Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.

Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

NASA/TM—2010-216749

Kevin Breisacher and Jeffrey Moder
Glenn Research Center, Cleveland, Ohio

Prepared for the57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meetingsponsored by the JANNAF Interagency Propulsion CommitteeColorado Springs, Colorado, May 3–7, 2010

Abstract

극저온 추진제의 장기 공간 저장을 위해 축류 제트 믹서는 탱크 압력을 제어하고 열 층화를 줄이기위한 하나의 개념입니다. 1960 년대부터 현재까지 10 피트 이하의 탱크 직경에 대한 광범위한 지상 테스트 데이터가 존재합니다.

Ares V EDS (Earth Departure Stage) LH2 탱크 용으로 계획된 것과 같이 직경이 30 피트 정도 인 탱크 용 축류 제트 믹서를 설계하려면 훨씬 더 작은 탱크에서 사용 가능한 실험 데이터를 확장하고 미세 중력을 설계해야 합니다.

이 연구는 10 배 차이가 나는 2 개의 탱크 크기에서 기존의 지상 기반 축류 제트 혼합 실험의 시뮬레이션을 수행하여 이러한 규모의 변화를 처리하는 전산 유체 역학 (CFD)의 능력을 평가합니다. 저궤도 (LEO) 해안 동안 Ares V 스케일 EDS LH2 탱크에 대한 여러 축 제트 구성의 시뮬레이션이 평가되고 선택된 결과도 제공됩니다.

두 가지 탱크 크기 (직경 1 및 10 피트)의 물을 사용하여 General Dynamics에서 1960 년대에 수행한 제트 혼합 실험 데이터를 사용하여 CFD 정확도를 평가합니다. 제트 노즐 직경은 직경 1 피트 탱크 실험의 경우 0.032 ~ 0.25 인치, 직경 10 피트 탱크 실험의 경우 0.625 ~ 0.875 인치였습니다.

제트 믹서를 켜기 전에 두 탱크에서 열 층화 층이 생성되었습니다. 제트 믹서 효율은 층화 층이 섞일 때까지 탱크의 열전대 레이크의 온도를 모니터링하여 결정되었습니다. 염료는 층화된 탱크에 자주 주입되었고 침투가 기록되었습니다. 실험 데이터에서 사용 가능한 속도나 난류량은 없었습니다.

제시된 시뮬레이션에는 자유 표면 추적 (Flow Science, Inc.의 FLOW-3D)이 포함된 시판되고 시간 정확도가 높은 다차원 CFD 코드가 사용됩니다. 서로 다른 시간에 탱크의 다양한 축 위치에서 계산 된 온도와 실험적으로 관찰된 온도를 비교합니다. 획득한 합의에 대한 다양한 모델링 매개 변수의 영향을 평가합니다.

Introduction

Constellation 프로그램의 일부인 Ares V는 우주 비행사를 달로 돌려 보내도록 설계된 무거운 리프트 발사기입니다. Ares V 스택의 일부인 EDS (Earth Departure Stage)는 지구의 중력에서 벗어나 승무원 차량과 달 착륙선을 달로 보내는데 필요합니다.

이러한 차량의 질량과 달로 보내는 데 필요한 에너지 때문에 EDS의 액체 수소(LH2)와 액체 산소(LO2) 추진제 탱크는 매우 클 것입니다(직경 10m). 탱크 내부로의 환경적 열 누출로 인해 혼합 장치를 포함한 열역학적 환기 시스템(TV)은 설계 한계 내에서 탱크 압력을 유지하고 엔진 시동에 필요한 한도 내에서 액체 온도를 유지하기 위해 며칠의 순서에 따라 공간 내 저장 기간 동안 필요할 수 있습니다.

이러한 혼합 장치 중 하나는 그림 1과 2와 같이 탱크 바닥 근처에 있는 (순가속과 관련하여) 탱크 축을 따라 중심에 있는 축 제트입니다. 축방향 제트 혼합기와 TVS에 통합된 것은 1960년대 중반부터 연구되어 왔으며(참조 1~5), 광범위한 축방향 제트 접지 테스트 데이터(비사이로젠(참조 1~9), 극저온(참조 10~16) 유체 사용), 에탄올을 사용한 일부 드롭 타워 테스트 데이터(참조 17 및 18)가 있습니다. 극저온 추진제를 사용하는 축방향 제트에 대한 기존 접지 테스트 데이터는 3m(10ft) 이하의 탱크 직경으로 제한됩니다.

저자가 알고 있는 바와 같이, 현재 임계 미달의 극저온 추진체를 사용하는 폐쇄형 탱크에 축방향 제트가 포함된 낙하탑, 항공기 또는 우주 비행 시험 데이터는 없습니다.

축방향 제트(Axial jet)는 지구 저궤도(LEO) 연안의 며칠 동안 EDS LH2 탱크에서 작동하는 혼합 장치의 후보 중 하나입니다. 제안된 EDS 탱크 척도의 극저온 저장 탱크에서 작동하는 축 제트 실험 데이터가 존재하지 않기 때문에, EDS 탱크를 위한 축 제트 TV의 초기 설계는 기존 데이터에 대해 고정된 상관 관계 및 CFD 분석에 의존할 필요가 있습니다.

이 연구는 두 개의 탱크 척도에서 크기 순서로 다른 축방향 제트 열분해 성능을 예측하기 위한 CFD 정확도 평가의 현재 진행 상황을 보고합니다. CFD 시뮬레이션은 물을 작동 유체로 사용하는 접지 테스트 축 제트 데이터(참조 1 – 4)와 비교됩니다. 이 평가를 위해 선택된 CFD 코드는 Flow Science(참조 21)의 상용 코드 FLOW-3D로, 극저온 저장 탱크 및 축방향 제트(참조 22~24)의 이전 분석에서 사용되었습니다.

LEO의 대표적인 EDS LH2 탱크에 대한 예비 축 제트 시뮬레이션도 여러 축 제트 구성에 대해 수행됩니다. 이러한 축방향 제트 구성의 열분해 성능을 평가하고 선택된 결과를 제시합니다.

이러한 예비 축방향 제트 EDS 시뮬레이션은 비교적 짧은 시간 동안 혼합기 성능만 평가합니다. 탱크 열 누출, 위상 변화 및 일반적인 자기 압력(제트 오프)/압력 붕괴(제트 온) 사이클을 포함한 보다 상세한 시뮬레이션이 향후 작업에서 추진될 수 있습니다.

Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)

상세 내용은 원문을 참조하시기 바랍니다.


Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity

Summary and Conclusions

사용 가능한 유사성 상관 관계를 사용하는 스케일링 전략은 EDS 클래스 제트 믹서에 대한 적절한 제트 크기 및 작동 조건을 결정하기 위해 개발되었습니다. 물 탱크 시뮬레이션에서 결정된 모델링 매개 변수를 사용하여 열 층화를 제어하기 위해 제트 믹서를 사용하여 EDS 등급 추진제 탱크의 혼합 이력에 대한 CFD 시뮬레이션을 수행했습니다.

시뮬레이션 결과는 다양한 믹싱 동작을 보여 주며 유사성 매개 변수의 사용에서 예상되는 것과 일치했습니다. 이러한 결과는 하위 규모 테스트 및 유사성 상관 관계와 함께 CFD 시뮬레이션이 EDS 등급 탱크를위한 효율적인 제트 믹서 설계를 허용 할 것이라는 확신을 제공합니다.

CFD 시뮬레이션은 다양한 크기의 직경과 제트를 가진 탱크의 제트 믹서에서 수행되었습니다. 1 피트 직경의 물 탱크에서 제트 혼합에 대해 사용 가능한 실험 데이터와 합리적으로 일치하는 모델링 매개 변수가 결정되었습니다. 동일한 모델링 매개 변수를 사용하여 대략 10 배 정도 떨어져있는 스케일로 워터 제트 혼합 실험에서 혼합을 시뮬레이션했습니다. 시뮬레이션 결과는 실험 온도 데이터와 잘 일치하는 것으로 나타났습니다.

References 1.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 1 – Mixer design and experimental investigations,” NASA CR-73908, Nov 1968. 2.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 2 – Experimental data Final report,” NASA CR-73909, Nov 1968. 3.Scale Experimental Mixing Investigations and Liquid-Oxygen Mixer Design,” NASA CR-113897, Sep 1970. 4.Van Hook, J.R. and Poth, L.J., “Study of Cryogenic Fluid Mixing Techniques. Volume 1 – Large-Van Hook, J.R., “Study of Cryogenic Fluid Mixing Techniques. Volume 2 – Large-Scale Mixing Data,” NASA CR-113914, Sep 1970. 5.Poth, L.J. and Van Hook, J.R., “Control of the Thermodynamic State of Space-Stored Cryogens by Jet Mixing,” J. Spacecraft, Vol. 9, No. 5, 1972. 6.Lovrich, T.N. and Schwartz, S.H., “Development of Thermal Stratification and Destratification Scaling Concepts – Volume II. Stratification Experimental Data,” NASA CR-143945, 1975. 7.Dominick, S.M., “Mixing Induced Condensation Inside Propellant Tanks,” AIAA–1984–0514. 8.Meserole, J.S., Jones, O.S., Brennan, S.M. and Fortini, A., “Mixing-Induced Ullage Condensation and Fluid Destratification,” AIAA–1987–2018. 9.Barsi, S., Kassemi, M., Panzarella, C.H. and Alexander, J.I., “A Tank Self-Pressurization Experiment Using a Model Fluid in Normal Gravity,” AIAA–2005–1143. 10.Stark, J.A. and Blatt, M.H., “Cryogenic Zero-Gravity Prototype Vent System,” NAS8-20146, Convair Report GDC-DDB67-006, Oct 1967. 11.Bullard, B.R., “Liquid Propellant Thermal Conditioning System Test Program,” NAS3-12033, Lockheed Missiles & Space Co., NASA CR-72971, July 1972. 12.Erickson, R.C., “Space LOX Vent System,” NAS8-26972, General Dynamics Convair Report CASD-NAS 75-021, April 1975.

13.Lin, C.S., Hasan, M.M. and Nyland, T.W., “Mixing and Transient Interface Condensation of a Liquid Hydrogen Tank,” NASA TM-106201 (or AIAA–1993–1968), 1993. 14.Lin, C.S., Hasan, M.M. and Van Dresar, N.T., “Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank,” NASA TM-106629 (or AIAA–1994–2079), 1994. 15.Olsen, A.D., Cady, E.C., Jenkins, D.S. and Hastings, L., “Solar Thermal Upper Stage Cryogenic System Engineering Checkout Test,” AIAA–1999–2604. 16.Van Overbeke, T.J., “Thermodynamic Vent System Test in a Low Earth Orbit Simulation,” NASA/TM—2004-213193 (or AIAA–2004–3838), Oct 2004. 17.Aydelott, J.C., “Axial Jet Mixing of Ethanol in Cylindrical Containers During Weightlessness,” NASA-TP-1487, July 1979. 18.Aydelott, J.C., “Axial Modeling of Space Vehicle Propellant Mixing,” NASA-TP-2107, Jan 1983. 19.Bentz, M.D., “Tank Pressure Control in Low Gravity by Jet Mixing,” NASA CR–191012, Mar. 1993. 20.Hasan, M.M., Lin, C.S., Knoll, R.H. and Bentz, M.D., “Tank Pressure Control Experiment: Thermal Phenomena in Microgravity,” NASA-TP-3564, 1996. 21.FLOW-3D User’s Manual, version 9.4, Flow Science, Inc., Santa Fe, NM 2009. 22.Grayson, G.D., Lopez, A., Chandler, F.O., Hastings, L.J. and Tucker, S.P., “Cryogenic Tank Modeling for the Saturn AS-203 Experiment,” AIAA–2006–5258. 23.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J., and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks,” AIAA–2007–5552. 24.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J. and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity,” AIAA–2008–5104. 25.Thomas, R.M., “Condensation of Steam on Water in Turbulent Motion,” Int. J. Multiphase Flow, Vol. 5, No. 1, pp. 1–15, 1979. 26.Zimmerli, G.A., Asipauskas, M., Chen, Y. and Weislogel, M.M., “A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks,” AIAA–2010–1294.

Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics

우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 배출, 가스 배출 및 가압과 같은 추진 기능에 영향을 미칩니다. 어떤 경우에는 추진체 운동에 의해 생성되는 힘도 알아야합니다. 이것은 액체 질량이 전체 우주선 질량의 상당 부분을 포함할 때 특히 그렇습니다.

FLOW-3D: Aircraft Fuel Tank Sloshing
FLOW-3D: Aircraft Fuel Tank Sloshing : 회전과 가속을 하는 동안 전투기의 연료 탱크 시뮬레이션

Visualizing Non-Inertial Reference Frame Motion

연료 탱크 슬로싱은 연료의 slosh 역학을 구성하며, 여기서 연료의 역학은 컨테이너와 상호 작용하여 시스템 역학을 변경할 수 있습니다. 일반적으로 연료에는 자유 표면이 있습니다. FLOW-3D는 TruVOF를 사용한 정확한 자유 표면 추적으로 인해 연료 슬로싱 역학을 시뮬레이션하는 데 탁월한 소프트웨어입니다. 또한 FLOW-3D의 NIRF (Non-Inertial Reference Frame) 모듈을 사용하면 고정된 참조 프레임에서 연료 및 움직이는 컨테이너 (연료 탱크)를 시각화하기 위한 쉽고 계산 효율적인 설정이 가능합니다.

FLOW-3D의 NIRF 모듈 기능을 강조하기 위해 우주 왕복선의 연료 슬로 싱을 보여주는 샘플 시뮬레이션이 설정됩니다. 우주 왕복선은 처음 25 초 동안 위쪽으로 가속한 다음, 다음 25 초 동안 같은 양만큼 감속합니다. 그 후 각 가속도를 사용하여 셔틀이 90도 회전한 다음 다시 선형 가속을 계속합니다. 이 복잡한 우주 왕복선 기동 중에 복잡한 자유 표면 유체 운동을 보는 것은 흥미롭습니다. RNG 난류 모델은 유체의 난류 운동 에너지를 추정하는데 사용됩니다.

애니메이션의 왼쪽 창에는 FlowSight에서 생성 된 NIRF 시각화가 표시되고 오른쪽 뷰포트에는 FlowSight를 사용하여 다시 생성된 비 NIRF 시각화가 표시됩니다. NIRF 시각화는 고정된 기준 프레임에서 유체와 탱크의 움직임을 이해하는데 도움이되므로 시스템의 전반적인 역학을 보다 관련성 있게 강조 할 수 있습니다.

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertationsubmitted to the Graduate School of UNISTin partial fulfillment of therequirements for the degree ofMaster of ScienceHaneol Park07/09/2019Approved by_________________________AdvisorIn ...
더 보기
Figure 8 Evaluation test of thermal sprayed coatings

Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines

고효율 가스 터빈용 신소재 및 제조 기술 개발 Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015) 가스 ...
더 보기
Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b

Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways

눈사태가 일리노이 고속도로에 미치는 영향을 줄이기 위한 생활장벽 설계 John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 ...
더 보기
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics 우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 ...
더 보기
Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy 전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다 ...
더 보기
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기

연료 탱크 슬로싱

시뮬레이션 사례 설명 이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 ...
더 보기
2 Fluid, 1 Temperature

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델 우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 ...
더 보기

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 ...
더 보기

Oil & Gas Separators

Oil & Gas Separators FLOW-3D는 오일 및 물과 같은 혼합 불가능한 유체를 모델링할 수 있으며, 개방된 환경(주변 공기)에 관련된 구성 ...
더 보기
수자원/수처리/환경분야

수자원 분야

Water & Environmental

FLOW-3D는 작은 하수 처리 시스템부터 대형 수력 발전 프로젝트까지 수처리 및 환경 산업에 직면한 광범위한 문제를 해결할 수 있는 뛰어난 CFD 소프트웨어 입니다. FLOW-3D는 시뮬레이션의 복잡성을 감소시키고 최적의 솔루션에 대해 노력을 집중할 수 있도록 해줍니다. 이를 통해 통해 파악된 가치 있는 통찰력은 귀하의 상당한 시간과 비용을 절약 할 수 있습니다.

실제 지형을 적용하여 3차원 shallow water hybrid model을 이용한 댐 붕괴 시뮬레이션

FLOW-3D는 자유표면 흐름이 있는 수치해석 알고리듬에 의해 유동의 표면이 시공간적으로 변하는 모사를 위한 이상적인 도구라고 할 수 있습니다. 자유 표면은 물과 공기 같은 높은 비율의 밀도 변화를 가지는 유체들 사이의 특정한 경계를 일컫습니다. 자유 표면 흐름을 모델링하는 것은 일반적인 유동방정식과 난류 모델이 결합된 고급 알고리즘을 필요로 합니다. 이 기능은 FLOW-3D로 하여금 침수 구조에 의해 형성된 방수, 수력 점프 및 수면 변화의 흐름의 궤적을 포착 할 수 있습니다.

Bibliography & Technical Data

(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertationsubmitted to the Graduate School of UNISTin partial fulfillment of therequirements for the degree ofMaster of ScienceHaneol Park07/09/2019Approved by_________________________AdvisorIn ...
더 보기
Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 ...
더 보기
ANSI/HI 9.8 Pump Intake Design

Hydraulic Jump in a Trench Type Pump Sump

트렌치 형 펌프 배수 조의 유압 점프 이 기사는 Ibis Group의 대표인 Steve Saunders가 기고했습니다. 유압 점프는 개방형 채널 애플리케이션으로 ...
더 보기
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기
FIGURE 2. Grain size distribution of test site: Pea Island.

Scour Assessment of Bridge Foundations Using an In Situ Erosion Evaluation Probe 2 (ISEEP)

ISEEP (In Situ Erosion Evaluation Probe 2)를 사용한 교량 기초의 세굴 평가 M. Kayser1and M. A. Gabr2 Abstract 이 논문의 ...
더 보기
Figure 1: PAC-UPC laboratory canal bend in operation.

1D, 2D AND 3D MODELING OF A PAC-UPC LABORATORY CANAL BEND

PAC-UPC 실험실 운하 굴곡의 1D, 2D 및 3D 모델링 Manuel Gómez, FLUMEN Research Institute. Technical University of Catalonia. Jordi Girona, ...
더 보기
Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)

ANALYSIS OF FLAP GATE DESIGN AND IMPLEMENTATIONS FOR WATER DELIVERY SYSTEMS IN CALIFORNIA AND NEVADA

캘리포니아 및 네바다의 물 공급 시스템을위한 FLAP GATE 설계 및 구현 분석 상류 수위를 유압으로 제어하는 ​​게이트의 아이디어는 1940 년대 ...
더 보기
Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).

