있습니다. 그러나 대류 과정에 수치 확산을 추가하면 모델링되는 물리적 현상의 특성이 완전히 바뀝니다. FLOW-3D에서 시간 단계는 프로그램에 의해 자동으로 제어되어 정확한 시간 근사치를 보장합니다.

7. 이완 및 수렴 매개 변수 (Relaxation and Convergence Parameters)

암시적 근사를 사용하는 수치 방법은 하나 이상의 수렴 및 이완 매개 변수를 선택해야합니다. 이러한 매개 변수를 잘못 선택하면 발산 또는 수렴 속도가 느려질 수 있습니다. FLOW-3D에서는 하나의 수렴 및 하나의 이완 매개 변수만 사용되며, 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 사용자는 수치해석 솔버를 제어하는 ​​매개 변수를 설정할 필요가 없습니다.

8. 자유 표면 추적

액체-가스 인터페이스 (즉, 자유 표면)를 모델링하는 데 사용되는 두 가지 방법이 있습니다. 그 중 하나는 액체 및 가스 영역의 흐름을 계산하고 계면을 유체 밀도의 급격한 변화로 처리하는 것입니다. 일반적으로 밀도 불연속성은 고차 수치 근사를 사용하여 모델링됩니다.

불행히도, 이 치료는 몇몇 그리드 셀에 걸쳐 인터페이스가 매끄럽게 진행되도록 해주며, 그러한 인터페이스에 일반적으로 존재하는 접선 유속의 급격한 변화는 설명하지 않습니다. 또한 이 기법은 가스가 계산 영역으로 유입되는 액체로 대체될 경우 탈출 포트 또는 가스의 싱크로도 보완해야 합니다. 또한 이러한 방법은 일반적으로 유체의 비압축성을 만족시키기 위해 더 많은 노력을 기울여야 합니다.  가스 영역은 거의 균일한 압력 조정을 통해 솔루션 수렴 속도를 늦추는 경향이 있기 때문에 이러한 현상이 발생합니다.

FLOW-3D에서는 다른 기술인 VOF (Volume-of-Fluid) 방법이 사용됩니다. 이것은 인터페이스가 단계 불연속으로 긴밀하게 유지되는 진정한 3 차원 인터페이스 추적 체계입니다. 또한 선택적 표면 장력을 포함하여 수직 및 접선 응력 경계 조건이 인터페이스에 적용됩니다. 가스 영역은 사용자가 모델에 포함되도록 요청하지 않는 한 계산되지 않습니다.

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조

  • 금형의 모션 제어
  • 최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링
  • 정확한 가스 고립 및 기공 예측

Workspace Overview

경동주조(Tilt Pour Casting) Workspace는 엔지니어가 FLOW-3D  CAST로 경동주조(Tilt Pour Casting)을 성공적으로 모델링 할 수 있도록 설계된 직관적인 모델링 환경입니다 . 작업 공간에는 프로세스별 특정 다이 및 재료 유형이 포함되어 있으며, 정확한 기계 기능에 맞게 회전 동작을 쉽게 정의 할 수 있습니다. 

기포 결함의 완전한 분석을 위해 충진 분석에 벤트 및 배압이 포함되어 있으며, 다이사이클링 및 최신 응고 모델은 작업 공간의 하위 프로세스 아키텍처를 통해 충진시 매끄럽게 연결됩니다. Tilt Pour Casting Workspace는 단순하지만 다양한 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

Tilt Pour Simulation | FLOW-3D CAST
Tilt Pour Casting | FLOW-3D CAST
8-Cavity Tilt Pour | FLOW-3D CAST v5.1

프로세스 모델링

  • 틸트 주입
  • 역 틸트 주입

유연한 격자 생성

  • FAVOR ™ 단순 격자 생성 도구
  • 멀티 블록
  • Conforming mesh

금형 온도 관리

  • 다이 사이클링
  • 열 포화
  • 완전 열전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 열 계수
  • 기계적 특성 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

금형 동작 제어

  • 6 개의 회전축
  • 회전 속도를위한 테이블 형식 입력

결함 예측

  • 매크로 및 미세 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

다이나믹 시뮬레이션 제어

  • 모션 제어를위한 이벤트 프로브 기반 트리거

완벽한 분석 패키지

  • 다중 뷰포트가있는 애니메이션-3D, 2D, 히스토리 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 병렬 시뮬레이션 결과 비교
  • 용융 온도, 고체 분율 측정 용 센서
  • 입자 추적기
  • 일괄 배치 처리
  • 보고서 생성

Sand Casting Workspace, 사형주조

Sand Casting Workspace Highlights, 사형주조

  • 모래 특성의 통합에는 투과성, 코어 가스 및 수분 함량이 포함됩니다.
  • 주입 컵 채우기 조건에 따라 동적 래들 주입 및 동적 래들 동작
  • 첨단 솔루션을 통해 정확한 가스 포집 및 다공성 제공

Workspace Overview

Sand Casting Workspace(사형주조)는 샌드 캐스터에 주입, 응고 및 냉각 분석을 시뮬레이션하는 데 필요한 모든 도구를 제공합니다. Sand Casting Workspace는 엔지니어의 언어를 사용하여, 사용이 간편한 인터페이스를 제공하도록 설계되어 있습니다.

사형주조의 결함은 흔히 충전 단계에서 추적할 수 있습니다. FLOW3D CAST는 뛰어난 금속 흐름 예측에 대해 뛰어난 정확도를 제공하여, 쉽게 결함을 파악할 수 있습니다. 산화물 형성 및 콜드샷을 정확하게 추적하여 최종 주물에서의 발생 위치를 확인합니다. 압탕의 크기를 조정하고 핫 스팟(최종응고부)에 배치하는 한편, 진보된 응고 및 수축 분석을 통해 가장 까다로운 제조 환경에서도 최종적으로 최적화된 설계를 달성할 수 있습니다.

프로세스 모델링

  • 충전재
  • 응고
  • 냉각

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 적합 메쉬

주형 모델링

  • 가스 및 수분 배출이 가능한 투과성 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 공기 통로

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마(Niyama ) 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

충전 정확도

  • 가스/버블 포획
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산
  • 난류 모델링

코어 모델링

  • 가스 생성을 포함한 모래 코어
  • 소금 코어

결함 예측

  • 혼입 공기
  • 산화물 형성 및 추적
  • 콜드 샷
  • 다공성 예측
  • 수축
  • 핫 스팟

라이저 공구

  • 발열체 조립체
  • 절연 및 발열 슬리브

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Die Casting Workspace, 저압주조

Workspace Highlights, 저압주조

  • 매우 정확한 충진을 위한 압력 제어 주입
  • 공극, 배기 및 역압 효과를 포함한 전체 프로세스 모델링
  • 다공성과 같은 정밀한 조기 동결 및 응고 결함을 해결하기 위한 향상된 응고 및 열 전달 제어

Workspace Overview

저압주조 Workspace 는 엔지니어가 FLOW-3D CAST를 통해 저압주조 제품을 성공적으로 모델링하도록 설계된 직관적인 모델링 환경입니다. 

유연한 압력 제어를 통해 엔지니어는 가압, 벤트 및 배압 조건을 정확하게 재현하여 주입, 공기 갇힘 및 미세수축결함에 대한 완전한 분석을 수행할 수 있습니다.

금형온도해석 및 최첨단 응고 모델은 작업 공간의 서브 프로세스 아키텍처를 통해 원활하게 충전 상태에 연결됩니다. 저압주조 Workspace은 단순하면서도 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

프로세스 모델링

  • 중력 저 압력 다이 캐스트 주조

유연한 메쉬

  • FAVOR™단순 메시 생성 도구
  • 멀티 블록 메쉬
  • 중첩된 메쉬

다이 열 관리

  • 열사이 사이클
  • 열 포화도
  • 풀 열 전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫 스폿 식별
  • 기계적 특성 예측
  • 마이크로 아키텍처 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

진공 및 환기

  • 대화형 프로브 배치
  • 면적 및 손실 계수 계산기

LADLE운동

  • 6도의 자유 동작 정의

주입 정확도

  • 가스 및 기포 걸림
  • 표면 산화물 계산
  • RNG및 LES난류 모델
  • 배경 압력

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

동적 시뮬레이션 컨트롤

  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 컨트롤

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Sand Casting (LPSC) Workspace, 저압사형주조

Workspace Highlights, 저압사형주조

  • 투과성, 코어 가스 및 수분 함량을 포함한 모래 특성 통합
  • 전체 프로세스 모델링에는 보이드, 환기 및 역압 영향이 포함됨
  • 고급 다이내믹스에는 채우기 후 고체화 틸트 동작이 포함됨

Workspace Overview

저압 사형 주조(LPSC) Workspace 는 주조 공장에서 일반적으로 사용되는 모든 공정을 시뮬레이션할 수 있는 간편한 도구를 제공합니다. 새로운 LPSC Workspace를 통해 사용자는 프로세스 파라미터를 모델링하고 최적화하는 데 필요한 도구를 사용할 수 있습니다.

필터는 하단 충진 스프로(sprues)에 삽입하여 충진 패턴을 추가로 제어하고, 용해 시 불순물을 제거할 수 있습니다. FLOW-3D CAST는 충전 중 흐름에 미치는 영향을 모델링하기 위한 세라믹 필터를 제공합니다. LPSC Workspace는 응고중의 수축 및 미세수축결함을 해결하기 위해 발열 압탕어셈블리 및 단열 슬리브를 제공합니다.

FLOW-3D CAST의 틸트 기능을 사용하면 응고 전에 몰드를 거꾸로 뒤집어 충전 스프루(sprues)가 라이저 역할을 할 수 있습니다. 이 접근 방식은 충진 스프루(sprues)가 적절하게 설계된 경우 추가 라이저가 필요하지 않습니다.

프로세스 모델링

  • 압력 또는 용량 제어 바닥 공급
  • 회전식 응고

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 구성 메쉬

주형 모델링

  • 가스 및 수분 배출이 포함된 허용 가능한 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 에어벤트

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

라이저 공구

  • 발열체 데이터베이스
  • 발열성 및 절연성 슬리브

주입 정확도

  • 가스/버스/자갈 끼임
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산

몰드 모션 컨트롤

  • 시간 제어 금형 회전

결함 예측

  • 다공성 예측
  • 수축
  • 핫 스팟

동적 시뮬레이션 컨트롤

  • 문제가 제어되는 주입 속도

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

Gravity Die Casting Workspace, 중력주조

Gravity Die Casting Workspace Highlights, 중력주조

  • 최첨단 다이 열 관리, 동적 냉각 채널, 분무 냉각 및 열 순환
  • Ladle 주입 조건에 따라 동적 Ladle 모션이 있는 Ladle 주입
  • 첨단 유량 솔루션으로 정확한 가스 갇힘 및 가스 다공성 제공

Workspace Overview

Gravity Die Casting Workspace(중력주조)는 엔지니어가 FLOW-3D CAST를 사용하여 중력주조 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

Ladle 모션, 벤트 및 배압이 충진해석에 포함되어 공기 갇힘 및 미세 응고수축공의 정확한 예측과 금형온도분포 및 상태 예측이 가능합니다.-첨단 응고 모델은 Workspace의 하위 프로세스 아키텍처를 통해 충준해석기능에 원활하게 연결됩니다. Gravity Die Casting Workspace는 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

PROCESSES MODELED

  • Gravity die casting
  • Vacuum die casting

FLEXIBLE MESHING

  • FAVOR™ simple mesh generation tool
  • Multi-block meshing
  • Nested meshing

MOLD MODELING

  • Localized die heating elements and cooling channels
  • Spray cooling of the die surface
  • Ceramic filters
  • Air vents

ADVANCED SOLIDIFICATION

  • Porosity
  • Shrinkage
  • Hot spots
  • Mechanical property
  • Microstructure

SAND CORES

  • Core gas evolution
  • Material definitions for core properties

DIE THERMAL MANAGEMENT

  • Thermal die cycling
  • Heat saturation
  • Full heat transfer

LADLE MOTION

  • 6 degrees of freedom motion definition

DEFECT PREDICTION

  • Macro and micro porosity
  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

VACUUM AND VENTING

  • Interactive probe placement
  • Area and loss coefficient calculator

MACRO AND MICRO POROSITY

  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

FILLING ACCURACY

  • Gas and bubble entrapment
  • Surface oxide calculation
  • RNG and LES turbulence models
  • Backpressure

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Continuous Casting Workspace, 연속주조

연속 주조 Workspace Highlights

  • 고급 모션 컨트롤에는 수직 빌릿, 수평 파이프 및 롤러 시트 캐스팅이 포함됨
  • 열 및 냉각 동적 제어는 타의 추종을 불허하는 열 관리 분석 제공
  • 유체의 완전한 시뮬레이션 – 고급 열 응력 해석을 통해 동작중의 고체 전환

Workspace Overview

Continuous Casting Workspace는 연속형 빌릿 주조 및 직접 냉간 연속 주조 등 일반적으로 사용되는 모든 주조 공장 공정을 시뮬레이션할 수 있는 사용하기 쉬운 도구를 지속적으로 주조 사용자에게 제공합니다. 새로운 Continuous Casting Workspace를 통해 사용자는 연속 주조 공정을 모델링하고 공정 파라미터를 최적화하는 데 필요한 도구를 찾을 수 있습니다.

멀티 블록 메쉬는 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 제공하는 효율적인 방법을 제공합니다. Mold 및 Billlet 냉각, 용해 유량, 과열 및 Mold 형상과 같은 공정 매개변수가 분석에 포함됩니다. 용탕 표면의 운동과 몰드의 온동은 후처리 중에 빠르게 시각화되며, 이 과정에서 충진 및 응고 패턴도 쉽게 평가되므로 공정 수정을 자신 있게 구현할 수 있습니다.

 

 

모델링된 프로세스

  • 연속 빌릿 및 시트 캐스팅
  • 직접 냉각 연속 주조

유연한 메시

  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

열 금형 모델링

  • 난방 및 냉각 요소와 지역화 된 다이 가열 제어
  • 용융 및 금형에서 대류 및 복사 열 전달

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

Centrifugal Casting Workspace, 원심주조

원심주조 워크 스페이스 하이라이트

  • 고급 모션 컨트롤을 통해 모든 스핀 조건의 정밀한 시뮬레이션
  • 수평 파이프 주조, 수직 보석 주조, 수직 대형 회전 등의 솔루션 제공
  • 응고 중 동적 스핀 속도 제어

작업 영역 개요

원심 주조 Workspace는 원심 주조 사용자에게 수평 및 수직 진정한 원심 주조, 부분 원심 주조 및 원심 주조 시뮬레이션을 위한 편리한 도구를 제공합니다. 새로운 원심 주조 Workspace를 사용하면 사용자가 프로세스를 모델링하고 설계 매개 변수를 최적화하는데 필요한 모든 도구를 찾을 수 있습니다. 금형을 고정시키고 회전하는 메쉬를 통해 사용자는 ladle 붓기를 포함하여 상상할 수 있는 모든 금형 모션을 모델링할 수 있는 유연성을 제공합니다.

원통형 메싱은 가능한 최고의 흐름 모델링 정확도를 제공하는 반면, 다중 블록 메싱은 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 위한 효율적인 방법을 제공합니다. 이 솔루션은 적합하지 않은 금형 회전 속도에 따라 비처럼 떨어지는 것과 같은 흐름 관련 문제, 공기 유입 또는 응고 부위의 재용해과 같은 결함을 예측합니다. 몰드 예열 온도, 냉각 구성 및 금형 회전률과 같은 프로세스 매개변수는 모두 모델 설정의 일부가 될 수 있습니다.

모델링된 프로세스

  • 수평 및 수직 진정한 원심 공정
  • 반원심 공정
  • 분리기

열 금형 모델링

  • 가열 요소와 지역화 다이 가열 제어
  • 대류 및 복사 열 전달

유연한 메시

  • 최고의 정확도를 위한 원통형 저술
  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

충전 정확도

  • 용융 픽업 및 강우 예측
  • 가스/버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델

금형 모션 제어

  • 수직 및 수평 회전
  • 가변 스핀 속도

국자 붓기

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

Low Pressure Die Casting Workspace (저압 주조)

저압 주조의 장점

  • 높은 수준의 자동화로 다수확
  • 그물 모양의 주조로 인한 가공비 절감
  • 재료 보존으로 인한 생산 향상 및 불량률 감소

저압 주조의 workflow


재질 및 구성요소 선택

  • 모든 금속 및 금형의 성질은 사용자가 정의할 수 있음
  • 재질 데이터베이스가 준비됨

CAD → MESH

  • FLOW-3D CAST는 어떤 형상일지라도 쉽고 자동적으로 격자를 생성해줌
  • FAVOR 기능
  • 격자 속성의 조정없이도 새로운 형상을 쉽고 빠르게 업로드함

응고 모델

  • FLOW-3D CAST는 두 가지 모델로 다공성을 식별할 수 있음
    – 단순화된 응고 수축
    – 유체의 흐름이 없음
    – 액체 영역의 온도를 기준
    – 인터덴드리틱 옵션
    – 빠른 결과에 사용
    – 주요 수축 모델
    – 유체 및 열의 흐름을 기준
    – 재용해로 인한 부피 팽창
    – 매우 정확한 최종 검증

Output 선택 & 후처리 과정

  • 정확한 출력 변수를 정의
  • FlowSight를 이용하여 고품질의 시각적 데이터를 쉽게 렌더링

Permanent Mold Workspace | FLOW-3D CAST

영구 금형 주조의 장점

  • 높은 생산률에 적합
  • 모래에 비해 복잡한 금형에 용이하고 표면 조도 및 치수 정확도가 높음
  • 재료 보존으로 인한 수율 향상 및 금형 관련 결함 발생이 감소

영구 금형의 workflow


재료와 구성요소의 선택

  • 모든 금속 & 주형의 재질은 사용자로부터 제작될 수 있음.
  • 재질의 데이터는 갖추어짐.

