Gonzalo Duró, Mariano De Dios, Alfredo López, Sergio O. Liscia
ABSTRACT
This study presents comparisons between the results of a commercial CFD code and physical model measurements. The case study is a hydro-combined power station operating in spillway mode for a given scenario. Two turbulence models and two scales are implemented to identify the capabilities and limitations of each approach and to determine the selection criteria for CFD modeling for this kind of structure. The main flow characteristics are considered for analysis, but the focus is on a fluctuating frequency phenomenon for accurate quantitative comparisons. Acceptable representations of the general hydraulic functioning are found in all approaches, according to physical modeling. The k-ε RNG, and LES models give good representation of the discharge flow, mean water depths, and mean pressures for engineering purposes. The k-ε RNG is not able to characterize fluctuating phenomena at a model scale but does at a prototype scale. The LES is capable of identifying the dominant frequency at both prototype and model scales. A prototype-scale approach is recommended for the numerical modeling to obtain a better representation of fluctuating pressures for both turbulence models, with the complement of physical modeling for the ultimate design of the hydraulic structures.
본 연구에서는 상용 CFD 코드 결과와 물리적 모델 측정 결과를 비교합니다. 사례 연구는 주어진 시나리오에 대해 배수로 모드에서 작동하는 수력 복합 발전소입니다.
각 접근 방식의 기능과 한계를 식별하고 이러한 종류의 구조에 대한 CFD 모델링의 선택 기준을 결정하기 위해 두 개의 난류 모델과 두 개의 스케일이 구현되었습니다. 주요 흐름 특성을 고려하여 분석하지만 정확한 정량적 비교를 위해 변동하는 주파수 현상에 중점을 둡니다.
일반적인 수리학적 기능에 대한 허용 가능한 표현은 물리적 모델링에 따라 모든 접근 방식에서 발견됩니다. k-ε RNG 및 LES 모델은 엔지니어링 목적을 위한 배출 유량, 평균 수심 및 평균 압력을 잘 표현합니다.
k-ε RNG는 모델 규모에서는 변동 현상을 특성화할 수 없지만 프로토타입 규모에서는 특성을 파악합니다. LES는 프로토타입과 모델 규모 모두에서 주요 주파수를 식별할 수 있습니다.
수력학적 구조의 궁극적인 설계를 위한 물리적 모델링을 보완하여 두 난류 모델에 대한 변동하는 압력을 더 잘 표현하기 위해 수치 모델링에 프로토타입 규모 접근 방식이 권장됩니다.
Figure 1 – Physical scale model (left). Upstream flume and point gauge (right)
Figure 4 – Water levels: physical model (maximum values) and CFD results (mean values)Figure 5 – Instantaneous pressures [Pa] and velocities [m/s] at model scale (bay center)
ADRIAN R. J. (2007). “Hairpin vortex organization in wall turbulence.” Phys. Fluids 19(4), 041301. DEWALS B., ARCHAMBEAU P., RULOT F., PIROTTON M. and ERPICUM S. (2013). “Physical and Numerical Modelling in Low-Head Structures Design.” Proc. International Workshop on Hydraulic Design of Low-Head Structures, Aachen, Germany, Bundesanstalt für Wasserbau Publ., D.B. BUNG and S. PAGLIARA Editors, pp.11-30. GRENANDER, U. (1959). Probability and Statistics: The Harald Cramér Volume. Wiley. HIRT, C. W. and NICHOLS B. D. (1981). “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of Computational Physics 39(1): 201-225. JOHNSON M. C. and SAVAGE B. M. (2006). “Physical and numerical comparison of flow over ogee spillway in the presence of tailwater.” J. Hydraulic Eng. 132(12): 1353–1357. KHAN L.A., WICKLEIN E.A., RASHID M., EBNER L.L. and RICHARDS N.A. (2004). “Computational fluid dynamics modeling of turbine intake hydraulics at a hydropower plant.” Journal of Hydraulic Research, 42:1, 61-69 LAROCQUE L.A., IMRAN J. and CHAUDHRY M. (2013). “3D numerical simulation of partial breach dam-break flow using the LES and k–ϵ turbulence models.” Jl of Hydraulic Research, 51:2, 145-157 LI S., LAI Y., WEBER L., MATOS SILVA J. and PATEL V.C. (2004). “Validation of a threedimensional numerical model for water-pump intakes.” Journal of Hydraulic Research, 42:3, 282-292 NOVAK P., GUINOT V., JEFFREY A. and REEVE D.E. (2010). “Hydraulic modelling – An introduction.” Spon Press, London and New York, ISBN 978-0-419-25010-4, 616 pp.
Weirs are essential structures used to manage excess water flow from behind dams to downstream areas. Enhancing discharge efficiency often involves extending the effective length of Piano Key Weirs (PKW) in dams or regulating flow within irrigation and drainage networks. This study employed both numerical and laboratory investigations to assess the impact of different base nose shapes installed beneath the outlet keys and varying Input to output key width ratios (Wi/Wo) on discharges ranging from 5 to 80 liters per second. Furthermore, the study aimed to achieve research objectives and compare the performance of Piano Key Weirs with Ogee Weir. For numerical simulation, the optimal number of cells for meshing was determined, and an appropriate turbulence model was selected. The results indicated that the numerical model accurately simulated the laboratory sample with a high degree of precision. Moreover, the numerical model closely approximated PKW for all parameters Q, H, and Cd compared to the laboratory sample. The findings revealed that in laboratory models with a maximum discharge area of 80 liters per second, the weir with Wi/Wo=1.2 and a flow head value of 285 mm exhibited the lowest value, whereas the weir with Wi/Wo=0.71 and a flow head value of 305 mm showed the highest, attributed to the higher discharge in the input-output ratio. Additionally, as the ratio of flow head to weir height H/P increased, the discharge coefficient Cd decreased. Comparing the flow conditions in weirs with different base nose shapes, it was observed that the weir with a spindle nose shape (PKW1.2S) outperformed the PKW with a flat (PKW1.2), semi-cylindrical (PKW1.2CL) and triangular base nose (PKW1.2TR). The results emphasized that models featuring semi-cylindrical and flat noses exhibited notable flow deviation and abrupt disruption upon impact with the nose. However, this effect was significantly reduced in models equipped with triangular and spindle-shaped noses. Also, the coefficient of discharge in PKW1.2S and PKW1.2TR weirs, compared to the PKW1.20 weir, increased by 27% and 20%, respectively.
웨어는 댐 뒤에서 하류 지역으로의 과도한 물 흐름을 관리하는 데 사용되는 필수 구조물입니다. 배출 효율을 높이는 데에는 댐의 피아노 키 위어(PKW) 유효 길이를 연장하거나 관개 및 배수 네트워크 내 흐름을 조절하는 것이 포함됩니다.
이 연구에서는 콘센트 키 아래에 설치된 다양한 베이스 노즈 모양과 초당 5~80리터 범위의 배출에 대한 다양한 입력 대 출력 키 너비 비율(Wi/Wo)의 영향을 평가하기 위해 수치 및 실험실 조사를 모두 사용했습니다. 또한 본 연구에서는 연구 목적을 달성하고 Piano Key Weir와 Ogee Weir의 성능을 비교하는 것을 목표로 했습니다.
수치 시뮬레이션을 위해 메시 생성을 위한 최적의 셀 수를 결정하고 적절한 난류 모델을 선택했습니다. 결과는 수치 모델이 높은 정밀도로 실험실 샘플을 정확하게 시뮬레이션했음을 나타냅니다. 더욱이, 수치 모델은 실험실 샘플과 비교하여 모든 매개변수 Q, H 및 Cd에 대해 PKW에 매우 근접했습니다.
연구 결과, 최대 배출 면적이 초당 80리터인 실험실 모델에서는 Wi/Wo=1.2, 플로우 헤드 값이 285mm인 웨어가 가장 낮은 값을 나타냈고, Wi/Wo=0.71 및 a인 웨어는 가장 낮은 값을 나타냈습니다. 플로우 헤드 값은 305mm로 가장 높은 것으로 나타났는데, 이는 입출력 비율의 높은 토출량에 기인합니다. 또한, 웨어 높이에 대한 유수두 비율 H/P가 증가함에 따라 유출계수 Cd는 감소하였다.
베이스 노즈 모양이 다른 웨어의 흐름 조건을 비교해 보면, 스핀들 노즈 모양(PKW1.2S)의 웨어가 평면(PKW1.2), 반원통형(PKW1.2CL) 및 삼각형 모양의 PKW보다 성능이 우수한 것으로 관찰되었습니다. 베이스 노즈(PKW1.2TR) 결과는 반원통형 및 편평한 노즈를 특징으로 하는 모델이 노즈에 충격을 가할 때 눈에 띄는 흐름 편차와 급격한 중단을 나타냄을 강조했습니다.
그러나 삼각형 및 방추형 노즈를 장착한 모델에서는 이러한 효과가 크게 감소했습니다. 또한 PKW1.20보에 비해 PKW1.2S보와 PKW1.2TR보의 유출계수는 각각 27%, 20% 증가하였다.
Keywords
Piano Key Weir, Base Nose Shape, Flow Hydraulics, Numerical Model, Triangular Nose Shape, Flat Nose Shape, Semi-Cylindrical Nose Shape, Spindle Nose Shape
Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.
Reference
Chow, V.T. (1959). “Open channel hydraulics.” McGraw-Hill Book Company, New York, NY.
Ouamane, A., and Lempérière, F. (2006). “Design of a new economic shape of weir.” Proc., Intl. Symp. on Dams in the Societies of the 21st Century, 463-470, Barcelona, Spain.
Crookston, B. M., Anderson, A., Shearin-Feimster, L., and Tullis, B. P. (2014). “Mitigation investigation of flow-induced vibrations at a rehabilitated spillway.” Proc., 5th IAHR Intl. Symp. on Hydraulic Structures, Univ. of Queensland Brisbane, Brisbane, Australia.
Machiels, O. (2012). “Experimental study of the hydraulic behaviour of Piano Key Weirs.” Ph.D. Dissertation, Faculty of Applied Science, University of Liège, Liège, Belgium.
Blanc, P., and Lempérière, F. (2001). “Labyrinth spillways have a promising future.” Intl. J. of Hydropower and Dams, 8(4), 129-131.
Muslu, Y. (2001). “Numerical analysis for lateral weir flow.” J. of Irrigation and Drainage Eng., ASCE, 127, 246.
Erpicum, S., Machiels, O., Dewals, B., Pirotton, M., and Archambeau, P. (2012). “Numerical and physical hydraulic modeling of Piano Key Weirs.” Proc., ASIA 2012 – 4th Intl. Conf. on Water Resources and Renewable Energy Development in Asia, Chiang Mai, Thailand.
Tullis, J.P., Amanian, N., and Waldron, D. (1995). “Design of Labyrinth Spillways.” J. of Hydraulic Eng., ASCE, 121.
Lux, F.L., and Hinchcliff, D. (1985). “Design and construction of labyrinth spillways.” Proc., 15th Intl. Congress on Large Dams, ICOLD, Vol. 4, 249-274, Paris, France.
Erpicum, S., Laugier, F., Ho to Khanh, M., & Pfister, M. (2017). Labyrinth and Piano Key Weirs III–PKW 2017. CRC Press, Boca Raton, FL.
Kabiri-Samani, A., and Javaheri, A. (2012). “Discharge coefficient for free and submerged flow over Piano Key weirs.” Hydraulic Research J., 50(1), 114-120.
Hien, T.C., Son, H.T., and Khanh, M.H.T. (2006). “Results of some piano Key weirs hydraulic model tests in Vietnam.” Proc., 22nd ICOLD Congress, CIGB/ICOLD, Barcelona, Spain.
Laugier, F., Lochu, A., Gille, C., Leite Ribeiro, M., and Boillat, J-L. (2009). “Design and construction of a labyrinth PKW spillway at St-Marc Dam.” Hydropower and Dams J., 15(5), 100-107.
Cicero, G.M., Menon, J.M., Luck, M., and Pinchard, T. (2011). “Experimental study of side and scale effects on hydraulic performances of a Piano Key Weir.” In: Erpicum, S., Laugier, F., Boillat, J-L, Pirotton, M., Reverchon, B., and Schleiss, A-J (Eds.), Labyrinth and Piano Key Weirs, 167-172, CRC Press, London.
Pralong, J., Vermeulen, J., Blancher, B., Laugier, F., Erpicum, S., Machiels, O., Pirotton, M., Boillat, J.L, Leite Ribeiro, M., and Schleiss, A.J. (2011). “A naming convention for the piano key weirs geometrical parameters.” In: Erpicum, S., Laugier, F., Boillat, J-L, Pirotton, M., Reverchon, B., and Schleiss, A-J (Eds.), Labyrinth and Piano Key Weirs, 271-278, CRC Press, London.
Denys, F. J. M., and Basson, G. R. (2018). “Transient hydrodynamics of Piano Key Weirs.” Proc., 7th IAHR Intl. Symp. on Hydraulic Structures, ISHS2018, 518-527, DigitalCommons@USU, Logan, UT.
Anderson, A., and Tullis, B. P. (2018). “Finite crest length weir nappe oscillation.” J. of Hydraulic Eng., ASCE, 144(6), 04018020. https://doi.org/10.1061/(ASCE)HY.1943- 7900.0001461
Erpicum, S., Laugier, F., Boillat, J.-L., Pirotton, M., Reverchon, B., and Schleiss, A. J. (2011). “Labyrinth and Piano Key Weirs–PKW 2011.” CRC Press, Boca Raton, FL.
Aydin, C.M., and Emiroglu, M.E. (2011). “Determination of capacity of labyrinth side weir by CFD.” Flow Measurement and Instrumentation, 29, 1-8.
Cicero, G.M., Delisle, J.R., Lefebvre, V., and Vermeulen, J. (2013). “Experimental and numerical study of the hydraulic performance of a trapezoidal PKW.” Proc., Intl. Workshop on Labyrinths and Piano Key Weirs PKW II 2013, 265-272, CRC Press.
Anderson, R. M. (2011). “Piano Key Weir Head Discharge Relationships.” Master’s Thesis, Utah State University, Logan, Utah.
Crookston, B.M., Anderson, R.M., and Tullis, B.P. (2018). “Free-flow discharge estimation method for Piano Key weir geometries.” J. of Hydro-environment Research, 19, 160-167
Este documento está relacionado con un proyecto en curso para el cual se está desarrollando e implementando un gemelo digital estructural del puente de Kalix en Suecia. 이 문서는 스웨덴 Kalix 교량의 구조적 디지털 트윈이 개발 및 구현되고 있는 진행 중인 프로젝트와 관련이 있습니다.
RESUMEN Las cargas ambientales, como el viento y el caudal de los ríos, juegan un papel esencial en el diseño y evaluación estructural de puentes de grandes luces. El cambio climático y los eventos climáticos extremos son amenazas para la confiabilidad y seguridad de la red de transporte.
Esto ha llevado a una creciente demanda de modelos de gemelos digitales para investigar la resistencia de los puentes en condiciones climáticas extremas. El puente de Kalix, construido sobre el río Kalix en Suecia en 1956, se utiliza como banco de pruebas en este contexto.
La estructura del puente, realizada en hormigón postensado, consta de cinco vanos, siendo el más largo de 94 m. En este estudio, las características aerodinámicas y los valores extremos de la simulación numérica del viento, como la presión en la superficie, se obtienen utilizando la simulación de remolinos desprendidos retardados (DDES) de Spalart-Allmaras como un enfoque de turbulencia RANS-LES híbrido que es práctico y computacionalmente eficiente para cerca de la pared densidad de malla impuesta por el método LES.
La presión del viento en la superficie se obtiene para tres escenarios climáticos extremos, que incluyen un clima con mucho viento, un clima extremadamente frío y el valor de cálculo para un período de retorno de 3000 años. El resultado indica diferencias significativas en la presión del viento en la superficie debido a las capas de tiempo que provienen de la simulación del flujo de viento transitorio. Para evaluar el comportamiento estructural en el escenario de viento crítico, se considera el valor más alto de presión en la superficie para cada escenario.
Además, se realiza un estudio hidrodinámico en los pilares del puente, en el que se simula el flujo del río por el método VOF, y se examina el proceso de movimiento del agua alrededor de los pilares de forma transitoria y en diferentes momentos. En cada una de las superficies del pilar se calcula la presión superficial aplicada por el caudal del río con el caudal volumétrico más alto registrado.
Para simular el flujo del río, se ha utilizado la información y las condiciones meteorológicas registradas en períodos anteriores. Los resultados muestran que la presión en la superficie en el momento en que el flujo del río golpea los pilares es mucho mayor que en los momentos posteriores. Esta cantidad de presión se puede usar como carga crítica en los cálculos de interacción fluido-estructura (FSI).
Finalmente, para ambas secciones, la presión en la superficie del viento, el campo de velocidades con respecto a las líneas de sondas auxiliares, los contornos del movimiento circunferencial del agua alrededor de los pilares y el diagrama de presión en ellos se informan en diferentes intervalos de tiempo.
요약 바람, 강의 흐름과 같은 환경 하중은 장대 교량의 설계 및 구조 평가에 필수적인 역할을 합니다. 기후 변화와 기상 이변은 교통 네트워크의 신뢰성과 보안에 위협이 됩니다.
이로 인해 극한 기상 조건에서 교량의 복원력을 조사하기 위한 디지털 트윈 모델에 대한 수요가 증가했습니다. 1956년 스웨덴 칼릭스 강 위에 건설된 칼릭스 다리는 이러한 맥락에서 테스트베드로 사용됩니다.
포스트텐션 콘크리트로 만들어진 교량 구조는 5개 경간으로 구성되며 가장 긴 길이는 94m입니다. 본 연구에서는 하이브리드 RANS-LES 난류 접근 방식인 Spalart-Allmaras 지연 분리 와류 시뮬레이션(DDES)을 사용하여 수치적 바람 시뮬레이션의 공기역학적 특성과 표면압 등 극한값을 얻습니다. LES 방법으로 부과된 벽 근처 메쉬 밀도.
바람이 많이 부는 기후, 극도로 추운 기후, 그리고 3000년의 반환 기간에 대해 계산된 값을 포함한 세 가지 극한 기후 시나리오에 대해 표면 풍압을 얻습니다. 결과는 과도 풍류 시뮬레이션에서 나오는 시간 레이어로 인해 표면 풍압에 상당한 차이가 있음을 나타냅니다. 임계 바람 시나리오에서 구조적 거동을 평가하기 위해 각 시나리오에 대해 가장 높은 표면 압력 값이 고려됩니다.
또한 교량 기둥에 대한 유체 역학 연구를 수행하여 하천의 흐름을 VOF 방법으로 시뮬레이션하고 기둥 주변의 물 이동 과정을 일시적이고 다른 시간에 조사합니다. 각 기둥 표면에서 기록된 체적 유량이 가장 높은 강의 흐름에 의해 적용되는 표면 압력이 계산됩니다.
강의 흐름을 시뮬레이션하기 위해 이전 기간에 기록된 정보와 기상 조건이 사용되었습니다. 결과는 강의 흐름이 기둥에 닿는 순간의 표면 압력이 나중에 순간보다 훨씬 높다는 것을 보여줍니다. 이 압력의 양은 유체-구조 상호작용(FSI) 계산에서 임계 하중으로 사용될 수 있습니다.
마지막으로 두 섹션 모두 바람 표면의 압력, 보조 프로브 라인에 대한 속도장, 기둥 주위 물의 원주 운동 윤곽 및 압력 다이어그램이 서로 다른 시간 간격으로 보고됩니다.
키워드: 디지털 트윈 , 풍력 공학, 콘크리트 교량, 유체역학, CFD 시뮬레이션, DDES 난류 모델, Kalix 교량
Palabras clave: Gemelo digital , Ingeniería eólica, Puente de hormigón, Hidrodinámica, Simulación CFD, Modelo de turbulencia DDES, Puente Kalix
1. Introducción
Las infraestructuras de transporte son la columna vertebral de nuestra sociedad y los puentes son el cuello de botella de la red de transporte [1]. Además, el cambio climático que da como resultado tasas de deterioro más altas y los eventos climáticos extremos son amenazas importantes para la confiabilidad y seguridad de las redes de transporte. Durante la última década, muchos puentes se han dañado o fallado por condiciones climáticas extremas como tifones e inundaciones.
Wang et al. analizó los impactos del cambio climático y mostró que se espera que el deterioro de los puentes de hormigón sea aún peor que en la actualidad, y se prevé que los eventos climáticos extremos sean más frecuentes y con mayor gravedad [2].
Además, la demanda de capacidad de carga a menudo aumenta con el tiempo, por ejemplo, debido al uso de camiones más pesados para el transporte de madera en el norte de Europa y América del Norte. Por lo tanto, existe una necesidad creciente de métodos confiables para evaluar la resistencia estructural de la red de transporte en condiciones climáticas extremas que tengan en cuenta los escenarios futuros de cambio climático.
Los activos de transporte por carretera se diseñan, construyen y explotan basándose en numerosas fuentes de datos y varios modelos. Por lo tanto, los ingenieros de diseño usan modelos establecidos proporcionados por las normas; ingenieros de construccion documentar los datos en el material real y proporcionar planos según lo construido; los operadores recopilan datos sobre el tráfico, realizan inspecciones y planifican el mantenimiento; los científicos del clima combinan datos y modelos climáticos para predecir eventos climáticos futuros, y los ingenieros de evaluación calculan el impacto de la carga climática extrema en la estructura.
Dadas las fuentes abrumadoras y la complejidad de los datos y modelos, es posible que la información y los cálculos actualizados no estén disponibles para decisiones cruciales, por ejemplo, con respecto a la seguridad estructural y la operabilidad de la infraestructura durante episodios de eventos extremos. La falta de una integración perfecta entre los datos de la infraestructura, los modelos estructurales y la toma de decisiones a nivel del sistema es una limitación importante de las soluciones actuales, lo que conduce a la inadaptación e incertidumbre y crea costos e ineficiencias.
El gemelo digital estructural de la infraestructura es una simulación estructural viva que reúne todos los datos y modelos y se actualiza desde múltiples fuentes para representar su contraparte física. El Digital Twin estructural, mantenido durante todo el ciclo de vida de un activo y fácilmente accesible en cualquier momento, proporciona al propietario/usuarios de la infraestructura una idea temprana de los riesgos potenciales para la movilidad inducidos por eventos climáticos, cargas de vehículos pesados e incluso el envejecimiento de un infraestructura de transporte.
En un proyecto en curso, estamos desarrollando e implementando un gemelo digital estructural para el puente de Kalix en Suecia. El objetivo general del presente artículo es presentar un método y estudiar los resultados de la cuantificación de las cargas estructurales resultantes de eventos climáticos extremos basados en escenarios climáticos futuros para el puente de Kalix. El puente de Kalix, construido sobre el río Kalix en Suecia en 1956, está hecho de una viga cajón de hormigón postensado. El puente se utiliza como banco de pruebas para la demostración de métodos de evaluación y control de la salud estructural (SHM) de última generación.
El objetivo específico de la investigación actual es dar cuenta de parámetros climáticos como el viento y el flujo de agua, que imponen cargas estáticas y dinámicas en las estructuras. Nuestro método, en el primer paso, consiste en simulaciones de flujo de viento y simulaciones de flujo de agua utilizando un modelado CFD transitorio basado en el modelo de turbulencia LES/DES para cuantificar las cargas de viento e hidráulicas; esto constituye el punto focal principal de este artículo.
En el siguiente paso, se estudiará la respuesta estructural del puente mediante la transformación de los perfiles de carga eólica e hidráulica en cargas estructurales en el análisis de EF estructural no lineal. Por último, el modelo estructural se actualizará incorporando sin problemas los datos del SHM y, por lo tanto, creando un gemelo digital estructural que refleje la verdadera respuesta de la estructura. Los dos primeros enfoques de investigación permanecen fuera del alcance inmediato del presente artículo.
2. Descripción del puente de Kalix
El puente de Kalix consta de 5 vanos largos de los cuales el más largo tiene unos 94 metros y el más corto 43,85 m. El puente es de hormigón postensado, el cual se cuela in situ de forma segmentaria y una viga cajón no prismática como se muestra en la Fig. 1. El puente es simétrico en geometría y hay una bisagra en el punto medio. El ancho del tablero del puente en la losa superior e inferior es de aproximadamente 13 my 7,5 m, respectivamente. El espesor del muro es de 45 cm y el espesor de la losa inferior varía de 20 cm a 50 cm.
Las pruebas en túnel de viento solían ser la única forma de examinar la reacción de los puentes a las cargas de viento Consulte [3]; sin embargo, estos experimentos requieren mucho tiempo y son costosos. Se requieren cerca de 6 a 8 semanas para realizar una prueba típica en un túnel de viento Consulte [4]. Los últimos logros en la capacidad computacional de las computadoras brindan oportunidades para la simulación práctica del viento alrededor de puentes utilizando la dinámica de fluidos computacional (CFD).
Es beneficioso investigar la presión del viento en los componentes del puente utilizando una simulación por computadora. Es necesario determinar los parámetros de simulación del puente y el campo de viento a su alrededor; por lo tanto, se pueden evaluar con precisión sus impactos en las fuerzas aplicadas en el puente.
Las demandas de diseño de las estructuras de puentes requieren una investigación rigurosa de la acción del viento, especialmente en condiciones climáticas extremas. Garantizar la estabilidad de los puentes de grandes luces, ya que sus características y formaciones son más propensas a la carga de viento, se encuentra entre las principales consideraciones de diseño [3].
3.1. Parámetros de simulación
La velocidad básica del viento se elige 22 m/s según el mapa de viento de Suecia y la ubicación del puente de Kalix según EN 1991-1-4 [5] y el código sueco BFS 2019: 1 EKS 11; ver figura 1. La superficie libre sobre el agua se considera un área expuesta a la carga de viento. La dirección del ataque del viento dominante se considera perpendicular al tablero del puente.
Las simulaciones actuales se basan en tres escenarios que incluyen: viento extremo, frío extremo y valor de diseño para un período de retorno de 3000 años. Cada condición tiene diferentes valores de temperatura, viento básico velocidad, viscosidad cinemática y densidad del aire, como se muestra en la Tabla 1. Los conjuntos de datos meteorológicos se sintetizaron para dos semanas meteorológicas extremas durante el período de 30 años de 2040-2069, considerando 13 escenarios climáticos futuros diferentes con diferentes modelos climáticos globales (GCM) y rutas de concentración representativas (RCP).
Se seleccionaron una semana de frío extremo y una semana de viento extremo utilizando el enfoque desarrollado de Nik [7]. El planteamiento se adaptó a las necesidades de este trabajo, considerando el horario semanal en lugar de mensual. Se ha verificado la aplicación del enfoque para simulaciones complejas, incluidos los sistemas de energía Consulte [7]Consulte [8], hidrotermal Consulte [ 9] y simulaciones de microclimas Consulte [10].
Para considerar las condiciones climáticas extremas de una infraestructura muy importante, el valor de la velocidad básica del viento debe transferirse del período de retorno de 50 años a 3000 años como se indica en la ecuación 1 [6]. El perfil de velocidad y turbulencia se crea en base a EN 1991-1-4 [5] para la categoría de terreno 0 (Z0 = 0,003 my Zmín = 1 m), donde Z0 y Zmín son la longitud de rugosidad y la altura mínima, respectivamente. La variación de la velocidad del viento con la altura se define en la ecuación 2, donde co (z) es el factor de orografía tomado como 1, vm (z) es la velocidad media del viento a la altura z, kr es el factor del terreno que depende de la longitud de la rugosidad , e Iv (z) es la intensidad de la turbulencia; ver ecuación 3.���50=[0.36+0.1ln12�] 1�����=��·ln��0·��� [2]���=�����=�1�0�·ln�/�0 ��� ����≤�≤���� [3]���=������ ��� �<���� [4]
Se calcula que el valor de la velocidad del viento para T = período de retorno de 3000 años es de 31 m/s; por lo tanto, los diagramas de velocidad del viento e intensidad de turbulencia se obtienen como se muestra en la figura 2.
Para que las investigaciones sean precisas en el flujo alrededor de estructuras importantes como puentes, se aplica un enfoque híbrido que incluye simulaciones de remolinos desprendidos retardados (DDES) y es computacionalmente eficiente [11][12]. Este modelo de turbulencia usa un método RANS cerca de las capas límite y el método LES lejos de las capas límite y en el área del flujo de la región separada ‘.
En el primer paso, el enfoque de simulación de remolinos separados se ha ampliado para adquirir predicciones de fuerza fiables en los modelos con un gran impacto del flujo separado. Hay varios ejemplos en la parte de revisión de Spalart Consulte [11] para varios casos que usan la aplicación del modelo de turbulencia de simulación de remolino separado (DES).
La formulación DES inicial [13] se desarrolla utilizando el enfoque de Spalart-Allmaras. Con respecto a la transición del enfoque RANS al LES, se revisa el término de destrucción en la ecuación de transporte de viscosidad modificada: la distancia entre un punto en el dominio y la superficie sólida más cercana (d) se sustituye por el factor introducido por:�~=���(�.����·∆)
Se ha empleado un enfoque modificado de DES, conocido como simulación de remolinos desprendidos retardados (DDES), para dominar el probable problema de la “separación inducida por la rejilla” (GIS) que está relacionado con la geometría de la rejilla. El objetivo de este nuevo enfoque es confirmar que el modelado de turbulencia se mantiene en modo RANS en todas las capas de contorno [14]. Por lo tanto, la definición del parámetro se modifica como se define:�~=�-�����(0. �-����·�) 6
donde fd es una función de filtro que considera un valor de 0 en las capas límite cercanas al muro (zona RANS) y un valor de 1 en las áreas donde se realizó la separación del flujo (zona LES).
3.3. Rejilla computacional y resultados
RWIND 2.01 Pro se emplea para la simulación de viento CFD, que usa el código CFD externo OpenFOAM® versión 17.10. La simulación CFD tridimensional se realiza como una simulación de viento transitorio para flujo turbulento incompresible utilizando el algoritmo SIMPLE (Método semi-implícito para ecuaciones vinculadas a presión).
En la simulación actual, el solucionador de estado estacionario se considera como la condición inicial, lo que significa que cuando se está calculando el flujo transitorio, el cálculo del estado estacionario de la condición inicial comienza en la primera parte de la simulación y tan pronto como se calcula. completado, el cálculo de transitorios se iniciará automáticamente.
La cuadrícula computacional se realiza mediante 8.057.279 celdas tridimensionales y 8.820.901 nudos, también se consideran las dimensiones del dominio del túnel de viento 2000 m * 1000 m * 100 m (largo, ancho, alto) como se muestra en la figura 3. El volumen mínimo de la celda es de 6,34 * 10-5 m3, el volumen máximo es de 812,30 m3 y la desviación máxima es de 1,80.
La presión residual final se considera 5 * 10-5. El proceso de generación de mallas e independencia de la rejilla se ha realizado utilizando los cuatro tamaños de malla que se muestran en la figura 4 para la malla de referencia, y finalmente se ha conseguido la independencia de la rejilla.
Se han realizado tres simulaciones para obtener el valor de la presión del viento para condiciones climáticas extremas y el valor de cálculo del viento que se muestra en la Fig. 5. Para cada escenario, el resultado de la presión del viento se obtiene utilizando el modelo de turbulencia transitoria DDES con respecto a 30 (s) de duración que incluye 60 capas de tiempo (Δt = 0,5 s).
Se puede observar que el área frontal del puente está expuesta a la presión del viento positiva y la cantidad de presión aumenta en la altura cerca del borde del tablero para todos los escenarios. Además, la Fig. 5. ilustra los valores negativos de la presión del viento en su totalidad en la superficie de la cubierta. El valor de pertenencia para el período de 3000 años es mucho más alto que los otros escenarios.
Es importante tener en cuenta que el intervalo de la velocidad del viento de entrada tiene un gran impacto en el valor de la presión en la superficie más que en los otros parámetros. Además, para cada escenario, el intervalo más alto de presión del viento y succión durante el tiempo total debe considerarse como una carga de viento crítica impuesta a la estructura. El valor más bajo de la presión en la superficie se obtiene en el escenario de condiciones de frío extremo, mientras que en condiciones de mucho viento, el valor de la presión se vuelve un orden de magnitud más alto.
Además, es importante tener en cuenta que el comportamiento del puente sería completamente diferente debido a las diferentes temperaturas del aire, y puede ocurrir un posible caso crítico en el escenario que experimente una presión menor. Con respecto al valor de entrada de cada escenario, el rango más alto de presión del viento pertenece al nivel de diseño debido al período de retorno de 3000 años, que ha recibido la velocidad del viento más alta como velocidad de entrada.
4. Simulación hidráulica
Los pilares de los puentes a través del río pueden bloquear el flujo al reducir la sección transversal del río, crear corrientes parásitas locales y cambiar la velocidad del flujo, lo que puede ejercer presión en las superficies de los pilares. Cuando el río fluye hacia los pilares del puente, el proceso del flujo de agua alrededor de la base se puede dividir en dos partes: aplicando presión en el momento en que el agua golpea el pilar del puente y después de la presión inicial cuando el agua fluye alrededor de los pilares [15].
Cuando el agua alcanza los pilares del puente a una cierta velocidad, el efecto de la presión sobre los pilares es mucho mayor que la presión del fluido que queda a su alrededor. Debido a los desarrollos de la ciencia de la computación, así como al desarrollo cada vez mayor de los códigos dinámicos de fluidos computacionales, se han utilizado ampliamente varias simulaciones numéricas y se ha demostrado que los resultados de muchas simulaciones son consistentes con los resultados experimentales [16].
Por ello, en esta investigación se ha utilizado el método de la dinámica de fluidos computacional para simular los fenómenos que gobiernan el comportamiento del flujo de los ríos. Para este estudio se ha seleccionado una solución tridimensional basada en cálculos numéricos utilizando el modelo de turbulencia LES. La simulación tridimensional del flujo del río en diferentes direcciones y velocidades nos permite calcular y analizar todas las presiones en la superficie de los pilares del puente en diferentes intervalos de tiempo.
4.1. Parámetros de simulación
El flujo del río se puede definir como un flujo de dos fases, que incluye agua y aire, en un canal abierto. El flujo de canal abierto es un flujo de fluido con una superficie libre en la que la presión atmosférica se distribuye uniformemente y se crea por el peso del fluido. Para simular este tipo de flujo se utiliza el método multifase VOF.
El programa Flow3D, disponible en el mercado, utiliza los métodos de fracciones volumétricas VOF y FAVOF. En el método VOF, el dominio de modelado se divide primero en celdas de elementos o volúmenes de controles más pequeños. Para los elementos que contienen fluidos, se mantienen valores numéricos para cada una de las variables de flujo dentro de ellos.
Estos valores representan la media volumétrica de los valores en cada elemento. En las corrientes superficiales libres, no todas las celdas están llenas de líquido; algunas celdas en la superficie de flujo están medio llenas. En este caso, se define una cantidad llamada volumen de fluido, F, que representa la parte de la celda que se llena con el fluido.
Después de determinar la posición y el ángulo de la superficie del flujo, será posible aplicar las condiciones de contorno apropiadas en la superficie del flujo para calcular el movimiento del fluido. A medida que se mueve el fluido, el valor de F también cambia con él. Las superficies libres son monitoreadas automáticamente por el movimiento de fluido dentro de una red fija. El método FAVOR se usa para determinar la geometría.
También se puede usar otra cantidad de fracción volumétrica para determinar el nivel de un cuerpo rígido desocupado ( Vf ). Cuando se conoce el volumen que ocupa el cuerpo rígido en cada celda, el límite del fluido dentro de la red fija se puede determinar como VOF. Este límite se usa para determinar las condiciones de contorno del muro que sigue el arroyo. En general, la ecuación de continuidad de masa es la siguiente:��𝜕�𝜕�+𝜕𝜕�(����)+�𝜕𝜕�(����)+𝜕𝜕�(����)+������=���� 10
Las ecuaciones de movimiento para los componentes de la velocidad de un fluido en coordenadas 3D, o en otras palabras, las ecuaciones de Navier-Stokes, son las siguientes:𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�+��2�����=-1�𝜕�𝜕�+��+��-��-��������-��-��� 11𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�+��������=-�1�𝜕�𝜕�+��+��-��-��������-��-��� 12𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�=-1�𝜕�𝜕�+��+��-��-��������-��-��� 13
Donde VF es la relación del volumen abierto al flujo, ρ es la densidad del fluido, (u, v, w) son las componentes de la velocidad en las direcciones x, y y z, respectivamente, R SOR es la función de la fuente, (Ax, Ay, Az ) son las áreas fraccionales, (Gx, Gy, Gz ) son las fuerzas gravitacionales, (fx, fy, fz ) son las aceleraciones de la viscosidad y (bx, by, bz ) son las pérdidas de flujo en medios porosos en las direcciones x, y, z, respectivamente [17].
La zona de captación del río Kalix es grande y amplia, por lo que tiene un clima subpolar con inviernos fríos y largos y veranos suaves y cortos. Aproximadamente el 50% de las precipitaciones en esta zona es nieve. En mayo, por lo general, el deshielo provoca un aumento significativo en el caudal del río. Las condiciones climáticas del río se resumen en la Tabla 2, [18].
Contrariamente a la tendencia general de este estudio, la previsión de las condiciones meteorológicas mencionadas está utilizando la información meteorológica registrada en los períodos pasados. En función de la información meteorológica disponible, definimos las condiciones de contorno al realizar los cálculos.
Primero, según las dimensiones de los pilares en tres direcciones X, Y, Z, y según la dimensión longitudinal de los pilares (D = 8,5 m; véase la figura 7), el dominio se extiende 10D aguas arriba y 20D aguas abajo. Se ha utilizado el método de mallado estructurado (cartesiano) y el software Flow3D para resolver este problema. Para una cuadrícula correcta, el dominio se debe dividir en diferentes secciones.
Esta división se basa en lugares con fuertes pendientes. Usando la creación de una nueva superficie, el dominio se puede dividir en varias secciones para crear una malla regular con las dimensiones correctas y apropiadas, se puede especificar el número de celdas en cada superficie.
Esto aumenta el volumen final de las células. Por esta razón, hemos dividido este dominio en tres niveles: Grueso, medio y fino. Los resultados de los estudios de independencia de la red se muestran en la figura 6. Para comprobar los resultados calculados, primero debemos asegurarnos de que la corriente de entrada sea la correcta. Para hacer esto, el caudal de entrada se mide en el dominio de la solución y se compara con el valor base. Las dimensiones del dominio de la solución se especifican en la figura 7. Esta figura también contribuye al reconocimiento de los pilares del puente y su denominación de superficies.
Como se muestra en la Fig. 8, el caudal del río se encuentra dentro del intervalo admisible durante el 90% del tiempo de simulación y el caudal de entrada se ha simulado correctamente. Además, en la Fig. 9, la velocidad media del río se calcula en función del caudal y del área de la sección transversal del río.
Para extraer la cantidad de presión aplicada a los diferentes lados de las columnas, hemos seleccionado el intervalo de tiempo de simulación de 10 a 25 segundos (tiempo de estabilización de descarga en la cantidad de 1800 metros cúbicos por segundo). Los resultados calculados para cada lado se muestran en la Fig. 10 y 11. Los contornos de velocidad también se muestran en las Figuras 12 y 13. Estos contornos se ajustan en función de la velocidad del fluido en un momento dado.
Debido a las dimensiones del dominio de la solución y al caudal del río, el flujo de agua llega a los pilares del puente en el décimo segundo y la presión inicial del flujo del río afecta las superficies de los pilares del puente. Esta presión inicial decrece con el tiempo y se estabiliza en un rango determinado para cada lado según el área y el porcentaje de interacción con el flujo. Para los cálculos de interacción fluido-estructura (FSI), se puede usar la presión crítica calculada en el momento en que la corriente golpea los pilares.
Los efectos de las condiciones meteorológicas extremas, incluido el viento dinámico y el flujo de agua, se investigaron numéricamente para el puente de Kalix. Se definieron tres escenarios para las simulaciones dinámicas de viento, incluido el clima con mucho viento, el clima extremadamente frío y el valor de diseño para un período de retorno de 3.000 años. Aprovechando las simulaciones CFD, se determinaron las presiones del viento en pasos de 60 tiempos (30 segundos) utilizando el modelo de turbulencia transitoria DDES.
Los resultados indican diferencias significativas entre los escenarios, lo que implica la importancia de los datos de entrada, especialmente el diagrama de velocidades del viento. Se observó que el valor de diseño para el período de devolución de 3000 años tiene un impacto mucho mayor que los otros escenarios. Además, se mostró la importancia de considerar el rango más alto de presión del viento en la superficie a través de los pasos de tiempo para evaluar el comportamiento estructural del puente en la condición más crítica.
Además, se consideró el caudal máximo del río para una simulación transitoria según las condiciones meteorológicas registradas, y los pilares del puente se sometieron al caudal máximo del río durante 30 segundos. Por lo tanto, además de las condiciones físicas del flujo del río y cómo cambia la dirección del flujo aguas abajo, se cuantificaron las presiones máximas del agua en el momento en que el flujo golpea los pilares.
En el trabajo futuro, el rendimiento estructural del puente de Kalix será evaluado por imposición de la carga del viento, la presión del agua y la carga del tráfico, creando así un gemelo digital estructural que refleja la verdadera respuesta de la estructura.
6. Reconocimiento
Los autores agradecen enormemente el apoyo de Dlubal Software por proporcionar la licencia de RWIND Simulation, así como de Flow Sciences Inc. por proporcionar la licencia de FLOW-3D.
Jančula, M., Jošt, J., & Gocál, J. (2021). Influencia de las acciones ambientales agresivas en las estructuras de los puentes. Transportation Research Procedia, 55 , 1229–1235. https://doi.org/10.1016/j.trpro.2021.07.104
Wang, X., Nguyen, M., Stewart, MG, Syme, M. y Leitch, A. (2010). Análisis de los impactos del cambio climático en el deterioro de la infraestructura de hormigón – Informe de síntesis. CSIRO, Canberra.
Kemayou, BTM (2016). Análisis de secciones de tableros de puentes por el método de la pseudocompresibilidad basado en FDM y LES: Mejora del rendimiento mediante la implementación de la computación en paralelo (tesis). Universidad de Arkansas.
Larsen, A. y Walther, JH (1997). Análisis aeroelástico de secciones de vigas de puentes basado en simulaciones discretas de vórtices. Journal of Wind Engineering and Industrial Aerodynamics, 67–68 , 253–265. https://doi.org/10.1016/s0167-6105(97)00077-9
Eurocódigo 1: Acciones en estructuras. (2006). Instituto Británico de Normas.
ASCE. Cargas mínimas de cálculo para edificios y otras estructuras. (2013). Sociedad Estadounidense de Ingenieros Civiles.
Nik, VM (2016). Facilitación de la simulación energética para el clima futuro: síntesis de conjuntos de datos meteorológicos típicos y extremos a partir de modelos climáticos regionales (RCM). Applied Energy, 177 , 204–226. https://doi.org/10.1016/j.apenergy.2016.05.107
Perera, AT, Nik, VM, Chen, D., Scartezzini, J.‑L. y Hong, T. (2020). Cuantificación de los impactos del cambio climático y los eventos climáticos extremos en los sistemas energéticos. Nature Energy, 5 (2), 150–159. https://doi.org/10.1038/s41560-020-0558-0
Nik, VM (2017). Aplicación de conjuntos de datos meteorológicos típicos y extremos en la simulación higrotérmica de componentes de construcción para el clima futuro: un estudio de caso para un muro de entramado de madera. Energy and Buildings, 154 , 30–45. https://doi.org/10.1016/j.enbuild.2017.08.042
Hosseini, M., Javanroodi, K. y Nik, VM (2022). Evaluación de impacto de alta resolución del cambio climático en el rendimiento energético de los edificios considerando los eventos meteorológicos extremos y el microclima – Investigando las variaciones en el confort térmico interior y los grados-día. Ciudades sostenibles y sociedad, 78 , 103634. https://doi.org/10.1016/j.scs.2021.103634
Spalart, P. R. (2009). Simulación de remolinos separados. Revisión anual de mecánica de fluidos, 41 , 181–202. https://doi.org/10.1146/annurev.fluid.010908.165130
Spalart, PR, et al. (2006) Una nueva versión de simulación de remolinos separados, resistente a densidades de rejilla ambiguas. Dinámica de fluidos teórica y computacional, 2006. 20 (3), 181-195. https://doi.org/10.1007/s00162-006-0015-0
Spalart, PR (1997). Comentarios sobre la viabilidad de LES para alas y sobre una aproximación híbrida RANS/LES. En Actas de la Primera Conferencia Internacional de AFOSR sobre DNS/LES. Prensa de Greyden.
Boudreau, M., Dumas, G. y Veilleux, J.-C. (2017). Evaluación de la capacidad del enfoque de modelado de turbulencia DDES para simular la estela de un cuerpo de farol. Aeroespacial, 4 (3), 41. https://doi.org/10.3390/aerospace4030041
Wang, Y., Zou, Y., Xu, L. y Luo, Z. (2015). Análisis de la presión del flujo de agua en pilas de puentes considerando el efecto del impacto. Problemas matemáticos en ingeniería, 2015 , 1–8. https://doi.org/10.1155/2015/687535
Qi, H., Zheng, J. y Zhang, C. (2020). Simulación numérica del campo de velocidades alrededor de dos pilares de pilas en tándem del puente longitudinal. Fluidos, 5 (1), 32. https://doi.org/10.3390/fluids5010032
Jalal, H. K. y Hassan, W. H (2020). Simulación numérica tridimensional de la socavación local alrededor de la pila de un puente circular utilizando el software flow-3d. Ciclo de conferencias de IOP: Ciencia e ingeniería de materiales, 745 , 012150. https://doi.org/10.1088/1757-899x/745/1/012150
Herzog, S. D., Conrad, S., Ingri, J., Persson, P. y Kritzberg, E. S (2019). Cambios inducidos por crecidas de primavera en la especiación y destino del Fe a mayor salinidad. Geoquímica aplicada, 109 , 104385. https://doi.org/10.1016/j.apgeochem.2019.104385
Alireza Khoshkonesh1, Blaise Nsom2, Saeid Okhravi3*, Fariba Ahmadi Dehrashid4, Payam Heidarian5, Silvia DiFrancesco6 1 Department of Geography, School of Social Sciences, History, and Philosophy, Birkbeck University of London, London, UK. 2 Université de Bretagne Occidentale. IRDL/UBO UMR CNRS 6027. Rue de Kergoat, 29285 Brest, France. 3 Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104, Bratislava, Slovak Republic. 4Department of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, 65178-38695, Hamedan, Iran. 5 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy. 6Niccol`o Cusano University, via Don C. Gnocchi 3, 00166 Rome, Italy. * Corresponding author. Tel.: +421-944624921. E-mail: saeid.okhravi@savba.sk
Abstract
This study aimed to comprehensively investigate the influence of substrate level difference and material composition on dam break wave evolution over two different erodible beds. Utilizing the Volume of Fluid (VOF) method, we tracked free surface advection and reproduced wave evolution using experimental data from the literature. For model validation, a comprehensive sensitivity analysis encompassed mesh resolution, turbulence simulation methods, and bed load transport equations. The implementation of Large Eddy Simulation (LES), non-equilibrium sediment flux, and van Rijn’s (1984) bed load formula yielded higher accuracy compared to alternative approaches. The findings emphasize the significant effect of substrate level difference and material composition on dam break morphodynamic characteristics. Decreasing substrate level disparity led to reduced flow velocity, wavefront progression, free surface height, substrate erosion, and other pertinent parameters. Initial air entrapment proved substantial at the wavefront, illustrating pronounced air-water interaction along the bottom interface. The Shields parameter experienced a one-third reduction as substrate level difference quadrupled, with the highest near-bed concentration observed at the wavefront. This research provides fresh insights into the complex interplay of factors governing dam break wave propagation and morphological changes, advancing our comprehension of this intricate phenomenon.