EFECTS OF HYDRAULIC STRUCTURES ON FISH PASSAGE: AN EVALUATION OF 2D VS 3D HYDRAULIC ANALYSIS METHODS

물고기 통로 유압 구조효과 :2D VS 3D 유압 분석 방법의 평가 ABSTRACT 채널 스패닝 유압 구조물은 상류 물고기 이동에 대한 ...
더 보기
Picture of scoured bed surface

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF FLOW AND SEDIMENT TRANSPORT AROUND A SERIES OF SPUR DIKES

유동 시뮬레이션의 실험적 연구와 일련의 SPUR DIKES 주변의 침전물 수송 byANU ACHARYACopyright © Anu Acharya 2011A Dissertation Submitted to the ...
더 보기
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

Hydraulic Energy Losses|유압 에너지 손실

유압 에너지 손실 이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production Hydro-Québec Équipement . 이 내용은 ...
더 보기

FLOW-3D Water & Environmental Brochure (FSI) Bibliography

Models

Case Studies

Conference Proceedings

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Design of a Sewer Transition

Design of a Sewer Transition | 하수도 전환 설계

This article was contributed by Daniel Valero, Rafael García-Bartual, Ignacio Andrés and Francisco Valles of the Polytechnic University of Valencia.

2010 년 12 월, 새로운 고속 열차 MADRID-VALENCIA (스페인)가 개통되었습니다. 건설 전에 극복해야 할 많은 기술적 문제 중 하나는 터널로 구성된 도심의 철도 입구로 발렌시아의 주요 남쪽 하수도를 벗어나게 했습니다. 이탈 도달 범위는 길이가 143 미터이며 아래에 자세히 설명된 복잡한 유압 설계를 포함하여 기존 경사와 관련하여 경사 및 단면의 중요한 변경을 포함합니다. 유압 성능은 FLOW-3D를 사용한 수치 시뮬레이션과   발렌시아 폴리 테크닉 대학교의 유압 실험실에서 물리적 모델을 통해 확인되었습니다. 최대 용량 100 m 3 / s에 대한 테스트가 수행되었습니다 .

The Sewer                          

그림 1은 하수도 기하학 설계의 주요 특징을 보여줍니다. 여기에는 철도 터널을 건넌 직후에 위치한 표준 WES 프로파일이 포함됩니다. 이 위어는 높은 유속으로 초 임계 흐름을 강제합니다. 하류에서 바람직하지 않은 흐름 조건이 설정되는 것을 방지하기 위해 둑 바로 하류에 정류 조를 설계했습니다. 이러한 장치는 연결 하류 하수도에서 높은 에너지 손실 및 임계 이하의 흐름 조건을 수반하는 유압 점프를 강제합니다. 서로 다른 배출 조건에서 흐름의 거동을 보장하기 위해 채널에 두 개의 세로 줄의 삼각형 블록이 포함되었으며, 이는 정수 조 길이에서 유압 점프를 국지화하기 위해 에너지 소산 기 역할을했습니다. 그 계단의 길이에서 수압 점프. 새로운 변형 채널과 기존 도달 지점(upstream and downstream)사이는 기하학적 요소로 부드럽게 연결합니다.(그림 2).

Figure 1. Geometry of the sewer

Figure 2. Reach 2 of the sewer

FLOW-3D Simulations

문제의 정확한 해결을 위해 계산 리소스를 최적화하기 위해 하수도를 여러 개의 중첩 된 범위로 분할하여 수력 솔루션의 연속성을 보장하고 고려 된 각 도달 범위에서 더 미세한 메시를 사용할 수 있습니다. 가장 복잡한 흐름이 정수 조에서 발생하기 때문에 이러한 도달 범위는 윤곽선과 바닥 블록에서 중앙 흐름 영역까지 점진적으로 다양한 셀 크기로 가장 높은 해상도 (6.000.000 셀)로 해결되었습니다. 유압 점프 시뮬레이션에 대한 비디오는 이 기사의 끝에 있습니다.

Figure 3. Velocity magnitude distribution

Figure 4. Turbulent kinetic energy distribution.

Figure 5. Air entrained prediction with turbulent air entrainment model

ke RNG 난류 모델이 선택되었으며, 이류에 대한 명시적인 2 차 단 조성 보존 체계가 있습니다. 자유 표면 표현에는 Split Lagrangian 방법이 사용되었습니다. 정상 상태 솔루션 이전의 과도 흐름은 더 거친 메쉬로 시뮬레이션되었습니다. 그림 3과 4는 수치 시뮬레이션의 관련 결과를 보여줍니다. 또한 수력 점프의 수치 시뮬레이션을 보여주는 비디오 가이드 기술 노트에 첨부되어 있습니다.

유압 점프에서 발생하는 공기 혼입, 특히 난류와 자유 표면 간의 상호 작용을 설명하기 위해 추가 시뮬레이션이 수행되었습니다. 그림 5는 가변 밀도 옵션을 선택하고 기본 계수 C air  = 0.5를 사용하는 FLOW-3D 의 공기 혼입 모델을 사용한 결과를 보여줍니다.

Comparison with the Physical Model

발렌시아 Polytechnic University의 수압 실험실에 실물 모형을 구축하였습니다. 모형에 사용된 척도는 1/20이었습니다. 그림 6은 weir 상단 바로 위에 있는 임계 단면의 프로파일을 보여 줍니다. 발견된 평균 깊이의 오차는 1.3% 였습니다. 유동의 다른 구조적 특성은 FLOW-3D에 의해 적절하게 재현되었다. 예를 들어, 예를 들어, 하수도가 만곡된 범위에 따른 자유 표면의 형상과 Weir의 상류로의 흐르는 자유 표면의 현상입니다.

Figure 6. Relative error at the critical section. Comparison between FLOW-3D, physical model, and HEC-RAS (US Army Corps of Engineers).

Conclusions

실험실 결과와 FLOW-3D시뮬레이션 간의 약간의 차이가 확인되지만 연구 결과는 매우 만족스럽습니다. 아래 동영상을 통해 실험 및 수치해석 결과를 비교해 보시길 바랍니다.

FLOW-3D는 가능한 많은 형상 또는 유압 설계를 테스트할 때 실험실의 실험 횟수를 줄일 수 있습니다. 또한 FLOW-3D의 파일이 속도, 와도, 난류 등과 같은 관련 분야의 상세한 시공간 분포를 제공하므로 최종 설계와 관련하여 실험실에서 수행 된 결과와 측정을 확장하는 데 도움이 될 수 있습니다. 결합된 기술은 연구에서 언급한 것과 같은 유압 기반시설의 설계, 검증 및 최적화를 위한 강력한 도구입니다.

레이놀즈 수

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Reynolds Number

레이놀즈 수

주어진 수치 방법에 의해 정확하게 계산 될 수 있는 유동에 대해서 가장 높고, 가장 낮은 레이놀즈 수 무엇입니까? 이 질문은 다양한 답과 그리고 가장 기술적인 문제들로서 주어진 답을 포함하는 가정들로부터 다양한 답을 가지고 있습니다.

본 목적을 위해, 레이놀즈 수는 R = R LU / ν로 정의되며, 여기서 L과 U는 유동 특성 길이 및 스케일이고, ν는 유체의 동점도(kinematic viscosity )입니다. 즉 물체의 관성이 점성에 비해서 얼마나 큰가를 나타내는 척도로 이 레이놀즈 수가 작을수록 층류(유체의 유선이 유지되면서 흐르는 유동)가, 클수록 난류가 형성된다. 무 차원 레이놀즈 수가 점성의 관성 효과의 측정을 중요성을 상기시킵니다. 높은 레이놀즈 수에서의 흐름은 정성적으로 다른 행동을 나타내고, 난류 될 수 있습니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류가 난류로의 분해 또는 경계층이 표면에서 분리되는 위치에 따라 달라지는 몸체의 양력 및 항력을 예측하는 데 계산이 사용될 수 있는 한계입니다. 유동에 대한 점성 응력의 상대적 효과를 정확하게 시뮬레이션 하는 것이 중요한 이러한 또는 다른 유형의 유동 프로세스에서는 계산에서 어떤 수준의 정확도를 기대할 수 있는지에 대한 아이디어를 갖는 것이 유용합니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류에서 난류로 붕괴되는 것을 예측하곤 하는 계산의 한계치이며, 유동의 경계층이 그 표면에서부터 박리되는 곳에서의 물체의 양력과 항력을 예측하는 한계치이기도 합니다. 유동의 다양한 유형에서 유동의 점성 응력의 상대적 효과를 정확하게 시뮬레이션하는 것은 중요하며, 계산상 예측되는 정확도의 수준에 대한 어떤 아이디어를 확보하는 것 또한 매우 유용할 것입니다.

높은 레이놀즈 수 제한 – 물리적 인수

흐름을 정확하게 표현하는데 필요한 계산 요구 사항 (즉, 해상도)을 추정하기 위해 간단한 물리적 인수를 사용할 수 있습니다. 이 주장은 흐름 영역이 작은 요소로 세분화 될 때 요소 내의 모든 흐름량이 천천히 변한다는 가정을 기반으로 합니다. 이 가정은 각 요소의 평균 수량 값이 요소 내의 실제 값에 대한 좋은 근사치라는 의미를 전달합니다.

요소 내에서 느리게 변하는 속도를 가지려면 요소 크기의 척도에서 흐름의 레이놀즈 수가 작아야 합니다 (예 : 1 차 Rd = dx · du / ν ≤ 1.0). 이 표현에서 dx와 du는 요소의 길이와 속도 스케일입니다. 이 물리적 요구 사항, 요소의 흐름의 부드러움 (즉, 낮은 레이놀즈 수, 이 척도의 층류 흐름)은 정확한 수치 분해능에 필요한 요소의 크기를 정의하는데 사용될 수 있습니다.

위의 부등식은 L = Ndx 및 U = Ndu 관계에 의해 거시적 레이놀즈 수로 변환 될 수 있으며, 이는 R ≤ N 2로 이어집니다 . 즉, 개별 요소의 규모에 대한 부드러운 흐름의 물리적 정확도 요구 사항은 정확도로 계산할 수 있는 최대 레이놀즈 넘버원이 NN 2 정도라는 것을 의미합니다. 여기서 N은 특성을 해결하는 데 사용되는 요소의 수입니다. 길이 L.

대표적인 응용에서 N은 종종10 내지 20의 범위에 있는 수로서 매우 큰 수 아닙니다. 그리고 이는 단지 약400 의 정확한 계산을 위해 최대 레이놀즈 수로 변환합니다. 이 결과에 대해 해석을 달기 전에 정확한 레이놀즈 수 계산을 위한 추정을 위해서 다른 접근 방법을 시도하는 유익합니다.

High Reynolds Number Limit – A Numerical Argument

수치 근사에 의해서 계산 도입된 viscous-like smoothing의 양은 truncation error로부터 평가 될 수 있습니다. 알다시피 아이디어는 요소 크기 (그리고 적정한 시간 간격 크기) 멱함수을 미분 근사하는 테일러 급수 전개를 하는 것입니다. 물론, 일관성 있는 근사는 원래 근사환 된 편미분 방정식의 가장 낮은 차수를 이용하는 것입니다.

다음으로 높은 차수는 보통 확산 (즉, 2차 차수 공간 미분형태) 항입니다. 점성 계수와 더불어 이러한 항의 계수 비교는 점성 효과를 더 정확하게 계산 할 수 없을 때의 추정치를 제공합니다.

1차 수치 근사 (예를 들어 대류에 대한donor cell 또는upwind technique )에 대해서 정확도를 위해서 1보다 적어야만 하는 항들의 비는 다음의 판별식을 유도하게 됩니다( R ≤ 2N.) 그리고 2차 수치 근사의 결과, R ≤ N얻어지고 물리적인 인자(Physical Argument)로부터 같은 결과가 얻어 집니다.

이러한 관계의 우변을 곱하는 작은 숫자 요소가 사용되며, 이는 사용 된 특정 수치 근사에 따라 달라 지지만 N에 대한 기본 종속성은 변경되지 않습니다. 모든 2 차 방법이 1 차 방법보다 분명히 훨씬 낫지 만 결과는 고무적이지 않습니다. 정확하게 계산할 수 있는 최대 레이놀즈 수는 N을 늘리지 않는 한 매우 제한적인 것으로 보입니다. 이는 매우 큰 그리드를 처리한다는 의미입니다.

하이 레이놀즈 수에 대한 일반적인 의견

이러한 평가들은 첫 발생 시에는 실망스런 부분도 있으나 종종 완화되는 상황으로 전개됩니다. 무엇보다도 중용한 것은 대부분의 문제들은 점성 응력에 대한 정확한 처리를 요구하지 않습니다. 이러한 문제에 대해서 높은 레이놀즈 수의 상한은 점성 효과가 중요하지 않다는 것을 의도한 의미를 갖습니다.

어떤 유동이 난류에 의해 운동량 혼합이 이루워진 fully turbulent 되기 위해 충분히 높은 레이놀즈 수를 가질 때, 종종 잘 분류될 수 있는 scale을 가진 영역 내에서 100 미만의 유효한 레이놀즈 수의 평균 유동으로 진행되곤 합니다. 물론, 이것은 난류를 기술할 수 있는 적당한 난류 모델이 사용되고 있다는 것을 가정합니다.

마지막으로 점성 효과의 정확한 정보에 따라 일부 유동 특성을 가질 필요가 있을 때 인위적인 의미의 효과를 유도하는 것이 가능 할 수 있습니다. 예를 들어, 풍동 trip wire는 종종 레이놀즈 수 상사성( similarity )의 부족을 고려하여 trigger 유동의 박리에 사용되곤 합니다. 비슷한 처리가 풍동의 수치 시뮬레이션에 추가 될 수 있습니다.

결론은 CFD 방법을 사용하여 높은 레이놀즈 수 흐름을 계산하는 데 사용할 수 있지만 수치해석상의 전산 오차가 물리적인 효과를 압도 할 수 있는 상황에 대한 경고는 해당 난류 모델에 달려있다고 말할 수 있습니다.

낮은 레이놀즈 수 제한

낮은 레이놀즈 수에서 한계는 정밀도의 한계가 아니라 계산을 완료하는데 필요한 계산 시간을 기준으로 한계입니다.  점성 응력 항에 explicit 수치 근사를 사용하면 숫자의 안정성을 유지하기 위해 시간 단계의 크기에 한계가 있습니다.  이 한계는 본질적으로 점성으로 인한 운동량의 변화는 하나의 시간 단계에서 대략 1 개의 요소를 넘어 전파하는 것은 아니라는 것을 보여줍니다.  단순한 2 차원의 경우에는 이 한계는 νdt ≤ dx2/4입니다.

이것은 T = Mdt 및 TU = L이라는 대응을 작성하여 레이놀즈 수를 포함하는 식으로 변형 할 수 있습니다.  즉, 흐름의 특성 시간은 속도 U의 유체가 거리 L을 이동하는 시간이며, 시간 T를 분해 시간 단계의 수는 M입니다.  이러한 관계식에 의해 안정된 조건은 M = 4N2/R 입니다.

이 결과에서 중요한 것은 M이 R에 반비례하여 증가하는 것입니다.  레이놀즈 수가 매우 작은 흐름의 경우 explicit 수치 법에는 매우 많은 시간 단계가 필요할 수 있으며,이 숫자는 해상도의 상승에 따라 급속히 증가하고 있습니다.  낮은 레이놀즈 수의 한계를 가장 효과적으로 제거하는 방법은 implicit 수치 법을 사용하여 점성 응력을 평가하는 것입니다.


Reynolds Number

What are the highest and lowest Reynolds number flows that can be accurately computed by a given numerical method? This question has a variety of answers, and, as with most technical issues, the variety of answers arises from the assumptions involved in giving the answer.

For present purposes, the Reynolds number R is defined as R=LU/ν, where L and U are characteristic length and velocity scales for a flow, and ν is the kinematic viscosity of the fluid. It will be recalled that the non dimensional Reynolds number is a measure of the importance of inertia to viscosity effects. At high Reynolds numbers a flow may become turbulent, exhibiting qualitatively different behavior.

Generally, the most important limit to consider is that of high Reynolds numbers. This is the limit where computations might be used to predict the breakdown of a laminar flow into turbulence, or the lift and drag of a body that is dependent on where boundary layers separate from its surface. In these or other types of flow processes in which it is critical to correctly simulate the relative effect of viscous stresses on the flow, it is useful to have some idea of what level of accuracy can be expected in a computation.

The reason that a Reynolds number limitation exists in computational fluid dynamics CFD) is that the computational stability of most CFD methods relies on some type of numerical smoothing or homogenizing within the computational elements. Since viscosity is a physical mechanism for smoothing flow variations, there can be a problem differentiating between numerical and physical smoothing. This is especially important when critical Reynolds number situations are encountered, because they require an especially accurate estimate of viscous stresses.

High Reynolds Number Limit – A Physical Argument

A simple physical argument can be used to estimate the computational requirements (i.e., resolution) needed to achieve an accurate representation of a flow. The argument is based on the assumption that when a flow region is subdivided into small elements all flow quantities within an element are slowly varying. This assumption carries the implication that the average values of quantities in each element are good approximations for the actual values within the element.

To have a slowly varying velocity within an element, the Reynolds number of the flow on scales of the element size must be small, say of order one, Rd=dx·du/ν ≤ 1.0. In this expression dx and du are length and velocity scales characteristic of the element. This physical requirement, the smoothness of the flow in elements (i.e., a low Reynolds number, laminar flow on this scale), may be used to define the size of elements needed for an accurate numerical resolution.

The above inequality can be converted to a macroscopic Reynolds number by the relations, L=Ndx and U=Ndu, which leads to R ≤ N2. In other words, the physical accuracy requirement of a smooth flow on the scale of individual elements implies that the maximum Reynolds number one can expect to compute with accuracy is on the order of NN2 where N is the number of elements used to resolve a characteristic length L.

In typical applications, N is often in the range of 10 to 20, which translates to a maximum Reynolds number for accurate computations of only about 400, not a very large number! Before commenting on this result it is instructive to try a different approach for estimating the limit for accurate Reynolds number computations.

High Reynolds Number Limit – A Numerical Argument

The amount of viscous-like smoothing introduced into a computation by numerical approximations can be estimated from truncation errors. The idea is to do a Taylor Series expansion on the difference approximations in powers of the element size (and time-step size if that is appropriate). Of course, a consistent approximation should have as its lowest order terms the partial differential equation that was originally being approximated.

At the next higher order there are usually terms that have the character of a diffusion (i.e., second-order space derivatives). A comparison of the coefficients of these terms with the coefficient of viscosity gives an estimate of when viscous effects would no longer be computed accurately.

For a first-order numerical approximation (e.g., a donor cell or upwind technique for advection) the ratio of terms, which must be less than one for accuracy, leads to the criteria R ≤ 2N. With a second-order approximation the result is R ≤ N2, the same result obtained from the “Physical Argument.”