CAD → MESH

  • FLOW-3D CAST는 사용자가 만든 stl파일에 알맞게 쉽고 자동으로 격자를 생성해줌.
  • FAVOR = Fractional Area-Volume Obstacle Representation
  • 격자의 성질의 조정없이 빠르고 쉽게 새로운 모형을 업로드

응고 모델


출력 선택 & 후처리 과정

  • 정확한 출력 변수를 정의
  • FlowSight로 고품질의 시각적 데이터를 쉽게 렌더링

Overview of the Tilt-Pour Workspace

Tilt-Pour casting 장점

  • 금형 충진 중 난류 감소
  • 현대식 주조기로 쉽게 자동화
  • 재료 보존으로 인한 수율 향상 및 결함 감소
  • 더 낮은 금형 비용으로 대량 생산이 가능한 “낮은 기술”솔루션

Tilt-Pour 프로세스

  • 스프레이 냉각 시간
  • Tilt 프로파일
  • 사이클 파라미터

Part desciption

  • Ornamental Casting
  • Alloy : A356
  • Alloy Temp. : 섭씨 700도
  • Mold : H-13
  • Mold Temp. : 섭씨 200도

예비 충진 분석

추가 통풍 채널

  • Parting라인 벤트 추가
  • 공기 유입을 최소화하는 확장된 중앙 러너

Thermal die cycling

재시작으로 채우기

  • 열 다이 사이클링 시뮬레이션의 데이터를 사용하여 충진 분석 계속
  • 모든 열 분포 데이터가 시뮬레이션에 활용
  • 사용자는 필요한 데이터에 따라 재시작 옵션을 완전히 제어 가능

설계 변경 후의 Filling

응고 및 다공성 예측

Gravity Pour

Gravity Pour

 

중력 주조는 (일반적으로 철, 청동, 황동 또는 알루미늄 등으로) 큰 제품을 만드는 데 사용됩니다. 사형주조나 영구 금형을 포함하여 대부분의 파운드리 주조 공정은 FLOW-3D로 모델링 할 수 있습니다. 그 충진 과정이 고압 다이 캐스팅보다 덜 과격하지만, 제품 품질이 과도한 난류 충진으로 공기의 유입에 영향을 받을 수 있고, 수축 유발 결함 등에 영향을 받을 수 있습니다. 충진 완료 후 금속의 응고와 수축 또한 FLOW-3D로 모델링 할 수 있습니다.

Accurate Filling Simulations

주조 과정에서 충진은 충진 양상과 그에 관련된 결함-결합이 overflow로 보내지는지 또는 제품 내부에 포함되는지를 분석하는 업무로 구성되어 집니다. Simulation을 통한 분석은 제품이 만들어지기 전에 미리 설계에 대한 효과와 비용 절감에 대한 부분을 시험할 수 있습니다. 정확한 충진은 응고 거동을 예측하기 위해 충진의 끝 단계에서 정확한 열 윤곽을 얻기 위해 매우 중요합니다.

충진의 정확도는 산화물 결함, 공기 갇힘 위치를 추적하는 것 뿐만 아니라, 응고 결과를 위해서도 중요한 결과라 할 수 있습니다. 정확한 충진 양상은 충진 끝의 정확한 열적인 양상을 의미합니다. 열 양상은 응고 분석의 기본입니다.

Solidification of Castings for Foundry Applications

 

주조제품의 결함에는 segregation, 열로 인한 응력, 마이크로 및 매크로 다공성을 포함하는  응고와 연관된 광범위한 결함들이 있습니다. 올바른 응고 분석을 얻기 위한 중요한 첫 번째 단계는 정확한 충진 해석입니다. 정확한 충진은 정확한 thermal profile을 얻고, 이는 응고해석의 초기조건이 됩니다. FLOW-3D는 보다 신속한 주물 설계 및 불량률을 줄일 수 있도록 응고와 관련된 많은 결함을 검출 할 수 있습니다.

정밀주조품의 수축 결함 예측

정밀 주조품의 수축 결함 예측

정밀 주조 공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품(왁스)패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

정밀 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했습니다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였습니다.

오늘날 정밀 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

정밀 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터 또는 ‘트리’를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

정밀 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 정밀 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 정밀 주조 공정에서 주요 요소인 복사 열 전달과 정밀 주조 공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 정밀 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Shell mold

Figure 2. Shell mold

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • complement 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “complement”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “Thermal penetration depth”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • Analyze 탭>3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “thermally active component volume”을 선택하고 “Render”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “component 1″을 선택하고 “component 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.
Two mesh blocks

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후에, 이 파일을 component 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘heat transfer type 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. heat transfer type 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.
쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY VALUE UNIT
Fluid –AluminiumA356 alloy Density  2437 kg/m³
Thermal conductivity 116.8 W/(m K)
Specific heat 1074 J/(kg K)
Latent heat 433.22 kJ/m³
Liquidus temperature 608 0C
Solidus temperature 552.4 0C
Zircon Mold Thermal conductivity 1.09 W/(m K)
Specific heat* Density 1.63E+06 J/( m³ 

Initial and boundary conditions used are show in Table 2.

Mold temperature 430°C
Melt pouring temperature 680°C
Filling time 7 s
Interface heat transfer coefficient 850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

Sprue basin에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

Results & Discussion

Validation with reported experimental results

Experimental and numerical comparison

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.
온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. probe points C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

Fill sequence & solidification pattern for two different sprue locations

2 개의 상이한 탕구 위치에서 용탕 충전 순서는 5a 및 5b에 나와 있습니다. 최종 탕구가 더 많은 splashing을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Fill sequence at different time intervals when the sprue is located at one end
Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

 

Fill sequence at different time intervals when the sprue is located in the middle
Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

2D temperature profile after 50% solidification when the sprue is located at one end
Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end
2D temperature profile after 50% solidification when the sprue is located in the middle
Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle
Effect of shell thickness

정밀 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

쉘 열 전달 계수는 열이 쉘 몰드의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Temperature profile 1
Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile 2
Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile at location C1
Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Temperature profile at location S11
Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

정밀 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

Prediction of Shrinkage Defects During Investment Casting Process

Indianapolis Storm-Water System

하수도 시스템은 액션영화의 도피 루트로 사용되지 않는 한 흥미롭지 않을 것입니다. 폭우로 인해 이산화탄소 수치가 올라갈 때까지 여러분은 그것에 대해 생각조차 하지 않을 것입니다. 불행하게도, 770개 이상의 오래 된 미국 도시들 아래에 있는 하수구 시스템은 심한 폭풍으로 오염 문제를 일으킵니다. 이러한 구형 설계는 하수 및 폭풍 유실을 위한 비용 효율적인 단일 스타일 파이프를 사용했으며 연결된 파이프로 강 및 호수에 하수를 내보냅니다(CSO).

1994년 미국 환경보호청(EPA)은 주로 북동부 및 그레이트 레이크 지역의 관련 지방 자치 단체들에게 CSO관련 문제를 줄이거나 제거하도록 하는 정책을 발표했습니다. (2000년 “Clean Water Act”의 일부로 법률화된 정책). 인디애나 폴리스(Indianapolis)는 가벼운 비 폭풍으로 인해 하수 오물의 백업 및 범람이 발생할 수 있는 도시 중 하나였으므로, 주요 건설 조건에서 2025년까지 문제를 해결하는 것이 필요하였습니다.

인디애나 폴리스는 국제 디자인 회사인 AECOM에 Citizens Energy Group이 건설하고 있는 3개의 깊은 암석 저장 터널 중 첫 번째를 설계할 것을 요청했습니다. 총 25마일인 이 시스템은 대규모 지하 펌프장과 기존의 하수구에서 CSO를 수직으로 떨어뜨리는 연결 구조물을 포함합니다. 첫 번째 터널의 경우, 강우가 가라 앉은 후에 3 개의 커다란 강하 구조물이 CSO를 저장 터널로 전환하여 후속 처리를 수행했습니다.

프로젝트를 해결하기 위해 AECOM은 여러 가능한 낙하 구조물 설계의 동작을 시뮬레이션하기 위해 FLOW-3D를 선택하여, 구축 및 평가 예산이 책정 된 물리적 모델에 대한 재 작업의 필요성을 최소화했습니다. 테스트 결과는 예측 값과 일치하였으므로 재설계가 필요하지 않았습니다. 또한, 이제 AECOM은 유압 설계작업의 첫 번째 단계를 일반적으로 CFD시뮬레이션을 사용합니다.

Large Scale Project on a Tight Delivery Schedule

촉박한 납품 일정에 따른 대규모 프로젝트

20세기에 건설된 하수 처리장은 주거용, 상업용, 환경유출물의 유출로 무엇을 해야 할 것인지에 대한 새로운 인식을 가져다 주었습니다. CSO 방전은 정상적으로 운영되는 동안 처리시설로 직접 이동되며 모든 과정이 양호하게 운영됩니다. 불행하게도, 대규모 폭풍이 발생하는 동안, 발전소들의 초과 용량문제를 피하기 위해 인근 수역으로 과도한 유량을 방출합니다. 이들 배출은 기름과 살충제, 야생동물 배설물에 이르기까지 다양한 오염 물질을 포함합니다.
고무적인 성공의 신호로, 1990 년대에 착공된 새로운 CSO 분리, 저장 및 처리 시설로 오염의 영향에 대해 67 %의 개선을 이루었지만, 여전히 많은 연구가 이루어져야 합니다. 인디애나 폴리스의 경우, 인디애나 폴리스시 공공사업부가 CSO 장기 통제계획을 준비한 2008년에 그러한 노력이 시작되었습니다. 정상적인 처리 공장에서 처리 할 수 있을 때까지 오버플로우가 발생하는 “저장 및 운송”접근법의 핵심은 인디애나 폴리스 터널 저장 시스템 또는 인디애나라고 합니다.

이 시스템의 첫번째 단계는 딥 록 터널 커넥터(DRTC)라고 불리는 1억 8천만달러 가치의 프로젝트입니다. DRTC는 길이 7마일의 18피트 직경의 지하 터널로, 기존의 인디애나 폴리스의 3개의 서버 대 계층 유출 연결의 흐름 경로를 다시 만들 것입니다(그림 1). 목표는 과잉 강우 유출을 기존 하수구와 새 터널 사이의 낙하 구조를 통해 이들 대피소에서 거대한 터널로 안전하게 재배치하고, 폭풍 후 처리를 위해 처리장으로 펌핑 될 수있을 때까지 유지합니다.

Fig. 1. City of Indianapolis Deep Rock Tunnel Connector (DRTC), a “storage and transport” concept being built to handle combined sewage overflow (CSO) during heavy storms. Three vertical drop structures will capture this flow and divert it downwards to 18-foot-diameter storage tunnels running more than 250 feet underground; the tunnels store the CSO until sewage treatment plant capacity becomes available. (Image courtesy Citizens Energy Group)

평균적으로 지표면 아래 250피트 깊이에서, DRTC는 건설과 궁극적인 운영 동안 위의 주변 지역에 대한 혼란을 최소화하도록 설계되었습니다. 그러나 이 프로젝트의 규모와 복잡성은 AECOM의 과제에 긴급성을 더했습니다. 세 장소 각각에 대한 가능한 낙하 구조 설계와 평가, 구조물 설계의 60%를 7개월 이내에 마무리 지었습니다.

이러한 구조물의 목적은 표준 도시 하수 시스템에서 깊은 저장 터널로 하수 흐름을 전달하는 동시에, 효율적 손실( 느린 속도 또는 백업)과 장기적인 도심을 방지하는 것입니다. 각 섹션의 크기와 모양이 유입 흐름의 볼륨 및 속도와 세심하게 일치하지 않을 경우 발생할 수 있는 구조적 손상입니다.
AECOM의 수석 기술 전문가인 라이언 에디슨 컨설턴트는 계약의 스케줄링 요구 사항이 유효성 검사를 위해서는, 단 하나의 모델에만 물리적 건물과 테스트 활동을 제한할 것이라는 것을 알게되었습니다. 다른 주요 건설 프로젝트에 15년간 FLOW-3D 시뮬레이션 소프트웨어를 사용해 왔기 때문에, 난류, 과전압 및 에너지 낭비를 예측하는 능력은 충분하지 않고 디자인 프로젝트에 적합하다고 자신했습니다. 또한 여러 검증(what-if) 시나리오를 실행하기 위한 소프트웨어 옵션을 통해 설계 세부 사항을 다시 실행해야 하는 위험을 최소화할 수 있었습니다. 변경 사항이 적용될 경우 상당한 이점은 여러개의 병렬 시공 트랙이 있는 프로젝트에 있습니다.
시간 제약에도 불구하고, 에디슨은 특히 이 도전에 만족했습니다. 왜냐하면 “CFD로 드롭 구조 설계를 만들고 물리학에서 이것들은 너무 큰 구조이기 때문입니다.”라고 그는 말합니다. 그것들은 CFD는 실제로 사용되지 않는데 보통 물리적 모델이나 손으로 계산하는 것으로 이루어집니다.

DRTC 프로젝트를 위해서, 그는 먼저 시뮬레이션된 작동 조건에 대해서 컴퓨터 설계를 테스트할 것입니다. 에디슨은 3차원의 일시적이고 격동적인 흐름 조건을 모델링 할 수 있는 소프트웨어 패키지인 FLOW-3D를 사용했습니다. 각 설계에 대한 계산 메쉬를 변경하지 않고도 여러 설계 지오 메트리를 모델링 할 수 있는 기능이였습니다.
시뮬레이션 데이터로 무장한 에디슨은 그 결과를 아이오와 대학교 II. 시설에서 시험한 1:10 크기의 물리적 모델의 작동 데이터와 비교하였습니다. (후자는 원래 아이오와 유압 연구소라고 불렸지만, 지금은 그룹의 다양한 범위를 반영하여 IIHR-Hydroscience & Engineering으로 알려져 있습니다.)

Zeroing in on the Drop-Structure Challenge

드롭 구조 과제에서 영점 조정

가장 제한적인 DRTC 사이트의 지오 메트리는 CSO 008로 지정된 레귤레이터에서 발생합니다. 기존 CSO 레귤레이터(기울기 약 75피트 아래)를 새 18피트 직경의 수집 터널과 연결하려면, 이 위치에서 150피트 이상의 수직 방향 주행이 필요합니다. 각 낙하 구조에 7백만달러 이상이 소요되는 경우, 프로젝트 관리자들은 물리적 모델이 구축된 후 비용과 시간이 많이 소요되는 재설계가 필요한 가능성을 낮추려고 애썼습니다.

역사적으로 낙하 구조는 이전 프로젝트를 적용하여 설계된 후 축소 모델로 구축되었으며, 테스트만으로도 6개월 이상이 소요될 수 있습니다. 가속화된 이 프로젝트에서, 2009년 가을에 시작한 AECOM의 초기 과제는 두가지 표준 개념 중에서 하나를 선택하는 것이었습니다. 포장-파운드 스타일과 접선 vortex버전, 둘 다 시속 35마일의 폭풍이 몰아치는 물 속에서 속도를 늦추고 통제하기 위해서 직접 계산 및 FLOW-3D에서 결정한 일반 구조 직경 및 구성 요소 크기를 사용한 초기 CFD분석으로, AECOM은 시공 가능성 및 비용 고려 사항을 평가하는 데 사용했습니다.
CSO 008의 현장 요구 사항과 비용 효율성을 고려할 때, 시 당국과 AECOM은 접선 소용돌이 낙하 구조를 선택했습니다. 이 설계의 핵심 요소는 흐름을 먼저 환상적인 제트로 유도한 다음, vortex 유도 나선형 흐름을 생성하는 테이퍼(확대) 접근 채널에 의해 공급되는 수직 튜브(드롭 샤프트)입니다. 이 통제 된 하강은 속도가 느려지고 하루 3 억 갤런 (mgd) 이상에 이르는 흐름을 안전하게 처리합니다. 스토리지 터널의 파괴적인 난류를 방지하는 것이 핵심 목표이므로 드롭 샤프트 흐름의 사전 차단이 설계의 핵심입니다.

