Effect of Y2O3 on microstructure

Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

미크론 크기의 내화물 입자를 추가하여 Ti-6Al-4V 합금의 레이저 적층 제조중 계층적 입자 미세 조정

Xiang Wang, Lin-Jie Zhang, Jie Ning, Sen Li, Liang-Liang Zhang, Jian Long
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Ti-6Al-4V alloys mad by additive manufacturing (AM) with slower cooling rate (e. g., direct energy deposition (DED)) generally have the problem of severe coarsening of α phase. This study presents a method to refine the microstructure of the primary β phase formed during the solid–liquid transformation, microstructures formed during the β → α + β transformation, and recrystallized microstructures formed during the repeated heating cycles encountered in AM processes. This is accomplished by the in situ precipitation of nano-sized dispersed high-melting-point yttria Y2O3 particles. The addition of micron-sized particles with high melting points can refine primary crystallized grains and transformed grains corresponding to the secondary phase in Ti-6Al-4V alloys. In addition, they can effectively inhibit the recrystallization and growth of prior-deposited metal grains. The microstructural and tensile properties of laser additive manufactured with filler wire Ti-6Al-4V components with different amounts of Y2O3 (0, 0.12, and 0.22 wt%) were investigated. The refining effect of Y2O3 was significant and the tensile strength of Ti-6Al-4V containing 0.22 wt% Y2O3 in the longitudinal and transverse directions was greater than that of Ti-6Al-4V by approximately 12% and 9%, respectively. Concurrently, there was no loss in the elongation of the material in either direction. The strategy of using micron-sized refractory particles to control phase transformation (primary crystallization, solid-state phase transformation, and recrystallization) can be applied to the AM of different metals, in which microstructures are susceptible to coarsening.

냉각 속도가 느린 적층 제조(AM)에 의해 제조된 Ti-6Al-4V 합금은 일반적으로 α상(예: 직접 에너지 증착(DED)의 심각한 응고 문제를 가지고 있습니다. 이 연구는 고체-액체 변환 중에 형성된 1 차 β상의 미세 구조, β → α + β 변환 중에 형성된 미세 구조, AM 공정에서 발생하는 반복되는 가열주기 동안 형성된 재 결정화된 미세 구조를 정제하는 방법을 제시합니다.

이것은 나노 크기의 분산된 고 융점이 트리아 Y2O3 입자의 현장 침전에 의해 달성됩니다. 녹는 점이 높은 미크론 크기의 입자를 추가하면 Ti-6Al-4V 합금의 2 차 상에 해당하는 1차 결정 입자 및 변형된 입자를 정제 할 수 있습니다.

또한 사전에 증착된 금속 입자의 재 결정화 및 성장을 효과적으로 억제 할 수 있습니다. Y2O3 (0, 0.12, 0.22 wt %)의 양이 다른 필러 와이어 Ti-6Al-4V 성분으로 제조 된 레이저 첨가제의 미세 구조 및 인장 특성을 조사했습니다.

Y2O3의 정제 효과는 유의미했으며, Y2O3 0.22 wt %를 세로 및 가로 방향으로 포함하는 Ti-6Al-4V의 인장 강도는 Ti-6Al-4V보다 각각 약 12 ​​% 및 9 % 더 컸습니다. 동시에 어느 방향으로도 재료의 연신율에 손실이 없었습니다.

미크론 크기의 내화 입자를 사용하여 상 변환 (1 차 결정화, 고체 상 변환 및 재결정 화)을 제어하는 ​​전략은 미세 구조가 거칠어지기 쉬운 다양한 금속의 AM에 적용될 수 있습니다.

Effect of Y2O3 on microstructure
Effect of Y2O3 on microstructure

Keywords: Grain hierarchical refinement, YttriaSolidification microstructures, Solid phase transition microstructures, Recrystallization microstructures

The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션

ZhenyanXiaaYangZhaoaZhenYangabcChengjuanYangabLinanLiaShibinWangaMengWangabaSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, ChinabKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, ChinacSchool of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Abstract

Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.

초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.

레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.

변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.

이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.

시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.

이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.

Keywords: Laser irradiation; Wettability; Droplet impact; Simulation; VOF

Introduction

서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].

자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].

일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].

<내용 중략> ……

 The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

A non-fluorine mold release agent for Ni stamp in nanoimprint process

Tien-Li Chang a,*, Jung-Chang Wang b
, Chun-Chi Chen c
, Ya-Wei Lee d
, Ta-Hsin Chou a
a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan
cNational Nano Device Laboratories, Taiwan
d Research and Development Division, Ordnance Readiness Development Center, Taiwan

Abstract

이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.

Introduction

나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.

따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].

오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.

각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.

Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].

그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.

본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.

Experiment

먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 ​​메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.

디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.

이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.

Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.
Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.

마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.

PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.

수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.

200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.

마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.

Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

References

[1] M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Nature 417 (2002) 835.
[2] S.Y. Chou, C. Keimel, J. Gu, Appl. Phys. Lett. 84 (2004) 5299.
[3] Q. Wang, G. Farrell, P. Wang, G. Rajan, T. Thomas, Sensor Actuator A 134 (2007) 405.
[4] C. Kentsch, W. Henschel, D. Wharam, D.P. Kern, Microelectron. Eng. 83 (2006) 1753.
[5] T.L. Chang, Y.W. Lee, C.C. Chen, F.H. Ko, Microelectron. Eng. 84 (2007) 1689.
[6] S. Tisa, F. Zappa, A. Tosi, S. Cova, Sensor Actuator A 140 (2007) 113.
[7] M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Lab Chip 5 (2005) 5545.
[8] W. Hu, E.K.F. Yim, R.M. Reano, K.W. Leong, S.W. Pang, J. Vac. Sci. Technol. B 84 (2005) 2984.
[9] H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht, Microelectron. Eng. 423 (2002) 61.
[10] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, Microelectron. Eng. 73–74 (2004) 196.
[11] A. Yokoo, M. Nakao, H. Yoshikawa, H. Masuda, T. Tamamura, Jpn. J. Appl. Phys. 38 (1999) 7268.

Damascene templates

High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials

지난 10 년 동안 나노 크기의 재료와 공정을 제품에 통합하는 데 제한적인 성공을 거두면서 나노 기술에 상당한 투자와 발전이 있었습니다.

잉크젯, 그라비아, 스크린 프린팅과 같은 접근 방식은 나노 물질을 사용하여 구조와 장치를 만드는 데 사용됩니다. [1–7] 그러나 상당히 느리고 µm 스케일 분해능 만 제공 할 수 있습니다. 다양한 모양과 크기의 100nm 미만의 특징을 달성하기 위해 딥펜 리소그래피 (DPN) [8-11] 및 소프트 리소그래피 [12-16]와 같은 다양한 기술이 개발되고 광범위하게 연구되었습니다.

DPN은 직접 쓰기 기술로, atomic force microscopy 현미경 팁을 사용하여 다양한 기판에 여러 패턴을 생성합니다. DPN을 사용한 확장 성을 해결하기 위해 단일 AFM 팁 대신 2D 형식으로 배포 된 AFM (Atomic Force Microscopy) 팁 [17,18]이 사용되었습니다. 소프트 리소그래피에서는 나노 물질을 포함하는 잉크로 적셔진 원하는 릴리프 패턴을 가진 경화된 엘라스토머가 기판과 컨 포멀 접촉하게 되며, 여기서 패턴 화 된 나노 물질이 전달되어 기판에서 원하는 특징을 달성합니다.

이 논문에서는 작거나 큰 영역에서 몇 분 만에 나노, 마이크로 또는 거시적 구조를 인쇄 할 수 있는 다중 스케일 오프셋 인쇄 접근 방식을 제시합니다. 이 프로세스는 나노 입자 (NP), 탄소 나노 튜브 (CNT) 또는 용해 된 폴리머를 포함하는 서스펜션 (잉크)에서 나노 물질의 전기 영동 방향 조립을 사용하여 특별히 제작 된 재사용 가능한 Damascene 템플릿에 패턴을 “inking” 하는 것으로 시작됩니다. 이 잉크 프로세스는 실온과 압력에서 수행됩니다.

두 번째 단계는 템플릿에 조립된 나노 물질이 다른 기판으로 전송되는 “printing”로 구성됩니다. 전송 프로세스가 끝나면 템플릿은 다음 조립 및 전송주기에서 즉시 재사용 할 수 있습니다. 이 오프셋 인쇄 프로세스를 통해 NP (폴리스티렌 라텍스 (PSL), 실리카,은) 및 CNT (다중 벽 및 단일 벽)를 100μm에서 500nm까지의 크기 범위를 가진 패턴에 조립하고 유동성 기판에 성공적으로 옮깁니다.

다양한 나노 물질을 다양한 아키텍처로 조립하기 위해 템플릿 유도 유동, 대류, 유전 영동 (DEP) 및 전기 영동 조립과 같은 몇 가지 직접 조립 프로세스가 조사되었습니다. 모세관력이 지배적인 조립 메커니즘인 유체 조립 공정은 다양한 나노 물질에 적용 할 수 있습니다.

대류 조립 공정은 현탁 메니 스커 스와 증발을 활용하여 단일 나노 입자 분해능으로 정밀 조립을 가능하게 합니다. 이러한 조립 공정 중 많은 부분이 트렌치와 같은 마이크로 및 나노 스케일 기능으로 고해상도의 직접 조립을 보여 주었지만, 확장성 부족, 느린 공정 속도 및 반복성과 같은 많은 단점이 있습니다.

DEP 어셈블리는 NP와 전극 사이에 고배향 탄소 나노 튜브 어셈블리를 사용하여 나노 와이어 및 구조를 만드는 데 사용되었습니다. 조립 효율은 전기장과 전기장 구배에 상당한 영향을 미치는 전극의 기하학적 구조와 간격에 크게 좌우됩니다. 전기 영동 기반 조립 공정은 유체 조립에 비해 훨씬 짧은 시간에 전도성 표면에 표면 전하를 가진 나노 물질을 조립하는 것을 포함합니다. [34–37]

그러나 전기 영동 조립은 조립이 전도성 표면에 발생해야 하므로 다양한 장치를 만드는 데 실용적이지 않습니다. 한 가지 해결책은 원하는 나노 스케일 구조를 기반으로 전도성 패턴이 있는 템플릿을 만들고, 전기 영동 공정을 사용하여 패턴 위에 나노 물질을 조립 한 다음 조립 된 구조를 수용 기판에 옮기는 것입니다.

그림 1a와 같이 절연 필름에 전도성 와이어와 같은 패턴 구조가있는 기존 템플릿을 사용하면 나노 스케일 와이어의 잠재적 인 큰 강하로 인해 어셈블리가 불균일 해지며 대부분의 입자는 그림 1에 표시된 마이크로 와이어 b. 또한 NP는 3D 와이어의 측벽에도 조립되므로 바람직하지 않습니다. 또한 나노 스케일 와이어와 템플릿 사이의 작은 접촉 면적으로 인해 나노 스케일 와이어는 이송 과정에서 쉽게 벗겨집니다.