이 연구는 두 개의 서로 다른 침식층에 대한 댐 파괴파 진화에 대한 기질 수준 차이와 재료 구성의 영향을 종합적으로 조사하는 것을 목표로 했습니다. VOF(유체량) 방법을 활용하여 자유 표면 이류를 추적하고 문헌의 실험 데이터를 사용하여 파동 진화를 재현했습니다.
모델 검증을 위해 메쉬 해상도, 난류 시뮬레이션 방법 및 침대 하중 전달 방정식을 포함하는 포괄적인 민감도 분석을 수행했습니다. LES(Large Eddy Simulation), 비평형 퇴적물 플럭스 및 van Rijn(1984)의 하상 부하 공식의 구현은 대체 접근 방식에 비해 더 높은 정확도를 산출했습니다.
연구 결과는 댐 붕괴 형태역학적 특성에 대한 기질 수준 차이와 재료 구성의 중요한 영향을 강조합니다. 기판 수준 차이가 감소하면 유속, 파면 진행, 자유 표면 높이, 기판 침식 및 기타 관련 매개변수가 감소했습니다.
초기 공기 포집은 파면에서 상당한 것으로 입증되었으며, 이는 바닥 경계면을 따라 뚜렷한 공기-물 상호 작용을 보여줍니다. 기판 레벨 차이가 4배로 증가함에 따라 Shields 매개변수는 1/3로 감소했으며, 파면에서 가장 높은 베드 근처 농도가 관찰되었습니다.
이 연구는 댐 파괴파 전파와 형태학적 변화를 지배하는 요인들의 복잡한 상호 작용에 대한 새로운 통찰력을 제공하여 이 복잡한 현상에 대한 이해를 향상시킵니다.
Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours
correspond to the horizontal component of the flow velocity (u), expressed in m/s).
Aleixo, R., Soares-Frazão, S., Zech, Y., 2010. Velocity profiles in dam-break flows: water and sediment layers. In: Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2010”, pp. 533–540. An, S., Ku, H., Julien, P.Y., 2015. Numerical modelling of local scour caused by submerged jets. Maejo Int. J. Sci. Technol., 9, 3, 328–343. Bahmanpouri, F., Daliri, M., Khoshkonesh, A., Namin, M.M., Buccino, M., 2021. Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling. J. Hydrol., 594, 125645. https://doi.org/10.1016/j.jhydrol.2020.125645 Baklanov, A., 2007. Environmental risk and assessment modelling – scientific needs and expected advancements. In: Ebel, A., Davitashvili, T. (Eds.): Air, Water and Soil Quality Modelling for Risk and Impact Assessment Springer, Dordrecht, pp. 29–44. Biscarini, C., Di Francesco, S., Nardi, F., Manciola, P., 2013. Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods. Math. Probl. Eng., 928309. https://doi.org/10.1155/2013/928309 Cao, Z., Pender, G., Wallis, S., Carling, P., 2004. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng., 130, 7, 689–703. Catucci, D., Briganti, R., Heller, V., 2021. Numerical validation of novel scaling laws for air entrainment in water. Proc. R. Soc. A, 477, 2255,20210339. https://doi.org/10.1098/rspa.2021.0339 Dehrashid, F.A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan, S., Tang, X., Lu, C., Wang, X., 2023. CFD modeling the flow dynamics in an open channel with double-layered vegetation. Model. Earth Syst. Environ., 9, 1, 543–555. Desombre, J., Morichon, D., Mory, M., 2013. RANS v2-f simulation of a swash event: Detailed flow structure. Coastal Eng., 71, 1–12. Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment particles in the presence of bed forms under decelerating and accelerating flows. J. Hydrol. Hydromech., 70, 1, 89–102. Dong, Z., Wang, J., Vetsch, D.F., Boes, R.M., Tan, G., 2019. Numerical simulation of air entrainment on stepped spillways. In: E-proceedings of the 38th IAHR World Congress (pp. 1494). September 1–6, 2019, Panama City, Panama. DOI: 10.3850/38WC092019-0755 Flow3D [computer software]. 2023. Santa Fe, NM: Flow Science, Inc. Fraccarollo, L., Capart, H., 2002. Riemann wave description of erosional dam-break flows. J. Fluid Mech., 461, 183–228. Gu, Z., Wang, T., Meng, W., Yu, C.H., An, R., 2023. Numerical investigation of silted-up dam-break flow with different silted-up sediment heights. Water Supply, 23, 2, 599–614. Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of conventional flow resistance equations and a model for the Nikuradse roughness in vegetated flows at high submergence. J. Hydrol. Hydromech., 66, 1, 107–120. Heller, V., 2011. Scale effects in physical hydraulic engineering models. J. Hydraul. Res., 49, 3, 293–306. Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free surface. Flow Science, Inc. Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 1, 201– 225. Issakhov, A., Zhandaulet, Y., Nogaeva, A., 2018. Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int. J. Multiphase Flow, 109, 191–206. Khayyer, A., Gotoh, H., 2010. On particle-based simulation of a dam break over a wet bed. J. Hydraul. Res., 48, 2, 238–249. Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F.A., Bahmanpouri, F., Di Francesco, S., 2022. Dam-break flow dynamics over a stepped channel with vegetation. J. Hydrol., 613,128395. https://doi.org/10.1016/j.jhydrol.2022.128395 Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019. A comprehensive study on dam-break flow over dry and wet beds. Ocean Eng., 188, 106279. https://doi.org/10.1016/j.oceaneng.2019.106279 Khoshkonesh, A., Sadeghi, S.H., Gohari, S., Karimpour, S., Oodi, S., Di Francesco, S., 2023. Study of dam-break flow over a vegetated channel with and without a drop. Water Resour. Manage., 37, 5, 2107–2123. Khosravi, K., Chegini, A.H.N., Cooper, J., Mao, L., Habibnejad, M., Shahedi, K., Binns, A., 2021. A laboratory investigation of bedload transport of gravel sediments under dam break flow. Int. J. Sediment Res., 36, 2, 229–234. Kim, Y., Zhou, Z., Hsu, T.J., Puleo, J.A., 2017. Large eddy simulation of dam‐break‐driven swash on a rough‐planar beach. J. Geophys. Res.: Oceans, 122, 2, 1274–1296. Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol., 432, 145–153. Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wavefront celerity. J. Hydraul. Eng., 132, 1, 69–76. Leal, J.G.A.B., Ferreira, R.M., Cardoso, A.H., 2003. Dam-break wave propagation over a cohesionless erodible bed. In: Proc. 30rd IAHR Congress, 100, 261–268. Li, Y. L., Ma, Y., Deng, R., Jiang, D.P., Hu, Z., 2019. Research on dam-break induced tsunami bore acting on the triangular breakwater based on high order 3D CLSVOF-THINC/WLICIBM approaching. Ocean Eng., 182, 645–659. Li, Y.L., Yu, C.H., 2019. Research on dam-break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng., 178, 442–462. Mei, S., Chen, S., Zhong, Q., Shan, Y., 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching. Landslides, 19, 12, 2925–2949. Meng, W., Yu, C.H., Li, J., An, R., 2022. Three-dimensional simulation of silted-up dam-break flow striking a rigid structure. Ocean Eng., 261, 112042. https://doi.org/10.1016/j.oceaneng.2022.112042 Meyer-Peter, E., Müller, R., 1948. Formulas for bed-load transport. In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR. Nielsen, P., 1984. Field measurements of time-averaged suspended sediment concentrations under waves. Coastal Eng., 8, 1, 51–72. Nielsen, P., 2018. Bed shear stress, surface shape and velocity field near the tips of dam-breaks, tsunami and wave runup. Coastal Eng., 138, 126–131. Nsom, B., Latrache, N., Ramifidisoa, L., Khoshkonesh, A., 2019. Analytical solution to the stability of gravity-driven stratified flow of two liquids over an inclined plane. In: 24th French Mechanics Congress in Brest. Brest, p. 244178. Nsom, B., Ravelo, B., Ndong, W., 2008. Flow regimes in horizontal viscous dam-break flow of Cayous mud. Appl. Rheol., 18, 4, 43577-1. https://doi.org/10.1515/arh-2008-0012 Oguzhan, S., Aksoy, A.O., 2020. Experimental investigation of the effect of vegetation on dam break flood waves. J. Hydrol. Hydromech., 68, 3, 231–241. Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022. Effects of bedmaterial gradation on clear water scour at single and group of piles. J. Hydrol. Hydromech., 70, 1, 114–127. Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2023. Numerical modeling of local scour of non-uniform graded sediment for two arrangements of pile groups. Int. J. Sediment Res., 38, 4, 597–614. Parambath, A., 2010. Impact of tsunamis on near shore wind power units. Master’s Thesis. Texas A&M University. Available electronically from https://hdl.handle.net/1969.1/ETD-TAMU2010-12-8919 Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., Torres-Freyermuth, A.,
Hydrodynamics and sediment transport under a dambreak-driven swash: An experimental study. Coastal Eng., 170,
https://doi.org/10.1016/j.coastaleng.2021.103986 Riaz, K., Aslam, H.M.S., Yaseen, M.W., Ahmad, H.H., Khoshkonesh, A., Noshin, S., 2022. Flood frequency analysis and hydraulic design of bridge at Mashan on river Kunhar. Arch. Hydroengineering Environ. Mech., 69, 1, 1–12. Ritter, A., 1892. Die Fortpflanzung der Wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure, 36, 33, 947–954. (In German.) Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev., 91, 3, 99–164. Soulsby, R.L., 1997. Dynamics of marine sands: a manual for practical applications. Oceanogr. Lit. Rev., 9, 44, 947. Spinewine, B., Capart, H., 2013. Intense bed-load due to a sudden dam-break. J. Fluid Mech., 731, 579–614. Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport. J. Hydraul. Eng., 110, 10, 1431–1456. Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., Sadegh, M.,
Experimental study and numerical verification of silted-up dam break. J. Hydrol., 590, 125267. https://doi.org/10.1016/j.jhydrol.2020.125267 Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume model for sediment transport. J. Hydraul. Res., 46, 1, 87–98. Xu, T., Huai, W., Liu, H., 2023. MPS-based simulation of dam-break wave propagation over wet beds with a sediment layer. Ocean Eng., 281, 115035. https://doi.org/10.1016/j.oceaneng.2023.115035 Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018. Numerical study on characteristics of dam-break wave. Ocean Eng., 159, 358–371. Yao, G.F., 2004. Development of new pressure-velocity solvers in FLOW-3D. Flow Science, Inc., USA.
Farhoud Kalateh a,*, Ehsan Aminvash a and Rasoul Daneshfaraz b a Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran b Faculty of Engineering, University of Maragheh, Maragheh, Iran *Corresponding author. E-mail: f.kalateh@gmail.com
ABSTRACT
The main goal of the present study is to investigate the effects of macro-roughnesses downstream of the inclined drop through numerical models. Due to the vital importance of geometrical properties of the macro-roughnesses in the hydraulic performance and efficient energy dissipation downstream of inclined drops, two different geometries of macro-roughnesses, i.e., semi-circular and triangular geometries, have been investigated using the Flow-3D model. Numerical simulation showed that with the flow rate increase and relative critical depth, the flow energy consumption has decreased. Also, relative energy dissipation increases with the increase in height and slope angle, so that this amount of increase in energy loss compared to the smooth bed in semi-circular and triangular elements is 86.39 and 76.80%, respectively, in the inclined drop with a height of 15 cm and 86.99 and 65.78% in the drop with a height of 20 cm. The Froude number downstream on the uneven bed has been dramatically reduced, so this amount of reduction has been approximately 47 and 54% compared to the control condition. The relative depth of the downstream has also increased due to the turbulence of the flow on the uneven bed with the increase in the flow rate.
본 연구의 주요 목표는 수치 모델을 통해 경사 낙하 하류의 거시 거칠기 효과를 조사하는 것입니다. 수력학적 성능과 경사 낙하 하류의 효율적인 에너지 소산에서 거시 거칠기의 기하학적 특성이 매우 중요하기 때문에 두 가지 서로 다른 거시 거칠기 형상, 즉 반원형 및 삼각형 형상이 Flow를 사용하여 조사되었습니다.
3D 모델 수치 시뮬레이션을 통해 유량이 증가하고 상대 임계 깊이가 증가함에 따라 유동 에너지 소비가 감소하는 것으로 나타났습니다. 또한, 높이와 경사각이 증가함에 따라 상대적인 에너지 소산도 증가하는데, 반원형 요소와 삼각형 요소에서 평활층에 비해 에너지 손실의 증가량은 경사낙하에서 각각 86.39%와 76.80%입니다.
높이 15cm, 높이 20cm의 드롭에서 86.99%, 65.78%입니다. 고르지 못한 베드 하류의 프루드 수가 극적으로 감소하여 이 감소량은 대조 조건에 비해 약 47%와 54%였습니다. 유속이 증가함에 따라 고르지 못한 층에서의 흐름의 난류로 인해 하류의 상대적 깊이도 증가했습니다.
Key words
flow energy dissipation, Froude number, inclined drop, numerical simulation
Figure 1 | Schematic of the present research model with dimensions and macro-roughnesses installed.Figure 2 | Meshing, boundary condition, and solution field network
REFERENCES
Abbaspour, A., Taghavianpour, T. & Arvanaghi, H. 2019 Experimental study of the hydraulic jump on the reverse bed with porous screens. Applied Water Science 9, 155. Abbaspour, A., Shiravani, P. & Hosseinzadeh Dalir, A. 2021 Experimental study of the energy dissipation on rough ramps. ISH Journal of Hydraulic Engineering 27, 334–342. Akib, S., Ahmed, A. A., Imran, H. M., Mahidin, M. F., Ahmed, H. S. & Rahman, S. 2015 Properties of a hydraulic jump over apparent corrugated beds. Dam Engineering 25, 65–77. AlTalib, A. N., Mohammed, A. Y. & Hayawi, H. A. 2015 Hydraulic jump and energy dissipation downstream stepped weir. Flow Measurement and Instrumentation 69, 101616. Bayon-Barrachina, A. & Lopez-Jimenez, P. A. 2015 Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics 17, 662–678. Canovaro, F. & Solari, L. 2007 Dissipative analogies between a schematic macro-roughness arrangement and step–pool morphology. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 32, 1628–1640. Daneshfaraz, R., Ghaderi, A., Akhtari, A. & Di Francesco, S. 2020 On the effect of block roughness in ogee spill-ways with flip buckets. Fluids 5, 182. Daneshfaraz, R., Aminvash, E., Di Francesco, S., Najibi, A. & Abraham, J. 2021a Three-dimensional study of the effect of block roughness geometry on inclined drop. Numerical Methods in Civil Engineering 6, 1–9. Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J. & Bagherzadeh, M. 2021b SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop. Applied Science 11, 4238. Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A. & Abraham, J. 2021c Three-dimensional investigation of hydraulic properties of vertical drop in the presence of step and grid dissipators. Symmetry 13, 895. Dey, S. & Sarkar, A. 2008 Characteristics of turbulent flow in submerged jumps on rough beds. Journal of Engineering Mechanics 134, 49–59. Ead, S. A. & Rajaratnam, N. 2002 Hydraulic jumps on corrugated beds. Journal of Hydraulic Engineering 128, 656–663. Fang, H., Han, X., He, G. & Dey, S. 2018 Influence of permeable beds on hydraulically macro-rough flow. Journal of Fluid Mechanics 847, 552–590. Federico, I., Marrone, S., Colagrossi, A., Aristodemo, F. & Antuono, M. 2019 Simulating 2D open-channel flows through an SPH model. European Journal of Mechanics-B/Fluids 34, 35–46. Ghaderi, A., Dasineh, M., Aristodemo, F. & Aricò, C. 2021 Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13, 674. Ghare, A. D., Ingl, R. N., Porey, P. D. & Gokhale, S. S. 2010 Block ramp design for efficient energy dissipation. Journal of Energy Dissipation 136, 1–5. Habibzadeh, A., Rajaratnam, N. & Loewen, M. 2019 Characteristics of the flow field downstream of free and submerged hydraulic jumps. Proceedings of the Institution of Civil Engineers-Water Management 172, 180–194. Hajiahmadi, A., Ghaeini-Hessaroeyeh, M. & Khanjani, M. J. 2021 Experimental evaluation of vertical shaft efficiency in vortex flow energy dissipation. International Journal of Civil Engineering 19, 1445–1455.
Katourani, S. & Kashefipour, S. M. 2012 Effect of the geometric characteristics of baffle on hydraulic flow condition in baffled apron drop. Irrigation Sciences and Engineering 37, 51–59. Kurdistani, S. M., Varaki, M. E. & Moayedi Moshkaposhti, M. 2024 Apron and macro roughness as scour countermeasures downstream of block ramps. ISH Journal of Hydraulic Engineering 1–9. Lopardo, R. A. 2013 Extreme velocity fluctuations below free hydraulic jumps. Journal of Engineering 1–5. Mahmoudi-Rad, M. & Najafzadeh, M. 2023 Experimental evaluation of the energy dissipation efficiency of the vortex flow section of drop shafts. Scientific Reports 13, 1679. Matin, M. A., Hasan, M. & Islam, M. R. 2018 Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering 36, 65–77. Moghadam, K. F., Banihashemi, M. A., Badiei, P. & Shirkavand, A. 2019 A numerical approach to solve fluid-solid two-phase flows using time splitting projection method with a pressure correction technique. Progress in Computational Fluid Dynamics, an International Journal 19, 357–367. Moghadam, K. F., Banihashemi, M. A., Badiei, P. & Shirkavand, A. 2020 A time-splitting pressure-correction projection method for complete two-fluid modeling of a local scour hole. International Journal of Sediment Research 35, 395–407. Moradi-SabzKoohi, A., Kashefipour, S. M. & Bina, M. 2011 Experimental comparison of energy dissipation on drop structures. JWSS – Isfahan University of Technology 15, 209–223. (in Persian). Mouaze, D., Murzyn, F. & Chaplin, J. R. 2005 Free surface length scale estimation in hydraulic jumps. Journal of Fluids Engineering 127, 1191–1193. Nicosia, A., Carollo, F. G. & Ferro, V. 2023 Effects of boulder arrangement on flow resistance due to macro-scale bed roughness. Water 15, 349. Ohtsu, I. & Yasuda, Y. 1991 Hydraulic jump in sloping channel. Journal of Hydraulic Engineering 117, 905–921. Pagliara, S. & Palermo, M. 2012 Effect of stilling basin geometry on the dissipative process in the presence of block ramps. Journal of Irrigation and Drainage Engineering 138, 1027–1031. Pagliara, S., Das, R. & Palermo, M. 2008 Energy dissipation on submerged block ramps. Journal of Irrigation and Drainage Engineering 134, 527–532. Pagliara, S., Roshni, T. & Palermo, M. 2015 Energy dissipation over large-scale roughness for both transition and uniform flow conditions. International Journal of Civil Engineering 13, 341–346. Parsaie, A., Dehdar-Behbahani, S. & Haghiabi, A. H. 2016 Numerical modeling of cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering 10, 438–444. Pourabdollah, N., Heidarpour, M. & Abedi Koupai, J. 2018 Characteristics of free and submerged hydraulic jumps in different stilling basins. In: Proceedings of the Institution of Civil Engineers-Water Management. Thomas Telford Ltd, pp. 1–11. Roushangar, K. & Ghasempour, R. 2019 Evaluation of the impact of channel geometry and rough elements arrangement in hydraulic jump energy dissipation via SVM. Journal of Hydroinformatics 21, 92–103. Samadi-Boroujeni, H., Ghazali, M., Gorbani, B. & Nafchi, R. F. 2013 Effect of triangular corrugated beds on the hydraulic jump characteristics. Canadian Journal of Civil Engineering 40, 841–847. Shekari, Y., Javan, M. & Eghbalzadeh, A. 2014 Three-dimensional numerical study of submerged hydraulic jumps. Arabian Journal for Science and Engineering 39, 6969–6981. Tokyay, N. D., Evcimen, T. U. & Şimsek, Ç. 2011 Forced hydraulic jump on non-protruding rough beds. Canadian Journal of Civil Engineering 38, 1136–1144. Wagner, W. E. 1956 Hydraulic model studies of the check intake structure-potholes East canal. Bureau of Reclamation Hydraulic Laboratory Report Hyd, 411. Witt, A., Gulliver, J. S. & Shen, L. 2018 Numerical investigation of vorticity and bubble clustering in an air-entraining hydraulic jump. Computers & Fluids 172, 162–180.
웨어의 두 가지 서로 다른 배열(즉, 직선형 웨어와 직사각형 미로 웨어)을 사용하여 웨어 모양, 웨어 간격, 웨어의 오리피스 존재, 흐름 영역에 대한 바닥 경사와 같은 기하학적 매개변수의 영향을 평가했습니다.
유량과 수심의 관계, 수심 평균 속도의 변화와 분포, 난류 특성, 어도에서의 에너지 소산. 흐름 조건에 미치는 영향을 조사하기 위해 FLOW-3D® 소프트웨어를 사용하여 전산 유체 역학 시뮬레이션을 수행했습니다.
수치 모델은 계산된 표면 프로파일과 속도를 문헌의 실험적으로 측정된 값과 비교하여 검증되었습니다. 수치 모델과 실험 데이터의 결과, 급락유동의 표면 프로파일과 표준화된 속도 프로파일에 대한 평균 제곱근 오차와 평균 절대 백분율 오차가 각각 0.014m와 3.11%로 나타나 수치 모델의 능력을 확인했습니다.
수영장과 둑의 흐름 특성을 예측합니다. 각 모델에 대해 L/B = 1.83(L: 웨어 거리, B: 수로 폭) 값에서 급락 흐름이 발생할 수 있고 L/B = 0.61에서 스트리밍 흐름이 발생할 수 있습니다. 직사각형 미로보 모델은 기존 모델보다 무차원 방류량(Q+)이 더 큽니다.
수중 흐름의 기존 보와 직사각형 미로 보의 경우 Q는 각각 1.56과 1.47h에 비례합니다(h: 보 위 수심). 기존 웨어의 풀 내 평균 깊이 속도는 직사각형 미로 웨어의 평균 깊이 속도보다 높습니다.
그러나 주어진 방류량, 바닥 경사 및 웨어 간격에 대해 난류 운동 에너지(TKE) 및 난류 강도(TI) 값은 기존 웨어에 비해 직사각형 미로 웨어에서 더 높습니다. 기존의 웨어는 직사각형 미로 웨어보다 에너지 소산이 더 낮습니다.
더 낮은 TKE 및 TI 값은 미로 웨어 상단, 웨어 하류 벽 모서리, 웨어 측벽과 채널 벽 사이에서 관찰되었습니다. 보와 바닥 경사면 사이의 거리가 증가함에 따라 평균 깊이 속도, 난류 운동 에너지의 평균값 및 난류 강도가 증가하고 수영장의 체적 에너지 소산이 감소했습니다.
둑에 개구부가 있으면 평균 깊이 속도와 TI 값이 증가하고 풀 내에서 가장 높은 TKE 범위가 감소하여 두 모델 모두에서 물고기를 위한 휴식 공간이 더 넓어지고(TKE가 낮아짐) 에너지 소산율이 감소했습니다.
Two different arrangements of the weir (i.e., straight weir and rectangular labyrinth weir) were used to evaluate the effects of geometric parameters such as weir shape, weir spacing, presence of an orifice at the weir, and bed slope on the flow regime and the relationship between discharge and depth, variation and distribution of depth-averaged velocity, turbulence characteristics, and energy dissipation at the fishway. Computational fluid dynamics simulations were performed using FLOW-3D® software to examine the effects on flow conditions. The numerical model was validated by comparing the calculated surface profiles and velocities with experimentally measured values from the literature. The results of the numerical model and experimental data showed that the root-mean-square error and mean absolute percentage error for the surface profiles and normalized velocity profiles of plunging flows were 0.014 m and 3.11%, respectively, confirming the ability of the numerical model to predict the flow characteristics of the pool and weir. A plunging flow can occur at values of L/B = 1.83 (L: distance of the weir, B: width of the channel) and streaming flow at L/B = 0.61 for each model. The rectangular labyrinth weir model has larger dimensionless discharge values (Q+) than the conventional model. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q is proportional to 1.56 and 1.47h, respectively (h: the water depth above the weir). The average depth velocity in the pool of a conventional weir is higher than that of a rectangular labyrinth weir. However, for a given discharge, bed slope, and weir spacing, the turbulent kinetic energy (TKE) and turbulence intensity (TI) values are higher for a rectangular labyrinth weir compared to conventional weir. The conventional weir has lower energy dissipation than the rectangular labyrinth weir. Lower TKE and TI values were observed at the top of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall. As the distance between the weirs and the bottom slope increased, the average depth velocity, the average value of turbulent kinetic energy and the turbulence intensity increased, and the volumetric energy dissipation in the pool decreased. The presence of an opening in the weir increased the average depth velocity and TI values and decreased the range of highest TKE within the pool, resulted in larger resting areas for fish (lower TKE), and decreased the energy dissipation rates in both models.
1 Introduction
Artificial barriers such as detour dams, weirs, and culverts in lakes and rivers prevent fish from migrating and completing the upstream and downstream movement cycle. This chain is related to the life stage of the fish, its location, and the type of migration. Several riverine fish species instinctively migrate upstream for spawning and other needs. Conversely, downstream migration is a characteristic of early life stages [1]. A fish ladder is a waterway that allows one or more fish species to cross a specific obstacle. These structures are constructed near detour dams and other transverse structures that have prevented such migration by allowing fish to overcome obstacles [2]. The flow pattern in fish ladders influences safe and comfortable passage for ascending fish. The flow’s strong turbulence can reduce the fish’s speed, injure them, and delay or prevent them from exiting the fish ladder. In adult fish, spawning migrations are usually complex, and delays are critical to reproductive success [3].
Various fish ladders/fishways include vertical slots, denil, rock ramps, and pool weirs [1]. The choice of fish ladder usually depends on many factors, including water elevation, space available for construction, and fish species. Pool and weir structures are among the most important fish ladders that help fish overcome obstacles in streams or rivers and swim upstream [1]. Because they are easy to construct and maintain, this type of fish ladder has received considerable attention from researchers and practitioners. Such a fish ladder consists of a sloping-floor channel with series of pools directly separated by a series of weirs [4]. These fish ladders, with or without underwater openings, are generally well-suited for slopes of 10% or less [1, 2]. Within these pools, flow velocities are low and provide resting areas for fish after they enter the fish ladder. After resting in the pools, fish overcome these weirs by blasting or jumping over them [2]. There may also be an opening in the flooded portion of the weir through which the fish can swim instead of jumping over the weir. Design parameters such as the length of the pool, the height of the weir, the slope of the bottom, and the water discharge are the most important factors in determining the hydraulic structure of this type of fish ladder [3]. The flow over the weir depends on the flow depth at a given slope S0 and the pool length, either “plunging” or “streaming.” In plunging flow, the water column h over each weir creates a water jet that releases energy through turbulent mixing and diffusion mechanisms [5]. The dimensionless discharges for plunging (Q+) and streaming (Q*) flows are shown in Fig. 1, where Q is the total discharge, B is the width of the channel, w is the weir height, S0 is the slope of the bottom, h is the water depth above the weir, d is the flow depth, and g is the acceleration due to gravity. The maximum velocity occurs near the top of the weir for plunging flow. At the water’s surface, it drops to about half [6].
Fig. 1
Extensive experimental studies have been conducted to investigate flow patterns for various physical geometries (i.e., bed slope, pool length, and weir height) [2]. Guiny et al. [7] modified the standard design by adding vertical slots, orifices, and weirs in fishways. The efficiency of the orifices and vertical slots was related to the velocities at their entrances. In the laboratory experiments of Yagci [8], the three-dimensional (3D) mean flow and turbulence structure of a pool weir fishway combined with an orifice and a slot is investigated. It is shown that the energy dissipation per unit volume and the discharge have a linear relationship.
Considering the beneficial characteristics reported in the limited studies of researchers on the labyrinth weir in the pool-weir-type fishway, and knowing that the characteristics of flow in pool-weir-type fishways are highly dependent on the geometry of the weir, an alternative design of the rectangular labyrinth weir instead of the straight weirs in the pool-weir-type fishway is investigated in this study [7, 9]. Kim [10] conducted experiments to compare the hydraulic characteristics of three different weir types in a pool-weir-type fishway. The results show that a straight, rectangular weir with a notch is preferable to a zigzag or trapezoidal weir. Studies on natural fish passes show that pass ability can be improved by lengthening the weir’s crest [7]. Zhong et al. [11] investigated the semi-rigid weir’s hydraulic performance in the fishway’s flow field with a pool weir. The results showed that this type of fishway performed better with a lower invert slope and a smaller radius ratio but with a larger pool spacing.
Considering that an alternative method to study the flow characteristics in a fishway with a pool weir is based on numerical methods and modeling from computational fluid dynamics (CFD), which can easily change the geometry of the fishway for different flow fields, this study uses the powerful package CFD and the software FLOW-3D to evaluate the proposed weir design and compare it with the conventional one to extend the application of the fishway. The main objective of this study was to evaluate the hydraulic performance of the rectangular labyrinth pool and the weir with submerged openings in different hydraulic configurations. The primary objective of creating a new weir configuration for suitable flow patterns is evaluated based on the swimming capabilities of different fish species. Specifically, the following questions will be answered: (a) How do the various hydraulic and geometric parameters relate to the effects of water velocity and turbulence, expressed as turbulent kinetic energy (TKE) and turbulence intensity (TI) within the fishway, i.e., are conventional weirs more affected by hydraulics than rectangular labyrinth weirs? (b) Which weir configurations have the greatest effect on fish performance in the fishway? (c) In the presence of an orifice plate, does the performance of each weir configuration differ with different weir spacing, bed gradients, and flow regimes from that without an orifice plate?
2 Materials and Methods
2.1 Physical Model Configuration
This paper focuses on Ead et al. [6]’s laboratory experiments as a reference, testing ten pool weirs (Fig. 2). The experimental flume was 6 m long, 0.56 m wide, and 0.6 m high, with a bottom slope of 10%. Field measurements were made at steady flow with a maximum flow rate of 0.165 m3/s. Discharge was measured with magnetic flow meters in the inlets and water level with point meters (see Ead et al. [6]. for more details). Table 1 summarizes the experimental conditions considered for model calibration in this study.
Fig. 2
Table 1 Experimental conditions considered for calibration
Computational fluid dynamics (CFD) simulations were performed using FLOW-3D® v11.2 to validate a series of experimental liner pool weirs by Ead et al. [6] and to investigate the effects of the rectangular labyrinth pool weir with an orifice. The dimensions of the channel and data collection areas in the numerical models are the same as those of the laboratory model. Two types of pool weirs were considered: conventional and labyrinth. The proposed rectangular labyrinth pool weirs have a symmetrical cross section and are sized to fit within the experimental channel. The conventional pool weir model had a pool length of l = 0.685 and 0.342 m, a weir height of w = 0.141 m, a weir width of B = 0.56 m, and a channel slope of S0 = 5 and 10%. The rectangular labyrinth weirs have the same front width as the offset, i.e., a = b = c = 0.186 m. A square underwater opening with a width of 0.05 m and a depth of 0.05 m was created in the middle of the weir. The weir configuration considered in the present study is shown in Fig. 3.
Fig. 3
2.3 Governing Equations
FLOW-3D® software solves the Navier–Stokes–Reynolds equations for three-dimensional analysis of incompressible flows using the fluid-volume method on a gridded domain. FLOW -3D® uses an advanced free surface flow tracking algorithm (TruVOF) developed by Hirt and Nichols [12], where fluid configurations are defined in terms of a VOF function F (x, y, z, t). In this case, F (fluid fraction) represents the volume fraction occupied by the fluid: F = 1 in cells filled with fluid and F = 0 in cells without fluid (empty areas) [4, 13]. The free surface area is at an intermediate value of F. (Typically, F = 0.5, but the user can specify a different intermediate value.) The equations in Cartesian coordinates (x, y, z) applicable to the model are as follows:
�f∂�∂�+∂(���x)∂�+∂(���y)∂�+∂(���z)∂�=�SOR
(1)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�x+�x
(2)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�y+�y
(3)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�z+�z
(4)
where (u, v, w) are the velocity components, (Ax, Ay, Az) are the flow area components, (Gx, Gy, Gz) are the mass accelerations, and (fx, fy, fz) are the viscous accelerations in the directions (x, y, z), ρ is the fluid density, RSOR is the spring term, Vf is the volume fraction associated with the flow, and P is the pressure. The k–ε turbulence model (RNG) was used in this study to solve the turbulence of the flow field. This model is a modified version of the standard k–ε model that improves performance. The model is a two-equation model; the first equation (Eq. 5) expresses the turbulence’s energy, called turbulent kinetic energy (k) [14]. The second equation (Eq. 6) is the turbulent dissipation rate (ε), which determines the rate of dissipation of kinetic energy [15]. These equations are expressed as follows Dasineh et al. [4]:
In these equations, k is the turbulent kinetic energy, ε is the turbulent energy consumption rate, Gk is the generation of turbulent kinetic energy by the average velocity gradient, with empirical constants αε = αk = 1.39, C1ε = 1.42, and C2ε = 1.68, eff is the effective viscosity, μeff = μ + μt [15]. Here, μ is the hydrodynamic density coefficient, and μt is the turbulent density of the fluid.
2.4 Meshing and the Boundary Conditions in the Model Setup
The numerical area is divided into three mesh blocks in the X-direction. The meshes are divided into different sizes, a containing mesh block for the entire spatial domain and a nested block with refined cells for the domain of interest. Three different sizes were selected for each of the grid blocks. By comparing the accuracy of their results based on the experimental data, the reasonable mesh for the solution domain was finally selected. The convergence index method (GCI) evaluated the mesh sensitivity analysis. Based on this method, many researchers, such as Ahmadi et al. [16] and Ahmadi et al. [15], have studied the independence of numerical results from mesh size. Three different mesh sizes with a refinement ratio (r) of 1.33 were used to perform the convergence index method. The refinement ratio is the ratio between the larger and smaller mesh sizes (r = Gcoarse/Gfine). According to the recommendation of Celik et al. [17], the recommended number for the refinement ratio is 1.3, which gives acceptable results. Table 2 shows the characteristics of the three mesh sizes selected for mesh sensitivity analysis.Table 2 Characteristics of the meshes tested in the convergence analysis
The results of u1 = umax (u1 = velocity component along the x1 axis and umax = maximum velocity of u1 in a section perpendicular to the invert of the fishway) at Q = 0.035 m3/s, × 1/l = 0.66, and Y1/b = 0 in the pool of conventional weir No. 4, obtained from the output results of the software, were used to evaluate the accuracy of the calculation range. As shown in Fig. 4, x1 = the distance from a given weir in the x-direction, Y1 = the water depth measured in the y-direction, Y0 = the vertical distance in the Cartesian coordinate system, h = the water column at the crest, b = the distance between the two points of maximum velocity umax and zero velocity, and l = the pool length.
Fig. 4
The apparent index of convergence (p) in the GCI method is calculated as follows:
�=ln(�3−�2)(�2−�1)/ln(�)
(7)
f1, f2, and f3 are the hydraulic parameters obtained from the numerical simulation (f1 corresponds to the small mesh), and r is the refinement ratio. The following equation defines the convergence index of the fine mesh:
GCIfine=1.25|ε|��−1
(8)
Here, ε = (f2 − f1)/f1 is the relative error, and f2 and f3 are the values of hydraulic parameters considered for medium and small grids, respectively. GCI12 and GCI23 dimensionless indices can be calculated as:
GCI12=1.25|�2−�1�1|��−1
(9)
Then, the independence of the network is preserved. The convergence index of the network parameters obtained by Eqs. (7)–(9) for all three network variables is shown in Table 3. Since the GCI values for the smaller grid (GCI12) are lower compared to coarse grid (GCI23), it can be concluded that the independence of the grid is almost achieved. No further change in the grid size of the solution domain is required. The calculated values (GCI23/rpGCI12) are close to 1, which shows that the numerical results obtained are within the convergence range. As a result, the meshing of the solution domain consisting of a block mesh with a mesh size of 0.012 m and a block mesh within a larger block mesh with a mesh size of 0.009 m was selected as the optimal mesh (Fig. 5).Table 3 GCI calculation
The boundary conditions applied to the area are shown in Fig. 6. The boundary condition of specific flow rate (volume flow rate-Q) was used for the inlet of the flow. For the downstream boundary, the flow output (outflow-O) condition did not affect the flow in the solution area. For the Zmax boundary, the specified pressure boundary condition was used along with the fluid fraction = 0 (P). This type of boundary condition considers free surface or atmospheric pressure conditions (Ghaderi et al. [19]). The wall boundary condition is defined for the bottom of the channel, which acts like a virtual wall without friction (W). The boundary between mesh blocks and walls were considered a symmetrical condition (S).
Fig. 6
The convergence of the steady-state solutions was controlled during the simulations by monitoring the changes in discharge at the inlet boundary conditions. Figure 7 shows the time series plots of the discharge obtained from the Model A for the three main discharges from the numerical results. The 8 s to reach the flow equilibrium is suitable for the case of the fish ladder with pool and weir. Almost all discharge fluctuations in the models are insignificant in time, and the flow has reached relative stability. The computation time for the simulations was between 6 and 8 h using a personal computer with eight cores of a CPU (Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).
Fig. 7
3 Results
3.1 Verification of Numerical Results
Quantitative outcomes, including free surface and normalized velocity profiles obtained using FLOW-3D software, were reviewed and compared with the results of Ead et al. [6]. The fourth pool was selected to present the results and compare the experiment and simulation. For each quantity, the percentage of mean absolute error (MAPE (%)) and root-mean-square error (RMSE) are calculated. Equations (10) and (11) show the method used to calculate the errors.
MAPE(%)100×1�∑1�|�exp−�num�exp|
(10)
RMSE(−)1�∑1�(�exp−�num)2
(11)
Here, Xexp is the value of the laboratory data, Xnum is the numerical data value, and n is the amount of data. As shown in Fig. 8, let x1 = distance from a given weir in the x-direction and Y1 = water depth in the y-direction from the bottom. The trend of the surface profiles for each of the numerical results is the same as that of the laboratory results. The surface profiles of the plunging flows drop after the flow enters and then rises to approach the next weir. The RMSE and MAPE error values for Model A are 0.014 m and 3.11%, respectively, indicating acceptable agreement between numerical and laboratory results. Figure 9 shows the velocity vectors and plunging flow from the numerical results, where x and y are horizontal and vertical to the flow direction, respectively. It can be seen that the jet in the fish ladder pool has a relatively high velocity. The two vortices, i.e., the enclosed vortex rotating clockwise behind the weir and the surface vortex rotating counterclockwise above the jet, are observed for the regime of incident flow. The point where the jet meets the fish passage bed is shown in the figure. The normalized velocity profiles upstream and downstream of the impact points are shown in Fig. 10. The figure shows that the numerical results agree well with the experimental data of Ead et al. [6].
Fig. 8Fig. 9Fig. 10
3.2 Flow Regime and Discharge-Depth Relationship
Depending on the geometric shape of the fishway, including the distance of the weir, the slope of the bottom, the height of the weir, and the flow conditions, the flow regime in the fishway is divided into three categories: dipping, transitional, and flow regimes [4]. In the plunging flow regime, the flow enters the pool through the weir, impacts the bottom of the fishway, and forms a hydraulic jump causing two eddies [2, 20]. In the streamwise flow regime, the surface of the flow passing over the weir is almost parallel to the bottom of the channel. The transitional regime has intermediate flow characteristics between the submerged and flow regimes. To predict the flow regime created in the fishway, Ead et al. [6] proposed two dimensionless parameters, Qt* and L/w, where Qt* is the dimensionless discharge, L is the distance between weirs, and w is the height of the weir:
��∗=���0���
(12)
Q is the total discharge, B is the width of the channel, S0 is the slope of the bed, and g is the gravity acceleration. Figure 11 shows different ranges for each flow regime based on the slope of the bed and the distance between the pools in this study. The results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22] were used for this comparison. The distance between the pools affects the changes in the regime of the fish ladder. So, if you decrease the distance between weirs, the flow regime more likely becomes. This study determined all three flow regimes in a fish ladder. When the corresponding range of Qt* is less than 0.6, the flow regime can dip at values of L/B = 1.83. If the corresponding range of Qt* is greater than 0.5, transitional flow may occur at L/B = 1.22. On the other hand, when Qt* is greater than 1, streamwise flow can occur at values of L/B = 0.61. These observations agree well with the results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22].
Fig. 11
For plunging flows, another dimensionless discharge (Q+) versus h/w given by Ead et al. [6] was used for further evaluation:
�+=��ℎ�ℎ=23�d�
(13)
where h is the water depth above the weir, and Cd is the discharge coefficient. Figure 12a compares the numerical and experimental results of Ead et al. [6]. In this figure, Rehbock’s empirical equation is used to estimate the discharge coefficient of Ead et al. [6].
�d=0.57+0.075ℎ�
(14)
Fig. 12
The numerical results for the conventional weir (Model A) and the rectangular labyrinth weir (Model B) of this study agree well with the laboratory results of Ead et al. [6]. When comparing models A and B, it is also found that a rectangular labyrinth weir has larger Q + values than the conventional weir as the length of the weir crest increases for a given channel width and fixed headwater elevation. In Fig. 12b, Models A and B’s flow depth plot shows the plunging flow regime. The power trend lines drawn through the data are the best-fit lines. The data shown in Fig. 12b are for different bed slopes and weir geometries. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q can be assumed to be proportional to 1.56 and 1.47h, respectively. In the results of Ead et al. [6], Q is proportional to 1.5h. If we assume that the flow through the orifice is Qo and the total outflow is Q, the change in the ratio of Qo/Q to total outflow for models A and B can be shown in Fig. 13. For both models, the flow through the orifice decreases as the total flow increases. A logarithmic trend line was also found between the total outflow and the dimensionless ratio Qo/Q.
Fig. 13
3.3 Depth-Averaged Velocity Distributions
To ensure that the target fish species can pass the fish ladder with maximum efficiency, the average velocity in the fish ladder should be low enough [4]. Therefore, the average velocity in depth should be as much as possible below the critical swimming velocities of the target fishes at a constant flow depth in the pool [20]. The contour plot of depth-averaged velocity was used instead of another direction, such as longitudinal velocity because fish are more sensitive to depth-averaged flow velocity than to its direction under different hydraulic conditions. Figure 14 shows the distribution of depth-averaged velocity in the pool for Models A and B in two cases with and without orifice plates. Model A’s velocity within the pool differs slightly in the spanwise direction. However, no significant variation in velocity was observed. The flow is gradually directed to the sides as it passes through the rectangular labyrinth weir. This increases the velocity at the sides of the channel. Therefore, the high-velocity zone is located at the sides. The low velocity is in the downstream apex of the weir. This area may be suitable for swimming target fish. The presence of an opening in the weir increases the flow velocity at the opening and in the pool’s center, especially in Model A. The flow velocity increase caused by the models’ opening varied from 7.7 to 12.48%. Figure 15 illustrates the effect of the inverted slope on the averaged depth velocity distribution in the pool at low and high discharge. At constant discharge, flow velocity increases with increasing bed slope. In general, high flow velocity was found in the weir toe sidewall and the weir and channel sidewalls.
Fig. 14Fig. 15
On the other hand, for a constant bed slope, the high-velocity area of the pool increases due to the increase in runoff. For both bed slopes and different discharges, the most appropriate path for fish to travel from upstream to downstream is through the middle of the cross section and along the top of the rectangular labyrinth weirs. The maximum dominant velocities for Model B at S0 = 5% were 0.83 and 1.01 m/s; at S0 = 10%, they were 1.12 and 1.61 m/s at low and high flows, respectively. The low mean velocities for the same distance and S0 = 5 and 10% were 0.17 and 0.26 m/s, respectively.
Figure 16 shows the contour of the averaged depth velocity for various distances from the weir at low and high discharge. The contour plot shows a large variation in velocity within short distances from the weir. At L/B = 0.61, velocities are low upstream and downstream of the top of the weir. The high velocities occur in the side walls of the weir and the channel. At L/B = 1.22, the low-velocity zone displaces the higher velocity in most of the pool. Higher velocities were found only on the sides of the channel. As the discharge increases, the velocity zone in the pool becomes wider. At L/B = 1.83, there is an area of higher velocities only upstream of the crest and on the sides of the weir. At high discharge, the prevailing maximum velocities for L/B = 0.61, 1.22, and 1.83 were 1.46, 1.65, and 1.84 m/s, respectively. As the distance between weirs increases, the range of maximum velocity increases.
Fig. 16
On the other hand, the low mean velocity for these distances was 0.27, 0.44, and 0.72 m/s, respectively. Thus, the low-velocity zone decreases with increasing distance between weirs. Figure 17 shows the pattern distribution of streamlines along with the velocity contour at various distances from the weir for Q = 0.05 m3/s. A stream-like flow is generally formed in the pool at a small distance between weirs (L/B = 0.61). The rotation cell under the jet forms clockwise between the two weirs. At the distances between the spillways (L/B = 1.22), the transition regime of the flow is formed. The transition regime occurs when or shortly after the weir is flooded. The rotation cell under the jet is clockwise smaller than the flow regime and larger than the submergence regime. At a distance L/B = 1.83, a plunging flow is formed so that the plunging jet dips into the pool and extends downstream to the center of the pool. The clockwise rotation of the cell is bounded by the dipping jet of the weir and is located between the bottom and the side walls of the weir and the channel.
Fig. 17
Figure 18 shows the average depth velocity bar graph for each weir at different bed slopes and with and without orifice plates. As the distance between weirs increases, all models’ average depth velocity increases. As the slope of the bottom increases and an orifice plate is present, the average depth velocity in the pool increases. In addition, the average pool depth velocity increases as the discharge increases. Among the models, Model A’s average depth velocity is higher than Model B’s. The variation in velocity ranged from 8.11 to 12.24% for the models without an orifice plate and from 10.26 to 16.87% for the models with an orifice plate.