구조 자체는 6 개의 주요 부분으로 구성됩니다. 1) 접근 채널 (기존의 하수 터널에서 나온 것), 2) 수평 흐름을 넓히고 수직 드롭 샤프트로 수평 흐름을 전달하는 직사각형 전이 테이퍼 채널, 3) 드롭 샤프트 자체 4) 탈 기실 (유량을 수평 방향으로 방향을 바꾸고 공기 유입을 감소시키는), 5) 수직 공기 배출구를 통해 낙하에서 유입 된 공기를 제거하고 적하 유체의 공기 코어가 열려 있고 6) 탈기 챔버와 저장 터널 챔버를 연결하는 파이프 (adit) (그림 2).

Fig. 2. CAD diagram of proposed Indianapolis DRTC combined sewage overflow (CSO) vertical drop structure, showing approach channel, taper channel and vortex dropshaft. Using FLOW-3D CFD analysis software, AECOM simulated the flow behavior, gaining confidence in the system performance prior to physical model testing. (Image courtesy AECOM)
Prediction of Shrinkage Defects During Investment Casting Process

This article was contributed by Dr. S. Savithri, Senior Principal Scientist at CSIR-NIIST

 

인베스트먼트 주조공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

인베스트먼트 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였다.

오늘날 투자 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

인베스트먼트 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

인베스트먼트 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 투자 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 투자 주조 공정에서 주요 요소인 복사 열 전달과 인베스트먼트 주조공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 인베스트먼트 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Figure 2. Shell mold

 

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • 구성 요소 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “보완”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “열 침투 깊이”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • 분석 탭> 3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “열 활성화 구성 요소 볼륨”을 선택하고 “렌더링”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “구성 요소 1″을 선택하고 “구성 요소 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후 파일을 구성 요소 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 우리는 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘열 전달 유형 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. 열 전달 유형 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.

쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY  VALUE UNIT
Fluid –AluminiumA356

alloy

Density   2437 kg/m³
Thermal conductivity 116.8 W/(mK)
Specific heat  1074 J/(kgK)
Latent heat  433.22 kJ/m³
Liquidus temperature 608 °C
Solidus temperature 552.4 °C
Zircon Mold Thermal conductivity 1.09 W/(mK)
Specific heat* Density 1.63E+06 J/( m³K)

Initial and boundary conditions used are show in Table 2.      

 

Mold temperature  430°C
Melt pouring temperature  680°C
Filling time  7 s
Interface heat transfer coefficient  850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

 

탕구저에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

 

Results & Discussion

Validation with reported experimental results

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.

온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. 프로브 포인트 C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

 

Fill sequence & solidification pattern for two different sprue locations

두 가지 다른 스프 루 위치의 채우기 순서 및 응고 패턴

2 개의 상이한 탕구 위치에 주물충전 순서는5a 및5b에 나와 있습니다. 최종 탕구가 더 많은 스플라인을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end

Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle

Effect of shell thickness

인베스트먼트 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

셸 열 전달 계수는 열이 셸 금형의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values

 

F

Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values

Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

인베스트먼트 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

 
Design and CFD Analysis

설계 및 CFD분석

일반적인 소용돌이 설계는 널리 받아들여지고 있지만, 각 낙하 구조는 최적의 접선 흐름 특성을 보장하기 위해 인디애나 폴리스의 위상에 맞는 적절한 크기를 가져야 했습니다. 특히, 가능한 설계에 대한 AECOM의 계획은 세가지 목표를 가지고 있었습니다. 결합된 접근법과 테이퍼 채널을 짧은 길이로 제한하는 현장, 고유의 제약이 있었는지를 결정합니다. 허용 가능하지만 접근 방식에서 과도한 난류 조건이 발생하지 않았습니다. 테이퍼 채널에 안정적인 흐름 조건이 존재하는지 확인하고 다양한 흐름 조건에서 흐름 안정성을 평가했고, 논리적 기준점은 밀워키 인라인 스토리지 프로젝트라고 불리는 잘 알려지고 문서화된 시스템이었습니다.

Edison은 DRTC 프로젝트 규모에 맞춰 H-4로 지정된 Milwaukee 드롭 구조 설계를 기반으로 초기 설계를 기반으로했습니다.
166 피트의 기본 낙하 길이를 포함하고 체적 유량, 벽, 대칭 및 기타 초기 매개 변수를 지정하는 FLOW-3D 분석을 설정합니다.
그는 우리가 CFD를 통해 발견한 것은 밀워키에서 이 디자인을 사용하면 우리의 어플리케이션에 잘 맞지 않는다는 것이라고 말합니다. FLOW-3D는 이것을 보여 주고 있었기 때문에 CFD를 사용하여 변형을 시도하고 우리의 수정된 디자인을 고안했습니다.
더 넓은 접근 경로, 더 넓은 테이퍼 및/또는 더 깊은 테이퍼 깊이를 사용한 수정은 에디슨은 FLOW-3D에서 각 변동 사항을 설정하는 것이 매우 빠르다고 말합니다. (그림 3,4,5). 개선의 진전은 고무적이었습니다. 시뮬레이션 결과의 높은 수준은 심지어 절삭(침식)을 개선하기 위해 드롭 축의 바닥에 의문스러운 플레이트가 수직 흐름이 수평으로 전환되는 난류 분리 및 감소가되도록 기능을 추가하도록 설득했습니다.

Figs. 3, 4 and 5. Tangential drop structure flow simulated with FLOW-3D. Structure dimensions were optimized through multiple design iterations. (Image courtesy AECOM)

9번째 설계 변동에 대한 FLOW-3D 출력 동작인 V9는 접근 섹션을 확장했으며, 모든 흐름 볼륨 레벨에서 300mg/d까지 양호한 흐름 안정성을 보였으며 유압식 점프는 없었습니다. 그리고 양호한 Froude numners(유체 움직임에 미치는 중력의 영향을 나타내기 위해 사용되는 치수 없는 수량), 2010년 2월부터 AECOM이 물리적 시험과 검증을 위해 선택하였습니다(그림 6). 그 계획은 아이오와 연구소의 시험 결과에 기초하여 CFD와 최적화를 추가하는 것이였습니다.

Fig. 6. Scale model (1:10) of vertical drop structure, tested at University of Iowa IIHR Hydroscience & Engineering facility. (Image courtesy AECOM)

에디슨은 V9에서 결정된 치수 매개 변수에 대해 그 디자인을 아이오와 주에 가져가서 CFD를 이용해 만들었는데 완벽하게 작동했습니다. (II.)직원들은 실제로 무언가를 설치한 것은 이번이 처음이며, 변경하라고 말할 만한 것이 아무것도 없다고 말했습니다. 측정된 데이터는 드롭 샤프트 연결 구조 내의 수면 높이, Adit내 공기 침투의 정량, 벤트 샤프트 위로 공기 흐름을 포함했습니다. 흐름이 증가함에 따라 와류량이 증가함에 따라 축 벽에 부착되어 탈산소까지 원활하게 회전하는 모습이 포착되었습니다(그림 7).

에디슨은 후속 실험을 위해 여러번 시험장을 돌아다녔습니다. 물리적 모델이 처음부터 올바르게 작동했기 때문에 시험 프로그램을 확장할 시간이 있었습니다. “재미 있는 것은 환기구를 움직이는 것과 같이 우리가 궁금했던 것들을 탐구해서 지적으로 그것을 가지고 놀 시간이 있었다는 것입니다.” 에디슨은 예정보다 앞서 있었기 때문에 잔여 프로젝트 시간을 이용해 탈염소와 adit 내의 유압 장치를 조사할 수 있었습니다.

Fig. 7. Operation of scale-model vertical drop structure, showing test run of 300 million gallons per day (mgd). Flow vortex development shows good rotation and attachment to the shaft wall all the way down to the de-aeration chamber. No design modifications were necessary to the simulated design. (Image courtesy AECOM)

Final Results

AECOM은 2010년 7월 DRTC에 대한 전반적인 작업을 마쳤습니다. 2013년 3월부터 18구경 터널을 굴착하기 시작했고, CSO드롭 구조 3개(CFD로 설계된 나머지 2개의 구조물만 있음)는 모두 현재 공사 중입니다.

에디슨의 의견으로는, 토목 공학은 전체적으로 CFD를 채택하는 데 느린 편이었습니다. 이를 입증하기 위해 그는 인천 국제 공항을 처음 방문한 당시 접선 소용돌이 모형의 소위 “묘지”에서 본것을 기술했습니다. 그러나 그는 이들을 다시 처리해야 했다고 말했습니다.  그는 유압 설계를 위한 시뮬레이션 사용으로 판매되는 것을 권장하고 있습니다.

에디슨은 DRTC노력을 요약하면서 “정말 재미 있었습니다. 물리적 모델링이 필요한 위치에 대해 더 자세히 알아보았고, 그렇다면 어떤 경우에는 순수한 RAID기반 설계를 수행할 수 있습니다. 많은 DRTC작업들이 그것의 증거입니다. 물리적 모델은 실제로 필요하지 않았지만 검증을 통해 위험을 줄일 수 있었습니다. 프로젝트에서 이 두가지를 모두 수행할 수 있었다는 것은 믿을 수 없는 일입니다.”라고 말했습니다.

This article first appeared in WaterWorld Magazine.

Detecting Porosity with the Core Gas Model

Detecting Porosity with the Core Gas Model

Producing High Quality Castings

 

Results options such as core gas flux, binder weight fraction and out-gassing rate can be analyzed using the core gas model

주조공장의 첫 번째 시험에서 주조 품질을 보장하기 위해 많은 선행 엔지니어링을 수행해야 합니다. 최근에는 금속 흐름, 응고, 미세 구조 진화 및 잔류 응력을 모델링하기 위한 수치 도구가 보편화되었습니다. 그러나 아직 완전히 다루어지지 않은 주조 결함 중 하나는 일반적인 코어 가스 불량 결함입니다. 이 문제의 물리학은 금속, 코어 및 바인더 사이의 복잡한 상호 작용을 포함합니다. 이를 해결하지 않으면 고철 수준이 높아질 수 있습니다. 대부분의 문제는 고온의 주입 온도를 사용하고 영향을 받는 영역에 벽체를 추가하여 문제를 관리하지만 완전히 해결할 수는 없습니다.

Designing the Optimum Break-Down

과거에는 재료 및 주조 엔지니어가 코어 가스 버블로 인해 다공성 결함 문제를 발견했을 경우 바인더 함량을 줄이거나 코어 환기량을 늘리거나 코어 환기 시간을 늘리거나 코어를 미리 굽거나 하는 등 일련의 표준 문제를 해결할 수 있었습니다. 가스가 따라가는 경로를 보는 것은 불가능했기 때문에 이것은 한 부분을 완성하는 데 수주가 걸리는 긴 인출 과정이었습니다. 그리고 다른 부분에 문제가 있을 때마다 반복해야 했습니다.

이 가공 일정을 단축해야 하는 시장 중심의 필요성 때문에 주조 시뮬레이션 소프트웨어가 개발되었습니다. 설계 및 제조에 모두 유용한 컴퓨터 기반 모델링을 통해 엔지니어는 실제 비용을 낭비 없이 다양한 접근 방식을 테스트 할 수 있습니다. 주조 공장이 환기 설계에 시뮬레이션을 적용 할 수 있도록 Flow Science는 주조 해석 기능에 핵심 가스 모델을 추가했습니다.

GM engine block water jacket, showing binder weight fraction

Applying CFD Methods to Core Gas Flow

수지 기반 바인더의 화학적 복잡성으로 인해 샌드 코어 열 차단 후 가스가 어디서 어떻게 흐르는 지 이해하는 것은 복잡합니다. 그러나 Flow Science는 여러 그룹과 협력하여 실험 데이터를 얻고 이를 수치 모델의 결과와 비교합니다. 이 회사는 General Motors, Graham-White Manufacturing 및 AlchemCast의 핵심 가스 유량 정보를 수집하여 알루미늄, 철 및 강철과 함께 사용되는 모래 수지 코어에 대한 실제 데이터를 얻었습니다.

GM Powertrain의 캐스팅 분석 엔지니어 인 David Goettsch 박사는 금속 주조물의 충진 및 응고 분석을 위해 15 년 동안 FLOW-3D를 사용했습니다. 새로운 코어 가스 모델은 설계 단계에서 자켓 코어 배출을 최적화하는 데 매우 유용합니다. 모든 요구 사항이 핵심 인화물에 있는 코어 박스에 vent tracks를 구현하기는 매우 어렵습니다.  “핵심 가스 배출에 대한 선행 분석 작업을 통해 시동 시 높은 스크랩률로 부터 벗어날 수 있습니다.”라고 그는 설명합니다. “아마도 프로세스 변경으로 문제가 해결 될 수 있습니다. 그러나 그 시점에 도달하려면 오랜 테스트 기간이 필요할 수 있습니다. “

현재 FLOW-3D에서 사용할 수 있는 코어 가스 모델을 통해 Goettsch는 다양한 삽입 및 배출 위치를 시도하고 글로벌 진단을 받을 수 있습니다. 가스가 얼마나 많이 발생하는지, 어디로 가는지, 금속 프런트가 따라 잡기 전에 얼마만큼 빠져 나오는지 확인하십시오.

Multi-Core Challenges

Core prints for casting with internal geometries

GM Powertrain jacket slab assembly

또 다른 노련한 주조공장 엔지니어인 Graham-White Manufacturing Co.의 Elizabeth Ryder는 가스 다공성은 항상 조사하기가 어려웠다고 주장했다. 그녀는 “특히 다중 코어의 경우, 어떤 코어가 문제의 원인인지 정확하게 찾아 내기가 어려웠으며 전체적인 시스템을 처리 하려고 했습니다. “

1700개의 부품으로 구성된 지속적인 생산으로, 그 중 일부는 연간 10,000개의 부품으로 구성되었으며, Graham-White는 시뮬레이션을 통해 제조 공정을 개선하는 데 매우 익숙했습니다.

Graham-White는 레이저 스캐닝으로 제작한 회주철 부품(약 3 x 4in)의 3D 모델로 작업하면서 평가를 위해 현재 vent 디자인을 제공했습니다. 이 탕구 디자인은 수평으로 분할된 금형에서 패턴 플레이트당 4개의 인상이 포함되었으며, 각 인상은 각 코어에 대한 vent가 있습니다. 중앙 sprue는 2 초 이내에 각각의 몰드를 충진할 수 있게 해주었습니다.

FLOW-3D를 이용한 시뮬레이션은 주입률을 확인시켜 주었지만, 또한 한 코어의 배출량이 충분하지 않다는 것을 보여주었다. Graham-White는 기존 분출구를 통해 가스를 더 많이 공급할 수 있도록 코어에 깊은 구멍을 뚫기 시작했습니다. 새로운 vent 디자인으로 전환한 이후, 회사는 코어 블로우 스크랩을 약 30% 감소 시켰습니다.

Ryder는 FLOW-3D 결과가 디자인 초점을 결정하는데 도움을 주었고, 어떤 코어 (멀티 코어 디자인)가 문제였는지, 코어의 어느 부분이 문제의 근원인지에 대해 파악할 수 있었습니다.

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>

냉각 및 공급 시스템 설계 / Cooling and Feeding System Design

캐비티 또는 다공성 결함은 일반적으로 마지막 냉각 지점에서 발생됩니다. 라이저는 일반적으로 주조물이 응고 될 때 용융 금속을 주물에 제공하여 이러한 결함을 방지하는 데 사용됩니다. 그러나 라이저(risers)가 효과적이려면 수축을 보상하기에 충분한 재료를 포함 할 수 있도록 적절한 크기로 올바른 위치에 배치해야합니다. FLOW-3D에서 캐스터가 결함이 없는 주물을 위한 냉각 및 공급 시스템을 설계할 수 있도록 도와 주는 두가지 새로운 도구가 개발되었습니다. 즉, 마지막으로 동결할 장소의 예측과 열 계수의 계산입니다.

마지막으로 냉각할 위치 / Last Places to Freeze

주조물 내에서 마지막으로 냉각되고 수축 다공성 결함이 발생할 가능성이 높은 직접 표시 위치. 이러한 장소들은 고체 부분의 진행이나 응고 시간으로부터 파생될 수 있지만, 그것들을 시각화하는 좀 더 직접적인 방법이 항상 선호된다.