Damascene templates
Figure 1. Damascene templates: a) A schematic of a conventional wire template used for electrophoretic assembly. In these templates nanowire are connected to a micrometer scale electrodes, which are in turn connected, to a large metal pad through which the potential is applied. b) SEM images of a typical nanoparticle assembly result obtained for confi guration shown in (a). c) A schematic of a Damascene template where all of the wires (nano- or micrometer scale) and the metal pad are connected to a conductive fi lm underneath the insulating fi lm. d) A schematic of Damascene template fabrication. Inset is artifi cially colored cross-sectional SEM image showing the metal nanowires to be at the same height as that of the SiO 2 and showing the conductive fi lm underneath the insulator. e) An optical image of a 3 inch Damascene template.
Offset printing
Figure 2. Offset printing: a) A schematic of the nanoscale offset printing approach. The insulating (SiO 2 ) surface of the Damascene template is selectively coated with a hydrophobic SAM (OTS). Using electrophoresis, nanomaterials are assembled on the conductive patterns of the Damascene template (“inking”), which are then transferred to a recipient substrate (“printing”). After the transfer, the template is ready for the next assembly and transfer cycle. b) SEM image of 50 nm PSL particles assembly with high density on 1 µm wide electrodes. c) Silica particles (20 nm) assembly on crossbar 2D patterns demonstrating the versatility of the Damascene template. Inset fi gure is a high-resolution image of assembled silica particles. d) SEM image of assembled SWNTs on micrometer scale patterns. e) MWNTs assembled on 100 µm features. f) Cellulose assembled on 2 µm electrodes. g) SWNTs assembled in cross bar architecture patterns. h) Flexible devices with array of transferred SWNTs and metal electrodes (printed on PEN). Inset is the microscopy image of two electropads and transferred SWNTs on PEN fi lm.
Analysis of nanomaterial assembly on electrodes
Figure 3. Analysis of nanomaterial assembly on electrodes

이것은 또한 그림 3b에 표시된대로 유한 체적 모델링 (Flow 3D)을 사용하는 전기장 윤곽 시뮬레이션 결과에 의해 확인됩니다. 전기장 강도의 윤곽은 전도성 패턴의 가장자리에있는 전기장이 중앙에있는 것보다 더 강하다는 것을 나타냅니다. 그러나 적용된 전위가 2.5V로 증가하면 그림 3c에 표시된대로 100nm 실리카 입자가 Damascene 템플릿을 가로 질러 전도성 패턴의 표면에 완전히 조립되어 조립을위한 임계 전기장 강도에 도달했음을 나타냅니다. 정렬 된 SWNT는 여과 전달 경로를 피하고 나노 튜브 사이의 접합 저항을 최소화하여 소자 성능의 최소 변화를 가져 오기 때문에 많은 응용 분야에서 고도로 조직화 된 SWNT가 필요합니다.

References

[1] M.Abulikemu, E.H.Da’as, H.Haverinen, D.Cha, M.A.Malik, G.E.Jabbour, Angew.Chem.Int.Ed.2014, 53, 599.
[2] a) Z.Lu, M.Layani, X.Zhao, L.P.Tan, T.Sun, S.Fan, Q.Yan, S.Magdassi, H.H.Hng, Small 2014, 10, 3551; b) H.Ko, J.Lee, Y.Kim, B.Lee, C.H.Jung, J.H.Choi, O.S.Kwon, K.Shin, Adv.Mater.2014, 26, 2286.
[3] C.J.Hansen, R.Saksena, D.B.Kolesky, J.J.Vericella, S.J.Kranz, G.P.Muldowney, K.T.Christensen, J.A.Lewis, Adv.Mater.2013, 25, 2.
[4] F.C.Krebs, N.Espinosa, M.Hösel, R.R.Søndergaard, M.Jørgensen, Adv.Mater.2014, 26, 29.
[5] W.Honda, S.Harada, T.Arie, S.Akita, K.Takei, Adv.Funct.Mater. 2014, 24, 3298.
[6] R.Guo, Y.Yu, Z.Xie, X.Liu, X.Zhou, Y.Gao, Z.Liu, F.Zhou, Y.Yang, Z.Zheng, Adv.Mater.2013, 25, 3343.
[7] A.Dzwilewski, T.Wågberg, L.Edman, J.Am.Chem.Soc.2009, 131, 4006.
[8] R.D.Piner, J.Zhu, F.Xu, S.Hong, C.A.Mirkin, Science 1999, 283, 661.
[9] J.-H.Lim, C.A.Mirkin, Adv.Mater.2002, 14, 1474.
[10] X.Liu, L.Fu, S.Hong, V.P.Dravid, C.A.Mirkin, Adv.Mater.2002,14, 231.
[11] D.A.Weinberger, S.Hong, C.A.Mirkin, B.W.Wessels, T.B.Higgins, Adv.Mater.2000, 12, 1600.
[12] J.P.Rolland, E.C.Hagberg, G.M.Denison, K.R.Carter, J.M.DeSimone, Angew.Chem.2004, 116, 5920.
[13] T.Granlund, T.Nyberg, L.S.Roman, M.Svensson, O.Inganäs, Adv.Mater.2000, 12, 269.
[14] Y.Xia, G.M.Whitesides, Annu.Rev.Mater.Sci.1998, 28, 153.
[15] W.S.Beh, I.T.Kim, D.Qin, Y.Xia, G.M.Whitesides.Adv.Mater. 1999, 11, 1038.
[16] Y.Yin, B.Gates, Y.Xia.Adv.Mater.2000, 12, 1426.
[17] K.Salaita, Y.Wang, J.Fragala, R.A.Vega, C.Liu, C.A.Mirkin,Angew.Chem.2006, 118, 7378.
[18] D.Bullen, S.-W.Chung, X.Wang, J.Zou, C.A.Mirkin, C.Liu, Appl.Phys.Lett.2004, 84, 789.
[19] Y.L.Kim, H.Y.Jung, S.Park, B.Li, F.Liu, J.Hao, Y.-K.Kwon, Y.J.Jung, S.Kar, Nat.Photonics 2014, 8, 239.
[20] X.Xiong, L.Jaberansari, M.G.Hahm, A.Busnaina, Y.J.Jung, Small 2007, 3, 2006.
[21] A.B.Marciel, M.Tanyeri, B.D.Wall, J.D.Tovar, C.M.Schroeder, W.L.Wilson, Adv.Mater.2013, 25, 6398.
[22] J.T.Wang, J.Wang, J.J.Han, Small 2011, 7, 1728.
[23] S.Y.Lee, S.H.Kim, H.Hwang, J.Y.Sim, S.M.Yang, Adv.Mater. 2014, 26, 2391.
[24] J.Y.Oh, J.T.Park, H.J.Jang, W.J.Cho, M.S.Islam, Adv.Mater. 2014, 26, 1929.
[25] K.W.Song, R.Costi, V.Bulovi, Adv.Mater.2013, 25, 1420.
[26] P.Maury, M.Escalante, D.N.Reinhoudt, J.Huskens, Adv.Mater. 2005, 17, 2718.
[27] Y.Xia, Y.Yin, Y.Lu, J.McLellan, Adv.Funct.Mater.2003, 13, 907.
[28] L.Jaber-Ansari, M.G.Hahm, S.Somu, Y.E.Sanz, A.Busnaina, Y.J.Jung, J.Am.Chem.Soc.2008, 131, 804.
[29] T.Kraus, L.Malaquin, H.Schmid, W.Riess, N.D.Spencer, H.Wolf,Nat.Nanotechnol.2007, 2, 570.
[30] K.D.Hermanson, S.O.Lumsdon, J.P.Williams, E.W.Kaler, O.D.Velev, Science 2001, 294, 1082.
[31] H.-W.Seo, C.-S.Han, D.-G.Choi, K.-S.Kim, Y.-H.Lee, Microelectron.Eng.2005, 81, 83.
[32] E.M.Freer, O.Grachev, X.Duan, S.Martin, D.P.Stumbo, Nat.Nanotechnol.2010, 5, 525.
[33] D.Xu, A.Subramanian, L.Dong, B.J.Nelson, IEEE Trans.Nanotechnol.2009, 8, 449.
[34] X.Xiong, P.Makaram, A.Busnaina, K.Bakhtari, S.Somu, N.McGruer, J.Park, Appl.Phys.Lett.2006, 89, 193108.
[35] R.C.Bailey, K.J.Stevenson, J.T.Hupp, Adv.Mater.2000, 12, 1930.
[36] Q.Zhang, T.Xu, D.Butterfi eld, M.J.Misner, D.Y.Ryu, T.Emrick, T.P.Russell, Nano Lett.2005, 5, 357.
[37] E.Kumacheva, R.K.Golding, M.Allard, E.H.Sargent, Adv.Mater. 2002, 14, 221.
[38] M.Wei, Z.Tao, X.Xiong, M.Kim, J.Lee, S.Somu, S.Sengupta, A.Busnaina, C.Barry, J.Mead, Macromol.Rapid Commun.2006, 27, 1826.
[39] a) D.Schwartz, S.Steinberg, J.Israelachvili, J.Zasadzinski, Phys.Rev.Lett.1992, 69, 3354; b) W.Yang, P.Thordarson, J.J.Gooding, S.P.Ringer, F.Braet, Nanotechnology 2007, 18, 412001.
[40] S.Siavoshi, C.Yilmaz, S.Somu, T.Musacchio, J.R.Upponi, V.P.Torchilin, A.Busnaina, Langmuir 2011, 27, 7301.
[41] E.Artukovic, M.Kaempgen, D.Hecht, S.Roth, G.Grüner, NanoLett.2005, 5, 757.
[42] L.Hu, D.Hecht, G.Grüner, Nano Lett.2004, 4, 2513.
[43] M.Fuhrer, J.Nygård, L.Shih, M.Forero, Y.G.Yoon, H.J.Choi, J.Ihm, S.G.Louie, A.Zettl, P.L.McEuen, Science 2000, 288,
494.
[44] J.J.Gooding, A.Chou, J.Liu, D.Losic, J.G.Shapter, D.B.Hibbert,Electrochem.Commun.2007, 9, 1677.
[45] A.Chou, T.Böcking, N.K.Singh, J.J.Gooding, Chem.Commun. 2005, 7, 842.
[46] D.Hines, V.Ballarotto, E.Williams, Y.Shao, S.Solin, J.Appl.Phys. 2007, 101, 024503.
[47] H.Park, A.Afzali, S.-J.Han, G.S.Tulevski, A.D.Franklin, J.Tersoff, J.B.Hannon, W.Haensch, Nat.Nanotechnol.2012, 7, 787.
[48] S.Somu, H.Wang, Y.Kim, L.Jaberansari, M.G.Hahm, B.Li, T.Kim, X.Xiong, Y.J.Jung, M.Upmanyu, A.Busnaina, ACS Nano 2010, 4, 4142.
[49] L.Jaber-Ansari, M.G.Hahm, T.H.Kim, S.Somu, A.Busnaina, Y.J.Jung, Appl.Phys.A 2009, 96, 373.
[50] B.Li, M.G.Hahm, Y.L.Kim, H.Y.Jung, S.Kar, Y.J.Jung, ACS Nano 2011, 5, 4826.
[51] B.Li, H.Y.Jung, H.Wang, Y.L.Kim, T.Kim, M.G.Hahm, A.Busnaina, M.Upmanyu, Y.J.Jung, Adv.Funct.Mater.2011, 21, 1810.
[52] M.A.Meitl, Z.T.Zhu, V.Kumar, K.J.Lee, X.Feng, Y.Y.Huang, I.Adesida, R.G.Nuzzo, J.A.Rogers, Nat.Mater.2005, 5, 33.
[53] F.N.Ishikawa, H.Chang, K.Ryu, P.Chen, A.Badmaev, L.GomezDe Arco, G.Shen, C.Zhou, ACS Nano 2008, 3, 73.
[54] N.Inagaki, Plasma Surface Modifi cation and Plasma Polymerization, CRC, Boca Raton, FL, USA 1996.
[55] E.Liston, L.Martinu, M.Wertheimer, J.Adhes.Sci.Technol.1993, 7, 1091.
[56] T.Tsai, C.Lee, N.Tai, W.Tuan, Appl.Phys.Lett.2009, 95, 013107.
[57] J.G.Bai, Z.Z.Zhang, J.N.Calata, G.-Q.Lu, IEEE Trans.Compon.Packag.Technol.2006, 29, 589.
[58] J.G.Toffaletti, Crit.Rev.Clin.Lab.Sci.1991, 28, 253.
[59] J.-L.Vincent, P.Dufaye, J.Berré, M.Leeman, J.-P.Degaute, R.J.Kahn, Crit.Care Med.1983, 11, 449.
[60] R.Henning, M.Weil, F.Weiner, Circ.Shock 1982, 9, 307.

Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).

Inkjet Printability of Electronic Materials Important to the Manufactur Manufacture of Fully Printed O ully Printed OTFTs

Sooman Lim
Western Michigan University, sooman.lim@gmail.com

초록

본 연구에서는 OTFT(Printed Organic Thin Film Transistors) 제작에 중요한 재료의 잉크젯 인쇄성이 조사되었습니다. 잉크젯 인쇄 잉크의 분사 진화를 이해하기 위해 나노 구리 및 나노 입자 은 잉크로 시뮬레이션이 수행되었습니다. 나노 구리 잉크의 잉크젯 적합성을 예측하기 위해 온도 차이가 있는 Z와 Oh 수를 측정했습니다. FLOW-3D를 이용한 시뮬레이션 연구의 결과를 Dimatix 잉크젯 프린터를 사용하여 얻은 실험 결과와 비교했습니다.

반도체 잉크의 경우, 두 유기 반도체의 잉크젯 인쇄성 P2TDC17FT4(poly[(3,7-dipdecdecyltheno[3,2-b]theno[2′,3′:4,5]theno[2,3-diopneo] 티오페인-2,6-diopeo[2,6-diotyl)]입니다.HT(poly-3 hexylthiophene)를 비교하여 낙하 속도, 낙하 볼륨 및 점화 전압 간의 관계를 확인하고, 낙하 간격 및 기판 온도가 인쇄 품질에 미치는 영향을 확인했습니다.

이러한 연구를 통해 인쇄 가능성과 인쇄 품질은 잉크젯으로 인쇄된 상단 게이트 OTFT를 완벽하게 구현하기에 충분했습니다. 주변 조건에서 인쇄되는 P2TDC17FT4의 성능은 저비용 완전 인쇄 OTFT의 실현에 중요한 영향을 미칩니다.

후처리 연구로 은색 잉크의 유망한 대체품인 나노 구리 잉크를 IPL(Incensive Pulsed Light)로 소결시키는 것이 연구되었습니다. 잉크 필름 두께와 소결 시 필요한 에너지 사이의 관계가 확인되었습니다. 잉크 필름 두께와 관련하여 유리와 PET에 소결하는데 필요한 에너지 수준을 비교한 결과, 이 잉크의 처리 요구 사항에 대한 기판의 열적 기여도가 밝혀졌습니다. 이 조사 결과는 자재 특성 요구 사항에 대한 현재의 이해와 완전히 잉크젯으로 인쇄된 OTFT를 달성하기 위한 과제를 진전시킵니다.

Schematic design showing the principles of operation of a continuous inkjet (CIJ) printer.
Schematic design showing the principles of operation of a continuous inkjet (CIJ) printer.
Illustration of the piezo movement under an applied voltage.
Illustration of the piezo movement under an applied voltage.
Construction of a traditional piezoelectric squeeze type print head.
Construction of a traditional piezoelectric squeeze type print head.
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).
Marangoni effect, where Tc is the CT line temperature, Ta is the drop apex temperature,  and a is the drop apex surface tension
Marangoni effect, where Tc is the CT line temperature, Ta is the drop apex temperature, and a is the drop apex surface tension
Comparison of drop evolution and drop ejection pictures droplet obtained experimentally and using CFD software for the nano copper ink
Comparison of drop evolution and drop ejection pictures droplet obtained experimentally and using CFD software for the nano copper ink
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너

등록비

  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐

여행

컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0
info.mun@maritim.de

뮌헨

뮌헨의 모든 것

뮌헨 도시지도 다운로드

Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles

나노 입자의 직접 조립을 사용한 3 차원 결정질 및 균질 금속 나노 구조

Cihan Yilmaz,† Arif E. Cetin,‡ Georgia Goutzamanidis,† Jun Huang,† Sivasubramanian Somu,†
Hatice Altug,‡,§ Dongguang Wei,^ and Ahmed Busnaina†,*

†NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, Massachusetts 02115, United States, ‡
Photonics Center and Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States, §
Bioengineering Department, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015, Switzerland, and ^
Carl Zeiss Microscopy, One Zeiss Drive, Thornwood, New York 10594, United States

ABSTRACT

나노 빌딩 블록의 직접 조립은 고유 한 특성을 가진 복잡한 나노 구조를 생성하는 다양한 경로를 제공합니다. 나노 입자의 상향식 조립은 이러한 기능적이고 새로운 나노 구조를 제작하는 가장 좋은 방법 중 하나로 간주되었습니다.

그러나 결정질, 고체 및 균질 나노 구조를 만드는 데 대한 연구가 부족합니다. 이를 위해서는 나노 입자의 조립을 유도하는 힘에 대한 근본적인 이해와 원하는 나노 구조의 형성을 가능하게하는 이러한 힘의 정밀한 제어가 필요합니다. 여기에서, 우리는 콜로이드 나노 입자가 외부에서 적용된 전기장을 사용하여 단일 단계로 조립되고 동시에 3D 고체 나노 구조로 융합 될 수 있음을 보여줍니다.

다양한 조립 매개 변수의 영향을 이해함으로써, 우리는 1 분 이내에 25nm의 작은 피처 크기를 가진 나노 기둥, 나노 박스 및 나노 링과 같은 복잡한 형상을 가진 3D 금속 재료의 제조를 보여주었습니다.

제작된 금 나노 기둥은 다결정 성질을 가지며 전기 도금 된 금보다 낮거나 동등한 전기 저항을 가지며 강력한 플라즈몬 공명(plasmonic resonances)을 지원합니다. 또한 제조 공정이 전기 도금만큼 빠르며 밀리미터 단위로 확장 할 수있는 다용도성을 보여줍니다. 이러한 결과는 제시된 접근법이 실온과 압력에서 수용액에서 새로운 3D 나노 물질 (균질 또는 하이브리드)의 제조를 용이하게 하는 동시에 반도체 나노 전자 공학 및 나노 포토닉스의 많은 제조 과제를 해결함을 의미합니다.

. Fabricating 3-D nanostructures through electric field-directed assembly of NPs. (a,b) NPs suspended in aqueous
solution are (a) assembled and (b) fused in the patterned via geometries under an applied AC electric field. (c) Removal of the
patterned insulator film after the assembly process produces arrays of 3-D nanostructures on the surface.

복잡한 지오메트리와 3 차원 (3-D) 아키텍처를 가진 나노 구조는 우수한 장치 성능과 소형화를 가능하게하기 때문에 최근 전자, 광학, 에너지 및 생명 공학을 포함한 많은 분야에서 상당한 관심을 받고 있습니다. 이러한 나노 구조를 제조하기위한 대부분의 접근 방식은 진공 기반 박막 증착 또는 전기 도금에 의존하며, 이는 시드 층과 많은 화학 첨가제를 필요로합니다. 나노 입자 (NPs)의 직접 조립은 실온과 압력에서 수용액에서 기능성 나노 물질과 나노 구조를 구축하는 유망한 대안 인 것으로 나타났습니다 .

중략…

 

Effect of via geometries on nanopillar formation. (ac) SEM images of (a) 50, (b) 100, (c) 200 nm-wide nanopillars.
The nanostructure height is 150 nm. (df) Cross-sectional view (from the 3-D simulation) of different size vias, revealing the
simulated localized electric field. (g) Electric field intensity in the via (at the center of the via) as a function of the aspect ratio
(depth/diameter) for different via diameters. The spacing between the vias is 1 μm in these simulations. (h) Electric field
intensity in the via (at the center of the via) as a function of the spacing between the vias. The via depth was 150 nm in these
simulations. The scale bars in the inset figures in (g) and (h) are 100 nm.

결정질, 고체 및 균질 나노 구조를 제조하는 연구는 부족합니다. 이것은 주로 NP의 조립 및 원하는 형상으로의 융합을 제어하는 ​​데 어려움이 있기 때문입니다. 입자 구성, 기능화 및 크기에 따라 NP의 조립 및 융합을 제어하는 ​​힘과 에너지가 다를 수 있습니다. 예를 들어, 현탁 매체를 기반으로하여 NP는 표면 에너지 및 전하와 같은 다른 표면 특성을 가질 수 있으며, 이는 조립 공정 및 기판과의 NP 상호 작용에 영향을 줄 수 있습니다 .

마찬가지로 더 큰 크기의 NP는 작은 것은 단단한 구조로 융합하기 어렵습니다. 원하는 재료와 기하학적 구조로 나노 구조를 성공적으로 제작하려면 조립 공정에 관련된 힘을 제어하는 ​​지배적 인 매개 변수를 식별하는 것이 중요합니다. 이 연구에서 우리는 다양한 금속 NP의 조립 및 융합을 가능하게하는 직접 조립 기술을 개발하여 표면에 고도로 조직화 된 3D 결정질, 고체 나노 구조를 제작했습니다.

이 기술에서는 콜로이드 NP가 조립되고 동시에 외부에서 적용된 전기장을 사용하여 3D 나노 구조로 융합됩니다. 이 방법을 사용하여 금, 구리, 알루미늄 및 텅스텐으로 만든 3 차원 나노 구조체를 시드 층과 화학 첨가제없이 실온과 압력에서 1 분 이내에 25nm의 작은 피처 크기로 제작했습니다.

나노 구조 치수의 제어는 전압, 주파수, 조립 시간 및 입자 농도와 같은 많은 지배 매개 변수의 함수로 조사되었습니다. 재료 및 전기적 특성은 제작 된 금 나노 구조가 다결정 특성을 가지며 매우 낮은 저항률 (1.96 10 7 Ω 3 m)을 가지고 있음을 보여줍니다. 제작 된 고체 3D 나노 구조는 또한 13nm의 좁은 선폭으로 강력한 플라즈 모닉 공명을 지원하는 높은 광학 품질을 보여줍니다. 이것은 단백질의 매우 민감한 플라즈몬 기반 바이오 센싱을 가능하게합니다.

자세한 내용은 본문을 참고하시기 바랍니다.

Electrokinetics

Dielectrophoresis

유전 영동은 분극성 입자에 힘을 생성하여 균일하지 않은 전기장 (일반적으로 AC 전기장)에서 움직임을 유도합니다. 유전 영동력은 마이크로스케일 및 나노스케일 바이오 입자를 특성화, 처리 또는 조작하는 데 사용할 수 있습니다. 여기에는 세포, 바이러스, 박테리아, DNA 등의 분류, 포획 및 분리가 포함될 수 있습니다. 유전 영동은 FLOW-3D에서 완전히 설명 할 수 있으며 날카로운 인터페이스가 있거나 없는 단일 유체 또는 2 유체 흐름과 같이 코드에서 사용할 수있는 다른 모든 유체 흐름 옵션과 함께 활성화 될 수 있습니다.