There are small numerical factors multiplying the right-hand sides of these relations, which depend on the specific numerical approximations used, but the basic dependencies on N remain unchanged. Any second-order method is clearly much better than a first-order method, but the results are not encouraging. The maximum Reynolds number that can be computed accurately appears to be quite limited, unless one is willing to increase N, which means dealing with extremely large grids.

General Comments on High Reynolds Numbers

These estimates are discouraging when first encountered, but there are frequently mitigating circumstances. Foremost is the realization that most problems do not require an accurate treatment of viscous stresses. For these problems the high Reynolds number limit has the intended meaning that viscous effects are not important.

When flows have a high enough Reynolds number to be fully turbulent the momentum mixing induced by the turbulence often leads to a mean flow with an effective Reynolds number that is less than 100, well within the range of resolvable scales. Of course, this assumes that a suitable turbulence model is available to describe the turbulence.

Finally, when it is necessary to have some flow property that depends on an accurate knowledge of viscous effects, it may be possible to induce that effect by artificial means. For example, in wind tunnels trip wires are sometimes used to trigger flow separations to account for a lack of Reynolds number similarity. A similar treatment can be added to a numerical simulation of a wind tunnel.

The bottom line is, CFD methods can be used to compute high Reynolds number flows, but it is up to the modeler to be alert for situations where numerical errors could overshadow physical effects.

Low Reynolds Number Limit

At low Reynolds numbers the limit is not one of accuracy but a limit based on the computational time necessary to complete a computation. When explicit numerical approximations are used for viscous stress terms there is a limit on the size of the time step to maintain numerical stability. That limit is essentially a statement that momentum changes caused by viscosity do not propagate more than about one element in one time step. In a simple two-dimensional case this limit is νdt ≤ dx2/4.

This can be transformed into an expression involving the Reynolds number by making the correspondences: T=Mdt and TU=L. That is, the characteristic time for a flow is the time for fluid at velocity U to move a distance L, and the number of time steps resolving time T is M. With these relations the stability condition is then, M = 4N2/R.

The importance of this result is that M increases inversely with R. For very low Reynolds number flows, explicit numerical methods may require a very large number of time steps, and this number increases rapidly with an increase in resolution. The low Reynolds number limit is best eliminated by employing an implicit numerical method for evaluating viscous stresses.

Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)

ANALYSIS OF FLAP GATE DESIGN AND IMPLEMENTATIONS FOR WATER DELIVERY SYSTEMS IN CALIFORNIA AND NEVADA

캘리포니아 및 네바다의 물 공급 시스템을위한 FLAP GATE 설계 및 구현 분석

상류 수위를 유압으로 제어하는 ​​게이트의 아이디어는 1940 년대 Vlugter에 의해 네덜란드에서 시작되었습니다. 그 이후로 플랩 게이트 설계는 자동 상류 수위 제어를위한 비용 효율적이고 간단한 유압 게이트로 수정 및 개발되었습니다.

문헌 검토에서 논의 된 바와 같이 플랩 게이트 설계에는 여러 가지 변형이 있지만 모든 플랩 게이트는 일부 수평 축을 중심으로 회전하는 강판으로 구성됩니다. 플랩 게이트 유형 설계에 대한 대부분의 개념은 물이 게이트에 가하는 압력에 대응하는 게이트 플레이트 상단의 균형추를 사용합니다.

수역의 수위가 증가하여 게이트에 대한 압력이 증가하고 게이트를 여는 경향이 있는 게이트 주위에 순간이 생성됩니다 (게이트 개방 커플). 반대로, 유출로 인해 수위가 감소하면 압력이 감소하고 카운터 웨이트가 게이트를 닫는 경향이 있는 반대 모멘트를 생성합니다 (게이트 클로징 커플). 플랩 게이트는 피벗 포인트에 대한 게이트 폐쇄 커플이 동일한 포인트에 대한 게이트 개방 커플과 정확하게 균형을 이루도록 설계 및 작동되어야 합니다.

그림 1에 표시된 이 두 쌍이 균형을 이루면 플랩 게이트는 다양한 유속에 대해 동일한 상류 수위를 유지할 수 있습니다. 게이트가 올바르게 설계되면 상류 수위가 몇 센티미터 이내로 제어됩니다 (Burt et al., 2001).

게이트 설계와 함께 EXCEL 설계 프로그램이 만들어져 사용 편의성, 설계 및 설치 가능성이 높아졌습니다. 오늘날 캘리포니아와 네바다에는 200 개 이상의 플랩 게이트 설치가 있습니다. 캘리포니아와 네바다의 상수도 및 관개 지역은 상수도 구조를 수정하고 업데이트하고 있습니다. 그러나 특히 물이 부족한 건기에 재배 비용을 동시에 제한해야합니다. ITRC Flap Gate는 이러한 목표를 달성하기위한 간단하고 경제적인 솔루션입니다.

Figure 1. Opening and closing couple for the flap gate design (Burt et al., 2001)

그 디자인은 가능한 최저 비용으로 정확한 배송이 필요한 물 및 관개 지역에 매력적입니다. Cal Poly Irrigation Training and Research Center (ITRC)는 ITRC 플랩 게이트를 설계하고 개발했습니다 (그림 2 참조).

Figure 2. ITRC Flap Gate Installation at Walker River Irrigation District (ITRC,
2012)
Figure 2. ITRC Flap Gate Installation at Walker River Irrigation District (ITRC,
2012)

캘리포니아와 네바다의 물 공급은 수요 증가로 인해 가능한 한 효율적이어야 합니다. 이 지역의 관개 지역의 경우 운하 또는 파이프 라인을 통해 정확하게 물을 전달할 수 있어야 합니다. 특히 최종 사용자가 할당량의 일정 비율만 받는 해에는 최종 사용자가 받는 수량이 최대한 정확해야 합니다.

농업 배달의 경우 배달 제어가 개선되어 재배자가 물을 효율적으로 사용할 수 있습니다. 상류 수위 제어 방법을 선택할 때 (유량을 제어하는) 결정 요인 중 하나는 비용입니다. 상류 수위 제어가 비싸면 물 비용도 비쌉니다. 정확성, 제어 및 비용 요구 사항으로 고객을 만족 시키기 위해 많은 관개 지역에서는 문제에 대한 해결책으로 플랩 게이트를 선택합니다. 플랩 게이트는 수위를 ± 0.5 인치 이내로 유지할 수 있으며 다양한 흐름 조건에서 안정적으로 작동 할 수 있으며 저렴합니다.

목표

이 프로젝트는 정확성, 비용 및 내구성을 고려하여 이전에 캘리포니아와 네바다에 설치된 플랩 게이트를 분석합니다. 또한이 프로젝트는 물 산업을위한 ITRC 플랩 게이트 설계를 통합하고 업데이트하는 것을 목표로 합니다.

이 보고서는 Walker River Irrigation District에 초점을 맞춘 Alta Irrigation District, Walker River Irrigation District 및 Chowchilla Water District를 포함한 여러 관개 지역 내의 플랩 게이트 설치 및 개발에 대해 자세히 설명합니다. 이러한 게이트에 대한 평가는 ITRC 플랩 게이트의 현장 설치에서 도출 된 결론을 통합하는 데 필요합니다.

또한 이 프로젝트는 저자가 ITRC의 Justin McBride와 함께 네바다 주 예 링턴에있는 Walker River Irrigation District의 ITRC Flap Gate에 대해 논의합니다. 이 프로젝트에는 FLOW-3D라는 전산 유체 역학 소프트웨어를 사용한 ITRC Flap Gate 평가도 포함됩니다. FLOW-3D 분석은 플랩 게이트의 작동 방식을 확인하고 플랩 게이트 설치에 대한 ITRC의 경험에서 발생한 이벤트를 설명하는 데 도움이 됩니다. 이 프로젝트는 Cal Poly의 Irrigation Training and Research Center (ITRC)에서 지원합니다.

수위 제어 구조 물 전달 운하에서 전달 정확도는 매우 중요합니다. 유량 제어를 통해 정확도를 제어 할 수 있다고 가정 할 수 있습니다. 반대로, 운하 운영자가 운하의 수위를 제어하는 것이 훨씬 쉽고 정확합니다.

“더욱이 중력 배출량의 제약, 운하 은행의 안정성, 잡초 성장 감소 노력, 중간 저수량 구성, 범람 위험은 수위로 표현됩니다”(Malaterre, 1995). 수위는 상류 또는 하류 수위 제어로 제어 할 수 있습니다.

그림 3은 상류 수영장 (Yup)의 수위 제어 다이어그램을 보여주고 그림 4는 하류 수영장 (Yctn)의 수위 제어 다이어그램을 보여줍니다.

Figure 3. Upstream pool water level control diagram (Malaterrre, 1995)
Figure 4. Downstream pool water level control diagram (Malaterrre, 1995)
Figure 4. Downstream pool water level control diagram (Malaterrre, 1995)

위의 수위 제어 옵션 중에서 상류 수위 제어가 가장 일반적으로 사용되는 방법입니다. 상류 수위 제어를 선택한 이유는 자동 또는 원격 제어가없는 수동 조작 때문일 수 있습니다.

상류 수위 제어는 공급 업체 중심이기 때문에 물 공급 직원이 운영하기가 더 쉽습니다 (Clemmens et al., 1989). 관개 구역 (또는 기타 물 공급 기관)이 엄격한 배달 일정을 가지고 있는 경우 상류 수위 제어가 더 나은 선택입니다 (Replogle et al., 1980). 그러나 유연한 일정이 필요한 경우 상류 수위 제어가 실용적이지 않습니다.

상류 수위 제어 시스템에서는 배송 일정 변경을 위해 1 ~ 5 일의 사전 통지가 필요합니다. 이 리드 타임은 배달 운하를 따라 저장되어 있거나 배수로를 통해 강으로 반환되는 과도한 물이 있는 경우에만 더 유연할 수 있습니다 (Clemmens et al., 1989).

수동, 원격 또는 자동 게이트, 둑, 수로 및 이들의 조합을 포함하여 상류 수위를 제어하는 ​​여러 방법이 있습니다. 사용되는 일반적인 유형의 게이트는 방사형, 수직 리프트 및 플랩 게이트입니다 (Sehgal, 1996). 상류 수위 제어 방법을 선택할 때 몇 가지 고려 사항이 있습니다.

이러한 고려 사항에는 구현 및 유지 관리 비용, 설치 및 유지 관리의 용이성, 필요한 정확도 수준, 물 공급 일정 및 유연성이 포함됩니다. 대부분의 학군에서 가장 큰 비중을 차지하는 요소는 구현 및 유지 관리 비용입니다.

설치 및 유지 보수의 용이성과 함께 비용 효율성은 플랩 게이트가 운하 또는 기타 개방 수위 공급 시스템의 상류 수위 제어를 위한 지능적인 결정을 내리는 이유입니다. “게이트의 크기와 디자인에 따라 수위 제어 <1 인치 (2.5 em)를 얻었습니다. 이러한 이유로 낮은 유지 보수 및 초기 비용으로 인해 플랩 게이트가 주요 후보입니다. … “(Burt et al. 2001).

플랩 게이트 제어 구조 및 애플리케이션의 변형. 제어 구조를 작동하기 위해 유압 차동 장치를 사용하는 플랩 게이트 개념에는 몇 가지 변형이 있습니다. 이 디자인 아이디어는 네덜란드에서 시작된 다음 미국, 중국 및 기타 국가로 옮겨 전 세계적으로 구현되었습니다.

다음은 플랩 게이트 디자인의 몇 가지 변형입니다. Xiangtan Q 형 자동 유압 플랩 게이트는 게이트가 앞뒤로 미끄러지도록 안내하는 두 개의 곡선 베어링을 사용합니다. Jiong에 따르면 게이트의 장점은 기능 안전성, 광범위한 사용 범위, 작동의 높은 신뢰성, 구조의 단순성, 숙련 된 유지 보수의 필요성 없음, 낮은 작업 및 유지 보수 비용, 더 큰 유량 및 더 나은 홍수 제거 능력을 포함합니다. 부스러기. 이 게이트의 최대 개방 각은 80 도입니다 (Jiong, 1988).

Jiong은 “1980 년 이후 중국 후난 성 Xiangtan시 근처 10 개의 게이트 위어에 최소 35 개의 Q 형 게이트가 설치되었으며 5-8 년 동안 아무런 손상없이 안전하게 작동했습니다”라고 말합니다. 그러나 상류 수위 제어를 유지하기 위해 게이트가 얼마나 정확한지에 대한 논의는 없었습니다.

여러 가지 크기의 플랩 게이트가 사용되었습니다. Seghal (1996)은 폭이 최대 100m 인 플랩 게이트에 대해 설명합니다. 비용으로 인해 플랩 게이트의 높이는 일반적으로 4m에 불과하다는 것도 언급되었습니다. 플랩 게이트의 또 다른 변형은 Chinh et al (2008)에 의해보고되었습니다.

간단한 버전의 플랩 게이트가 논에서 운하의 하류 끝에 사용되었습니다 (그림 5 참조).이 경우, 게이트의 작동을 최적화하기 위해 게이트를 통과하는 유속을 찾는 방정식이 개발되었습니다. 배수관 (Chinh et al., 2008). 유량 측정 도구로서 플랩 게이트의 정확성에 대한 논의는 없었습니다. 이 애플리케이션에서 플랩 게이트는 게이트의 다른 변형에서와 같이 상류 수위 제어에 사용되지 않았습니다.

Figure 5. Cross-section of Flap Gate Variation (Chinh, 2008)
Figure 5. Cross-section of Flap Gate Variation (Chinh, 2008)

Raemy와 Hager (1998)는 ITRC Flap Gate와 유사한 설계를 논의합니다. 그러나 채널에는 위어가 없으며 제시된 디자인은 ITRC 플랩 게이트와 달리 억제 된 측벽 조건을위한 것입니다. 이러한 설계에 대한 평가에서 Burt (2002)는 “캘리포니아에서 내가 알고있는 100 개 이상의 설치 중 어느 것도 조건을 억제하지 않았습니다”라고 말했습니다.

또한 Raemy와 Hager (1998)는 “분석이 압력 분포, 게이트의 모멘트를 결정할 수 없습니다. “이 게이트의 경우 평형 모델을 찾기위한 개방 모멘트에 대한 경험적으로 유도 된 방정식 (Litrico et al., 2005). Begemann Gate. 가장 가까운 플랩 게이트 설계 ITRC 플랩 게이트는 Begemann 게이트입니다.

Litrico et al. (2005)은 Begemann 게이트를 “상류 수위 위에 위치한 수평 축을 중심으로 회전하는 강철판이 장착 된 둑”이라고 설명합니다. Begemann 게이트를 사용하면 물은 열린 게이트의 양쪽에서 자유롭게 흐를 수 있습니다 (그림 6 참조). 하류로부터의 영향이 없을 때이 게이트는 상류 수준을 상당히 정확하게 유지할 수 있습니다. Vlugter Gate는 Begemann Gate의 변형이며 뒷면이 둥근 형태입니다. 하위에서 작동하도록 의도 병합된 조건 (Litrico et al., 2005).

Figure 6. Ten Begemann gates in the Hadejia Valley Irrigation Project North Main Canal (Litrico et al., 2005)
Figure 6. Ten Begemann gates in the Hadejia Valley Irrigation Project North Main Canal (Litrico et al., 2005)

ITRC 플랩 게이트. ITRC 플랩 게이트는이 보고서에서 논의 할 게이트입니다. 게이트는 여러 다른 연구 프로젝트의 결과입니다. Burt (200 1)는 다음과 같이 말합니다. Vlugter (1940)는 Begemann 및 Doell과 같은 다양한 구성을 조사했습니다. Brouwer (1987)는 주요 치수 비율을 포함하여 중요한 설계 원칙을 요약합니다. Raemy and Hager (1997)는 다양한 개방 각도에서 개폐 순간을 조사했으며 Brants (1995)는 인도네시아에서 그러한 게이트의 사용을 문서화했습니다.

Burt and Styles (1999)는 도미니카 공화국의 관개 프로젝트에서 잘 관리되지 않은 플랩 게이트를 관찰했습니다. Medrano와 Pitter (1997)와 Sweigard와 Dudley (1995)는 Cal Poly에있는 Irrigation Training and Research Center (ITRC)의 Water Delivery Facility에서 프로토 타입 플랩 게이트 (일반적으로 Begemann 게이트라고 함)를 작업했습니다. ITRC는 미국 매립 국 (Bureau of Reclamation)의 미드 퍼시픽 지역의 지원과 함께 Cwd (Chowchilla Water District)에 1 05 개 이상의 플랩 게이트를 건설하고 설치했습니다. ITRC 플랩 게이트 개발을위한 테스트는 부분적으로 CWD 내에서 이루어졌습니다. 많은 게이트가 기대치를 충족했지만 일부 설계 개선이 필요했습니다 (Burt et al., 2001).

Burt (2001)는 세련된 ITRC 플랩 게이트 설계에 대해 자세히 논의하고 업데이트 된 설계가 Turlock Irrigation District (ID), AltaID 및 Broadview Water District (WD)에 설치되었다고 말합니다. Stuart Styles 박사에 따르면 ITRC Flap Gates는 Walker River ID, Truckee Carson ID, Glen-Colusa ID, Merced ID, Banta-Carbona ID, Fresno ID, James ID, Oakdale ID, Pixley ID, San Luis Canal Company, Solano ID, South San Joaquin ID 및 Tulare ID. 대체 플랩 게이트 적용. 상류 수위 제어 이외의 플랩 게이트의 또 다른 적용은 물 역류 또는 작은 동물 유입을 방지하기 위해 파이프 배수구 및 펌프 배출구 끝에서 사용하는 것입니다. 그러나 게이트는 수도 시스템의 상류 수두에 제한을 부과합니다.

Replogle과 Wahlin (2003)은 배수관 끝에서 플랩 게이트 적용의 수두 손실 특성을 논의합니다. 그들은 “핀 힌지 또는 플 렉셔 스타일의 플랩 게이트는 파이프 직경의 약 1-2 %에 해당하는 작은 수두 손실을 추가합니다”라고 결론지었습니다. 이 연구는 구현자가 플랩 게이트 적용이 자신의 상황에 맞는지 여부를 결정하는 데 도움이됩니다.

FLOW-3D 전산 유체 역학 소프트웨어 및 애플리케이션

과거에는 수치 시뮬레이션에서 정확성을 입증하기 위해 광범위한 분석과 중요한 물리적 테스트가 필요했습니다. FLOW 3D는 다양한 응용 분야에서 최대 3 차원의 유동 시뮬레이션을 허용하는 전산 유체 역학 (CFD) 소프트웨어입니다. 유압 엔지니어에게이 프로그램은 “대형 수력 발전 프로젝트에서 소규모 지자체 폐수 처리 시스템”(FLOW 3D, 2014a)에 이르기까지 상황을 시뮬레이션하는 강력한 도구입니다. 이 프로그램을 통해 유압 엔지니어는 물리적 모델에 투자하기 전에 다양한 상황과 응용 분야의 변형을 테스트 할 수 있습니다.