Fig. 18
3.4 Turbulence Characteristics
The turbulent kinetic energy is one of the important parameters reflecting the turbulent properties of the flow field [23]. When the k value is high, more energy and a longer transit time are required to migrate the target species. The turbulent kinetic energy is defined as follows:
�=12(�x′2+�y′2+�z′2)
(15)
where ux, uy, and uz are fluctuating velocities in the x, y, and z directions, respectively. An illustration of the TKE and the effects of the geometric arrangement of the weir and the presence of an opening in the weir is shown in Fig. 19. For a given bed slope, in Model A, the highest TKE values are uniformly distributed in the weir’s upstream portion in the channel’s cross section. In contrast, for the rectangular labyrinth weir (Model B), the highest TKE values are concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value in Models A and B is 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%). In the downstream portion of the conventional weir and within the crest of the weir and the walls of the rectangular labyrinth, there was a much lower TKE value that provided the best conditions for fish to recover in the pool between the weirs. The average of the lowest TKE for bottom slopes of 5 and 10% in Model A is 0.041 and 0.056 J/kg, and for Model B, is 0.047 and 0.064 J/kg. The presence of an opening in the weirs reduces the area of the highest TKE within the pool. It also increases the resting areas for fish (lower TKE). The highest TKE at the highest bottom slope in Models A and B with an orifice is 0.208 and 0.191 J/kg, respectively.
Fig. 19
Figure 20 shows the effect of slope on the longitudinal distribution of TKE in the pools. TKE values significantly increase for a given discharge with an increasing bottom slope. Thus, for a low bed slope (S0 = 5%), a large pool area has expanded with average values of 0.131 and 0.168 J/kg for low and high discharge, respectively. For a bed slope of S0 = 10%, the average TKE values are 0.176 and 0.234 J/kg. Furthermore, as the discharge increases, the area with high TKE values within the pool increases. Lower TKE values are observed at the apex of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall for both bottom slopes. The effect of distance between weirs on TKE is shown in Fig. 21. Low TKE values were observed at low discharge and short distances between weirs. Low TKE values are located at the top of the rectangular labyrinth weir and the downstream corner of the weir wall. There is a maximum value of TKE at the large distances between weirs, L/B = 1.83, along the center line of the pool, where the dip jet meets the bottom of the bed. At high discharge, the maximum TKE value for the distance L/B = 0.61, 1.22, and 1.83 was 0.246, 0.322, and 0.417 J/kg, respectively. In addition, the maximum TKE range increases with the distance between weirs.
Fig. 20Fig. 21
For TKE size, the average value (TKEave) is plotted against q in Fig. 22. For all models, the TKE values increase with increasing q. For example, in models A and B with L/B = 0.61 and a slope of 10%, the TKE value increases by 41.66 and 86.95%, respectively, as q increases from 0.1 to 0.27 m2/s. The TKE values in Model B are higher than Model A for a given discharge, bed slope, and weir distance. The TKEave in Model B is higher compared to Model A, ranging from 31.46 to 57.94%. The presence of an orifice in the weir reduces the TKE values in both weirs. The intensity of the reduction is greater in Model B. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, an orifice reduces TKEave values by 60.35 and 19.04%, respectively. For each model, increasing the bed slope increases the TKEave values in the pool. For example, for Model B with q = 0.18 m2/s, increasing the bed slope from 5 to 10% increases the TKEave value by 14.34%. Increasing the distance between weirs increases the TKEave values in the pool. For example, in Model B with S0 = 10% and q = 0.3 m2/s, the TKEave in the pool increases by 34.22% if you increase the distance between weirs from L/B = 0.61 to L/B = 0.183.
Fig. 22
Cotel et al. [24] suggested that turbulence intensity (TI) is a suitable parameter for studying fish swimming performance. Figure 23 shows the plot of TI and the effects of the geometric arrangement of the weir and the presence of an orifice. In Model A, the highest TI values are found upstream of the weirs and are evenly distributed across the cross section of the channel. The TI values increase as you move upstream to downstream in the pool. For the rectangular labyrinth weir, the highest TI values were concentrated on the sides of the pool, between the top of the weir and the side wall of the channel, and along the top of the weir. Downstream of the conventional weir, within the apex of the weir, and at the corners of the walls of the rectangular labyrinth weir, the percentage of TI was low. At the highest discharge, the average range of TI in Models A and B was 24–45% and 15–62%, respectively. The diversity of TI is greater in the rectangular labyrinth weir than the conventional weir. Fish swimming performance is reduced due to higher turbulence intensity. However, fish species may prefer different disturbance intensities depending on their swimming abilities; for example, Salmo trutta prefers a disturbance intensity of 18–53% [25]. Kupferschmidt and Zhu [26] found a higher range of TI for fishways, such as natural rock weirs, of 40–60%. The presence of an orifice in the weir increases TI values within the pool, especially along the middle portion of the cross section of the fishway. With an orifice in the weir, the average range of TI in Models A and B was 28–59% and 22–73%, respectively.
Fig. 23
The effect of bed slope on TI variation is shown in Fig. 24. TI increases in different pool areas as the bed slope increases for a given discharge. For a low bed slope (S0 = 5%), a large pool area has increased from 38 to 63% and from 56 to 71% for low and high discharge, respectively. For a bed slope of S0 = 10%, the average values of TI are 45–67% and 61–73% for low and high discharge, respectively. Therefore, as runoff increases, the area with high TI values within the pool increases. A lower TI is observed for both bottom slopes in the corner of the wall, downstream of the crest walls, and between the side walls in the weir and channel. Figure 25 compares weir spacing with the distribution of TI values within the pool. The TI values are low at low flows and short distances between weirs. A maximum value of TI occurs at long spacing and where the plunging stream impinges on the bed and the area around the bed. TI ranges from 36 to 57%, 58–72%, and 47–76% for the highest flow in a wide pool area for L/B = 0.61, 1.22, and 1.83, respectively.
Fig. 24Fig. 25
The average value of turbulence intensity (TIave) is plotted against q in Fig. 26. The increase in TI values with the increase in q values is seen in all models. For example, the average values of TI for Models A and B at L/B = 0.61 and slope of 10% increased from 23.9 to 33.5% and from 42 to 51.8%, respectively, with the increase in q from 0.1 to 0.27 m2/s. For a given discharge, a given gradient, and a given spacing of weirs, the TIave is higher in Model B than Model A. The presence of an orifice in the weirs increases the TI values in both types. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, the presence of an orifice increases TIave from 23.9 to 37.1% and from 42 to 48.8%, respectively. For each model, TIave in the pool increases with increasing bed slope. For Model B with q = 0.18 m2/s, TIave increases from 37.5 to 45.8% when you increase the invert slope from 5 to 10%. Increasing the distance between weirs increases the TIave in the pool. In Model B with S0 = 10% and q = 0.3 m2/s, the TIave in the pool increases from 51.8 to 63.7% as the distance between weirs increases from L/B = 0.61 to L/B = 0.183.
Fig. 26
3.5 Energy Dissipation
To facilitate the passage of various target species through the pool of fishways, it is necessary to pay attention to the energy dissipation of the flow and to keep the flow velocity in the pool slow. The average volumetric energy dissipation (k) in the pool is calculated using the following basic formula:
�=����0��
(16)
where ρ is the water density, and H is the average water depth of the pool. The change in k versus Q for all models at two bottom slopes, S0 = 5%, and S0 = 10%, is shown in Fig. 27. Like the results of Yagci [8] and Kupferschmidt and Zhu [26], at a constant bottom slope, the energy dissipation in the pool increases with increasing discharge. The trend of change in k as a function of Q from the present study at a bottom gradient of S0 = 5% is also consistent with the results of Kupferschmidt and Zhu [26] for the fishway with rock weir. The only difference between the results is the geometry of the fishway and the combination of boulders instead of a solid wall. Comparison of the models shows that the conventional model has lower energy dissipation than the rectangular labyrinth for a given discharge. Also, increasing the distance between weirs decreases the volumetric energy dissipation for each model with the same bed slope. Increasing the slope of the bottom leads to an increase in volumetric energy dissipation, and an opening in the weir leads to a decrease in volumetric energy dissipation for both models. Therefore, as a guideline for volumetric energy dissipation, if the value within the pool is too high, the increased distance of the weir, the decreased slope of the bed, or the creation of an opening in the weir would decrease the volumetric dissipation rate.
Fig. 27
To evaluate the energy dissipation inside the pool, the general method of energy difference in two sections can use:
ε=�1−�2�1
(17)
where ε is the energy dissipation rate, and E1 and E2 are the specific energies in Sects. 1 and 2, respectively. The distance between Sects. 1 and 2 is the same. (L is the distance between two upstream and downstream weirs.) Figure 28 shows the changes in ε relative to q (flow per unit width). The rectangular labyrinth weir (Model B) has a higher energy dissipation rate than the conventional weir (Model A) at a constant bottom gradient. For example, at S0 = 5%, L/B = 0.61, and q = 0.08 m3/s.m, the energy dissipation rate in Model A (conventional weir) was 0.261. In Model B (rectangular labyrinth weir), however, it was 0.338 (22.75% increase). For each model, the energy dissipation rate within the pool increases as the slope of the bottom increases. For Model B with L/B = 1.83 and q = 0.178 m3/s.m, the energy dissipation rate at S0 = 5% and 10% is 0.305 and 0.358, respectively (14.8% increase). Figure 29 shows an orifice’s effect on the pools’ energy dissipation rate. With an orifice in the weir, both models’ energy dissipation rates decreased. Thus, the reduction in energy dissipation rate varied from 7.32 to 9.48% for Model A and from 8.46 to 10.57 for Model B.
Fig. 28Fig. 29
4 Discussion
This study consisted of entirely of numerical analysis. Although this study was limited to two weirs, the hydraulic performance and flow characteristics in a pooled fishway are highlighted by the rectangular labyrinth weir and its comparison with the conventional straight weir. The study compared the numerical simulations with laboratory experiments in terms of surface profiles, velocity vectors, and flow characteristics in a fish ladder pool. The results indicate agreement between the numerical and laboratory data, supporting the reliability of the numerical model in capturing the observed phenomena.
When the configuration of the weir changes to a rectangular labyrinth weir, the flow characteristics, the maximum and minimum area, and even the location of each hydraulic parameter change compared to a conventional weir. In the rectangular labyrinth weir, the flow is gradually directed to the sides as it passes the weir. This increases the velocity at the sides of the channel [21]. Therefore, the high-velocity area is located on the sides. In the downstream apex of the weir, the flow velocity is low, and this area may be suitable for swimming target fish. However, no significant change in velocity was observed at the conventional weir within the fish ladder. This resulted in an average increase in TKE of 32% and an average increase in TI of about 17% compared to conventional weirs.
In addition, there is a slight difference in the flow regime for both weir configurations. In addition, the rectangular labyrinth weir has a higher energy dissipation rate for a given discharge and constant bottom slope than the conventional weir. By reducing the distance between the weirs, this becomes even more intense. Finally, the presence of an orifice in both configurations of the weir increased the flow velocity at the orifice and in the middle of the pool, reducing the highest TKE value and increasing the values of TI within the pool of the fish ladder. This resulted in a reduction in volumetric energy dissipation for both weir configurations.
The results of this study will help the reader understand the direct effects of the governing geometric parameters on the hydraulic characteristics of a fishway with a pool and weir. However, due to the limited configurations of the study, further investigation is needed to evaluate the position of the weir’s crest on the flow direction and the difference in flow characteristics when combining boulders instead of a solid wall for this type of labyrinth weir [26]. In addition, hydraulic engineers and biologists must work together to design an effective fishway with rectangular labyrinth configurations. The migration habits of the target species should be considered when designing the most appropriate design [27]. Parametric studies and field observations are recommended to determine the perfect design criteria.
The current study focused on comparing a rectangular labyrinth weir with a conventional straight weir. Further research can explore other weir configurations, such as variations in crest position, different shapes of labyrinth weirs, or the use of boulders instead of solid walls. This would help understand the influence of different geometric parameters on hydraulic characteristics.
5 Conclusions
A new layout of the weir was evaluated, namely a rectangular labyrinth weir compared to a straight weir in a pool and weir system. The differences between the weirs were highlighted, particularly how variations in the geometry of the structures, such as the shape of the weir, the spacing of the weir, the presence of an opening at the weir, and the slope of the bottom, affect the hydraulics within the structures. The main findings of this study are as follows:
The calculated dimensionless discharge (Qt*) confirmed three different flow regimes: when the corresponding range of Qt* is smaller than 0.6, the regime of plunging flow occurs for values of L/B = 1.83. (L: distance of the weir; B: channel width). When the corresponding range of Qt* is greater than 0.5, transitional flow occurs at L/B = 1.22. On the other hand, if Qt* is greater than 1, the streaming flow is at values of L/B = 0.61.
For the conventional weir and the rectangular labyrinth weir with the plunging flow, it can be assumed that the discharge (Q) is proportional to 1.56 and 1.47h, respectively (h: water depth above the weir). This information is useful for estimating the discharge based on water depth in practical applications.
In the rectangular labyrinth weir, the high-velocity zone is located on the side walls between the top of the weir and the channel wall. A high-velocity variation within short distances of the weir. Low velocity occurs within the downstream apex of the weir. This area may be suitable for swimming target fish.
As the distance between weirs increased, the zone of maximum velocity increased. However, the zone of low speed decreased. The prevailing maximum velocity for a rectangular labyrinth weir at L/B = 0.61, 1.22, and 1.83 was 1.46, 1.65, and 1.84 m/s, respectively. The low mean velocities for these distances were 0.27, 0.44, and 0.72 m/s, respectively. This finding highlights the importance of weir spacing in determining the flow characteristics within the fishway.
The presence of an orifice in the weir increased the flow velocity at the orifice and in the middle of the pool, especially in a conventional weir. The increase ranged from 7.7 to 12.48%.
For a given bottom slope, in a conventional weir, the highest values of turbulent kinetic energy (TKE) are uniformly distributed in the upstream part of the weir in the cross section of the channel. In contrast, for the rectangular labyrinth weir, the highest TKE values were concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value for the conventional and the rectangular labyrinth weir was 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%).
For a given discharge, bottom slope, and weir spacing, the average values of TI are higher for the rectangular labyrinth weir than for the conventional weir. At the highest discharge, the average range of turbulence intensity (TI) for the conventional and rectangular labyrinth weirs was between 24 and 45% and 15% and 62%, respectively. This reveals that the rectangular labyrinth weir may generate more turbulent flow conditions within the fishway.
For a given discharge and constant bottom slope, the rectangular labyrinth weir has a higher energy dissipation rate than the conventional weir (22.75 and 34.86%).
Increasing the distance between weirs decreased volumetric energy dissipation. However, increasing the gradient increased volumetric energy dissipation. The presence of an opening in the weir resulted in a decrease in volumetric energy dissipation for both model types.
Availability of data and materials
Data is contained within the article.
References
Katopodis C (1992) Introduction to fishway design, working document. Freshwater Institute, Central Arctic Region
Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C.: Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 63, 88–101 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.010ArticleGoogle Scholar
Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A.: Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 9, 3135 (2021)ArticleGoogle Scholar
Silva, A.T.; Bermúdez, M.; Santos, J.M.; Rabuñal, J.R.; Puertas, J.: Pool-type fishway design for a potamodromous cyprinid in the Iberian Peninsula: the Iberian barbel—synthesis and future directions. Sustainability 12, 3387 (2020). https://doi.org/10.3390/su12083387ArticleGoogle Scholar
Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A.: Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: effect of boulder density and fishway discharge. Ecol. Eng. 73, 335–344 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.065ArticleGoogle Scholar
Ead, S.; Katopodis, C.; Sikora, G.; Rajaratnam, N.J.J.: Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 3, 379–390 (2004)ArticleGoogle Scholar
Guiny, E.; Ervine, D.A.; Armstrong, J.D.: Hydraulic and biological aspects of fish passes for Atlantic salmon. J. Hydraul. Eng. 131, 542–553 (2005)ArticleGoogle Scholar
Zhong, Z.; Ruan, T.; Hu, Y.; Liu, J.; Liu, B.; Xu, W.: Experimental and numerical assessment of hydraulic characteristic of a new semi-frustum weir in the pool-weir fishway. Ecol. Eng. 170, 106362 (2021). https://doi.org/10.1016/j.ecoleng.2021.106362ArticleGoogle Scholar
Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994(116), 405–413 (1994)ArticleGoogle Scholar
Guo, S.; Chen, S.; Huang, X.; Zhang, Y.; Jin, S.: CFD and experimental investigations of drag force on spherical leak detector in pipe flows at high Reynolds number. Comput. Model. Eng. Sci. 101(1), 59–80 (2014)Google Scholar
Ahmadi, M.; Kuriqi, A.; Nezhad, H.M.; Ghaderi, A.; Mohammadi, M.: Innovative configuration of vertical slot fishway to enhance fish swimming conditions. J. Hydrodyn. 34, 917–933 (2022). https://doi.org/10.1007/s42241-022-0071-yArticleGoogle Scholar
Ahmadi, M.; Ghaderi, A.; MohammadNezhad, H.; Kuriqi, A.; Di Francesco, S.J.W.: Numerical investigation of hydraulics in a vertical slot fishway with upgraded configurations. Water 13, 2711 (2021)ArticleGoogle Scholar
Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME (2008). https://doi.org/10.1115/1.2960953ArticleGoogle Scholar
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)ArticleGoogle Scholar
Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T.: Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8, e65089 (2013). https://doi.org/10.1371/journal.pone.0065089ArticleGoogle Scholar
Assessing the interaction of waves and porous offshore structures such as rubble mound breakwaters plays a critical role in designing such structures optimally. This study focused on the effect of the geometric parameters of a sloped rubble mound breakwater, including the shape of the armour, method of its arrangement, and the breakwater slope. Thus, three main design criteria, including the wave reflection coefficient (Kr), transmission coefficient (Kt), and depreciation wave energy coefficient (Kd), are discussed. Based on the results, a decrease in wavelength reduced the Kr and increased the Kt and Kd. The rubble mound breakwater with the Coreloc armour layer could exhibit the lowest Kr compared to other armour geometries. In addition, a decrease in the breakwater slope reduced the Kr and Kd by 3.4 and 1.25%, respectively. In addition, a decrease in the breakwater slope from 33 to 25° increased the wave breaking height by 6.1% on average. Further, a decrease in the breakwater slope reduced the intensity of turbulence depreciation. Finally, the armour geometry and arrangement of armour layers on the breakwater with its different slopes affect the wave behaviour and interaction between the wave and breakwater. Thus, layering on the breakwater and the correct use of the geometric shapes of the armour should be considered when designing such structures.
파도와 잔해 더미 방파제와 같은 다공성 해양 구조물의 상호 작용을 평가하는 것은 이러한 구조물을 최적으로 설계하는 데 중요한 역할을 합니다. 본 연구는 경사진 잔해 둔덕 방파제의 기하학적 매개변수의 효과에 초점을 맞추었는데, 여기에는 갑옷의 형태, 배치 방법, 방파제 경사 등이 포함된다. 따라서 파동 반사 계수(Kr), 투과 계수(Kt) 및 감가상각파 에너지 계수(Kd)에 대해 논의합니다. 결과에 따르면 파장이 감소하면 K가 감소합니다.r그리고 K를 증가시켰습니다t 및 Kd. Coreloc 장갑 층이 있는 잔해 언덕 방파제는 가장 낮은 K를 나타낼 수 있습니다.r 다른 갑옷 형상과 비교했습니다. 또한 방파제 경사가 감소하여 K가 감소했습니다.r 및 Kd 각각 3.4%, 1.25% 증가했다. 또한 방파제 경사가 33°에서 25°로 감소하여 파도 파쇄 높이가 평균 6.1% 증가했습니다. 또한, 방파제 경사의 감소는 난류 감가상각의 강도를 감소시켰다. 마지막으로, 경사가 다른 방파제의 장갑 형상과 장갑 층의 배열은 파도 거동과 파도와 방파제 사이의 상호 작용에 영향을 미칩니다. 따라서 이러한 구조를 설계 할 때 방파제에 층을 쌓고 갑옷의 기하학적 모양을 올바르게 사용하는 것을 고려해야합니다.
Keywords
Rubble mound breakwater
Computational fluid dynamics
Armour layer
Wave reflection coefficient
Wave transmission coefficient
Wave energy dissipation coefficient
References
Sollitt, C.K.; Cross, R.H.: Wave transmission through permeable breakwaters. In Coastal Engineering. pp. 1827–1846. (1973)
Sulisz, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coast. Eng. 9(4), 371–386 (1985)ArticleGoogle Scholar
Kobayashi, N.; Wurjanto, A.: Numerical model for waves on rough permeable slopes. J. Coast. Res.149–166. (1990)
Wurjanto, A.; Kobayashi, N.: Irregular wave reflection and runup on permeable slopes. J. Waterw. Port Coast. Ocean Eng. 119(5), 537–557 (1993)ArticleGoogle Scholar
van Gent, M.R.: Numerical modelling of wave interaction with dynamically stable structures. In Coastal Engineering 1996. pp. 1930–1943. (1997)
Liu, P.L.F.; Wen, J.: Nonlinear diffusive surface waves in porous media. J. Fluid Mech. 347, 119–139 (1997)ArticleMathSciNetMATHGoogle Scholar
Troch, P.; De Rouck, J.: Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. In Coastal Engineering. pp. 1638–1649. (1999)
Liu, P.L.F.; Lin, P.; Chang, K.A.; Sakakiyama, T.: Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng. 125(6), 322–330 (1999)ArticleGoogle Scholar
Abdolmaleki, K.; Thiagarajan, K.P.; Morris-Thomas, M.T.: Simulation of the dam break problem and impact flows using a Navier-Stokes solver. Simulation 13, 17 (2004)Google Scholar
Higuera, P.; Lara, J.L.; Losada, I.J.: Realistic wave generation and active wave absorption for Navier-Stokes models: application to OpenFOAM®. Coast. Eng. 71, 102–118 (2013)ArticleGoogle Scholar
Higuera, P.; Lara, J.L.; Losada, I.J.: Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part II: application. Coast. Eng. 83, 259–270 (2014)ArticleGoogle Scholar
Dentale, F.; Donnarumma, G.; Carratelli, E.P.; Reale, F.: A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters. WSEAS Trans. Fluid Mech 10, 106–116 (2015)Google Scholar
Dentale, F.; Reale, F.; Di Leo, A.; Carratelli, E.P.: A CFD approach to rubble mound breakwater design. Int. J. Naval Archit. Ocean Eng. 10(5), 644–650 (2018)ArticleGoogle Scholar
Koley, S.: Wave transmission through multilayered porous breakwater under regular and irregular incident waves. Eng. Anal. Bound. Elem. 108, 393–401 (2019)ArticleMathSciNetMATHGoogle Scholar
Koley, S.; Panduranga, K.; Almashan, N.; Neelamani, S.; Al-Ragum, A.: Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean Eng. 218, 108218 (2020)ArticleGoogle Scholar
Pourteimouri, P.; Hejazi, K.: Development of an integrated numerical model for simulating wave interaction with permeable submerged breakwaters using extended Navier-Stokes equations. J. Mar. Sci. Eng. 8(2), 87 (2020)ArticleGoogle Scholar
Cao, D.; Yuan, J.; Chen, H.: Towards modelling wave-induced forces on an armour layer unit of rubble mound coastal revetments. Ocean Eng. 239, 109811 (2021)ArticleGoogle Scholar
Díaz-Carrasco, P.; Eldrup, M.R.; Andersen, T.L.: Advance in wave reflection estimation for rubble mound breakwaters: the importance of the relative water depth. Coast. Eng. 168, 103921 (2021)ArticleGoogle Scholar
Vieira, F.; Taveira-Pinto, F.; Rosa-Santos, P.: Damage evolution in single-layer cube armoured breakwaters with a regular placement pattern. Coast. Eng. 169, 103943 (2021)ArticleGoogle Scholar
Booshi, S.; Ketabdari, M.J.: Modeling of solitary wave interaction with emerged porous breakwater using PLIC-VOF method. Ocean Eng. 241, 110041 (2021)ArticleGoogle Scholar
Aristodemo, F.; Filianoti, P.; Tripepi, G.; Gurnari, L.; Ghaderi, A.: On the energy transmission by a submerged barrier interacting with a solitary wave. Appl. Ocean Res. 122, 103123 (2022)ArticleGoogle Scholar
Teixeira, P.R.; Didier, E.: Numerical analysis of performance of an oscillating water column wave energy converter inserted into a composite breakwater with rubble mound foundation. Ocean Eng. 278, 114421 (2023)ArticleGoogle Scholar
Burgan, H.I.: Numerical modeling of structural irregularities on unsymmetrical buildings. Tehnički vjesnik 28(3), 856–861 (2021)Google Scholar
Jones, I.P.: CFDS-Flow3D user guide. (1994)
Al Shaikhli, H.I.; Khassaf, S.I.: Stepped mound breakwater simulation by using flow 3D. Eurasian J. Eng. Technol. 6, 60–68 (2022)Google Scholar
Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)ArticleMATHGoogle Scholar
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)ArticleGoogle Scholar
Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)ArticleMathSciNetMATHGoogle Scholar
Van der Meer, J.W.; Stam, C.J.M.: Wave runup on smooth and rock slopes of coastal structures. J. Waterw. Port Coast. Ocean Eng. 118(5), 534–550 (1992)ArticleGoogle Scholar
Goda, Y.; Suzuki, Y. Estimation of incident and reflected waves in random wave experiments. In: ASCE, Proceedings of 15th International Conference on Coastal Engineering, (Honolulu, Hawaii). vol. 1, pp. 828–845. (1976)
Zanuttigh, B.; Van der Meer, J.W.: Wave reflection from coastal structures. In: AA.VV., Proceedings of the XXX International Conference on Coastal Engineering, World Scientific, (San Diego, CA, USA, September 2006). pp. 4337–4349. (2006)
Seelig W.N.; Ahrens J.P.: Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. CERC, Technical Paper, Fort Belvoir. vol. 81, p. 41 (1981)
Mase, H.: Random wave runup height on gentle slope. J. Waterw. Port Coast. Ocean Eng. 115(5), 649–661 (1989)ArticleGoogle Scholar
2 Researcher of Imam Hossein University, Faculty of Engineering and Passive Defense
3 Ivanki University, Iran.
10.22124/JCR.2023.24324.1618
Abstract
개방 수로의 심한 수력 구배는 침전으로 인한 심각한 침식과 문제를 일으킵니다. 패브릭 콘크리트는 기존의 콘크리트 표면을 대체할 수 있는 높은 실행 속도를 가진 독특한 제품입니다. 이 제품의 기계적 저항 매개변수에 따르면 부식 요인에 대한 우수한 내구성 외에도 직물 콘크리트의 응용 분야 중 하나는 운하 및 수로 암거 표면에 사용하는 것입니다. 이 연구에서는 먼저 사다리꼴 단면의 개방 채널 흐름을 직선 경로 상태의 3가지 공통 채널 형상, 굴곡 및 편차가 있는 경로, 마지막으로 채널 하단의 높이가 변경된 채널 경로를 포함하는 9가지 시나리오에서 시뮬레이션합니다. 각 주에서 flow-3d 소프트웨어를 사용한 흐름 난류 모델링과 함께 3개의 서로 다른 흐름 체제가 조사되었습니다.
FLOW-3D 소프트웨어를 사용한 유동 난류 모델링과 함께 다양한 유동 체제가 조사되었습니다. ABAQUS 소프트웨어를 사용하여 패브릭 콘크리트 구성요소와 연결 영역을 모델링하고, 콘크리트 표면과 취약한 연결 영역에 동일한 힘을 가하여 생성된 응력의 양을 확인했습니다. 결과는 생성된 응력이 직물 콘크리트의 인장 및 압축 응력 용량에 비해 매우 낮다는 것을 보여줍니다. 흐름과 콘크리트의 수력 연구를 검증하기 위해 관련 실험실 결과가 사용되었습니다.
Severe hydraulic gradients in open channels cause severe bed erosion and problems caused by sedimentation. Fabric concrete is a unique product with high execution speed that can replace traditional concrete surfaces. According to the mechanical resistance parameters of this product, in addition to its good durability against corrosive factors, one of the applications of fabric concrete is its use on the surface of canals and water course culverts. In this research, first, the flow of open channels in trapezoidal section is simulated under 9 scenarios, which include 3 common channel geometries in the state of a straight path, a path with bends and deviations, and finally, a channel path with a change in height at the bottom of the channel. In each of the states, 3 different flow regimes have been investigated along with flow turbulence modeling using flow-3d software.
Different flow regimes have been investigated along with flow turbulence modeling using flow-3d software. Using ABAQUS software, fabric concrete components and their connection areas have been modeled, and by applying forces equated to the concrete surface and vulnerable connection areas, the amount of created stresses has been checked. The results show that the created stresses are very low compared to the tensile and compressive stress capacity of fabric concrete. In order to validate the hydraulic studies of flow and concrete, the relevant laboratory results have been used.
FLOW-3D 2024R1은 버블 및 상변화 모델의 수정을 통해 제품 및 공정 개발 소프트웨어를 계속 개선하고 있으며, 이를 통해 특히 열 전달 또는 액체-증기 상변화 옵션을 사용할 때 일반적인 설정 오류를 피하면서 더 쉽게 사용할 수 있습니다. 사용자 인터페이스를 재구성하여 액체-증기 상변화 옵션을 고체-액체 상변화 옵션으로 그룹화합니다. 단열 버블 및 열 버블 모델을 통합된 이상 기체 상태 방정식으로 대체하고, 유체 특성 입력을 통합했으며, 상태 방정식을 정의하는 데 사용되는 매개 변수를 제어하는 옵션을 추가했습니다. 이 개발은 엔지니어링 오류의 가능성을 줄이고, 입력을 단순화하며, 상전이 모델에 대한 보다 자연스러운 그룹화를 제공합니다. 두 번째 개발은 새로운 EXODUS II 기반 출력 파일에서 유체-구조 상호작용 및 열 응력 진화 모델을 지원하여 후처리 성능을 크게 향상시킵니다.
FLOW-3D 2023R2 의 새로운 기능
새로운 결과 파일 형식
FLOW-3D POST 2023R2 는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.
FLOW-3D POST 2023R2 에서 사용자는 이제 selected data를 flsgrf , EXODUS II 둘중 하나 또는 flsgrf 와 EXODUS II 둘다 파일 형식으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용하여FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 위치에서의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 추가 정보를 추출할 수 있습니다.
FLOW-3D POST 의 새로운 EXODUS II 파일 형식으로 채워진 화장품 크림 모델의 향상된 광선 추적 기능의 예
새로운 결과 파일 형식은 솔버 엔진의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다. 이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다.
FLOW-3D2023R2는 two-equation(RANS) 난류 모델에 대한 dynamic mixing length 계산을 크게 개선했습니다. 거의 층류 흐름 체계와 같은 특정 제한 사례에서는 이전 버전의 코드 계산 한계가 때때로 과도하게 예측되어 사용자가 특정 mixing length를 수동으로 입력해야 할 수 있습니다.
새로운 dynamic mixing length 계산은 이러한 상황에서 난류 길이와 시간 척도를 더 잘 설명합니다. 이제 사용자는 고정된(물리 기반) mixing length를 설정하는 대신 더 넓은 범위의 흐름에 동적 모델을 적용할 수 있습니다.
적절한 고정 mixing length와 비교하여 접촉 탱크의 혼합 시뮬레이션을 위한 기존 동적 mixing length 모델과 새로운 동적 mixing length 모델 간의 비교
정수압 초기화
사용자가 미리 정의된 유체 영역에서 정수압을 초기화해야 하는 경우가 많습니다. 이전에는 대규모의 복잡한 시뮬레이션에서 정수압 솔버의 수렴 속도가 느려지는 경우가 있었습니다. FLOW-3D2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.
압축성 흐름 솔버 성능
FLOW-3D2023R2는 최적화된 압력 솔버를 도입하여 압축성 흐름 문제에 대해 상당한 성능 향상을 제공합니다. 압축성 제트 흐름의 예에서 2023R2 솔버는 2023R1 버전보다 최대 4배 빠릅니다.
FLOW-3D 의 압축성 제트 시뮬레이션의 예
FLOW-3D 2023R2 의 새로운 기능
FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R2에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R2은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로우를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로우가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.
확장된 PQ 2 분석
제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량 운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리하도록 단순화하는 경우가 많습니다. 우리는 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 현실적인 결과를 제공했습니다. 이로써 시뮬레이션 시간을 줄이고 모델 복잡성의 감소시킬 수 있습니다.
FLOW-3D 2022R2 의 새로운 기능
FLOW-3D 2022R2 제품군 출시로 Flow Science는 FLOW-3D 의 워크스테이션과 HPC 버전을 통합하여 노드 병렬 고성능 컴퓨팅 실행할 수 있도록 단일 노드 CPU 구성에서 다중 노드에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 형태 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성요소 제어, entrained air 기능이 개선되었습니다.
통합 솔버
FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행할 수 있습니다.
많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 Open MP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.
CPU 코어 수 증가에 따른 성능 확장의 예Open MP/MPI 하이브리드 병렬화를 위한 메시 분해의 예
솔버 성능 개선
멀티 소켓 워크스테이션
다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.
낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스
대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.
정제된 체적 대류 안정성 한계
Time step 안정성 한계는 모델 런타임의 주요 요인이며, 2022R2에서는 새로운 time step 안정성 한계인 3D 대류 안정성 한계를 Numerics 탭에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.
압력 솔버 프리컨디셔너
경우에 따라 까다로운 유동 해석의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 프리컨디셔너 기능을 활성화하여 압력 수렴을 돕습니다. 런타임이 1.9~335배 더 빨라졌습니다!
점탄성 유체에 대한 로그 형태 텐서 방법
점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수에 효과적입니다.
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수의 개선된 솔루션의 예입니다. 제공: MF Tome 외, J. Non-Newton. Fluid. Mech. 175-176 (2012) 44–54
활성 시뮬레이션 제어 확장
Active simulation 제어 기능이 확장되어 연속 주조 및 적층 제조 응용 분야에 일반적으로 사용되는 팬텀 개체는 물론 주조 및 기타 여러 열 관리 응용 분야에 사용되는 냉각 채널에도 사용됩니다.
연속 주조 응용 분야에 대한 가상 물체 속도 제어의 예융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예
향상된 공기 동반 기능
디퓨저 및 이와 유사한 산업용 기포 흐름 응용 분야의 경우 이제 질량 공급원을 사용하여 물기둥에 공기를 유입할 수 있습니다. 또한, 동반된 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.
이 연구에서는 세 가지 다른 말뚝 뚜껑 높이에서 직사각형 말뚝 캡이 있는 복잡한 부두 주변의 지역 세굴 및 관련 흐름 유체 역학을 조사합니다. 말뚝 캡 높이가 초기 모래층에 대해 선택되었으며, 말뚝 캡이 흐름에 노출되지 않고(사례 I), 부분적으로 노출되고(사례 II) 완전히 노출(사례 III)되도록 했습니다. 실험은 맑은 물 세굴 조건 하에서 재순환 수로에서 수행되었으며, 입자 이미지 유속계 (PIV) 기술을 사용하여 다른 수직면에서 순간 유속을 얻었습니다. 부분적으로 노출된 파일 캡 케이스는 최대 수세미 깊이(MSD)를 보여주었습니다. 사례 II에서 MSD가 발생한 이유는 난류 유동장 분석을 통해 밝혀졌는데, 이는 말뚝 캡이 흐름에 노출됨에 따라 더 높은 세굴 깊이를 담당하는 말뚝 가장자리에서 와류 생성에 지배적으로 영향을 미친다는 것을 보여주었습니다. 유동장에 대한 파일 캡의 영향은 평균 속도, 소용돌이, 레이놀즈 전단 응력 및 난류 운동 에너지 윤곽을 통해 사례 III에서 두드러지게 나타났지만 파일 캡이 베드에서 떨어져 있었기 때문에 파일 캡 모서리는 수세미에 직접적인 영향을 미치지 않았습니다.
In this study, the local scour and the associated flow hydrodynamics around a complex pier with rectangular pile-cap at three different pile-cap elevations are investigated. The pile-cap elevations were selected with respect to the initial sand bed, such that the pile-cap was unexposed (case I), partially exposed (case II), and fully exposed (case III) to the flow. The experiments were performed in a recirculating flume under clear-water scour conditions, and the instantaneous flow velocity was obtained at different vertical planes using the particle image velocimetry (PIV) technique. The partially exposed pile-cap case showed the maximum obtained scour-depth (MSD). The reason behind the MSD occurrence in case II was enunciated through the analysis of turbulent flow field which showed that as the pile-cap got exposed to the flow, it dominantly affected the generation of vortices from the pile-cap corners responsible for the higher scour depth. The effect of the pile-cap on the flow field was prominently seen in case III through the mean velocities, vorticity, Reynolds shear stresses and turbulent kinetic energy contours, but since the pile-cap was away from the bed, the pile-cap corners did not show any direct effect on the scour.
Adrian, R. J. (2013). Structure of turbulent boundary layers. In Jeremy G. Venditti, James L. Best, Michael Church, & Richard J. Hardy (Eds.), Coherent flow structures at earth’s surface (pp. 17–24). John Wiley and Sons. [Crossref], [Google Scholar]
Adrian, R. J., & Westerweel, J. (2011). Particle image velocimetry, No. 30. Cambridge University Press. [Google Scholar]
Alemi, M., & Maia, R. (2018). Numerical simulation of the flow and local scour process around single and complex bridge piers. International Journal of Civil Engineering, 16(5), 475–487. https://doi.org/10.1007/s40999-016-0137-8 [Crossref], [Google Scholar]
Alemi, M., Pêgo, J. P., & Maia, R. (2019). Numerical simulation of the turbulent flow around a complex bridge pier on the scoured bed. European Journal of Mechanics – B/Fluids, 76, 316–331. https://doi.org/10.1016/j.euromechflu.2019.03.011 [Crossref], [Web of Science ®], [Google Scholar]
Amini, A., Hamidi, S., Shirzadi, A., Behmanesh, J., & Akib, S. (2021). Efficiency of artificial neural networks in determining scour depth at composite bridge piers. International Journal of River Basin Management, 19(3), 327–333. https://doi.org/10.1080/15715124.2020.1742138 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., & Clopper, P. E. (2015). Evaluating scour at bridges, 5th ed. hydraulic engineering circular No. 18 (HEC-18). Federal Highway Administration. [Google Scholar]
Ataie-Ashtiani, B., & Aslani-Kordkandi, A. (2012). Flow field around side-by-side piers with and without a scour hole. European Journal of Mechanics – B/Fluids, 36, 152–166. https://doi.org/10.1016/j.euromechflu.2012.03.007 [Crossref], [Web of Science ®], [Google Scholar]
Ataie-Ashtiani, B., Baratian-Ghorghi, Z., & Beheshti, A. A. (2010). Experimental investigation of clear-water local scour of compound piers. Journal of Hydraulic Engineering, 136(6), 343–351. https://doi.org/10.1061/(ASCE)0733-9429(2010)136:6(343) [Crossref], [Web of Science ®], [Google Scholar]
Avallone, F., Discetti, S., Astarita, T., & Cardone, G. (2015). Convergence enhancement of single-pixel PIV with symmetric double correlation. Experiments in Fluids, 56(4), 71. https://doi.org/10.1007/s00348-015-1938-2 [Crossref], [Web of Science ®], [Google Scholar]
Beheshti, A. A., & Ataie-Ashtiani, B. (2010). Experimental study of three-dimensional flow field around a complex bridge pier. Journal of Engineering Mechanics, 136(2), 143–154. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000073 [Crossref], [Web of Science ®], [Google Scholar]
Beheshti, A. A., & Ataie-Ashtiani, B. (2016). Scour hole influence on turbulent flow field around complex bridge piers. Flow, Turbulence and Combustion, 97(2), 451–474. https://doi.org/10.1007/s10494-016-9707-8 [Crossref], [Web of Science ®], [Google Scholar]
Cameron, S. M., Nikora, V. I., & Marusic, I. (2019). Drag forces on a bed particle in open-channel flow: Effects of pressure spatial fluctuations and very-large-scale motions. Journal of Fluid Mechanics, 863, 494–512. https://doi.org/10.1017/jfm.2018.1003 [Crossref], [Web of Science ®], [Google Scholar]
Cheng, N., & Emadzadeh, A. (2017). Laboratory measurements of vortex-induced sediment pickup rates. International Journal of Sediment Research, 32(1), 98–104. https://doi.org/10.1016/j.ijsrc.2016.04.005 [Crossref], [Web of Science ®], [Google Scholar]
Coleman, S. E. (2005). Clearwater local scour at complex piers. Journal of Hydraulic Engineering, 131(4), 330–334. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:4(330) [Crossref], [Web of Science ®], [Google Scholar]
Das, S., & Mazumdar, A. (2015). Turbulence flow field around two eccentric circular piers in scour hole. International Journal of River Basin Management, 13(3), 343–361. https://doi.org/10.1080/15715124.2015.1012515 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Esmaeili Varaki, M., Radice, A., Samira Hossini, S., & Fazl Ola, R. (2019). Local scour at a complex pier with inclined columns footed on capped piles: Effect of the pile arrangement and of the cap thickness and elevation. ISH Journal of Hydraulic Engineering, 1–10. https://doi.org/10.1080/09715010.2019.1702109 [Taylor & Francis Online], [Google Scholar]
Ferraro, D., Tafarojnoruz, A., Gaudio, R., & Cardoso, A. H. (2013). Effects of pile cap thickness on the maximum scour depth at a complex pier. Journal of Hydraulic Engineering, 139(5), 482–491. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000704 [Crossref], [Web of Science ®], [Google Scholar]
Gaudio, R., Tafarojnoruz, A., & Calomino, F. (2012). Combined flow-altering countermeasures against bridge pier scour. Journal of Hydraulic Research, 50(1), 35–43. https://doi.org/10.1080/00221686.2011.649548 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Gautam, P., Eldho, T., & Behera, M. (2016). Experimental study of scour around a complex pier with elliptical pile-cap. In J. Harris, R. Whitehouse, & S. Moxon (Eds.), Scour and Erosion: Proceedings of the 8th International Conference on Scour and Erosion (Oxford, UK, 12-15 September 2016) (pp. 759–765). CRC Press. [Crossref], [Google Scholar]
Gautam, P., Eldho, T. I., Mazumder, B. S., & Behera, M. R. (2019). Experimental study of flow and turbulence characteristics around simple and complex piers using PIV. Experimental Thermal and Fluid Science, 100, 193–206. https://doi.org/10.1016/j.expthermflusci.2018.09.010 [Crossref], [Web of Science ®], [Google Scholar]
Graf, W. H., & Istiarto, I. (2002). Flow pattern in the scour hole around a cylinder. Journal of Hydraulic Research, 40(1), 13–20. https://doi.org/10.1080/00221680209499869 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Hjulstrom, F. (1935). Study of the morphological activity of Rivers as illustrated by the River fyris bulletin, vol. 25. Geological Institute of Upsala. [Google Scholar]
Kumar, A., & Kothyari, U. C. (2012). Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. Journal of Hydraulic Engineering, 138(5), 420–429. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000527 [Crossref], [Web of Science ®], [Google Scholar]
Mashahir, M. B., Zarrati, A. R., & Rezayi, M. J. (2004). Time development of scouring around a bridge pier protected by collar. In Proceedings 2nd International Conference on Scour and Erosion (ICSE-2). November 14–17, 2004, Singapore. [Google Scholar]
Melville, B. W. (2008). The physics of local scour at bridge piers. In Proceedings of the 4th International Conference on Scour and Erosion (ICSE-4). November 5-7, 2008, Tokyo, Japan (pp. 28–40). [Google Scholar]
Melville, B. W., & Chiew, Y. M. (1999). Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59–65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59) [Crossref], [Web of Science ®], [Google Scholar]
Melville, B. W., & Raudkivi, A. J. (1977). Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research, 15(4), 373–380. https://doi.org/10.1080/00221687709499641 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Moreno, M., Maia, R., & Couto, L. (2016a). Effects of relative column width and pile-cap elevation on local scour depth around complex piers. Journal of Hydraulic Engineering, 142(2), 04015051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001080 [Crossref], [Web of Science ®], [Google Scholar]
Moreno, M., Maia, R., & Couto, L. (2016b). Prediction of equilibrium local scour depth at complex bridge piers. Journal of Hydraulic Engineering, 142(11), 04016045. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001153 [Crossref], [Web of Science ®], [Google Scholar]
Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering, 112(5), 335–355. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335) [Crossref], [Web of Science ®], [Google Scholar]
Radice, A., & Tran, C. K. (2012). Study of sediment motion in scour hole of a circular pier. Journal of Hydraulic Research, 50(1), 44–51. https://doi.org/10.1080/00221686.2011.641764 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Richardson, J. R., & York, K. (1999). Hydrodynamic countermeasures for local pier scour. Transportation Research Record: Journal of the Transportation Research Board, 1690(1), 186–192. https://doi.org/10.3141/1690-21 [Crossref], [Google Scholar]
Saw, E., Debue, P., Kuzzay, D., Daviaud, F., & Dubrulle, B. (2018). On the universality of anomalous scaling exponents of structure functions in turbulent flows. Journal of Fluid Mechanics, 837, 657–669. https://doi.org/10.1017/jfm.2017.848 [Crossref], [Web of Science ®], [Google Scholar]
Schlichting, H. (1968). Boundary layer theory (Vol. 960). McGraw-Hill. [Google Scholar]
Sheppard, D. M., Demir, H., & Melville, B. W. (2011). Scour at wide piers and long skewed piers (Vol. 682). Transportation Research Board. [Google Scholar]
Tafarojnoruz, A., Gaudio, R., & Calomino, F. (2012). Bridge pier scour mitigation under steady and unsteady flow conditions. Acta Geophysica, 60(4), 1076–1097. https://doi.org/10.2478/s11600-012-0040-x [Crossref], [Web of Science ®], [Google Scholar]
Tafarojnoruz, A., Gaudio, R., & Dey, S. (2010). Flow-altering countermeasures against scour at bridge piers: A review. Journal of Hydraulic Research, 48(4), 441–452. https://doi.org/10.1080/00221686.2010.491645 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence. MIT press. [Crossref], [Google Scholar]
Veerappadevaru, G., Gangadharaiah, T., & Jagadeesh, T. R. (2011). Vortex scouring process around bridge pier with a caisson. Journal of Hydraulic Research, 49(3), 378–383. https://doi.org/10.1080/00221686.2011.568195 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Veerappadevaru, G., Gangadharaiah, T., & Jagadeesh, T. R. (2012). Temporal variation of vortex scour process around caisson piers. Journal of Hydraulic Research, 50(2), 200–207. https://doi.org/10.1080/00221686.2012.666832 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109–129. https://doi.org/10.1080/15715124.2017.1394315 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Yang, Y., Melville, B. W., Sheppard, D. M., & Shamseldin, A. Y. (2018). Clear-water local scour at skewed complex bridge piers. Journal of Hydraulic Engineering, 144(6), 04018019. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001458 [Crossref], [Web of Science ®], [Google Scholar]
Yang, Y., Melville, B. W., Macky, G. H., & Shamseldin, A. Y. (2020). Temporal evolution of clear-water local scour at aligned and skewed complex bridge piers. Journal of Hydraulic Engineering, 146(4), 04020026. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001732 [Crossref], [Web of Science ®], [Google Scholar]
Assistant Professor, Faculty of Civil Engineering, K. N. Toosi Univ. of Technology, Tehran 1996715433, Iran; formerly, Postdoctoral Research Fellow, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology (Tehran Polytechnic), Tehran 1591634311, Iran. ORCID: https://orcid.org/0000-0002-5162-6332. Email: mohammad.tehrani@kntu.ac.ir
https://doi.org/10.1061/JHEND8.HYENG-12914
Received: May 15, 2021
Accepted: September 30, 2022
Published online: December 21, 2022Journal of Hydraulic Engineering
chute 여수로에서는 난류 경계층 가장자리가 충분히 길면 자유 표면에 접근하는 시작점의 하류에서 자체 통기가 발생합니다. 시작 지점의 하류에서 공기-물 혼합물을 포함하는 층이 팽창 효과와 함께 흐름을 통해 점진적으로 확장됩니다.