그림 2. 핫스팟 입자를 포함하는 액체 부피의 진행 예시 : t3> t2> t1.
그림 1. 핫스팟 입자는 바로 이웃이 고체가 된 후 응고 될 때 셀의 중앙에 삽입됩니다.Hot spot particle그림 2. 핫스팟 입자를 포함하는 액체 부피의 진화 예시 : t3> t2> t1.

특수한 유형의 고정 입자가 “핫 스폿”이라고 하는 가장 최근의 자유로운 위치를 식별하고 시각화하는 데 사용됩니다. 이 출력은 응고 모델이 사용될 때 자동으로 생성됩니다. 핫 스폿 입자는 그림 1에서 도해로 나타난 것처럼 모든 인접 요소가 고체가 된 후 응고될 때 셀에 삽입됩니다.

이러한 입자는 자유로운 마지막 위치를 식별하는것 외에도 이러한 위치에서 수축 다공성 결함의 가능성과 크기, 즉 셀 응고 시간, 핫 스폿 ID및 핫 스폿 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 셀 응고 시간은 셀 이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 응고되는 순서를 보여 줍니다(1은 첫번째, 2는 두번째 등). 마지막으로, 핫 스폿 크기는 다음 등식으로 계산된다.

hsm (i) 는 입자 i의 핫스팟 크기입니다 .
t 0 은 입자의 위치에서 셀 응고 시간입니다.
ν liq (t) 는 시간 t

그림 2는 연결된 액체 영역 부피가 입자 i 의 시간 함수로 어떻게 변하는 지 보여줍니다 . 계산 된 양은 모든 핫스팟 크기의 값을 0과 1 사이의 범위로 가져 오도록 정규화됩니다. 이는 다공성 형성에 대한 잠재적 인 영향과 관련하여 주조 내 여러 핫스팟의 간단한 비교 분석을 허용합니다. 값이 높을수록 응고 중에 연결된 액체 영역이 더 커졌으며 마지막 동결 위치에서 수축 다공성 결함이있을 가능성이 더 큽니다.

열 모듈러스 방법 / The Thermal Modulus Method

열 계수 법은 특히 알루미늄 합금 및 강철 주조물의 경우 일반적인 라이저 설계에 가장 많이 사용되는 방법 중 하나입니다. 주어진 주물 부품의 경우 그 계수는 다음과 같이 정의됩니다.

, 여기서:

V는 주조 부품의 체적이고,

A은(는)주물 부품의 표면적입니다.

주물의 기하학적 계수는 구 또는 블록과 같은 일반적인 형상에 대해 계산하기 쉽습니다. 이보다 더 복잡한 작업에는 일반적인 모양에 따라 주조 섹션을 지루하게 근사치를 계산해야 합니다. 또한 기하학적 계수 접근 방식은 주물의 기하학적 구조에 전적으로 의존합니다. 실제 주조물은 한기 및 절연체를 사용하여 응고 진행을 제어합니다. 이러한 특성은 기하학적 계수 접근 방식에서 무시된다. 계수 계산을 자동화하고 냉각, 단열 및 기타 몰드 변화와 관련된 열 효과를 고려하기 위해 라이저 설계에 흔히 열 계수라는 혁신적인 접근 방식이 사용됩니다.

열 계수 접근 방식의 경우 먼저 주물의 응고 시뮬레이션을 실행합니다. 시뮬레이션이 완료되면, Chvorinov의 규칙에 따른 응고 시간으로부터 주물 전체에 해당하는 계수를 계산할 수 있습니다. 이 방법을 사용하여 계산된 등가 계수를 열 계수라고 합니다. 라이저 설계를 안내하기 위해 기하학적 계수와 동일한 방법으로 사용할 수 있다.

Chvorinov의 규칙은 응고 시간 사이의 관계를 제공하며, 그 계수는 다음과 같이 기록될 수 있다.

, 여기서:

  • t는 주조 응고 시간입니다.
  • N은 상수(일반적으로 2와 같음)입니다.
  • B는 금형의 상수입니다. 다음 공식을 사용하여 계산할 수 있습니다.

, 여기서:

  • mρρ는 금속의 밀도이고,
  • mT는 금속의 용해 또는 동결 온도입니다.
  • 0TT는 금형의 초기 온도입니다.
  • k는 주형의 열 전도율입니다.
  • ρ는 주형의 밀도입니다.
  • c는 곰팡이의 특정한 열이다.
  • L은 금속의 융해열이다.
  • mcc는 금속의 특정한 열이며,
  • pourTT는 금속 주입 온도이다.

일반적으로 주조 공정을 설계할 때 라이저의 응고 시간이 인접한 주조 섹션의 응고 시간보다 긴 방식으로 라이저를 선택하여 적절한 이송을 할 수 있습니다. Chvorinov의 규칙에 따르면 응고 시간은 주물의 계수에 정비례합니다. 따라서 응고 시간을 비교할 때 모듈을 직접 비교할 수 있습니다. 모듈은 기하학적인 양에 불과하기 때문에 모듈의 비교는 설계 작업을 훨씬 더 단순하게 만든다. 금속 주조 엔지니어는 실제 주조 공정의 구체적인 내용을 고려하지 않고도 보다 큰 계수로 압탕을 설계하여 부품을 적절하게 이송할 수 있습니다.

냉방 및 공급 시스템 설계를 위한 새로운 도구의 적용

예를 들어, 새로운 공구를 사용하는 증기 터빈 실린더의 절반에 대한 중력 주조를 위한 냉각 및 공급 시스템 설계가 유량 과학 중국에 의해 제공되고 이 절에서 논의된다. 부품의 외부 치수는 2.83×2.34×1.10 m이며, 총 용적은 아래와 같이 약 0.95입방 미터이다. 주조 재료는 탄소강이며 주입 온도는 1530°C이다.

Casting part geometry
그림 3. 주물 부품 지오 메트리

첫째, 냉각 장치와 라이저가 없는 주물의 응고 시뮬레이션을 실행합니다. 그 목적은 뜨거운 스폿 위치를 식별하고 한기와 라이저의 위치와 라이저의 크기를 결정하는 것이다. 이 두가지 새로운 공구는 냉기와 라이저 설계를 개선하는데 사용됩니다.

마지막으로 입자를 동결하는 장소는 셀 응고 시간, 입자 ID및 핫 스폿 크기로 각각 색상이 지정된 다음 그림에 표시됩니다. 핫 스폿 위치와 수축 다공성 결함이 발생할 가능성은 이러한 그림에서 직접 확인할 수 있습니다. 주조물의 기하학적 특성에 따라 라이저 배치 위치는 그림. 4의 마지막 프레임에서 볼 수 있듯이 쉽게 결정할 수 있습니다. 단, 바닥 껍질에는 라이저 배치에 적합하지 않은 몇개의 핫 스폿이 있습니다. 이러한 위치에서 수축 다공성 결함을 방지하기 위해 한기를 사용하여 응고 패턴을 변경하고 라이저 영역에 마지막으로 동결하는 위치를 구동할 수 있습니다.

Hot spot locations
그림 4. 핫 스폿 위치는 세가지 속성(왼쪽 위에서 시계 방향)으로 색상이 지정됩니다. 핫 스폿 응고 시간, 입자 ID및 핫 스폿 크기.

열 모듈 계산

계산된 열 계수는 오른쪽에 표시되어 있습니다. 값이 클수록 마지막으로 고정할 위치와 일치합니다. 또한 열 계수를 사용하여 핫 스폿 위치의 라이저 크기를 결정할 수 있습니다.

일단 한기와 라이저가 결정되면 냉각제와 라이저를 사용한 두번째 응고 시뮬레이션을 실행하여 냉각제와 라이저 설계를 검증한다. 핫 스폿 크기로 채색된 마지막 자유형 입자와 열 계수는 그림. 6과 같다. 한기가 마지막 부분을 성공적으로 운전하여 라이저 부위를 얼리는 것을 볼 수 있다. 하지만, 라이저 아래에는 여전히 위험한 핫 스폿이 있다. 실제로 실제 주조물은 아래 그림과 같이 핫 스폿 입자로 식별된 위치에서 수축 다공성 결함을 보여 줍니다.

Calculated thermal modulus
그림 5. 계산된 열 계수

마지막으로 동결할 장소는 라이저가 아니라 주조물에 있습니다. 이는 라이저 위치와 크기가 올바르게 결정되더라도 주물이 라이저 쪽으로 방향성 있게 응고되지 않도록 응고 패턴이 올바르지 않음을 나타냅니다. 한가지 해결책은 발열체 슬리브를 사용하여 응고 패턴을 수정하는 것이다. 이것은 이 글의 범위를 벗어나므로 더 이상의 논의는 없을 것이다.

Cooling and feeding system design
그림 6. 핫 스폿 위치(상단 좌측), 단열 계수(상단 오른쪽)는 계측된 주조물로 계산되며 수축 결함의 관측된 위치입니다.

결론

금속 공학자들이 결함이 없는 주물을 위한 냉각 및 공급 시스템을 설계하는 데 도움이 되도록 FLOW-3DCAST5.0에서 두개의 새로운 공구가 개발되었습니다:마지막으로 동결할 장소와 열 계수의 계산입니다. 수축 다공성 결함이 발생할 가능성이 높은 곳은 마지막으로 동결할 장소입니다. 이들은 한기와 라이저가 위치해야 하는 위치를 나타냅니다. 열 계수는 냉기와 라이저 위치를 결정하는 데도 사용할 수 있습니다. 또한 라이저 크기를 결정하는 데 사용할 수 있습니다.

이 비디오는 벽 온도에 의해 색칠 된 금형을 통해 10 사이클을 보여줍니다. 슬라이스는 첫 번째 단계에서 코어 냉각 채널을 표시하고 한 단계에서 다른 단계에서 꺼지는 것을 표시하도록 선택되었습니다.

Aluminum Integral Foam Molding Process

Aluminum Integral Foam Molding Process

This application note was contributed by Johannes Hartmann and Vera Jüchter, Department of Materials Science, Chair of Metals Science and Technology, University of Erlangen-Nuremberg

 

알루미늄 폼은 우수한 댐핑 및 높은 에너지 흡수율 및 굴곡 강성과 같은 예외적인 특성을 보여줍니다[1]. 강성은 특히 하중 지지 및 경량 구조에 사용하기에 특히 매력적입니다. 중량별 강성을 높이고 보다 우수한 하중 전달을 위해 알 Aluminum Foam Sandwiches (AFS)와 같은 컴팩트한 특성이 필요합니다 [2].

Erlangen-Nuremberg 대학의 금속 공학과 기술 위원장은 알루미늄 발포 특성을 점차적으로 생산하기 위해 다이캐스팅 공정인 Integral Foam Molding 개발하였습니다(그림 1 참조). 이 공정은 폴리머의 사출 성형으로 개발되었으며 따라서 컴팩트한 층을 가진 복잡한 폼을 비용 효율적으로 대량 생산에 적합합니다. 이 노트에 설명 된 시뮬레이션 기법은 프로세스 매개 변수를 선택하는데 도움을 주기 위한 모델링프로세스를 확인할 수 있습니다.

Figure 1. Cross section of an aluminum integral foam with a compact skin, a transition region with decreasing relative density and smaller pores, as well as a foamed core.

Aluminum Integral Foam Molding Technology

일정량의 발포제 (수소화 마그네슘, MgH2)가 러너 시스템에 배치되고 샷 챔버는 알루미늄 용융물로 채워진다 (공정은 그림 2에 묘사되어 있으며, 공정은 [3]에 자세히 설명되어있다). 피스톤이 진행됨에 따라, 분말은 난류 방식으로 주형에 이송된다. 기술 변형 “고압 일체형 폼 몰딩 (HP-IFM)”의 경우 표준 다이캐스팅 공정에서 알 수 있듯이 이 부품은 주변의 높은 압력에서 완전히 채워져 우수한 표면 품질을 보장합니다. 템퍼링된 금형 표면에서 시작하여 용융물은 일체형으로 고형화되기 시작합니다. 몇 밀리 초가 지나면 금형은 코어 풀러 시스템 위에 열리고 부피는 국부적으로 증가하고 압력은 감소하여 열분해 및 수소화 마그네슘 입자의 수소 방출로 인해 여전히 반고체 내부 영역에서 기공 성장을 시작합니다. 모든 발포제 입자는 이웃하는 공극의 역압에 의해 멈추어 질 때까지 공극의 성장을 지속합니다. 발포된 입자의 벽은 알루미늄 합금의 응고된 입자에 의해 안정화가 되며 이를 endogenous stabilization이라고 합니다[4].

Figure 2. Schematic process cycle of “High Pressure Integral Foam Molding (HP-IFM)” of aluminum.

주조 부품의 전체 부피에서 균일한 형태에 대한 전제조건은 분해 순간의 양호한 입자분포입니다. 또한, 발포제 유입시의 용융물의 온도는 수소화 마그네슘의 분해를 결정하며 (그림 3 참조), 게다가 발포시 solid phase의 양을 결정한다. 그러나 고상의 양이 너무 많으면 기공의 강성이 증가하고 현상 기공의 구형화를 방해하여 구조가 파괴된다 [2].

Microcellular Aluminum Integral Foams – Approaching the Process Limits

일체형 발포 성형 공정시뮬레이션은 새로운 부품 설계의 몰드 충진 특성을 조사하는 데 도움이 될 뿐만 아니라 입자 침투도 예측하고 비용을 절약할 수 있게 발포 공정 조건을 결정할 수 있는 강력한 도구입니다. 현재 연구의 목표는 다공성 수준을 일정하게 유지하면서 기공 크기를 줄이는 것입니다. 전산 유체 역학 (CFD) 시뮬레이션은 가능한 한 현재의 프로세스 한계에 가깝게 접근할 수 있습니다. 발포 형태의 개선은 기계적 물성에서 균질 한 구조를 유도 할뿐만 아니라 기계적 성질에 의해 더 얇은 부품의 생산이 가능할 것입니다. 이 목적은 용융물 내에서의 높은 입자 분포 밀도와 동시에 응집 현상의 감소와 함께 완전히 안정된 기공 성장에 의해서만 달성 될 수 있다.

Figure 3. Schematic curves of decomposition of magnesium hydride as a function of the melt temperature, calculated by the Johnson-Mehl-Avrami approach [2]

Figure 4. Adjustment of heat transfer by comparisons of a real solidification curve (black) to the growth rate of the solidified skin in simulation (red).

Adapting the Simulation Parameters to Practical Integral Foam Molding Experiments

입자 거동이나 온도장에 대한 신뢰성 있는 예측을 위한 CFD 시뮬레이션을 사용할 수 있으려면 실제 실험과 일치하도록 매개 변수를 결정해야 합니다. 이를 위해, 30-130 ms의 지연 시간을 갖는 일체형 발포 부품을 제작하였으며 성형 팽창 및 기공 성장 개시 순간에 고상분율 때문에 발포 형성이 불가능한 다른 밀도의 형상을 만들었습니다. 열 전달 계수 (완전한 액체 용융물과 완전 응고된 용융물)를 변화시켜 합금 AlSi9Cu3 (Fe)의 주조 사이클을 시뮬레이션하면 응고 곡선을 적용할 수 있습니다. 이러한 목표를 달성하기 위해 시뮬레이션을 피스톤 이동이 시작되기 전에 실제 온도분포를 묘사해야 합니다. 온도는 배치된 열에 의해 숏 챔버에서 국부적으로 측정되었으며 시뮬레이션 내 실제 데이터와 잘 일치하여 성공적으로 묘사 될 수 있었습니다. 금형 충진 중에 금형 표면에서 온도 측정을 참조 할 수도 있습니다. 시간 경과에 따른 그 변화는 시뮬레이션 결과와 잘 일치합니다.

표면장력이나 응고 항력계수와 같은 용융의 유동을 정의하는 추가 매개 변수 단계에서는 다른 설정과 시뮬레이션을 비교하여 조정됩니다. 시뮬레이션 내에서 용융물의 흐름이 실제 시험과 일치하는 즉시 매개 변수가 설정됩니다

Figure 5. Adjustment of melt flow defining parameters such as the surface tension by comparisons of real experiments (left) to simulations (right)

냉각 및 용해 흐름 특성을 정의한 후 입자의 유입을 시뮬레이션 합니다. 입자 / 유체 의 상호 작용에 대한 시뮬레이션을 조정하기 위해 매개 변수계수의 X 선 샘플과 비교가 되며 구리선 입자에서는 수산화 마그네슘보다 높은 함량 입자가 적용됩니다. (그림 6 참조). 시뮬레이션 결과는 실험과 매우 잘 어울리므로 프로세스 매개 변수의 함수로서 입자 분포의 신뢰할 수 있습니다.