물리적 모델과 FLOW 3D 모델 간의 비교. 물리적 모델과의 상관 관계에서 FLOW 3D의 정확도를 평가하기 위해 여러 연구가 수행되었습니다. Afshar와 Hoseini (2013)는 직사각형의 넓은 볏 위어에 대한 흐름의 실험 및 3D 수치 시뮬레이션을 비교했습니다.

그들의 목표는 직사각형의 넓은 볏 위어의 자유 표면 프로파일을 만드는 것이 었습니다. 이 문서는 FLOW 3D CFD 시뮬레이션 (그리드 유형 및 경계 조건) 및 물리적 모델에 사용 된 모든 매개 변수를 자세히 설명합니다. 수면과 유선을 예측하기 위해 여러 가지 난류 모델이 만들어졌습니다.

Afshar와 Hoseini에 따르면 “계산 결과는 실험 값과 잘 일치하는 것으로 나타났습니다”(Afshar et al, 2013). Riddette와 Ho (2013)가 극심한 홍수 동안 방사형 게이트의 흐름 유도 진동을 평가하는 또 다른 검증 프로젝트를 수행했습니다 (그림 7 참조). 방사형 게이트는 가변 영역이있는 오리피스 흐름이있는 언더 샷 게이트입니다 (USBR, 2001).

이 연구에서는 Wyangala 방수로의 방수로 방사형 게이트를 나타 내기 위해 물리적 스케일 (1:80) 및 CFD 모델이 모두 구축되었습니다. 그림 7을 참조하십시오. Riddette와 Ho는 연구에 대한 15 가지 검증 분석 사례의 결과를 논의합니다. 그들은 FLOW 3D CFD 프로그램이 “극심한 유출 동안 Wyangala Dam 방수로에서 발생하는 것과 유사한 흐름 조건 하에서 소용돌이 흘리기 빈도를 모델링 할 수 있습니다. 이것은 단순한 2D 및 3D 사례에서 가능한 것으로 나타났습니다 …”(Riddette et al., 2013). 상세한 연구에 따르면 FLOW 3D는 이러한 유형의 애플리케이션에 대해 정확한 것으로 입증되었습니다.

Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)
Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)

이하 내용은 원문을 참조하시면 도움이 되겠습니다.

Figure 1. Right: Absolute velocities in the vertical sluice gate fish pass. Level difference between the pools is 0.20 m. Left: Isosurface of the surface structure (blue), Right and left: Isosurface of absolute velocity 1.50 m/s (yellow)

Success Criterion for Fish Passages |수력 발전소 물고기 통로

São Roque 수력 발전소 물고기 통로

이 기사는 Matthias Haselbauer, RMD Consult  및 Carlos Barreira Martinez (  Minas Gerais 연방 대학교) 가 기고했습니다  .

브라질에서는 지난 150 년 동안 지표수의 사용이 지속적으로 증가했습니다. 항행성을 유지하고, 수력을 생성하고, 홍수를 방지하기 위해 자연 흐름을 방해하는 많은 장애물과 우회로가 세워졌습니다. 강에 서식하는 물고기 및 기타 작은 동물은 이러한 변화로 고통 받습니다. 일부 종의 멸종 시점까지 어류 수가 크게 감소한 것이 관찰되었습니다. 어류, 조류 및 포유류 개체수가 동시에 감소함에 따라 먹이 사슬에 대한 인간의 엄청난 영향이 분명해졌습니다.

강을 물고기를 위해 개방하기 위해 브라질에 많은 수의 물고기 통로가 건설되었지만 생물학적 및 기술적 측면에서 효율성이 떨어지는 경우가 많았습니다. 종종 1 차원적이고 경험적인 가정을 사용하여 설계된 통로의 흐름 상황은 과도한 선택과 열악한 위치를 초래합니다. 전통적인 1 차원 디자인의 물고기 통로와 달리 오늘날 더 적절한 도구를 사용할 수 있습니다. CFD (전산 유체 역학) 시뮬레이션을 사용하면 평균 속도 필드 뿐만 아니라 물고기 통로의 유용성에 상당한 영향을 미치는 과도 흐름 효과를 조사 할 수 있습니다. 최적의 결과를 얻으려면 설계 프로세스에서 수력 학적 고려 사항과 생물학적 고려 사항의 결합이 필수적입니다.

이 연구에서는주기적인 수직 수문 물고기 통로 내부의 난류 응집 구조에 대해 논의합니다. 길이가 4.50m이고 너비가 각각 3.30 인 두 개의 웅덩이 사이에서 흐름은 0.50m의 확장이 있는 작은 수직 개구부를 통과해야 합니다 (그림 1). 

CFD 시뮬레이션은 FLOW-3D 로 수행되었습니다 . 흐름 방향의 주기적 경계 조건에서 달성 가능한 해상도는 약 2.5cm입니다. 두 웅덩이 사이의 수면 Δh의 레벨 차이는 20cm였다. 따라서 절대 속도의 최대 값은 약 2m / s ≈ Δh * 2g입니다. 전체 위치 에너지는 운동 에너지로 변환되고 나중에 풀에서 소멸됩니다. 제트가 벽에서 분리되는 고속 영역이 형성됩니다.

절대 속도 수문 물고기 통과
그림 1. 오른쪽 : 수직 수문 물고기 통과의 절대 속도. 수영장 사이의 레벨 차이는 0.20m입니다. 왼쪽 : 표면 구조의 등면 (파란색), 오른쪽 및 왼쪽 : 절대 속도 1.50m / s (노란색)의 등면

LES (Large Eddy Simulation)를 통해 순간 흐름 영역에 대한 자세한 분석이 가능했습니다. 속도 및 난류 장의 분포와 풀 내의 일관된 난류 구조는 물고기의 행동을 더 잘 이해할 수있게했습니다.

난류 압력 변동

순간 속도 또는 압력 필드는 평균 값과 해당 변동으로 나눌 수 있습니다. 변동 압력에 대한 각 방정식은 다음과 같습니다.

{\tilde{p}}’=\tilde{p}-\left\langle {\tilde{p}} \right\rangle

난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.

일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :

{p}’\propto {{e}^{{-kz}}}

난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.

개방 채널 흐름의 난류 압력
그림 2 : 난류 압력 변동의 등면 = -500 Pa.

일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :

서로 다른 압력 변동의 중첩으로 인해 표면 근처의 대규모 일관된 구조를 감지하기가 어렵습니다.

Q- 기준

와류 감지를위한 또 다른 도구는 Dubrief (2000)와 Hunt (1988)가 제안했으며, 이들은 압력, 와도 및 Q- 기준의 등면을 비교했습니다. Q- 기준은 다음과 같이 계산됩니다.

\displaystyle {{\tilde{\Omega }}{{ij}}}=\frac{1}{2}\left( {\frac{{\partial {{{\tilde{U}}}{i}}}}{{{{x}{j}}}}-\frac{{{{{\tilde{U}}}{j}}}}{{\partial {{x}_{i}}}}} \right)

\displaystyle {\tilde{\Omega }}{ij}=\frac{1}{2}\left( {\frac{\tilde{U}{i}} {x}{j}-\frac{\tilde{U}{j}} {x}_{i}} \right)

공간적으로 필터링 된 속도 구배의 비대칭 및 대칭 부분. 그림 3에서는 Q ~ = 50s-2의 계산 된 등가 곡면이 표시됩니다. Q- 기준으로 소규모 와류가 감지됩니다. 난류 압력 변동과는 달리, Q- 기준 계산을 위해 자유 표면 상태는 탐지 가능성을 방해하지 않습니다. 이는 ∇²p 계산에 선형 정압 분포가 사용되지 않기 때문 입니다. 흐름에서 흐름 방향으로 작은 헤어 라인 소용돌이를 볼 수 있습니다.

Isosurfaces 난류 압력 변동
그림 3 : 난류 압력 변동의 등면

토론

다른 스케일의 소용돌이를 시각화하면 엔지니어는 물고기가 수로를 통과해야하는 일관된 구조에 대해 좋은 느낌을 갖게됩니다. 감지 된 대규모 롤러가 주요 구조입니다. 물고기는 이러한 구조에 대한 흐름에서 안정화되어야합니다. 이 롤러의 축은 메인 스트림 방향에 부분적으로 수직이므로 물고기가 안정화를 위해 메인 핀을 사용할 수 있습니다.

소규모 구조물은 물고기의 수영 방향과 평행합니다. 물고기는 이러한 와류에서 안정화를 위해 수직 지느러미 만 사용할 수 있기 때문에 대규모 롤러보다 안정화를 위해 더 많은 노력을 기울여야합니다.

계산 된 LES 결과를 사용하여 물고기 통과 내부의 흐름 조건에 대한 생물 학자와 엔지니어 간의 예비 토론을 시작할 수 있습니다. 감지 된 난류 구조는 물고기 통과의 성공에 중요합니다. 이러한 구조를 통과하는 데는 고속 영역을 통과하는 것보다 더 많은 에너지가 필요할 수 있습니다.

다음 달에 브라질 벨루 오리 존치에있는 미나스 제 라이스 연방 대학교에서 이러한 난류 구조와 물고기가 이러한 구조를 탐색하는 능력 사이의 상관 관계를 확인하기 위해 일련의 실험실 실험이 수행 될 것입니다.

참고 문헌

Dubrief, Yves; Delcayre, Frank: On Coherent-vortex identification in turbulence. In: Journal of Turbulence 1 (2000), pp. 1-22

Haselbauer M.: Geräuscharme Fischaufstiegsgerinne – Experimentelle und numerische Analyse des Fischpasses vom Typ periodische Schütze. PhD-Thesis, Fachgebiet Hydromechanik, TU München, 2008

Hunt, J.C.R.; Wray, A.A.; Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: CTR-S88 (1988), pp. 193-208

Kundu, Pijush K; Cohen, Ira M: Fluid Mechanics. San Diego: Elsevier Academic Press, 2004

Wilczak, J. M: Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: Velocity and temperature structure. In: J. Atmos. Sci. 41 (1984), pp. 3537-3550

Acknowledgement: All results were post-processed with Paraview.

Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).

EFECTS OF HYDRAULIC STRUCTURES ON FISH PASSAGE: AN EVALUATION OF 2D VS 3D HYDRAULIC ANALYSIS METHODS

물고기 통로 유압 구조효과 :2D VS 3D 유압 분석 방법의 평가

ABSTRACT

채널 스패닝 유압 구조물은 상류 물고기 이동에 대한 장벽 역할을 할 수 있습니다. 이러한 종단 적 서식지 연결의 중단과 관련된 부정적인 결과는 정확하고 실행 가능한 평가 기술의 필요성을 강조합니다.

3 차원 평가 방법은 인스트림 구조에서 복잡한 흐름을 해결하고 물고기 움직임을 정확하게 예측하는 것으로 나타났습니다. 그러나 3 차원 모델링은 시간과 리소스 요구 사항으로 인해 비실용적 일 수 있습니다.

이 연구는 2 차원 전산 유체 역학 모델과 통계 분석을 사용하여 콜로라도 주 리옹에있는 화이트 워터 공원 구조의 수력 조건을 설명하는 것을 조사합니다. 물고기의 움직임 관찰은 잠재적 인 수영 경로를 나타내는 공간적으로 명시적이고 연속적인 경로를 따라 결과 수력 변수와 쌍을 이룹니다.

로지스틱 회귀 분석은 흐름 깊이와 속도가 어류 통과와 밀접한 관련이 있음을 나타냅니다. 결합 된 깊이 및 속도 변수무지개 송어 (92 %를 정확하게 예측Oncorhynchus mykiss) 및 갈색 송어 (Salmo trutta)는 이 유압 구조에서) 움직임 관찰을 합니다.

이 연구의 결과는 2 차원 분석 방법이 3 차원 분석이 불가능한 경우 유사한 수력 학적 구조가 어류 통과에 미치는 영향을 평가하는 비용 효율적인 접근 방식을 제공할 수 있음을 시사합니다. 또한,이 연구의 결론은 비교적 낮은 수영 성능을 가진 송어와 물고기 모두에 대한 관리 및 설계 결정을 안내하는 데 사용할 수 있습니다.

서문

수력 구조물은 수생 생물의 종 방향 서식지 연결을 의도적으로든 우연히든 효과적으로 차단할 수 있습니다. 의도적 장벽은 일반적으로 침입성 종의 도입 또는 교잡을 방지하기 위해 관리자에 의해 배치됩니다 (Holthe et al. 2005; Fausch et al. 2006). 그러나 구조물을 설계하고 설치할 때 물고기 통행 촉진을 고려하지 않았기 때문에 장벽이 더 자주 생성됩니다. 따라서 인위적 장애로 인해 전 세계 수로가 분열되었습니다 (Williams et al. 2012). 철새 어종의 성공적인 수명주기를 위해서는 종단 서식지 연결이 필수적입니다 (Schlosser and Angermeier 1995). 상류 이동에 대한 지연 또는 종료는 인구에 부정적인 영향을 미치고 생태계 기능을 방해 할 수 있습니다 (Beechie et al. 2010). 

수로를 가로 지르는 수력 구조물은 어류 통행에 미치는 영향을 철저히 평가하지 않고 하천과 강에 계속 배치됩니다 (Cada 1998; Noonan et al. 2012). 그러나 강 조각화와 관련된 문제에 대한 인식이 높아짐에 따라 설계 프로세스 전반에 걸쳐 물고기 통과 문제가 해결되는 방식에서 패러다임 전환이 일어나고 있습니다 (Katopodis and Williams 2012). 비 연어 종은 경제적 가치가 높은 종을 선호하는 경우가 많지만, 칼륨 종의 상류 이동 요구가 점점 더 중요하게 고려되고 있습니다 (Santos et al. 2012; Silva et al 2012) (Katopodis 2005; Roscoe and Hinch 2010). . 천연 자원 관리자는 제안 된 수력 구조물에 대해 의견을 제시하고 허용하도록 자주 요청받으며 (Kondratieff 2015),이 검토 과정에서 엔지니어와 과학자는 설계에 대한 예상 어류 통과 성능에 대한 모델 기반 증거를 제공하도록 요청받을 수 있습니다. 어류 통행과 관련하여 기존의 수력 구조물을 평가하고 우선 순위를 정하는 여러 방법이 현재 사용 가능하지만 (Kemp et al. 2010), 이전에 이 중요한 지점에서 제안된 구조물의 통행 효율성을 평가할 수있는 정확하고 실행 가능한 승인 및 설치 도구가 필요합니다.  

이러한 요구를 해결하는 데 초점을 맞춘 이전 작업은 3D 수력 모델링 기술이 상류 어류 이동을 평가할 목적으로 채널 스패닝 구조의 복잡한 유체 역학을 적절하게 해결할 수 있음을 보여주었습니다 (Stephens 2014).

이러한 새로운 3D 분석 방법은 전체 예측 정확도가 80 % 이상 (Stephens 2014)으로 매우 효과적 일 수 있지만 3D CFD (전산 유체 역학) 모델을 개발하는 데는 시간과 리소스가 많이 사용됩니다.

추가 데이터 수집, 소프트웨어 라이선스, 모델링 전문 지식 등에 대한 필요성은 많은 하천 관리 결정에 3D 분석을 비실용적으로 만들 수 있습니다. 다양한 2D 모델 플랫폼이 홍수 배출을 추정하고 (Horritt and Bates 2002; Merwade et al. 2008) 인스 트림 평가에 광범위하게 사용 되었기 때문에 실무 엔지니어와 과학자는 대부분의 수력 구조물 프로젝트에서 2D 수력 모델링을 수행 할 가능성이 더 높습니다.

물고기 서식지 (Clark et al. 2008; Katopodis 2012). 2D 및 3D 유압 모델의 실제 비교가보고되었지만 (Lane et al. 1999; Shen and Diplas 2008; Kolden 2013), 어류 통과에 대한 2D 및 3D 모델 기반 평가의 효능을 조사한 연구는 현재에서 발견되지 않았습니다.

목표

천연 자원 관리자와 설계 엔지니어가 Stephens (2014)의 매우 효과적인 3D 방법에 더 쉽게 접근 할 수 있도록하기 위해이 연구는 자유롭게 사용할 수있는 산업 표준 2D CFD 모델 인 River2D (Steffler and Blackburn 2002)를 사용하여 타당성을 조사합니다. 수력 구조가 어류 통로에 미치는 영향을 평가합니다.

유사한 접근 방식을 기반으로하고 이전의 수력 학 및 어류 이동 데이터 세트 (Fox 2013, Kolden 2013, Stephens 2014)를 사용하여 이 2 개의 연구는 2D 분석 방법을 사용하여 St. Vrain River의 WWP (화이트 워터 파크) 구조를 평가합니다. Lyons, CO.이 연구의 구체적인 목표는 다음과 같습니다. 

1. WWP 구조에서 복잡한 유압 환경을 설명하는 2D CFD 모델을 개발합니다. 

2.이 2D CFD 모델의 결과를 사용하여 WWP 구조를 통해 잠재적 인 물고기 이동 경로를 따라 연속적이고 공간적으로 명시적인 수력 학적 설명을 생성합니다. 

3. 무지개 송어 (대해 사용 가능한 어류 이동 데이터와 가장 밀접하게 관련된 수리적 변수를 결정Oncorhynchus mykiss) 및 갈색 송어 (Salmo trutta)에합니다. 

4. 이전에 개발 된 3D 접근 방식 (Stephens 2014)의 PIT (Passive Integrated Transponder) 태그 연구의 움직임 데이터를 기반으로 한 예측 평가 능력을이 연구의 2D 접근 방식과 비교합니다. 

5. 어류 통행의 관점에서 수력 구조물에 대한 비용 효율적인 평가를 통해 천연 자원 관리자 및 설계자를 지원하기위한 권장 사항을 제공합니다.

배경

상류 어류 이동에 대한 장벽은 유속 깊이, 유속 또는 유속과 거리의 조합을 포함한 다양한 물리적 조건에 의해 생성 될 수 있습니다 (Coffman 2005; Cahoon et al. 2005). 깊이 장벽은 일반적으로 흐름 깊이가 너무 얕아 통과 시도를 허용하지 않을 때 생성됩니다.

깊이 장벽은 또한 자리 잡은 구조물의 낙하 높이 및 플런지 풀 깊이가 도약 제약으로 인해 통과를 허용하지 않을 때 존재할 수 있습니다. 유속이 구조물을 통과하려는 물고기의 수영 능력을 초과 할 때 속도 장벽이 생성되어 상류 진행을 방해합니다. 수력 구조물에 의해 생성 된 난류는 물고기의 통과에도 역할을 할 수 있습니다. 조건에 따라 난류는 물고기 수영에 긍정적 인 영향과 부정적인 영향을 모두 미칠 수 있습니다 (Liao 2007; Cotel and Webb 2012; Lacey et al. 2012).  