유동 벌킹은 측벽 건현 설계 측면에서 필수적입니다. 또한 고체 경계 근처에 충분한 양의 공기를 도입하면 캐비테이션 손상을 방지할 수 있습니다. 현재 연구에서, 매끄러운 chute 을 따라 유동 벌킹과 함께 깊이와 자유 표면 위치에 걸쳐 자체 폭기 및 공기 농도 프로파일을 예측하기 위해 2D 수치 모델이 개발되었습니다.
개발된 모델은 혼합물 연속성, 기단 및 공기-물 혼합물 운동량 보존의 일방향 포물선 방정식의 해를 다룹니다. 이러한 방정식은 행진 기법과 Prandtl의 혼합 길이 난류 모델을 활용하여 자유 표면에 대한 동적 방정식과 함께 해결됩니다.
프로토타입 측정 및 실험실 테스트를 통해 얻은 실험 데이터를 사용하여 수치 모델의 정확도를 평가했습니다. 관련 결과는 경계층 발달의 유도된 시작점, 자체 유입 흐름 내의 공기 농도 프로파일 및 그에 따른 흐름의 벌킹 측면에서 비교되었습니다.
실용적인 목적을 위한 수치 모델의 기능은 상당히 정확한 결과에 따라 의미가 있으며 추가 연구를 위한 새로운 지평을 밝힙니다.
In chute spillways, self-aeration occurs downstream of the inception point, where the turbulent boundary layer edge approaches the free surface, if they are long enough. Downstream of the inception point, a layer containing an air–water mixture extends gradually through the flow with the bulking effect. Flow bulking is essential in terms of sidewall freeboard design. In addition, the introduction of enough air quantity near the solid boundaries prevents cavitation damage. In the present work, a 2D numerical model was developed for the prediction of self-aeration and air concentration profiles across the depth and the free-surface location, together with flow bulking along the smooth chutes. The developed model deals with the solution of the one-way direction parabolic equations of mixture continuity, air mass, and air–water mixture momentum conservation. These equations are solved accompanied by the dynamic equation for the free surface, utilizing the marching technique and Prandtl’s mixing length turbulent model. The experimental data obtained by prototype measurements and laboratory tests were used to assess the accuracy of the numerical model. The relevant results were compared in terms of the induced inception point of the boundary layer development, air concentration profiles within self-entrained flows, and the consequent bulking of the flow. The capability of the numerical model for practical purposes is signified in accordance with the fairly accurate obtained results, shedding light on new horizons for further research.
FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. 누락된 종속성을 보고하도록 Linux 설치 프로그램이 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 또한 워크플로를 자동화한 사용자를 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.
확장된 PQ 2 분석
제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량-운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리한 단순화인 경우가 많습니다. 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 여전히 현실적인 결과를 제공합니다. 이것은 시뮬레이션 시간과 모델 복잡성의 감소로 해석됩니다.
FLOW-3D 2022R2 의 새로운 기능
FLOW-3D 2022R2 제품군 의 출시와 함께 Flow Science는 워크스테이션과 FLOW-3D 의 HPC 버전 을 통합하여 단일 노드 CPU 구성에서 다중 구성에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 구조 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성 요소 제어, 향상된 연행 공기 기능이 포함됩니다.
통합 솔버
FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션 또는 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.
많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션에서 OpenMP/MPI 하이브리드 병렬화의 동일한 이점을 활용하여 워크스테이션 및 노트북에서 실행할 수 있습니다.
점점 더 많은 수의 CPU 코어를 사용하는 성능 확장의 예OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예
솔버 성능 개선
멀티 소켓 워크스테이션
멀티 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 통해 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있는 성능 이점을 볼 수 있습니다.
낮은 수준의 루틴으로 벡터화 및 메모리 액세스 개선
대부분의 테스트 사례에서 10%에서 20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 있었습니다.
정제된 체적 대류 안정성 한계
시간 단계 안정성 한계는 모델 런타임의 주요 동인입니다. 2022R2에서는 새로운 시간 단계 안정성 한계인 3D 대류 안정성 한계를 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 30% 정도의 일반적인 속도 향상을 보여주었습니다.
압력 솔버 프리 컨디셔너
경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 어려운 경우 2022R2에서는 모델이 너무 많이 반복될 때 FLOW-3D가 자동으로 새로운 프리 컨디셔너를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임이 1.9배에서 335배까지 빨라졌습니다!
점탄성 유체에 대한 로그 형태 텐서 방법
점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수치에 효과적입니다.
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수에서 개선된 솔루션의 예. Courtesy MF Tome, et al., J. Non-Newton. 체액. 기계 175-176 (2012) 44–54
활성 시뮬레이션 제어 확장
능동 시뮬레이션 제어 기능은 연속 주조 및 적층 제조 응용 프로그램과 주조 및 기타 여러 열 관리 응용 프로그램에 사용되는 냉각 채널에 일반적으로 사용되는 팬텀 개체를 포함하도록 확장되었습니다.
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예연속 주조 애플리케이션을 위한 팬텀 물체 속도 제어의 예
연행 공기 기능 개선
디퓨저 및 유사한 산업용 기포 흐름 응용 분야의 경우 이제 대량 공급원을 사용하여 물 기둥에 공기를 도입할 수 있습니다. 또한 혼입 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.
인공어초(Artificial Reef, ARs)는 연안 어업 자원을 복원하고 생태 환경을 복원하기 위한 핵심 인공 구조물 중 하나입니다. 그러나 많은 AR이 세굴로 인해 안정성과 기능을 상실한 것으로 밝혀졌다.
AR의 기능적 효과를 보장하기 위해서는 서로 다른 흐름 조건에서 세굴로 인한 매장과 같은 AR의 불안정성을 연구하는 것이 매우 중요합니다.
FLOW-3D에 의해 확립된 3차원 수치 모델은 정상류에서 AR 주변의 국부 세굴 특성을 연구하는 데 사용됩니다. RNG k-ε 난류 모델로 닫힌 RANS 방정식은 하나의 AR 주변의 안정적인 유동장을 시뮬레이션하기 위해 설정됩니다.
시뮬레이션 결과는 이전 실험 결과와 비교되었으며 좋은 일치를 보여줍니다. 그 다음에, 세굴 특성, 평형 세굴 깊이 및 최대 세굴 체적에 대한 AR의 개구수 및 입사각의 영향을 조사하였다. 결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다.
또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다.
본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다.
입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다.
결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다.
베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다.
베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다.
본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다.
Numerical Simulation of Local Scour Around Square Artificial Reef
Artificial reefs (ARs) are one of the key man-made constructs to restore the offshore fishery resources and recover the ecological environment. However, it is found that many ARs lost their stability and function due to scour. In order to ensure the functional effect of ARs, it is of great significance to study the instability of ARs, like burying caused by scour in different flow conditions. The three-dimensional numerical model established by FLOW-3D is used to study the local scour characteristics around the AR in steady currents. The RANS equations, closed with the RNG k-ε turbulence model, are established for simulating a stable flow field around one AR. The simulation results are compared with previous experimental results and shows good agreement. Then, the effect of the opening number and the incident angles of ARs on the scour characteristics, the equilibrium scour depth and maximum scour volume are investigated. The results indicate that the scour depth and scour volume decrease with the increasing opening number. Moreover, the empirical equations of the effect of the opening number of the AR on the equilibrium scour depth and maximum scour volume are proposed based on the numerical results. The change of the incident angles will affect the change of bed shear stress at the most upstream corner of the AR. The greater bed shear stress results in a more intense scour. This study will provide theoretical support, and practical guidance for the optimized engineering design and construction of ARs.
Dissertação de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Engenharia Mecânica Trabalho efectuado sob a orientação do Doutor Hélder de Jesus Fernades Puga Professor Doutor José Joaquim Carneiro Barbosa
ABSTRACT
논문의 일부로 튜터 선택 가능성과 해결해야 할 주제가 설정되는 매개변수를 염두에 두고 개발 주제 ‘Flow- 3D ®에 의한 저압 충전 시스템 최적화’가 선택되었습니다. 이를 위해서는 달성해야 할 목표와 이를 달성하기 위한 방법을 정의하는 것이 필요했습니다.
충전 시스템을 시뮬레이션하고 검증할 수 있는 광범위한 소프트웨어에도 불구하고 Flow-3D®는 시장에서 최고의 도구 중 하나로 표시되어 전체 충전 프로세스 및 행동 표현과 관련하여 탁월한 정확도로 시뮬레이션하는 능력을 입증했습니다.
이를 위해 관련 프로세스를 더 잘 이해하고 충진 시스템 시뮬레이션을 위한 탐색적 기반 역할을 하기 위해 이 도구를 탐색하는 것이 중요합니다. 지연 및 재료 낭비에 반영되는 실제적인 측면에서 충전 장치의 치수를 완벽하게 만드는 비용 및 시간 낭비. 이러한 방식으로 저압 주조 공정에서 충진 시스템을 설계하고 물리적 모델을 탐색하여 특성화하는 방법론을 검증하기 위한 것입니다.
이를 위해 다음 주요 단계를 고려하십시오.
시뮬레이션 소프트웨어 Flow 3D® 탐색; 충전 시스템 모델링; 모델의 매개변수를 탐색하여 모델링된 시스템의 시뮬레이션, 검증 및 최적화.
따라서 연구 중인 압력 곡선과 주조 분석에서 가장 관련성이 높은 정보의 최종 마이닝을 검증하기 위한 것입니다.
사용된 압력 곡선은 수집된 문헌과 이전에 수행된 실제 작업을 통해 얻었습니다. 결과를 통해 3단계 압력 곡선이 층류 충진 체계의 의도된 목적과 관련 속도가 0.5 𝑚/𝑠를 초과하지 않는다는 결론을 내릴 수 있었습니다.
충전 수준이 2인 압력 곡선은 0.5 𝑚/𝑠 이상의 속도로 영역을 채우는 더 난류 시스템을 갖습니다. 열전달 매개변수는 이전에 얻은 값이 주물에 대한 소산 거동을 확증하지 않았기 때문에 연구되었습니다.
이러한 방식으로 주조 공정에 더 부합하는 새로운 가치를 얻었습니다. 달성된 결과는 유사한 것으로 나타난 NovaFlow & Solid®에 의해 생성된 결과와 비교되어 시뮬레이션에서 설정된 매개변수를 검증했습니다. Flow 3D®는 주조 부품 시뮬레이션을 위한 강력한 도구로 입증되었습니다.
As part of the dissertation and bearing in mind the parameters in which the possibility of a choice of tutor and the subject to be addressed is established, the subject for development ’Optimization of filling systems for low pressure by Flow 3D ®’ was chosen. For this it was necessary to define the objectives to achieve and the methods to attain them. Despite the wide range of software able to simulate and validate filling systems, Flow 3D® has been shown as one of the best tools in the market, demonstrating its ability to simulate with distinctive accuracy with respect to the entire process of filling and the behavioral representation of the fluid obtained. To this end, it is important to explore this tool for a better understanding of the processes involved and to serve as an exploratory basis for the simulation of filling systems, simulation being one of the great strengths of the current industry due to the need to reduce costs and time waste, in practical terms, that lead to the perfecting of the dimensioning of filling devices, which are reflected in delays and wasted material. In this way it is intended to validate the methodology to design a filling system in lowpressure casting process, exploring their physical models and thus allowing for its characterization. For this, consider the following main phases: The exploration of the simulation software Flow 3D®; modeling of filling systems; simulation, validation and optimization of systems modeled by exploring the parameters of the models. Therefore, it is intended to validate the pressure curves under study and the eventual mining of the most relevant information in a casting analysis. The pressure curves that were used were obtained through the gathered literature and the practical work previously performed. Through the results it was possible to conclude that the pressure curve with 3 levels meets the intended purpose of a laminar filling regime and associated speeds never exceeding 0.5 𝑚/𝑠. The pressure curve with 2 filling levels has a more turbulent system, having filling areas with velocities above 0.5 𝑚/𝑠. The heat transfer parameter was studied due to the values previously obtained didn’t corroborate the behavior of dissipation regarding to the casting. In this way, new values, more in tune with the casting process, were obtained. The achieved results were compared with those generated by NovaFlow & Solid®, which were shown to be similar, validating the parameters established in the simulations. Flow 3D® was proven a powerful tool for the simulation of casting parts.
Figure 4.24 – Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed fillingFigure 4.39 – Values of temperature contours using full energy heat transfer parameter for simulaFigure 4.40 – Comparison between software simulations (a) Flow 3D® simulation,
(b) NovaFlow & Solid® simulation
BIBLIOGRAPHY
[1] E. Stanley and D. B. Sc, “Fluid Flow Aspects of Solidification Modelling : Simulation of Low Pressure Die Casting .” [2] Y. Sahin, “Computer aided foundry die-design,” Metallography, vol. 24, no. 8, pp. 671–679, 2003. [3] F. Bonollo, J. Urban, B. Bonatto, and M. Botter, “Gravity and low pressure die casting of aluminium alloys : a technical and economical benchmark,” La Metall. Ital., vol. 97, no. 6, pp. 23–32, 2005. [4] P. a and R. R, “Study of the effect of process parameters on the production of a nonsimmetric low pressure die casting part,” La Metall. Ital., pp. 57–63, 2009. [5] “Fundição em baixa pressão | Aluinfo.” [Online]. Available: http://www.aluinfo.com.br/novo/materiais/fundicao-em-baixa-pressao. [Accessed: 18- Sep-2015]. [6] “Low Pressure Sand Casting by Wolverine Bronze.” [Online]. Available: http://www.wolverinebronze.com/low-pressure-sand-casting.php. [Accessed: 18-Sep2015]. [7] A. Reikher, “Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation,” no. December, 2012. [8] P. Fu, A. a. Luo, H. Jiang, L. Peng, Y. Yu, C. Zhai, and A. K. Sachdev, “Low-pressure die casting of magnesium alloy AM50: Response to process parameters,” J. Mater. Process. Technol., vol. 205, no. 1–3, pp. 224–234, 2008. [9] X. Li, Q. Hao, W. Jie, and Y. Zhou, “Development of pressure control system in counter gravity casting for large thin-walled A357 aluminum alloy components,” Trans. Nonferrous Met. Soc. China, vol. 18, no. 4, pp. 847–851, 2008. [10] J. a. Hines, “Determination of interfacial heat-transfer boundary conditions in an aluminum low-pressure permanent mold test casting,” Metall. Mater. Trans. B, vol. 35, no. 2, pp. 299–311, 2004. [11] A. Lima, A. Freitas, and P. Magalhães, “Processos de vazamento em moldações permanentes,” pp. 40–49, 2003. [12] Y. B. Choi, K. Matsugi, G. Sasaki, K. Arita, and O. Yanagisawa, “Analysis of Manufacturing Processes for Metal Fiber Reinforced Aluminum Alloy Composite Fabricated by Low-Pressure Casting,” Mater. Trans., vol. 47, no. 4, pp. 1227–1231, 68 2006. [13] G. Mi, X. Liu, K. Wang, and H. Fu, “Numerical simulation of low pressure die-casting aluminum wheel,” China Foundry, vol. 6, no. 1, pp. 48–52, 2009. [14] J. Kuo, F. Hsu, and W. Hwang, “ADVANCED Development of an interactive simulation system for the determination of the pressure ± time relationship during the ® lling in a low pressure casting process,” vol. 2, pp. 131–145, 2001. [15] S.-G. Liu, F.-Y. Cao, X.-Y. Zhao, Y.-D. Jia, Z.-L. Ning, and J.-F. Sun, “Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy,” Mater. Sci. Eng. A, vol. 626, pp. 159–164, 2015. [16] “Casting Training Class – Lecture 10 – Solidification and Shrinkage-Casting.” FLOW3D®. [17] “UAB Casting Engineering Laboratory.” [Online]. Available: file:///C:/Users/Jos%C3%A9 Belo/Desktop/Artigo_Software/UAB Casting Engineering Laboratory.htm. [Accessed: 09-Nov-2015]. [18] A. Louvo, “Casting Simulation as a Tool in Concurrent Engineering,” pp. 1–12, 1997. [19] T. R. Vijayaram and P. Piccardo, “Computers in Foundries,” vol. 30, 2012. [20] M. Sadaiah, D. R. Yadav, P. V. Mohanram, and P. Radhakrishnan, “A generative computer-aided process planning system for prismatic components,” Int. J. Adv. Manuf. Technol., vol. 20, no. 10, pp. 709–719, 2002. [21] Ministry_of_Planning, “Digital Data,” vol. 67, pp. 1–6, 2004. [22] S. Shamasundar, D. Ramachandran, and N. S. Shrinivasan, “COMPUTER SIMULATION AND ANALYSIS OF INVESTMENTCASTING PROCESS.” [23] J. M. Siqueira and G. Motors, “Simulation applied to Aluminum High Pressure Die Casting,” pp. 1–5, 1998. [24] C. Fluid, COMPUTATIONAL FLUID DYNAMICS. Abdulnaser Sayma & Ventus Publishing ApS, 2009. [25] C. a. Felippa, “1 – Overview,” Adv. Finite Elem. Methods, pp. 1–9. [26] a. Meena and M. El Mansori, “Correlative thermal methodology for castability simulation of ductile iron in ADI production,” J. Mater. Process. Technol., vol. 212, no. 11, pp. 2484–2495, 2012. [27] T. R. Vijayaram, S. Sulaiman, a. M. S. Hamouda, and M. H. M. Ahmad, “Numerical simulation of casting solidification in permanent metallic molds,” J. Mater. Process. 69 Technol., vol. 178, pp. 29–33, 2006. [28] “General CFD FAQ — CFD-Wiki, the free CFD reference.” [Online]. Available: http://www.cfd-online.com/Wiki/General_CFD_FAQ. [Accessed: 10-Nov-2015]. [29] “FEM | FEA | CFD.” [Online]. Available: http://fem4analyze.blogspot.pt/. [Accessed: 09-Nov-2015]. [30] “Fundição; revista da Associação portuguesa de fundição,” Fundição, vol. N o 227. [31] “Casting Training Class – Lecture 1 – Introduction_to_FLOW-3D – Casting.” FLOW3D®. [32] F. Science, “FLOW-3D Cast Documentation,” no. 3.5, p. 80, 2012. [33] “Casting Training Class – Lecture 4 – Geometry Building – General.” FLOW-3D®. [34] F. Science, “FLOW-3D v11.0.3 User Manual,” pp. 1–132, 2015. [35] “Casting Training Class – Lecture 5 Meshing Concept – General.” FLOW-3D®. [36] “Casting Training Class – Lecture 6 – Boundary_Conditions – Casting.” FLOW-3D®. [37] “Casting Training Class – Lecture 9 – Physical Models-castings.” FLOW-3D®. [38] P. A. D. Jácome, M. C. Landim, A. Garcia, A. F. Furtado, and I. L. Ferreira, “The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs–Thomson coefficient of aluminum based alloys,” Thermochim. Acta, vol. 523, no. 1–2, pp. 142–149, 2011. [39] J. P. Anson, R. A. L. Drew, and J. E. Gruzleski, “The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 30, no. 6, pp. XVI–1032, 1999.
Paula Beceiro (corresponding author) Maria do Céu Almeida Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal E-mail: pbeceiro@lnec.pt Jorge Matos Department of Civil Engineering, Arquitecture and Geosources, Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal
ABSTRACT
물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.
하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.
본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.
이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.
유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.
The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.
Key words | air entrainment, computational fluid dynamics (CFD), sewer drops
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
REFERENCES
Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal. Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia. Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal. Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal. Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288. Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA. Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada. Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA. Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203. Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243. Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049. Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150. Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263. Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA. Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA. Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225. Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA. Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA. Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527. Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476. Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430. Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands. Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532. Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil. Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552. Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724. Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal. Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal. Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK. Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK. Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA. Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582. Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England. Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452. Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870. Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.
Hydraulic model test was used to analyze the rapidly varied flow on the spillway. But, it has some shortcomings such as error of scale effect and expensive costs. Recently, through the development of three dimensional computational fluid dynamics (CFD), rapidly varied flow and turbulence can be simulated. In this study, the applicability of CFD model to simulate flow on the spillway was reviewed. The Karian dam in Indonesia was selected as the study area. The FLOW-3d model, which is well known to simulate a flow having a free surface, was used to analyze flow. The flow stability in approach channel was investigated with the initial plan design, and the results showed that the flow in approach channel is unstable in the initial plan design. To improve flow stability in the spillway, therefore, the revised plan design was formulated. The appropriateness of the revised design was examined by a numerical modeling. The results showed that the flow in spillway is stable in the revised design.
여수로의 급격하게 변화하는 흐름을 분석하기 위해 수리학적 모델 테스트를 사용했습니다. 그러나 스케일 효과의 오차와 고가의 비용 등의 단점이 있다. 최근에는 3차원 전산유체역학(CFD)의 발달로 급변하는 유동과 난류를 모사할 수 있다. 본 연구에서는 여수로의 흐름을 시뮬레이션하기 위한 CFD 모델의 적용 가능성을 검토했습니다. 인도네시아의 Karian 댐이 연구 지역으로 선정되었습니다. 자유표면을 갖는 유동을 모의하는 것으로 잘 알려진 FLOW-3d 모델을 유동해석에 사용하였다. 접근수로의 흐름 안정성은 초기 계획설계와 함께 조사한 결과 초기 계획설계에서 접근수로의 흐름이 불안정한 것으로 나타났다. 따라서 방수로의 흐름 안정성을 향상시키기 위해 수정된 계획 설계가 공식화되었습니다. 수정된 설계의 적합성을 수치모델링을 통해 검토하였다. 결과는 수정된 설계에서 여수로의 흐름이 안정적이라는 것을 보여주었습니다.
Figure 6. Two dimensional flow velocity distribution at the
approach channel (Flow velocity distribution at depth EL. 68.12 m).Figure 7. Flow distribution at the approach channel in PMF.
A. Hydraulic model test; B. Numerial simulatio
C. Cross section view.Figure 8. Revised approach channel section.
A. Initial plan design; B. Revised plan design.Figure 9. Two dimensional flow velocity distribution at the approach channel
based on revised plan design (Flow velocity distribution at depth EL. 68.12 m).Figure 10. Flow distribution at the approach channel in PMF based on revised plan design.
A. Hydarulic model test; B. Numerical simulation; C. Section view.
REFERENCES
Betts PL (1979). A variation principle in terms of stream function for free surface flows and its application to finite element method. Comp. Fluids, 7(2): 145-153. Cassidy JJ (1965). Irrotational flow over spillways of finite height. J. Eng. Mech. Div. ASCE., 91(6): 155-173. Flow Science (2002). FLOW-3D -Theory manual. Los Alamos, NM. Guo Y, Wen X, Wu C, Fang D (1998). Numerical modeling of spillway flow with free drop and initially unknown discharge. J. Hydraulic Res. IAHR, 36(5): 785-801. Ho DKH, Donohoo SM (2001). Investigation of spillway behavior under increased maximum flood by computational fluid dynamics technique. Proceeding 14 th Australasian Fluid Mech. Conference, Adelaide University, Adelaide, Australia, pp. 10-14. Ikegawa M, Washizu K (1973). Finite element method applied to analysis of flow over a spillway crest. Int. J. Numerical Methods Eng., 6: 179-189. Kim DG, Park JH (2005). Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. J. Civil Eng. KSCE., pp. 161-169. KRA, KWATER (2006). Feasibility study and detail design of the Karian dam project. Indonesia. Li W, Xie Q, Chen CJ (1989). Finite analytic solution of flow over spillways, J. Eng. Mech. ASCE, 115(2): 2645-2648. Olsen NR, Kjellesvig HM (1998).Three-dimensional numerical flow modeling for estimation of spillway capacity. J. Hydraulic Res. IAHR., 36(5): 775-784. Savage BM, Johnson MC (2001). Flow over ogee spillway: Physical and numerical model case study. J. Hydraulic Eng. ASCE., 127(8): 640- 649. Tabbara M, Chatial J, Awwad R (2005). Computational simulation of flow over stepped spillways. Comput. Structure, 83: 2215-2224.
린 첸 가오 양 미시 옹 장 춘밍 왕 Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang * 중국 우한시 화중과학기술대학 재료공학부, 430074
Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Abstract
A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.
온도 분포 및 용융 흐름을 시뮬레이션하기 위해 레이저 사인파 진동 (사인) 용접 및 레이저 용접 (SLW) 용접에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트 의 수치 모델이 개발되었습니다. SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 온도 구배(G)와 응고 속도 의 영향을 설명했습니다.(R) 시뮬레이션에 의한 응고 미세 구조. 결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립 이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다. 그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부 의 인장시험 은 융착선을 따라 인장파괴형태를인장강도사인 용접의 경우 SLW 용접보다 훨씬 우수했습니다. 이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세 하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.
Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.Fig. 2. Finite element mesh.Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.Fig. 5. The partially melted region of zone A.Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.Fig. 7. The temperature field simulation results of cross section for sine pattern weld.Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b)
temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.
Keywords
Laser welding, Sinusoidal oscillating, Energy distribution, Numerical simulation, Molten pool flow, Grain structure
References
Chen, X., 2014. Study on laser-MAG Hybrid Weaving Welding Charateristics. Master thesis. Harbin Institute of Technology, China. Chen, G., Wang, B., Mao, S., Zhong, P., He, J., 2019. Research on the “∞”-shaped laser scanning welding process for aluminum alloy. Opt. Laser Technol. 115, 32–41. Cho, W.-I., Na, S.-J., Cho, M.-H., Lee, J.-S., 2010. Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding. Comput. Mater. Sci. 49, 792–800. Cho, W.-I., Na, S.-J., Thomy, C., Vollertsen, F., 2012. Numerical simulation of molten pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212, 262–275. Das, A., Butterworth, I., Masters, I., Williams, D., 2018. Microstructure and mechanical properties of gap-bridged remote laser welded (RLW) automotive grade AA 5182 joints. Mater. Charact. 145, 697–712. Fetzer, F., Sommer, M., Weber, R., Weberpals, J.-P., Graf, T., 2018. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng. 108, 68–77. Geng, S., Jiang, P., Shao, X., Guo, L., Gao, X., 2020. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet. J. Mater. Sci. Technol. 46, 50–63. Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T., 2018a. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum. Mater. Des. 160, 1178–1185. Hagenlocher, C., Weller, D., Weber, R., Graf, T., 2018b. Reduction of the hot cracking susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain boundaries. Sci. Technol. Weld. Join. 24, 313–319. Hagenlocher, C., Fetzer, F., Weller, D., Weber, R., Graf, T., 2019. Explicit analytical expressions for the influence of welding parameters on the grain structure of laser beam welds in aluminium alloys. Mater. Des. 174, 107791. Han, X., Tang, X., Wang, T., Shao, C., Lu, F., Cui, H., 2018. Role of ambient pressure in keyhole dynamics based on beam transmission path method for laser welding on Al alloy. Int. J. Adv. Manuf. Technol. 99, 1639–1651. Hao, K., Li, G., Gao, M., Zeng, X., 2015. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225, 77–83. Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225. Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y., 2020. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater. Des. 186, 108195. Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D Appl. Phys. 27, 1805–1814. Kou, S., 2002. Welding Metallurgy, 2nd ed. Wiley-Interscience, New Jersey, USA. Kuryntsev, S.V., Gilmutdinov, A.K., 2015. The effect of laser beam wobbling mode in welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691. Li, P., Nie, F., Dong, H., Li, S., Yang, G., Zhang, H., 2018. Pulse MIG welding of 6061-T6/ A356-T6 aluminum alloy dissimilar T-joint. J. Mater. Eng. Perform. 27, 4760–4769. Liu, T., Mu, Z., Hu, R., Pang, S., 2019. Sinusoidal oscillating laser welding of 7075 aluminum alloy: hydrodynamics, porosity formation and optimization. Int. J. Heat Mass Transf. 140, 346–358. Seto, N., Katayama, S., Matsunawa, A., 2000. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation. J. Laser Appl. 12, 245–250. Tang, Z., Vollertsen, F., 2014. Influence of grain refinement on hot cracking in laser welding of aluminum. Weld. World 58, 355–366. Wang, L., Gao, M., Zhang, C., Zeng, X., 2016. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 108, 707–717. Wang, L., Gao, M., Zeng, X., 2018. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy. Sci. Technol. Weld. Join. 24, 334–341. Yamazaki, Y., Abe, Y., Hioki, Y., Nakatani, M., Kitagawa, A., Nakata, K., 2016. Fundamental study of narrow-gap welding with oscillation laser beam. Weld. Int. 30, 699–707. Yuan, Z., Tu, Y., Yuan, T., Zhang, Y., Huang, Y., 2021. Size effects on mechanical properties of pure industrial aluminum sheet for micro/meso scale plastic deformation: experiment and modeling. J. Alloys. Compd. 859, 157752. Zou, J., 2016. Characteristics of laser scanning welding process for 5A06 aluminum alloy thick plate with narrow gap. Materials Processing Engineering. Harbin Welding Institute, China. Master thesis.
316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링
M. BAYAT1,* , AND J. H. HATTEL1
Corresponding author 1 Technical University of Denmark (DTU), Building 425, Kgs. 2800 Lyngby, Denmark
ABSTRACT
Spatter and denudation are two very well-known phenomena occurring mainly during the laser powder bed fusion process and are defined as ejection and displacement of powder particles, respectively. The main driver of this phenomenon is the formation of a vapor plume jet that is caused by the vaporization of the melt pool which is subjected to the laser beam. In this work, a 3-dimensional transient turbulent computational fluid dynamics model coupled with a discrete element model is developed in the finite volume-based commercial software package Flow-3D AM to simulate the spatter phenomenon. The numerical results show that a localized low-pressure zone forms at the bottom side of the plume jet and this leads to a pseudo-Bernoulli effect that drags nearby powder particles into the area of influence of the vapor plume jet. As a result, the vapor plume acts like a momentum sink and therefore all nearby particles point are dragged towards this region. Furthermore, it is noted that due to the jet’s attenuation, powder particles start diverging from the central core region of the vapor plume as they move vertically upwards. It is moreover observed that only particles which are in the very central core region of the plume jet get sufficiently accelerated to depart the computational domain, while the rest of the dragged particles, especially those which undergo an early divergence from the jet axis, get stalled pretty fast as they come in contact with the resting fluid. In the last part of the work, two simulations with two different scanning speeds are carried out, where it is clearly observed that the angle between the departing powder particles and the vertical axis of the plume jet increases with increasing scanning speed.
스패터와 denudation은 주로 레이저 분말 베드 융합 과정에서 발생하는 매우 잘 알려진 두 가지 현상으로 각각 분말 입자의 배출 및 변위로 정의됩니다.
이 현상의 주요 동인은 레이저 빔을 받는 용융 풀의 기화로 인해 발생하는 증기 기둥 제트의 형성입니다. 이 작업에서 이산 요소 모델과 결합된 3차원 과도 난류 전산 유체 역학 모델은 스패터 현상을 시뮬레이션하기 위해 유한 체적 기반 상용 소프트웨어 패키지 Flow-3D AM에서 개발되었습니다.
수치적 결과는 플룸 제트의 바닥면에 국부적인 저압 영역이 형성되고, 이는 근처의 분말 입자를 증기 플룸 제트의 영향 영역으로 끌어들이는 의사-베르누이 효과로 이어진다는 것을 보여줍니다.
결과적으로 증기 기둥은 운동량 흡수원처럼 작용하므로 근처의 모든 입자 지점이 이 영역으로 끌립니다. 또한 제트의 감쇠로 인해 분말 입자가 수직으로 위쪽으로 이동할 때 증기 기둥의 중심 코어 영역에서 발산하기 시작합니다.
더욱이 플룸 제트의 가장 중심 코어 영역에 있는 입자만 계산 영역을 벗어날 만큼 충분히 가속되는 반면, 드래그된 나머지 입자, 특히 제트 축에서 초기 발산을 겪는 입자는 정체되는 것으로 관찰됩니다. 그들은 휴식 유체와 접촉하기 때문에 꽤 빠릅니다.
작업의 마지막 부분에서 두 가지 다른 스캔 속도를 가진 두 가지 시뮬레이션이 수행되었으며, 여기서 출발하는 분말 입자와 연기 제트의 수직 축 사이의 각도가 스캔 속도가 증가함에 따라 증가하는 것이 명확하게 관찰되었습니다.
Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is
simulated by a moving momentum source with a prescribed temperature of 3000 K.Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and
0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed
powder particles’ movement along with their velocity magnitude and directions are shown.Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are
colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.
References
[1] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, 2018, doi: 10.1016/j.pmatsci.2017.10.001. [2] M. Markl and C. Körner, “Multiscale Modeling of Powder Bed–Based Additive Manufacturing,” Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 93–123, 2016, doi: 10.1146/annurev-matsci-070115-032158. [3] A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method,” Mater. Des., vol. 106, pp. 321–329, 2016, doi: 10.1016/j.matdes.2016.05.125. [4] Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata,” Addit. Manuf., vol. 28, no. July 2018, pp. 750–765, 2019, doi: 10.1016/j.addma.2019.06.024. [5] A. A. Martin et al., “Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging,” Mater. Today Adv., vol. 1, p. 100002, 2019, doi: 10.1016/j.mtadv.2019.01.001. [6] Y. C. Wu et al., “Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation,” J. Mater. Process. Technol., vol. 254, no. July 2017, pp. 72–78, 2018, doi: 10.1016/j.jmatprotec.2017.11.032. [7] W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin, “Numerical simulation of thermal field and Fe-based coating doped Ti,” Int. J. Heat Mass Transf., vol. 92, pp. 83– 90, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.082. [8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J. H. Hattel, and S. Scholz, “Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: Phenomenonoriented multiphysics simulation and experimental validation,” Addit. Manuf., vol. 50, 2022, doi: 10.1016/j.addma.2021.102551. [9] C. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena in metal additive manufacturing by selective laser melting: Fundamentals, modeling, simulation and experimentation,” arXiv, 2017, doi: 10.1615/annualrevheattransfer.2018019042. [10] W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, and S. A. Khairallah, “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory,” Mater. Sci. Technol. (United Kingdom), vol. 31, no. 8, pp. 957–968, 2015, doi: 10.1179/1743284714Y.0000000728.
Yong Cheng, Yude Song, Chunye Liu, Wene Wang * and Xiaotao Hu Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
Correspondence: wangwene@nwsuaf.edu.cn
Abstract
개방 채널 분기점은 관개 지역에서 가장 일반적인 물 전환 구조입니다. 관개용수 운반에서는 물 운반 효율과 침전이 주요 관심사입니다. 따라서 이 연구는 관개 지역의 물 공급에 대한 개방 채널 분기점의 영향을 분석합니다.
여기에서 FLOW-3D 소프트웨어를 사용하고 15 세트의 작업 조건을 포함하는 수치 시뮬레이션을 통해 개방 채널 분기점에서의 3차원 유동을 연구했습니다. 개수로 분기점 부근의 재순환 구역 및 유동 구조의 수리학적 특성을 분석하였다.
그런 다음 사다리꼴 채널에서 표면 및 바닥층의 흐름 전환 폭에 대한 방정식을 얻었습니다. 수심에 따른 흐름 전환 폭은 사다리꼴 채널과 직사각형 채널에서 다른 것으로 나타났습니다. 결과는 또한 개방 수로 분기점이 주 수로의 유속에 상당한 영향을 미친다는 것을 보여줍니다.
개방 채널 분기점의 재순환 영역에서의 유속은 작았지만 맥동 속도와 난류 운동 에너지는 컸다. 이 지역에서 소산되는 에너지는 상대적으로 커서 수로 물 전달에 도움이 되지 않았습니다.
이 연구는 관개구역의 수로 최적화 및 운영 관리에 대한 참고 자료를 제공합니다.
Open-channel bifurcations are the most common water diversion structures in irrigation districts. In irrigation water conveyance, water transport efficiency and sedimentation are primary concerns. This study accordingly analyzes the influence of open-channel bifurcations on water delivery in irrigation areas. Herein, the three-dimensional flow at an open-channel bifurcation was studied via numerical simulations using FLOW-3D software and including 15 sets of working conditions. The hydraulic characteristics of the recirculation zone and flow structures in the vicinity of the open-channel bifurcation were analyzed. Equations for the flow diversion width of the surface and bottom layers in the trapezoidal channel were then obtained. The flow diversion widths along the water depth were found to differ between trapezoidal and rectangular channels. The results also show that open-channel bifurcations considerably influence the flow velocity in the main channel. The flow velocity in the recirculation zone of open-channel bifurcations was small, but the pulsation velocity and the turbulent kinetic energy were large. The energy dissipated in this area was relatively large, which was not conducive to channel water delivery. This study provides a reference for channel optimization and operation management in irrigation districts.
Keywords
trapezoidal open channel; numerical simulation; the recirculation zone; flow diversion width; turbulence kinetic energy
Figure 1. Experimental plan and section measurement layout. Note: Red points in the figure represent
the measurement point arrangement, and Roman numerals represent measurement section numbers.Figure 5. Froude number (Fr) contour map at different water depths. Note: Q1 = 40 L/s; b = 30 cm. X* and Y* are obtained by dimensionless processing of X-axis and Y-axis coordinates. (a) depth of water below the sill height; (b) depth of water above the sill height.
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University 2Director, Water Resources & Environment Department, HECOREA 3Director, Water Resources Department, ISAN 4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정 2㈜헥코리아 수자원환경사업부 이사 3㈜이산 수자원부 이사 4홍익대학교 건설환경공학과 교수
ABSTRACT
최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다. 그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다. 이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다. 수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다. 따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다. 이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다. 그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.
키워드 : 보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력
1. 서 론
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.
기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006; Kim, 2007; Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.
그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.
2. 본 론
2.1 이론적 배경
2.1.1 3차원 수치모형의 기본이론
FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.
2.1.2 유동해석의 지배방정식
1) 연속 방정식(Continuity Equation)
FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1), (2)와 같다.
(1)
∇·v=0
(2)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.
2) 운동량 방정식(Momentum Equation)
각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3), (4), (5)와 같다.
여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.
2.1.3 소류력 산정
호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6), (7)과 같다.
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.
2) Manning 조도계수를 고려한 공식
Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.
(7)
τ=γn2V2R1/3
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.
FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.
2.2 하천호안 설계기준
하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.
Table 1.
Standard of Permissible Velocity and Shear on Revetment
Country (Reference)
Material
Permissible velocity (Vp, m/s)
Permissible Shear (τp, kN/m2)
Korea
River Construction Design Practice Guidelines (MOLIT, 2016)
Vegetated
5.0
0.50
Stone
5.0
0.80
USA
ASTM D’6460
Vegetated
6.1
0.81
Unvegetated
5.0
0.28
JAPAN
Dynamic Design Method of Revetment
–
5.0
–
2.3. 보조여수로 운영에 따른 하류하천 영향 분석
2.3.1 모형의 구축 및 경계조건
본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2, Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).
수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.
(8)
n=ks1/68.1g1/2
여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.
시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.
Table 2.
Mesh sizes and numerical conditions
Mesh
Numbers
49,102,500 EA
Increment (m)
Direction
Existing Spillway
Auxiliary Spillway
∆X
0.99 ~ 4.30
1.00 ~ 4.30
∆Y
0.99 ~ 8.16
1.00 ~ 5.90
∆Z
0.50 ~ 1.22
0.50 ~ 2.00
Boundary Conditions
Xmin / Ymax
Inflow / Water Surface Elevation
Xmax, Ymin, Zmin / Zmax
Wall / Symmetry
Turbulence Model
RNG model
Table 3.
Case of numerical simulation (Qp : Design flood discharge)
Case
Existing Spillway (Qe, m3/s)
Auxiliary Spillway (Qa, m3/s)
Remarks
1
Qp
0
Reference case
2
0
Qp
3
0
0.58Qp
Review of discharge capacity on auxiliary spillway
4
0
0.48Qp
5
0
0.45Qp
6
0
0.32Qp
7
0.50Qp
0.50Qp
Determination of optimal division ratio on Spillways
8
0.61Qp
0.39Qp
9
0.39Qp
0.61Qp
10
0.42Qp
0.58Qp
11
0.32Qp
0.45Qp
Determination of permissible division on Spillways
12
0.35Qp
0.48Qp
13
0.38Qp
0.53Qp
14
0.41Qp
0.56Qp
Table 4.
Roughness coefficient and roughness height
Criteria
Roughness coefficient (n)
Roughness height (ks, m)
Structure (Concrete)
0.014
0.00061
River
0.033
0.10496
Fig. 1
Layout of spillway and river in this study
2.3.2 보조 여수로의 방류능 검토
본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.
보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.
하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.
Fig. 2
Region of interest in this study
Fig. 3
Maximum velocity and location of Vmax according to Qa
Fig. 4
Maximum shear according to Qa
Fig. 5
Maximum water surface elevation and location of ηmax according to Qa
Table 5.
Numerical results for each cases (Case 1 ~ Case 6)
Case
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
1 (Qa = 0)
9.15
0.54
No Good
No Good
2 (Qa = Qp)
8.87
0.56
No Good
No Good
3 (Qa = 0.58Qp)
6.53
0.40
No Good
No Good
4 (Qa = 0.48Qp)
6.22
0.36
No Good
No Good
5 (Qa = 0.45Qp)
4.22
0.12
Accpet
Accpet
6 (Qa = 0.32Qp)
4.04
0.14
Accpet
Accpet
2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토
기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).
따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.
Fig. 6
Maximum velocity on section 1 & 2 according to Qa
Fig. 7
Maximum shear on section 1 & 2 according to Qa
Fig. 8
Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)
Fig. 9
Maximum water surface elevation on section 1 & 2 according to Qa
Table 6.
Numerical results for each cases (Case 7 ~ Case 10)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
7 Qe : 0.50QpQa : 0.50Qp
8.10
6.23
0.64
0.30
No Good
No Good
No Good
No Good
8 Qe : 0.61QpQa : 0.39Qp
8.88
6.41
0.61
0.34
No Good
No Good
No Good
No Good
9 Qe : 0.39QpQa : 0.61Qp
6.22
7.33
0.24
0.35
No Good
No Good
Accept
No Good
10 Qe : 0.42QpQa : 0.58Qp
6.39
4.79
0.30
0.19
No Good
Accept
No Good
Accept
2.3.4 방류량 배분 비율의 허용 방류량 검토
계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).
호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10, Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).
Table 7.
Numerical results for each cases (Case 11 ~ Case 14)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
11 Qe : 0.32QpQa : 0.45Qp
3.63
4.53
0.09
0.26
Accept
Accept
Accept
Accept
12 Qe : 0.35QpQa : 0.48Qp
5.74
5.18
0.23
0.22
No Good
No Good
Accept
Accept
13 Qe : 0.38QpQa : 0.53Qp
6.70
4.21
0.28
0.11
No Good
Accept
Accept
Accept
14 Qe : 0.41QpQa : 0.56Qp
6.54
5.24
0.28
0.24
No Good
No Good
Accept
Accept
Fig. 10
Maximum velocity on section 1 & 2 according to total outflow
Fig. 11
Maximum shear on section 1 & 2 according to total outflow
Fig. 12
Maximum water surface elevation on section 1 & 2 according to total outflow
3. 결 론
본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.
수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.
본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.
Acknowledgements
본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.
References
1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112
Korean References Translated from the English
1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*
Abstract
염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.
Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.
Keywords
computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination
Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study.
(b) Batch experiment set-up for kinetic tests.Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real
picture of the system (b).Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration.
Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial
seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c)
artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot
represents experimental data, and each point on the black line is the expected chlorine concentration
obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay
model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow
rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow
rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view
of electrode side in image (a); (c) velocity magnitude; (d) pressure.Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination
with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure
shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the
pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm
of distance from the pipe wall.Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale
applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine
demands.
References
Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.; Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
슈트 여수로의 흐름 폭기는 캐비테이션 손상을 방지하는 가장 효과적이고 경제적인 방법 중 하나입니다. 수중 프리즘에 아주 작은 양의 공기가 흩어지면 표면 손상이 크게 줄어듭니다. 이를 위해 폭기 장치로 알려진 구조를 사용할 수 있습니다. 또한, 램프 각도는 폭기 효율에 영향을 미치는 요인 중 하나입니다. 이 연구에서는 Flow-3D 소프트웨어를 사용하여 3가지 다른 시나리오인 6, 8 및 10도의 램프 각도에서 Jarreh 댐의 방수로를 통해 흐름을 동반하는 공기의 값을 시뮬레이션했습니다. 6도의 경사각에서 유동 유체로 유입되는 공기의 결과를 검증하기 위해이란 TAMAB Company의 실험실에서 댐 방수로 물리적 모델의 관찰 결과를 사용했습니다. 결과에 따르면 램프 각도를 높이면 워터제트 기저귀로 유입되는 공기가 증가하고 10도 램프 각도는 최고의 폭기 효율을 제공합니다. Flow-3D 모델은 결과에 따라 여수로의 2단계 물-공기 흐름을 시뮬레이션할 수도 있습니다.
Flow aeration in chute spillway is one of the most effective and economic ways to prevent cavitation damage. Surface damage is significantly reduced when very small values of air are scattered in a water prism. A structure known as an aerator may be used for this purpose. Besides, ramp angle is one of the factors influencing aerator efficiency. In this research, the value of air entraining the flow through the Jarreh Dam’s spillway at the ramp angles of 6, 8 and 10 degrees, as three different scenarios, was simulated using the Flow-3D software. In order to validate the results of the inlet air into the flowing fluid at a ramp angle of 6 degrees, the observational results of the dam spillway physical model from the laboratory of TAMAB Company in Iran were used. According to the results, raising the ramp angle increases the inlet air to the water jet nappe, and a ten-degree ramp angle provides the best aeration efficiency. The Flow-3D model can also simulate the two-phase water-air flow on spillways, according to the results.