Electro-wetting

전도성 액적에서 액체와 전극 사이에 인가되는 얇은 유전체 코팅 전위를 갖는 전극 상에 배치되면, 드롭 평면화와 전극 표면 확산이 일어납니다. 이 현상은 종종electro-wetting라 부릅니다. 현상은 전하 층의 발달과 관련되어 있으므로, 외부 전기장을 그들을 이동, 합체, 깨지거나 하는 원인을 조작하기 위해 사용될 수 있습니다.

 

Lab-On-Chip Electro-wetting Applications

Lab-on-chip 기반electro-wetting 은 분리된 물방울을 조절할 수 있어 설계자들이 복잡한 절차를 전통적인 실험실 장치를 달지만 훨씬 작은 volumes 으로 비슷한 실험을 수행할 수 있습니다. 이러한 기기는 효율적으로 운송, 병합되어 있으며 분리된 물방울들이 요구합니다. FLOW-3D는 사용자가이 장치를 조작하는 데 사용되는 기하학적 파라미터들 및 전압의 영향을 시뮬레이션 할 수 있도록 하여 설계 프로세스에 유용한 도구가 될 수 있습니다.

아래의 애니메이션은 수송 시뮬레이션 병합 및 분할 방울에 FLOW-3D의 기능을 보여줍니다. Lab-on-chip은 약 300 ㎛로 분리 된 두 개의 평행 한 플레이트로 구성됩니다. 바닥 판은 방울을 조작하기 위해 사용되는 그 안에 삽입 된 전극을 보유하고 있습니다. 액 적은 물 (약간 도전성) 실리콘 오일에 의해 둘러싸여 있습니다. 액체 방울의 부피가 800nl 관한 것입니다.

This lab-on-a-chip electrowetting simulation demonstrates an electric field being applied in order to split a small droplet.

Here an electric field is being applied in order to merge two small droplets.

This simulation shows an electric field being applied to a small droplet to control its motion.

Continuous Flow Microfluidics

Continuous Flow Microfluidics

연속 흐름 미세 유체는 연속성을 깨지 않고 제작 된 마이크로 채널을 통해 액체 흐름을 조작하는 것입니다. 유체 흐름은 마이크로 펌프 (예 : 연동 펌프 또는 주사기 펌프)와 같은 외부 소스 또는 전기, 자기 또는 모세관 힘과 같은 내부 메커니즘에 의해 설정됩니다. 연속 유동 미세 유체 학은 미세 및 나노 입자 분리기, 입자 집속, 화학적 분리는 물론 단순한 생화학 적 응용을 포함한 다양한 응용 분야에서 응용 분야를 찾아 내지 만 높은 수준의 제어가 필요한 경우에는 선택 방법이 아닐 수 있습니다.

이 범주에 속하며 FLOW-3D를 사용하여 성공적으로 시뮬레이션한 프로세스 또는 장치로는 Joule 가열, 액체 게이트, 마이크로 유체 회로, 전기-오토믹 밸브, 입자 집중, 분류 및 분리, POC(Point-of-Care) 모세관 유량 장치 및 패턴 있는 표면 장치가 있습니다.

Sketch of cross section of the device
Capillary Flows
Electro osmosis
Electro-osmosis
Simulating joule heating
Joule Heating
Patterned surfaces in micro channels
Lab-on-a-chip
Magnetic fields
Magnetic Fields
Pneumatic valve
Microfluidic Circuits
Hong chamber simulations
Mixing Dynamics
Buoyancy dominant sorting
Particle Sorting

Acoustophoresis

음향학적 입자 초점은 미세 유체 채널의 용액에서 다양한 물체를 제거하는 현대적이고 매우 매력적인 방법입니다. 이 프로세스는 의료 애플리케이션 (악성 세포 제거), 학술 연구 (나노 입자 분리), 산업 애플리케이션 (희토류 재생) 및 환경 애플리케이션 (부유 고형물 격리)에 적용됩니다. 이 기술은 압력 펄스를 사용하여 실질적인 접촉없이 소량의 유체를 이동시키기 때문에 매우 부드러운 프로세스로 간주 될 수 있습니다.

FLOW-3D는 대략적인 분석 솔루션을 사용하는 대신 유동 역학의 결과로 입자에 작용하는 힘을 직접 포착하기 위해 음향 영동 과정을 모델링하는 데 정확하게 사용할 수 있습니다. FLOW-3D에서 이러한 시뮬레이션을 설정하는 것은 특정 주파수에서 음파를 생성 할 수있는 탄성 멤브레인 모델로 인해 간단합니다.

이 음향 영동 애니메이션은 500μm 높이와 2mm 길이의 마이크로 채널에서 중심을 벗어난 위치에서 계산 영역으로 들어가는 입자를 보여줍니다. 1Mhz 주파수의 정재 음향 파의 영향을 받아 입자는 채널 중앙에 집중됩니다. 입자 모션은 4000 개의 동안 캡처됩니다.

Micro/Bio/Nano Fluidics

Micro/Bio/Nano Fluidics

기계적, 유체적, 광학적 및 전자적 기능을 매우 작은 패키지에 통합한 현대적인 마이크로 유체 장치는 비용, 규모 및 대규모 시스템에 직접 통합하는 능력 면에서 기존 장치에 비해 중요한 장점을 가지고 있다. 3D모델링 및 시각화는 풍부한 기능을 제공하는 효율적인 도구이다. Ivy분석을 통해 연구 시간, 설계 및 생산 비용을 크게 절감할 수 있습니다. 마이크로, 바이오 및 나노 유체 역학은 FLOW-3D의 자유 표면 및 다중 유체 모델링 기능으로 쉽고 정확하게 시뮬레이션할 수 있습니다. 이 섹션의 시뮬레이션을 통해 보다 잘 이해할 수 있는 다양한 애플리케이션과 프로세스를 살펴보시기 바랍니다.

FLOW-3D는 시각적 관찰과 양호한 정량적 추세 예측을 바탕으로 우수한 정성적 합의를 제공했습니다. 마찬가지로 중요한 것은 소프트웨어가 설계 민감도를 정확하게 예측한다는 점이다. 그 결과, FLOW-3D는 Kodak의 고급 연구 개발 작업을 지원하는 데 유용한 통찰력을 제공했습니다.

FLOW-3D는 시각적 관찰과 양호한 정량적 추세 예측을 바탕으로 우수한 정성적 합의를 제공했습니다. 마찬가지로 중요한 것은 소프트웨어가 설계 민감도를 정확하게 예측한다는 점이다. 그 결과, FLOW-3D는 Kodak의 고급 연구 개발 작업을 지원하는 데 유용한 통찰력을 제공했습니다.

Christopher Delametter, Senior Research Scientist, Eastman Kodak Company

Acoustophoresis
Acoustophoresis
Microfluidics palette
Cell Behavior
Microfluidics particle sorting using hydrodynamics
Continuous Flow Microfluidics
Digital microfluidics
Digital Microfluidics
Droplet based microfluidics
Droplet Based Microfluidics
Optofluidics
Optofluidics
Phase change
Phase Change

Customer Case Studies

육안으로 볼 수 있는 것보다 더 작은 도전은 FLOW-3D를 사용하여 미세 유체 소자 응용 프로그램을 모델링하는 고객들이 매일 직면하는 과제입니다. FLOW-3D를 통해 이러한 엔지니어와 과학자들은 실험실에서 복제할 수 없는 것을 모델링하고, 생명을 구하는 의료 기기를 검증하고, 잉크젯 형성을 연구하며, 경우에 따라 육안 모델을 제작할 수 있습니다. 때로는 가장 작은 문제가 가장 큰 문제이기도 하지만, FLOW-3D가 도움이 될 수 있습니다.

CFD analysis of stem cell culture
Advances in Nanotechnology
Computational analysis drop formation low viscosity
Computational Analysis of Drop Formation and Detachment
Inkjet formations simulations
Inkjet Printhead Performance
Thermal bubble model
Kodak Develops New Printhead Design in 1/3rd the Time
Photonic switching platform
Microscopic Bubbles Switch Fiber-Optic Circuits
Blood volumetric fraction
Optimization of Magnetic Blood Cleansing Microdevices

관련 기술자료

Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-chip fabrication and in-flow 3D-printing of cellladen microgel constructs: From chip to scaffold materials in one integral process

cellladen 마이크로 겔 구조의 온칩 제작 및 인플 로우 3D 프린팅 : 하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지 Benjamin Reineke ...
더 보기
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션 ZhenyanXiaaYangZhaoaZhenYangabcChengjuanYangabLinanLiaShibinWangaMengWangabaSchool of Mechanical Engineering, ...
더 보기
Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

통합 관성 펌프를 사용하여 마이크로 채널에서 비접촉식 기포-기포 상호 작용 모델링 Physics of Fluids 33, 042002 (2021); https://doi.org/10.1063/5.0041924 B. Hayesa), ...
더 보기
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.

DNA Printing Integrated Multiplexer Driver Microelectronic Mechanical System Head (IDMH) and Microfluidic Flow Estimation

DNA 프린팅 통합 멀티플렉서 드라이버 Microelectronic Mechanical System Head (IDMH) 및 Microfluidic Flow Estimation by Jian-Chiun Liou 1,*,Chih-Wei Peng 1,Philippe ...
더 보기
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey Abstract: 차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 ...
더 보기
Figure 1 (A) A schematic of ovarian cancer metastases involving tumor cells or clusters (yellow) shedding from a primary site and disseminating along ascitic currents of peritoneal fluid (green arrows) in the abdominal cavity. Ovarian cancer typically disseminates in four common abdomino-pelvic sites: (1) cul-de-sac (an extension of the peritoneal cavity between the rectum and back wall of the uterus); (2) right infracolic space (the apex formed by the termination of the small intestine of the small bowel mesentery at the ileocecal junction); (3) left infracolic space (superior site of the sigmoid colon); (4) Right paracolic gutter (communication between the upper and lower abdomen defined by the ascending colon and peritoneal wall). (B) The schematic of a perfusion model used to study the impact of sustained fluid flow on treatment resistance and molecular features of 3D ovarian cancer nodules (Top left). A side view of the perfusion model and growth of ovarian cancer nodules to a stromal bed (Top right). The photograph of a perfusion model used in the experiments (Bottom left) and depth-informed confocal imaging of ovarian cancer nodules in channels with and without carboplatin treatment (Bottom right). The perfusion model is 24 × 40 mm, with three channels that are 4 × 30 mm each and a height of 254 μm. The inlet and outlet ports of channels are 2.2 mm in diameter and positioned 5 mm from the edge of the chip. (C) A schematic of a 24-well plate model used to study the treatment resistance and molecular features of 3D ovarian cancer nodules under static conditions (without flow) (Top left). A side view of the static models and growth of ovarian cancer nodules on a stromal bed (Top right). Confocal imaging of 3D ovarian cancer nodules in a 24-well plate without and with carboplatin treatment (Bottom). Scale bars: 1 mm.

Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress

난소암에 대한 일관된 3차원 모델에서 카보플라틴에 대한 유동에 의한 전단응력변화에 관한 연구 Abstract A key reason for the persistently grim ...
더 보기
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

Cristina González Fernández,1 Jenifer Gómez Pastora,2 Arantza Basauri,1 Marcos Fallanza,1 Eugenio Bringas,1 Jeffrey J. Chalmers,2 and Inmaculada Ortiz1,*Author information Article ...
더 보기
(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertationsubmitted to the Graduate School of UNISTin partial fulfillment of therequirements for the degree ofMaster of ScienceHaneol Park07/09/2019Approved by_________________________AdvisorIn ...
더 보기
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구 by XINYUN WU A thesis submitted to the Department ...
더 보기
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments

International Thermal Spray Conference – ITSC-2006Seattle, Washington, U.S.A., May 2006 M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, ...
더 보기

Micro/Biofluidics with FLOW-3D – Liquid handling (액체 취급)

나노리터 물방울의 정밀 분배

  • 섬세하고 정확한 분석
  • 원액의 소비를 정확하게 제어할 수 있음
  • 유체 특성/동역학에 기반한 공정 파라미터
    – 자유 표면 흐름의 복잡성을 고려
    – 자연스러운 모세관 중심 불안정을 고려
    – 씨닝 및 핀치 오프를 고려

방울의 형성 및 분리

  • 모세관, 관성, 점성 및 중력의 복잡한 상호 작용
  • 표면 장력과 점성력이 “핀치 오프”를 넘어가면 분리가 발생
  • FLOW-3D는 예측할 수 있음
    – 근본적인 응력
    – 확장된 유동장
    – 희석된 액체 필라멘트 내의 유동장을 시각화

미세 방울의 병합을 위한 유전영동

  • 유전영동력은 불균일한 전기장(일반적으로 AC전기장)에서 움직임을 유발함
  • 나노리터 유체 또는 나노 규모 입자의 특성을 다루고 처리하는데 사용

유동 집중

  • 다유체 계면 장력 파악
  • 방울 형성의 세부 사항 확인
  • 미세 방울의 진화 파악 (형태/크기)

2019년 소개된 강력한 PC 하드웨어 소개

고성능 컴퓨팅(HPC)

고성능 컴퓨팅(HPC)은 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해, 우리가 흔히 사용하는 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하여 고성능을 발휘하도록 하는 것을 의미합니다.
시뮬레이션이나 분석과 같은 HPC  워크로드는 계산 속도, 메모리 사용 및 데이터 관리가 매우 중요합니다.
클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해, 여러 애플리케이션들을 병렬 실행하도록 설계됩니다.
HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.

고성능 컴퓨팅은 일반적으로

  • 100Gbps의 초고속 네트워킹
  • 확장 가능한 고성능 스토리지
  • 고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
  • 에너지 효율성
  • GPU 가속지원

등이 핵심 성능지표로 고려되어 개발됩니다.
이러한 컴퓨터는 매우 고가이고 특별한 관리환경과 전문가들이 필요하여, 일반인들은 쉽게 접하기가 어렵습니다.
그러나 최근에는 시스템 구성은 전문가들이 하고, 시스템 사용은 일반 엔지니어들이 사용할 수 있도록 UI나 시스템 사용환경이 많이 편리해져서 대기업이나 국책 연구기관의 연구원들이 쉽게 사용할 수 있는 기반이 많이 갖추어져 있습니다.

이러한 HPC와는 스케일 규모면에서는 차이가 많지만, 최근에는 단일 컴퓨터에서도 많은 core로 구성된, 수퍼컴에 가까운 단일 컴퓨팅 고성능 PC가 판매되고 있습니다.
따라서 본 기사에서는 고성능 PC 하드웨어를 통해 수치해석을 수행할 수 있는 전세계의 최신 컴퓨터 기술을 소개하는 PC 기반 하드웨어 기사를 소개합니다.
본 기사는 itworld 에서 작성된 자료입니다.

AMD 라이젠 3000 리뷰 | 인텔의 시대를 끝내러 왔다

2019.07.09
업데이트 기사에서는 성능 테스트 결과 중 3D 뷰포트와 시너지 시네스코어(Cinescore) 성능 결과를 더했다. 또한, 게임 외적인 이유로 데이터에 나타나지 않았던 파 크라이(Far Cry) 5와 데우스 엑스: 맨카인드 유나이티드(Deus Ex: Mankind United)에서의 구형 라이젠 칩 게이밍 벤치마크 차트도 추가했다.

AMD의 12코어 라이젠 9 3900X CPU 리뷰를 한마디로 요약한 문장은 이렇지 않을까?“와, 이 CPU 진짜 빠르다.”

그러나 결론만 보기는 아쉽다. 라이젠 9 3900X는 1GHz를 처음으로 넘어섰던 AMD의 오리지널 K7 애슬론 시리즈 CPU, 데스크톱 PC의 64비트 시대를 열었던 애슬론 64 CPU만큼이나 중요한, 시장을 바꾸는 CPU가 될 물건이기 때문이다.

라이젠 9 3900X가 앞으로 저런 제품이 세운 위대함을 달성하기 어려울 것이라고 생각할지 모른다. 이전 세대의 무시무시한 게이밍 성능 지표를 모두 넘어서는 정도는 아니다. 그러나 발매 직후의 혼란이 가라앉으면 AMD 라이젠 3000 시리즈는 단숨에 가장 인기 있는 CPU가 될 것이다.

라이젠 3000 시리즈는 어찌됐든 7나노 공정으로 생산된 최초의 사용자 x86 칩이다. 인텔의 현재 데스크톱 칩은 모두 아직도 14나노 공정으로 제작된다. 올해 말쯤 되어야 10나노 공정으로의 이전이 시작될 것이다. AMD가 7나노 공정에 먼저 도달한 것을 부러워하면서 말이다.

기술적인 우위를 바탕으로 AMD는 라이젠 3000을 위해 재설계된 2세대 젠 코어를 발표했다. 이전 라이젠 2000 시리즈에 비해 부동 소수점 성능이 2배 증가했고, 클럭당 명령어 처리 횟수가 15% 향상되었다.

AMD는 명령 프리-패치를 개선했고, 명령 캐시를 한층 강화했고, 마이크로-op 캐시를 2배로 늘렸다고 말했다. AMD는 부동 소수점 성능을 2배로 늘린 것에 더해 이제 AVX-256까지 도입했다(256비트 고급 벡터 확장). 인텔 코어는 AVX-512이다. 오늘날 AVX는 주로 동영상 인코딩 분야에 영향을 주지만, 다른 분야에서도 진가를 발휘한다.

AMD는 기본적으로 라이젠 3000 칩에서 L3 캐시를 2배 늘리고, 이것을 게임 캐시라고 부르면서 애플과 비슷한 마케팅을 펼치고 있다. 라이젠 9 3900X에서 70MB를 차지하는 이 캐시는 라이젠 3000 시리즈의 메모리 지연성을 크게 줄인다. 또 CPU의 게이밍 성능을 극적으로 향상한다. 그래서 게임 캐시라고 부르면서 일반 사용자의 이해를 돕고 있다.  게임 캐시는 애플리케이션 성능 개선에도 유용하지만, 앱 캐시라고 불렀을 때 기뻐할 사람은 아무도 없을 테니까.

라이젠 3000 시리즈에는 7나노 CCD가 2개 들어간다. ⓒAMD

코어와 함께 칩셋 설계도 크게 손을 보았다. 처음의 젠 기반 라이젠은 메모리 및 PCIe 컨트롤러가 인피니티 패브릭으로 결합된 2개의 14 나노 CCD를 특징으로 했다. 젠 2에 기반한 라이젠 3000은 메모리 컨트롤러와 PCIe 4.0 컨트롤러를 별개의 IO 다이로 분리한다. 7나노 연산 코어와 달리 IO 다이는 12나노 공정으로 제작된다. 이는 CPU의 전체 원가 절감에 기여한다. 7나노 공정 웨이퍼가 훨씬 가치 있는데, AMD의 팹 협력사인 TSMC가 IO 다를 제작에 사용하지 않아도 되기 때문이다.

여기서 중요한 질문은 GPU가 제한 요소가 아닌 상황에서, 오랫동안 라이젠 성능의 발목을 잡았던 게이밍 문제가 마침내 해소되었느냐는 것이다. 차이는 이제 매우 근소해졌다. 심지어 엔비디아의 무자비하게 빠른 RTX 2080 Ti를 구동하더라도 거의 99% 문제가 없을 것이다.

PCIe4.0?!

그렇다. PCIe4.0이다. PCIe의 차세대 버전 PCIe4.0은 기본적으로 클럭 속도와 스루풋을 PCIe3.0보다 2배로 늘린다. AMD가 PCIe4.0으로 이동한 것도 또 한가지 유리한 점이다. 인텔은 CPU에서 PCIe3.0 속도로 정체되어 있고, 마찬가지로 엔비디아도 PCIe3.0 기반 GPU만을 보유한 상황이다.

현재 PCIe 4.0 실제 성능은 SSD를 제외하고 손쉽게 구현하기 어려울 것이다. 그러나 새 표준은 PC에서 더 많은 경로와 더 많은 포트를 지원한다. PCIe4.0 SSD의 혜택을 원한다면 AMD의 라이젠 3000과 새 X570 칩셋이 유일한 수단이다.

PCIe의 설명 자료는 여기서 소개한다(all about PCIe 4.0). 개발 초기 단계인 PCIe5.0과 PCIe6.0이 동시에 존재해 혼란을 준다면, 초기 사양이 실제 하드웨어로 구현되기까지는 시간이 걸린다는 점을 기억하기 바란다. 기본적으로 PCIe 4.0가 현재의 유일한 해법이고, AMD는 이 성과를 자랑할만하다.

가격

아직 가격이 남았다. 인텔의 플래그십 제품인 8코어의 코어 i9-9900K는 488달러인 반면, 더 빠르지는 않더라도 최소한 같다고 주장하는 AMD의 12코어는 499달러에 RGB 쿨러를 더했다.

AMD 라이젠 3000 제품군은 가격으로 인텔 제품을 압박한다. ⓒAMD

쓰레드당 가격은 AMD가 인텔보다 우세하다. 각종 CPU의 쓰레드당 가격 차트를 보면 라이젠 9 3900X는 쓰레드당 21달러이고, 코어 i9-9900K는 31달러로 게임이 되지 않는 지경이다.

ⓒAMD

그러나 쓰레드당 가격, 환상적인 7나노 공정도 성능이 뒷받침되지 않는다면 가치가 없다. 그럼 이제부터 라이젠 9 3900X가 얼마나 빠른지 살펴보자.

테스트 방법

이번 리뷰에는 대표적 CPU 3개를 선택했다. AMD의 2세대 라이젠 7 2700X가 테스트의 기준으로 활용된다. 두 번째는 최고의 경쟁자인 488달러의 인텔의 코어 i9-9900K이다. 마지막은 AMD의 499달러짜리 라이젠 9 3900K이다.

CPU는 나란히 테스트되었다. 라이젠 7 2700X는 MSI X470 게이밍 M7 AC에, 코어 i9-9900K는 아수스 막스무스 XI 히어로에, 라이젠 9 3900X는 MSI X5700 가드라이크에 각각 탑재했다.

그래픽의 경우 초반 CPU와 게임 테스트는 파운더스 에디션 지포스 GTX 1080를 사용하였다. 추가적 게임 테스트에서는 파운더스 에디션 지포스 RTX2080 Ti 카드를 이용하였다.

세 PC 모두 최신 UEFI/BIOS와 드라이버를 이용하고, 윈도우 10 프로페셔널 1903을 새로 설치하였다. 윈도우 버전은 특히 중요하다. AMD가 이제 버전 1903에 스케줄 최적화가 포함되어 라이젠 3000에서 더 효율적으로 쓰레드를 전송할 수 있다고 말했기 때문이다.