수영 성능 지표는 종종 기존의 수력 학적 구조가 물고기 통행의 장벽으로 작용하는지 여부를 평가하는 데 사용됩니다. 이러한 메트릭 중 가장 일반적인 것은 달리기 속도라고도 하는 버스트 수영 속도와 지구력 곡선입니다 (Castro-Santos et al. 2013).

물고기는 지속, 연장, 파열의 세 가지 수영 모드를 나타냅니다 (Peake et al. 1997). 지속적인 수영은 이론적으로 무한정 유지 될 수 있지만 장시간 및 버스트 수영 속도는 제한된 시간 동안만 유지 될 수 있습니다.

지구력 곡선은 세 가지 수영 모드 (Videler and Wardle 1991)에 걸쳐 연속적으로 수영 속도와 피로 시간 사이의 역 관계를 설명하여 생성됩니다. 버스트 수영 속도는 속도 장벽을 식별 할 때 유용하며 (Haro et al. 2004) 지구력 곡선은 잠재적 인 완전 장벽을 식별하는 데 도움이됩니다 (Castro-Santos et al. 2013). 현재 물고기 수영 성능과 난류 임계 값 또는 분포 사이의 물리적 관계는 잘 알려져 있지 않습니다 (Liao 2007).

그러나 총 운동 에너지 (TKE), 총 수력 변형, 레이놀즈 전단 응력 및 와도와 같은 일부 프록시 변수는 난류가 어류에 미치는 영향을 정량화 할 때 유용한 것으로 나타났습니다 (Nestler et al. 2008; Cotel and Webb 2012; Lacey et al. 2012; Silva et al. 2012). 

장벽은 완전 할 수 있으며, 물고기 통행을 허용하지 않거나 선택적 통행 성공이 생리적 또는 수리적 특성에 따라 결정되는 경우 부분적 일 수 있습니다. 이 연구의 목적을 위해 총 시도 횟수에 대한 성공적인 통과 횟수를 기반으로 한 인구 수준의 통과 효율을 사용하여 유압 구조로 인한 상류 이동 억제 정도를 정량화합니다 (Haro et al. 2004). 다양한 방법 개발되었습니다. 

장벽이 물고기 통로 (켐프와 O’Hanley 2010)에 영향을 미치는 방법을 정량화하기 위해  한 가지 접근 방식은 통계 모델을 사용하여 통과 효율 추정치를 0 ~ 100 %의 연속 척도로 표현할 수 있습니다. 과거에는 규칙 기반 또는 회귀 기법을 사용하여 암거 (Coffman 2005; Burford et al. 2009), 도로 횡단 (Warren and Pardew 1998) 또는 수로 실험 설정 (Haro et al. 2004)을 다양한 성공으로 평가했습니다.

통계적 방법은 다양한 척도에서 수리적 변수에 대한 정보를 결합하여 통과에 큰 영향을 미치는 변수를 식별 할 수 있습니다 (Kemp and O’Hanley 2010). 이러한 모델은 현장 기반 어류 이동 관찰을 사용하여 검증 할 수도 있습니다 (Coffman 2005; Burford 2009).

2014 년에 Stephens는 3D CFD 모델 출력 (Kolden 2013)을 활용하여 수력 구조물에서 물고기 통과를 평가하기위한 연속적이고 공간적으로 명시적인 분석 방법을 만드는 새로운 통계 방법을 개발했습니다. 이 방법은 콜로라도에있는 3 개의 파도 생성, 인공 화이트 워터 파크 (WWP) 구조물에서 수집 한 수력 측정 및 PIT 태그 통과 관찰 (Fox 2013)을 통해 검증되었습니다. 통계 결과에 따르면 Stephens (2014) 방법은 전체 정확도가 80 % 이상인 통과 효율을 예측할 수 있습니다. 

Stephens는 3D CFD 모델의 결과를 사용했지만 다른 연구에서는 2D CFD 모델을 사용하여 물고기와 관련된 규모의 복잡한 흐름을 설명하는 데 초점을 맞추 었습니다 (Lane et al. 1999; Crowder and Diplas 2000; Shen and Diplas 2008). 2D CFD 모델링의 주요 관심사는 물고기 서식지 및 수영 성능에 중요한 중간 규모 기능과 관련된 복잡성을 포착 할 수 있는지 여부였습니다 (Crowder and Diplas 2000).

혼합된 결과는 서식지 평가를 위해 모델링되는 도달 범위의 특성에 따라 2D CFD 모델이 수력 조건에 대한 적절한 설명을 제공하거나 제공하지 않을 수 있음을 보여줍니다 (Clark et al. 2008; Shen and Diplas 2008; Kozarek et al. 2010) . 서식지 또는 지형 모델링에 중점을 두는 경우 깊이 평균 2D 모델과 직접 비교할 때 3D 모델 사용이 선호되었습니다 (Lane et al. 1999; Shen and Diplas 2008). 그러나 수력 구조물에서 상류 어류의 움직임을 평가할 때 2D 및 3D 모델의 성능을 비교 평가 한 연구는 거의 없습니다. 

이 연구에서 CFD 모델의 비교는 2D 소프트웨어 River2D와 3D 소프트웨어 FLOW-3D에 중점을 둡니다 (Flow Science, 2009). 2D 모델과 3D 모델의 가장 큰 차이점은 2D 모델은 각 계산 노드에서 유압 변수의 값을 깊이 평균한다는 것입니다. 이 깊이 평균은 구조물의 물고기 친화성에 큰 영향을 미칠 수있는 중요한 흐름 특징과 경계층 효과를 배제 할 수있는 잠재력을 가지고 있습니다.

예를 들어, 수심 평균 속도 값은 WWP 구조 하류의 수력 조건이 동일한 도달 범위 내의 자연 풀에있는 것과 유사하다고 잘못 제안 할 수 있습니다. 실제로 두 유동장은 어류 개체군에 다르게 영향을 미칠 수있는 고유 한 특성을 가지고 있습니다 (Kolden 2013). River2D는 또한 정수압과 일정한 수평 속도 분포를 가정하는 반면 FLOW-3D는 이러한 가정을 피할 수 있습니다.

대부분의 2D CFD 모델링 프로그램 (Toombes and Chanson 2011)에서 요구하는 정수압 가정은 가파른 경사 (> 10 %)와 급변하는 경사 (Steffler and Blackburn 2002)에서 계산 정확도를 제한합니다. 속도 분포가 일정하다는 가정은 수직 속도 구성 요소가 무시할 수 있음을 의미하며 본질적으로 2D CFD 모델을 사용하여 2 차 흐름 및 강한 순환을 분석하는 기능을 제거합니다 (Steffler and Blackburn 2002; Toombes and Chanson 2011).

이러한 가정과 2D 물리적 표현의 단순화 된 특성을 고려할 때 2D CFD 모델이 물고기 통과 예측 평가를 위해 채널 스패닝 구조의 복잡한 유체 역학을 적절하게 해결할 수 있는지 여부는 불분명합니다.

Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).
Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).
Figure 2. Depth (m) and velocity magnitude (m/s) River2D contours for 0.42 cms.
Figure 2. Depth (m) and velocity magnitude (m/s) River2D contours for 0.42 cms.

구체적인 내용은 아래 원문을 참고하시기 바랍니다.

Picture of scoured bed surface

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF FLOW AND SEDIMENT TRANSPORT AROUND A SERIES OF SPUR DIKES

유동 시뮬레이션의 실험적 연구와
일련의 SPUR DIKES 주변의 침전물 수송

by
ANU ACHARYA
Copyright © Anu Acharya 2011
A Dissertation Submitted to the Faculty of the
DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS
In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
WITH A MAJOR IN CIVIL ENGINEERING
In the Graduate College
THE UNIVERSITY OF ARIZONA

침전물 수송에 대한 집중적인 연구는 저수지 관리, 댐 운영 및 하천 내 유압 구조물 설계를 위해 하천의 총 침전물 하중을 예측하는 적절한 방정식이 필요하다는 것을 보여준다.

침전물 운송에서 사용 가능한 어떤 방정식도 총 침전물 운송 속도를 예측하는 데 보편적으로 받아들여지지 않았다. 이러한 사실들은 침전물 수송률을 예측하기 위한 이 모든 공식을 나타내기 위한 일반적인 공식의 필요성을 나타낸다.

본 논문의 첫 번째 목표는 모든 강에 대해 통합된 총 침전물 운송 방정식을 찾는 것이다. 반면, 스퍼다이크나 교각 같은 유압 구조물을 둘러싼 마찰은 구조적 안정성을 약화시키는 심각한 문제가 될 수 있다.

이러한 유압 구조 주변의 난류 흐름장 및 난류 분포에 대한 조사는 국부적 골재 메커니즘의 이해와 국부 침전물 수송에 영향을 미치는 난류 특성을 결정하기 위해 필수적이다.

또한 개방 채널의 난류 흐름의 모든 경우에 유효한 범용 난류 모델은 존재하지 않는다. 본 논문은 일련의 3대 제방 주변의 난류장과 난류 분포를 철저히 조사했다.

목표는 국부 침전물 수송 속도를 예측하기 위한 유의한 난류 특성을 결정하고 제방 주변의 난류 유역 시뮬레이션을 위한 적절한 난류 모델을 식별하는 것이다.

일반적인 통합 총 하중 방정식을 개발하기 위해, 본 연구는 총 침전물 하중을 예측하는 데 일반적으로 사용되는 31개의 공식을 평가한다. 본 연구는 서로 다른 공식에서 침대 전단 응력의 확률적 특성으로 계산된 결과의 편차를 귀인시키고 침대 전단 응력이 로그 정규 분포를 만족한다고 가정한다.

주어진 침대 전단 응력에서 몬테카를로 시뮬레이션이 각 방정식에 적용되고 일련의 침대 전단 응력이 무작위로 생성된다. 모든 방정식의 각 몬테카를로 실현에서 생성된 총 침전물 하중은 모든 방정식에서 예측된 총 침전물 하중의 표본을 나타내기 위해 조립된다. 주어진 각 침대 전단 응력에서 결과적인 총 침전물 하중(예: 표준 편차, 평균)의 통계적 특성이 계산된다.

그런 다음 모든 방정식의 평균 값을 기반으로 통일된 총 침전물 하중 방정식을 구합니다. 결과는 모든 방정식의 평균이 무차원 침대 전단 응력의 검정력 함수임을 보여주었다. 측정과 합당한 합치도는 통합 방정식이 총 침전물 하중을 예측하기 위한 어떤 개별 방정식보다 정확하다는 것을 보여준다.

일련의 스퍼다이크 주변의 흐름장 및 국소적 스컬에 대한 실험 및 수치 시뮬레이션은 고정된 평면 침대 및 스커드 침대 조건에서 수행된다. 마이크로 어쿠스틱 도플러 속도계(ADV)는 세 가지 공간 방향 모두에서 순간 속도 필드를 측정하는 데 사용되며 측정된 속도 프로파일은 난류 특성을 계산하는 데 사용됩니다.

결과는 그 지역의 골칫거리가 첫 번째 제방을 중심으로 발전한다는 것을 보여준다. 난류 강도와 플랫 베드에서 측정한 수직 방향의 평균 속도는 스칼럼 깊이와 밀접한 관련이 있다.

또한 3다이크 시리즈의 두 번째 다이크 끝에서 발생하는 최대 침대 전단 응력은 최대 스콜과 일치하지 않는다.

침대 전단 응력으로 인한 큰 침대 하중 전달은 침대 스쿠싱을 시작하지 않을 수 있지만, 난기류 폭발(예: 스위프 및 배출)은 침대 표면에서 침전물을 끌어들여 국소적 골재를 발생시킨다. 3차원 수치 모델 FLOW-3D는 평평하고 스커드 베드에서 일련의 스퍼다이크 주변의 난류 유량을 시뮬레이션하는 데 사용된다.

본 연구는 Prandtlès의 혼합 길이 모델, 하나의 방정식 모델, 표준 2- 방정식 k-e 모델, RNG(Renormalization-Group) k-e 모델 및 LES(Large Eddy Simulations) 난류 모델을 조사한다. Prandtlès의 혼합 길이 모델과 하나의 방정식 모델은 다이크 주변의 플로우 필드에 적용되지 않는다.

표준 2- 방정식 k-e 모델과 RNG k-난류 모델을 사용한 평균 흐름 필드의 결과는 실험 데이터에 가깝지만, 다른 난류 모델에서 시뮬레이션된 난류 특성은 상당한 차이를 보인다. 다른 난류 모델에서 계산된 결과는 RNG k-e 모델이 이 일련의 스퍼다이크에 대한 평균 흐름 필드를 가장 잘 예측한다는 것을 보여준다.

난류 폐쇄 모델 중 난류 운동 에너지와 같은 난류 특성의 정확한 결과를 예측할 수 있는 모델은 없다. 이러한 결과에 기초하여, 본 연구는 다이크 주변의 평균 흐름 필드를 시뮬레이션하기 위해 RNG k-e 모델을 사용할 것을 권고한다. 다양한 흐름 조건에서 이 일련의 스퍼다이크 근처의 난류 특성을 예측하기 위해 FLOW-3D 모델의 추가 개선이 필요하다.

Picture of scoured bed surface
Picture of scoured bed surface
Bed bathymetry of the developed scour hole at Q = 0.035 m3/s
Bed bathymetry of the developed scour hole at Q = 0.035 m3/s
Distribution of dimensionless mean longitudinal velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean longitudinal velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean transverse velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean transverse velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean vertical velocities for straight, angled dikes on flat bed and angled dikes on the mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean vertical velocities for straight, angled dikes on flat bed and angled dikes on the mobile bed at Q = 0.035 m3/s
Dimensionless Reynolds stresses
Dimensionless Reynolds stresses
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

Hydraulic Energy Losses|유압 에너지 손실

유압 에너지 손실

이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production  Hydro-Québec Équipement .

이 내용은 특히 유압 에너지 소산율 평가를 위해 FLOW-3D가 제공하는 유압 에너지 흐름과 총 수두의 연산을 검토한다. FLOW-3D 에서는 모델 출력에서 직접 시각화할 수 있는 변수 중 총 유압 헤드가 포함되었다. 그림 1은 강 우회 터널(a river diversion tunnel)을 통한 절토에 걸친 총 유압 헤드 분포(total hydraulic head distribution)를 보여준다. 버전 10에서 FLOW-3D는 플럭스 배플로 계산하고 시계열로 시각화하고 외부 도구로 분석할 수 있는 일체형 값으로 유압 에너지 흐름과 총 수두를 도입했다.

하천변환터널을 통한 단면내 총 유압높이 분포
그림 1. 하천변환터널을 통한 단면내 총 유압높이 분포

총 유압 에너지

베르누이의 방정식

수압 에너지, eG는 흐름에서 물의 입자의 잠재력과 운동 에너지의 합이다. 에너지 밀도로서 J/m³으로 표현되며, 베르누이의 방정식(Eq. 1)에 의해 주어진다.

(1) \displaystyle {{e}_{G}}\quad =\quad p\ -g\rho z+\rho \frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{2}

기호 의미가 있는 곳

e G유압 에너지 밀도(J/m3 )
p압력(Pa ≡ N/m2 ≡ J/m3 )
g중력의 가속도( – 9,81m/s2 )
ρ밀도(kg/m3)
u, v, wx, y 및 z(m/s) 단위의 속도
z일부 기준 수준 이상의 높이(m) 또는 고도

수력 에너지 단순화된 계단식

일반적으로 에너지는 스스로를 변형시키지만 결코 손실되지 않는 전통적인 양으로 간주된다. 토목 공학에서 물의 흐름을 나타내기 위해, 에너지 변환을 중력 전위 에너지로 시작하여 운동 에너지로 변환한 다음 열 에너지로 변환하는 계단식 에너지로 상상하기에 충분한 경우가 많다. 또한 처음 두 형태(잠재성과 운동성)의 양만을 명시적으로 모델링하여 에너지 캐스케이드의 범위를 더욱 제한하는 것이 일반적이다.

상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.
그림 2. 상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.

수압 에너지 캐스케이드는 그림 2와 같이 보에서 풀로의 유량이 떨어지는 경우에 잘 나타난다.

그림에 표시된 입자의 트랙을 따라가십시오.

  • 위치 A에서는 저수지의 상류에서 물 입자는 거의 움직이지 않고 있다.
  • 위치 B에서 입자는 B 위의 자유 표면이 약간 낮아짐에 따라 일부 위치 에너지를 희생하여 속도를 얻었다.
  • 위치 C에서는 입자가 자유 낙하 궤적으로 유체를 따르므로 더 많은 위치 에너지가 운동에너지로 변형되었다.
  • 하강 흐름이 하부 풀의 물과 접촉하면 활발한 모멘텀 교환이 이루어지며 초기 유압 에너지의 상당 부분이 격동의 에너지 폭포와 점성 공정을 통해 열로 손실되었다.
  • 위치 D에서 입자는 위치 A, B, C에 비해 낮은 유압 에너지로 영역을 떠난다.

A에서 B, C로 이동하는 동안, 점성과 난류 과정은 대개 흐름에 거의 영향을 미치지 않는다. 총 유압 에너지 eG는 필요시 작은 손실 조건을 고려하여 질량처럼 보존된 양으로 취급될 수 있다. C의 다운 스트림에서, 이 전통적인 수력 에너지(conservative hydraulic energy)의 모델은 더 큰 규모의 에너지 손실 조건과 흐름에 미치는 영향을 고려함으로써 확장될 수 있다.

질량 및 에너지 예산

볼륨 컨트롤

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단순히 당연하게 여겨지고 있다.

흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

CV는 다음 규칙을 따르는 한 하나의 선택사항의 정의 표면으로 둘러싸인 볼륨이다.

  • 정의 표면은 스스로 교차하지 않는 한 임의의 형태를 가질 수 있다.
  • 표면은 각 패치가 다른 패치와 물샐틈없는 가장자리로 연결되어 있는 한 패치로 구성될 수 있다.

CV의 부피는 밀폐된 질량이나 에너지와 같은 적분, 자체 보존 수량을 계산하는 데 사용된다.

CV의 표면은 들어오고 나가는 플럭스를 정의하기 위해 사용되며, 밀폐된 수량에 대한 예산을 세우고 그 시간 이력을 감시할 수 있다.

그림 3은 떨어지는 물 분사기의 특성을 분석하는 데 사용할 수 있는 제어 부피의 예를 제시한다. 이 제어 볼륨으로 유입되고 유출되는 유일한 것은 제트기 자체로서 왼쪽 상단에서 들어오고 오른쪽 하단에서 떠난다.

FLOW-3D의 고정형상 제어량

FLOW-3D를 사용하면 고정된 형태와 위치의 CV를 세 가지 기본 형태의 플럭스 배플의 도움을 받아 쉽게 정의할 수 있다.