Fig. 1- Schematic of the general pattern of flow and aeration process in the aeratorsFig. 2- Experimental setup (Shamloo et al., 2012)Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity,
and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp
angleFig. 4- Location of data extraction stations after aeration on a scale model of 1:50Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees,
b) 8 degrees and c) 10 degrees
Baharvand, S., & Lashkar-Ara, B. (2021). 실험 모델과 CFD 모델을 결합한 수정 사행 C형 어로의 수력학적 설계기준. 생태 공학 , 164 . https://doi.org/10.1016/j.ecoleng.2021.106207
2- Bayon, A., Toro, JP, Bombardelli, FA, Matos, J., & López-Jiménez, PA(2018). VOF 기술, 난류 모델 및 이산화 방식이 계단식 배수로에서 폭기되지 않은 스키밍 흐름의 수치 시뮬레이션에 미치는 영향. 수력 환경 연구 저널 , 19 , 137–149. https://doi.org/10.1016/j.jher.2017.10.002
3- Brethour, JM, & Hirt, CW (2009). 2성분 흐름에 대한 드리프트 모델. Flow Science, Inc. , FSI – 09 – TN83Rev , 1–7.
4- Chanson, H. (1989). 공기 유입 및 폭기 장치 연구. 수력학 연구 저널 , 27 (3), 301–319. https://doi.org/10.1080/00221688909499166
5- Dong, Z., Wang, J., Vetsch, DF, Boes, RM, & Tan, G. (2019). 매우 높은 단위 배출에서 X자형 플레어링 게이트 교각 뒤의 계단식 배수로에서 공기-물 2상 흐름의 수치 시뮬레이션. 물(스위스) , 11 (10). https://doi.org/10.3390/w11101956
6- Flow-3D, V. 11. 2. (2017). 사용자 매뉴얼. Flow Science Inc.: Santa Fe, NM, USA;
7- Hirt, CW (2003). 자유 표면에서 공기의 난류 동반 모델링. Flow Science, Inc. , FSI – 03 – TN6 , 1–9.
8- Hirt, CW (2016). 드리프트 플럭스에 대한 동적 액적 크기. Flow Science, Inc. , 1–10.
9- Hirt, CW, & Nichols, BD (1981). 자유 경계의 역학에 대한 VOF(유체 체적) 방법. 전산 물리학 저널 , 39 (1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
10- Kherbache, K., Chesneau, X., Zeghmati, B., Abide, S., & Benmamar, S. (2017). 계단식 배수로의 물 흐름에 대한 계단식 경사 및 공기 주입의 영향: 수치 연구. 유체 역학 저널 , 29 (2), 322–331. https://doi.org/10.1016/S1001-6058(16)60742-4
11- Kramer, M., & Chanson, H. (2019). 폭기된 여수로 흐름에서 광학 흐름 추정: 샘플링 매개변수에 대한 필터링 및 논의. 실험적 열 및 유체 과학 , 103 , 318–328. https://doi.org/10.1016/j.expthermflusci.2018.12.002
12- Mahmoudian, Z., Baharvand, S., & Lashkarara, B. (2019). Baffle Fishway Denil Type의 흐름 패턴 조사. 관개 과학 및 공학(JISE) , 42 (3), 179–196.
13- Meireles, IC, Bombardelli, FA 및 Matos, J. (2014). 가파른 계단식 배수로의 스키밍 흐름에서 공기 유입 시작: 분석. 수력학 연구 저널 , 52 (3). https://doi.org/10.1080/00221686.2013.878401
14- Parsaie, A., & Haghiabi, AH (2019). 1/4 원형 볏이 있는 계단식 배수로에서 흐름 폭기의 시작 지점. 유량 측정 및 계측 , 69 . https://doi.org/10.1016/j.flowmeasinst.2019.101618
15- Richardson, JF, & Zaki W N. (1979). 침전 및 유동화. 파트 1. 트랜스. Inst. 화학 영어 , 32 , 35–53.
16- Shamloo, H., Hoseini Ghafari, S., & Kavianpour, M. (2012). 슈트 여수로의 폭기에 대한 유입구 흐름의 영향에 대한 실험적 연구(사례 연구: 이란 Jare Dam). 제10차 토목 공학 발전에 관한 국제 회의, 중동 기술 대학, 앙카라, 터키 .
18- Wei, W., Deng, J., & Zhang, F. (2016). 초임계 슈트 흐름에 대한 자체 폭기 공정 개발. 다상 흐름의 국제 저널 , 79 , 172–180. https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.003
20- Xu, Y., Wang, W., Yong, H., & Zhao, W. (2012). 슈트 폭기 장치에서 제트 흐름의 공동 역류에 대한 조사. 프로시디아 엔지니어링 , 31 , 51–56. https://doi.org/10.1016/j.proeng.2012.01.989
21- Yakhot, V., & Orszag, SA (1986). 난류의 재정규화 그룹 분석. I. 기본 이론. 과학 컴퓨팅 저널 , 1 (1), 3–51. https://doi.org/10.1007/BF01061452
22- Yang, J., Teng, P., & Lin, C. (2019). 넓은 여수로 폭기장치의 통풍구 배치 및 물-기류 거동. Theoretical and Applied Mechanics Letters , 9 (2), 130–143. https://doi.org/10.1016/j.taml.2019.02.009
23- Zhang, G., & Chanson, H. (2016). 자유 표면 폭기와 계단식 슈트의 총 압력 사이의 상호 작용. 실험적 열 및 유체 과학 , 74 , 368–381. https://doi.org/10.1016/j.expthermflusci.2015.12.011
1Tecnológico Nacional de México/ITS de Los Reyes. Carretera Los Reyes-Jacona, Col. Libertad. 60300. Los Reyes de Salgado, Michoacán. México.
ernesto.ar@losreyes.tecnm.mx – 3541013901 (*Autor de correspondencia)
2Instituto de Ciencias Aplicadas y Tecnología, UNAM. Cto. Exterior S/N, C.U., Coyoacán, 04510, Ciudad de México. México. 3Riego y Drenaje. Instituto Mexicano de Tecnología del Agua. Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550. México.
Abstract
공학에서 유체의 거동은 설명하기에 광범위하고 복잡한 과정이며, 유체역학은 유체의 거동을 지배하는 방정식을 통해 유체 역학 현상을 분석할 수 있는 과학 분야이지만 이러한 방정식에는 전체 솔루션이 없습니다. . 전산유체역학(Computational Fluid Dynamics, 이하 CFD)은 수치적 기법을 통해 방정식의 해에 접근할 수 있는 도구로, 신뢰할 수 있는 계산 모델을 얻기 위해서는 물리적 모델의 실험 데이터로 평가해야 합니다. 수력구조물에서 선형 및 미로형 여수로에서 시뮬레이션을 수행하고 배출 시트의 거동과 현재의 폭기 조건을 분석했습니다. 침강기에서 유체의 특성화를 수행하고 필요한 특성에 따라 사체적, 피스톤 또는 혼합의 분수를 수정하는 것이 가능합니다. 농업에서는 온실 환경을 특성화하고 환경에 대한 재료의 디자인, 방향 및 유형 간의 관계를 찾는 데 사용할 수 있습니다. 발견된 가장 중요한 결과 중 온실의 길이와 설계가 환기율에 미칠 수 있는 영향으로 온실의 길이는 높이의 6배 미만인 것이 권장됩니다.
키워드: Computational Fluid Dynamics, 온실,
Spillway, Settler 기사: COMEII-21048 소개
CFD는 유체 운동 문제에 대한 수치적 솔루션을 얻어 수리학적 현상을 더 잘 이해할 수 있게 함으로써 공간 시각화를 가능하게 하는 수치 도구입니다. 예를 들어, 수력 공학에서 벤츄리(Xu, Gao, Zhao, & Wang, 2014) 워터 펌핑(ȘCHEAUA, 2016) 또는 개방 채널 적용( Wu et 알., 2000).
문헌 검토는 실험 연구에서 검증된 배수로의 흐름 거동에 대한 수리학적 분석을 위한 CFD 도구의 효율성을 보여줍니다. 이 검토는 둑의 흐름 거동에 대한 수리학적 분석을 위한 CFD의 효율성을 보여줍니다. Crookston et al. (2012)는 미로 여수로에 대해 Flow 3D로 테스트를 수행했으며, 배출 계수의 결과는 3%에서 7%까지 다양한 오류로 실험적으로 얻은 결과로 허용 가능했으며 연구 결과 측면에 저압 영역이 있음을 발견했습니다. 익사 방식으로 작업할 때 위어의 벽. Zuhair(2013)는 수치 모델링 결과를 Mandali weir 원형의 실험 데이터와 비교했습니다.
최근 연구에서는 다양한 난류 모델을 사용하여 CFD를 적용할 가능성이 있음을 보여주었습니다. 그리고 일부만이 음용수 처리를 위한 침적자의 사례 연구를 제시했으며, 다른 설계 변수 중에서 기하학적인 대안, 수온 변화 등을 제안했습니다. 따라서 기술 개발로 인해 설계 엔지니어가 유체 거동을 분석하는 데 CFD 도구를 점점 더 많이 사용하게 되었습니다.
보호 농업에서 CFD는 온실 환경을 모델링하고 보조 냉방 또는 난방 시스템을 통해 온실의 미기후 관리를 위한 전략을 제안하는 데 사용되는 기술이었습니다(Aguilar Rodríguez et al., 2020).
2D 및 3D CFD 모델을 사용한 본격적인 온실 시뮬레이션은 태양 복사 모델과 현열 및 잠열 교환 하위 모델의 통합을 통해 온실의 미기후 분포를 연구하는 데 사용되었습니다(Majdoubi, Boulard, Fatnassi, & Bouirden, 2009). 마찬가지로 이 모델을 사용하여 온실 설계(Sethi, 2009), 덮개 재료(Baxevanou, Fidaros, Bartzanas, & Kittas, 2018), 시간, 연중 계절( Tong, Christopher, Li, & Wang, 2013), 환기 유형 및 구성(Bartzanas, Boulard, & Kittas, 2004).
CFD 거래 프로그램은 사용자 친화적인 플랫폼으로 설계되어 결과를 쉽게 관리하고 이해할 수 있습니다.
…
Figura 1. Distribución de presiones y velocidades en un vertedor de pared delgada.Figura 2. Perfiles de velocidad y presión en la cresta vertedora.Figura 3. Condiciones de aireación en vertedor tipo laberinto. (A)lámina adherida a la pared del vertedor, (B) aireado, (C) parcialmente aireado, (D) ahogado.Figura 4. Realización de prueba de riego.Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario (Ramirez-Ruiz, 2019).
Referencias Bibliográficas
Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Ojeda-Bustamante, W.; Rojano, F.; Iñiguez- Covarrubias, M. 2020. Valuation of the energyperformance of a greenhouse with
an electric heater using numerical simulations. Processes, 8, 600.
Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Rojano, F.; Ojeda-Bustamante, W.; Iñiguez- Covarrubias, M. 2020. Estimación del ciclo de cultivo de tomate (Solanum
lycopersicum L.) en invernadero, con base en grados días calor (GDC) simulados con CFD. Tecnología y ciencias del agua, ISSN 2007-2422, 11(4), 27-57. Al-Sammarraee, M., y Chan, A. (2009). Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects of baffles. Chemical Engineering Journal, 152(2-3), 315-321. doi:https://doi.org/10.1016/j.cej.2009.01.052. Bartzanas, T.; Boulard, T.; Kittas, C. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering, 88(4). Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. 2018. Yearly numerical evaluation of greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–
DOI: https://doi.org/10.1016/j.compag.2017.12.006. Crookston, B. M., & Tullis, B. P. 2012. Labyrinth weirs: Nappe interference and local submergence. Journal of Irrigation and Drainage Engineering, 138(8), 757-765. Fernández, J. M. 2012. Técnicas numéricas en Ingeniería de Fluidos: Introducción a la Dinámica de Fluidos Computacional (CFD) por el Método de Volumen Finito; Reverté, Barcelona, pp. 98-294. Goula, A., Kostoglou, M., Karapantsios, T., y Zouboulis, A. (2008). The effect of influent temperature variations in a sedimentation tank for potable water treatment— A computational fluid dynamics study. Water Research, 42(13), 3405-3414. doi://doi.org/10.1016/j.watres.2008.05.002. Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. 2009. Airflow and microclimate patterns in a one-hectare Canary type greenhouse: an experimental and CFD assisted study. Agricultural and Forest Meteorology, 149(6-7), 1050-1062. Ramirez-Ruiz Candido (2019). Estudio hidrodinámico de sedimentadores de alta tasa en plantas potabilizadoras utilizando dinámica de fluidos computacional (CFD). Universidad Nacional Autónoma de México. Tesis de maestría. Sánchez, J. M. C., & Elsitdié, L. G. C. 2011. Consideraciones del mallado aplicadas al cálculo de flujos bifásicos con las técnicas de dinámica de fluidos computacional. J. Introd. Inv. UPCT., 4, 33-35. Sethi, V.P. 2009. On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation, Sol. Energy, 83, 21–38. ȘCHEAUA, F. 2016. AGRICULTURAL FIELD IRRIGATION SOLUTION BASED ON VENTURI NOZZLE γ 2 g γ 2 g. JOURNAL OF INDUSTRIAL DESIGN AND ENGINEERING GRAPHICS, 2(1), 31–35.
Tong, G.; Christopher, D.; Li, T.; Wang, T. 2013. Passive solar energy utilization: a review of cross-section building parameter selection for Chinese solar greenhouses. Renewable and Sustainable Energy Reviews, 26, 540-548.
Xu, Y., Gao, L., Zhao, Y., & Wang, H. 2014. Wet gas overreading characteristics of a long- throat Venturi at high pressure based on CFD. Flow Measurement and
Instrumentation, 40, 247–255. https://doi.org/10.1016/j.flowmeasinst.2014.09.004 Wu, W., Rodi, W y Wenka, T. 2000. 3D numerical modeling of flow and sediment transport in open channels. ASCE Journal of Hydraulic Engineering. Vol 126 Num 1. Zuhair al zubaidy, Riyadh. 2013. Numerical Simulation of Two-Phase Flow. En:International Journal of Structural and Civil Engineering Research. Vol 2, No 3; 13p
Yu Hao a, Nannan Chen a,b, Hui-Ping Wang c,*, Blair E. Carlson c, Fenggui Lu a,* a Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China b Department of Industrial and Manufacturing Eng
ABSTRACT
A three-dimensional thermal-fluid numerical model considering zinc vapor interaction with the molten pool was developed to study the occurrence of zinc vapor-induced spatter in partial penetration laser overlap welding of zinc-coated steels. The zinc vapor effect was represented by two forces: a jet pressure force acting on the keyhole rear wall as the vapor bursts into the keyhole and a drag force on the upper keyhole wall as the vapor escapes upwards. The numerical model was calibrated by comparing the predicted keyhole shape with the keyhole shape observed by high-speed X-ray imaging and applied for various weld schedules. The study showed that large jet pressure forces induced violent fluctuations of the keyhole rear wall, resulting in an unstable keyhole and turbulent melt flow. A large drag force pushed the melt adjacent to the keyhole surface upward and accelerated the movement of the melt whose velocities reached 1 m/s or even higher, potentially inducing spatter. Increased heat input facilitated the occurrence of large droplets of spatter, which agreed with experimental observations captured by high-speed camera.
아연도금강의 부분용입 레이저 겹침용접에서 아연증기유도 스패터의 발생을 연구하기 위하여 용융풀과의 아연증기 상호작용을 고려한 3차원 열유체 수치모델을 개발하였습니다.
아연 증기 효과는 증기가 열쇠 구멍으로 폭발할 때 키홀 뒤쪽 벽에 작용하는 제트 압력력과 증기가 위쪽으로 빠져나갈 때 위쪽 키홀 벽에 작용하는 항력의 두 가지 힘으로 표시됩니다.
수치 모델은 예측된 열쇠 구멍 모양과 고속 X선 영상으로 관찰된 키홀 모양을 비교하여 보정하고 다양한 용접 일정에 적용했습니다.
이 연구는 큰 제트 압력이 키홀 뒷벽의 격렬한 변동을 유발하여 불안정한 열쇠 구멍과 난류 용융 흐름을 초래한다는 것을 보여주었습니다. 큰 항력은 키홀 표면에 인접한 용융물을 위로 밀어올리고 속도가 1m/s 이상에 도달한 용융물의 이동을 가속화하여 잠재적으로 스패터를 유발할 수 있습니다.
증가된 열 입력은 고속 카메라로 포착한 실험적 관찰과 일치하는 큰 방울의 스패터 발생을 촉진했습니다.
Fig. 1. Schematic of zero-gap laser welding of zinc-coated steel.Fig. 2. Experimental setup for capturing a side view of the laser welding of
zinc-coated steel enabled by use of high-temperature glass.Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated
steel with a laser illumination.Fig. 4. Schematic of the rotating Gaussian body heat source.Fig. 5. Schematic of jet pressure force caused by zinc vapor: (a) locating the outlet of zinc vapor (point A), (b) schematic of assigning the jet pressure force.Fig. 6. Schematic of drag force caused by zinc vapor.Fig. 7. Procedure for calculating the outgassing velocity of zinc vapor.Fig. 8. Schematic related to calculating the zone of vaporized zinc.Fig. 9. The meshed domains for the thermal-fluid simulation of laser welding.Fig. 10. The calculated temperature field and validation: (a) 3-D temperature field; (b)-(f) Comparison of experimental and simulated weld cross section: (b) P =
2000 W, v = 50 mm/s; (c) P = 2500 W, v = 50 mm/s; (d) P = 3000 W, v = 50 mm/s; (e) P = 3000 W, v = 60 mm/s; (f) P = 3000 W, v = 70 mm/s.Fig. 11. Comparison of X-Ray images of in-process keyhole profiles and the numerical predictions: (a) Single sheet penetration (P = 480 W, v = 150 mm/s); (b) Two
sheet penetration (P = 532 W, v = 150 mm/s).Fig. 12. High-speed images of dynamic keyhole in laser welding of steels: (a) without zinc coating (b) with zinc coating.Fig. 13. Mass loss and molten pool observation under different laser power and welding velocity for 1.2 mm + 1.2 mm HDG 420LA stack-upFig. 14. Numerical results of keyhole and flow field in molten pool: (a) without zinc vapor forces, (b) with zinc vapor forces.Fig. 18. Calculated velocity fields for different welding parameters: (a) P = 2 kW, v = 50 mm/s, (b) P = 2.5 kW, v = 50 mm/s, (c) P = 3 kW, v = 50 mm/s, (d) P = 3
kW, v = 60 mm/s, (e) P = 3 kW, v = 70 mm/s.Fig. 19. Schematic of the generation of spatter in different sizes: (a) small size, (b) large size.
References
Ai, Y., Jiang, P., Wang, C., et al., 2018. Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding. Int. J. Heat Mass Transf. 126 (part-A), 779–789. Chen, Z., Yang, S., Wang, C., et al., 2014. A study of fiber laser welding of galvanized steel using a suction method. J. Mater. Process. Technol. 214 (7), 1456–1465. Cho, W.I., Na, S.J., Thomy, C., et al., 2012. Numerical simulation of molten pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212 (1), 262–275. Deng, S., Wang, H.P., Lu, F., et al., 2019. Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels. Int. J. Heat Mass Transf. 140 (9), 269–280. Fabbro, R., Coste, F., Goebels, D., et al., 2006. Study of CW Nd-Yag laser welding of Zncoated steel sheets. J. Phys. D Appl. Phys. 39 (2), 401. Gao, Z., Wu, Y., Huang, J., 2009. Analysis of weld pool dynamic during stationary laser–MIG hybrid welding. Int. J. Adv. Manuf. Technol. 44 (9), 870–879. Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D Appl. Phys. 27 (9), 1805. Kim, J., Oh, S., Ki, H., 2015. A study of keyhole geometry in laser welding of zinc-coated and uncoated steels using a coaxial observation method. J. Mater. Process. Technol. 225, 451–462. Kim, J., Oh, S., Ki, H., 2016. Effect of keyhole geometry and dynamics in zero-gap laser welding of zinc-coated steel sheets. J. Mater. Process. Technol. 232, 131–141. Koch, H., KaGeler, C., Otto, A., et al., 2011. Analysis of welding zinc coated steel sheets in zero gap configuration by 3D simulations and high-speed imaging. Phys. Procedia 12 (part-B), 428–436. Kouraytem, N., Li, X., Cunningham, R., et al., 2019. Effect of laser-matter interaction on molten pool flow and keyhole dynamics. Phys. Rev. Appl. 11 (6), 54–64. Li, S., Chen, G., Katayama, S., et al., 2014. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding. Appl. Surf. Sci. 303 (6), 481–488. Ma, J., 2013. Experimental and Numerical Studies on the Issues in Laser Welding of Galvanized High-Strength Dual-Phase Steels in a Zero-Gap Lap Joint Configuration, PhD Thesis. Southern Methodist University. Pan, Y., 2011. Laser Welding of Zinc Coated Steel Without a Pre-Set Gap, PhD Thesis. Delft University of Technology. Schmidt, M., Otto, A., 2008. Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Ann. Manuf. Technol. 57, 213–216. Semak, V., Matsunawa, A., 1999. The role of recoil pressure in energy balance during laser materials processing. J. Phys. D Appl. Phys. 30 (18), 2541. Wu, S., Zhao, H., Wang, Y., Zhang, X., 2004. A new heat source model in numerical simulation of high energy beam welding. Trans. China Weld. 21, 99–102. Yaws, C.L., 2015. The Yaws Handbook of Vapor Pressure: Antoine Coefficients. Zhou, J., Tsai, H.L., 2008. Modeling of transport phenomena in hybrid laser-MIG keyhole welding. Int. J. Heat Mass Transf. 51 (17–18), 4353–4366.
Simulation of Dam-Break Flood Wave and Inundation Mapping: A Case study of Attabad Lake
Wasim Karam1, Fayaz A. Khan2, Muhammad Alam3, Sajjad Ali4 1Lab. Engineer, Department of Civil Engineering, University of Engineering and Technology Mardan, Pakistan, wasim10karam@gmail.com 2Assistant Professor, National Institute of Urban Infrastructure Planning, University of Engineering and Technology Peshawar, Pakistan, fayazuet@yahoo.com 3,4Assistant Professor, Department of Civil Engineering, University of Engineering and Technology Mardan, Pakistan, emalam82@gmail.com, sajjadali@uetmardan.edu.pk
ABSTRACT
산사태 또는 제방 댐의 파손 연구는 구성이 불확실하고 자연적이며 재해에 대해 적절하게 설계되지 않았기 때문에 다른 자연적 사건에 대한 대응 지식이 부족하기 때문에 더 중요합니다. 이 논문은 댐 파괴의 수력학적 모델링의 다양한 방법을 개선하는 것을 목표로 합니다.
현재 이 연구에서 Attabad 호수의 댐 붕괴는 전산 유체 역학 기술을 사용하여 시뮬레이션됩니다. 수치 모델(FLOW-3D)은 Reynolds 평균 Navier-Stoke 방정식을 완전히 3D로 풀어서 다양한 단면에서의 피크 유량 깊이, 피크 속도, 피크 방전, 피크 깊이까지의 시간 및 피크 방전까지의 시간을 예측하기 위해 개발되었습니다.
표준 RNG 난류 모델을 사용하여 난류를 시뮬레이션한 다음 마을의 흐름에 대한 홍수 범람 지도와 속도 벡터를 그립니다. 결과는 Hunza 강의 수로를 통해 모델링된 홍수파의 대부분이 Hunza 강의 범람원에 포함되지만 Hunza 강의 범람원 내부에 위치한 Miaun 및 chalat와 같은 일부 마을의 경우 더 높은 위험에 있음을 보여줍니다.
그러나 이들 마을의 예상 홍수 도달 시간은 각각 31분과 44분으로 인구를 안전한 지역으로 대피시키기에 충분한 시간인 반면, 알리 아바드에 인접한 하산 아바드와 같은 일부 마을의 경우 침수 위험이 더 높은 반면 마을의 예상 홍수 도착 시간은 12분으로 인구 대피에 충분하지 않으므로 홍수 억제를 위한 추가 홍수 보호 구조가 필요합니다.
최고속도의 추정치는 하천평야의 더 높은 전단응력, 심한 침식의 위험, 농경지 피해, 주거지 및 형태학적 변화가 예상됨을 의미한다. 댐 파손 분석(예: 최고 깊이, 최고 속도, 홍수 도달 시간 및 홍수 범람 지도)은 향후 위험 분석 및 홍수 관리의 지침으로만 사용해야 합니다.
Figure 2: Case Study Location on Map of PakistanFigure 3: Lake Condition 3 months after LandslideFigure 5: 3D Model from the Merged DEMFigure 7: Free Surface Elevation relative to local originFigure 8: Model of lake referenced over Google Earth ImageFigure 9: Meshing in the 3D Terrain ModelFigure 10: Flow Depth Hydrographs of the downstream villages
(A) Karim Abad (B) Ghulmet (C) Thol (D) Chalat (E) NomalFigure 11: Flow Hydrograph at Karim Abad and Nomal BridgeFigure 12: Flood Inundation Map of Karim AbadFigure 13: Flood Inundation Map of GhulmetFigure 14: Flood Inundation Map of ChalatFigure 15: Velocity Vectors of flow at Karim AbadFigure 16: Velocity Vectors of Flow at GhulmetFigure 17: Velocity Vectors of Flow at Chalat
REFERENCES
[1]. Zhang, L. & Peng, M. & Chang, D.S. & Xu, Y. (2015). Dam Failure Mechanisms and Risk Assessment, First Ed. John Wiley and Sons, Singapore 473 pp. 10.1002/9781118558522. [2]. T. L. Wahl, “Dam Breach Modeling – an Overview of Analysis Methods,” 2nd Jt. Fed. Interagency Conf. Las Vegas, NV, pp. 1–12, 2010. [3]. Khosravi K. “Dam Break Analysis and Flood Inundation Mapping : The Case Study of Sefid-Rud Dam,” no. August 2019. DOI: 10.1016/B978-0-12-815998-9.00031-2 [4]. Robb, D. M., & Vasquez, J. A. (2015). Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models. 22nd Canadian Hydrotechnical Conference, (June). [5]. Mohammad Rostami, M. S. (2015). Human Life Saving by Simulation of Dam Break using Flow-3D. Trend in Life Sciences, 4(3), 308–316 [6]. Gharbi, M., Soualmia, A., Dartus, D., & Masbernat, L. (2016). Comparison of 1D and 2D hydraulic models for floods simulation on the Medjerda River in Tunisia. Journal of Materials and Environmental Science, 7(8), 3017–3026. https://doi.org/10.1080/153 [7]. Andrei, A., Robert, B., & Erika, B. (2017). Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software – A case study of Baraolt River, Romania. IOP Conference Series: Materials Science and Engineering, 245(7). https://doi.org/10.1088/1757-899X/245/7/072010 [8]. Henderson, F.M. (1966). Open Channel Flow. MacMillan Company, New York, USA, P. No 304-313 [9]. Betsholtz, A., & Nordlöf, B. (2017). Potentials and limitations of 1D, 2D and coupled 1D-2D flood modeling in HEC-RAS. Lund University, 128. https://doi.org/10.1016/S0300-9440(03)00139-5 [10].Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Engineering Applications of Computational Fluid Mechanics, 5(4), 541–552. https://doi.org/10.1080/19942060.2011.11015393 [11].Toombes, L., & Chanson, H. (2011). Numerical Limitations of Hydraulic Models. 10th Hydraulics Conference, (July), 2322–2329. https://doi.org/10.1016/j.jalz.2016.06.1613 [12].Zarein, M. (2015). Modeling Dam-Break Flows Using a 3d Mike 3 Flow Model, (January). [13].George, A. C., & Nair, B. T. (2015). Dam Break Analysis Using BOSS DAMBRK. Aquatic Procedia, 4(Icwrcoe), 853–860. https://doi.org/10.1016/j.aqpro.2015.02.10 [14].S. Roga and K. M. Pandey, “Computational Analysis of Supersonic Flow Regime Using Ramp Injector with Standard K- ω Turbulence Model” .World Academy of research in Science and Engineering, vol. 2, no. 1, pp. 31–40, 2013.http:// doi.org/10.1.1.348.5862.
졸업 논문의 목표는 보스코비체 댐의 계획된 방수로의 흐름을 수치적으로 모델링하는 것입니다. 이 졸업 논문은 유형과 프로필에 따라 기본 여수로를 설명하고 나눕니다. 비상용 배수로도 언급되어 있습니다. 그런 다음 논문에서는 범람량 계산에 대한 설명, 수학적 모델링 및 사용된 난류 모델에 대한 설명을 소개합니다. 다음 부분은 Boskovice 댐의 기술적 설명, AutoCAD 2020 소프트웨어에서 방수로 및 방수로 슈트의 가상 3D 모델 생성 및 Blender 소프트웨어에서 모델의 제어 및 수정과 관련되어 있습니다. 논문 말미에는 Flow-3D 소프트웨어를 통해 얻은 유동의 수치적 모델링 결과와 BUT 토목공학부 수구조연구소에서 시행한 수리학적 모델 연구와 비교한 결과를 언급하였다.
The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.
Author
Svoboda, Jiří
Title
Numerické modelování proudění v bezpečnostním přelivu: Numerical modeling of flow in spilway
The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.
Subjects/Keywords
Bezpečnostní přeliv; numerický model; 3D model; FLOW-3D; VD Boskovice; sypaná kamenitá hráz.; Spillway; numerical model; 3D model; FLOW-3D; Boskovice dam; rockfill dam.
Contributors
Jandora, Jan (advisor); Holomek, Petr (referee)
Language
cs
Rights
Standardní licenční smlouva – přístup k plnému textu bez omezení
OFigure 18: Fountain front safety spillway [24]Figure 20: Slip and divergent broth of the security building VD Boskovice [24]Obrázek 22: Půdorys bezpečnostního přelivu a části skluzu VD Boskovice [12]Figure 23: Longitudinal section BP and drop in the plane of symmetry [12]Figure 44: Color resolution of jets according to speedFigure 45: Flow profile in Flow-3D without 3D model displayedFigure 47: Level course on the physical model [22]
References
[1] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, 2007. ISBN 978-80-7204-512-9. [2] BOOR, B., J. KUNŠTÁTSKÝ a C. PATOČKA. Hydraulika pro vodohospodářské stavby. Praha: SNTL, 1968. ISBN 04-710-68. [3] STARA, Vlastimil a Helena KOUTKOVÁ. 3. Vodohospodářská konference s mezinárodní účastí: Součinitel přepadu přelivu s kruhově zaoblenou korunou z fyzikálních experimentů. Brno, 2003. ISBN 80-86433-26-9. [4] ŘÍHA, Jaromír. Hydrotechnické stavby II: Modul 01 Přehrady. Studijní opora. FAST VUT v Brně 2006. [5] JANDORA, Jan. Matematické modelování ve vodním hospodářství. VUT v Brně, 2008. [6] KŘÍŽ, Tomáš. Manipulační řád pro vodní dílo Boskovice na toku Bělá v km 7,400. Brno, 2020. [7] ŠULC, Jan a Michal ŽOUŽELA. Hydraulický modelový výzkum bezpečnostního objektu VD Boskovice na ÚVS Stavební fakulty VUT v Brně. Výzkumná zpráva, LVV-ÚVSFAST VUT v Brně, 2013 [8] Autodesk® AutoCAD® 2020 [Počítačový software]. (2019). https://www.autodesk.cz/ [9] Blender v2.90 [Počítačový software]. (2020). https://www.blender.org/ [10] FLOW-3D® verze 11.0.4 [Počítačový software]. (2015). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com [11] Why FLOW-3D? Flow-3D [online]. [cit. 2020-11-03]. Dostupné z: https://www.flow3d.com/products/flow-3d/why-flow-3d/ [12] Podklady poskytnuté Ing. Petrem Holomkem (Povodí Moravy, s. p.) [13] CHANSON, H. a J.S. MONTES. Journal of Irrigation and Drainage Engineering: Overflow Characteristics of Circular Weirs: Effcets of Inflow Conditions. 3. Reston: The American Society of Civil Engineers, 1998. ISBN 0733-9437. [14] KRATOCHVÍL, Jiří, Miloš JANDA a Vlastimil STARA. Projektování přehrad: Komplexní projekt HT. Brno: Vysoké učení technické v Brně, 1988. [15] STUDNIČKA, Tomáš. Matematické modelování odlehčovacích komor na stokových sítích. Brno, 2013. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební. Vedoucí práce Ing. Petr Prax, Ph.D. [16] ŘÍHA, Jaromír. Hydraulika podzemních vod: Modul 01. Studijní opora. FAST VUT v Brně 2006.
Chendi Zhang1 , Yuncheng Xu1,2, Marwan A Hassan3 , Mengzhen Xu1 , Pukang He1 1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China. 2 College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100081, China. 5 3Department of Geography, University of British Columbia, 1984 West Mall, Vancouver BC, V6T1Z2, Canada. Correspondence to: Chendi Zhang (chendinorthwest@163.com) and Mengzhen Xu (mzxu@mail.tsinghua.edu.cn)
Abstract
스텝 풀 시스템은 계류의 일반적인 기반이며 전 세계의 하천 복원 프로젝트에 활용되었습니다. 스텝 풀 장치는 스텝 풀 기능의 형태학적 진화 및 안정성과 밀접하게 상호 작용하는 것으로 보고된 매우 균일하지 않은 수력 특성을 나타냅니다.
그러나 스텝 풀 형태에 대한 3차원 수리학의 자세한 정보는 측정의 어려움으로 인해 부족했습니다. 이러한 지식 격차를 메우기 위해 SfM(Structure from Motion) 및 CFD(Computational Fluid Dynamics) 기술을 기반으로 하이브리드 모델을 구축했습니다. 이 모델은 CFD 시뮬레이션을 위한 입력으로 6가지 유속의 자연석으로 만든 인공 스텝 풀 장치가 있는 침대 표면의 3D 재구성을 사용했습니다.
하이브리드 모델은 스텝 풀 장치에 대한 3D 흐름 구조의 고해상도 시각화를 제공하는 데 성공했습니다. 결과는 계단 아래의 흐름 영역의 분할, 즉 수면에서의 통합 점프, 침대 근처의 줄무늬 후류 및 그 사이의 고속 제트를 보여줍니다.
수영장에서 난류 에너지의 매우 불균일한 분포가 밝혀졌으며 비슷한 용량을 가진 두 개의 에너지 소산기가 수영장에 공존하는 것으로 나타났습니다. 흐름 증가에 따른 풀 세굴 개발은 점프 및 후류 와류의 확장으로 이어지지만 이러한 증가는 스텝 풀 실패에 대한 임계 조건에 가까운 높은 흐름에서 점프에 대해 멈춥니다.
음의 경사면에서 발달된 곡물 20 클러스터와 같은 미세 지반은 국부 수력학에 상당한 영향을 주지만 이러한 영향은 수영장 바닥에서 억제됩니다. 스텝 스톤의 항력은 가장 높은 흐름이 사용되기 전에 배출과 함께 증가하는 반면 양력은 더 큰 크기와 더 넓은 범위를 갖습니다. 우리의 결과는 계단 풀 형태의 복잡한 흐름 특성을 조사할 때 물리적 및 수치적 모델링을 결합한 하이브리드 모델 접근 방식의 가능성과 큰 잠재력을 강조합니다.
Step-pool systems are common bedforms in mountain streams and have been utilized in river restoration projects around the world. Step-pool units exhibit highly non-uniform hydraulic characteristics which have been reported to closely 10 interact with the morphological evolution and stability of step-pool features. However, detailed information of the threedimensional hydraulics for step-pool morphology has been scarce due to the difficulty of measurement. To fill in this knowledge gap, we established a hybrid model based on the technologies of Structure from Motion (SfM) and computational fluid dynamics (CFD). The model used 3D reconstructions of bed surfaces with an artificial step-pool unit built by natural stones at six flow rates as inputs for CFD simulations. The hybrid model succeeded in providing high-resolution visualization 15 of 3D flow structures for the step-pool unit. The results illustrate the segmentation of flow regimes below the step, i.e., the integral jump at the water surface, streaky wake vortexes near the bed, and high-speed jets in between. The highly non-uniform distribution of turbulence energy in the pool has been revealed and two energy dissipaters with comparable capacity are found to co-exist in the pool. Pool scour development under flow increase leads to the expansion of the jump and wake vortexes but this increase stops for the jump at high flows close to the critical condition for step-pool failure. The micro-bedforms as grain 20 clusters developed on the negative slope affect the local hydraulics significantly but this influence is suppressed at pool bottom. The drag forces on the step stones increase with discharge before the highest flow is used while the lift force has a larger magnitude and wider varying range. Our results highlight the feasibility and great potential of the hybrid model approach combining physical and numerical modeling in investigating the complex flow characteristics of step-pool morphology.
Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo.
DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with
Volume of Fluid method.Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with
stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion
with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed
160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with
the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is
short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an
example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The
abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall
165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface.Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The
reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm
upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15,
x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE,
panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are
in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left
to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except
for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the
inspected range is shown by shaded area in each plot.Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges,
with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa,
whose absolute value is 1.013×105 Pa.Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The
standard atmospheric pressure is set as 0 Pa.Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone
4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force
calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest.Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with
those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the
negative values of CL correspond to lift forces pointing downwards.Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake
vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction
sections under the three flow rates are marked by dashed lines in figures (d) to (f).Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections
at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size.
The flow direction is from left to right in each plot.Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow
condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction
is from left to right.Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of
the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the
distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.
G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0;
(c) x0+21.5; (d) x0+42.5.
References
720 Aberle, J. and Smart, G. M: The influence of roughness structure on flow resistance on steep slopes, J. Hydraul. Res., 41(3), 259-269, https://doi.org/10.1080/00221680309499971, 2003. Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-pool streams: Adjustment to maximum flow resistance. Water Resour. Res., 31(10), 2593-2602, https://doi.org/10.1029/95WR01957, 1995. Adrian, R. J.: Twenty years of particle image velocimetry. Exp. Fluids, 39(2), 159-169, https://doi.org/10.1007/s00348-005- 725 0991-7 2005. Chanson, H.: Hydraulic design of stepped spillways and downstream energy dissipators. Dam Eng., 11(4), 205-242, 2001. Chartrand, S. M., Jellinek, M., Whiting, P. J., and Stamm, J.: Geometric scaling of step-pools in mountain streams: Observations and implications, Geomorphology, 129(1-2), 141-151, https://doi.org/10.1016/j.geomorph.2011.01.020, 2011. 730 Chen, Y., DiBiase, R. A., McCarroll, N., and Liu, X.: Quantifying flow resistance in mountain streams using computational fluid dynamics modeling over structure‐from‐motion photogrammetry‐derived microtopography, Earth Surf. Proc. Land., 44(10), 1973-1987, https://doi.org/10.1002/esp.4624, 2019. Church, M. and Zimmermann, A.: Form and stability of step‐pool channels: Research progress, Water Resour. Res., 43(3), W03415, https://doi.org/10.1029/2006WR005037, 2007. 735 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.: Meshlab: an open-source mesh processing tool, in: Eurographics Italian chapter conference, Salerno, Italy, 2-4 July 2008, 129-136, 2008.
Comiti, F., Andreoli, A., and Lenzi, M. A.: Morphological effects of local scouring in step-pool streams, Earth Surf. Proc. Land., 30(12), 1567-1581, https://doi.org/10.1002/esp.1217, 2005. Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow resistance in self‐formed step-pool 740 channels, Water Resour. Res., 45(4), 546-550, https://doi.org/10.1029/2008WR007259, 2009. Dudunake, T., Tonina, D., Reeder, W. J., and Monsalve, A.: Local and reach‐scale hyporheic flow response from boulder ‐ induced geomorphic changes, Water Resour. Res., 56, e2020WR027719, https://doi.org/10.1029/2020WR027719, 2020. Flow Science.: Flow-3D Version 11.2 User Manual, Flow Science, Inc., Los Alamos, 2016. Gibson, S., Heath, R., Abraham, D., and Schoellhamer, D.: Visualization and analysis of temporal trends of sand infiltration 745 into a gravel bed, Water Resour. Res., 47(12), W12601, https://doi.org/10.1029/2011WR010486, 2011. Hassan, M. A., Tonina, D., Beckie, R. D., and Kinnear, M.: The effects of discharge and slope on hyporheic flow in step‐pool morphologies, Hydrol. Process., 29(3), 419-433, https://doi.org/10.1002/hyp.10155, 2015. Hirt, C. W. and Nichols, B. D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 201-225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981. 750 Javernick L., Brasington J., and Caruso B.: Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry, Geomorphology, 213(4), 166-182, https://doi.org/10.1016/j.geomorph.2014.01.006, 2014. Lai, Y. G., Smith, D. L., Bandrowski, D. J., Xu, Y., Woodley, C. M., and Schnell, K.: Development of a CFD model and procedure for flows through in-stream structures, J. Appl. Water Eng. Res., 1-15, https://doi.org/10.1080/23249676.2021.1964388, 2021. 755 Lenzi, M. A.: Step-pool evolution in the Rio Cordon, northeastern Italy, Earth Surf. Proc. Land., 26(9), 991-1008, https://doi.org/10.1002/esp.239, 2001. Lenzi, M. A.: Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy, Geomorphology, 45(3-4), 243-260, https://doi.org/10.1016/S0169-555X(01)00157-X, 2002. Lenzi, M. A., Marion, A., and Comiti, F.: Local scouring at grade‐control structures in alluvial mountain rivers, Water Resour. 760 Res., 39(7), 1176, https://doi:10.1029/2002WR001815, 2003. Li, W., Wang Z., Li, Z., Zhang, C., and Lv, L.: Study on hydraulic characteristics of step-pool system, Adv. Water Sci., 25(3), 374-382, https://doi.org/10.14042/j.cnki.32.1309.2014.03.012, 2014. (In Chinese with English abstract) Maas, H. G., Gruen, A., and Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids, 15(2), 133-146. https://doi.org/10.1007/BF00223406, 1993.
765 Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bul., 109(5), 596-611, https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997. Morgan J. A., Brogan D. J., and Nelson P. A.: Application of structure-from-motion photogrammetry in laboratory flumes, Geomorphology, 276(1), 125-143, https://doi.org/10.1016/j.geomorph.2016.10.021, 2017. Recking, A., Leduc, P., Liébault, F., and Church, M.: A field investigation of the influence of sediment supply on step-pool 770 morphology and stability. Geomorphology, 139, 53-66, https://doi.org/10.1016/j.geomorph.2011.09.024, 2012. Roth, M. S., Jähnel, C., Stamm, J., and Schneider, L. K.: Turbulent eddy identification of a meander and vertical-slot fishways in numerical models applying the IPOS-framework, J. Ecohydraulics, 1-20, https://doi.org/10.1080/24705357.2020.1869916, 2020. Saletti, M. and Hassan, M. A.: Width variations control the development of grain structuring in steep step‐pool dominated 775 streams: insight from flume experiments, Earth Surf. Proc. Land., 45(6), 1430-1440, https://doi.org/10.1002/esp.4815, 2020. Smith, D. P., Kortman, S. R., Caudillo, A. M., Kwan‐Davis, R. L., Wandke, J. J., Klein, J. W., Gennaro, M. C. S., Bogdan, M. A., and Vannerus, P. A.: Controls on large boulder mobility in an ‘auto-naturalized’ constructed step-pool river: San Clemente Reroute and Dam Removal Project, Carmel River, California, USA, Earth Surf. Proc. Land., 45(9), 1990-2003, 780 https://doi.org/10.1002/esp.4860, 2020. Thappeta, S. K., Bhallamudi, S. M., Fiener, P., and Narasimhan, B.: Resistance in Steep Open Channels due to Randomly Distributed Macroroughness Elements at Large Froude Numbers, J. Hydraul. Eng., 22(12), 04017052, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001587, 2017. Thappeta, S. K., Bhallamudi, S. M., Chandra, V., Fiener, P., and Baki, A. B. M.: Energy loss in steep open channels with step785 pools, Water, 13(1), 72, https://doi.org/10.3390/w13010072, 2021. Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Proc. Land., 34(12), 1661-1673, https://doi.org/10.1002/esp.1855, 2009. Vallé, B. L. and Pasternack, G. B.: Air concentrations of submerged and unsubmerged hydraulic jumps in a bedrock step‐pool 790 channel, J. Geophys. Res.-Earth, 111(F3), F03016. https://doi:10.1029/2004JF000140, 2006. Waldon, M. G.: Estimation of average stream velocity, J. Hydraul. Eng., 130(11), 1119-1122. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1119), 2004. Wang, Z., Melching, C., Duan, X., and Yu, G.: Ecological and hydraulic studies of step-pool systems, J. Hydraul. Eng., 135(9), 705-717, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(705), 2009
795 Wang, Z., Qi, L., and Wang, X.: A prototype experiment of debris flow control with energy dissipation structures, Nat. Hazards, 60(3), 971-989, https://doi.org/10.1007/s11069-011-9878-5, 2012. Weichert, R. B.: Bed Morphology and Stability in Steep Open Channels, Ph.D. Dissertation, No. 16316. ETH Zurich, Switzerland, 247pp., 2005. Wilcox, A. C., Wohl, E. E., Comiti, F., and Mao, L.: Hydraulics, morphology, and energy dissipation in an alpine step‐pool 800 channel, Water Resour. Res., 47(7), W07514, https://doi.org/10.1029/2010WR010192, 2011. Wohl, E. E. and Thompson, D. M.: Velocity characteristics along a small step–pool channel. Earth Surf. Proc. Land., 25(4), 353-367, https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5, 2000. Wu, S. and Rajaratnam, N.: Impinging jet and surface flow regimes at drop. J. Hydraul. Res., 36(1), 69-74, https://doi.org/10.1080/00221689809498378, 1998. 805 Xu, Y. and Liu, X.: 3D computational modeling of stream flow resistance due to large woody debris, in: Proceedings of the 8th International Conference on Fluvial Hydraulics, St. Louis, USA, 11-14, Jul, 2346-2353, 2016. Xu, Y. and Liu, X.: Effects of different in-stream structure representations in computational fluid dynamics models—Taking engineered log jams (ELJ) as an example, Water, 9(2), 110, https://doi.org/10.3390/w9020110, 2017. Zeng, Y. X., Ismail, H., and Liu, X.: Flow Decomposition Method Based on Computational Fluid Dynamics for Rock Weir 810 Head-Discharge Relationship. J. Irrig. Drain. Eng., 147(8), 04021030, https://doi.org/10.1061/(ASCE)IR.1943- 4774.0001584, 2021. Zhang, C., Wang, Z., and Li, Z.: A physically-based model of individual step-pool stability in mountain streams, in: Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 801-809, 2016. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., and Wang, Z.: Experimental study on the stability and failure of individual 815 step-pool, Geomorphology, 311, 51-62, https://doi.org/10.1016/j.geomorph.2018.03.023, 2018. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., Wang, Z., and Ma, Z.: Experiment on morphological and hydraulic adjustments of step‐pool unit to flow increase, Earth Surf. Proc. Land., 45(2), 280-294, https://doi.org/10.1002/esp.4722, 2020. Zimmermann A., E.: Flow resistance in steep streams: An experimental study, Water Resour. Res., 46, W09536, 820 https://doi.org/10.1029/2009WR007913, 2010. Zimmermann A. E., Salleti M., Zhang C., Hassan M. A.: Step-pool Channel Features, in: Treatise on Geomorphology (2nd Edition), vol. 9, Fluvial Geomorphology, edited by: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-12-818234-5.00004-3, 2020.