Figure 6. Adjustment of parameters influencing particle/melt-interactions by comparisons of x-rayed samples left); produced by the entrainment of copper particles) to simulations (right)

Conclusion

전체적으로 FLOW-3D는 실제 생산 전에 새로운 부품 제조의 잠재적 결함을 조사하는 중요한 수단이 될 수 있다는 것을 증명할 수 있었습니다. 이러한 방식으로, 차가운 흐름 또는 데드 존이 없는 성공적인 충전 및 발포제 분포가 보장 될 수 있다. 또한, 예상되는 온도 필드의 정확한 묘사로, 수소화 마그네슘의 분해 특성 및 기공형성을 예측할 수 있습니다. 이는 일체형 폼 구조와 관련하여 고객의 요구를 충족시키기 위한 공정 변수를 정의 할 수 있는 가능성을 제공합니다

1 Criterion is the solid phase fraction where the shear strength and therefore the resistance to pore evolution increases drastically.

References

[1] C. Körner, R. F. Singer, Adv. Eng. Mater. 20002 (4), pp. 159-165.
[2] C. Körner, in Integral Foam Molding of Light Metals – Technology, Foam Physics and Foam Simulation, Springer, Berlin, Heidelberg, Germany 2008.
[3] H. Wiehler, C. Körner, R. F. Singer, Adv. Eng. Mater. 200810 (3), pp. 171-178.
[4] J. Hartmann, A. Trepper, C. Körner, Adv. Eng. Mater. 201113 (11), pp. 1050-1055.

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>

 

Improving High Pressure Die Casting Designs

Improving High Pressure Die Casting Designs

The content for this article was contributed by Mark Littler of Littler Diecast Corporation.

고압 다이캐스팅 생산 업체인 Littler Diecast Corporation은 최근 우주 항공분야에서 전기 스위치 프레임을 재설계하고 다이캐스팅할 수 있었습니다. 이전에는 다른 제조업체에서 생산했기 때문에 많은 수의 주조에 결함 문제가 있었고 스크랩 비율을 낮추기 위해서는 새로운 디자인이 필요했습니다. Littler Diecast는 문제에 대한 사전 지식없이 시뮬레이션을 통해 결함을 찾아낼 수 있음을 입증할 수 있었습니다. 이것은 고객들이 그들에게 일을 맡길 수 있을 만큼 충분한 감명을 주었습니다.

Identifying the Problem

스위치는 A380 알루미늄으로 만들어졌으며 크기는 약 1¼ x 1x 1/2 입니다. Littler Diecast는 다공성 문제가 판과 굴뚝의 두 부분에서 문제가 되고 있음을 발견했습니다. 이는 고객이 확인한 것입니다. 각 부분이 채워지는 길 때문에 구멍이 각 위치에 형성되었습니다. 이 흐름은 그림 1과 같이 하나의 게이트를 통해 들어 와서 플레이트의 먼 쪽으로 분사한 다음 다시 채워지며 조기 응고로 인해 항상 닫히지 않는 현상으로 나타납니다. 굴뚝에서도 같은 문제가 발견되었습니다. 유체가 가장 먼 곳으로 분사되고 다시 채워지면 분리선을 통해 배출될 수 없는 갇힌 공기가 생성됩니다.

X-ray of original part, showing porosity problems

Figure 1: Original design with a single gate. Plot colored by velocity magnitude..

Figure 2: Final design with three gates. Plot colored by velocity magnitude.

The Original Part Design

기존의 부품 설계에는 다른 문제가 있었습니다. lock washer와 플레이트 밑면의 밀봉된 표면주위에 많은 다이의 침식이 있었습니다. 부품 모서리에 있는 overflow는 결함이 흘러 나오기에 충분하지 않았습니다.

FLOW-3D를 사용하여 Littler Diecast는 유동의 거동을 분석하고 현상을 시각적으로 확인할 수 있었습니다. 이러한 분석으로 인해 조기 응고는 얇은 부분의 급속 냉각으로 인해 문제가 되었습니다. 만약 부품과 후면을 가로질러 유동이 흐른다면, 액체는 냉각되고 갇힌 공기를 만들어 낼 시간이 많이 필요합니다. 마지막으로 뜨거운 액체가 들어오는 것이 가장 좋습니다. 이를 염두에 두고 Littler Diecast는 여러 가지 아이디어를 테스트하고 문제의 가능성을 최소화하고 프로세스 창을 극대화 한 디자인을 달성했습니다.

The Final Part Design

세 가지 주요 설계 변경 후 부품 품질이 크게 향상되었습니다. 첫째, 게이트와 러너를 세 개의 게이트를 통해 들어갈 수 있도록 재설계하였습니다. 이것은 큰 오버플로를 생성하는 두 번째 설계 변경과 함께, 온도가 가장 높은 유체가 마지막으로 들어갈 수 있으며 플레이트에 역류가 훨씬 적다는 것을 의미했습니다. 셋째, 진입 각도와 게이트 위치가 변경되어 역류를 방지하는데 도움이 되었습니다.

또한, 이 새로운 디자인은 공구에서 다이의 침식될 수 있는 가능성을 줄였습니다. 대신 유체는 굴뚝의 중심구멍에 사용된 코어 핀 위로 분사됩니다. 코어 핀은 금형 강철을 수리하는 것보다 훨씬 쉽고 빠르게 교체할 수 있습니다. 이러한 금형 설계 변경은 새로운 금형을 절단하기 전에 이루어졌으며 금형 제작이 완료된 후에 문제가 발견되면 비용이 많이 드는 프로세스를 제거하였습니다.

Physical Verification

생산 도구의 시운전 후 Littler Diecast는 short shots, x-rays 및 파괴 테스트를 통해 설계 변경 사항을 확인할 수 있었습니다. short shot은 균형 잡힌 러너를 보여 주었으며 엑스레이에는 다공성이 보이지 않았습니다. 파단 테스트는 공극이 없는 일정한 결정립 조직을 보여 주었고, 파손은 재료의 강도 때문이 아니라 주조 결함 때문인 것으로 나타났습니다.

X-rays at different angles of a sample final part that was picked up from the shop floor.

 

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast >

Investigation of Mould Leakages in a Gravity Casting

Investigation of Mould Leakages in a Gravity Casting

 

This article was contributed by Gabriele Taricco of CM Taricco and Stefano Mascetti of XC Engineering.

Metal leakages in the original gravity casting mould

몰드 설계는 유체 역학과 금속 응고 패턴뿐만 아니라 주형 자체에서 발생할 수 있는 문제와 응력에 대한 반응을 고려해야 하는 매우 복잡한 작업입니다. 이탈리아에 본사를 둔 주형 제작 업체인 CMTaricco 사는 최근에 새로운 주형 중 하나의 하부에서 금속 누출 문제에 직면했습니다. 주형 누출의 원인은 처음에는 분명하지 않았으며 몇 번의 공정 주기 후에만 나타났습니다. 제작 일정에 차질이 생기고 부품 주조 비용이 급격히 증가하기 때문에 문제가 중요한 것은 분명했습니다.

Investigation of an idea

공정 자체는 주입과 오버플로우 설계인 중력 주조 방식이었기 때문에 유체 역학 부분에서는 문제가 발생할 수 없었습니다. GabrieleTaricco (CMTaricco의 소유주)의 가설은 금속 누출이 주형의 열 손실의 설계 불량에서 기인하여 균일하지 않은 분포를 초래한다는 것이었습니다. 변형률과 그에 따라 주형 바닥에서 크고 원하지 않는 변형이 순환하면서 금속이 유출될 수 있는 중요한 영역의 개방까지 주기적으로 시행되었습니다. 이를 확인하고 문제에 대한 신속한 해결책을 찾기 위해 FLOW-3D시뮬레이션을 실행하여 주형이 가열될 때 발생하는 현상을 정확하게 파악했습니다.

Schematic of a critical area where metal was flowing out of the mould

 

A careful setup, to achieve a fast resolution of the issue

문제의 원인은 신속하게 파악할 수 있어야 했기 때문에 최신 Flow-3D기능을 모두 활용하여 정확한 설정이 필요했습니다. 특히, 채택된 meshing기법은 전통적인 설정과 거의 동일한 정확도를 유지하면서 전산 셀의 수를 크게 줄이는데 매우 도움이 되었습니다. 빠른 시뮬레이션으로 주형 세척에 사용된 첫 번째 방법은 주형 내부의 얇은 캐비티를 직교 축과 정렬하기 위해 주형을 수직 축 주위로 회전시키는 것이었습니다.

Rotating the mould around the vertical axis in order to align the inner thin cavity of the mould

 

두 번째 트릭은 내부 공동 (얇은 벽)에 new conformal mesh기능을 사용하는 한편 전체 도메인에 대해 기존의 더 큰 메쉬 블록을 유지하는 것 이었습니다. The conformal mesh는 open volume과 일치하고, 작은 간극을 갖는 cavity로 제한됩니다.

A global view of the mould with cores and its alignment with the mesh blocks

 

마지막으로, 외부 공간을 주형에 제한하기 위해(현재 구두 상자 모양이 되고, 20도 회전하며, 모델 축과 정렬상태) 일부’ 도메인제거’ 요소가 사용되었습니다.즉, FLOW-3D의 내부 솔리드 모델을 통해 직접 연결됩니다

Domain removing components (yellow) were used to limit the space externally to the mould.

 

나머지 설정은 소프트웨어의 권장 기본값 대부분을 이용하여 기존 체계를 따랐습니다. 이러한 기능과 FLOW-3D의 새로운 하위 도메인 분해 기능 덕분에 설계된 9 000 000 셀을 유체 하위 도메인의 경우에만 1 840 000 셀로, 고체 서브 도메인의 경우 2 430 000 셀로 줄이는 것이 가능했습니다.

 

The analysis

주입 시뮬레이션 후, 양호한 주입 패턴을 보장하기 위해 시뮬레이션의 초점이 열 다이 사이클링 분석으로 리디렉션 되었습니다. 이 경우 설정은 일반 데스크 톱 컴퓨터에서 10개의 생산 사이클을 재현하는 데 1시간이면 간단하고 빠릅니다(i7930 K, 상업적 가치 1500달러). 그 결과 CM의 초기 가설이 확인되었습니다. FlowSight를 사용하여 단일 이미지에서 여러 시점과 횡단면에서 온도 필드를 관찰한 결과 온도가 d라는 것이 분명했습니다. 주형의 침입은 예상되는 변형과 금속 누출을 쉽게 유발할 수 있습니다.

Simulation of the mould’s temperature during the die cyclings

 

Further analysis with the Fluid-Structure Interaction module

 

일단 문제가 확인되고 기술 요원이 향상된 금형 설계를 시작하면 CM Taricco는 다이 상의 응력 및 변형에 대한 FEM 해석을 실행하는 최종 확인을 원했습니다. 이 분석을 수행하기 위해 XC Engineering Srl은 CM이 계산을 설정하고 수행하는 것을 도왔습니다. 분석의 결과는 정확히 CM이 생각하고 있는 것을 보여주었습니다. FLOW-3D는 붓기가 거의 걸리지 않은 금형에서 발견 된 실제 변형과 동일한 위치와 크기를 극도의 정확도로 재현 할 수 있었습니다. 이것은 CM에 대한 좋은 소식이었으며, 실제 주조 조건을 기반으로 실제 금형 변형을 예측하기 위해 설계 단계에서 FSI 모듈을 사용하는 추가 권장 사항을 시행했습니다.

Deformation of the mould during the die cyclings, simulated using the Fluid Structure Interaction model. Deformations are amplified x20.

 

Conclusion

해석결과, CM직원은 CFD솔루션의 온도영역에 대한 모든정보를 사용하여 최적화된 새로운 주형을 설계할 수 있었습니다. 새로운 주형은 열 에너지를 보다 효율적인 방법으로 방출할 수 있었으며 주조물은 수 십번의 공정 주기 후에도 금속 누출의 영향을 받지 않았습니다.

The cast part after mould optimization. No critical leak defects are present.

 

Metal Casting Models

Metal Casting Models

FLOW-3D CAST는 금속 주조를 위해 특별히 설계된 다양한 물리적 모델을 포함하고 있습니다. 이는 모든 종류의 금속 주조 용도와 관련된 문제에 대한 가장 정확한 해결책을 제공합니다. 이를 통해 고객은 보다 적은 시간과 비용으로 지속적으로 주조 수율과 품질을 개선할 수 있습니다.

자유 표면 흐름을 정확하게 예측할 수 있는 특수 기능을 갖춘 FLOW-3D CAST는 금형 용탕 충진 및 공기 주입과 같은 관련된 결함을 시뮬레이션하는 데 가장 적합합니다. 강력하고 유연한 열전달 모델은 응고, 냉각 채널, 열 다이 사이클 시뮬레이션과 같은 금속과 금형 사이의 열 교환을 빠르고 정확하게 예측할 수 있습니다. 금형 용탕 충진과 결합할 수 있는 응고 및 수축 모델은 과도한 수축공과 기공 영역을 정확히 찾아내어 결함이 완화됩니다. granular media 모델과 수분 건조 모델을 사용하여 모래 코어의 blowing과 건조 공정을 시뮬레이션 할 수 있습니다. FLOW-3D CAST의 유한 요소 기반 열 응력 모델을 사용하면, 고객이 응력이 발생하는 위치와 주조 변형이 일어나는 이유를 정확하게 예측할 수 있으므로 열 변형 결함을 제거할 수 있습니다. 주철 모델은 공정 반응하는 동안 흑연, 감마 – 철 및 탄화물 형성을 예측하여, FLOW-3D CAST의 적용 범위를 확장합니다. 코어 가스 제품 군의 고유한 특징은 코어 가스 생성 및 모래 코어에서의 흐름을 모델링 하여 금속 주물의 코어 가스 관련 결함을 예측하는 데 사용할 수 있습니다.

FLOW-3D CAST는 금속 주조 모델링 및 시뮬레이션 분야의 선두 프로그램입니다. 금속 주조 업계에 대한 당사의 헌신은 금속 주조와 관련된 모델과 용도에 대한 당사의 지속적인 개발로 입증되었습니다. 당사는 고객과 지속적으로 협력하여 실제 애플리케이션을 위해 개발하여 품질과 생산성을 향상시키고 지속적으로 혁신할 수 있도록 지원할 것입니다.

Core Making

Core Making

FLOW-3D CAST의 모델링 기능을 사용하면 주조 엔지니어가 코어 주입과 건조와 같은 코어 제작 프로세스를 쉽게 시뮬레이션 할 수 있습니다.

Core Shooting

샌드 코어는 모래-공기 혼합물을 주형으로 분사하여 생성됩니다. 주조 엔지니어의 목표는 모래 내의 공기 불순물 유입을 방지하는 것 인데, 이때 사용자는 안정적으로 FLOW-3D CAST의 모델링 기능을 통해 모래가 주입되는 노즐의 개수와 위치 및 공기가 빠져나가는 벤트 노즐의 개수와 위치를 변경하여 최적의 노즐 구성을 얻을 수 있습니다.

Core Drying

코어 건조 모델은 모래가 코어 금형으로 주입된 후 남아 있는 습기의 건조 과정을 계산합니다. 일반적으로 건조는 금형에 있는 동안 코어를 통해 뜨거운 공기를 불어넣음으로써 이루어집니다. 코어의 저온 부분에서 가열, 수분 증발 및 일시적인 습기 응결을 시뮬레이션하여 건조 과정을 최적화할 수 있습니다. 이를 통해 완전한 건조를 보장하는 동시에 공기의 가열 및 배출과 관련된 에너지 비용을 최소화할 수 있습니다.

Core Drying Validation

A comparison made by BMW between simulation and experiment of the drying of an inorganic core.

 

Continuous Casting

Continuous Casting

연속 주조는 용강이 반제품 빌렛, 블룸 또는 슬래브로 응고되어 후속 압연기에서 압연하는 공정입니다. 연속 주조시, 용강은 레들에서 주조기로 이송됩니다. 주조 작업이 시작되면 레들의 바닥에 있는 슬라이딩 셔터가 열리고 철강은 제어된 속도로 턴디쉬 안으로 그리고 턴디쉬에서 하나 이상의 주형으로 흐릅니다.

1950 년대에 연속 주조가 도입되기 전에 철강은 고정 금형에 붓고 잉곳을 성형했습니다. 그 이후로 지속적인 주조는 수율, 품질, 생산성 및 비용 효율성을 향상시키기 위해 발전해 왔습니다. 주조 회사는 공정 개선을 위해 항상 노력하고 있으며, FLOW-3D CAST를 사용한 시뮬레이션은 물리적 시행 착오없이 비용을 절감할 수 있는 기회를 제공합니다.