  • 구(Sphere)들은 닫힌 표면이다.
  • 실린더는 양끝이 개방되어 있으므로, 실린더의 끝이 흐르지 않도록 유량 한계 밖으로 뻗어나가도록 주의해야 한다.
  • 전체 흐름 영역 또는 하위 도메인을 교차시켜 CV를 조립하는 데 사용할 수 있는 평면 직사각형 패치

그림 4는 세 가지 유형의 플럭스 배플을 계산 메쉬로 렌더링한 후에 볼 수 있는 실제 모델에서 그린 예다. 그것들은 불투명한 것으로 렌더링되지만 그것들이 배플을 측정하는 유일한 플럭스로 정의된다면 흐름에 완전히 스며들 수 있다.

(2) hG≡eG/-gρ

(3) hG=z+

그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.

그림 5는 평면 배플 표면을 사용하여 두 가지 제어 볼륨을 정의하는 방법을 보여준다.

  • 제어 볼륨 DC, 긴 입방형 모양은 6개의 면으로 구성되어 있다. 반대편 두 면은 C와 D라고 불리는 배플이다. 밑면과 윗면이 그려지고 그 위치는 흐름 영역보다 훨씬 위아래 있는 한 중요하지 않다. 앞면과 뒷면은 큐브의 남은 두 면이며, 그들의 위치 또한 앞과 뒤가 잘 있는 한 중요하지 않다. 흐름 영역의
  • 제어 볼륨 BA도 마찬가지로 정의된다. 그것은 자유로운 표면 흐름을 포함하는 하위 도메인인 입구 포탈의 일부를 둘러싸고 있다. 자유 표면 흐름은 면 B와 A의 유입량 차이가 수위(및 수량)에 변화 속도를 부여하고 진동을 유발하여 천천히 감쇠하거나 전혀 감쇠하지 않기 때문에 진정한 안정 상태에 이르기 더 어렵다. 이 경우, 질량과 에너지의 신뢰할 수 있는 예산은 성질의 진화가 정지해 있는 에피소드를 식별하고 평균화를 수행하기 위해 흐름의 시계열을 처리함으로써 이루어진다.

그림 5의 수직 플럭스 배플은 사용 가능한 수직 표면(DB, DA, CB, CA)의 순열을 사용하여 몇 개의 다른 CV를 정의하는데 사용할 수 있다.

에너지 예산

수력 에너지 균형은 점성 열 생성을 손실로 명시적으로 표시하기 때문에 정의에 따라 누출된다. 이상적으로, 수력 에너지 캐스케이드는 다른 원인으로 인해 에너지를 잃지 않아야 하며 어떤 것도 얻지 않아야 한다. 여기서 다시 수치 모델로 연습하면 약간 다른 그림이 그려진다. 모든 수치 모델에는 인위적인 소스 또는 수력 에너지 싱크가 있다.

예를 들어, 셀 크기가 에너지 전달 흐름 특징보다 훨씬 작을 때 계산 메쉬에 흐름 간섭이 발생한다. 셀 크기가 충분히 작지 않을 때, 속도 대비는 자연 흐름에서보다 더 큰 공간 범위에 걸쳐 확산된다. 그 확산은 운동 에너지를 약간 작게 만들고 자연 현상보다는 그리드 효과에 기인하는 에너지 방산 역할을 한다.

에너지 예산을 모니터링하면 모델의 신뢰성에 대한 단서를 얻을 수 있으며 다른 매개변수 값이나 그리드 셀 크기를 사용하는 런을 비교하는 데 사용할 수 있다. 인위적인 손익이 관리되고 있을 때 유압 에너지 소산 속도는 종종 수치 모델에서 얻은 중요한 결과 중 하나이며 설계 변동을 구별하는 데 중요하다.

총 유압 헤드

에너지 밀도로서의 총 유압 헤드

아래 hG로 상징되는 총 유압 헤드는 Eq. 1의 총 유압 에너지 eG를 단순히 (-g ρ )로 나눈 값이다.

(2) \displaystyle {{h}_{G}}~\equiv ~{{e}_{G}}/\text{ }-g\text{ }\rho

(3) \displaystyle {{h}_{G}}\ =\quad z\ \ +\frac{p}{{-g\rho }}\ \ +\frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{{-2g}}

다음과 같은 경우를 제외하고 기호가 모두 이미 소개된 경우:

hG, 총 유압 헤드(m)

총 유압 헤드는 다음과 같은 합이기 때문에 합계로 인정된다.

  • 입면체 헤드 z + p/(-gρ)
  • 운동 에너지 헤드 u²/(-2g)

유량에서 측정한 입압 헤드는 물의 국부적 자유 표면 고도를 잘 측정할 수 있는 것으로 간주된다.

저수지 및 강의 평온한 범위에서는 흐름 속도가 운동 에너지 헤드가 무시해도 될 정도로 충분히 낮아서 때때로 hG가 입압 헤드와 동일하다고 간주될 수 있다.

총 유압 헤드 hG는 때로 정체 높이라고 불리기도 한다. 흐름 내에 유체의 입자가 있는 경우, 모든 속도가 갑자기 위쪽으로 향하게 되고 주변 유체가 장애물이 되지 않을 경우 입자가 도달하는 최종 높이다.

총 유압 헤드 hG는 교각과 교대 등 유압 설계에 있어 유비쿼터스 변수다. 그것은 또한 채널과 펜스탁과 같이 에너지가 관리된 방식으로 전달되거나 소멸되어야 할 때마다 흐름의 수압 에너지를 나타낸다. hG는 다른 엔지니어링 작업의 키 높이와 동일한 고도 척도를 사용하여 엔지니어링 도면에 주석으로 나타날 수 있기 때문에 선택의 변수다.

총 유압헤드의 통합값으로부터의 유압에너지 소산

두 흐름 단면 A와 B 사이에 발생하는 에너지 소산에 대한 일체적 접근방식은 흐름의 하향 방향에서 HG의 감소로부터 계산된다.

HG의 도움을 받아 A와 B 사이의 에너지 소산을 계산하기 위해 각 단면에서의 HG 값을 먼저 –ρg에 곱하여 에너지 밀도 흐름으로 만든 다음 Q에 곱하여 총 유압 에너지 흐름으로 주조한다.
두 횡단면의 에너지 흐름의 차이를 보면, 두 횡단면에서 부피 흐름 Q가 동일한 상황에서, 아래와 같이 상류 횡단면에서 다운스트림 단면으로 이동하는 흐름에서 발생하는 유압 에너지 손실을 산출한다.

그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.

업스트림 리치는 유입과 배출 흐름의 차이에 따라 수위가 변동하는 볼륨 밸런스의 예를 제시한다. 동시에, 터널을 통과하는 유량의 비율은 상류와 하류 사이의 압력 균형에서 기인하며, 터널 벽의 마찰과 분리된 구조물에서의 흐름 에너지 손실과 통로를 따라의 전환이 큰 역할을 한다. 그림 10은 FLOW-3D에서 플럭스 배플로 알려진 수많은 흐름 측정 단면을 보여준다. 이들의 용도는 다음과 같다.

  • 추가 분석을 위한 유용한 기준으로 특정 모델 실행의 흐름 체계의 안정성 평가
  • 종단 종단 수위 및 수력 에너지 흐름의 그래프 작성 및 분석(수력 에너지 소산율 포함)
  • 설계 변이 간 미세 비교 허용
  • 일반적으로 흐름 동작이 예상에 부합하는지 검증하고, 체크하지 않을 경우 흐름의 진부도를 감소시킬 수 있는 수치적 아티팩트를 검출하고 수정한다.

예제 2 – 자연 암석 표면을 통한 고속 자유 주행

그림 8은 자연 암석의 유유히트레이스와 자유 주행의 예를 보여준다.

이 모델은 지표면의 단위 면적당 수압 에너지 소산율을 평가하는 것을 목적으로 했다. 이 속도는 W/m² 단위로, 자유 주행을 따라 암석 표면의 침식 잠재력을 평가하기 위한 입력값이었다.

그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

그림 9는 도구 자체를 확인하고 소산율 평가를 수행하는 데 사용된 계량장치를 나타낸다. 망사블록도 윤곽이 잡힌다.

원하는 소산 속도를 측정하고, 마찬가지로 중요한 것은 흐름의 품질 및 측정 도구의 평가를 위해 평면 및 원통형 플럭스 배플의 종류가 배치되었다.

평면 플럭스 배플은 제어 볼륨을 구성하고 이를 사용하여 CV 내에서 볼륨 흐름의 안정성과 에너지 소산을 모니터링할 수 있다. 테일레이스에서는 사이드월(sidewall)에 의해 흐름이 잘 담겨 있고 횡단면을 가로질러 상당히 균일하다. 에너지 소산율은 25~50kW/m²이었다.

배출 관문 발치에 원통형 유동 배플이 위치한다. 실린더를 통과하는 평균 체적 유량은 정상적인 유량 변동 때문에 시간 경과에 따라 가변적이었지만 적절한 평균 구간을 취할 때 0이 되는 경향이 있었다. 배플을 통한 순유압 에너지 흐름에 대해 동일한 평균을 취했을 때, 예상대로 음의 값이 산출되었고, 이는 면적으로 나누면 30 kW/m²에 가까웠다. 타원형 수평 단면으로 확장된 또 다른 원통형 흐름 배플도 꼬리 경주가 끝날 무렵에 위치했다. 거기서 만들어진 유사한 검증도 비슷한 합의를 보여주었다.

원통형 유동 배플이 유압 에너지 소산 측정에 예상대로 작용했다는 결론이 나왔다. 그런 다음 방산이 가장 높을 것으로 예상되었던 아래쪽 경사면에 놓인 원통형 배플에 주의를 돌렸다.

그림 10은 자유 주행 위에 위치한 원통형 배플 번호 3을 통해 순 부피와 에너지 흐름의 시계열로, 꼬리표에서 자연 암석 표면으로의 전환 근처를 보여준다. 그림은 두 흐름의 높은 진폭 변동이 존재하며 그 흐름들에 의해 어떤 경향도 잘 숨겨져 있음을 보여준다.

그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)
그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)

그림 11은 그림 10의 순 부피와 에너지 플럭스의 시간 통합을 나타낸다. 시간 통합은 부피(m³)와 에너지(J)의 값을 산출한다. 볼륨 시계열은 정권이 정지해 있는 시간 간격을 선택할 수 있고, 순 볼륨 변화가 0에 가까워지도록 통합 시간 경계를 선택할 수 있다. 에너지 시계열은 에너지 소산의 예상대로 정기적으로 하향 추세를 보여준다. W/s 단위의 추세의 기울기는 소산율을 추정한다. 그런 다음 원통형 배플 인클로저 베이스의 표면적 영역으로 나누어 면적 단위당 원하는 산란율을 얻을 수 있다. 실린더의 반지름을 선택하여 면적이 100m²에 가까울 수 있도록 했다. 이 경우 소산율이 286kW/m²로 나타났다.

그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.
그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.

이러한 결과는 다른 분야의 엔지니어들과의 토론에서 사용되었다. 다른 요인 중에서도 암석 표면이 예비 추정에서 비롯된 공기 주입식 개미가 아니었기 때문에 불확실성의 여백이 크다는 것이 명백해졌다. 또한 수압 에너지가 바위가 아닌 물 속에서 소멸되고, 최대 소산의 위치가 반드시 바위에 대한 최대 작용의 위치가 아니라는 것도 모듈러에 의해 지적되었다. 위에 제시된 분석의 미니어처는 상당한 부담이었지만, 배플이 모델러에게 참신한 방법으로 사용되고 있기 때문에 필요하다고 여겨졌다. 학문 간 논의와 값의 규모 순서는 수치 그 자체보다는 모형의 가장 유용한 결과였다.

결론

FLOW-3D의 플럭스 배플은 이를 통과하는 부피와 유압 에너지 순 흐름에 대한 정밀한 평가를 제공한다. 이들의 연산 알고리즘은 제어 볼륨 접근방식과 함께 사용되는 FLOW-3D의 기본 수치 체계로 정교하게 조정되며, 높은 수준의 일관성이 요구되는 상황에서 대량 보존에 관한 FLOW-3D 자체의 성능 검증을 포함한 수많은 측정을 위해 잘 설계되어 있다.

토탈 유압 헤드의 연산은 수많은 방법으로 이루어질 수 있는데, 토목 및 유압 엔지니어에게 수량의 매우 높은 유용성을 볼 때 놀라운 일이 아니다. FLOW-3D가 제공하는 방법 중 하나는 플럭스 평균 총 유압 헤드의 배플 유량 면적에 대한 계산이다. 여기에서 주어진 유량관을 가로지르는 두 플럭스 배플에서의 값 사이의 차이로 측정한 유량에서의 수압 에너지 손실률은 가우스 발산 정리에 의해 원시 유량 변수와 연결된 제어 볼륨 접근법으로 계산될 수 있는 유량 손실률이 정확히 여기에 나타난다.

논문자료 알아보기

Figure 9. formation of scour and deposition around the spur dike in the original model.

Flow-3D 모델을 이용한 수력 조건의 변화가 하천 벤드의 L 자형 스퍼 제방 주변 속도 분포에 미치는 영향

Effect of Changes in the Hydraulic Conditions on the Velocity Distribution around a L-Shaped Spur Dike at the River Bend Using Flow-3D model

Technical Journal of Engineering and Applied SciencesAvailable online at www.tjeas.com©2013 TJEAS Journal-2013-3-16/1862-1868ISSN 2051-0853 ©2013 TJEAS
Abdulmajid Matinfard(Kabi)1, Mohammad Heidarnejad1*, Javad Ahadian21. Departmentof Irrigation, Science and Research Branch, Islamic Azad University,Khuzestan, Iran2. Assistant Professor, Department of Water Sciences, Shahid Chamran University, Ahwaz, IranCorresponding Author:Mohammad Heidarnejad

ABSTRACT

하천 및 관련 구조물의 특성 및 흐름 거동에 대한 평가는 소프트웨어 사용이 불가피한 복잡한 현상입니다.

Spur dike는 굴곡과 직선 경로에서 하천 조직, 침식 제어 및 강둑 보호에 사용되는 간단한 유압 구조입니다. 이 논문에서, 굴곡부에 지정된 간격을 가진 불 침투성 Spur 둑 주변의 흐름 패턴은 다양한 배출 및 흐름 폭의 다른 좁힘 비율에 대해 평가되고, 서로 비교됩니다.

또한 L 자형 스퍼 제방 주변의 속도 분포는 유한 체적 방법을 사용하여 2 차원 및 3 차원으로 평가됩니다.

수행된 실험에 따르면 최대 속도 제한 및 이에 따라 30 ° 각도의 첫 번째 스퍼 제방에서 강 굴곡에서 90 ° 각도의 물 흐름 방향으로 마지막 스퍼 제방까지 수 세량이 감소했습니다. 그리고 흐름이 마지막 스퍼 제방에 도달하면 흐름의 모든 난류가 손실됩니다.

흐름이 마지막 스퍼 제방까지 도달할 때 흐름의 모든 난류가 손실됩니다.

원본 논문 : Phytoremediation of Lead from Soil by Lepidium sativum (flow3d.com)

Figure 1. Example of 180-degree bends of the Karun River
. The effect of the spur dike series and ineffectiveness of some of them on the scour and deposition
. The effect of the spur dike series and ineffectiveness of some of them on the scour and deposition
Figure 3. Meshing of the tested area and around a quintuple series of the spur dike in flow3D software
Figure 3. Meshing of the tested area and around a quintuple series of the spur dike in flow3D software
Figure 4. Distribution of speed around the spur dike series
Figure 4. Distribution of speed around the spur dike series
Figure 5. Speed distribution around two initial spur dikes
Figure 5. Speed distribution around two initial spur dikes
Figure 6. Distribution of the flow rate around the spur dikes with a discharge of 18 liters per second
Figure 6. Distribution of the flow rate around the spur dikes with a discharge of 18 liters per second
Figure 7. Distribution of the flow rate around the spur dike with a discharge of 25 liters per second
Figure 7. Distribution of the flow rate around the spur dike with a discharge of 25 liters per second
Figure 8. Flow pattern around the spur dikes in three dimensional form at numerical model
Figure 8. Flow pattern around the spur dikes in three dimensional form at numerical model
Figure 9. formation of scour and deposition around the spur dike in the original model.
Figure 9. formation of scour and deposition around the spur dike in the original model.

REFERENCES
Abasi Chenari S, Kamanbedast A, Ahadian J. 2011. Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and
Erosion Regime at River Bends, World Applied Sciences Journal 15(2), ISSN 1818-4952, pp. 279–284.
Garde RJ, Subramanya K, Nambudripad KD.1961. Study of scour around spur dikes, ASCE J. the Hydraulics Division, 87(HY6), pp. 23–37.
Gray DH, Leiser AT.1982. Biotechnical Slope Protection and Erosion Control, Van Nostrand Reinhold Company, New York, NY, ISBN-10:
0442212224, pp. 259–263.
Hashemi Najafi F. 2008.Experimental investigation of scouring around L-head Groynes under Clear Water Condition, M.Sc. Thesis, Iran,
Tarbiat Modarres University.
Jahromi AR, Jahromi H, Haghighi S. 2010. Numerical simulation of flow and sediment around spur dike at a bend of 180 degrees using CFD
software, 5th National Congress on Civil Engineering, Ferdowsi University of Mashhad.
Karami H , Saneie M, Ardeshir A. 2006. Experimental Investigation of Time Effect on Local Scouring Around Groynes, 7th International
River Engineering Conference, Ahwaz, Iran.
Kuhnle RA, Alonso CV, Shields FD.1999. Geometry of scour holes associated with 90-degree spur dikes, Journal of Hydraulics
Engineering, Vol. 125(9), Sep, ASCE, pp. 972–978.
Mahmoudi Zanganeh A, Sanei M. 2007. The effect of the length and distance of spur dike on scour pattern, 6th Iranian Hydraulic
Conference, Shahrekord University.
Melville BW.1992. Local Scour at Bridge Abutments, Journal of Hydraulic Engineering, Vol. 118(4). April, ASCE, pp. 615–631.
Mesbahi J. 1992. On Combined Scour near Groynes in River Bends, M.Sc. Thesis, Netherlands, Delft University, Hydraulics Report, HH
132.

Figure 5. 3D view of scour under square tide conditions (every 300 s).