하천횡단구조물이 하천설계기준(2009)대로 설계되었음에도 불구하고, 하류부에서 물받이공 및 바닥보호공의 피해가 발생하여, 구조물 본체에 대한 안전성이 현저하 게 낮아지고 있는 실정이다. 하천설계기준이 상류부의 수리특성을 반영하였다고 하나 하류부의 수리특성인 유속의 변동 성분 또는 압력의 변동성분까지 고려하고 있지는 않다. 현재 많은 선행연구에서 이러한 난류적 특성이 구조물에 미치는 영 향에 대해 제시하고 있는 실정이며, 국내 하천에서의 피해 또한 이와 관련이 있다 고 판단된다. 이에 본 연구에서는 난류성분 특히 압력의 변동성분이 물받이공과 바닥보호공에 미치는 영향을 정량적으로 분석하여, 하천 횡단구조물의 치수 안전 성 증대에 기여하고자 한다. 물받이공과 바닥보호공에 미치는 압력의 변동성분 (pressure fluctuation) 영향을 분석하기 위해 크게 3가지로 연구내용을 분류하였 다. 첫 번째는 압력의 변동으로 순간적인 음압구배(adversed pressure gradient) 가 발생할 경우 바닥보호공의 사석 및 블록이 이탈하는 것이다. 이를 확인하기 위 해 정밀한 압력 측정장치를 통해 압력변이를 측정하여, 사석의 이탈 가능성을 검 토할 것이며, 최종적으로 이탈에 대한 한계조건을 도출할 것이다. 두 번째는 압력 의 변동이 물받이공의 진동을 유발시켜 이를 지지하고 있는 지반에 다짐효과를 가 져와 물받이공과 지반사이에 공극이 발생하는 경우이다. 이러한 공극으로 물받이 공은 자중 및 물의 압력을 받게 되어, 결국 휨에 의한 파괴가 발생할 가능성이 있 게 된다. 본 연구에서는 실험을 통하여 압력의 변동과 물받이공의 진동을 동시에 측정하여, 진동이 발생하지 않을 최소 두께를 제시할 것이다. 세 번째는 압력변이 로 인한 물받이공의 진동이 피로파괴로 연결되는 경우이다. 이 현상 또한 수리실 험을 통해 압력변이-피로파괴의 관계를 정량적으로 분석하여, 한계 조건을 제시할 것이다. 본 연구는 국내 보 및 낙차공에서 발생하는 다양한 Jet의 특성을 수리실 험으로 재현해야 하며, 이를 위해 평면 Jet 분사기(plane Jet injector)를 고안/ 제작하여, 효율적인 수리실험을 수행할 것이다. 또한 3차원 수치해석을 통해 실제 스케일에 적용함으로써 연구결과의 활용도 및 적용성을 높이고자 한다.
Keywords
압력변이, 물받이공, 바닥보호공, 난류, 진동
그림 1 하천횡단구조물 하류부 횡단구조물 파괴그림 2. 시간에 따른 압력의 변동 양상 및 정의 그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0
상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto &
Rinaldo, 2010) 그림 4. 파괴 개념그림 6. PIV 측정 원리(www.photonics.com)그림 7. LED회로판 및 BIV기법 기본개념그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)그림 9. 감세공의 분류그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건
실험전경그림 18 수리실험 개요도그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)그림 128 RNG 모형을 이용한 수치모의 결과그림 129 LES 모형을 이용한 수치모의 결과그림 130 압력 Data의 필터링그림 134 Case 1의 흐름특성 분포도 및 그래프
한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발
한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가 기법에 대한 원천기술개발
국토기술연구센터 (1998) 하상유지공의 구조설계 지침.
감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태. 국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서.
국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인. 국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.
국토교통성 (2008) 하천사방기술기준.
농림부 (1996). 농업생산기반정비사업계획 설계기
류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999). 류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108. 배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418. 우효섭 (2001). 하천수리학. 청문각. 한국수자원학회 (2009). 하천설계기준해설. 한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발 한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가 기법에 대한 원천기술개발
Adrian, R. J., Meinhart, C. D., & Tomkins, C. D. (2000). Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422, 1-54. Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American statistical association, 49(268), 765-769. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609. Barjastehmaleki, S., Fiorotto, V., & Caroni, E. (2016). Spillway stilling basins lining design via Taylor hypothesis. Journal of Hydraulic Engineering, 142(6), 04016010. Beheshti, M. R., Khosrojerdi, A., & Borghei, S. M. (2013). Experimental study of air-water turbulent flow structures on stepped spillways. International Journal of Physical Sciences, 8(25), 1362-1370. Bligh, W. G. (1910). Dams, barrages and weirs on porous foundations. Engineering News, 64(26), 708-710. Bowers, C. E., &Tsai, F. Y. (1969). Fluctuating pressure in spillway stilling basins. Journal of the Hydraulics Division, 95(6), 2071-2080. Brater, E. F., King, H. W., Lindell, J. E., & Wei, C. Y. (1976). Handbook of hydraulics for the solution of hydraulic engineering problems (Vol. 7). New York: McGraw-Hill. Castillo, L. G., Carrillo, J. M., & Sordo-Ward, Á. (2014). Simulation of overflow nappe impingement jets. Journal of Hydroinformatics, 16(4), 922-940
Lin, C., Hsieh, S. C., Lin, I. J., Chang, K. A., & Raikar, R. V. (2012). Flow property and self-similarity in steady hydraulic jumps. Experiments in Fluids, 53(5), 1591-1616
Chanson, H. (1999). The Hydraulics of Open Channel Flow: An Introduction. Physical Modelling of Hydraulics. Chow, V. T. (1959). Open-Channel Hydraulics, McGraw Hill Book Company, Inc., New York. Christensen, B. A. (1984). “Analysis of Partially Filled Circular Storm Sewers.” J. of Hydraulic Engineering, ASCE, Vol. 110, No. 8. El-Ragaby, A., El-Salakawy, E., and Benmokrane, B., “Fatigue Life Evaluation of Concrete Bridge Deck Slabs Reinforced with Glass FRP Composite Bars,” Journal of Composites for Construction, ASCE, Vol. 11, No. 3, 2007, pp. 258-268. (doi: http://dx.doi.org/10.1061/(ASCE) 1090-0268(2007)11:3(258), Fiorotto, V., & Rinaldo, A. (1992). Turbulent pressure fluctuations under hydraulic jumps. Journal of Hydraulic Research, 30(4), 499-520. Flow Science (2015). FLOW-3D User Manual(Release 11.1.0), Los Alamos, New Mexico. González-Betancourt, M. (2016). Uplift force and momenta on a slab subjected to hydraulic jump. Dyna, 83(199), 124-133. Grinstein, L., & Lipsey, S. I. (2001). Encyclopedia of mathematics education. Routledge. Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics, 14(4), 847-854. Gylltoft K. (1983): Fracture mechanics models for fatigue in concrete structures. Doctoral thesis / Tekniska högskolan i Luleå, 25D, Luleå, 210 pp. Herlina, H. and Jirka, G. H. (2008). “Experiments on gas transfer near the air-water interface in a grid-stirred tank.” Journal of Fluid Mechanics, 594, pp.183-208. IACWD (Interagency Advisory Committee on Water Data). (1982). Guidelines for determining flood flow frequency. Bulletin 17B. JIRKA, G. H. (2008). Experiments on gas transfer at the air–water interface induced by oscillating grid turbulence. Journal of Fluid Mechanics, 594, 183-208. Kadota, A., Suzuki, K., Rummel, A. C., Weitbrecht, V., & Jirka, G. H. (2007). Shallow flow visualization around a single groyne. In Proc. of 7th International Symposium of Particle Image Velocimetry (CD-ROM). Kazemi, F., Khodashenas, S. R., & Sarkardeh, H. (2016). Experimental study of pressure fluctuation in stilling basins. International Journal of Civil Engineering, 14(1), 13-21. Klowak, C., Memon, A., and Mufti, A., “Static and fatigue investigation of second generation steel-free bridge decks,” Cement & Concrete Composites, ScienceDirect, Elsevier, Vol. 28, No.
10, 2006, pp. 890-897. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.07.019), Koca, K., Noss, C., Anlanger, C., Brand, A., & Lorke, A. (2017). Performance of the Vectrino Profiler at the sediment–water interface. Journal of Hydraulic Research, 55(4), 573-581. Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91. Leon, A., & Alnahit, A. (2016). A Remotely Controlled Siphon System for Dynamic Water Storage Management. Lin, C., Hsieh, S., Chang, K. and Raikar, R. (2012). “Flow property and self-similarity in steady hydraulic jumps.” Experiments in Fluid, 53, pp. 1591-1616. Lopardo, R., Fattor, C. A., Casado, J. M. and Lopardo, M. C. (2004). “Aspects of vibration and fatigue of materials related to coherent structures of macroturbulent flows” International Conference on Hydraulic of Dams and River Structures. Lopardo, R. A., & Romagnoli, M. (2009). Pressure and velocity fluctuations in stilling basins. In Advances in Water Resources and Hydraulic Engineering (pp. 2093-2098). Springer, Berlin, Heidelberg. Sanchez, P. A., Ramirez, G. E., Vergara, R., & Minguillo, F. (1973). Performance of Sulfur-Coated Urea Under Intermittently Flooded Rice Culture in Peru 1. Soil Science Society of America Journal, 37(5), 789-792. Matsui, S., Tokai, D., Higashiyama, H., and Mizukoshi, M., “Fatigue Durability of Fiber Reinforced Concrete Decks Under Running Wheel Load,” Proceedings 3rd International Conference on Concrete Under Severe Conditions, Ed. N. Banthia, Vancouver, Canada, 2001, pp. 982-991., Mohammadi, S. F., Galgoul, N. S., Starossek, U., & Videiro, P. M. (2016). An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure. Marine Structures, 49, 97-115. Pothof, I. (2011). Co-current air-water flow in downward sloping pipes. Stichting Deltares Pothof, I. W. M., & Clemens, F. H. L. R. (2011). Experimental study of air–water flow in downward sloping pipes. International journal of multiphase flow, 37(3), 278-292. Ryu, Y., Chang, K. A., & Lim, H. J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Measurement Science and Technology, 16(10), 1945. Sanjou, M., & Nezu, I. (2009). Turbulence structure and coherent motion in meandering compound open-channel flows. Journal of Hydraulic Research, 47(5), 598-610. Sargison, J. E., & Percy, A. (2009). Hydraulics of broad-crested weirs with varying side slopes. Journal of irrigation and drainage engineering, 135(1), 115-118.
Sobani, A. (2014). Pressure fluctuations on the slabs of stilling basins under hydraulic jump. Song, Y., Chang, K, Ryu, Y. and Kwon, S. (2013). “ Experimental study on flow kinematics and impact pressure in liquid sloshing.”, Experiments in Fluid, 54, pp. 1592. Stagonas, D., Lara, J. L., Losada, I. J., Higuera, P., Jaime, F. F., & Muller, G. (2014). Large scale measurements of wave loads and mapping of impact pressure distribution at the underside of wave recurves. In Proceedings of the HYDRALAB IV Joint User Meeting. Toso, J. W., & Bowers, C. E. (1988). Extreme pressures in hydraulic-jump stilling basins. Journal of Hydraulic Engineering, 114(8), 829-843. Youn, S. G. and Chang, S. P., “Behavior of Composite Bridge Decks Subjected to Static and Fatigue Loading,” Structural Journal, ACI Technical paper, Title No. 95-S23, 1998, pp. 249-258. (doi: http://dx.doi.org/10.14359/543),
본 최근 지구의 온난화로 인하여 극한 홍수가 자주 발생하고 있으며, 기존 도시 유역의 우수배제시설 용량부족 등으로 도시홍수가 빈번하게 발생하고 있으므로, 주요 범람지역의 홍수량을 우회하거나 저류하여 홍수를 방지하기 위한 수로터널의 개발이 요구된다.
본 연구에서는 교통기능과 수로기능을 동시에 갖춘 다기능 수로 터널의 설계 기준을 개발하기 위한 수리 실험 및 Flow3D를 이용한 수치모의을 수행하였다. 수치모의결과 동일한 수로 터널 구간 내 발생하는 마찰손실의 크기는 수치모의로 도출된 마찰손실이 이론적으로 계산한 마찰손실보다 더 크게 발생함을 관측하였으며, 이는 수로의 형상이 비원형인 경우에는 관의 기하학적 형상에 의한 흐름구조의 변화로 추가적인 마찰손실이 발생하는 것이 원인으로 판단된다.
마찰손실의 증가는 난류보다 층류에서 두드러졌다. 따라서 터널의 홍수량 흐름 시 마찰손실계수가 터널의 형상에 좌우되며, 실무에서 정확한 설계를 위해 방수로 터널의 형상을 주의 깊게 고려해야 한다는 결론을 내렸다. 이는 실제 방수로 터널 설계에 활용될 수 있는 기본 정보를 제공할 수 있을 것으로 보인다.
The extreme floods recently are have been attributed global warming, The development of a canal tunnel to prevent floods by making a bypass or undercurrent to flood discharge in a major flooding area is required because urban flooding in heavy rainfall occurs frequently, increasing the impermeability according to lack of capacity in sewage to urbanization by the existing urban basin. In this study, a numerical simulation was performed to support design standards for a multi-purpose waterway tunnel combined road tunnel of canal tunnel. The numerical simulation showed that the size of the friction loss occurring in the tunnel section of the same channel occurred more than the theoretically calculated frictional loss derived from the numerical simulations. This is probably due to the additional frictional loss caused by the change in the flow structure due to the geometry of the pipe when the shape of the channel is non-circular. The increase in friction loss was more pronounced in the laminar flow than in the turbulent flow. Depending on the shape of the conduit, the friction loss should be adjusted for accurate flow calculations. This result can provide the basin information about the design of flood by a pass conduit
Fig. 1. Double-deck TBM tunnel exampleTable 1. Discharge casesFig. 3. Setup of geometryTable 2. Boundary applied modelFig. 4. Pressure value according to the 6 different dischargesFig. 5. Hydraulic grade line along the stormwater tunnel using FLOW-3DFig. 6. Head loss compared hydraulic experiment with Flow 3D and assumed circular pipeTable 3. Measured and calculated frictional loss coefficient in the discharge casesFig. 7. Comparison of frictional loss coefficient according to the Reynolds number
References
[1] Kim, J.-H., Kwon, S.-H., Yoon, K.-S., Lee, L.-H., Chung, G.-H. Hydraulic Experiment for Friction Loss Coefficient in Non-circular Pipe, Procedia Engineering, Vol. 154, pp. 773-778, 2016. DOI: https://doi.org/10.1016/j.proeng.2017.02.354 [2] Colebrook, C. F. and White, C. M. Experiments with fluid- friction in roughened pipes, Proc. Royal Soc. London, 161, 367-381, 1937. DOI: https://doi.org/10.1098/rspa.1937.0150 [3] Flow Science Inc. FLOW-3D User’s Manual, 2015 [4] Jeong, C.-S. Discharge coefficient of side weir for various curvatures simulated by FLOW-3D, Korea Water Resources Association, 2011. [5] Kang, S.-H. A comparison of hydraulic phenomenon in inlet and outlet point in retention reservoir using FLOW-3D model and hydraulic experiment, Donga University, 2012. [6] Seoul General planning for reducing traffic of surface road, 2015. [7] Willams, G. S. and Hazen A. Hydraulic Tables, 3rd ed., rev. John Wiley, New York, 1933. [8] Yen, Ben Chie. Channel flow resistance: centennial of Manning’s formula, Water Resources Publications, 1992.
The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: an experimental study and numerical modeling
계단식 여수로는 댐의 여수로 위로 흐르는 큰 물의 에너지를 분산시키는 비용 효율적인 유압 구조입니다. 이 연구에서는 삼각주형 요소(TPE)가 계단식 배수로의 수력 성능에 미치는 영향에 초점을 맞췄습니다. 9개의 계단식 배수로 모델이 TPE의 다양한 모양과 레이아웃으로 실험 및 수치적으로 조사되었습니다. 적절한 난류 모델을 채택하려면 RNG k – ε 및 표준 k – ε모델을 활용했습니다. 계산 모델 결과는 계단 표면의 속도 분포 및 압력 프로파일을 포함하여 실험 사례의 계단 여수로에 대한 복잡한 흐름을 만족스럽게 시뮬레이션했습니다. 결과는 계단식 여수로에 TPE를 설치하는 것이 캐비테이션 효과를 줄이는 효과적인 방법이 될 수 있음을 나타냅니다. 계단식 여수로에 TPE를 설치하면 에너지 소실률이 최대 54% 증가했습니다. 계단식 배수로의 성능은 TPE가 더 가깝게 배치되었을 때 개선되었습니다. 또한, 실험 데이터를 이용하여 거칠기 계수( f )와 임계 깊이 대 단차 거칠기( yc / k )의 비율 사이의 관계를 높은 정확도로 얻었다.
Figure 1 | General schematics of laboratory flume facilities.Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).Figure 3 | Geometry and alignment of TPE in the numerical study.Figure 5 | Comparison of turbulence models in Flow-3D.Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A
and B.Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillwayFigure 9 | Velocity distributions on the vertical surface of step number 4.Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.Figure 11 | Pressure distribution on the vertical surface of the fourth step.Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).
REFERENCES
Abbasi, S. & Kamanbedast, A. A. 2012 Investigation of effect of changes in dimension and hydraulic of stepped spillways for maximization energy dissipation. World Applied Sciences Journal 18 (2), 261–267. Arjenaki, M. O. & Sanayei, H. R. Z. 2020 Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach. Modeling Earth Systems and Environment 1–12. Attarian, A., Hosseini, K., Abdi, H. & Hosseini, M. 2014 The effect of the step height on energy dissipation in stepped spillways using numerical simulation. Arabian Journal for Science and Engineering 39 (4), 2587–2594. Azhdary Moghaddam, M. 1997 The Hydraulics of Flow on Stepped Ogee-Profile Spillways. Doctoral Dissertation, University of Ottawa, Canada. Bakhtyar, R. & Barry, D. A. 2009 Optimization of cascade stilling basins using GA and PSO approaches. Journal of Hydroinformatics 11 (2), 119–132. Barani, G. A., Rahnama, M. B. & Sohrabipoor, N. 2005 Investigation of flow energy dissipation over different stepped spillways. American Journal of Applied Sciences 2 (6), 1101–1105. Boes, R. M. & Hager, W. H. 2003 Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679. Chamani, M. R. & Rajaratnam, N. 1994 Jet flow on stepped spillways. Journal of Hydraulic Engineering 120 (2), 254–259. Chanson, H. 1994 Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic Research 32 (2), 213–218. Felder, S., Guenther, P. & Chanson, H. 2012 Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of Several Pooled Stepped Configurations. No. CH87/12. School of Civil Engineering, The University of Queensland. Harlow, F. H. & Nakayama, P. I. 1968 Transport of Turbulence Energy Decay Rate. No. LA-3854. Los Alamos Scientific Lab, N. Mex. Hekmatzadeh, A. A., Papari, S. & Amiri, S. M. 2018 Investigation of energy dissipation on various configurations of stepped spillways considering several RANS turbulence models. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (2), 97–109. Henderson, F. M. 1966 Open Channel Flow. MacMillan Company, New York. Kavian Pour, M. R. & Masoumi, H. R. 2008 New approach for estimating of energy dissipation over stepped spillways. International Journal of Civil Engineering 6 (3), 230–237. Li, S., Li, Q. & Yang, J. 2019 CFD modelling of a stepped spillway with various step layouts. Mathematical Problems in Engineering. Li, S., Yang, J. & Li, Q. 2020 Numerical modelling of air-water flows over a stepped spillway with chamfers and cavity blockages. KSCE Journal of Civil Engineering 24 (1), 99–109. Moghadam, M. K., Amini, A. & Moghadam, E. K. 2020 Numerical study of energy dissipation and block barriers in stepped spillways. Journal of Hydroinformatics. Morovati, K., Eghbalzadeh, A. & Javan, M. 2016 Numerical investigation of the configuration of the pools on the flow pattern passing over pooled stepped spillway in skimming flow regime. Acta Mechanic Journal 227, 353–366. Parsaie, A. & Haghiabi, A. H. 2019 The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation 70, 101624. Peng, Y., Zhang, X., Yuan, H., Li, X., Xie, C., Yang, S. & Bai, Z. 2019 Energy dissipation in stepped spillways with different horizontal face angles. Energies 12 (23), 4469. Roushangar, K., Foroudi, A. & Saneie, M. 2019 Influential parameters on submerged discharge capacity of converging ogee spillways based on experimental study and machine learning-based modeling. Journal of Hydroinformatics 21 (3), 474–492. Sarkardeh, H., Marosi, M. & Roshan, R. 2015 Stepped spillway optimization through numerical and physical modeling. International Journal of Energy and Environment 6 (6), 597. Shahheydari, H., Nodoshan, E. J., Barati, R. & Moghadam, M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182. Tabari, M. M. R. & Tavakoli, S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science and Engineering 41 (4), 1215–1224. Toombes, L. & Chanson, H. 2000 Air-water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zurich, Switzerland, pp. 22–24. Torabi, H., Parsaie, A., Yonesi, H. & Mozafari, E. 2018 Energy dissipation on rough stepped spillways. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (3), 325–330. Wüthrich, D. & Chanson, H. 2014 Hydraulics, air entrainment, and energy dissipation on a Gabion stepped weir. Journal of Hydraulic Engineering 140 (9), 04014046. Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1), 3–51. Yakhot, V. & Smith, L. M. 1992 The renormalization group, the ɛ-expansion and derivation of turbulence models. Journal of Scientific Computing 7 (1), 35–61.
The Palmer-Bowlus flume was developed in 1936, as an adaptation of the Venturi flume for the use in sewer systems, due to the difficulty in modifying the pipe invert. There are commercially available single-body Palmer-Bowlus flume with their respective discharge curves, which increase the cost of sewer projects. Based on the physical model of the Palmer-Bowlus flume (Torres & Vásquez, 2010), the aim of this research was to carry out the three-dimensional numerical modeling of these flow meters, considering four pipe diameters: 160 mm, 200 mm, 250 mm and 400 mm; the selected diameters are the most used ones, according to the information provided by the Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito (EPMAPS). The discharge curves were calibrated and validated using the FLOW-3D program. Meshing had a great influence on the quality results and duration of the numerical simulation; in contrast, the roughness and turbulence models (RNG y k-e) had little influence. The discharge curves obtained in the numerical modeling have good approximation to those obtained in the physical model.
Palmer-Bowlus 수로는 1936년에 하수도 시스템에 사용하기 위해 Venturi 수로를 개조한 것으로 파이프 인버트를 수정하는 것이 어렵기 때문에 개발되었습니다. 각각의 배출 곡선이 있는 시판되는 단일 몸체 Palmer-Bowlus 수로가 있으며, 이는 하수도 프로젝트 비용을 증가시킵니다.
Palmer-Bowlus 수로의 물리적 모델을 기반으로(Torres & Vásquez, 2010), 이 연구의 목적은 160mm, 200mm, 4개의 파이프 직경을 고려하여 이러한 유량계의 3차원 수치 모델링을 수행하는 것이었습니다. 250mm 및 400mm; Empresa Pública Metropolitana de Agua Potable y Sanaeamiento de Quito(EPMAPS)에서 제공한 정보에 따르면 선택한 지름이 가장 많이 사용되는 지름입니다.
방전 곡선은 FLOW-3D 프로그램을 사용하여 보정 및 검증되었습니다. 메싱은 수치 시뮬레이션의 품질 결과와 기간에 큰 영향을 미쳤습니다. 대조적으로, 거칠기 및 난류 모델(RNG y k-e)은 거의 영향을 미치지 않았습니다. 수치 모델링에서 얻은 방전 곡선은 물리적 모델에서 얻은 것과 유사합니다.
Figura 1. Parámetros del medidor Palmer-BowlusFigura 2. Diagrama de flujo de la modelación del medidor Palmer-Bowlus en FLOW-3DFigura 3. Captura de pantalla del modelo numérico Q=22.047(
𝑙
𝑠
),
Ho=20.038 cm
REFERENCIAS
Aulestia, C. (2017). Modelación numérica en tres dimensiones de flujo en las compuertas de la captación del Proyecto Toachi – Pilatón aplicando dinámica de fluidos computacional (CFD). [Tesis Maestría]. Quito, Ecuador: Escuela Politécnica Nacional. Casa, E. (2016). Modelación numérica del flujo rasante en una rápida escalonada aplicando la dinámica de fluidos computacional (CFD) Programa FLOW-3D. [Tesis maestría]. Quito, Ecuador: Escuela Politécnica Nacional. Chow, V. T. (2004). Hidráulica de canales abiertos (Primera ed.). (J. Saldarriaga, Trad.) Santafé de Bogotá, Colombia: McGrawHill. Domínguez, F. (1999). Hidráulica (Sexta Edición ed.). Santiango de Chile, Chile: Editorial Universitaria. Fernández, J. (2012). Introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Barcelona: Editorial Reverté, S.A. Flow Science, Inc. (2016). Flow-3D v11.2 Documentation. Flow Science, Inc. Santa Fe: Flow Science. Ludwig, J., & Ludwig, R. (1951). Design of Palmer-Bowlus Flumes. Sewafe and Insdustrial Wastes, 23(9), 1096-1107. Obtenido de https://www.jstor.org/stable/25031687 Recasens, J. (2014). Modelación tridimensional del glujo de entrada en un sumidero. Barcelona: UPC BARCELONATECH. Sotelo, G. (1997). Hidráulica General Vol. 1. México D.F.: LIMUSA S.A. Torres, C., & Vásquez, E. (2010). Análisis de medidores de caudal para flujo subcrítico en sistemas de alcantarillado. [Tesis ingeniería]. Quito, Ecuador: Escuela Politécnica Nacional. Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to computational fluid dynamics – The finite volume method. New York: John Wiley & Sons.
캐비테이션은 고속 및 과난류 흐름에서 수리 구조물에 손상을 입히고 구멍을 만드는 현상입니다. 본 연구에서는 Siah-Bishe 배수로의 계단식 급수 공식을 Flow-3D 소프트웨어를 통해 시뮬레이션하고 물리적 모델과 비교합니다.
이 소프트웨어는 자유 표면과 복잡한 형상의 불안정한 3D 흐름 문제를 분석하는 정확한 도구입니다. 유한체적법을 통해 질량, 운동량, 에너지 보존 공식을 풀어 문제를 해결합니다.
본 연구에서는 여수로의 시작, 끝, 끝 부분의 압력 매개변수를 연구하고 일부 부분에서 음압이 관찰됩니다. 이 압력은 캐비테이션을 일으킬 수 있습니다. 본 연구는 Flow-3D로 모델링된 물리적 모델과 유한체적법 간의 대응 결과를 보여준다.
Cavitation is a phenomenon which damages and makes hole in hydraulic structure in high velocity and over-turbulent flows. In this research, stepped fast water formula of Siah-Bishe spillway is stimulated via Flow-3D software and compared with physical model. This software is an accurate tool in analyzing unsteady 3D flow problems with free surface and complex geometry. It solves problems by solving conservation of mass formulas, momentum and energy viafinite volume method. In this study, pressure parameter at the beginning, end and along the spillway is studied and negative pressure is observed in some parts. This pressure can make cavitation. The study shows the results of correspondence between physical model and finite volume method modeled by Flow-3D.
실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.
키워드
산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer
1 . 소개
시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3 → CaO + CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.
최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.
내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.
최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.
화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.
본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.
이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.
2 . 모델 공식화
2.1 . 개요
Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .
석탄 연소에 의해 방출되는 에너지(단위 시간당)( Q 석탄 )는 배기 가스(Δ H 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( Q rad ) 및 대류( Q conv )됩니다. 공급 및 배기 덕트( Q rad,1 + Q rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( Q rad ) 및 대류( Q conv )에 의해 가스로부터 에너지(Δ H cl )를 흡수 하고 주변으로 열을 잃습니다( Q손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.
2.2 . CFD 코드
가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.
2.2.1 . 석탄 연소
Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .
2.2.2 . 복사와 대류
가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1 × 1.0 m와 0.2 × 5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.
최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.
2.2.3 . 그리드
반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.
2.2.4 . 경계 조건
벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .
내벽 온도 T w ( R in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 T RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. T RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다. 식 의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.
고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.
2.3 . 가마 온도
내부 소성로 표면 온도 T w ( R in , x , ϕ )는 Eq. 에서 필요합니다 . (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.
전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 T sh = T w ( R out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .
위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 q rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 T 가스 ( r , x ) 및 로컬 T w ( R in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 . (2) , 결과적인 q rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 q rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.
소성로와 장입물 사이의 열전달 계수 h w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값 이 K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 T w ( r , x , ϕ ) 및 T RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 h sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.
식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.
2.4 . 수갑
가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 A cl 은 속도 V cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 L gcl =2 R in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , L WCL = Θ R 에서는 , N SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 . (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl V cl A cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .
(나)
CaCO3→높은+무엇2
k = 108특급(−175728/RT)
(Ⅱ)
높은+2SiO2→C2S
k = 107특급(−240000/RT)
(Ⅲ)
높은+C2S→C3S
k = 109특급(−420000/RT)
(IV)
3높은+로2그만큼3→C3A
k = 108특급(−310000/RT)
(V)
4높은+로2그만큼3+철2그만큼3→Q4AF
k = 108특급(−330000/RT)
상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.
클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 Y fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.
상미분 방정식, , , , , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 q w–cl ( x , ϕ ).
2.5 . 최종 커플링
전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. T RAD 의 균일한 분포에서 시작 하여 기체상은 q rad ( x ) 및 q conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., , , , , 그 솔루션의 새로운 추정 결과 T RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 T RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 T RAD ( x ) 의 수렴 이력을 보여줍니다 .
2.6 . 가마 조건
사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.
표 1 . 공기 및 석탄 입자 입구 조건
축
수송
소용돌이
중고등 학년
석탄
m (kg/s)
2.253
1.759
2.910
45.930
4.0
유 (m/s)
77.1
36.5
76.1
12.73
36.5
V (m/s)
−20.7
0
63.9
0
0
W (m/s)
0
0
112.8
0
0
티 (케이)
318
383
318
1273
383
표 2 . 클링커 조성(질량 분율)
밀가루
가마 입구
가마 출구
m (kg/s)
50.374
39.815
32.775
티 (케이)
−
1100
1785
CACO 3
0.7947
0.40218
0
높은
0
0.33801
0.0229
그런가 2
0.1434
0.18143
0
알 2 O 3
0.0349
0.0442
0
철 2 O 3
0.0270
0.03416
0
C2S
0
0
0.1808
C3S
0
0
0.5981
C3A
0
0
0.0731
Q4AF
0
0
0.1242
소성 인자
0
0.6
1.0
소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.
표 3 . 재료 속성 및 기타 매개변수
ω (래드/초)
0.5
V의 CL (m / s)
0.035
T ∞ (K)
300
h sh (W/m 2 K)
30
h w–cl (W/m 2 K)
500
ε w , ε cl
0.9
ε 쉬
0.8
C의 P (클링커) (킬로 / kg K)
1.5
ϱ cl (kg/m 3 )
1200
L fus (kJ/kg)
418.4
c p (벽) (kJ/kg K)
1.5
ϱ w (kg/m 3 )
1600–3000
k는 w (W / m K)
0.6–3.0
석탄 열 방출(kJ/kg)
25475
3 . 결과 및 토론
이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.
3.1 . 화염 구조
그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.
버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.
3.2 . 가마 온도 분포
중심선에서 계산된 가스 온도, 온도 T RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를 향 합니다. 이 관찰의 중요성은 나중에 논의됩니다.
대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.
예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을 잃 습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 , x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0 < ϕ 범위에서 발생 < π /2).
그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.
마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .
이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x > 15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x > 15 m 에서 열을 흡수 하고 0 < x < 15 m 에서 일부를 가스로 되돌려 줍니다.
이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.
3.3 . 클링커 온도 및 조성
클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.
3.4 . 글로벌 에너지 균형
전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( Q rad + Q conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.
시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.
3.5 . 논의
여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.
우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학, .
실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.
더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.
이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.
4 . 결론
실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.
결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.
감사의 말
이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.
References 1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996 Google Scholar 2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993 Google Scholar 3 Basel Convention, UNEP Document No. 93-7758, 1993 Google Scholar 4 N.C Markatos Mathematical modelling of single and two-phase flow problems in the process industries Revue de l’Institut Français du Pétrole, 48 (1993), p. 631 View PDFCrossRefView Record in ScopusGoogle Scholar 5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767 Google Scholar 6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995 Google Scholar 7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503 Google Scholar 8 P.V Barr, J.K Brimacombe, A.P Watkinson A heat-transfer model for the rotary kiln: Part II, development of the cross-section model Metallurgical Transactions B, 20B (1989), p. 403 View Record in ScopusGoogle Scholar 9 V Frisch, R Jeschar Possibilities for optimizing the burning process in rotary cement kilns Zement-Kalk-Gips, 36 (1983), p. 549 View Record in ScopusGoogle Scholar 10 A.A Boateng, P.V Barr A thermal model for the rotary kiln including heat transfer within the bed Int. J. Heat Mass Transfer, 39 (1996), p. 2131 ArticleDownload PDFView Record in ScopusGoogle Scholar 11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146 Google Scholar 12 H.A Spang A dynamic model of a cement kiln Automatica, 8 (1972), p. 309 ArticleDownload PDFView Record in ScopusGoogle Scholar 13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK Google Scholar 14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor The origin of turbulence acquired by heavy particles in a round, turbulent jet Part. Part. Syst. Charact., 7 (1990), p. 203 View PDFCrossRefView Record in ScopusGoogle Scholar 15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996 Google Scholar 16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar Investigation on the kinetics of thermal decomposition of calcium carbonate Chem. Eng. Sci., 49 (1996), p. 2198 Google Scholar 17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993 Google Scholar 1 Also at Department of Mechanical Engineering, University of Patras, Greece.
2 Also at Department of Chemical Engineering, University of Patras, Greece.
수력 구조물의 수력 설계 및 모델링 경험 (Experiences in the hydraulic design and modelling of the hydraulic structures)
CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald
템스 타이드웨이 터널은 주로 템스 강 아래 런던 중심부를 통과하는 새로운 저장 및 이송 터널입니다. 최대 지름 7.2m의 길이약 25km에 달하는 주요 터널은 서쪽액톤에서 동쪽의 수도원 밀스까지 운행됩니다. 이 프로젝트의 목적은 템스 강에 도달하기 전에 결합된 하수 흐름을 가로채고 저장하여 가장 오염이 많은 복합 하수 오버플로(CSOS)의 34개 를 제어하는 것입니다. 템스 타이드웨이 터널은 베크턴 하수 처리 작업에서 치료를 위해 흐름을 수송할 수도원 밀스의 리 터널에 연결됩니다. CSO 현장에서는 소용돌이 낙하 샤프트와 같은 가로채기 및 전환 구조물이 근처 표면 하수 네트워크에서 깊은 저장 터널로 결합된 하수 흐름을 수송합니다.
East main works
터널을 납품하는 회사인 Tideway는 프로젝트를 세 부분으로 분리했습니다. 동쪽 구간은 프로젝트의 가장 깊은 부분이며, 65m 깊이에 도달합니다. 버몬드시의 챔버 부두는 애비 밀스 (Abbey Mills)에 이르는이 5.5km 터널 섹션의 주요 드라이브 사이트입니다. 동부 개발에는 그리니치 펌핑 스테이션에서 챔버 스워프의 주요 터널까지 약 4.5km의 5m 내부 직경 연결 터널이 포함되어 있습니다.
4개의 드롭 샤프트가 현재 설계 및 제작 중입니다. 이들은 24-36m 3/s 범위의 설계 흐름을 가지며 차단 및 전환 구조, 터널 격리 게이트 및 플랩 밸브가 있는 밸브 챔버, 와류 발생기 입구 구조, 와류 드롭 튜브 및 에너지 소산 및 탈기 챔버를 포함한 유압 구조로 구성됩니다.
The challenge/ hydraulic modelling
이러한 새로운 구조의 설계는 수많은 엔지니어링 문제에 직면해 있습니다. 최대 36m3/s의 대규모 설계 유량은 기존 네트워크에 부정적인 영향을 미치거나 기존 CSO를 통해 유출되지 않고 완전히 캡처되어 터널로 안전하게 전달되어야 합니다.
또한 복잡한 흐름 패턴이 발생하는 수축된 설계와 시스템의 올바른 작동을 위해 필요하고 불리한 유체 역학 조건으로부터 보호해야 하는 기계 플랜트의 필요성을 초래하는 공간 제약이 있습니다. 또한, 소용돌이 낙하 샤프트 내부에 최대 50m까지 떨어지는 흐름에 의해 생성되는 많은 양의 에너지는 터널로 전달하기 전에 안전하게 소멸되고 유동을 제거해야합니다.
이러한 과제를 해결하기 위해 프로젝트 팀은 물리적 스케일 모델링과 함께 CFD(계산 유체 역학) 모델링을 광범위하게 사용했습니다.
CFD 모델링: arl Pumping Station 소용돌이 드롭 샤프트 및 저장 터널 의 보기 – Courtesy of Mott MacDonald
전산 유체 역학 모델링
CFD는 초기 설계 단계에서 사용되는 주요 유압 모델링 도구로, 모든 유압 구조를 모델링하고, 설계 수정을 통합하고, 결과를 신속하게 시각화 및 분석하고, 성능을 마무리할 수 있는 기능을 제공했습니다.
제안된 설계의 3D 건물 정보 모델링(BIM) 형상을 CFD 소프트웨어로 전송하여 CFD 유체 도메인에 대한 형상을 생성하는 데 필요한 시간을 줄였습니다.
FlowScience Inc에서 개발한 Flow 3D가 주요 모델링 플랫폼으로 활용되었습니다. 이 소프트웨어는 공기-물 인터페이스를 추적하기 위해 유체 체적 방법을 적용하여 자유 표면 흐름을 정확하게 모델링하는 기능이 있습니다.
입방 격자를 사용한 3D 구조형 메쉬를 사용하였고, 레이놀즈평균 Navier-Stokes 접근법을 표준 k-omega 난기류 모델로 사용하여 난류를 해석하였습니다.
View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald
메쉬 해상도에 대한 민감도 분석이 수행되었고 계산 메쉬의 적합성에 대한 추론을 허용하기 위해 이전 개념 단계 구조의 물리적 스케일 모델링에서 사용 가능한 결과와 비교되었습니다. 와류 발생기 및 드롭 튜브의 목과 같이 급격한 기울기가 발생하는 영역의 메쉬에 특별한 주의를 기울였습니다.
전체 메쉬 해상도와 계산 효율성 간의 균형은 설계 목적을 위해 충분히 정확하지만 설계 프로그램 목표를 충족하는 시간 척도 내에서 결정적으로 중요한 솔루션을 생성하는 데 필요했습니다.
CFD 모델이 수렴되면 결과가 시각화되었습니다. 주요 산출물에는 구조 전체에 걸친 상세한 수위, 크기와 벡터, 흐름 유선이 있는 속도 플롯이 포함되었습니다. CFD 모델에 의해 생성된 데이터는 유동장의 거동을 이해하는 데 매우 유용했으며 이러한 결과를 분석하여 설계가 어떻게 수행되고 있는지에 대한 결론을 내릴 수 있었습니다.
View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber – Courtesy of Mott MacDonald
물리적 스케일 유압 모델링
물리적 규모의 수력학적 모델링은 작동 조건의 전체 범위에 걸쳐 설계의 수력학적 성능을 종합적으로 평가하고 설계 개선 사항을 알리고 테스트하는 데 사용되었습니다.
프로그램의 효율성을 위해 수력구조물의 설계가 잘 진행된 단계에서 물리적인 규모의 모델링을 수행하였다. CFD 모델링은 이미 수행되어 설계의 전체 성능에 대한 확신을 제공했습니다. 주요 구조 부재도 MEICA 공장을 위해 크기가 조정되었고 설계 공간이 확보되었습니다.
설계 개발의 이 단계에서 물리적 모델링을 수행하는 것은 시간이 많이 소요되는 물리적 모델에 필요한 주요 변경의 위험을 줄이는 것을 목표로 했습니다. 또한 모델 테스트가 수력 구조의 최종 의도 설계를 가능한 한 가깝게 반영하도록 했습니다.
물리적 모델링을 위해 두 개의 사이트가 선택되었으며, 주로 공간 제약으로 인해 유압 구조의 설계가 더 복잡했습니다. 이러한 사이트는 다음과 같은 사이트였습니다.
그리니치 펌핑 스테이션은 1:10 규모의 전체 작업 현장 모델이 건설되었습니다.
CSO 차단 구조의 모델이 수행된 King Edward Memorial Park 및 Foreshore는 1:10 축척으로, 드롭 샤프트 에너지 소산 및 탈기 챔버의 별도 모델은 1:12 축척으로 구축되었습니다.
모델은 실험실 시설에서 전문 하청 업체 BHR 그룹에 의해 구축 및 테스트되었습니다. 모델은 최신 디자인 BIM 모델에서 생성된 모델 도면을 사용하여 주로 퍼스펙스와 합판으로 구축되었다. 모델 시공승인을 받기 전에 도면은 실험실에서 유압 구조물의 정확한 복제본을 보장하기 위해 BIM 모델에 대한 엄격한 치수 검사를 받았습니다.
Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation – Courtesy of Mott MacDonald & BHR Group
중력의 힘이 이러한 구조에서 개방 채널 유체 흐름을 지배하기 때문에 유사성을 보장하기 위해 프로토타입(전체 규모 설계) 및 축소된 축소 모델에서 Froude 수를 동일하게 유지하는 것이 중요합니다. 따라서 Froude 수의 동일성을 유지하기 위해 모델을 유속으로 작동했습니다. 규모는 또한 모든 흐름 조건에서 흐름이 완전히 난류임을 보장할 수 있을 만큼 충분히 커야 했으며 이는 모델의 다른 부분에서 흐름의 레이놀즈 수를 추정하여 확인했습니다.
축소된 물리적 모델에서는 모든 스케일 효과를 제거할 수 없습니다. 표면 장력은 비례하지 않기 때문에 프로토타입과 모델의 Weber 수(초기 힘과 표면 장력 사이의 비율을 나타냄)가 다르고 둘 사이의 액체 상태에 포함된 공기의 양도 다릅니다. 이것은 방법의 한계로 인식되고 이해되며 공기 동반 결과에 스케일링 계수를 적용하여 해결되었습니다.
이 모델은 작동 사례를 설정하는 미리 정의된 테스트 매트릭스에 따라 테스트를 거쳤습니다. 여기에는 다양한 흐름 사례와 저장 터널 꼬리 수위가 포함됩니다. 유량은 보정된 기기로 엄격하게 제어되었으며, 필요한 경우 모델로의 유량은 관심 영역의 유량이 유입구 조건에 의해 인위적으로 영향을 받지 않도록 조절되었습니다.
흐름의 동작을 관찰하고 기록했습니다.
수위는 압력 태핑을 통해 또는 모델 측벽의 수직 눈금을 통해 시각적으로 기록되었습니다.
플로우 패턴은 염료 추적기의 도움을 받아 시각적으로 기록되었습니다.
특히 관심의 한 측면은 소용돌이 흐름이었다. 소용돌이 발생기및 소용돌이 낙하튜브를 통한 흐름에 대한 상세한 관찰은 흐름이 안정적이고, 맥동과 도미 효과가 없는지, 그리고 흐름 범위 전반특히 관심의 한 측면은 소용돌이 흐름이었습니다. 와류 발생기 및 와류 드롭 튜브를 통한 흐름에 대한 자세한 관찰은 흐름이 안정적이고 맥동 과도 효과가 없으며 와류 흐름이 드롭 튜브에서 잘 형성되어 흐름 범위 전체에 걸쳐 안정적인 공기 코어를 유지하면서 관찰되었습니다.
(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft – Courtesy of Mott MacDonald and BHR Group
와류 발생기에서 임계유량이 발생하기 때문에 확실한 수두-방전 관계가 설정되어 수위를 판독하여 유량을 측정할 수 있는 기회를 제공합니다. 와류 발생기에 대한 접근 암거에 위치한 압력 탭핑은 유속 범위에 걸쳐 수심 값을 기록하여 각 방울 구조에 대해 수두 방출 곡선을 도출할 수 있도록 했습니다. 프로토타입에서 이 지점에서 수집된 레벨 신호는 흐름을 계산하고 격리 게이트를 제어하는 데 사용됩니다.
흐름이 와류 드롭 튜브 아래로 수 미터 떨어지고 드롭 샤프트의 바닥에 있는 물 풀로 충돌할 때 공기가 물 속으로 동반됩니다. 터널 시스템에서 발생하는 압축 공기 주머니와 저장 용량 감소 문제를 피하기 위해 드롭 샤프트에서 저장 터널로 전달되는 공기의 양을 최소화하는 것이 중요합니다. 이 목적을 달성하기 위해, 드롭 샤프트의 베이스가 흐름의 에너지 소산 및 탈기 기능을 수행하는 것이 매우 중요합니다. 이것은 충분한 체적을 제공하도록 샤프트의 크기를 조정하고 다음과 같은 흐름을 조절하기 위해 샤프트 내부 벽을 설계함으로써 달성되었습니다.
플런지 풀이 형성되었습니다.
샤프트의 흐름 경로/유지 시간은 가능한 한 오래 지속됩니다.
샤프트 의 베이스의 특정 영역은 위쪽 흐름 경로를 촉진합니다.
이러한 조치는 떨어지는 물의 에너지가 소멸되고 공기가 가능한 한 흐름에서 분리되도록 하는 것을 목표로 하고 저장 터널로 전달됩니다.