기억할 점은 AMD의 CPU는 CPU 코어의 작은 집단과 빠른 속도를 갖도록 구축되지만 CPU 코어 집단 사이의 액세스 속도는 더 느리다는 것이다. 구 버전 윈도우에서 스케줄러는 클러스터 내의 한 집단으로 한 쓰레드를 전송한다. 윈도우는 멀티 다이 설계를 감안하여 설계되지 않았기 때문에 두 번째 쓰레드를 다른 CPU 코어 클러스터로 전송할 것이고 이는 성능을 낮추는 원인이 된다.

단순히 두 쓰레드를 같은 CPU 코어 클러스터로 전송하는 경우가 아니면, 두 코어 클러스터 사이의 교차를 처리해야 하기 때문에 속도가 느려지는 것이다. 이제 이 문제가 해소되었다. 윈도우 1903은 가능한 경우 동일한 CPU 코어 클러스터로 쓰레드를 전송할 것이다. AMD의 주장에 따르면 윈도우의 변화를 통해 최대 15%의 성능 향상을 가져올 수 있다. 다만, 모든 애플리케이션에서 적용되는 것은 아니므로 애플리케이션마다 차이가 있을 것이라고 전했다.

ⓒAMD

세 빌드에서 모두 듀얼 채널 모드의 DDR4를 동일하게 이용했지만, 한 가지 차이를 두었다. 코어i9-9900K와 라이젠 7 2700X는 16GB DDR4/3200 CL 14를 이용했고, 라이젠 9 3900K는 16GB DDR4/3600 CL 15를 이용했다. 라이젠 9를 최적의 메모리 클럭인 3,600MHz로 테스트하고 싶었기 때문이다. 3,200 MHz에서도 역시 테스트할 예정이다. 시간적 제약으로 인해 먼저 DDR4/3600 성능만 제시하고, 시간이 허락하면 DDR4/3200 테스트 결과를 추가로 업데이트할 예정이다. 그러나 AMD가 PCWorld에 밝힌 바에 따르면 DDR4/3200CL14는 DDR4/3600CL15에 비해 성능에서 큰 차이가 없다고 한다.

여기서 다른 변수는 저장 공간이다. 라이젠 7과 코어 i9은 초고속 MLC 기반의 삼성 960 프로 512GB SSD을 사용해 PCIe3의 3세대 속도로 테스트되었다. 라이젠 9 3900X는 PCIe4.0을 지원하는 최초의 CPU이자 플랫폼이다. PCIe4.0은 새 플랫폼의 핵심 기능이므로 CPU의 PCI 레인으로 직접 연결된 2TB의 커세어 MP600 PCIe 4.0 SSD를 이용하였다. 이번에 PCWorld가 실행한 테스트에서 스토리지는 CPU 성능에 영향을 주지 않을 것이다.

커세어 MP600 ⓒAMD

MCE인가, 아닌가?

코어 i9-9900K 리뷰와 마찬가지로 이번에도 ‘다중 코어 강화(Multi-Core Enhancement, MCE)’ 기능을 이용할 것인지를 놓고 의견이 엇갈렸다. MCE는 메인보드 지원 기능으로, 인텔 ‘K’ CPU를 더 높은 클럭 속도로 실행한다. 하지만, 전력 소비도 더 크고 열도 더 많이 발생한다. MCE는 기술적으로 인텔의 표준 규격을 넘긴 ‘오버클럭’으로 간주된다.

그렇다면 이 기능을 끄면 되지 않느냐고 생각할 수 있을 것이다. 그런데 문제는 거의 모든 중급 이상의 인텔 메인보드는 즉시 사용할 수 있도록 MCE가 자동으로 설정되어 있다는 점이다. 이 기능을 끈 상태로 새 CPU를 테스트한 결과는 대부분의 사용자가 경험하게 될 코어 i9-9900K의 진정한 속도와는 거리가 멀 것이다.

켠 상태로 두는 것은 더 난감하다. 왜냐하면 메인보드 업체마다 이 설정을 조금씩 다르게 구현하기 때문이다. MCE가 켜진 상태에서 성능을 정확히 측정할 수 있는 쉬운 방법은 없다.

결국 인텔 CPU에 대해 MCE를 끈 채로 테스트를 했고, AMD의 유사한 정밀 부스트 오버드라이브(Precision Boost Overdrive) 역시 끈 상태로 테스트했다. 다른 기사에서 이 부분을 한층 깊이 있게 다룰 것이다. 그러나 현재까지는 MCE를 끈 채 인텔 CPU를 실행하는 것은 PBO를 끈 채 AMD CPU를 실행하는 것보다 인텔 CPU에 훨씬 불리하다는 점은 유의해야 한다.

그렇다면 이제부터 차트의 세계로 나가도록 하자.

라이젠 9 3900x 3D 모델링 성능

12코어 CPU가 8코어를 쉽게 압도할 것이라는 점은 그다지 놀랍지 않다. ⓒIDG
라이젠 9 3900X의 싱글 쓰레드 성능이 인상적이다. ⓒIDG
시네벤치 R20으로 옮겨가면 라이젠 9 3900X의 싱글 쓰레드 성능이 더 돋보인다. ⓒIDG
라이젠 9 3900X가 인텔 코어 i9를 멀티 쓰레드 성능에서 압도하는 것은 어쩌면 당연하다. ⓒIDG
코로나 모델러 테스트 결과도 8코어보다 12코어 성능이 더 높게 나왔다. ⓒIDG
비슷한 결과다. V레이 넥스트 테스트에서도 다른 모델링 앱과 별반 다르지 않은 결과를 냈다. ⓒIDG
ⓒIDG
놀랍지도 않다. 라이젠 9가 코어 i9을 가지고 노는 수준이다. ⓒIDG
5GHz 클럭이라는 강점을 지닌 코어 i9가 라이젠 9를 싱글 쓰레드로 설정된 POV레이 테스트에서 근소하게 앞섰다. ⓒIDG
H.265 코덱을 활용한 4K 인코딩 작업에서도 라이젠 9 3900X가 월등했다. ⓒ

라이젠 9 3900X 인코딩 성능

라이젠 9 3900X는 H.265 코덱을 사용한 4K 인코딩에서 코어i9를 간단히 앞질렀다. ⓒIDG
시너지 시네스코어 10.4 테스트에서도 라이젠 9의 성능이 코어 i9 칩을 상당히 앞섰다. ⓒIDG
프리미어 CC 2019 작업에서는 코어 i9가 더 우세하다. ⓒIDG
프리미어 HEVC 인코더 프로젝트에서도 코어 i9가 우세했지만 차이는 조금 줄어들었다. ⓒIDG

포토샵 성능 테스트

포토샵 성능에서는 라이젠 9 2900X가 근소하게 앞섰다. ⓒIDG

압축 테스트

압축 테스트 결과. 라이젠 9 3900X와 라이젠 7 2700X의 성능 차가 크다. ⓒIDG
WinRAR결과는 좋게도 나쁘게도 해석할 수 있다. 라이젠 7 2700X 결과에서 보듯, WinRAR는 전통적으로 인텔 CPU와 상성이 좋았는데, 라이젠 9 3900X가 코어 i9와 크게 차이나지 않는 수준의 결과를 냈다. ⓒIDG
7ZIP 압축 테스트에서의 싱글 쓰레드 성능은 코어 i9가 조금 더 앞섰다. ⓒIDG
멀티쓰레드 성능은 라이젠 9가 압도적이었다. ⓒIDG
압축 풀기 테스트는 전통적으로 성능 확인의 정수이자 CPU가 브랜치 오예측을 얼마나 잘 감당하는지와 관련이 있었다.  ⓒIDG​​​​​
7Zip 압축 풀기 테스트에서는 3개 제품이 모두 엇비슷한 성능을 나타냈다. 가장 우수한 것은 코어 i9였다. ⓒIDG

라이젠 9 3900X의 게이밍 성능 테스트

섀도우 오브 툼 레이더는 1,920×1,080 해상도에서 플레이했는데도 GPU에 의한 병목 현상이 나타났다. ⓒIDG
최신 게임을 플레이할 때는 두 제품 모두 빠른 GPU가 필요하다. ⓒIDG
조금 더 오래된 라이즈 오브 더 툼레이더로 옮겨 가면 역시 구형인 지포스 GTX 1080 FE가 병목 현상임을 알 수 있다. ⓒIDG
라이젠 9 3900X가 코어 i9를 앞서지는 못했지만, 차이는 아주 근소하다. ⓒIDG
ⓒIDG
파 크라이 5는 코어 i9가 라이젠 시리즈를 앞선 성능을 보인 게임 중 하나다. ⓒIDG
데우스 엑스 맨카인드 디바이디드 결과. 라이젠 7과 라이젠 9의 차이에서 게임 성능 개선 폭을 짐작할 수 있다.  ⓒIDG
레인보우 식스 시지 결과 ⓒIDG
CPU 포커스드 테스트 결과는 전적으로 CPU 테스트나 다름 없다. 지포스 GTX 1080과 RTX 2080Ti에서의 프레임 차이가 거의 없었기 때문이다.  ⓒIDG

결론

1쓰레드에서 24 쓰레드까지의 시네벤치 테스트로 리뷰를 마치고 싶다. 시네벤치 R20은 3D 모델링 벤치마크로서 게이밍 성능이나 여타 애플리케이션 성능을 예측하지 않는다. 그러나 수많은 게임과 애플리케이션이 현대 CPU의 쓰레드를 모두 활용하는 혜택을 누릴 수는 없다. 그런 면에서 시네벤치 R20이 가치가 있다. CPU를 1개 쓰레드에서 시작해 끝까지 로딩 했을 때의 성능을 살펴볼 수 있기 때문이다.

아래의 차트에서 AMD는 통상적으로 차트 우측에서 두드러진다. 거의 언제나 인텔 칩에 비해 코어 수에서 우세하기 때문이다.

반면 인텔은 통상적으로 우측에서는 패배하지만, 좌측에서는 승리한다. 인텔 칩은 AMD 칩에 비해 클럭 속도와 IPC가 우세하기 때문이다. 인텔의 코어 칩이 강점을 지닌 부분은 기본적으로 여기뿐이다. 대다수 애플리케이션과 게임은 차트의 좌측에 있는 성능에 의존한다. 라이젠 9 3900K와 코어 i9-9900K 사이의 차트를 보면 그 강점은 이제 사라졌다.

시네벤치 r20을 1쓰레드에서 24쓰레드까지 돌리자, 전 구간에서 라이젠 9 3900x의 진정한 강점이 드러났다. ⓒIDG

동일 데이터를 다른 관점으로 보기 위해 성능 우세 정도를 비율로 보여주는 차트를 만들었다. 차트에서 알 수 있듯이 12코어는 8코어를 간단히 압도한다.

이번에도 인텔의 코어 i9에 있어 가장 나쁜 소식은 차트의 좌측에 있다. 여기서도 인텔의 우위가 사라졌다. 두 CPU는 6쓰레드까지 거의 대등하고 이후부터 라이젠 9가 앞서기 시작한다.

라이젠 9는 8쓰레드 이후부터 코어 수로 인텔 코어 i9를 제압했다. ⓒIDG

쓰레드 수가 적은 경우를 봐도 라이젠 9 3900K는 언제나 코어 i9 9900K만큼이나 빠르다. 이는 기본적으로 이제 코어 i9을 사야 할 이유가 거의 없음을 의미한다. 남은 이유도 분명 존재하지만, 고급 CPU를 구입하려는 사용자 10명 중 9명은 라이젠 9 3900X를 선택할 것이 틀림없다. editor@itworld.co.kr


컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.