조수 흐름이 있는 복잡한 교각에서 scour CFD 시뮬레이션

CFD simulation of local scour in complex piers under tidal flow

J. A. Vasquez1,2, and B. W. Walsh1,3
1 Northwest Hydraulic Consultants, 30 Gostick Place, North Vancouver, BC, Canada,
V7M 3G3; PH (604) 980-6011; FAX (604) 980-9264;
2 email: JVasquez@nhc-van.com
3 email: BWalsh@nhc-van.com

ABSTRACT

우리는 상용 CFD (Computational Fluid Dynamics) 모델 Flow-3D를 사용하여 조수 흐름 아래의 복잡한 교각에서 지역 scour의 질적 시뮬레이션을 보고합니다. 이 모델은 대형 piles 캡과 10 개의 원통형 piles로 구성된 복잡한 부두에서 scour 개발의 초기 단계를 계산하는 데 적용되었습니다. Flow-3D는 piles 사이에서 예상되는 상호 작용을 정확하게 재현 할 수있었습니다. CFD 모델은 또한 조류 역류 하에서 3- piles 그룹의 scour 시뮬레이션을 위해 적용되었습니다. 그 결과는 문헌에보고 된 측정치와 질적으로 일치하여 Flow-3D가 다양한 흐름 조건에서 복잡한 교각을위한 유압 설계 도구로서의 잠재력을 가지고 있음을 보여줍니다.

INTRODUCTION

캐나다 밴쿠버에 있는 프레이저 강과 피트 강 모두에서 현재 여러 다리가 건설 중이거나 최종 설계 단계에 있습니다. 이 다리는 상대적으로 크고 300m에서 1000m 사이의 수로 폭에 걸쳐 있으며 강바닥에 위치한 여러 개의 큰 교각에서 지원됩니다.

일반적으로 케이슨 또는 코퍼 댐을 사용하여 지어진 말뚝 위에 세워진 거대한 단단한 교각이 있는 오래된 교량과 달리, 새로운 교각은 일반적으로 떠 다니는 바지선에서 원통형 말뚝을 땅으로 밀어내어 지어집니다.

말뚝 상단의 수평 말뚝 캡은 수면에 위치하며 상부 구조에서 말뚝 기초까지 힘을 전달하고 선박 충돌을 방지하는 데 사용됩니다. piles 캡의 높이는 하단 및 상단 높이가 최저 및 최고 수위를 덮도록 설계되어 모든 흐름 조건에서 볼 수 있습니다.

piles 캡의 기하학적 구조와 piles의 레이아웃은 다소 복잡 할 수 있으며, 반드시 로컬 scour 예측 변수에서 가정 한 고전적인 교각 모양을 따르는 것은 아닙니다. 그림 1은 6 각형 패턴으로 배열된 두 그룹의 piles 위에 아령 모양의 piles 캡이 있는 프레이저 강의 교각 부두의 예를 보여줍니다.

지속 가능한 환경을 위한 물 공학 (그림 2) 두 개의 다른 직경으로 만들어진 10 개의 piles 위에 둥근 끝이 있는 직사각형 piles 캡으로 만들어진 피트 강의 교각 부두. 복잡한 교각에서 scour을 계산하기위한 일부 분석 공식이 존재합니다.

예를 들어, HEC-18 매뉴얼 (Richardson and Davis 2001)은 교각 스템, piles 캡 및 piles 그룹에 의해 생성된 세 가지 scour 구성 요소를 추가하여 총 scour 깊이를 계산합니다.

말뚝 그룹은 폭이 그룹에 있는 말뚝의 투영된 폭과 동일한 솔리드 말뚝으로 대체되고 말뚝 간격 및 정렬된 행 수의 효과에 대한 수정 계수를 곱합니다. Ataie-Ashtiani와 Beheshti (2006)는 지역 scour (piles 캡이 없는)에서 piles 그룹화의 효과를 연구했습니다.

그들의 실험 결과는 나란히 배열된 매우 밀접하게 배치된 말뚝의 경우 scour 깊이가 50 % 증가할 수 있음을 보여주었습니다. 탠덤 배열의 경우 전면 piles의 scour이 증가하고 후면 차폐 piles의 경우 감소합니다.

어쨌든 말뚝 사이의 간격 S가 말뚝 직경 D의 4 배 (S/D> 4)보다 크면 scour 증폭 효과가 사라지는 경향이 있습니다. 그러나 이러한 공식은 piles이 격자 모양의 레이아웃으로 균일하게 배치되어 있다고 가정합니다.

이는 그림 1과 2에 표시된 교각에서는 분명히 해당되지 않습니다. 문제를 더욱 복잡하게 하기 위해 프레이저 강과 특히 피트 강이 대상입니다.

Figure 1. Example of bridge pier with dumbbell-shaped pile cap and hexagonal pile layout, showing also scour hole measured in a physical model.

교각의 조석 scour은 단방향 scour과 동일한 세부 사항으로 연구되지 않았지만 실제로 주제에 대한 몇 가지 주목할 만한 연구가 있습니다.

Escarameia (1998)는 흐름 방향, 조수주기 기간, 수심, 교각 모양 및 퇴적물 크기에 대한 역전의 영향을 단일 원형 및 직사각형 교각의 국부 scour에 미치는 영향을 평가하여 조류 흐름 조건 하에서 국부 scour의 실험적 조사를 수행했습니다. 예상대로 퇴적물 크기는 국부 scour 깊이에 영향을 미치지 않았습니다.

조수 조건에서 최대 수세 깊이는 베드 폼이 존재하지 않는 경우 일방향 흐름에 대해 항상 평형 scour 깊이 아래로 유지되었습니다 (맑은 물 수세미). 직사각형 교각의 scour 깊이는 정사각형 교각보다 10 ~ 14 % 더 작은 것으로 나타났습니다. 정사각형 교각에서는 조수주기 동안 교각의 상류와 하류에 생성된 scour 구멍이 병합되는데 교각이 직사각형 인 경우에는 발생하지 않습니다.

May and Escarameia (2002)는 정사각형 및 정현파 조수를 사용하여 조수 조건 하에서 지역 scour의 시간적 진화를 연구했습니다. 그들은 맑은 물 scour에서 조수 흐름의 수력 학적 구조에서의 평형 scour이 일방향 유동을 사용하는 scour보다 훨씬 적을 수 있다고 결론지었습니다. 그러나 라이브 베드 scour에서 평형 깊이는 각 조수주기에서 scour 구멍이 더 빠르게 발생하고 구조물 주변에 모래 언덕이 형성되어 단방향 흐름 값에 가까울 수 있습니다.

Margheritini et al. (2006) 은 퇴적물 이동 (살상 조건)과 함께 단방향 및 조수 흐름에서 대 구경 말뚝 주변의 국부 scour 실험을 수행했습니다. 두 경우의 최종 평형 scour은 비슷했습니다. 조수 흐름의 scour 구멍은 대칭이며 원형 모양이고 일방향 scour 구멍보다 부피가 더 큽니다.

현재 물리적 모델링은 사용 가능한 scour 방정식의 가정을 따르지 않는 복잡한 모양을 가진 교각에서 로컬 scour를 평가하기위한 유일한 실용적인 엔지니어링 도구로 보입니다.

3 차원 (3D) 수치 모델링은 단일 원통형 말뚝에서 국부 scour을 재현하기 위해 성공적으로 적용되었지만, 복잡한 교각의 모델 scour이나 조류 역류 하의 말뚝 그룹에는 적용되지 않았습니다. 이 논문의 목적은 상업적으로 이용 가능한 3D 전산 유체 역학 (CFD) 모델을 사용하여 실제 복잡한 부두와 조수 역전 하에서 이상적인 3 파일 그룹에서 지역 scour의 예비 정성 결과를 제시하는 것입니다.

NUMERICAL MODELING OF PIER SCOUR

Olsen과 Melaan (1993)의 초기 작업 이후 여러 3D 수치 모델이 단일 원통형 부두에서 국소 scour을 모델링하는 데 성공적으로 적용되었습니다 (Roulund et al. 2005의 검토 참조). 그러나 복잡한 교각에서 3D scour 시뮬레이션은 거의 시도되지 않았습니다. 그 이유는 두 가지입니다.

대부분의 모델은 복잡한 교각의 형상을 수용하기 어려운 구조화된 곡선 형 경계 맞춤 그리드를 기반으로 합니다. 또 다른 중요한 제한 사항은 계산 시간이며, 이는 실제 모델에서 로컬 scour 테스트를 수행하는 데 필요한 시간보다 훨씬 큽니다.

그럼에도 불구하고 수치 모델은 귀중한 정보를 제공할 수 있으며 컴퓨터 속도가 더욱 향상될 것으로 예상되는 미래에 큰 잠재력을 가지고 있습니다. 여기에 사용된 CFD 모델은 뉴 멕시코 주 산타페의 Flow Science에서 개발한 Flow-3D입니다. Flow-3D는 유압 엔지니어링 애플리케이션을 위한 특수 모듈이 포함된 상용 CFD 패키지입니다.

구조화된 직교 그리드를 사용함에도 불구하고, 직사각형 계산 셀이 장애물에 의해 부분적으로 차단될 수 있도록 하는 FAVOR (fractional area/volume method)를 적용하여 복잡한 형상을 모델링 할 수 있습니다. 날카로운 자유 표면 (예: 수압 점프, 공기 중 자유 제트)은 VOF (Volume-of-Fluid) 방법으로 모델링 됩니다.

Flow-3D는 Brethour (2001)에 의해 자세히 설명된 대로 지역 scour을 모델링하는 고유 한 기능도 가지고 있습니다. 이러한 기능은 그림 2에 설명되어 있으며, 모델이 맑은 물 조건에서 복잡한 부두의 형상과 scour 개발의 초기 단계를 재현할 수 있는 방법을 보여줍니다.

그림 2에 표시된 복잡한 부두는 길이 51.5m, 너비 12.5m, 두께 6.7m의 끝이 둥근 파일 캡을 포함합니다. 파일 캡 아래에는 세 개의 개별 파일 그룹이 있습니다. 직경이 2.4m 인 3 개의 파일로 구성된 두 그룹 (U & D)은 파일 캡의 상류 및 하류 끝에 위치하며, 4 개의 작은 1.8m 파일 (C)은 중앙 주위에 있습니다.

파일 캡의 바닥은 침대 위 약 13m입니다. 수치 메쉬는 길이 115m, 너비 50m, 높이 22m였으며 균일 한 셀 크기는 0.5m (46,176 셀)입니다. 시뮬레이션은 수심 15.8m, 일정한 유속 1.5m/s, 퇴적물 크기 0.35mm에 대해 수행되었습니다. Flow-3D는 지역 scour에 대한 파일 간섭의 영향을 평가하는 데 사용되었습니다. 과도한 계산 시간이 필요하여 장기 시뮬레이션을 수행할 수 없었기 때문에 처음 1 시간 동안 scour 시작 만 시뮬레이션 했습니다.

말뚝 사이의 상대적 간격 S/D를 고려할 때, 그림 2에 표시된 Flow3D 결과는 Ataie-Ashtiani와 Beheshti (2006)가보고 한 말뚝 간의 상호 작용에 관한 실험적 관찰과 매우 잘 일치합니다. 결과는 부두 중심 주변의 C 말뚝이 2 쌍처럼 나란히 행동한다는 것을 시사합니다.

왼쪽과 오른짝이었는 두 쌍의 말뚝 사이에 간섭이 없는 것으로 보입니다 (C1-C2 및 C3-C4, S/D = 4); 파일 C1 (C2)은 scour (S/D = 2.3)으로부터 파일 C3 (C4)를 보호하는 것처럼 보입니다.

그림 2는 또한 파일 캡의 양쪽 끝에 있는 3 개 파일 그룹 U 및 D의 수세공 구멍이 이미 병합되어 3 개 파일 간의 강력한 상호 작용을 시사합니다 (S/D = 0.9). 또한 3- 파일 그룹 U는 더 작은 파일 C를 보호하지 않는 것 같습니다 (S/D> 5).

Figure 2. Initial scour development computed by Flow-3D in complex pier.

최대 평형 scour 깊이를 계산할 수는 없었지만, 복잡한 부두에서 말뚝과 말뚝 캡 사이의 상호 작용에 대해 얻은 통찰력은 scour 과정과 scour 대책의 잠재적 설계를 이해하는 데 여전히 중요합니다.

MODELING TIDAL SCOUR OF PILE GROUP

지속 가능한 환경을위한 물 공학 말뚝 그룹의 조수 조사 모델링 불안정한 조수 흐름의 잠재적 영향을 평가하기 위해 Flow-3D를 사용한 정성 시뮬레이션이 수행되었습니다.

전체 교각을 시뮬레이션하는 것이 불가능했기 때문에 이상화된 3- piles 그룹 (piles 캡 없음)이 거친 메시를 사용하여 재현되었습니다. 원통형 piles의 직경은 최소 간격 S / D = 0.95로 삼각형 패턴으로 배열 된 2m였습니다. 메쉬 셀 크기는 0.5m입니다.

이러한 메쉬 크기는 piles 주변 흐름의 모든 3D 세부 사항을 해결하기에 충분한 해상도를 제공하지 않지만 계산 시간을 관리 가능한 수준으로 유지하는 데 필요한 것으로 간주되었습니다.

따라서 이러한 예비 시뮬레이션은 정 성적이며 Flow-3D의 기능을 대략적으로 평가하기위한 탐색 적 특성을 가지고 있습니다. 수로는 길이 40m, 너비 16m, 높이 6.5m였습니다. 입구 / 출구의 첫 번째와 마지막 10m는 난류의 완전한 발달을 허용하기 위해 단단한 거친 베드로 만들어졌습니다.

3 개의 말뚝이있는 수로의 중앙 부분은 0.75mm의 모래로 만들어졌습니다. 수심은 2.5m였습니다. 유속의 조석 반전은 정사각형 및 정현파 조석을 사용하여 시뮬레이션되었습니다 (그림 3). 제곱 조는 Escarameia (1998)와 Margheritini et al. (2006). 단방향 흐름의 경우 조수 피크 (2m / s)를 사용했습니다.

Figure 3. idealized tidal velocity used for numerical simulations.

900 초에서 채널 중심선을 따라 세로로 된 베드 프로piles은 그림 4에서 단방향 흐름과 사인 곡선에 대해 보여집니다. 그림 5는 제곱 조수 시나리오에 대해 300 초마다 일련의 3D 이미지를 보여 주지만 화살표는 흐름 방향을 나타냅니다. 마지막으로, 세 가지 흐름 시나리오에 대한 scour의 시간적 진화가 그림 6에 나와 있습니다.

Figure 4. Computed centerline bed profiles after 900 s for unidirectional flow (left) and sinusoidal tide (right).

Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 6. Temporal evolution of maximum scour depth under steady and tidal flow conditions (grid resolution is 0.5 m)
Figure 6. Temporal evolution of maximum scour depth under steady and tidal
flow conditions (grid resolution is 0.5 m)

단방향 흐름에서 scour는 상류에서 발생하고 퇴적물은 더미 뒤에 축적됩니다 (그림 4). 조수 조건에서 흐름 반전은 이전 조수주기에서 개발 된 scour hole을 일시적으로 채웁니다. scour의 계산 된 시간적 진화 (그림 6)는 Margheritini et al.의 실험과 유사합니다(2006). 조석 수조는 처음에 증가하지만 흐름이 역전되면 약간 감소하여 다음주기에 다시 자라납니다.

Flow-3D는 Escarameia (1998)와 일치하여 시뮬레이션의 맑은 물 조건에 대해 조석 정찰이 단방향 정찰보다 약간 낮다고 예측했습니다. 그러나 사용된 거친 0.5m 메시 해상도로 인해 정확한 scour 감소 크기를 정확하게 해결할 수 없습니다. 또한, 모델은 평형 scour 깊이를 달성 할만큼 충분히 오래 실행되지 않았습니다.

CONCLUSION

Flow-3D는 구조화된 경계 맞춤 그리드의 일반적인 제한없이 복잡한 구조에서 로컬 scour을 모델링 할 수 있는 기능을 갖춘 최초의 CFD 상용 모델 일 것입니다.

큰 piles 캡과 여러 개의 piles로 구성된 복잡한 부두에 적용했을 때 Flow-3D는 piles 간의 상호 작용을 정확하게 예측할 수 있었으며 실제 엔지니어링 응용 프로그램을 위한 설계 도구로서의 잠재력을 보여주었습니다.

Flow-3D를 사용하여 맑은 물의 조수 흐름 하에서 이상적인 3- piles 그룹의 정 성적 시뮬레이션은 동일한 최고 속도의 단방향 흐름에 비해 흐름 반전이 있는 조수 조건에서 scour 깊이가 감소함을 보여주었습니다.

이러한 수치 결과는 실험 데이터와 일치합니다. 그러나 모델을 정량적으로 검증하려면 더 미세한 그리드를 사용하는 추가 연구가 필요합니다. 현재 Flow-3D 및 일반적으로 CFD 모델의 주요 실제 제한은 계산 시간입니다.

구조를 모델링하는 데 매우 큰 그리드가 필요한 경우 장기 평형 조사를 계산하려면 물리적 모델을 실행하는 데 필요한 것보다 훨씬 더 많은 계산 시간이 필요할 수 있습니다.

논문 원본 링크 : CFD simulation of local scour in complex piers under tidal flow

기타 참고 자료 : https://flow3d.co.kr/scouring-knowledge/

REFERENCES

Ataie-Ashtiani, B. and Beheshti, A.A. (2006). “Experimental investigation of clearwater local scour at pile groups”. J. Hyd. Eng., ASCE, 132(10), 1100-1104.
Brethour, J. M. (2001). Transient 3-D model for lifting, transporting and depositing
solid material. 2001 International Symposium on Environmental Hydraulics,
Tempe, Arizona (http://flow3d.info/pdfs/tp/wat_env_tp/FloSci-Bib28-01.pdf).
Escarameia, M. (1998). Laboratory investigation of scour around large structures in
tidal waters. Conf. Basics of Sediment Transport and Scouring. HR
Wallingford (http://kfki.baw.de/conferences/ICHE/1998-Cottbus/55.pdf).
May, R.W.P. and Escarameia, M. (2002). Local scour around structures in tidal flows.
First International Conference on Scour Foundations, Texas A&M University.
Margheritini, L., Martinelli, L., Lamberti, A. and Frigaard, P. (2006). Erosione
indotta da onde e correnti di marea attorno a pali di grande diametro. XXX
Convegni di Idraulica e Construzioni Idrauliche, Rome, September 2006
(http://www.idra2006.it/referee/files/L356.pdf).

FLOW-3D HYDRO- Dams & Spillways

Dams & spillways Long history of success

  • Government regulators
  • Hydro-power utilities
  • Engineering consultants
  • Hydraulics laboratories
  • CFD consultants
  • Academia

Dams & spillways

•Wide range of applications

•Wide range of flow conditions:
–Open channel
–Pressurized –Mixed

•Wide range of models
FLOW-3D HYDRO is a solution that is:

  • Versatile
  • Robust
  • Accurate

Spillway rating curve
Draft tube exit hydraulics
Flow distribution at turbine entrance
Head loss & energy dissipation
Forces on dams
Aerated flows
Spillway approach conditions
Jet deflection on upper spillway
Spillway water profile
Fish passage hydraulics
Forces on Spillways
Sediment & Scour

Limitless dam, spillway & stilling basin configurations

–Weirs & hydraulic controls
–Ogee
–Gated
–Staircase
–Siphon
–Bucket
–Morning glory
–Labyrinth
–Piano Key weir
–Arced weirs
–…

FLOW-3D HYDRO에는 수십 가지 예가 사전 탑재되어 있어 응용 프로그램 모델링을 시작할 수 있는 좋은 출발점을 제공합니다.