에너지 소산 및 탈기 구조의 성능을 평가하기 위해 드롭 샤프트에서 저장 터널을 통과하는 공기 흐름을 물 변위 방법으로 측정했습니다. 흐름에 혼입된 정확한 양의 공기를 보장하기 위해 모델은 와류 드롭 튜브의 전체 높이를 통합했습니다. 설계의 허용 기준에 대해 최대 기류는 최대 설계 수류의 백분율로 정의된 미리 정의된 값으로 제한되었습니다. 스케일 효과를 설명하기 위해 모델에서 허용 가능한 최대 기류량은 프로토타입에 비해 약 6배 감소했습니다.
hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel – Courtesy of Mott MacDonald and BHR Group
물리적 규모 모델링은 또한 구조물을 통한 퇴적물의 이동성을 테스트했습니다. 이는 하수 네트워크에서 발생하는 예상 입자 크기 분포와 일치하도록 조정된 모의물의 양으로 모델에 투여함으로써 달성되었습니다.
모델의 설계 개선은 주로 탈기 성능을 개선하기 위한 샤프트 내부 구조의 조정, 퇴적물 이동성을 돕기 위한 벤치 및 기타 조치의 포함으로 구성되었습니다. 이러한 개선 사항은 재테스트를 통해 확인된 다음 설계에 통합되었습니다. 물리적 모델링의 데이터는 관찰된 좋은 일치와 함께 CFD 모델링의 결과와 비교되었습니다.
최종 모델링 결과는 흐름이 기존 하수 네트워크에서 전환되는 위치 근처에서 큰 난류가 발생하는 반면 차단 챔버는 이 에너지를 부분적으로 소산할 수 있을 만큼 충분히 크기가 지정되었으며 특정 수력 설계 요소를 포함하면 문제가 있는 유압 거동이 기계 장비 근처에서 관찰되었습니다. 더 높은 유속에서 일부 공기 동반 와류는 유체의 대부분에 형성됩니다. 그러나 이러한 높은 폭풍 유속의 간헐적인 특성을 고려할 때 콘크리트 구조물의 열화를 일으킬 것으로 예상되지는 않았습니다. 결과는 또한 구조가 최대 설계 흐름을 Thames Tideway Tunnel로 전환하여 기존 보유 CSO를 통한 유출을 방지할 수 있음을 나타냅니다. 차단실과 와류 낙하축을 연결하는 선형 연결 암거는 흐름 조절에 긍정적인 영향을 미쳤고 소용돌이 낙하 튜브의 작동은 흐름 범위에 걸쳐 안정적인 것으로 관찰되었습니다.
Conclusions
Thames Tideway Tunnel의 수력 구조물 설계에는 복잡한 3D 난류 유동 거동이 포함되며 설계 단계에서 고급 수력 모델링 도구를 사용해야 합니다. CFD 모델링을 통해 제안된 설계를 테스트하고 수정할 수 있으므로 설계 흐름이 필요한 성능 매개변수 내에서 안전하게 수용됩니다.
이 프로젝트에서 CFD를 활용한 주요 이점은 비교적 짧은 시간에 수력학적 모델링을 수행할 수 있는 능력, 생성된 데이터의 유용성 및 시각화할 수 있는 능력이었습니다. 이는 설계를 알리고 확인하는 데 도움이 되었습니다. CFD 모델링은 제한된 도시 환경 내에서 설정된 이러한 수력학적 구조를 설계하는 데 유용한 도구였습니다.
Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber – Courtesy of Mott MacDonald and BHR Group
구조의 중요성으로 인해 물리적 모델링이 수행되어 결과에 대한 신뢰도를 높이고 CFD가 한계를 나타내는 수력 성능 측면을 추가로 연구했습니다. 물리적 모델은 이해 관계자에게 구조 내부에서 흐름이 어떻게 수행되고 있는지 정확히 보여주기 위해 유용한 것으로 입증되었습니다. 또한, 모델 테스트가 대부분 최종 설계를 반영한다는 점을 감안할 때 구조물의 수력 성능에 대한 기록이 유지됩니다.
Timescale
5개 샤프트 중 4개에 대한 굴착이 진행 중이거나 완료되었으며 1차 기초 슬래브와 2차 라이닝이 올해 말 전에 샤프트에 부어질 것입니다. 주 터널인 Selina의 TBM은 2020년 터널링이 시작되어 연말에 현장으로의 마지막 여정을 시작할 것입니다.
The editor and publishers thank Ricardo Telo, Senior Hydraulic Engineer, and Tejal Shah, Senior Mechanical Engineer, both with Mott MacDonald, for providing the above article for publication.
Analysis of Turbulent Flow by Location Characteristics of Side Weir inlet in Meandering Channels
Yu, Chang Hwan
유창환 ((주)유신 수자원부)
Published : 2021.06.03
Abstract
횡월류위어(side weir)는 하천의 수위가 한계수위 이상으로 상승할 경우 본류로부터 저류지나 분수로(distributary channel)로 흐름을 전환하기 위하여 사용하는 수공구조물로 강변저류지나 off-line저류지의 유입부에 흐름방향과 평행하게 설치되어 유량관리 및 전환, 홍수통제, 에너지 소산, 수위조절, 일정 유량의 취수 및 분배, 초과 홍수량의 전환 등의 목적으로 이용되는 구조물이다.
횡월류 위어의 월류 흐름은 일반위어와 같이 위어마루부 직각방향으로 흐르지 않고 본류 흐름특성에 따라 비스듬하게 유입된다. 이러한 흐름특성으로 횡월류위어 월류량은 본류의 하폭, 흐름특성, 위어길이 및 설치위치 등에 따라 각기 다르게 산정된다. 현재 국내에서 진행된 횡월류위어 흐름특성에 관련된 연구는 대부분 직선수로에 집중되어 있으며 사행하천의 흐름특성에 따른 연구는 부족한 실정이다.
금회 연구에서는 3차원 상용프로그램인 FLOW-3D를 이용하여 사행하천구간 유입부 설치위치 특성에 따른 횡월류 위어 유입흐름 특성을 분석하였다.
사행하천 구간 횡월류위어 설치위치에 따른 3차원 흐름해석을 위해 AUTO CAD 프로그램을 이용하여 수로길이 30m, 수로폭 2m의 구형 사행수로를 구성하였고, 횡월류위어 유입부 위치를 20°~120°로 변화시키며 수치모형실험을 수행하였다.
해석결과 수로흐름은 유입부 설치각이 작을수록 상·하류 수위차가 작아지며 유속이 감소하며 설치위치각이 클수록 수로내 평균유속은 증가하는 것으로 확인되었다. 유입부 설치각이 작을수록 방류량이 증가하여 수로내 흐름분리현상 증가하였고 이로인한 지체현상이 발생하는 것으로 확인되었다.
본 연구로 사행하천구간에 횡월류위어가 설치된 경우, 월류량과 수리학적 흐름특성을 해석할 때 3차원 수치모형실험이 유용한 해석도구로 이용될 수 있음이 확인되었다. 이후 수치모형실험이 수공구조물 설계 및 해석 시 참고자료로 이용가능할 것으로 사료된다.
Investigation of the Turbulent Schmidt Number Effects On Numerical Modelling Of Vortex-Type Stormwater Retention Ponds
S. M. Yamini1; H. Shamloo2; S. H. Ghafari3 1M.Eng., Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran. smyamini@alumni.kntu.ac.ir 2Associate Professor, Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran. hshamloo@kntu.ac.ir 3Ph.D., Dep. of Civil Engineering Univ. of Tehran, Enqelab St., Tehran, Iran. sarvenazghafari@ut.ac.ir
Abstract
정확하고 신뢰할 수 있는 CFD 모델링 결과를 얻는 것은 이러한 시뮬레이션에서 입력의 중요성 때문에 종종 정밀 조사의 대상입니다.
난류 모델링이 RANS(Reynolds-Averaged Navier-Stokes) 방정식을 기반으로 하는 경우 난류 스칼라 전송을 추정하려면 난류 흐름에서 질량 1에 대한 운동량 확산의 비율로 정의되는 난류 슈미트 수(Sct)의 정의가 필요합니다.
그러나 이 매개변수는 난류 흐름의 속성이므로 보편적인 값이 허용되지 않았습니다. 우수 저류지의 수치 연구에서 적절한 Sct를 설정하는 실제 역할은 수력 효율의 평가가 추적자 테스트의 출력 질량 농도를 기반으로 하기 때문에 가장 중요합니다.
본 연구에서는 FLOW-3D를 사용하여 와류형 우수 저류지의 여러 수치 시뮬레이션을 체계적으로 수행했습니다. 다양한 난류 슈미트 수의 범위는 메쉬 감도를 조사하기 위해 다른 수의 계산 셀에 의해 수행된 수치 시뮬레이션에 도입되었습니다.
또한 사용자 정의 또는 자동 계산 값으로 최대 난류 혼합 길이의 영향을 평가했습니다. 이 연구의 결과는 실험 결과와 밀접한 일치를 제공하는 Sct= 0.625와 함께 수리학적 직경의 7%와 동일한 최대 난류 혼합 길이의 일정한 값을 갖는 확립된 수치 모델입니다.
특히 수치적 무차원 RDT 곡선의 피크 값은 극적으로 감소하여 실험 결과와 거의 일치했습니다. 이것은 FLOW-3D가 난류 유동의 와류형 물리학에서 질량 확산도를 적절하게 예측하는 상당한 능력을 가지고 있다는 결론을 내립니다.
– Achieving accurate and reliable CFD modelling results often is the subject of scrutiny because of the importance of the inputs in those simulations. If turbulence modelling is based on Reynolds-Averaged Navier-Stokes (RANS) equations, estimating the turbulent scalar transport requires the definition of the turbulent Schmidt number (Sct), defined as the ratio of momentum diffusivity to mass one in a turbulent flow. However, no universal value has been accepted for this parameter as it is a property of turbulent flows.
The practical role of establishing a suitable Sct in numerical studies of stormwater retention ponds is of the utmost importance because the assessment of the hydraulic efficiency of them is based on output mass concentration of tracer tests. In this study, several numerical simulations of a vortex-type stormwater retention pond were systematically carried out using FLOW-3D. A range of various turbulent Schmidt numbers were introduced in numerical simulations performed by different number of computational cells to investigate mesh sensitivity.
Moreover, the effects of maximum turbulent mixing length as a user-defined or automatically computed value were assessed. The outcome of this study is an established numerical model with a constant value of maximum turbulent mixing length equal to 7% of the hydraulic diameter along with Sct= 0.625 which provides a close agreement with experimental results.
Noticeably, the peak values of numerical dimensionless RDT curves are dramatically decreased, resulted in a close match with experimental results. This concludes that FLOW-3D has a considerable ability to appropriately predict mass diffusivity in vortex-type physics of turbulent flows.
Figure 1- The experimental model [17]Figure 2- Schematic of boundary conditions in the numerical modelFigure 3- Positioning of mesh blocks
References
[1] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser, “On the Values for the Turbulent Schmidt Number in Environmental Flows,” Fluids, vol. 2, p. 17, 2017. [2] Å. Adamsson, L. Bergdahl, and S. Lyngfelt, “Measurement and three-dimensional simulation of flow in a rectangular detention tank,” Urban Water Journal, vol. 2, no. 4, pp. 277-287, 2005/12/01 2005, doi: 10.1080/15730620500386545. [3] C. Gualtieri, “Numerical simulation of flow and tracer transport in a disinfection contact tank,” 2006. [4] S. Khan, B. Melville, and A. Shamseldin, Modeling the Layouts of Stormwater Retention Ponds using Residence Time. 2009, pp. 77-83. [5] F. Martínez-Solano, P. L. I. Rey, C. Gualtieri, and P. López-Jiménez, “Modelling flow and concentration field in rectangular water tanks,” 2010. [6] W. B. Rauen, A. Angeloudis, and R. A. Falconer, “Appraisal of chlorine contact tank modelling practices,” Water Research, vol. 46, no. 18, pp. 5834-5847, 2012/11/15/ 2012, doi: https://doi.org/10.1016/j.watres.2012.08.013.
[7] J. Zhang, A. Tejada-Martínez, and Q. Zhang, “Evaluation of LES and RANS for Determining Hydraulic Performance of Disinfection Systems for Water Treatment,” Journal of Fluids Engineering, vol. 136, 05/15 2014, doi: 10.1115/1.4027652. [8] J. Zhang, A. E. Tejada-Martínez, and Q. Zhang, “Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review,” Environmental Modelling & Software, vol. 58, pp. 71- 85, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.envsoft.2014.04.003. [9] C. Gualtieri and F. Salzano, “DIscussion on “The effect of baffle spacing on hydrodynamics and solute transport in serpentine contact tanks”,” Journal of Hydraulic Research, vol. 52, pp. 152-154, 02/28 2014, doi: 10.1080/00221686.2013.877528. [10] A. Angeloudis, T. Stoesser, R. A. Falconer, and D. Kim, “Flow, transport and disinfection performance in small- and full-scale contact tanks,” Journal of Hydro-environment Research, vol. 9, no. 1, pp. 15-27, 2015/03/01/ 2015, doi: https://doi.org/10.1016/j.jher.2014.07.001. [11] A. Angeloudis, T. Stoesser, C. Gualtieri, and R. A. Falconer, “Contact Tank Design Impact on Process Performance,” Environmental Modeling & Assessment, vol. 21, no. 5, pp. 563-576, 2016/10/01 2016, doi: 10.1007/s10666-016-9502- x. [12] D. Valero and D. B. Bung, “Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow,” Environmental Modelling & Software, vol. 82, pp. 218-228, 2016/08/01/ 2016, doi: https://doi.org/10.1016/j.envsoft.2016.04.030. [13] F. Sonnenwald, I. Guymer, and V. Stovin, “Computational fluid dynamics modelling of residence times in vegetated stormwater ponds,” Proceedings of the Institution of Civil Engineers – Water Management, vol. 171, pp. 1-11, 11/07 2017, doi: 10.1680/jwama.16.00117. [14] F. Sonnenwald, I. Guymer, and V. Stovin, “A CFD-Based Mixing Model for Vegetated Flows,” Water Resources Research, vol. 55, no. 3, pp. 2322-2347, 2019, doi: https://doi.org/10.1029/2018WR023628. [15] S. B. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000. [16] R. Rossi and G. Iaccarino, “Numerical simulation of scalar dispersion downstream of a square obstacle using gradienttransport type models,” Atmospheric Environment, vol. 43, no. 16, pp. 2518-2531, 2009/05/01/ 2009, doi: https://doi.org/10.1016/j.atmosenv.2009.02.044. [17] R. Chowdhury, M. Ahadi, K. A. Mazurek, G. Putz, D. Bergstrom, and C. Albers, “Physical Scale and Computational Modeling in the Development of a Vortex-Type Stormwater Retention Pond,” in World Environmental and Water Resources Congress 2016, 2016, pp. 388-397. [18] V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” Journal of Scientific Computing, vol. 7, no. 1, pp. 35-61, 1992/03/01 1992, doi: 10.1007/BF01060210. [19] Flow Science, Inc., FLOW-3D User manual. Santa Fe, NM, USA. (2015). [20] M. M. Bishop, J. M. Morgan, B. Cornwell, and D. K. Jamison, “Improving the Disinfection Detention Time of a Water Plant Clearwell,” Journal AWWA, vol. 85, no. 3, pp. 68-75, 1993, doi: https://doi.org/10.1002/j.1551- 8833.1993.tb05958.x. [21] F. L. Hart, “Improved Hydraulic Performance of Chlorine Contact Chambers.,” Jounal of Water Pollution Control Federation, vol. 51(12), pp. 2868–2875, 1979.
대용량 배출구가 있는 수중 여수로는 일반적으로 홍수 처리 및 침전물 세척의 이중 기능을 수행하기 위해 댐 정상 아래에 제공됩니다. 이 방수로를 통과하는 홍수 물은 난류 거동을 나타냅니다.
게다가 이러한 난류의 수력학적 분석은 어려운 작업입니다.
따라서 본 연구는 파키스탄 Mangla Dam에 건설된 수중 여수로의 수리학적 거동을 수치해석을 통해 조사하는 것을 목적으로 한다. 또한 다양한 작동 조건에서 화기의 유압 성능을 평가했습니다.
Mangla Spillway의 흐름을 수치적으로 모델링하는 데 전산 유체 역학 코드 FLOW 3D가 사용되었습니다. 레이놀즈 평균 Navier-Stokes 방정식은 난류 흐름을 수치적으로 모델링하기 위해 FLOW 3D에서 사용됩니다.
연구 결과에 따르면 개발된 모델은 최대 6%의 허용 오차로 흐름 매개변수를 계산하므로 수중 여수로 흐름을 시뮬레이션할 수 있습니다.
또한, 여수로 슈트 베드 주변 모델에 의해 계산된 공기 농도는 폭기 장치에 램프를 설치한 후 6% 이상으로 상승한 3%로 개발된 모델도 침수형 폭기 장치의 성능을 평가할 수 있음을 보여주었습니다.
Submerged spillways with large capacity outlets are generally provided below the dam crest to perform the dual functions of flood disposal and sediment flushing. Flood water passing through these spillways exhibits turbulent behavior. Moreover; hydraulic analysis of such turbulent flows is a challenging task. Therefore, the present study aims to use numerical simulations to examine the hydraulic behavior of submerged spillways constructed at Mangla Dam, Pakistan. Besides, the hydraulic performance of aerator was also evaluated at different operating conditions. Computational fluid dynamics code FLOW 3D was used to numerically model the flows of Mangla Spillway. Reynolds-averaged Navier–Stokes equations are used in FLOW 3D to numerically model the turbulent flows. The study results indicated that the developed model can simulate the submerged spillway flows as it computed the flow parameters with an acceptable error of up to 6%. Moreover, air concentration computed by model near spillway chute bed was 3% which raised to more than 6% after the installation of ramp on aerator which showed that developed model is also capable of evaluating the performance of submerged spillway aerator.
Sarwar MK, Bhatti MT, Khan NM (2016) Evaluation of air vents and ramp angles on the performance of orifice spillway aerators. J Eng Appl Sci 35(1):85–93Google Scholar
Shao Z, Jahangir Z, MuhammadYasir Q, Atta-ur-Rahman, Mahmood S (2020) Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 12(11):3249. https://doi.org/10.3390/w12113249ArticleGoogle Scholar
Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301ArticleGoogle Scholar
이 작업의 목적은 FLOW-3D 를 검증하는 것입니다. 밀폐된 좁은 스팬 직사각형 탱크의 출렁거림 문제에 대비하여 탱크의 내부 파동 공명 주기에 가깝거나 같은 주기로 롤 운동을 하여 측면 및 지붕 파동 충격 이벤트가 발생합니다.
탱크는 물이나 해바라기 기름으로 두 가지 다른 수준으로 채워졌고 위의 공간은 공기로 채워졌습니다. 압력 센서는 여러 장소의 벽에 설치되었으며 처음 4개의 출렁이는 기간 동안 기록된 롤 각도와 시간 이력이 있습니다. 오일을 사용하는 경우의 흐름은 레이놀즈 수가 1748인 층류인 반면, 물로 채워진 경우의 흐름은 레이놀즈 수가 97546인 난류입니다.
CFD 시뮬레이션은 탱크의 고조파 롤 운동을 복제하기 위해 본체력 방법을 사용했으며, 난류 및 공기 압축성을 설명하기 위해 다른 모델링 가정과 함께 그리드 의존성 테스트를 수행했습니다.
The objective of this work is to validate FLOW-3D against a sloshing problem in a sealed narrow span rectangular tank, subjected to roll motion at periods close to or equal to the tank’s internal wave resonance period, such that side and roof wave impact events occur. The tank was filled to two different levels with water or sunflower oil, with the space above filled by air. Pressure sensors were installed in the walls at several places and their time histories, along with the roll angle, recorded for the first four sloshing periods. For the cases using oil, the flow is laminar with a Reynolds number of 1748, while for the cases filled with water the flow is turbulent with a Reynolds number of 97546. The CFD simulations used the body force method to replicate the harmonic roll motion of the tank, while grid dependence tests were performed along with different modelling assumptions to account for turbulence and air compressibility.
Experimental Problem Setup
원래 실험은 Souto-Iglesias 및 Botia-Vera[1]에 의해 수행되었으며 모든 실험 데이터 파일은 문제 설명, 비디오 및 불확실성 분석과 함께 사용할 수 있습니다. 그림 1에 표시된 형상은 길이 900mm, 높이 508mm, 스팬 62mm의 직사각형 탱크로 구성되어 있으며 물이나 해바라기 기름으로 93mm 또는 355.3mm로 채워져 있으므로 4가지 경우가 고려됩니다. 탱크 벽과 같은 높이로 설치된 압력 센서의 위치도 표시됩니다. 탱크 회전 중심은 수평에 대한 회전 각도와 함께 그림 1에 나와 있습니다. 각 실험 실행은 반복성을 평가할 수 있도록 100번 수행되었습니다.
The original experiment was performed by Souto-Iglesias and Botia-Vera [1] and all experimental data files are available along with problem description, videos and an uncertainty analysis. The geometry shown in Fig. 1 consists of a rectangular tank of 900mm length, 508mm height and 62mm span, filled to either 93mm or 355.3 mm with either water or sunflower oil, hence four cases are considered. The locations of the pressure sensors that were installed flush with the tank walls are also shown. The tank rotation center is shown in Fig. 1, along with the rotation angle relative to the horizontal. Each of the experimental runs was performed 100 times to enable their repeatability to be assessed.
Figure 1. Tank dimensions and locations of pressure sensors
Numerical Simulation
문제는 FLOW-3D 내에서 비관성 기준 좌표계 모델을 사용하여 비교적 간단하게 설정할 수 있으며 , 이는 로컬 기준 좌표계의 가속도에 따라 유체에 체력 을 적용합니다. Z축 회전 속도는 탱크의 롤 운동을 시뮬레이션하기 위한 주기 함수로 정의되었으며 음의 수직 방향으로 작용하는 일정한 중력이 가해졌습니다.
메쉬 미세화, 운동량 이류에 대한 수치 근사 순서, 층류 대 난류 모델 및 탱크 내 공기에 대한 세 가지 다른 처리(즉, 일정 압력, 압축성 기체 및 비압축성 기체)와 같은 것을 조사하기 위해 여러 시뮬레이션을 수행했습니다.
93mm 깊이로 채워진 모든 케이스에 대해 압력은 압력 센서 P1에서만 실험 값과 비교되었으며, 355.3mm 깊이로 채워진 모든 케이스에서는 P3 센서의 데이터만 비교되었습니다.
The problem was relatively simple to set up using the non-inertial reference frame model within FLOW-3D, which applies a body force to the fluid depending on the acceleration of the local reference frame. The Z axis rotational velocity was defined as a periodic function to simulate a roll motion of the tank, and a constant gravity force acting in the negative vertical direction was applied.
Multiple simulations were performed to investigate such things as mesh refinement, the numerical approximation order for momentum advection, laminar versus turbulent models and three different treatments for the air in the tank (i.e., constant pressure, compressible gas and incompressible gas).
For all 93mm depth-filled cases, the pressure was compared to the experimental values at pressure sensor P1 only, while for all 355.3mm depth-filled cases, only data at the P3 sensor was compared.
Results
P1에서 측정된 측면 워터 슬로싱에 대한 메쉬 해상도의 영향은 그림 2에서 볼 수 있습니다. 피크 값 예측 측면에서 특별한 편향을 보이지 않습니다. 모든 측면 사례에서 초기 피크 직후의 압력은 시뮬레이션에서 일관되게 과대 평가되었습니다. 모든 메쉬는 피크의 타이밍 측면에서 우수한 일치를 보입니다. 100회 실행에서 보고된 실험 시간 기록은 평균 값에 가장 가까운 최고 압력을 가진 기록입니다.
The effect of mesh resolution on lateral water sloshing measured at P1 is seen in Fig. 2. It shows no particular bias in terms of the prediction of peak values. In all the Lateral cases, the pressures immediately after the initial peaks are consistently over estimated in the simulations. All meshes have excellent agreement in terms of the timing of the peaks. The experimental time histories reported from the 100 runs made are those with peak pressures closest to the average values.
Figure 2. Tank dimensions and locations of pressure sensors
실험 결과의 반복성은 Souto-Iglesias & Elkin Botia-Vera[1]에 의해 각 테스트를 100번 실행하고 처음 4개의 피크 압력의 평균 및 표준 편차를 측정하여 평가했습니다. CFD 실행이 다른 실험 실행으로 간주되는 경우 오류 막대 내에 있을 확률이 95%입니다. 그러나 CFD 결과의 16개 피크 압력 중 9개만 실험 결과의 2 표준 편차 내에 있으므로 CFD 모델이 실험을 대표하지 않거나 피크 압력이 정규 분포를 따르지 않는다는 결론을 내려야 합니다.
어쨌든 표준 편차는 피크 자체에 비해 상당히 크며, 수성 케이스와 측면 오일의 비율이 가장 작은 피크 값에 대한 표준 편차의 비율이 가장 큰 것으로 나타났습니다. 이러한 결과는 그림 1과 2에서 볼 수 있는 벽 충격 역학의 복잡성을 고려할 때 그리 놀라운 일이 아닙니다. 3,4.
The repeatability of the experimental results was assessed by Souto-Iglesias & Elkin Botia-Vera [1] running each test 100 times and measuring the average and standard deviation of the first four peak pressures. If a CFD run is considered to be another experimental run there is a 95% chance it will lie within the error bars. However, only nine of the 16 peak pressures from the CFD results fall within two standard deviations of the experimental results, so we must conclude that either the CFD model is not representative of the experiment or that the peak pressures are not normally distributed.
In any event, the standard deviations are quite large compared to the peaks themselves, with the largest ratio of standard deviation to peak values occurring for the water-based cases and the lateral oil having the smallest ratio. These results are perhaps not too surprising when one considers the complexity of the wall impact dynamics as seen in Figs. 3,4.
Figure 3. 4th Lateral Wave Impact in Water
Figure 4. 4th Wave Impact of Water on Roof
Conclusions
좁은 탱크 슬로싱 문제의 네 가지 구성은 자유 표면 흐름을 위해 설계된 상용 CFD 코드를 사용하여 수치적으로 시뮬레이션되었습니다. 대략 2 X 10 3 및 1 X 10 5 의 Reynolds 수에 해당하는 두 가지 다른 유체 와 두 가지 유체 깊이가 네 가지 경우를 정의하는 데 사용되었습니다. 4가지 경우 모두에 대해 메쉬 셀 크기 독립성 테스트를 수행했지만 메쉬 해상도가 증가함에 따라 실험 결과에 대해 약한 수렴만 발견되었습니다. 조사는 또한 두 가지 다른 운동량 이류 수치 차분 계획을 테스트했으며 두 번째 방법을 사용하여 더 가까운 일치를 발견했습니다 1차 체계를 사용하는 것보다 차수 단조성 보존 체계. 기본 층류 흐름을 포함한 세 가지 난류 모델이 테스트되었지만 더 낮은 계산 비용으로 인해 층류 이외의 모델에 대한 선호도가 발견되지 않았습니다. 실험 데이터와 공기 감소 일치의 압축성을 포함하여 그 이유는 불분명합니다.
실험 압력 프로브 시간 이력 데이터 세트에는 100회 반복 테스트에서 파생된 각 압력 피크에 대해 100개의 값이 포함되어 있으므로 CFD 시뮬레이션과의 일치의 통계적 유의성을 조사할 수 있었습니다. 수치 시뮬레이션과 실험 모두 출렁이는 파동 충격에 해당하는 매우 가파른 압력 펄스를 발생시켰고 실험 결과는 피크 값에서 높은 정도의 자연적 변동성을 갖는 것으로 나타났습니다. CFD 시뮬레이션의 감도 테스트(예: 약간 다른 초기 시작 조건 사용)는 공식적으로 수행되지 않았지만 수치 솔루션은 또한 다른 메쉬, 차분 체계 및 난류 모델,
모든 경우에 압력 피크가 발생하는 수치해의 타이밍은 매우 정확함을 알 수 있었다. 그러나 가장 난이도가 낮은 Lateral Oil의 경우에도 압력 피크와 바로 뒤따르는 압력 값이 과대 평가되어 수치 모델링의 단점이 나타났습니다. 실험적 피크 압력 변동성을 고려할 때 CFD 생성 값은 CFD 솔루션이 통계적 유의성을 나타내기 위해 필요한 15개 이상이 아니라 16개 피크 중 9개에서 2개의 표준편차 한계 내에 떨어졌습니다. 실험을 대표했다. 이것은 피크가 정규 분포를 따르지 않거나 CFD 모델이 피크를 예측하는 데 어떤 식으로든 결함이 있음을 나타냅니다.
Four configurations of a narrow tank sloshing problem were numerically simulated using a commercial CFD code designed for free surface flow. Two different fluids corresponding to Reynolds numbers of approximately 2 X 103 and 1 X 105 and two fluid depths were used to define the four cases. Mesh cell size independence tests were conducted for all four cases, but only a weak convergence towards the experimental results with increasing mesh resolution was found. The investigation also tested two different momentum advection numerical differencing schemes and found closer agreement using the 2nd order monotonicity preserving scheme than by using a first order scheme. Three turbulence models, including the default laminar flow, were tested but no preference was found for any model other than the laminar by virtue of its lower computational cost. Including the compressibility of the air-reduced agreement with the experimental data, the reasons for this are unclear.
The experimental pressure probe time history data sets included 100 values for each of the pressure peaks derived from 100 repeat tests, and thus we were able to examine the statistical significance of the agreement with the CFD simulations. Both the numerical simulations and the experiments gave rise to very steep pressure pulses corresponding to the sloshing wave impacts, and the experimental results were found to have a high degree of natural variability in the peak values. Although sensitivity tests of the CFD simulations (using, for example, slightly different initial starting conditions) were not formally conducted, the numerical solutions also showed a high degree of variability in the pressure peak magnitudes resulting from the use of different meshes, differencing schemes and turbulence models, which could be considered to show that the numerical solution also had a high degree of natural variability.
In all cases, the numerical solutions’ timing of the occurrence of the pressure peaks were found to be very accurate. However, even for the least challenging Lateral Oil case, the pressure peaks and the immediately following pressure values were overestimated, which indicated a shortcoming in the numerical modelling. When the experimental peak pressure variability was taken into account, the CFD-generated values fell inside the two Standard Deviation margin in nine of the 16 peaks rather than the 15 or more that would be required to show statistical significance in the sense that the CFD solution was representative of the experiment. This indicates that either the peaks are not normally distributed and/or the CFD model is in some way deficient at predicting them. Further work is required to establish how the peak pressures are distributed and/or to establish the physical reasons why the CFD model is overestimating the pressure peaks for even the least challenging Lateral Oil configuration.
References
Spheric Benchmark Test Case, Sloshing Wave Impact Problem, Antonio Souto-Iglesias & Elkin Botia-Vera, https://wiki.manchester.ac.uk/spheric/index.php/Test10
Peregrine DH (1993). Water-wave impact on walls. Annual Review of Fluid Mechanics. Vol 35, pp 23-43.
Editor’s Note
The complete document from which this note was extracted and the related data and input files are available on our Users Site. Readers are encouraged to read the original validation to get a full appreciation of the detail in this work investigating comparisons between simulation and experimental data. This study is especially noteworthy since it deals with highly non-linear sloshing of fluids interacting with the boundaries of a confining tank.
With regard to the author’s conclusions, it should be mentioned that the over prediction of fluid impact pressures in simulations could be the result of not allowing for sufficient compressibility effects in the liquids. For instance, in Fig. 3, it appears that there has been some air entrained in the liquid near the side wall. Also, negative pressures (i.e., below atmospheric) recorded experimentally might result from liquid drops remaining on the pressure sensors after the main body of liquid has drained away. Such details, which may be hard to quantify, only emphasize the difficulties involved in undertaking detailed validation studies. The author is commended for his excellent work.
많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.
이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.
얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.
여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.
모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.
Study of inception point, void fraction and pressure over pooled stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.
Design/methodology/approach
압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.
Findings
마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h
step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):
d’ is the water depth above the crest; y’ is the distance normal to the crest invertFigure 2- meshing domain and distribution of blocksFigure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
mesh convergence analysis; pooled stepped spillway (slope: 26.6 0
)Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
Flat stepped spillway (slope: 0
26 6. )Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled
and flat stepped spillways (slope: 0
9.8 )Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),
288941 (model 2), 323578 (model 3) and 343154 (model 4)Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with
experimental work conducted by Felder et al. (2012A); (slope 26.60
)Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with
empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical dataFigure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0Figure 10- Comparison of pressure distribution between numerical simulation and experimental work
conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0
45 )Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the
free surface profile along the crest of the spillway.
Note: x’ indicates the longitudinal distance from the starting point of the crest.Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe
longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the
distance from the intersection of the horizontal and vertical faces in the vertical directionFigure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopesTable1- Used discharges for assessments of mesh convergence analysis and hydraulic
characteristics
Conclusion
본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.
낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.
In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.
The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.
References
André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis, Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and Engineering, 39(4), 2587-2594.
Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways”. Environmental fluid mechanics, 11(3) 263-288.
Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”. International Journal of Hydraulic Engineering; 2(3): 47-52.
Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway. Journal of computational multiphase flows”, Volume 7. Number 1.
Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings of the world water congress.
Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources Congress ASCE.
Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study
Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”. Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of Hydraulic Engineering, 139(6), 630-636.
Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”, department of civil engineering, Brisbane, Australia, Phd thesis.
Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources Congress, ASCE.
Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng., 139(1), 60–64.
Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema. 69–76.
Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment dams”. J. Hydraul. Eng., 135(8), 685–689.
Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI 10.1007/s00707-015-1444-x
Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped spillway”. Civil Engineering Journal. Vol. 2, No. 5.
Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE Convention.
Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema, 137–146.
Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan University of Technology (IUT), Isfahan, Iran.
Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering 127.8:640-649.
Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI 10.1007/s12205-013-0749-3.
Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”. Computers & structures, 83(27) 2215-2224.
Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015- 5783-6.
Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY .1943-7900.0000630.
Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and velocity fields. Journal of Hydraulic Engineering, 142(7).
Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF Method”. Procedia Engineering, 28, 808-812.
Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”. Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
WU Jingxia1 , ZHANG Chunjin2,3 (1. Xi’an Water Conservancy Survey Design Institute, Xi’an 710054, Shaanxi, China; 2. Key Laboratory of Yellow River Sediment Research, M. W. R. , Yellow River Institute of Hydraulic Research, Zhengzhou 450003, Henan, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, Jiangsu, China)
수치 시뮬레이션을 통해 오지 여수로 터널의 수리적 특성 연구의 타당성을 탐색하기 위해 황하 Xiaolangdi 수질 관리 프로젝트의 2번 오지 여수로 터널을 연구 대상으로 취한 다음 오지의 수리 특성 설계 및 점검 홍수 수준 조건에서 여수로 터널은 RNG k-ε 난류 모델을 사용하여 배출 용량, 터널 크라운 잔류 공간, 단면 유속, 압전 수두, 유동 캐비테이션 수, 제트 흐름 범위 및 1 ∶ 40의 일반 수리 모델과 결합된 세굴 구덩이 깊이, 시뮬레이션 값과 실험 값 모두 비교됩니다.
연구결과 모의실험값이 실험값과 일치하여 오지 여수로터널의 수리적 특성을 수치모사를 통해 탐색할 수 있음을 확인하였다. 여수로터널 내부의 흐름은 안정적이고 터널 크라운 잔류 공간은 개방 흐름과 완전 흐름의 교대 흐름 패턴이 없는 25% 이상입니다.
체크 홍수 수위에서 시뮬레이션 값과 유량 계수의 실험 값은 모두 설계에서보다 높으므로 배출 용량은 홍수 제어 관련 설계 요구 사항을 충족할 수 있습니다. 오지 단면과 플립 단면의 유동 캐비테이션 수는 캐비테이션 손상이 발생할 가능성이 작기 때문에 캐비테이션 침식을 줄이기 위한 적절한 적절한 조치가 채택될 필요가 있습니다.
유압 모델의 고르지 않은 표면에 부압이 발생하면 표면 구조에 관련주의를 기울일 필요가 있습니다. 연구 결과는 여수로 터널의 설계 및 건설에 대한 관련 참고 및 이론적 근거를 제공할 수 있습니다.
Keywords
Xiaolangdi Water Control Project; ogee spillway tunnel; simulative calculation; hydraulic characteristics; turbulent model
Fig. 1 Layout of spillway tunnelFig. 4 Hydraulic modelingFig. 6 Sectional surface profile distributionsFig. 7 Comparison between simulated results and experimental
results for flow velocity of section-cross
参考文献(References)
[1] 谢省宗, 吴一红, 陈文学. 我国高坝泄洪消能新技术的研究和创 新[J]. 水利学报, 2016, 47(3): 324-336. XIE Shengzong, WU Yihong, CHEN Wenxue. New technology and innovation on flood discharge and energy dissipation of high dams in China [J]. Journal of Hydraulic Engineering, 2016, 47( 3): 324- 336. [2] 刘嘉夫, 齐昕. 龙抬头水电站泄洪洞水力特性研究[ J]. 水利水 电技术, 2019, 50(2): 139-143. LIU Jiafu, QI Xin. Study on hydraulic characteristics of ogee spillway tunnel of hydropower station [ J]. Water Resources and Hydropower Engineering, 2019, 50(2): 139-143. [3] 范灵, 张宏伟, 刘之平, 等. 明流泄洪洞布置形式对水力特性影 响的数值研究[J]. 水力发电学报, 2009, 28(3): 126-131. FAN Ling, ZHANG Hongwei, LIU Zhiping, et al. Numerical study on hydraulic characteristic of free surface flow in spillway tunnel with different configuration [ J ]. Journal of Hydroelectric Engineering, 2009, 28(3): 126-131. [4] 张春晋, 李永业, 孙西欢. 明流泄洪洞水力特性的二维数值模拟 与试验研究[J]. 长江科学院院报, 2016, 33(1): 54-60. ZHANG Chunjin, LI Yongye, SUN Xihuan. Two-dimensional numerical simulation and experimental research of hydraulic characteristics in spillway tunnel with free water surface [ J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1): 54-60. [5] 徐国宾, 章环境, 刘昉, 等. 龙抬头泄洪洞水力特性的数值模拟 [J]. 长江科学院院报, 2015, 32(1): 84-87. XU Guobin, ZHANG Huanjing, LIU Fang, et al. Numerical simulation on hydraulic characteristic of high head ogee spillway tunnel [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(1): 84-87. [6] 陈瑞华, 杨吉健, 马麟, 等. 小湾水电站泄洪洞洞身数值模拟 [J]. 排灌机械工程学报, 2017, 35(6): 488-494. CHEN Ruihua, YANG Jijian, MA Lin, et al. Numerical simulation of tunnel of Xiaowan Hydropower Station [ J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(6): 488-494. [7] 翟保林, 刘亚坤. 高水头明流泄洪洞三维数值模拟[ J]. 水利与 建筑工程学报, 2017, 15(3): 31-34. ZHAI Baolin, LIU Yakun. 3-D Numerical simulation of high water head spillway tunnel with free surface [ J ]. Journal of Water Resources and Architectural Engineering, 2017, 15(3): 31-34. [8] 姜 攀, 尹进步, 何武全, 等. 有压泄洪洞弯道压力特性数值模拟 与试验研究[J]. 水力发电, 2016, 42(2): 49-53. JIANG Pan, YIN Jinbu, HE Wuquan, et al. Numerical simulation and experimental research on pressure characteristic of curved section of pressure spillway tunnel [J]. Water Power, 2016, 42(2): 49-53. [9] 邓 军, 许唯临, 雷军, 等. 高水头岸边泄洪洞水力特性的数值模 拟[J]. 水利学报, 2005(10): 1209-1212. DENG Jun, XU Weilin, LEI Jun, et al. Numerical simulation of hydraulic characteristics of high head spillway tunnel [J]. Journal of Hydraulic Engineering, 2005(10): 1209-1212. [10] 史晓薇, 王长新, 李琳. 高流速泄洪隧洞水力特性的三维数值模 拟[J]. 新疆农业大学学报, 2015, 38(6): 495-501. SHI Xiaowei, WANG Changxin, LI Lin. Three dimensional numerical simulation of hydraulic characteristics of spillway tunnel with high flow velocity [ J]. Journal of Xinjiang Agricultural University, 2015, 38 (6): 495-501. [11] 叶茂, 伍平, 王波, 等. 泄洪洞掺气水流的数值模拟研究[J]. 水 力发电学报, 2014, 33(4): 105-110. YE Mao, WU Ping, WANG Bo, et al. Numerical simulation of aerated flow in hydraulic tunnel [ J ]. Journal of Hydroelectric Engineering, 2014, 33(4): 105-110. [12] 胡涛, 王均星, 杜少磊. 大流量泄洪洞掺气坎水力特性数值模拟 [J]. 武汉大学学报(工学版), 2014, 47(5): 615-620. HU Tao, WANG Junxing, DU Shaolei. Numerical simulation of hydraulic characteristics of aerators in spillway tunnel with large discharge [J]. Engineering Journal of Wuhan University, 2014, 47 (5): 615-620. [13] 孙鹏飞, 姜哲, 崔维成, 等. 基于 CFD 的全海深载人潜水器直航 阻力性能研究[J]. 中国造船, 2019, 60(2): 77-87. SUN Pengfei, JIANG Zhe, CUI Weicheng, et al. Numerical simulation of a full ocean depth manned submersible based on CFD method [J]. Shipbuilding of China, 2019, 60(2): 77-87. [14] 宛鹏翔, 范俊, 韩省思, 等. 冲击射流流动换热超大涡模拟研究 [J]. 推进技术, 2020, 41(10): 2237-2247. WAN Pengxiang, FAN Jun, HAN Xingsi, et al. Very-large eddy simulation of impinging jet flow and heat transfer [ J]. Journal of Propulsion Technology, 2020, 41(10): 2237-2247. [15] 李国杰, 黄萌, 陈斌. 基于 PISO 算法的非结构化网格 VOF 算法 [J]. 工程热物理学报, 2013, 34(3): 476-479. LI Guojie, HUANG Meng, CHEN Bing. VOF method on unstructured grid using PISO algorithm [ J]. Journal of Engineering Thermophysics, 2013, 34(3): 476-479. [16] 董玮, 何庆南, 梁武科, 等. 双蜗壳离心泵泵腔轴向宽度与流动
DONG Wei, HE Qingnan, LIANG Wuke, et al. Relationship between axial width and flow characteristics of pump chamber in double volute centrifugal pump [ J ]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1322-1329. [17] 陈恺, 张震宇, 王同光, 等. 基于 CFD 的水平轴风力机叶尖小翼 增功研究[J]. 太阳能学报, 2021, 42(1): 272-278. CHEN Kai, ZHANG Zhenyu, WANG Tongguang, et al. CFD-Based power enhancement of winglets for horizontal-axis wind turbines [ J]. Acta Energiae Solaris Sinica, 2021, 42(1): 272-278. [18] 张志君, 金柱男, 辛相锦, 等. 基于 VOF 方法的湿式离合器润滑 油路 CFD 数值模拟[J]. 东北大学学报(自然科学版), 2020, 41 (5): 716-722. ZHANG Zhijun, JIN Zhunan, XIN Xiangjin, et al. VOF method based CFD numerical simulation for wet clutch lubricating oil passage [ J]. Journal of Northeastern University (Natural Science), 2020, 41 (5): 716-722. [19] 罗永钦, 刁明军, 何大明, 等. 高坝明流泄洪洞掺气减蚀三维数 值模拟分析[J]. 水科学进展, 2012, 23(1): 110-116. LUO Yongqin, DIAO Mingjun, HE Daming, et al. Numerical simulation of aeration and cavitation in high dam spillway tunnels [ J]. Advances in Water Science, 2012, 23(1): 110-116. [20] 许文海, 党彦, 李国栋, 等. 双洞式溢洪洞三维流动的数值模拟 [J]. 水力发电学报, 2007(1): 56-60. XU Wenhai, DANG Yan, LI Guodong, et al. Three dimensional numerical simulation of the bi-tunnel spillway flow [ J]. Journal of Hydroelectric Engineering, 2007(1): 56-60. [21] 李爱华, 王腾, 刘沛清. 溪洛渡坝区岩石河床冲刷过程数值模拟 [J]. 水力发电学报, 2012, 31(5): 154-158. LI Aihua, WANG Teng, LIU Peiqing. Numerical simulation of rock bed scour behind the dam of Xiluodu hydropower station [J]. Journal of Hydroelectric Engineering, 2012, 31(5): 154-15
Effect of carrier gases on the entrainment defects within AZ91 alloy castings
Tian Liab J.M.T.Daviesa Xiangzhen Zhuc aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom
Abstract
An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.
연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.
키워드
마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성
1 . 소개
지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 5, 6] .
Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.
연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.
Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.
Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.
SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)
단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)
이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)
트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)
산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.
Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.
그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.
또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.
여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.
2 . 실험
2.1 . 용융 및 주조
3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.
표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).
알
아연
미네소타
시
철
니
마그네슘
9.4
0.61
0.15
0.02
0.005
0.0017
잔여
그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).
수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.
모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.
2.2 . 산화 세포
전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.
도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 접촉하지 않았습니다).
실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.
3 . 결과
3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성
0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.
그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.
도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.
무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.
Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 . 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .
표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).
도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 . 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .
3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성
SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).
Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰( 도 8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.
산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 . 5 및 7 .
연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.
표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).
테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.
3.3 . 산화 전지에서 산화막의 진화
섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47], [48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.
.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .
10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .
도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 . 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.
이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .
SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).
4 . 논의
4.1 . SF 6 /air 에서 형성된 연행 결함의 진화
Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.
실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7 약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6 0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8 kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .
그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15 kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10 kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.
이 반응 과정은 3단계로 나눌 수 있다.
1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지 않았을 수 있습니다( MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .
2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12 kmol의 ZnO, 1.38 × 10 -14 kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10 kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9 kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.
산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)
Al 2 O 3 + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)
Mg + MgAl 2 O 4 = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.
3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)
Mg 3 N 2 + 6H 2 O = 3Mg(OH) 2 + 2NH 3 ↑(4)
AlN+ 3H 2 O = Al(OH) 3 + NH 3 ↑
또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.
4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화
도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.
1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지 않았습니다( 2.67 x 10 -10 kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.
2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 . 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.
커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 . 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O 4 [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .
3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .
요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.
4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향
SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2 절 에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).
동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).
연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.
앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.
(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.
(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).
따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.
도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.
산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.
따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .
그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .
또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 R 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.
그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.
또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .
따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.
7 . 결론
1.
AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.
실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.
산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .
감사의 말
저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.