Semi-Continuous Casting of a 600 mm Slab with Stress Calculation

이 시뮬레이션에서는 600mm직경 슬래브의 반 연속 주조의 공정이 모델링 됩니다. 액체 금속, A7050 합금은 세라믹 노즐을 통해 상단에서 들어가 흑연 주형을 통과하고, 표면 열전달계수와 지정된 온도로 모델링 된 물 분무에 의해 냉각됩니다. 하단의 강철 캡은 금속의 이동을 시작하여 액체 금속이 유출되는 것을 방지합니다. 캡은 0.3mm/sec의 일정한 속도로 아래쪽으로 이동하는 General Moving Object 물리 모델로 모델링 됩니다. 열응력 해석 모델은 균일하지 않은 냉각 및 수축으로 인해 고상 금속에서 발생하는 응력 및 변형을 예측하는 데 사용됩니다. 이 애니메이션은 Von Mises stress 결과를 보여 주는데, 400배로 확대된 결과입니다.

Continuous Casting Simulations

Rotational channel continuous casting example.

 

Solid fraction contours of the continuous casting process of a cylindrical steed rod using the general moving object and solidification models.

 

A 2D axisymmetric slice showing transient solidification contours through the transition region during continuous casting of a cylindrical steel rod.

Centrifugal Casting

Centrifugal Casting

원심 주조에서는 금형이 고속으로 회전하고 용해된 금속은 그 안으로 주입됩니다. 용해된 금속은 금형 내부에서 바깥쪽으로 방사되어 냉각되면서 응고됩니다. 중심 가속도와 관련된 더 높은 압력이 결함을 회전축 쪽으로 미는데, FLOW-3D CAST의 non-inertial reference frame model은 속도와 결함들의 위치를 수정할 수 있는 기능을 통해, 이러한 회전조건을 설정하여 매우 정확한 시뮬레이션 결과를 얻을 수 있습니다.

 

Centrifugal Casting Examples

강철 임펠러 원심 주조 공정의 부분 주입 시뮬레이션. 회전 속도는 250rpm으로 설정되었습니다.

FLOW-3D CAST는 임펠러 베인을 주조할 때 초기 응고 문제를 시뮬레이션하고 보여 주는 데 사용됩니다.

 

Centrifugal casting simulations, courtesy Metaltek.

Gravity Pour

Gravity Pour

중력 주조는 큰 부품(일반적으로 철, 청동, 황동 또는 알루미늄)을 만드는 데 사용됩니다. 사형 주조 및 영구 금형을 포함한 대부분의 주조 공장 주조 공정은 FLOW-3D CAST를 사용하여 모델링 할 수 있습니다. 주입 프로세스는 고압 다이 캐스팅에 비해 덜하지만 과도한 공기 주입으로 인한 공기 유입으로 인해 품질이 저하될 수 있습니다. 주입하는 동안 잠재적 결함의 위치와 온도의 변화 뿐만 아니라, 용탕 표면의 움직임도 정확하게 예측됩니다. 충진이 완료된 후 용탕의 응고 및 수축을 모델링 할 수도 있습니다.

 

Accurate Filling Simulations

주조 공정에서 주입 작업은 결함들이 라이저로 이동하는지, 또는 부품에 갇힌 채로 남아 있는지 여부와 같은 주입 패턴 및 관련 결함을 분석하는 작업으로 이루어집니다. 시뮬레이션 분석을 사용하면 설계의 효율성을 검증하고 비용을 절감하면서 생산에 들어가기 전에 설계를 테스트할 수 있습니다. 주입의 정확성은 산화물의 결함과 갇힌 공기의 위치를 추적하는 데 중요할 뿐만 아니라, 응고 결과의 핵심입니다. 올바른 주입 패턴은 주입 마지막의 올바른 열 분포를 의미합니다. 이 열 분포는 응고 분석의 기초가 됩니다.

Solidification of Castings for Foundry Applications

편석, 열응력, 마이크로 및 매크로 기공 등 응고와 관련된 다양한 결함들이 있습니다. 정확한 응고 결과를 얻기 위한 중요한 첫번째 단계는, 정확한 주입입니다. 정확한 주입은 응고 모델링의 초기 조건인 올바른 열 프로필을 캡처하는데, FLOW-3D CAST는 주조 부품을 보다 신속하게 설계하고 폐기율을 낮출 수 있는 많은 응고 관련 결함을 감지할 수 있습니다.

Tilt Pour

Tilt Pour

경동 주조에서는 금형이 수평 위치에 있는 동안 용탕이 주입 래들에 주입됩니다. 그런 다음 사전에 설정된 사이클 시간을 사용하여 주조 기계가 수직 위치로 상승하고, 용탕이 느리고 연속적인 주입 속도로 금형으로 들어갈 수 있습니다. 경동 주조 방법은 다양한 주조 형태를 가능하게 하는 런너-게이트 유연성 때문에 일반적인 주조 용도에 적합합니다.

Temperature profile during a tilt pour filling cycle

아래와 같은 예에서는 케이블 탭으로 연결되는 알루미늄 커플러 케이블에 대해 경동 주조의 시뮬레이션을 수행하여, 부품의 무결성과 표면 품질을 보장했습니다. 경동 회전을 완료하는 데 걸리는 시간은 중요합니다. 회전 속도는 FLOW-3D CAST에서 쉽게 수정할 수 있으므로 사용자가 이 속도를 최적화할 수 있습니다. 회전 속도가 너무 빠르면 공기가 유입되어 더 느리게 표면 결함이 나타날 수 있습니다. 온도 프로파일은 최대 및 최소 그래프 값을 각각 액상과 고상 온도로 설정하여 시각화 합니다. 여기서 부품이 반쯤 채워져 있고 용탕 온도가 고상 온도에 가깝지 않기 때문에 조기 응고는 나타나지 않습니다.

Simulation of the tilt pour process using FLOW-3D Cast.

Tilt pour casting simulations

수상 래프팅 장비에 사용되는 경량 알루미늄 부품은 고품질의 마감이 필요하며, 이상적으로 표면이 없고 결함이 없도록 주조됩니다. 이러한 경동 주조 프로세스의 시뮬레이션은 주입 프로세스를 통해 갇힌 표면 산화물 및 침입 공기의 잠재적 영역을 보여줍니다. 이러한 결점의 움직임을 알면 주조 엔지니어가 더 나은 게이트, 런너 및 라이저를 설계하여, 주물 내의 결점을 제거하는 데 도움이 됩니다. FLOW-3D CAST는 독자적인 6자유도 이동 기능을 통해, 금형의 복잡한 경사 순서와 각도 가속도를 시뮬레이션하는 데 사용할 수 있습니다.

Predicting metal casting defects

Surface oxide and entrained air defects in a tilt pour casting

Visualizing non-inertial reference frame motion

 casting with non-inertial reference frame motion on the left and stationary motion on the right

 

 blog 에서 FLOW-3D CAST v4.2의 FlowSight 에 대해 자세히 알아보십시오.

 

Low Pressure Die Casting

LPDC (Low Pressure Die Casting)

High Pressure Die Casting

Permanent Mold

Permanent Mold

영구 금형과 모래 금형의 차이점은 영구 금형을 재사용 할 수 있다는 것입니다. 금형을 재사용하는 주조 공정에는 중력, 경동, 저압 다이캐스팅 및 고압 다이 캐스팅이 포함됩니다. 영구 금형에는 금속과 흑연의 두 가지 유형이 있고 몰드 유형의 사용은 주조 금속에 달려 있습니다. 금속 주형에 사용되는 주조 금속은 알루미늄, 구리 합금, 아연 및 마그네슘을 포함합니다. 흑연 주형에 사용되는 주조 금속은 강 및 철입니다. 또한 내부 공동을 생성하기 위해 샌드 코어를 사용하는 반영구적인 금형이 있습니다. FLOW-3D CAST는 금형의 충진, 응고 및 열응력과 관련된 주조 결함을 포착하여 처음 프로세스를 올바르게 설계하고 궁극적으로 시간과 비용을 절약 할 수 있습니다.

Simulation of a low pressure die casting showing the filling temperature of a tire rim.

 

Customer Examples of Permanent Mold Castings

Courtesy Peugeot PSA Courtesy Littler Diecast Courtesy SANDEN Manufacturing

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

FLOW-3D CAST 소개

FLOW-3D CAST

FLOW-3D CAST는 광범위한 금속 주조 공정을 위한 완벽한 해석 솔루션을 제공합니다. 시뮬레이션을 통해 다양한 종류의 다공성, 표면 산화물, 공기 및 기포, 열 응력 및 변형 등과 같은 다양한 결함을 추적하면서, 주조 부품의 충진 및 응고에 대한 상세한 통찰력을 제공합니다. 금형을 분석하거나 FLOW-3D CAST로 코어의 가스 처리 같은 열 특성 및 기타 특성을 제거 할 수 있습니다.

최적화된 시뮬레이션을 통한 설계는 생산 현장에서의 개발 시간이 단축되고 출시 시간이 단축되며 생산량이 늘어나게 됩니다. FLOW-3D CAST는 담당자가 새로운 주조 공정 또는 합금을 배치 할 때 설계 및 개발 비용을 절감 할 수 있습니다.

직관적이고 편의성 높은 사용자 인터페이스를 결합한 FLOW-3D CAST는 성공적인 프로젝트를 통해 충진 및 응고 결함에 대한 정확한 예측을 제공합니다. 공정 요구 사항에 가장 적합한 샌드 캐스팅, 금형 주조 및 고압 다이 캐스팅을 사용할 수 있습니다.

High Performance Computing: in-House or in the Cloud

대규모 시뮬레이션의 경우 많은 계산 시간이 필요하게 되는데 이를 극복하기 위한 최고의 컴퓨팅 성능이 필요하십니까? FLOW-3D CAST는 필요 시 고성능 클라우드 컴퓨팅 환경인 클러스터 버전으로 손 쉽게 전활할 수 있습니다.

Courtesy Littler Diecasting Corporation

금속 주조 애플리케이션은 매우 어려운 시뮬레이션 중 하나입니다. 관련된 물리학의 복잡성과 적용 범위, 박막 주조, 주조 장비 정교함 등 고객의 높은 눈높이가 증가함에 따라 FLOW-3D CAST도 이를 충족하기 위한 다양한 솔루션과 기능을 제공합니다. 사형 주조, LPDC, HPDC, LostForm, 원심주조 등 FLOW-3D CAST사용자 인터페이스 안에는 고유의 전용 모델링 워크 플로우가 있습니다.

FLOW-3D CAST는 매우 정확한 흐름과 응고 결과를 통해 표면 산화물, 발생 기포, 매크로 및 미세 극성을 포함한 중요한 주조 결함을 포착할 수 있습니다. 다른 고유한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활을 모델링 할 수 있는 열 다이 사이클링, 샷 슬리브 흐름 프로파일, 압착 핀 및 열 스트레스가 있습니다.

Customer Case Studies

금속 주물의 결함 식별, 보다 가볍고 강한 주조 부품을 위한 새로운 재료로 부품 설계 또는 최적 설계를 위한 반복 설계 작업은 다음과 같은 방법 중 일부입니다. 고객은 당사의 소프트웨어를 사용하여 작업 요구 사항을 충족하고 폐기율을 줄이고 시장 진출 시간을 단축하며 경쟁 업체보다 앞서 나감으로써 조직을 위한 비용을 절감합니다.

“ The more you can do on a computer ahead of time, the better. It all comes down to saving time.”

“컴퓨터에서 좀 더 많은 것을 할 수 있으면 더욱 좋습니다. 모든 것은 시간 절약에 달려있습니다.”

– Elizabeth Ryder of Graham-White Manufacturing Co.