컴퓨텍스 2018에서는 게이밍이 뜨겁다.
PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.

스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.

AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.

MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.

독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.

2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식

수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다.
좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.

한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다.
여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.


인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)

인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.

이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.

인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.

대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.

신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.

다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.

인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.

또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.

코어 i9의 속도와 피드
클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.

이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.

제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.

Core i9-7980XE: 18코어/ 36스레드, 1,999달러
Core i9-7960X: 16코어/ 32스레드, 1,699달러
Core i9-7940X: 14코어/ 28스레드, 1,399달러
Core i9-7920X: 12코어/ 24스레드, 1,199달러
Core i9-7900X (3.3GHz): 10코어/ 20스레드, 999달러

인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.

Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러
Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러
Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러
케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.

새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다.
또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.

다음은 속도와 피드를 요약 설명한 표다.

오버클럭이 포인트
인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.

TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.

인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다.
또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.

데이터 전송 성능을 향상한 새 X299 칩셋
테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.

브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.

X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.

이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr


2018년 인텔 6코어 코어 i9 CPU 발표

본 기사는 itworld.co.kr 기사를 인용하였습니다.

아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.

인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.

인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.

인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.

새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.

인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.

인텔 코어 H 시리즈 CPU

인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.

인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.

새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다.
인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.

Intel

인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.

다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.

인텔 코어 U 시리즈 CPU

성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.

Intel

모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.

게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다.  editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/108803#csidx218d62dae70faefa8f8cdc4efd8ea92 


AMD 마이크로아키텍처 (기사 출처 : itworld)

AMD 라이젠 3월 2일 출시…코어 i7보다 가격도 성능도 “우세”

Mark Hachman | PCWorld

“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.

22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.

인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.

이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.

인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.

Mark Hachman

라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.

라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.

라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.

Mark Hachman

AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.

라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/103594#csidx36e903474b838daa0638fbf87957a25


CFD 업무에 종사하는 사람들은 빠른 컴퓨터는 갖고 싶은 품목1위가 아닐까 싶습니다.
최근에는 소위 슈퍼컴퓨터라 불릴만한 성능을 가진 데스크탑 CPU 의 발전이 놀라운데, 이번에 AMD에서 발표한 CPU도 놀라울 정도의 가벽 대비 성능을 자랑하는 CPU를 발표하였습니다.
저렴한 비용으로 책상위의 슈퍼컴을 장만할 수 있는 기회가 오고 있는 것 같습니다.
아래 ITWOLD에서 2018.08.07에 게재한 기사를 인용 소개합니다.

AMD 32코어 쓰레드리퍼, 코어수와 가격으로 인텔에 정면 승부

Gordon Mah Ung | PCWorld
자료출처 : 본 기사는 ITWORLD의 기사를 인용게재한 내용입니다. (원문보기)
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.

2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.

쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.

IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.

32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.

– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러.
– 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러.
– 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러.
– 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.

32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.

2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.

신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.

모델명에 추가된 W
사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.

24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.

주요 이정표
일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.

IDG
날로 치열해지는 코어 전쟁

조만간 나올 인텔의 대응 기대
물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.

인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.

이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.

기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다.  editor@itworld.co.kr

Advances in Nanotechnology

Advances in Nanotechnology

This article was contributed by Prof. Edward Furlani and his students from the University at Buffalo, SUNY.

Microfluidics와 nanofluidics는 나노와 나노사이의 기능을 가진 재료와 시스템을 통한 유체 흐름의 과학과 기술을 포함하는 분야입니다. 최근 몇 년 사이에 이 분야의 연구는 재료 개발과 시스템의 급속한 발전된 유체공정의 독특한 이점으로 증가해 왔습니다. Microfluidic 및 nanofluidic 시스템은 화학 반응, 유체 가열, 혼합 및 감지와 같은 순차적 또는 다중화된 공정을 포함할 수 있는 응용 분야에서 마이크로 사이즈의 유체 유동은 매우 효율적이고 반복 가능하며 신속한 처리를 가능하게 합니다. 풀 라니 (Furlani) 교수 그룹의 연구는 새로운 공정 및 장치 개발에 대한 모델링 및 시뮬레이션을 보여줍니다. 이 연구의 대부분은 뉴턴 및 비 뉴턴 유체, 열 전달, 상변화 분석, 자유표면 및 다상분석, 유체와 관련된 유체 현상을 연구하기 위해 최첨단 전산 유체역학을 강조합니다. 매체 상호작용, 다공성 매체를 통한 유동, 완전히 결합된 유체구조 및 입자, 유체 상호작용에 대해 콜로이드. 국제 나노 기술 학술 대회에서 3 편의 논문이 발표될 예정입니다. 2014년 6월 15일부터 18 일까지 워싱턴 DC의 Gaylord National Hotel 및 Convention Center에서 개최됩니다. 이들은 버팔로 대학교 (University at Buffalo)에서 진행되는 획기적인 결과를 선보입니다. 여기에서는 이러한 작품의 미리 보기와 FLOW-3D로 생성된 시뮬레이션 결과 중 일부를 제시합니다.

Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System

Koushik Ponnuru1, Jincheng Wu1, Preeti Ashok1, Emmanuel S. Tzanakakis1,3,4,5,6 and Edward P. Furlani1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, 3Dept. of Biomedical Engineering, 4New York State Center of Excellence in Bioinformatics and Life Sciences, 5Western New York Stem Cell Culture and Analysis Center, 6Genetics, Genomics and Bioinformatics, University at Buffalo, SUNY

(left) Shear stress distribution along with velocity vectors in a cross sectional plane of the bioreactor running at 60 rpm; (right) Kolmogorov length scale distribution at the same plane under the same conditions.

CFD 기반 시뮬레이션과 실험결과의 조합으로 교반 탱크의 마이크로 캐리어 생물 반응기 시스템에서 세포 배양에 대한 난류 전단응력의 영향에 대한 분석을 제시합니다. Corning’s bench-scale spinner flask의 3D 계산 모델은 최첨단 CFD 소프트웨어 인 FLOW-3D를 사용하여 제작되었습니다. 임펠러 속도, 배양액 및 입자 크기와 같은 매개변수가 마이크로 캐리어 입자에 작용되는 전단응력에 미치는 영향을 CFD 분석을 사용하여 연구하였습니다. 이것은 세포가 겪는 정확한 전단 조건을 예측하고 세포의 손상을 방지하는 최적의 작동조건을 확인하는데 사용됩니다. 또한, 다원능 마커 Oct4, Sox2 및 Nanog를 운반하는 세포의 비율을 세포 계측법 및 정량적 PCR을 사용하여 측정함으로써 hPSCs의 다능성 전단효과를 연구합니다.

Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems

Chenxu Liu1, Xiaozheng Xue1 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2Dept. of Electrical Engineering, University at Buffalo, SUNY

Magnetic nanoparticle chaining and rotating following an external field and causing the mixing of two different molecular concentrations.

Magnetic 입자는 생체 의학 및 임상 진단 응용을 위해 생체 재료를 선택적으로 분리 및 분류하는 마이크로 유체시스템에 점점 더 많이 사용되고 있습니다. 그러한 시스템의 합리적인 설계에 사용될 수 있는 전산모델이 도입되었습니다. 이 모델은 자기 및 유체 역학적 힘, 완전 결합 입자 – 유체 상호 작용 및 입자의 자기 조립을 유도하는 자기 쌍극자와 쌍극자의 상호 작용을 비롯한 입자 수송에 대한 지배적 메커니즘을 고려합니다. 응용 프로그램을 통해 연속흐름 분리시스템 및 회전 조립 체인을 기반으로 하는 미세 유체 혼합프로세스로 시연됩니다.

Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures

Ioannis H. Karampelas1, Young Hwa Kim2 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, University at Buffalo, SUNY

Photothermal heat cycle of a nanocage (a=50nm, t=5nm) (perspective 1/8 view): plot of nanocage temperature vs. time, pulse duration indicated by the red arrow and dashed line and inset plots showing various phases of the thermo -fluidic cycle: (a) nanobubble formation, (b) nanobubble (maximum size), (c) nanobubble collapse, (d) cooling.

Colloidal 귀금속 (plasmonic) 나노 구조는 나노 입자 합성에서부터 바이오 이미징 (bioimaging), 의학 요법 (medical therapy)에 이르기까지 다양한 광열 (photothermal) 분야에서 점점 더 많이 사용되고 있습니다. 많은 응용분야에서, 펄스 레이저는 plasmonic 공진 주파수에서 나노 구조를 사용하며, 이는 광자의 흡수 및 고도로 국부화된 파장필드의 향상을 가져옵니다. 원격 소스로부터 효율적인 나노 스케일 가열하는 것 외에도, 합성동안 나노 입자의 구조를 조정함으로써 근적외선 스펙트럼을 통한 공진 가열파장을 조정할 수 있습니다. 우리 그룹은 nanosecond-pulsed, laser-heated colloidal metallic nanoparticles 및 열 유체 거동을 예측하는 전산모델을 개발했습니다. 이 모델은 플라즈몬 공명, 입자에서 주변 유체로의 열 전달 및 균일한 기포 핵 형성을 유도하는 유체의 위상변화에서 나노 입자 내의 에너지 전환을 시뮬레이션 하는데 사용되었습니다. nanorods, nanotori, nanorings 및 nanocages 등 다양한 nanoparticle 형상이 연구되었습니다. 이 분석은 레이저 강도, 입사 파장, 편광, 펄스 지속 시간 및 나노 입자의 방향 및 모양과 같은 공정 매개 변수가 광열 공정을 최적화하도록 조정될 수 있음을 보여줍니다. Plasmonic nanoparticles는 악성 조직의 약물 치료, 약물 전달 및 생체치료에 사용됩니다.

Advances in Nanotechnology

Advances in Nanotechnology

This article was contributed by Prof. Edward Furlani and his students from the University at Buffalo, SUNY.

 

Microfluidics와 nanofluidics는 나노와 나노사이의 기능을 가진 재료와 시스템을 통한 유체 흐름의 과학과 기술을 포함하는 분야입니다. 최근 몇 년 사이에 이 분야의 연구는 재료 개발과 시스템의 급속한 발전된 유체공정의 독특한 이점으로 증가해 왔습니다. Microfluidic 및 nanofluidic 시스템은 화학 반응, 유체 가열, 혼합 및 감지와 같은 순차적 또는 다중화된 공정을 포함할 수 있는 응용 분야에서 마이크로 사이즈의 유체 유동은 매우 효율적이고 반복 가능하며 신속한 처리를 가능하게 합니다. 풀 라니 (Furlani) 교수 그룹의 연구는 새로운 공정 및 장치 개발에 대한 모델링 및 시뮬레이션을 보여줍니다. 이 연구의 대부분은 뉴턴 및 비 뉴턴 유체, 열 전달, 상변화 분석, 자유표면 및 다상분석, 유체와 관련된 유체 현상을 연구하기 위해 최첨단 전산 유체역학을 강조합니다. 매체 상호작용, 다공성 매체를 통한 유동, 완전히 결합된 유체구조 및 입자, 유체 상호작용에 대해 콜로이드. 국제 나노 기술 학술 대회에서 3 편의 논문이 발표될 예정입니다. 2014년 6월 15일부터 18 일까지 워싱턴 DC의 Gaylord National Hotel 및 Convention Center에서 개최됩니다. 이들은 버팔로 대학교 (University at Buffalo)에서 진행되는 획기적인 결과를 선보입니다. 여기에서는 이러한 작품의 미리 보기와 FLOW-3D로 생성된 시뮬레이션 결과 중 일부를 제시합니다.

Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System

Koushik Ponnuru1, Jincheng Wu1, Preeti Ashok1, Emmanuel S. Tzanakakis1,3,4,5,6 and Edward P. Furlani1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, 3Dept. of Biomedical Engineering, 4New York State Center of Excellence in Bioinformatics and Life Sciences, 5Western New York Stem Cell Culture and Analysis Center, 6Genetics, Genomics and Bioinformatics, University at Buffalo, SUNY

(left) Shear stress distribution along with velocity vectors in a cross sectional plane of the bioreactor running at 60 rpm; (right) Kolmogorov length scale distribution at the same plane under the same conditions.

CFD 기반 시뮬레이션과 실험결과의 조합으로 교반 탱크의 마이크로 캐리어 생물 반응기 시스템에서 세포 배양에 대한 난류 전단응력의 영향에 대한 분석을 제시합니다. Corning’s bench-scale spinner flask의 3D 계산 모델은 최첨단 CFD 소프트웨어 인 FLOW-3D를 사용하여 제작되었습니다. 임펠러 속도, 배양액 및 입자 크기와 같은 매개변수가 마이크로 캐리어 입자에 작용되는 전단응력에 미치는 영향을 CFD 분석을 사용하여 연구하였습니다. 이것은 세포가 겪는 정확한 전단 조건을 예측하고 세포의 손상을 방지하는 최적의 작동조건을 확인하는데 사용됩니다. 또한, 다원능 마커 Oct4, Sox2 및 Nanog를 운반하는 세포의 비율을 세포 계측법 및 정량적 PCR을 사용하여 측정함으로써 hPSCs의 다능성 전단효과를 연구합니다.

 

Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems

Chenxu Liu1, Xiaozheng Xue1 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2Dept. of Electrical Engineering, University at Buffalo, SUNY

Magnetic nanoparticle chaining and rotating following an external field and causing the mixing of two different molecular concentrations.

 

Magnetic 입자는 생체 의학 및 임상 진단 응용을 위해 생체 재료를 선택적으로 분리 및 분류하는 마이크로 유체시스템에 점점 더 많이 사용되고 있습니다. 그러한 시스템의 합리적인 설계에 사용될 수 있는 전산모델이 도입되었습니다. 이 모델은 자기 및 유체 역학적 힘, 완전 결합 입자 – 유체 상호 작용 및 입자의 자기 조립을 유도하는 자기 쌍극자와 쌍극자의 상호 작용을 비롯한 입자 수송에 대한 지배적 메커니즘을 고려합니다. 응용 프로그램을 통해 연속흐름 분리시스템 및 회전 조립 체인을 기반으로 하는 미세 유체 혼합프로세스로 시연됩니다.

 

Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures

Ioannis H. Karampelas1, Young Hwa Kim2 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, University at Buffalo, SUNY

 

Photothermal heat cycle of a nanocage (a=50nm, t=5nm) (perspective 1/8 view): plot of nanocage temperature vs. time, pulse duration indicated by the red arrow and dashed line and inset plots showing various phases of the thermo -fluidic cycle: (a) nanobubble formation, (b) nanobubble (maximum size), (c) nanobubble collapse, (d) cooling.

Colloidal 귀금속 (plasmonic) 나노 구조는 나노 입자 합성에서부터 바이오 이미징 (bioimaging), 의학 요법 (medical therapy)에 이르기까지 다양한 광열 (photothermal) 분야에서 점점 더 많이 사용되고 있습니다. 많은 응용분야에서, 펄스 레이저는 plasmonic 공진 주파수에서 나노 구조를 사용하며, 이는 광자의 흡수 및 고도로 국부화된 파장필드의 향상을 가져옵니다. 원격 소스로부터 효율적인 나노 스케일 가열하는 것 외에도, 합성동안 나노 입자의 구조를 조정함으로써 근적외선 스펙트럼을 통한 공진 가열파장을 조정할 수 있습니다. 우리 그룹은 nanosecond-pulsed, laser-heated colloidal metallic nanoparticles 및 열 유체 거동을 예측하는 전산모델을 개발했습니다. 이 모델은 플라즈몬 공명, 입자에서 주변 유체로의 열 전달 및 균일한 기포 핵 형성을 유도하는 유체의 위상변화에서 나노 입자 내의 에너지 전환을 시뮬레이션 하는데 사용되었습니다. nanorods, nanotori, nanorings 및 nanocages 등 다양한 nanoparticle 형상이 연구되었습니다. 이 분석은 레이저 강도, 입사 파장, 편광, 펄스 지속 시간 및 나노 입자의 방향 및 모양과 같은 공정 매개 변수가 광열 공정을 최적화하도록 조정될 수 있음을 보여줍니다. Plasmonic nanoparticles는 악성 조직의 약물 치료, 약물 전달 및 생체치료에 사용됩니다.

CFD 업무에 종사하는 사람들에게 희소식인 최신 컴퓨터 CPU 소식

CFD 업무에 종사하는 사람들은 빠른 컴퓨터는 갖고 싶은 품목1위가 아닐까 싶습니다.
최근에는 소위 슈퍼컴퓨터라 불릴만한 성능을 가진 데스크탑 CPU 의 발전이 놀라운데, 이번에 AMD에서 발표한 CPU도 놀라울 정도의 가벽 대비 성능을 자랑하는 CPU를 발표하였습니다.
저렴한 비용으로 책상위의 슈퍼컴을 장만할 수 있는 기회가 오고 있는 것 같습니다.
아레에 ITWOLD에서 게재한 기사를 인용 소개합니다.

AMD 32코어 쓰레드리퍼, 코어수와 가격으로 인텔에 정면 승부

Gordon Mah Ung | PCWorld
자료출처 : 본 기사는 ITWORLD의 기사를 인용게재한 내용입니다. (http://www.itworld.co.kr/insight/110307)
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.

2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.

쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.

IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.

32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.

– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러.
– 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러.
– 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러.
– 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.

32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.

2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.

신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.

모델명에 추가된 W
사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.

24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.

주요 이정표
일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.

IDG
날로 치열해지는 코어 전쟁

조만간 나올 인텔의 대응 기대
물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.

인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.

이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.

기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고 있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다.  editor@itworld.co.kr

Intel CPU i9

인텔 6코어 코어 i9 CPU 발표

인텔 6코어 코어 i9 CPU 발표

2018-04-04
본 기사는 itworld.co.kr 기사를 인용하였습니다.

아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.

인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.

인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.

인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.

새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.

인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.

인텔 코어 H 시리즈 CPU

인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.

인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.

새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다.
인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.

Intel

인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.

다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.

인텔 코어 U 시리즈 CPU

성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.

Intel

모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.

게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다.  editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/108803#csidx218d62dae70faefa8f8cdc4efd8ea92

Dielectrophoresis

Dielectrophoresis

Dielectrophoresis(유전이동)는 불균일한 전기장(보통 AC전기장)안에서 활동을 유도하기 위해 편광 시킬 수 있는 입자들에게 힘의 구축을 수반합니다. Dielectrophoretic 힘을 해결 및/또는 나노 크기의 미소 규모의 bioparticles 조작들을 특징 짓는데 사용될 수 있습니다. 이러한 것들 중에 세포나 바이러스, 박테리아, DNA 등을sorting, trapping, separating 하는 것을 포함될 수 있습니다. FLOW-3D안에서 Dielectrophoresisone-fluid 또는 two-fluid flow, with or without sharp interfaces 등의 기능들을 이용하여 설명될 수 있습니다.

Slot Coating

Slot Die Coating

FLOW-3D는 슬롯 다이 코팅의 산업 연구 및 설계에 사용됩니다. 슬롯 다이 코팅에서 유체는 슬롯에서 슬롯에 매우 가까운 곳에 위치한 빠르게 움직이는 기판 위로 강제 배출됩니다. 때로는 여러 슬롯을 사용하여 여러 재료의 레이어드 코팅을 만들기도 합니다. 많은 산업에서 슬롯 다이 코팅 기계는 상대적으로 단순하기 때문에 슬롯 다이코팅이 사용됩니다. 슬롯 다이 코팅의 또 다른 이점은 나노미터 단위로 측정한 코팅 두께에서도 높은 코팅 균일성 비율입니다.

아래 예에서, 한 슬롯은 120미크론 두께의 뉴턴이 아닌 재료를 오른쪽에서 왼쪽으로 움직이는 기질에 적용하고 있습니다.

FLOW-3D에서 유체-솔리드 접촉 선과 접촉각은 흐름의 전체 역학의 일부로 자동으로 계산됩니다. 이것은 슬롯과 웹(Web) 사이의 영역에서 세 개의 개별 접촉 선이 발생하는이 예에서 잘 설명됩니다.

Case Study

Roche Diagnostics GmbH가 2014년 FLOW-3D 유럽 사용자 컨퍼런스에서 발표한 산업 사례 연구의 이 이미지는 진공 보조 장치가 없는 슬롯 다이 코팅의 3D 모델을 보여줍니다. 왼쪽 상단에 그려진 실험과 FLOW-3D로 수행된 시뮬레이션 사이에는 훌륭하게 일치하고 있습니다.

Simulation of a slot die coating without vacuum assist, courtesy Roche Diagnostics GmbH

Slot Die Design

아래에 표시된 3M의 FLOW-3D 시뮬레이션은 슬롯 다이의 내부 캐비티 내부의 유체 체류 시간을 보여줍니다. 슬롯 다이 설계는 코팅 프로세스의 성공에 매우 중요하며 코팅 액의 유변학(rheology)에 따라 다릅니다.

Simulation courtesy of 3M

Two-Layer Slot Coating

왼쪽의 시계열 이미지에서 보면 웹(web)이 이동되고, 슬롯 코팅 다이는 두 개의 슬롯에서 서로 다른 물성의 두 유체가 나오고 있습니다. two-layer slot die를 사용하는 이점은 코팅기의 die station의 수를 감소시킬 수 있는 것입니다. 그러나, 단일 층의 경우에는 존재하지 않는 이층 슬롯 코팅에 존재하는 많은 문제점들이 나타납니다. 두 개의 유체 층 사이의 계면(interface), 보통은 혼합될 수 있는 물성을 가진 Interlayer 는 die surfae에 안정적으로 잘 고정되어야 합니다. 그리고 Interlayer 부근이 순환은 두 유체의 혼합을 막기 위해 최소화 되어야만 합니다. 일반적으로 이것들은 각각의 유체의 밀도, 점도 및 유량이 배출율을 조작함으로써 제어될 수 있습니다.

Start-Up of Slot Coating

슬롯 코터를 이용하여 연속 코팅 공정을 시작하면 시작부터 폐기해야 불완전한 재료의 양을 감소시키기 위해, 가능한 한 빨리 균일한 wettig을 수립하는 것이 바람직합니다. Wet start 기술은 잉크가 웹에 가까워지기 전에 슬롯에서 잘 빠져 나오는 것 보장하는 중요한 기술중의 하나입니다. 이 예에서, web은 액체의 상류 및 하류 모두 압착 슬롯을 향해 이동된다.

슬롯 장치의 경사진 앞쪽면에 유체를 위로 밀어올리는 약간 늦은 적당한 접근 속도는 슬롯장치의 더 나은 성능을 제공합니다.