참조 [1] MK McNutt , SALAZAR K. 마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 레 스톤 , 버지니아 ( 2013 ) Google 학술검색 [2] 마그네슘 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 ( 1996 ) Google 학술검색 [삼] I. Ostrovsky , Y. Henn ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5 8월 19-22일 Scopus에서 레코드 보기Google 학술검색 [4] Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao 액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지 기사PDF 다운로드Scopus에서 레코드 보기 [5] JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth 적용 에너지 , 283 ( 2021 ) , 제 116269 조 기사PDF 다운로드Scopus에서 레코드 보기 [6] AM 루이스 , JC 켈리 , 조지아주 Keoleian 적용 에너지 , 126 ( 2014 ) , pp. 13 – 20 기사PDF 다운로드Scopus에서 레코드 보기 [7] J. 캠벨 주물 버터워스-하이네만 , 옥스퍼드 ( 2004 ) Google 학술검색 [8] M. Aryafar , R. Raiszadeh , A. Shalbafzadeh J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051 교차 참조Scopus에서 레코드 보기 [9] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지 교차 참조Scopus에서 레코드 보기 [10] R. 라이자데 , WD 그리피스 J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [11] L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay JOM , 71 ( 2019 ) , pp. 2235 – 2244 교차 참조Scopus에서 레코드 보기 [12] S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert 코로스. 과학. , 166 ( 2020 ) [13] GE Bozchaloei , N. Varahram , P. Davami , SK 김 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지 Scopus에서 레코드 보기 [14] S. 폭스 , J. 캠벨 Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886 기사PDF 다운로드Scopus에서 레코드 보기 [15] M. 콕스 , RA 하딩 , J. 캠벨 메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지 Scopus에서 레코드 보기 [16] C. Nyahumwa , NR Green , J. Campbell 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽 Scopus에서 레코드 보기 [17] A. Ardekhani , R. Raiszadeh J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362 교차 참조Scopus에서 레코드 보기 [18] X. Dai , X. Yang , J. Campbell , J. Wood 메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽 Scopus에서 레코드 보기 [19] EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘 필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359 교차 참조Scopus에서 레코드 보기 [20] WD 그리피스 , NW 라이 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196 교차 참조Scopus에서 레코드 보기 [21] AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨 국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220 교차 참조Scopus에서 레코드 보기 [22] C. 칭기 주조공학 연구실 Helsinki University of Technology , Espoo, Finland ( 2006 ) Google 학술검색 [23] Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조 기사PDF 다운로드Scopus에서 레코드 보기 [24] S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie 메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조 기사PDF 다운로드Scopus에서 레코드 보기 [25] 에스엠. Xiong , X.-F. 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [26] 지브이리서치 그랜드뷰 리서치 ( 2018 ) 미국 Google 학술검색 [27] T. 리 , J. 데이비스 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400) 교차 참조Scopus에서 레코드 보기 [28] JF Fruehling, 미시간 대학, 1970. Google 학술검색 [29] S. 쿨링 제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57 Scopus에서 레코드 보기Google 학술검색 [30] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지 기사PDF 다운로드Scopus에서 레코드 보기 [31] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42 기사PDF 다운로드Scopus에서 레코드 보기 [32] K. Aarstad , G. Tranell , G. Pettersen , TA Engh SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술 TMS ( 2003년 ) Google 학술검색 [33] 에스엠 Xiong , X.-L. 리우 메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [34] T.-S. 시 , J.-B. Liu , P.-S. 웨이 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [35] G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294) 기사PDF 다운로드Scopus에서 레코드 보기 [36] H. Bo , LB Liu , ZP Jin J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [37] A. 미락 , C. 데이비슨 , J. 테일러 코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000 기사PDF 다운로드Scopus에서 레코드 보기 [38] BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한 메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지 Scopus에서 레코드 보기 [39] WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao China Foundry , 9 ( 2012 ) , pp. 226 – 230 교차 참조Scopus에서 레코드 보기 [40] UI 골드슐레거 , EY 샤피로비치 연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지 Scopus에서 레코드 보기 [41] A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry 트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지 Scopus에서 레코드 보기 [42] E. Zhang , GJ Wang , ZC Hu 메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지 Scopus에서 레코드 보기 [43] NR 그린 , J. 캠벨 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [44] C 라일리 , MR 졸리 , NR 그린 MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 ) Google 학술검색 [45] HE Friedrich, BL Mordike, Springer, 독일, 2006. Google 학술검색 [46] C. Zheng , BR Qin , XB Lou 기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388 2010년 미트 교차 참조Scopus에서 레코드 보기Google 학술검색 [47] SM Xiong , XF 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [48] SM Xiong , XL Liu 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [49] TS Shih , JB Liu , PS Wei 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [50] K. Aarstad , G. Tranell , G. Pettersen , TA Engh 매그. 기술. ( 2003 ) , PP. (5) – (10) Scopus에서 레코드 보기 [51] G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지 기사PDF 다운로드Scopus에서 레코드 보기 [52] XF 왕 , SM Xiong 코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307 기사PDF 다운로드Scopus에서 레코드 보기 [53] SH Nie , SM Xiong , BC Liu 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지 기사PDF 다운로드Scopus에서 레코드 보기 [54] C. Bauer , A. Mogessie , U. Galovsky Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168) 교차 참조Scopus에서 레코드 보기 [55] QG 왕 , D. Apelian , DA Lados J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84 기사PDF 다운로드Scopus에서 레코드 보기 [56] S. Wang , Y. Wang , Q. Ramasse , Z. Fan 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974 교차 참조Scopus에서 레코드 보기 [57] S. Hayashi , W. Minami , T. Oguchi , HJ Kim 카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지 교차 참조Scopus에서 레코드 보기 [58] K. 아르스타드 노르웨이 과학 기술 대학교 ( 2004년 ) Google 학술검색 [59] RL 윌킨스 J. Chem. 물리. , 51 ( 1969 ) , p. 853 -& Scopus에서 레코드 보기 [60] O. Kubaschewski , K. Hesselemam 무기물의 열화학적 성질 Springer-Verlag , 벨린 ( 1991 ) Google 학술검색 [61] R. Schmidt , M. Strobele , K. Eichele , HJ Meyer 유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735 교차 참조Scopus에서 레코드 보기 [62] B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao 제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지 Scopus에서 레코드 보기 [63] O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지 Scopus에서 레코드 보기 [64] SSS Kumari , UTS Pillai , BC 빠이 J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509 기사PDF 다운로드Scopus에서 레코드 보기 [65] H. Scholz , P. Greil J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽 Scopus에서 레코드 보기 [66] P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider 매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽 Scopus에서 레코드 보기 [67] HV 앳킨슨 , S. 데이비스 메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000 교차 참조Scopus에서 레코드 보기 [68] EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년 교차 참조Scopus에서 레코드 보기 [69] T. Li , WD Griffiths , J. Chen 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528 교차 참조Scopus에서 레코드 보기 [70] M. Tiryakioglu , D. Hudak는 J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179 교차 참조Scopus에서 레코드 보기 [71] Y. Yue , WD Griffiths , JL Fife , NR Green 제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136 교차 참조Scopus에서 레코드 보기Google 학술검색 [72] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871) Scopus에서 레코드 보기 [73] ZC Hu , EL Zhang , SY Zeng 메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지 교차 참조Scopus에서 레코드 보기
레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.
SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.
결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.
그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.
이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.
A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.
Keywords
Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.
CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.
VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.
모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.
Keywords
CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number
Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a review. J. Hydraulic Res. 35 (1), 81e98. Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468. Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647. Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (2010), 111e133. Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using
OpenFOAM. J. Hydroinformatics 17 (4), 662e678. Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees (Paris, France). Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013. Characterising performance of environmental models. Environ. Model. Softw. 40, 1e20. Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop Impact: Numerical Simulations and Theoretical Modeling. Imperial College of Science, Technology and Medicine, UK. Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s eance. Le Remou et sur la Propagation des Ondes, 12, pp. 21e112. Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD problems. Elsevier Appl. Numer. Math. 26 (1), 135e151. Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environ. Model. Softw. 33, 1e22. Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ. Fluid Mech. 11 (3), 263e288. Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7. Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in airewater flows. Exp. fluids 48 (1), 17e31. Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid Mech. 286, 1e23. Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759. Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics Division. Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J. heat fluid flow 18 (1), 45e54. Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329. Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress. Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign. Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752. Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130 (7), 1e4. Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909. Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press. Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/ Fluids 26.3(2007) 367e384. Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In: Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor & Francis Group, ABalkema Book. Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44. Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838. Can. J. Civ. Eng. 37 (1), 135e138. Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended load. Taylor & Francis J. Hydraulic Res. 32, 87e101. Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144. Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607. Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis J. Hydraulic Res. 51 (3), 223e243. Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media. Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface. Environ. Model. Softw. 13 (3), 247e255. Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New York. Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic calculations. Elsevier J. Comput. Phys. 4 (1), 97e117. De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173. Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int. Conf. Hydroinformatics 1, 63e70. Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep. N. 81, 26429. Fawer, C., 1937. Etude de quelquesecoulements permanents a filets courbes (‘Study of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French). Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3), 217e238. Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a hydraulic jump. J. Hydraulic Res. 48 (4), 504e508. Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2), 101e113. Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer. Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic Res. 27 (5), 565e583. Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal modelling code in fluvial environments. Environ. Model. Softw. 26 (12), 1685e1695. Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1. Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201e225. Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D. Nonlinear Phenom. 12 (1), 396e407. Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load discharge formulations for transient flow in 1D and 2D situations. J. Hydroinformatics 15 (4). Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations. Elsevier. Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG keε turbulence model. Atmos. Environ. 38 (19), 3039e3048. Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158. Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520. Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. : http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February 27th 2014. Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218. Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat Mass Transf. 47 (8), 911e919. Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods 2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58. Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385. McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional Gas Turbine Cascades. Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of Hydraulic Research. Taylor &Francis 37 (4), 541e558. Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers. Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159. Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685. Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154. Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11, 1581e1595. Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28-July 2. 1976 Twente University, Enschede, pp. 330e340. Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves: laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97. Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman Institute for Fluid Dynamics. Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70. OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free Software Foundation Inc. Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water resources technical publication. Eng. Monogr. 25. Pope, S.B., 2000. Turbulent Flows. Cambridge university press. Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215. Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow. Cambridge University Press. Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91 (HY5), 107e132. Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps. Taylor & Francis J. Hydraulic Res. 10 (4), 409e430. Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a hydraulic jump (original title, in Spanish: “Simulacioncomputacional del resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672. Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966. Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at High Phase Fractions. Imperial College of Science, Technology and Medicine, UK. Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec application aux crues des riviereset a l’introduction de mareesdansleurslits. Comptesrendus des seances de l’Academie des Sciences. Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer. Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21 (3), 252e263. Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4. Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study. University of Stavanger, Norway. Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. Imperial College of Science, Technology and Medicine, UK. Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/ 10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water. Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands). Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys 23 (3), 263e275. Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76. Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16 (DOI: 10.1007/s00348-014-1847-9). Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/ s00348-014-1775-8. Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE) HY.1943-7900.0001010. Paper 04015010, 10 pages. Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The Netherlands. Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620e631. Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA). Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www. sciencedirect.com/science/article/pii/S0301932215000336. Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands. Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520. Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics code. Tech. Rep. 44 (92), 35e35. Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environ. fluid Mech. 13 (2), 189e204. Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble velocities in free hydraulic jumps for small to intermediate froude numbers. J. Hydraulic Eng.
Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4* 유 형주1 주 성식2 권 범재3 이 승오4* 1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University 1홍익대학교 건설환경공학과 박사과정 2㈜헥코리아 수자원환경사업부 이사 3㈜이산 수자원부 이사 4홍익대학교 건설환경공학과 교수*Corresponding Author
ABSTRACT
최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.
그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.
이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.
수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.
따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.
이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.
그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.
키워드
보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력
Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress
1. 서 론
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.
기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006; Kim, 2007; Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.
그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.
2. 본 론
2.1 이론적 배경
2.1.1 3차원 수치모형의 기본이론
FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.
2.1.2 유동해석의 지배방정식
1) 연속 방정식(Continuity Equation)
FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1), (2)와 같다.
(1)
∇·v=0
(2)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.
2) 운동량 방정식(Momentum Equation)
각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3), (4), (5)와 같다.
여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.
2.1.3 소류력 산정
호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6), (7)과 같다.
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.
2) Manning 조도계수를 고려한 공식
Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.
(7)
τ=γn2V2R1/3
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.
FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.
2.2 하천호안 설계기준
하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.
Table 1.
Standard of Permissible Velocity and Shear on Revetment
Country (Reference)
Material
Permissible velocity (Vp, m/s)
Permissible Shear (τp, kN/m2)
Korea
River Construction Design Practice Guidelines (MOLIT, 2016)
Vegetated
5.0
0.50
Stone
5.0
0.80
USA
ASTM D’6460
Vegetated
6.1
0.81
Unvegetated
5.0
0.28
JAPAN
Dynamic Design Method of Revetment
–
5.0
–
2.3. 보조여수로 운영에 따른 하류하천 영향 분석
2.3.1 모형의 구축 및 경계조건
본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2, Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).
수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.
(8)
n=ks1/68.1g1/2
여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.
시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.
Table 2.
Mesh sizes and numerical conditions
Mesh
Numbers
49,102,500 EA
Increment (m)
Direction
Existing Spillway
Auxiliary Spillway
∆X
0.99 ~ 4.30
1.00 ~ 4.30
∆Y
0.99 ~ 8.16
1.00 ~ 5.90
∆Z
0.50 ~ 1.22
0.50 ~ 2.00
Boundary Conditions
Xmin / Ymax
Inflow / Water Surface Elevation
Xmax, Ymin, Zmin / Zmax
Wall / Symmetry
Turbulence Model
RNG model
Table 3.
Case of numerical simulation (Qp : Design flood discharge)
Case
Existing Spillway (Qe, m3/s)
Auxiliary Spillway (Qa, m3/s)
Remarks
1
Qp
0
Reference case
2
0
Qp
3
0
0.58Qp
Review of discharge capacity on auxiliary spillway
4
0
0.48Qp
5
0
0.45Qp
6
0
0.32Qp
7
0.50Qp
0.50Qp
Determination of optimal division ratio on Spillways
8
0.61Qp
0.39Qp
9
0.39Qp
0.61Qp
10
0.42Qp
0.58Qp
11
0.32Qp
0.45Qp
Determination of permissible division on Spillways
12
0.35Qp
0.48Qp
13
0.38Qp
0.53Qp
14
0.41Qp
0.56Qp
Table 4.
Roughness coefficient and roughness height
Criteria
Roughness coefficient (n)
Roughness height (ks, m)
Structure (Concrete)
0.014
0.00061
River
0.033
0.10496
Fig. 1
Layout of spillway and river in this study
2.3.2 보조 여수로의 방류능 검토
본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.
보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.
하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.
Fig. 2
Region of interest in this study
Fig. 3
Maximum velocity and location of Vmax according to Qa
Fig. 4
Maximum shear according to Qa
Fig. 5
Maximum water surface elevation and location of ηmax according to Qa
Table 5.
Numerical results for each cases (Case 1 ~ Case 6)
Case
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
1 (Qa = 0)
9.15
0.54
No Good
No Good
2 (Qa = Qp)
8.87
0.56
No Good
No Good
3 (Qa = 0.58Qp)
6.53
0.40
No Good
No Good
4 (Qa = 0.48Qp)
6.22
0.36
No Good
No Good
5 (Qa = 0.45Qp)
4.22
0.12
Accpet
Accpet
6 (Qa = 0.32Qp)
4.04
0.14
Accpet
Accpet
2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토
기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).
따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.
Fig. 6
Maximum velocity on section 1 & 2 according to Qa
Fig. 7
Maximum shear on section 1 & 2 according to Qa
Fig. 8
Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)
Fig. 9
Maximum water surface elevation on section 1 & 2 according to Qa
Table 6.
Numerical results for each cases (Case 7 ~ Case 10)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
7 Qe : 0.50QpQa : 0.50Qp
8.10
6.23
0.64
0.30
No Good
No Good
No Good
No Good
8 Qe : 0.61QpQa : 0.39Qp
8.88
6.41
0.61
0.34
No Good
No Good
No Good
No Good
9 Qe : 0.39QpQa : 0.61Qp
6.22
7.33
0.24
0.35
No Good
No Good
Accept
No Good
10 Qe : 0.42QpQa : 0.58Qp
6.39
4.79
0.30
0.19
No Good
Accept
No Good
Accept
2.3.4 방류량 배분 비율의 허용 방류량 검토
계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).
호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10, Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).
Table 7.
Numerical results for each cases (Case 11 ~ Case 14)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
11 Qe : 0.32QpQa : 0.45Qp
3.63
4.53
0.09
0.26
Accept
Accept
Accept
Accept
12 Qe : 0.35QpQa : 0.48Qp
5.74
5.18
0.23
0.22
No Good
No Good
Accept
Accept
13 Qe : 0.38QpQa : 0.53Qp
6.70
4.21
0.28
0.11
No Good
Accept
Accept
Accept
14 Qe : 0.41QpQa : 0.56Qp
6.54
5.24
0.28
0.24
No Good
No Good
Accept
Accept
Fig. 10
Maximum velocity on section 1 & 2 according to total outflow
Fig. 11
Maximum shear on section 1 & 2 according to total outflow
Fig. 12
Maximum water surface elevation on section 1 & 2 according to total outflow
3. 결 론
본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.
수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.
본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.
Acknowledgements
본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.
References
1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA. 2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York. 3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM. 4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731. 5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608. 6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81. 7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537 8 K-water (2021). Regulations of Dam Management. Daejeon: K-water. 9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT. 10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593 11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279 12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT. 13 MOLIT (2019). Standards of River Design. Sejong: MOLIT. 14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS. 15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7. 16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230 17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112
Korean References Translated from the English
1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부. 2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실. 3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부. 4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부. 5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608. 6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537 7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81. 8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청. 9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731. 10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.
Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션
by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater2021, 13(5), 674; https://doi.org/10.3390/w13050674
Abstract
The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.
수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.
이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.
내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.
Introduction
격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].
베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.
Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.
Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.
그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.
Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.
자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.
Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.
Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.
Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.
-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jump
CL = 9 CW = 0.295 CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)
-Smooth and rough beds-Rectangular channel-Free and submerged jump
CL = 4.50 CW = 0.75 CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)
1.70–9.30
-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present study
Rectangular channel Smooth and rough beds Submerged jump
CL = 4.50 CW = 0.75 CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)
1.70–9.30
-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss
이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.
베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.
다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.
CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].
본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Table 2. Effective parameters in the numerical model.
Bed Type
Q (l/s)
I (cm)
T (cm)
d (cm)
y1 (cm)
y4 (cm)
Fr1= u1/(gy1)0.5
S
Re1= (u1y1)/υ
Smooth
30, 45
–
–
5
1.62–3.83
9.64–32.10
1.7–9.3
0.26–0.50
39,884–59,825
Triangular macroroughnesses
30, 45
4, 8, 12, 16, 20
4
5
1.62–3.84
6.82–30.08
1.7–9.3
0.21–0.44
39,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).
Models
Bed Type
Q (l/s)
d (cm)
y1 (cm)
u1 (m/s)
Fr1
Numerical and Physical
Smooth
45
5
1.62–3.83
1.04–3.70
1.7–9.3
T/I = 0.5
45
5
1.61–3.83
1.05–3.71
1.7–9.3
T/I = 0.25
45
5
1.60–3.84
1.04–3.71
1.7–9.3
Figure 3. The boundary conditions governing the simulations.Figure 4. Sketch of mesh setup.
Table 4. Characteristics of the computational grids.
Mesh
Nested Block Cell Size (cm)
Containing Block Cell Size (cm)
1
0.55
1.10
2
0.65
1.30
3
0.85
1.70
Table 5. The numerical results of mesh convergence analysis.
Parameters
Amounts
fs1 (-)
7.15
fs2 (-)
6.88
fs3 (-)
6.19
K (-)
5.61
E32 (%)
10.02
E21 (%)
3.77
GCI21 (%)
3.03
GCI32 (%)
3.57
GCI32/rp GCI21
0.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Conclusions
본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.
References
White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci.1979, 19, 81–128. [Google Scholar] [CrossRef]
McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids2012, 34, 35–46. [Google Scholar] [CrossRef]
Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A2013, 94, 83–87. [Google Scholar] [CrossRef]
Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech.2016, 797, 60–94. [Google Scholar] [CrossRef]
Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc.2016, 108, 425–432. [Google Scholar] [CrossRef]
Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng.2017, 42, 3751–3760. [Google Scholar] [CrossRef]
De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech.2018, 18, 849–870. [Google Scholar] [CrossRef]
Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng.2002, 128, 656–663. [Google Scholar] [CrossRef]
Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res.2009, 3, 109–117. [Google Scholar] [CrossRef]
Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci.2009, 2, 436–445. [Google Scholar] [CrossRef]
Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci.2007, 7, 1164–1169. [Google Scholar] [CrossRef]
Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng.2017, 64, 396–407. [Google Scholar] [CrossRef]
Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform.2020, 22, 1554–1572. [Google Scholar] [CrossRef]
Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS2010, 10, 37–47. [Google Scholar]
Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng.2013, 40, 841–847. [Google Scholar] [CrossRef]
Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J.2014, 5, 1033–1042. [Google Scholar] [CrossRef]
Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water2019, 11, 28. [Google Scholar] [CrossRef]
Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng.2016, 142, 04015037. [Google Scholar] [CrossRef]
Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng.2017, 143, 04016091. [Google Scholar] [CrossRef]
Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div.1965, 91, 107–132. [Google Scholar] [CrossRef]
Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res.1990, 28, 437–460. [Google Scholar] [CrossRef]
Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.1981, 39, 201–225. [Google Scholar] [CrossRef]
Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng.2020, 1–9. [Google Scholar] [CrossRef]
Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water2019, 11, 235. [Google Scholar] [CrossRef]
Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol.2016, 34, 186–190. [Google Scholar]
Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res.2008, 46, 739–752. [Google Scholar] [CrossRef]
Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw.2016, 80, 322–335. [Google Scholar] [CrossRef]
Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids2020, 5, 182. [Google Scholar] [CrossRef]
Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā2019, 44, 216. [Google Scholar] [CrossRef]
Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water2020, 12, 1992. [Google Scholar] [CrossRef]
Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput.1986, 1, 3–51. [Google Scholar] [CrossRef] [PubMed]
Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water2016, 8, 545. [Google Scholar] [CrossRef]
Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour.2020, 4, 425–436. [Google Scholar] [CrossRef]
Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev.2009, 62. [Google Scholar] [CrossRef]
Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water2021, 13, 14. [Google Scholar] [CrossRef]
Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng.2008, 130, 0780011–0780013. [Google Scholar]
Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis.2006, 9, 57–68. [Google Scholar] [CrossRef]
Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math.2020, 1–13. [Google Scholar] [CrossRef]
Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res.2012, 27, 100–111. [Google Scholar] [CrossRef]
Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng.2015, 105, 160–175. [Google Scholar] [CrossRef]
Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng.2014, 39, 6969–6981. [Google Scholar] [CrossRef]
Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng.1996, 122, 540–548. [Google Scholar] [CrossRef]
De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res.2017, 15, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode
Abstract
국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, 특히 해상풍력은 풍력 자원이 풍부하고 육상보다 풍력 감소가 상대적으로 작아 다양하게 연구되고 있다. 본 연구에서는 해상 풍력기초의 세굴현상을 분석하기 위해서 Flow-3D 모형을 이용하여 모노 파일과 삼각대 파일 기초에 대하여 수치모의를 수행 하였다. 직경이 다른(D=5.0 m, d=1.69 m) 모노 파일 형식과 직경이 동일한(D=5.0 m) 모노파일에 대하여 세굴현상을 평가하 였다. 수치해석 결과, 동일한 직경을 가진 모노파일에서 하강류가 증가되었으며, 최대세굴심은 약 1.7배 이상 발생하였다. 삼각대 파일에 대하여 관측유속과 극치파랑 조건을 상류경계조건으로 각각 적용한 후 세굴현상을 평가하였다. 극치파랑조건 을 적용한 경우 최대 세굴심은 약 1.3배 정도 깊게 발생하였다. LES 모형을 적용하였을 경우 세굴심은 평형상태에 도달한 반면, RNG 모형은 해석영역 내 전반적으로 세굴현상이 발생하였으며, 세굴심은 평형상태에 도달하지 않았다. 해상풍 력기초에 대하여 세굴현상을 평가하기 위해서 수치모형 적용시 파랑조건 및 LES 난류모형을 적용하는 것이 타당할 것으로 판단된다.
Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.
지구환경문제에 대한 관심이 증가되고 있는 현실에 서, 풍력발전은 석유 대체에너지로서 뿐만 아니라, 이산 화탄소 등 온실효과 가스를 배출하지 않는 청청에너지의 발전방식으로 국내․외에서 개발이 증가되고 있다. 특 히, 해상풍력은 풍력 자원이 풍부하고, 육상보다 풍력 감 소가 상대적으로 작아 전기 출력량이 크기 때문에 신재 생에너지원 확보 차원에서 국내․외 해상풍력단지 사업 계획이 수립되어 추진되고 있는 실정이다. Fig. 1은 세계 최대 네델란드 해상풍력단지인 Nysted Offshore Wind Farm의 사진이다.
Fig. 1. Nysted Offshore Wind Farm
하천 내 교각 주변에서 세굴 현상은 발생하며 교각의 안정성 측면에서 세굴보호공을 설치한다. 해양에서 해상 풍력발전 기초를 설치할 경우 구조물로 인해 교란된 흐 름은 세굴을 유발시킨다. 따라서 해상풍력기초를 계획할 경우 안정성 측면에서 세굴현상을 검토할 필요가 있다. 특히 하천의 경우 교각 세굴보호공에 대하여 다양한 공 법들이 설계에 반영되고 있으나, 해양구조물 기초에 대 한 연구는 미흡한 상태이다.
이에 본 연구에서는 수치모 형을 이용하여 해상풍력기초에 대한 세굴현상을 분석하 였다. 수치모형을 이용하여 세굴현상을 예측함에 있어서 본 연구와 연관된 연구동향으로는 양원준과 최성욱(2002) 은 FLOW-3D 모형을 이용하여 세굴영향 평가를 함에 있어서 난류모형을 비교․분석 하였다. 전반적으로 수리 모형실험 자료와 좀 더 잘 일치하는 난류모형은 LES 모 형으로 분석되었다[1]. 여창건 등(2010)은 세굴영향 평 가를 위해 FLOW-3D 모형을 이용할 경우 세굴에 미치 는 중요한 인자에 대하여 매개변수 민감도분석을 수행하 였다.
검토결과, 세굴에 민감한 변수는 유사의 입경, 세 굴조절계수, 안식각 등의 순서로 민감한 것으로 검토되 었다[2]. 오명학 등(2012)은 해상풍력발전기초 시설 주 변에서 FLOW-3D 모형을 이용하여 세굴영향 검토를 수 행하였다. 오명학 등이 검토한 지역은 본 연구 지역과 동 일한 지역이나 경계조건 및 세굴평가에서 가장 중요한 평균입경이 다르다. 세굴검토를 위해 수치모형에 입력한 경계조건은 대조기 창조 최강유속 1.0 m/s을 상류경계조 건으로, 평균입경은 0.0353 mm를 적용하였다. 이와 같은 조건에서 모노파일에서 발생하는 최대세굴심은 약 5.24 m로 분석되었다[3].
Stahlmann과 Schlurmann(2010)은 본 과업에서 적용할 해상풍력기초와 유사한 기초를 가진 구조물에 대하여 수리모형실험을 수행하였다. 연구대상 지역은 독일 해안가에 의한 해상풍력단지에 대하여 삼각 대 형식의 해상풍력기초에 대하여 1/40과 1/12 축척으로 각각 수리모형실험을 수행하였다. 1/40과 1/12 축척에 따라서 세굴분포양상 및 최대세굴심의 위치가 다르게 관 측되었다[4].
본 연구에서는 3차원 수치모형인 Flow-3D를 이용하 여 세굴현상을 평가함에 있어서, 파일 형상 변화, 경계조 건이 다른 경우 및 서로 다른 난류모형을 적용하였을 경 우에 대하여 수치해석이 국부세굴 현상에 미치는 영향을 검토하였다. 이와 같은 연구는 향후 수치모형을 이용하 여 해상풍력발전 기초에 대하여 세굴현상을 평가함에 있 어서 기초 자료로 활용될 수 있을 것으로 판단된다.
Fig. 2. Shape of PileFig. 3. Boundary Area and Grid of Flow-3DFig. 4. Scour around MonopileFig. 5. Velocity Development around MonopileFig. 6. Flow Phenomenon and Scour around Tripod Pile FoundationFig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)
결론
본 연구에서는 해상풍력기초 형식이 모노파일과 삼각 대 파일일 경우 세굴현상을 평가하기 위해서 3차원 수치 모형인 Flow-3D를 이용하였다. 직경이 서로 다른(D=5.0 m, d=1.69 m) 모노파일과 직경이 동일한(D=5.0 m) 모노파일에 대하여 LES 모형 을 적용하여 세굴현상을 평가하였다. 서로 다른 직경을 가진 모노파일 주변에서 최대 세굴심은 4.13 m, 동일한 직경을 가진 모노파일 주변에서는 7.13 m의 최대 세굴 심이 발생하였다. 또한 동일한 직경을 가진 파일에서 하 강류가 증가되어 최대세굴심이 증가된 것으로 분석되었 다. 수치해석 결과, 세굴에 대한 기초의 안정성 측면에서 서로 다른 직경을 가진 기초 형식이 유리한 것으로 분석 되었다. 수치모형을 이용하여 세굴현상을 평가함에 있어서 경 계조건 및 난류모형의 선정은 중요하다. 본 연구에서는 서로 다른 직경을 가진 삼각대 형식의 해상풍력기초에 대하여 상류경계조건으로 관측유속과 극치파랑조건을 각각 적용하였을 경우 세굴현상을 평가하였다. 극치파랑 조건을 적용하였을 경우가 최대세굴심이 약 1.3배 정도 깊게 발생하였다. 또한 극치파랑조건에서 RNG 과 LES 모형을 적용하여 세굴현상을 평가하였다. LES 모 형을 적용하였을 경우 파일 주변에서 세굴현상이 발생하 였으며, 세굴심은 일정시간이 경과된 후에는 증가되지 않는 평형상태에 도달하였다. 그러나 RNG 모형을 적용한 경우는 평형상태에 도달하지 않고 계속해서 세굴 이 진행되어 세굴심을 평가할 수 없었다. 현재 해양구조 물 기초에 대한 세굴현상 연구는 미흡한 상태로 하천에 서 교각 세굴현상을 검토하기 위해서 적용되는 경계조건 을 적용하기보다는 해상 조건인 파랑조건을 적용하여 검 토하는 것이 기초의 안정성 측면에서 유리할 것으로 판 단된다. 또한 정확한 세굴현상을 예측하기 위해서는 RNG 모형보다는 LES 모형을 적용하는 것이 타당 할 것으로 판단된다. 향후 해상풍력기초에 대한 세굴관측을 수행하여 수치 모의 결과와 비교․분석이 필요하며, 또한 다양한 파랑 조건에서 난류모형에 대한 비교․분석이 필요할 것으로 생각된다.
References
[1] W. J. Yang, S. U. Choi. “Three- Dimensional Numerical Simulation of Local Scour around the Bridge Pier using Large Eddy Simulation”, Journal of KWRA, vol. 22, no. 4-B, pp. 437-446, 2002. [2] C. G. Yeo, J. E. Lee, S. O. Lee, J. W. Song. “Sensitivity Analysis of Sediment Scour Model in Flow-3D”, Proceedings of KWRA, pp. 1750-1754, 2010. [3] M. H. Oh, O. S. Kwon, W. M. Jeong, K. S. Lee. “FLOW-3D Analysis on Scouring around Offshore Wind Foundation”, Journal of KAIS, vol. 13, no. 3, pp. 1346-1351, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.1346
[4] A. Stahlmann, T. Schlurmann, “Physical Modeling of Scour around Tripod Foundation Structures for Offshore Wind Energy Converters”, Proceedings of 32nd Conference on Coastal Engineering, Shanghai, China, no. 32, pp. 1-12, 2010. [5] Flow Science. Flow-3D User’s Manual. Los Alamos, NM, USA, 2016. [6] KEPRI. 『Test Bed for 2.5GW Offshore Wind Farm at Yellow Sea』 Interim Design Report(in Korea), 2014. [7] Germanischer Lloyd. Guideline for the Certification of Offshore Wind Turbines. Hamburg, Germany, 2005. [8] B. M. Sumer, J. Fredsøe, The Mechanics of Scour in the Marine Environment. World Scientific Publishing Co. Pte. Ltd. 2002. [9] S. J. Ahn, U. Y. Kim, J. K. Lee. “Experimental Study for Scour Protection around Bridge Pier by Falling-Flow Interruption”, Journal of KSCE, vol. 19, no. II-1, pp. 57-65, 1999. [10] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique”, Physics of Fluids, vol. 4, no. 7, pp. 1510-1520, 1992. DOI: https://doi.org/10.1063/1.858424
Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****
토목공학의 수치해석법
Abstract
The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.
이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.
Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements
Introduction
급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.
Fig. 1: Model made in Ardabil, IranFig. 2: Geometric and hydraulic parameters of an inclined drop
equipped with roughness elementsFig. 3: Views of the incline with (a) Bat-shaped, (b)
Cylindrical, (c) Triangular roughness elementsFig. 4: Geometric profile of inclined drop and boundary
conditions with the bat-shape roughness elementFig. 5: Variation of the RMSE varying cell sizeFig. 6: Numerical and laboratory comparison of the
downstream relative depthFig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a)
Without roughness elements; (b) Bat-shaped roughness
element; (c) Cylindrical roughness element; (d) Triangular
roughness elementFig. 8: Relative edge depth versus the relative critical depthFlow on the inclined drop with bat-shaped elements: (a)
Non-submerged flowFig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flowFig. 10: Relative downstream depth versus the relative
critical depthFig. 11: Relative downstream depth versus the relative critical
depth
Conclusions
현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.
References
References: [1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A., “Experimental study of the energy dissipation on the rough ramps”, ISH journal of hydraulic engineering, 2019, p. 1-9. [2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and Minkowycz, W.J., “Application of an Intermittency model for laminar, transitional, and turbulent internal flows”, Journal of Fluids Engineering, vol. 141, 2019, paper no. 071204. [3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy dissipation on block ramps with staggered boulders”, Journal of hydraulic engineering, vol. 135(6), 2009, p. 522-526. [4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R., “Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes”, Arabian Journal for Science and Engineering, vol. 40(2), 2014, p. 381-395. [5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical simulations and laboratory measurements in hydraulic jumps”, International conference on hydroinformatics. (2014, August) New York city. [6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S., and Abraham, J., “Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions”, Journal of groundwater science and engineering, vol. 8(4), 2020a, p. 396-406. [7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and Abraham, J., “Three-dimensional investigation of hydraulic properties of vertical drop in the presence of step and grid dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895. [8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and Bagherzadeh, M., “SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238. [9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R., and Abraham, J. “Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens”, Water supply, vol 21(1), 2021c, p. 217-231. [10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of inverse curvature ogee spillways”, Civil engineering journal, vol. 3(11), 2017, p. 1146-1156. [11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M., “Experimental Investigation of the Energy Dissipation and the Downstream Relative Depth of Pool in the Sloped Gabion Drop and the Sloped simple Drop”, AUT Journal of Civil Engineering, 2020b (In persian). [12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J., Norouzi, R., “The laboratory study of energy dissipation in inclined drops equipped with a screen”, Journal of Applied Water Engineering and Research, 2020c, p. 1-10. [13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and Ghaderi, A., “3-D Numerical simulation of water flow over a broad-crested weir with openings”, ISH Journal of Hydraulic Engineering, 2019, p.1-9. [14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical simulation of flow over stepped spillways”, Research in civil engineering and environmental engineering, vol. 2(4), 2014, p. 190-198. [15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M., “Efficiency of trapezoidal labyrinth shaped stepped spillways”, Flow measurement and instrumentation, vol. 72, 2020a. [16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco, S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18. [17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and Azamathulla, H.M. “Experimental investigation on effective scouring parameters downstream from stepped spillways”, Water supply, vol. 20(4), 2020c, p. 1-11. [18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S. “Block ramp design for efficient energy dissipation”, Journal of energy dissipation, vol. 136(1), 2010, p. 1-5. [19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A., Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure drop and post-bend heat transfer for a bend with partial blockage at its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767. [20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump in circular channel section”, ISH journal of hydraulic engineering, vol. 16(1), 2010, p. 1-10. [21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric characteristics of baffle on hydraulic flow condition in baffled apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012, p. 51-59. [22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and sediment transport model for free surface open channel flow on unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.
[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz, R., “Numerical investigation of hydraulic characteristics of vertical drops with screens and gradually wall expanding”, Amirkabir journal of civil engineering, 2020 (In Persian). [24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of energy dissipation due to the use of vertical screen in the downstream of inclined drop by adaptive Neuro-Fuzzy inference system (ANFIS)”, AUT journal of civil engineering, 2019, (In Persian). [25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p. 905-921. [26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and Sparrow, E.M., “Summary of forced-convection fluid flow and heat transfer for square cylinders of different aspect ratios ranging from the cube to a two-dimensional cylinder”, Advances in Heat Transfer, Vol. 51, 2019, p. 351-457. [27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on submerged block ramps”, Journal of irrigation and drainage engineering, vol. 134(4), 2008, p.527-532. [28] Pagliara, S., and Palermo, M., “Effect of stilling basin geometry on the dissipative process in the presence of block ramps”, Journal of irrigation and drainage engineering, vol. 138(11), 2012, p. 1027-1031. [29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical validation of open channel flow over a curvilinear broad-creasted weir”, Progress in computational fluid dynamics an international journal, vol. 16(6), 2016, p. 364-378. [30] Sharif, N., and Rostami, A., “Experimental and numerical study of the effect of flow sepration on dissipating energy in compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338. [31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow in a system with separate laminar and turbulent zones”, Numerical Heat Transfer A, vol. 53(4), 2008, p. 341-353. [32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and Minkowycz, W.J., “Validation of turbulence models for numerical simulation of fluid flow and convective heat transfers”, Advances in Heat Transfer, vol. 49, 2017, p. 397-421. [33] Wagner, W.E., “Hydraulic model studies of the check intake structure-potholes East canal”, Bureau of reclamation hydraulic laboratory report hyd, 1956, 411.
Oscar HERRERA-GRANADOS1,, Abhijit LADE2, , Bimlesh KUMAR3 1 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland email: Oscar.Herrera-Granados@pwr.edu.pl 2 3Department of Civil Engineering, Indian Institute of Technology, Guwahati, India email: lade176104013@iitg.ac.in email: bimk@iitg.ac.in
ABSTRACT
Extraction of sand from river beds has a variety of effects on the hydraulic and morphological characteristicsof the fluvial systems. Recent studies on mining pit have revealed that downstream reaches of the mining pitare more prone to erosion due to increased bed shear stresses. Bridge piers in the vicinity of such mining pitsare also prone to streambed instabilities due to turbulence alterations as suggested by a few recent studies.Thus, a numerical study was carried out to study the effects of a mining pit on the hydrodynamics around acircular pier. The numerical experiments were conducted with the Computational Fluid Dynamics (CFD) codeFlow-3D, which can run several turbulence model closures. In this contribution, the authors applied theclassical RANS equations with the volume of fluid (VOF) method (Savage and Johnson, 2001).
강바닥에서 모래를 추출하는 것은 하강 시스템의 수력 학적 및 형태 학적 특성에 다양한 영향을 미칩니다. 광산 구덩이에 대한 최근 연구에 따르면 광산 구덩이의 하류 도달은 베드 전단 응력 증가로 인해 침식되기 쉽습니다. 이러한 광산 구덩이 근처의 교각은 최근 몇 가지 연구에서 제안한 바와 같이 난류 변화로 인해 유동 불안정성이 발생하기 쉽습니다. 따라서 원형 부두 주변의 유체 역학에 대한 광산 구덩이의 영향을 연구하기 위해 수치 연구가 수행되었습니다. 수치 실험은 CFD (Computational Fluid Dynamics) 코드 Flow-3D로 수행되었으며, 여러 난류 모델 폐쇄를 실행할 수 있습니다. 이 공헌에서 저자는 VOF (volume of fluid) 방법 (Savage and Johnson, 2001)과 함께 고전적인 RANS 방정식을 적용했습니다.
1. Set-up and boundary conditions
두 번의 수치 실행 결과가 이 기여도에서 비교됩니다. 첫 번째 실험에서 0.044 [m3-s-1]의 정상 유량이 원통 부두가 있는 1.0 [m] 폭의 채널을 따라 흐르는 상류 경계 조건으로 설정되었습니다. 계산 영역은 IIT Guwahati 수력학 실험실 (Lade et al., 2019b)의 틸팅 유체 크기를 기반으로 정의됩니다. 두 번째 실행에서는 동일한 배출물이 실린더의 상류에 있는 준설 사다리꼴 구덩이와 함께 실린더 주위로 통과되었습니다. 구덩이의 깊이는 0.1 [m]이고 수로 전체에 걸쳐 확장되었습니다. 수로의 길이 방향을 따라 피트의 상단 너비는 0.67 [m], 하단 너비는 0.33 [m]였습니다.
이 연구의 주요 초점은 채굴 구덩이 (그림 1의 PF2)가있을 때 구덩이 하류 (그림 1의 PF1)와 실린더 하류의 흐름 특성의 변화를 조사하는 것이 었습니다. 따라서 채널 베드는 고정 베드 모델을 사용하여 시뮬레이션 되었습니다. 두 실험의 수압 조건은 CFD 경계 조건으로 설정된 표 1에 나와 있습니다. 배출구 (하류 경계 조건)는 실험실 기록 중에 측정된 수심을 사용하여 설정되었습니다 (Lade et al., 2019a).
Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2
References
Herrera-Granados O (2018) Turbulence flow modeling of one-sharp-groyne field. In Free surface flows and transport processes : 36th International School of Hydraulics. Geoplanet: Earth and Planetary Series. Springer IP AG, 207-218. Lade AD, Deshpande V, Kumar B (2019a) Study of flow turbulence around a circular bridge pier in sand-mined stream channel. Proceedings of the Institution of Civil Engineers – Water Management,https://doi.org/10.1680/jwama.19.00041 Lade AD, A, DT, Kumar B (2019b) Randomness in flow turbulence around a bridge pier in a sand mined channel..Physica A 535 122426 Savage, BM, Johnson, M.C (2001). Flow over ogee spillway: Physical and numerical model case study. J. Hydraulic Eng., 127(8), 640–649.
1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran. 2 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran. 3 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran
Abstract
One of the methods of controlling and reducing flow energy is the use of energy dissipating structures and the formation of hydraulic jumps. One of these types of structures is the constriction elements in the flow path, which leads to a decrease in the energy of the passing flow. In the present study, the effect of crescent-shaped contraction as an energy dissipating structure in the supercritical flow path has been investigated using FLOW-3D software. Examining the simulation results, the RNG turbulence model due to its higher accuracy and lower relative error and absolute error percentage than other models, among the RNG turbulence models, k-ε, k-ω and LES was selected. In this study, the amplitude of the Froude number after the gate as the most effective dimensionless parameter in energy dissipation varied from 2.8 to 7.5 and the values of stenosis on both sides are 5 and 7.5 cm. The results show that in all cases of using the crescent-shaped contractions, the energy consumption due to the contraction is 5 and 7.5 cm, respectively, based on the energy drop relative to the upstream of 24.62% and 29.84% and compared to the downstream 46.14% and 48.42% more than the classic free jump. Also, by examining the obtained results, it was observed that the crescent-shaped contractions have a better performance in terms of energy loss compared to the sudden contraction, obtained from the studies of previous researchers. Based on the simulation results, with increasing the upstream Froude number, the relative energy dissipation to the upstream and downstream crescent-shaped contraction increased so that the use of contraction elements reduces the downstream Froude number of the contracted section in the range of 1.6 to 3/2.
흐름 에너지를 제어하고 줄이는 방법 중 하나는 에너지 소산 구조를 사용하고 유압 점프를 형성하는 것입니다. 이러한 유형의 구조 중 하나는 흐름 경로의 수축 요소로, 통과하는 흐름의 에너지를 감소시킵니다. 현재 연구에서는 초 임계 유동 경로에서 에너지 소산 구조로서 초승달 모양의 수축 효과가 FLOW-3D 소프트웨어를 사용하여 조사되었습니다. 시뮬레이션 결과를 살펴보면 RNG 난류 모델 중 k-ε, k-ω, LES 중에서 다른 모델보다 정확도가 높고 상대 오차와 절대 오차 비율이 낮은 RNG 난류 모델을 선택했습니다. 이 연구에서 에너지 소산에서 가장 효과적인 무 차원 매개 변수 인 게이트 뒤의 Froude 수의 진폭은 2.8에서 7.5까지 다양했으며 양쪽의 협착 값은 5cm와 7.5cm입니다. 결과는 초승달 모양의 수축을 사용하는 모든 경우에서 수축으로 인한 에너지 소비는 각각 5cm와 7.5cm로 상류에 비해 에너지 강하가 24.62 % 및 29.84 %이고 하류와 비교됩니다. 고전적인 자유 점프보다 46.14 % 및 48.42 % 더 많습니다. 또한 얻어진 결과를 살펴보면 초승달 모양의 수축이 이전 연구자들의 연구에서 얻은 갑작스런 수축에 비해 에너지 손실 측면에서 더 나은 성능을 보이는 것으로 나타났습니다. 시뮬레이션 결과에 따르면 상류 Froude 수를 증가 시키면 상류 및 하류 초승달 모양의 수축에 대한 상대적 에너지 소산이 증가하여 수축 요소를 사용하면 수축 된 부분의 하류 Froude 수가 1.6 ~ 3/2 범위에서 감소합니다. .
1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland 2AREX Ltd., 81-212 Gdynia, Poland 3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland *Author to whom correspondence should be addressed. Academic Editor: Remco J. WiegerinkSensors2021, 21(6), 2216; https://doi.org/10.3390/s21062216 Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)
Abstract
본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.
테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.
실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.
The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.
The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.Figure 2. Scheme of the measurement area.Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.Figure 10. Parameter y+ for the studied turbulence models and meshes.Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FYFigure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.Figure 15. Flow chart of validation of the computational model against experimental results.Figure 16. Measured (EXP) and computed (CFD) lift force values.
결론
결론은 다음과 같습니다. 계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다. 작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다. D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다. 제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다. 실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다. 제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23]. 논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다. 이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.
References
Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res.2017, 24, 27–34. [Google Scholar] [CrossRef]
Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec.2019, 60, 9–17. [Google Scholar]
Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp.2015, 9, 591–596. [Google Scholar] [CrossRef]
Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J.2012, 50, 271–283. [Google Scholar] [CrossRef]
Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech.1990, 220, 459. [Google Scholar] [CrossRef]
Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model.2012, 36, 379–398. [Google Scholar] [CrossRef]
Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol.2019, 24, 111–122. [Google Scholar] [CrossRef]
Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng.2015, 109, 7–13. [Google Scholar] [CrossRef]
Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech.1993, 255, 1–10. [Google Scholar] [CrossRef]
Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech.2017, 829, 486–511. [Google Scholar] [CrossRef]
Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech.2014, 740, 342–380. [Google Scholar] [CrossRef]
Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy2014, 1, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl.2020, 19, 388–397. [Google Scholar] [CrossRef]
Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG2014, 4, 280–290. [Google Scholar]
Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys.2000, 163, 83–117. [Google Scholar] [CrossRef]
Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies2020, 13, 1466. [Google Scholar] [CrossRef]