컨설팅 실적

FLOW-3D Case Studies
FLOW-3D Case Studies

수행 실적

No사업명발주처
1성남정수장 3차원 유동해석한국수자원공사
2소양강댐 홍수방지벽 설치공사 실시설계용역(수치모형실험)도화종합기술공사
3용담댐 도수터널 취수탑 유입수량 유속분포(수치모형실험)한국수자원공사
4대곡댐 여수로 문비설치 기본 및 실시설계(수치해석)도화종합기술공사
5영천댐 치수능력 증대방안 실시설계(실시모형실험)도화종합기술공사
6시화조력발전소 축조공사 턴키설계를 위한 CFD 수치모형실험대우건설
7평화의댐 2단계사업 시설공사 실시설계(수치모형실험)도화종합, 삼안건설, 한국종합개발기술공사
8광동달방댐 치수능력증대사업 기본 및 실시설계영역(수치모형실험)도화종합, 삼안건설기술공사
9광양 3단계 공업용수도 실시설계용역(여수로 수치모형실험,수어댐)삼안건설기술공사
10탐진 다목적댐 치수능력 증대방안용역(수치해석)삼안건설기술공사
11댐 상수원 설계표준도 작성용역삼안건설기술공사
12보성강댐 정밀안전진단(3D모델링 수치해석)한국시설안전관리공단
13반월정수장 노후시설 개량 기본 및 실시설계용역(수치해석 부분)한국종합엔지니어링
14청송양수발전소 1,2호기 설계기술용역/여수로 3차원 수치해석용역현대엔지니어링
15소양강댐 보조여수로 설치공사 기본설계입찰 수치모형실험용역SK건설
16잠실 수중보 어도개선 기본 및 실시설계도화종합기술공사
17서귀포시 동부하수종말처리장 고도처리시설 기본 및 실시설계용역삼안건설기술공사
18서귀포시 서부하수종말처리장 고도처리시설 기본 및 실시설계용역선진엔지니어링
19오산 제2하수처리장 건설사업입찰 기본설계용역 중 3차원 수치유동해석 분야엘지건설
20당진화력 7,8호기 취수로 수치모델링한국동서발전주식회사
21녹산배수펌프장 건설공사 대안설계용역 중 펌프장 흐름해석 부문한국종합기술개발공사
22대암댐 치수능력증대사업 기본 및 실시설계(2차) 수치해석현대엔지니어링
23용인흥덕 쓰레기 이송관로 입찰설계벽산엔지니어링
24군산하수처리장 고도처리사업 턴키공사 기본설계 전산유체해석부강테크(GS건설)
25임하댐 비상여수로 건설공사 기본설계용역(수치모형실험)삼안건설기술공사
26대청댐 비상여수로 건설공사 턴키설계용역(수치해석)삼안건설기술공사
27섬진강댐 재개발 실시설계용역(수치모형실험)삼안건설기술공사
28한강하류권급수체계구축사업 제3공구 생활용수정수장 대안설계신우엔지니어링
29임하댐 취수설비 개선공사 기본 및 실시설계용역 중 전산유체유동해석유신코퍼레이션
30광명 소하 쓰레기 자동집하시설 건설공사 T/K 기본설계용역유신코퍼레이션
31공주막여과정수장 수처리구조물의 합리적 설계를 위한 전산유체해석한국수자원공사
32김포장기지구 쓰레기 자동집하시설의 수치해석한화건설
33군장국가산단(장항지구)호안도로 축조공사 갑문수치모의실험항도엔지니어링(포스코건설)
34대청댐 비상여수로 건설공사 턴키설계용역(주)삼안
35성남판교 자동크린넷시설공사 T/K 기본설계(설계용역)건화엔지니어링
36영등포정수장 재건설 및 고도정수처리 시설공사 턴키설계용역중 수리구조물 전산 유체 해석부분삼성건설
37보령7,8호기 배수로 수치해석한국전력기술
38보령1~6호기 배수로 수치해석한국전력기술
39LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구한국지질자원연구원
40LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구SK건설
41파주 운정지구 쓰레기 집하시설 수집관로 수치해석건화엔지니어링
42마그네슘블록 유동,응고,응력 해석대림기업(주)
43군남홍수조절지건설공사 기본 및 실시설계용역도화종합기술공사
44안동댐 비상여수로 기본설계용역 수치모형실험에스케이건설
45세탁기 Duct 부품의 Aluminum Die-Casting CAE 해석방안 개발엘지전자
46광양 2~3연주기 고속 주조시 몰드내 열유동응고해석포스코
47Cam-shaft 다이캐스팅용 금형설계 및 주조방안 해석한국생산기술연구원
48팔당수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
49담체거동을 고려한 호기조 유동해석한수테크니컬서비스
50피스톤 쿨링젯 해석기술 개발 기술용역현대자동차
51아산 방조제 배수갑문확장사업 1단계 대안설계삼안건설기술공사
52하동화력 7,8호기 냉각수 배수구 전면 저류지 축조공사 3차원 수치모형실험 해석제이슨기술단
53의암수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
54춘천 및 보성강댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
55소양강댐 여수로 방류흐름개선을 위한 수치모형실험 용역한국시설안전기술공단
56제천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
57금강살리기 행복지구 생태하천 조성공사계룡건설산업
58첫마을지구 생활폐기물 자동집하시설 건설공사 기본설계 T/K도화종합기술공사
59괴산댐 가능최대홍수량에 대한 댐체월류시 구조적 안정성 검토용역한국시설안전기술공단
60충남도청 이전신도시 자동집하시설 건설공사 T/K입찰 기본설계 용역(주)건화
61영등포정수장 3D 모델링(주)대우건설
62화순홍수조절지 기본 및 실시설계 용역(주)도화종합기술공사
63재천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
64한탄강댐본댐 및 부대시설 공사 설계 변경 용역(주)삼안
65새만금 방수제 만경5공구 건설공사 기본설계 용역(3차원 수치해석)(주)삼안
66연속 주조시 발생되는 몰드 내 열응력 영향 해석(주)엔지비
67낙동강하구둑 배수문 증설공사 기본설계용역 중3차원 수치해석(주)유신
68뚝도정수센터 시설현대화 및 고도정수처리시설 실시설계 수치해석 용역신우엔지니어링
69파주운정쓰레기 자동집하시설 건설공사(T/K)태영건설
70거제평프장도화
71광교댐수치해석도화
72Slag Pouring 및 이송 시 열유동해석매탈젠텍(POSCO)
73LICC DP매탈젠텍(POSCO)
74PFC DP 공정 해석매탈젠텍(RIST)
75행복도시하수처리장이산
76다이캐스팅 주조방안 및 해석코다코(캐스트맨 매출)
77전착성능해석용 차체모델링+전착 이차흐름현대기아기술연구소
78고열전도성 다이캐스팅 경량 방열부품개발현대자동차
79엔진/변속기1 (전륜8속 TM 케이스 및 하우징 방안설계 최적화)현대자동차
80쇽업쇼버 케이스 해석 용역현대자동차
81엔진/변속기2 (세타/실린더헤드 및 후륜 다단변속기 케이스2개 제품)현대자동차
82엔진/변속기3 / 6월현대자동차
83엔진/변속기4 / 8월현대자동차
84고강도 저밀도 산합금 열물성 DB 및 주조해석현대자동차
85진공밸브 최적화현대자동차
86Bloom 해석(연주기 몰드 내 용강 유동해석)현대제철
87상수도관망 최적관리시스템 구축사업(고성군)태성종합기술
88신월빗물저류배수시설 3차원수치해석선진ENG
89실러류 해석기술 개발현대기아기술연구소
90고덕하수처리장 수치해석그레넥스
91고덕하수처리장 수치해석엔바이로솔루션
92라오스수력발전프로젝트SK건설
93슬리브내 역비산기아차
94송석지 싸이폰 여수로농어촌공사(충남도본부 예산지사)
95고풍지 싸이폰 여수로농어촌공사(충남도본부)
96광교저수지 싸이폰 여수로지자체(수원시)
97장수지 싸이폰 여수로지자체(전남공흥군)
98광폭 마그네슘 주조기 용해로 열변형 해석용역포스코
99350톤 양수냄비 다이캐스팅 개발해피콜
100Mg 빌렛 해석HMK
101관망해석 프로그램 개발국민대학교
102충주댐 하류가물막이 수치해석대림산업
103충주댐 하류가적치 수치해석대림산업
104충주댐 하류가적치 수치해석대림산업
105평화의댐 하류부지 계획고 조정에 따른 3D 수치해석 용역대림산업
106봉화댐 실시설계 3차원 수치모형 실험도화엔지니어링
107원통수조 교반해석도화엔지니어링
108DAF 실증시설 부상조 수치해석삼진정밀
109EI과제 프로그램 개발(건기연(정우식박사))오투엔비
110SEMANGKA HEPP 수치모형 실험이산
111공릉저수지 조류 및 유속분포 유동해석한국건설기술연구원
112교육 및 해석 기술 자문한국건설기술연구원
113터빈하우징 로스트폼 주조 용역한국생산기술연구원
114터빈하우징 로스트폼 주조 용역한국생산기술연구원
115교육 및 해석 기술 자문해안해양기술
116새만금 남북2축 도로 제 3공구해석E&H컨설턴트
117달천교 교각세굴 해석E&H컨설턴트
118Lean Amine Air Cooler 부식원인 분석을 위한 유동해석GS칼텍스
119Xe Pian 하류 변경안 해석SK건설
120멤브레인 CFD 프로그램 개발국민대학교
121원형관 내부 유동해석서울시립대학교
122우수저류지 세척 시스템 해석선일엔바이로
123MD 열교환 해석(2차)알이디
124모듈조합프로그램 개발오투앤비
125해양 구조물 세굴해석전남대학교
126하우징 다이캐스팅 해석제이에스테크
127막묘듈 열교환 해석한국건설기술연구원
128두량지 PK Weir 방류량 해석한국농어촌공사
129관내 유동해석GS칼텍스
130정수장 분배수로 응집지 해석그린텍환경컨설팅
131정수장 분배수로 응집지 해석그린텍환경컨설팅
132주조제일테크
133해저구조물 세굴 및 선박유동 해석창원대학교(ADD)
134고출력 저압 램프용 자외선 반응기 해석한국건설기술연구원
135고출력 중압 램프용 자외선 반응기 해석한국건설기술연구원
136과제 해석한국건설기술연구원
137이동식보&팬스한국건설기술연구원
138Point source 기반의 하천 녹조 발생 현황 2차원 mapping 시스템한국건설기술연구원
139해석지원한국종합기술
140데이터교환customizing한국항공우주연구원
141엔진소재의 주조방안 최적화를 위한 주조해석 기술용역현대자동차
142배관유동GS건설
143울산 소수력 수치해석 용역유신
144한국건설기술연구원-이동형 해수담수화 시스템 개발 컨설팅한국건설기술연구원
145Water Dynamometer 해석두산중공업
146약액 침전 외 2건 해석세메스
147Ladle 내 Dam 및 노출부 형상변화에 따른 Vortex 거동 해석(재)포항산업과학연구원
148VMD 모듈 3D모델링알이디
149칠서정수장 기술진단 3차원 수치해석(주)그린텍환경컨설팅
150충주댐 유출부 감세지 3차원 수치해석대림산업
151친환경차용 e-4WD 유도모터 로터 주조기술개발현대자동차
152울산 #4복합 해양소수력 개발 타당성 용역중 3차원 수치해석유신
153사이펀 활용 중력구동 분리막 시스템 수치해석한국건설기술연구원
154삼척화력 소수력발전설비 설치공사(EPC) 기본 및 실시설계 중 CFD해석유신
155LG전자(평택) 생산기술원-레이저 용접 결함 예측 모델 개발LG전자(평택)
156LG전자 창원 H&A사업본부-FLOW-3D 기반 통세척 성능 해석기술 개발LG전자(창원)
 수리/수자원 분야
01 교량 설치에 따른 하천흐름 및 세굴영향 검토
컨설팅내용
  • 교량 설치로 인한 3차원 모형의 수리영향 검토
  • 세굴방지공 설치로 교량의 수리적 안정성 확보
필요데이터
  • 교각 3차원 형상 또는 도면
  • 하천 수심측량 자료 및 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 하천의 유동해석 수행 후 최고유속에 해당하는 교각 선정
  • 선정교각 대상을 중심으로 세굴 모형 적용
결과물
  • 하천 유동흐름, 수위분석
  • 평형세굴심 도달시간
  • 최대세굴심 및 최대퇴적고 등
02 댐체 월류 시 수리/수문 구조적 안정성 검토
컨설팅내용
  • 상류 댐 붕괴 시 급격한 방류로 인하여 하류 댐에 미치는 영향을 검토하기 위해 댐체 월류 시 수리/수문 구조적 안정성검토
필요데이터
  • 공도교 및 수문 구조물 상세 도면
  • 하천 수심측량자료 및 주변 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 상류 댐 붕괴시 홍수위/홍수량 정보입력
  • 구조물/수문 분리 후 취약한 수문 선정
  • 수문 구조해석 및 Total 힘 분석
결과물
  • 수문/구조물 받는 힘 분석
  • 굥도교 월류 여부 및 수위/유속 분포
  • 방류량 및 구조물 부압 등
 수처리 분야
01 정수처리시설 구조물 최적설계
컨설팅내용
  • 정수시설 구조물에 대한 유동, 유량, 압력, 온도분포 분석
  • 수처리과정에 발생하는 현상분석
필요데이터
  • 정수시설 구조물의 제원
  • 분배수로, 침전지 등 도면 및 3D CAD 자료
  • 초기 수위데이터 등
해석방법
  • 정수시설 구조물의 경계조건 설정
  • 형상에 따른 유동흐름 및 유량 등 초기조건 
결과물
  • 정수시설물에 작용하는 압력분포 확인
  • 유동 유입에 따른 유동양상, 유량, 유속데이터 분석
  • 온도변화에 따른 유동 및 침전효율 분석

02 하수처리시설 방류량 및 유동양상 분석
컨설팅내용
  • 토출수조의 수위 및 유동현상검토
  • 각 방류 Box의 방류유량분포 및 유속분석 
필요데이터
  • 구조물관련 설계도면 자료
  • 전체 모형 작성 및 지형데이터
  • 유체 유입량, 초기 수위관련 자료
해석방법
  • 시설 구조물에 따른 경계조건 설정
  • 초기 수위조건 및 유동현상 등 조건 확인
결과물
  • 토출 수조의 수위량 및 유동흐름
  • 유동 유입에 따른 유량, 유속데이터 분석
  • 구조물 단면의 유량흐름 데이터
 
 주조 분야
01 수축 결함최소화를 위한 주조해석
컨설팅내용
  • 주조 시 산화물 혼입방지 설계
  • 조립부 수축결함 최소화 
필요데이터
  • Frame형상 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 용탕 주입시간, 충진속도, 온도 등의 데이터
해석방법
  • 금형형상에 따른 주조해석 경계조건 설정
  • 초기 조건설정에 따른 파라미터분석
결과물
  • 충진시 산화물발생 위치 및 수축공 발생 위치
  • Solidification 확인, 결함부 현상분석
  • Gate, Runner 위치 최적화
         
02 금형 최적설계를 위한 주조해석
컨설팅내용
  • 충진 온도유지 및 제품 결함 최소화를 위한 최적설계
필요데이터
  • 금형관련 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 주조 공정조건 데이터
해석방법
  • 금형형상에 맞는 Runner, Gate 모델링
  • 용탕온도, 속도, 압력 등 조건에 따른 제품 최적설계
결과물
  • 충진시 압력분포 및 산화물 발생 위치분석
  • Solid Fraction, Solidification 등 현상분석
  • 결함부위 최소화를 위한 Gate, Runner 위치 최적화
 코팅 분야
01 Nozzle 분사를 이용한 Slit Coating 해석
컨설팅내용
  • 표면 Coating에 적합한 Nozzle 형상 설계
  • Coating 구동조건 및 압력분포 분석
필요데이터
  • 초기 Nozzle 형상 제원
  • 형상 도면자료 및 3D CAD자료
  • 초기 Coating 도포현상 및 구동조건 데이터
해석방법
  • Nozzle 구동에 따른 Coating 분석
  • 액상조건에 따른 Coating 도포형상 분석
결과물
  • Nozzle 형상 파라미터에 따른 Coating 현상분석
  • Coating 분포에 따른 높이 균일성 확인
  • 액상 온도에 따른 도포량분석
  
 MEMS 분야
01 연료전지 시스템의 최적설계를 위한 유동해석
컨설팅내용
  • 연료전지 내부형상에 따른 유동장변화 데이터
  • 유량분배에 적절한 최적의 형상조건 설계
필요데이터
  • 초기 형상 도면자료 및 3D CAD자료
  • 연료전지의 구동조건 및 물성조건
  • Actuator의 작동, 토출량, 유동 등의 데이터
해석방법
  • Micro-Channel에서의 유동분배 설정
  • 액체의 특성에 따른 토출조건 확인
결과물
  • Actuator의 속도에 따른 유동량 분석
  • Micro-Channel에서의 유동양상
  • 공동현상 최소화를 위한 최적의 구동조건

컨설팅 절차

컨설팅 절차

  • 해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
  • 계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
  • 컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
  • 수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
  • 수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
  • 모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.

컨설팅 분야

수자원 분야

  • 댐체, 수문, 제반 구조물 안정성 검토
  • 댐, 여수로 유동 해석
  • 여수로 수위별 방류량 해석
  • 여수로 월류 및 수위 검토 해석
  • 발전소 취수로 유동 해석
  • 배수터널 방류향 해석
  • 취수탑 유입 유량 해석
  • 교각주위 세굴 해석
  • 수문 수차 유량 해석
  • 저수지 수위별 유동해석
  • 배수암거 부정류 해석
  • 저수지 연결 터널 유동 해석
  • 교각 유동 작용 힘 검토
  • 도수터널 통수 능력 해석
  • 부유사 확산 검토
  • 냉각수 취수로 유량 해석
  • 수문 유동 양상 분석
  • 배수터널 방류량 해석
  • 월류 수위별 유량 유속 해석

수처리 분야

  • 정수지 유동해석
  • 분배수로 유량분배 해석
  • 침전지 유동 및 유속 분포 해석
  • 반응조 농도 및 반응시간 해석
  • 응집지 유동해석
  • 하수처리시설 슬러지 농도 해석
  • DAF 응집제 농도 해석
  • 수조 최적 교반 해석
  • 여과지 유동해석
  • 혼화지 유동해석
  • 호기조 담체 거동해석
  • 수처리 구조물 유동 양상 분석
  • 하수처리시설 유동해석
  • 분말활성탄 접촉조 해석
  • PSBR 반응조 해석
  • 지하수 ICE RING 형성 해석
  • 절리면 모세관 열유동 해석
  • DAF 실증시설 부상조 해석
  • 착수정 유량 분배 해석

우주 항공분야

  • 발사체 탱크 슬로싱 댐핑 평가 해석
  • 항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
  • 항공기 날개 연료 탱크 내부 유동 해석
  • 항공기 연료 탱크 내부 유동 해석
  • 추진체 관리 장치 내부 유동 해석
  • 엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석

자동차 분야

FLOW-3D POST Gears
  • 자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
  • 피스톤 쿨링젯 시스템 해석
  • 전착 도장 해석
  • 자동차 연료 주입구의 주입 유량별 유동 특성 분석
  • 기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
  • 엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
  • 베어링 내 윤활을 위한 오일의 유동 양상 해석

해양분야

  • 해양 컨테이너 연료 탱크 슬로싱 해석
  • 방파제 구조물 주변 유동 해석
  • 선박 운항에 따른 항주파 및 유동 특성 분석
  • 사석 방파제 등 구조물 주변 유동 해석
  • 진동수주형 파력 발전 구조물 최적화 모델 해석
  • 선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
  • 발전소 부근 해역 온배수 영향 예측
  • 지진 해일에 의한 영향 해석

주조 분야

  • 고압다이캐스팅  충진 거동 및 응고 해석
  • 저압주조 충진 거동 및 응고 해석
  • 경동주조 충진 거동 및 응고 해석
  • 중력주조 충진 거동 및 응고 해석
  • 원심주조 충진 거동 및 응고 해석
  • 금형온도 분포 해석
  • 제품 및 금형 열응력, 변형 해석
  • 주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
  • 금형 및 몰드 냉각방안 최적화 검토

Micro/Bio/Nano Fluidics 분야

  • Slit 및 Slot 코팅 해석
  • Roll 코팅 해석
  • Gravure / Gravure-offset 프린팅 해석
  • Curtain 코팅 해석
  • Multi-layer Slide 코팅 해석
  • 전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
  • 마이크로 채널 액적 생성 연속성 및 혼합 해석
  • 잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
  • 열모데관 유동해석과 모세관 충진 해석
  • 유전 영동 현상을 이용한 액적 융합 해석

레이저 용접 분야

  • 이종재 레이저 용접 해석
  • 용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
  • 이종재의 레이저 용접 시 wobbling 해석
  • 레이저 용접 Melt Pool 거동 해석
  • 레이저 파워, 속도에 따른 balling 결함 영향 해석

HVAC System Designs

HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행

발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능

수치해석 기술 컨설팅 안내

FLOW-3D Case Studies

수치해석 기술 컨설팅 안내

(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD 컨설팅 서비스를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
상담에는 비용은 전혀 들지 않습니다.

CFD는 엔지니어가 공기, 물 또는 모든 유체와의 상호 작용을 이해할 수 있게 하는 매우 효과적인 기술로 대부분의 유동현상에 해답을 제시 할 수있는 막대한 잠재력을 가지고 있습니다.
다양한 유체 흐름 현상이나 온도 및 열전달 분석 등 필요한 시나리오에 대한 맞춤 솔루션을 제공합니다.

당사에는 20년 이상 수치해석 연구에 전념하고 있는 전문 연구인력과 다양한 기술적 경험과 전문 시뮬레이션 기술을 제공하는 숙련된 기술컨설팅팀이 준비되어 있습니다.
귀하의 프로젝트 성공 가능성을 기술시연을 통해 제공 할 수 있습니다.
프로그램 소개나 자문이 필요하신 분들은 언제든지 아래 연락처로 문의하시기 바랍니다.

  • 전화 :   02-2026-0455
  • Email : flow3d@stikorea.co.kr

컨설팅 형태

수치해석 의뢰

  • 고객이 당면한 문제를 분석 /검토/협의 후, 가장 적절한 수치해석 방법을 수립합니다.
  • 주로 상호 협의된 설계안 및 해석 조건에 대해 수치해석을 수행하여 결과를 도출 분석, 검토합니다.
  • 설계 변경 인자 및 해석 횟수는 고객과 협의하여 진행합니다. 수치해석 결과를 분석 검토하여 설계에 반영하기 위한 의견을 제시하여 드립니다.

해석 대행 의뢰

  • 고객사에 해석 프로세스가 정립되어 있는 경우에 대해, 계산 장비와 수치해석 인력을 이용하여 해석 대행 및 해석 결과물을 제출합니다.

컨설팅 절차

  • 해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
  • 계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
  • 컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
  • 수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
  • 수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
  • 모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.

주요 컨설팅 의뢰 분야

수자원 분야

  • 댐체, 수문, 제반 구조물 안정성 검토
  • 댐, 여수로 유동 해석
  • 여수로 수위별 방류량 해석
  • 여수로 월류 및 수위 검토 해석
  • 발전소 취수로 유동 해석
  • 배수터널 방류향 해석
  • 취수탑 유입 유량 해석
  • 교각주위 세굴 해석
  • 수문 수차 유량 해석
  • 저수지 수위별 유동해석
  • 배수암거 부정류 해석
  • 저수지 연결 터널 유동 해석
  • 교각 유동 작용 힘 검토
  • 도수터널 통수 능력 해석
  • 부유사 확산 검토
  • 냉각수 취수로 유량 해석
  • 수문 유동 양상 분석
  • 배수터널 방류량 해석
  • 월류 수위별 유량 유속 해석

수처리 분야

Wastewater Treatment Plant
Wastewater Treatment Plant
  • 정수지 유동해석
  • 분배수로 유량분배 해석
  • 침전지 유동 및 유속 분포 해석
  • 반응조 농도 및 반응시간 해석
  • 응집지 유동해석
  • 하수처리시설 슬러지 농도 해석
  • DAF 응집제 농도 해석
  • 수조 최적 교반 해석
  • 여과지 유동해석
  • 혼화지 유동해석
  • 호기조 담체 거동해석
  • 수처리 구조물 유동 양상 분석
  • 하수처리시설 유동해석
  • 분말활성탄 접촉조 해석
  • PSBR 반응조 해석
  • 지하수 ICE RING 형성 해석
  • 절리면 모세관 열유동 해석
  • DAF 실증시설 부상조 해석
  • 착수정 유량 분배 해석

우주 항공분야

  • 발사체 탱크 슬로싱 댐핑 평가 해석
  • 항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
  • 항공기 날개 연료 탱크 내부 유동 해석
  • 항공기 연료 탱크 내부 유동 해석
  • 추진체 관리 장치 내부 유동 해석
  • 엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석

자동차 분야

FLOW-3D POST Gears
  • 자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
  • 피스톤 쿨링젯 시스템 해석
  • 전착 도장 해석
  • 자동차 연료 주입구의 주입 유량별 유동 특성 분석
  • 기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
  • 엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
  • 베어링 내 윤활을 위한 오일의 유동 양상 해석

해양분야

  • 해양 컨테이너 연료 탱크 슬로싱 해석
  • 방파제 구조물 주변 유동 해석
  • 선박 운항에 따른 항주파 및 유동 특성 분석
  • 사석 방파제 등 구조물 주변 유동 해석
  • 진동수주형 파력 발전 구조물 최적화 모델 해석
  • 선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
  • 발전소 부근 해역 온배수 영향 예측
  • 지진 해일에 의한 영향 해석

주조 해석 분야

  • 고압다이캐스팅  충진 거동 및 응고 해석
  • 저압주조 충진 거동 및 응고 해석
  • 경동주조 충진 거동 및 응고 해석
  • 중력주조 충진 거동 및 응고 해석
  • 원심주조 충진 거동 및 응고 해석
  • 금형온도 분포 해석
  • 제품 및 금형 열응력, 변형 해석
  • 주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
  • 금형 및 몰드 냉각방안 최적화 검토

Micro/Bio/Nano Fluidics 분야

  • Slit 및 Slot 코팅 해석
  • Roll 코팅 해석
  • Gravure / Gravure-offset 프린팅 해석
  • Curtain 코팅 해석
  • Multi-layer Slide 코팅 해석
  • 전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
  • 마이크로 채널 액적 생성 연속성 및 혼합 해석
  • 잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
  • 열모데관 유동해석과 모세관 충진 해석
  • 유전 영동 현상을 이용한 액적 융합 해석

레이저 용접 분야

  • 이종재 레이저 용접 해석
  • 용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
  • 이종재의 레이저 용접 시 wobbling 해석
  • 레이저 용접 Melt Pool 거동 해석
  • 레이저 파워, 속도에 따른 balling 결함 영향 해석

공기/열 흐름 분야 (HVAC System Designs)

HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행

발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능

Micro-porosity(=Micro-shrinkage) Defects, (미세기포(=미세수축공)에 의한 결함)

Micro-porosity(=Mirco-shrinkage) Defects (미세기포(=미세수축공)에 의한 결함)

FLOW-3D는 특별히 응고 과정 후반에  발생하는 미세수축공의 발생 위치를 예측하기 위한 모델을 갖고 있습니다. 이 정보를 이용하여 설계방안을 조정하고 중요한 결함을 방지 할 수 있습니다. 어떤 주조 부품들은 용탕이 응고하는 동안의 수축에 의한 gas pocket이나 porosity(or shrinkage)이 표면에 드러나면 불량품으로 판정받게 됩니다. 대부분의 크기가 큰 수축공은 응고중 피딩(feeding)을 가능하게 하는 적절한 금형 설계 방법에 의해 제거될 수 있습니다. 용탕의 응고수축을 보상하도록 충분한 feeding이 발생할 때, 미세수축공(micro-porosity, micro-shrinkage)은 일반적으로 발생하지 않습니다. 미세수축공은 충진시 공기혼입에 의한 기포와 발생원인이 상이한 것으로 응고말기 수지상(dendrite)조직에 충분한 용탕이 공급되지 않을 경우 주로 발생하며 일반적으로 부피 비율이 1 % 이하 정도의 작은 기포의 분포의미합니다. 그러므로 미세수축공이 나타날 수 있는 위치 및 가능성을 예측하는 수단을 갖는다는 것은 고품질 주조품의 생산에 매우 중요합니다. FLOW-3D의 미세수축공 모델(micro-porosity model )은 이러한 목적을 위해 개발되었습니다.

Thermal Stress Evolution

Thermal Stress Evolution

FLOW-3D의 열 응력 진화 (TSE) 모델은 모델링 할 수있는 주조 공정의 범위를 확장합니다. FSI / TSE 모델은 주변 유체의 압력 력, 온도 구배 및 지정된 구속 조건에 대한 응답으로 솔리드 및 응고 부품의 모델 응력 및 변형에 대한 유한 요소 접근법을 사용하여 유체와 솔리드 간의 완전 결합 상호 작용을 설명합니다.

불균일 냉각으로 인해 응고 과정에서 열 응력이 발생합니다. 이러한 응력은 주형 벽의 수축과 주조 모양의 불규칙성에 영향을받습니다.

위의 시뮬레이션은 고형 알루미늄 V6 엔진 블록의 Von Mises 응력을 보여줍니다. 이 블록은 강철 다이 내에서 주조 된 알루미늄 A380 합금으로 구성됩니다. 알루미늄의 주입 온도는 527 ° C 였고 초기 다이 온도는 125 ° C였다. 부품을 다이에서 60 초 동안 냉각시킨 후 다이를 열고 주변 조건 (125 ° C)에서 부품을 9 분 동안 계속 냉각시켜 총 10 분의 시뮬레이션 시간을 가졌다. 보여진 폰 미제스 응력은 부품 내부의 전단 응력의 크기를 측정 한 것으로, 파열이 가장 많이 발생하는 부위를 나타냅니다. 응력은 금형과 응고 금속에서 동시에 계산 될 수 있습니다. 메싱은 FLOW-3D의 구조화 된 메쉬를 초기 템플릿으로 사용하여 자동으로 수행 할 수 있습니다. 사용자는 중첩 또는 링크 된 메쉬 블록을 생성하고 V11.0의 새로운 준수 메쉬 기능을 사용하여 메쉬의 로컬 해상도를 제어 할 수 있습니다. 또는 Exodus-II 형식의 타사 메쉬 생성 소프트웨어에서 Finite Element 메쉬를 가져 오는 옵션이 있습니다.

Simulating Thermal Stress

아래 그림은 강철 다이 내에 알루미늄 A380 합금 주물로 구성된 알루미늄 커버입니다. 주입 온도는 654 ℃이고 초기 다이 온도는 240 ℃이다. 부품은 6 초 동안 다이 내에서 냉각되어 부품이 완전히 고화되었다 (러너 시스템 제외). 그런 다음 다이를 열고 부품을 주변 조건 (25 ° C)에서 10 초 더 냉각시켰다. 러너 시스템을 제거한 후 주위 조건에서 10 초간 더 냉각시켰다. 여기에 표시된 일반 변위는 가장 큰 변형 영역을 강조하기 위해 30 번 확대 된 부품 표면의 동작을 나타냅니다.

Component Coupling within the Fluid-Structure Interaction and Thermal Stress Evolution Models

FLOW-3D v11의 새로운 기능은 인접한 유체 구조 상호 작용 (FSI) 구성 요소 및 / 또는 열 응력 진화 (TSE) 응고 유체 영역 사이의 탄성 응력을 허용하는 기존의 유한 요소 역학 해석법으로의 업그레이드입니다. 결합. 이 새로운 기능은 복잡하고 변형이 심한 다중 재료 부품 (예 : 몰드에서 금속 주 조용 응고 또는 바이메탈 게이지)의 열 응력과 변형을 시뮬레이션하고 연결된 유압에서 힘을 시뮬레이션하는 것을 포함하여 풍부한 모델링 가능성을 열어줍니다. 레이디 얼 게이트 및 파이프 라인 지원 시스템과 같은

모델에는 복잡한 프로세스를 효율적으로 계산할 수있는 몇 가지 옵션이 있습니다.

No coupling

이 옵션은 인접한 FSI 구성 요소가 스트레스를 교환하지 않는 단순화 된 사례를 나타냅니다. 이것은 계산 상 효율적이며 구성 요소 간의 응력 상호 작용이 중요하지 않은 시나리오에 적합합니다.

Full coupling

전체 커플 링 옵션은 함께 융합되었지만 재료 특성이 다른 이웃 FSI 구성 요소를 모델링하기위한 것입니다. 두 구성 요소는 서로 떨어져서 당기거나 서로 밀어 낼 수 없지만 인터페이스의 응력은 구성 요소간에 전송됩니다. 이는 바이메탈 스트립과 같은 접합 구조를 모델링하는 데 이상적입니다.

Partial coupling

부분 커플 링 옵션은 인접한 FSI 구성 요소가 마찰 및 수직력을 통해 상호 작용하지만 분리 될 수있는 일반적인 문제를 모델링하기위한 것입니다. 이 옵션은 FSI 구성 요소와 TSE 응고 유체 영역을 결합하는 데 사용할 수 있으므로 다이에서 냉각되는 부품과 주조 부품에 대한 열 응력의 영향을 조사하는 데 이상적입니다.

모델의 새로운 기능을보다 자세히 보여주기 위해 두 가지 시뮬레이션이 제공됩니다. 첫 번째 상황은 전체 커플 링 옵션을 사용하여 시간에 따라 변화하는 온도에 따라 바이메탈 스트립 벤딩을 모델링하는 반면 두 번째 예는 다이 커플 링에서 V6 엔진 블록의 응고 중 열 응력을 보는 부분 커플 링 모델의 사용을 보여줍니다 .

Full Coupling Example: Bimetallic Strip

전체 커플 링 옵션의 가장 단순한 예 중 하나는 온도 구배에 따른 바이메탈 스트립의 움직임입니다. 이러한 스트립은 두 개의 금속이 온도 변화에 반응하여 동일한 속도로 팽창하지 않기 때문에 열 스위치 및 굴곡에서 일반적으로 사용됩니다. 시뮬레이션에서 모델링 된 바이메탈 스트립은 그림 1에서와 같이 동일 치수의 구리 스트립에 접합 된 길이 15cm, 두께 0.5cm의 강철 스트립으로 구성된 캔틸레버 빔입니다.

Schematic of bimetallic strip

그림 1 : 예제 시뮬레이션에 사용 된 바이메탈 스트립의 개략도. 검은 색 화살표는 처짐이 탐지 된 곳을 나타냅니다. 긍정적 인 처짐은 상향이다.
이어서, 스트립을 온도가 70 초 이상 균일하게 변화하는 환경에 두었다. 그림 2는 시뮬레이션을위한 스트립 팁의 편향과 시간 경과에 따른 다양한 온도에서의 분석 솔루션을 보여줍니다. 결과는 온도가 변했을 때와 스트립의 열 관성으로 인한 스트립의 응답 사이의 약간의 지연을 포함하여 몇 가지 흥미로운 특징을 보여줍니다. 이 지연은 해석 솔루션이 온도의 순간 변화를 가정하기 때문에 계산 된 해석 편차와 해석 편향 사이의 타이밍 차이에 영향을 미칩니다. 변위의 진폭 차이는 분석 결과에서 무한히 얇은 스트립의 가정에 기인 할 수 있습니다. 계산 모델의 두께는 장착 지점에서 추가 응력을 추가하여 처짐이 증가합니다.

Bimetallic deflection plot FLOW-3D

그림 2 : 시뮬레이션 시간 동안 스트립의 끝에서의 처짐. 플롯에는 해석 적 (밝은 파란색) 및 계산 된 (빨간색) 편향과 스트립의 평균 온도 (진한 파란색)가 표시됩니다.

Partial Coupling Example: Metal Casting within a Deformable Die

Temperature profile of a v6 engine block

그림 3 : V6 엔진 블록의 온도 프로파일 단면도. 시뮬레이션 시작 7 초.

두 번째 예제 시뮬레이션은 부분 결합 모델을 사용하여 변형 가능한 스틸 다이 내의 금속 주조물에 응력이 발생하는 것을 보여줍니다. 다이의 두 반쪽과 응고 된 유체는 서로 부분적으로 결합되어있어 정상 응력과 마찰을 통해 상호 작용합니다. 이 시뮬레이션은 금형과 주조 부품의 열 응력 변화가 770K의 고 상선 온도 바로 아래에서 293K의 주변 온도까지 냉각되는 것을 보여줍니다. 주조 부품은 A380 알루미늄 합금으로 이루어져 있으며 금형 반은 H-13 강으로 구성됩니다.

캐스트 부품과 주변 다이의 유한 요소 메쉬는 그림 3과 같이 3,665,533 개의 요소와 3,862,378 개의 노드로 구성됩니다. 또한 다이 반쪽과 TSE 응고 된 유체 영역 각각에 대해 서로 다른 메쉬가 표시됩니다. 앞면에있는 빨간색 원은지지 피스톤 (그림에서는 보이지 않음)으로 인한 것입니다.


그림 4는 충진 후 고압 다이 캐스팅 부품 300s의 주조물 온도와 변위 크기로 채색 된 강철 다이 조각을 결합한 이미지를 보여줍니다. 이 시뮬레이션에서, 다이는 응고 알루미늄에 결합되어 응력이 그들 사이에 전달됩니다. 변위 크기는 다이의 에지에서 0에서부터 주조에 인접한 0.1mm 이상까지 다양합니다.

몰드와 응고 된 유체 표면 사이의 계면에서의 응력은 부분적으로 결합되고, 구속 된 수축이 보일 수있다. 그림 4는 시뮬레이션을 통해 주조 부품과 다이 반제품의 절반에 발생하는 변형을 보여줍니다. 다이 반쪽과 주물은 온도가 감소함에 따라 다른 속도로 줄어들므로 간섭 영역에 큰 응력이 발생하고 잠재적 문제 영역이 있음을 나타냅니다. 금형과 부품의 결합 응력을 계산하면 각 부품 내에서 발생하는 응력을 더 잘 예측하고 부품 품질을 개선하고 공구 수명을 연장하는 방법에 대한 통찰력을 얻을 수 있습니다.

Conclusion

서로 다른 솔리드 오브젝트의 상호 작용은 현대의 설계 및 엔지니어링에서 중요한 부분입니다. FLOW-3D에 대한 FSI 구성 요소와 TSE 응고 유체 영역 간의 새로운 커플 링 옵션을 추가하면 오늘날의 엔지니어가 정기적으로 겪게되는 복잡한 형상을 평가할 수있는 유용한 도구를 제공합니다.

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010