Ray-tracing an upcoming post-processing feature

Fishways

기하학적 또는 흐름 구성에 대한 제한 없음: FLOW-3D HYDO는 속도, 공기 흡입 및 난류장과 같은 중요한 흐름 특성을 매우 정확하게 표현합니다.

  • Natural fishways
  • Pool & weir
  • Pool & orifice
  • Larinier
  • Ice-harbor
  • Natural
  • Baffle
  • Vertical slot
  • Denil •…
  • Simulation outputs
  • Detail of velocity field
  • Water elevation profiles

Spatial mapping of turbulence intensity

Determination of flow conditions:
–Skimming
–Plunging
–Intermittent

FLOW-3D HYDRO

FLOW-3D HYDRO

제품 개요

최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 사용하시는 것에 관심이 있는 경우, 언제든지 아래 연락처로 연락주세요.
연락처 : 02-2026-0442
이메일 : flow3d@stikorea.co.kr

FLOW-3D HYDRO 는 더 높은 수준의 정확도와 모델 해상도를 제공하기 위해 3D 비 유압 모델링 기능이 필요한 경우 고급 모델링 도구로 사용할 수 있습니다. 일반적인 모델링 응용 분야는 소형 댐 / 인프라, 운송 수력학, 복잡한 3D 하천 수력학, 열 부력 연기, 배수구 및 오염 물질 수송과 관련됩니다. 

FLOW-3D HYDRO의 핵심 기능은 전체 3D 모델과 동적으로 연결될 수있는 얕은 물 모델입니다. 

이 기능을 통해 사용자는 멀티 스케일 모델링 애플리케이션을위한 모델 도메인을 확장하여 필요한 모델 해상도로 계산 효율성을 극대화 할 수 있습니다. FLOW-3D HYDRO  또한 강 및 환경 응용 분야에 특화된 추가 기능과 고급 물리학을 포함합니다.

시뮬레이션 템플릿

FLOW-3D HYDRO 의 작업 공간 템플릿으로 시간을 절약하고 실수를 방지하며 일관된 모델을 실행하십시오 . 작업 공간 템플릿은 일반적인 응용 분야에 대한 유체 속성, 물리적 모델, 수치 설정 및 시뮬레이션 출력을 미리로드합니다.

작업 공간 템플릿은 7 가지 모델 클래스에 사용할 수 있습니다.

  • 자유 표면 – TruVOF (기본값)
  • 공기 유입
  • 열 기둥
  • 퇴적물 수송
  • 얕은 물
  • 자유 표면 – 2 유체 VOF
  • 자유 표면 없음

사전로드 된 예제 시뮬레이션

FLOW-3D HYDRO 의 40 개 이상의 사전로드 된 물 중심 예제 시뮬레이션 라이브러리는 애플리케이션 모델링을위한 훌륭한 시작점을 제공합니다. 사전로드 된 예제 시뮬레이션은 모델러에게 모델 설정 및 모범 사례의 로드맵뿐만 아니라 대부분의 애플리케이션에 대한 자세한 시작점을 제공합니다.이전다음

비디오 튜토리얼

비디오 자습서는 새로운 사용자가 다양한 응용 프로그램을 모델링하는 방법을 빠르게 배울 수있는 훌륭한 경로를 제공합니다. FLOW-3D HYDRO 비디오 튜토리얼 기능 :

  • 광범위한 응용 및 물리학을위한 AZ 단계별 기록
  • “사용 방법”정보
  • 모범 사례를위한 팁
  • CAD / GIS 데이터, 시뮬레이션 파일 및 후 처리 파일

고급 솔버 개발

Tailings Model

새로운 Tailings Model은 tailings dam failure로 인한 tailings runout을 시뮬레이션하기위한 고급 기능을 제공합니다. tailings정의에 대한 다층 접근 방식과 함께 미세하고 거친 입자 구성을 나타내는 이중 모드 점도 모델은 모든 방법으로 건설 된 tailings 댐의 모델링을 허용합니다. 

얕은 물, 3D 및 하이브리드 3D / 얕은 물 메싱을 포함한 유연한 메싱을 통해 얕은 지역에서 빠른 솔루션을 제공하면서 다층 tailings의 복잡성을 정확하게 모델링 할 수 있습니다. 점성 경계층의 정확한 표현을 위해 얕은 물 메시에 2 층 Herschel-Bulkley 점도 모델을 사용할 수 있습니다.

모델 하이라이트

  • 미세 입자 및 거친 입자 광미 조성물을위한 이중 모드 점도 모델
  • 침전, 패킹 및 입자 종의 난류 확산을 포함한 Tailings  수송
  • 얕은 물 메시를위한 2 층 Herschel-Bulkley 점도 모델
  • 3D, 얕은 물, 3D / 얕은 물 하이브리드 메시를 포함한 유연한 메시 접근 방식
  • Multi-layer, variable composition tailings for general definition of tailings dam construction

Shallow Water

FLOW-3D HYDRO 의 얕은 물 모델링 기능은 3D 메시를 얕은 물 메시와 결합하여 탁월한 모델링 다양성을 제공하는 고유 한 하이브리드 메시를 사용합니다. 압력 솔버의 수치 개선으로 더 안정적이고 빠른 시뮬레이션이 가능합니다. 하이브리드 메쉬의 하단 전단 응력 계산이 크게 향상되어 정확도가 더욱 향상되었습니다. 지형에 거칠기를 적용하는 새로운 방법에는 Strickler, Chezy, Nikuradse, Colebrook-White, Haaland 및 Ramette 방정식이 포함됩니다.

Two-Fluid VOF Model

sharp 인터페이스가 있거나 없는 압축 가능 또는 비압축성 2 유체 모델은 항상 1 유체 자유 표면 모델과 함께 FLOW-3D 에서 사용할 수 있습니다 . 사실, sharp 인터페이스 처리는 TruVOF 기술을 자유 표면 모델과 공유하며 상용 CFD 소프트웨어에서 고유합니다. 최근 개발에는 2- 필드 온도 및 인터페이스 슬립 모델이 포함되었습니다. 이 모델은 오일 / 물, 액체 / 증기, 물 / 공기 및 기타 2 상 시스템에 성공적으로 적용되었습니다.

FLOW-3D HYDRO 는 2- 유체 솔루션의 정확성과 안정성에서 두 가지 중요한 발전을보고 있습니다. 운동량과 질량 보존 방정식의 강화 된 결합은 특히 액체 / 기체 흐름에서 계면에서 운동량 보존을 향상시킵니다. 연속성 방정식에서 제한된 압축성 항의 확장 된 근사값은 더 빠르고 안정적인 2 유체 압력 솔버를 만듭니다.

예를 들어, 터널 및 드롭 샤프트 설계와 같은 유압 응용 분야에서 공기가 종종 중요한 역할을 하기 때문에 두 개발 모두 FLOW-3D HYDRO 릴리스에 적시에 적용됩니다. 일반적으로 낮은 마하 수로 인해 이러한 경우 물과 공기에 제한된 압축성이 사용됩니다.

고성능 컴퓨팅 및 클라우드

고성능 컴퓨팅 FLOW-3D HYDRO

일반 워크스테이션 또는 랩톱으로 많은 작업을 수행 할 수 있지만, 대형 시뮬레이션과 고화질 시뮬레이션은 더 많은 CPU 코어를 활용함으로써 엄청난 이점을 얻을 수 있습니다. FLOW-3D CLOUD 및 고성능 컴퓨팅은 더 빠르고 정확한 모델을 실행할 수있는 더 빠른 런타임과 더 많은 선택권을 제공합니다.

하천 및 환경 중심 애플리케이션

TRANSPORTATION HYDRAULICS
SMALL DAMS AND DIVERSIONS
RIVER HYDRAULICS
SEDIMENT TRANSPORT AND DEPOSITION
OUTFALLS EFFLUENTS
THERMAL PLUMES BUOYANT FLOWS

Case Studies

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출

이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다  .

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km2 철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

두 가지 다른 구성(옵션 A와 B)을 FLOW-3D로 모델링하여 비산먼지 배출의 영향을 연구했습니다. 옵션 A에는 4줄에 9개 더미가 있는 36개의 비축량이 있고 옵션 B에는 1줄에 총 16개의 비축량이 있습니다.

또한 장벽이 있는 공기와 장벽이 없는 공기의 속도를 비교하기 위해 비축물 주변을 따라 30미터 높이의 장벽을 모델링할 수도 있습니다. 10m 높이에서 기준 초속 7.5m(m/s)의 풍속이 두 구성을 모두 모델링하는데 사용되었습니다. 비축 옵션 A와 B에 대해 네 가지 풍향 방향이 분석되었습니다.

물리적 및 수치 적 모델링

초기 모델 설정

FLOW-3D 에서 비산 먼지 배출을 모델링하기  위해, 공기 온도는 15 ° C로 가정되었습니다. 단일의 균일한 비압축성 유체 옵션이 선택되었습니다. z 방향에서 -9.81 m / s의 중력이 사용되었습니다. 유체는 점성과 난류로 간주되었습니다. 2- 방정식 (ke) 모델은 옵션 A 및 B 구성 모두에 대해 표면 마찰없이 난류를 계산하는데 사용되었습니다.

초기 조건

1/7 power 법칙 (pproximately a logrithmic law-of-the-wall distribution)에 기반한 속도 프로파일이 각 시뮬레이션에 대한 초기 조건으로 지정되었습니다. 비축 분석에서 가장 관심있는 기준 속도는 12 및 7.5m / s입니다. 풍속을 증가시키고 파일에 인접한 속도에 미치는 영향을 측정하여 분석을 수행했으며, 레이놀즈 스케일링이 이러한 속도에 대해 유지된다는 것을 확인했습니다 (즉, 들어오는 풍속 스케일링과 파일에 인접한 속도 스케일링 간의 선형 관계).   그런 다음 7.5m / s의 속도 만 사용하여 FLOW-3D 시뮬레이션을 구성했습니다. 이러한 시뮬레이션의 결과는 12m / s 조건을 충족하도록 확장 할 수 있습니다.

풍력 프로파일 power 법칙을 사용하여 10m에서 7.5m / s 이상 및 이하의 다양한 높이에 대한 속도를 추정했습니다. 경계에서 속도를 적용하는 이 방법은 경계를 따라 지형 변화를 허용하지 않습니다. 기준 속도는 서쪽, 남서부 및 남풍 방향에 대해 해발 10 미터에서 할당되었습니다. 동풍의 경우, 속도는 뒤쪽 (Y- 최대) 경계에서 경사 10 미터 위의 기준 높이에 할당되었습니다.

풍력 프로파일 power 법칙은 z 방향으로 최대 360m까지 모든 미터에서 계산되었습니다. 속도는 메쉬 크기와 동일한 간격으로 평균화되었습니다. 속도가 할당된 높이 간격은 2, 4, 6, 8, 10, 20, 70, 181, 270 및 360 미터입니다. 속도 프로파일을 설정 한 후 각 높이 간격에 대한 값은 네 가지 풍향 (서쪽, 남서쪽, 남쪽 및 동쪽) 각각에 대해 X 및 Y 구성 요소로 세분화되었습니다. 초기 조건은 메쉬 블록의 외부면에 할당되어 비축에 도달하기 전에 속도 프로파일이 개발 될 수있는 충분한 수평 공간을 남겼습니다.

풍력 프로필 power 법칙은 다음과 같습니다.

\ displaystyle {{u} _ {x}} = {{u} _ {r}} {{\ left ({\ frac {{{{z} _ {x}}}} {{{{z} _ { r}}}}} \ right)} ^ {\ propto}}, 여기서

U x  = 높이에서의 풍속 x
U r  = 기준 높이에서의 풍속
Z x  = 높이 x
Z r  = 기준 높이
α = 1/7 ‐ 대기 안정성 계수

지형

3 개의 지형파일인 스테레오리소그래피 (STL) 파일이 생성되어 모델에 통합되었습니다. 개별 파일은 지형, 창고 및 기둥에 해당합니다. 옵션 A와 B에 대해 다른 STL 파일이 생성되었습니다.

메싱

모델 도메인은 각 풍향에 대해 조정되었습니다. 메쉬 크기는 옵션 A의 경우 240 만에서 330 만 셀, 옵션 B의 경우 130 만 셀입니다. 정확하게 기둥 근처에 높이 2m, 길이 4m, 너비 4m의 셀 크기를 사용했습니다. 해당 지역의 속도를 계산합니다.

경계 조건

비축 시뮬레이션에는 네 가지 경계 유형이 사용되었습니다. 모든 풍향에 대해 상단 경계 (Z-max)가 정체 압력으로 지정되었습니다. 바람의 방향에 따라 두 개의 측벽이 유출 경계 조건으로 지정되었습니다. 나머지 두 측벽에는 그리드 오버레이 경계가 지정되었습니다. 그리드 오버레이를 사용하면 초기 조건의 속도를 모델에 입력 할 수 있습니다. 중첩 된 블록을 사용하여 원하는 메시 해상도와 배율을 만들었습니다. 내포된 블록 사이의 경계면에서 대칭 경계 조건이 사용되었습니다. 대칭을 사용하면 블록간에 정보를 전송할 수 있습니다. 그림 1은 서쪽 풍향 (y 방향)에 대한 경계 조건 설정을 보여줍니다. 다른 풍향의 경우 경계 조건을 적용하는 데 유사한 방법이 사용되었습니다.

경계 조건 서쪽 풍향
그림 1. 서쪽 풍향의 경계 조건

장벽

FLOW-3D 의 배플 기능은 비축된 곳의 주변에 바람 장벽을 만드는데 사용되었습니다. 옵션 A와 B의 배플은 높이가 30 미터였으며 지형을 따라 여러 부분으로 구성되었습니다. 모델링된 장벽은 본질적으로 다공성입니다. 34 %의 다공성 값 (즉, 34 % 개방 면적) 및 해당 속도 대 압력 강하 값은 장벽 제조업체에서 얻었습니다. FLOW-3D의  모델과 연관된 흐름 다공성 손실이 지정될 수있는 배플 알고리즘을 사용합니다. 배플은 무한히 얇고 부피를 차지하지 않습니다.

시뮬레이션 결과

옵션 A

옵션 A의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 4 가지 풍향을 분석하고 시뮬레이션했습니다.

바람의 방향배리어없는 최대 속도 (m / s)배리어가있는 최대 속도 (m / s)최대 속도 감소
서부13.58611.27817 %
남서부13.04510.79617 %
남쪽12.35212.122 %
동쪽9.768.59712 %

각 시뮬레이션의 최대 속도와 장벽과 장벽이 없는 경우 사이의 최대 속도 감소는 위의 표 1에 나와 있습니다. 장벽은 남풍의 최대 속도에 가장 적은 영향을 미칩니다. 옵션 A에 대한 장벽 추가로 최대 속도가 2 % 감소했습니다. 장벽은 서풍 또는 남서풍이있는 전체 파일 케이스의 속도에 가장 큰 영향을 미쳤습니다. 최대 속도는 서풍과 남서풍 모두에서 17 % 감소했습니다.

옵션 B

옵션 B의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 네 가지 풍향을 분석하고 시뮬레이션했습니다.

그림 2. 옵션 A : 장벽이없는 서풍의 비축량에서 계산 된 속도 크기
장벽이있는 속도 크기 서풍
그림 3. 옵션 A : 장벽이있는 서풍 방향의 비축에서 계산 된 속도 크기
바람의 방향배리어없는 최대 속도 (m / s)배리어 포함 최대 속도 (m / s)최대 속도 감소
서부15.9711.3629 %
남서부15.149.2139 %
남쪽13.410.124 %
동쪽12.787.1544 %
그림 4. 옵션 B. 장벽이없는 동풍의 비축량에서 계산 된 속도 크기
그림 5. 옵션 B : 장벽이있는 동풍의 비축에서 계산 된 속도 크기

결론

모델 결과는 비축물 주변에 장벽을 추가하는 것이 속도를 줄이고 비산먼지 배출을 방지하는데 도움이 된다는 것을 분명히 보여주었습니다. 현장 주변의 장벽 추가와 관련된 비용이 있지만, 이 옵션은 먼지 배출량을 줄임으로써 환경 규범을 달성하는 데 도움이 될 것입니다. 모델 결과를 보면 FLOW-3D가 비산먼지 방출을 연구하기 위한 정확하고 신뢰할 수 있는 도구로 사용될 수 있다는 것이 분명합니다. 추가 설계 변경과 철골 배치의 새로운 옵션이 제안될 경우 FLOW-3D에서 쉽게 모델링하여 비용 및 환경적으로 효과적인 최적의 구성을 결정할 수 있습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock
Advanced Analysis, Worley Pty Limited
L7, 116 Miller Street, North Sydney, NSW 2060 Australia
Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au

Abstract

엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.

그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.

이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 ​​차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.

첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.

두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다.
계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.

최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.

Introduction

오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.

일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.

수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].

Validation

결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.

일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.

사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.

분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.

예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.

• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다.
• 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다.
• 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.

품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.

경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.

Applications

일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.

어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.

Case 1 – Deflection of a steel water tank

직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.

물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.

이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.

내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.

그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.

용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :

철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.

Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base

벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.

벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.

계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.

Figure 2 Wall deflection of water tank
Figure 2 Wall deflection of water tank

탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.

사례 2 – 배수로 배출

호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.

Figure 3 Flowchart showing the validation process
Figure 3 Flowchart showing the validation process

미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].

분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).

계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.

Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 7 Upper nappe profile next to pier
Figure 7 Upper nappe profile next to pier

분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.

높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.

사례 3 – 안벽 건설
주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.

시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.

그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.

Figure 8 SPT ‘N’ profiles
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
Figure 9 CPT profiles

이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.

  1. Removal of pockets of soft marine clay by dredging
  2. Dredging of sand to the required level
  3. Vibro-compaction of the sand on which the counterfort units were to be founded
  4. Placement of gravel for the quay wall foundation.
  5. Placement of concrete counterfort units weighing 360 tonne each
  6. Placement of hydraulic sand fill behind the units
  7. Surcharging the fill just behind the capping beam
  8. Construct capping beam and place more sand fill to the finished level
  9. Additional surcharge prior to the operation of container cranes.

Table 1 Soil properties used in the construction
simulation of the quay wall

Table 1 Soil properties used in the construction simulation of the quay wal
Table 1 Soil properties used in the construction simulation of the quay wal

2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.

  1. The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
  2. Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
  3. Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
  4. Apply an equivalent trapezoidal pressure to represent the surcharge.
  5. Placement of capping beam and the sand fill to the required level.
  6. Apply additional surcharge.
  7. Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
Figure 10 Construction sequence

분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.

Figure 11 Wall deformations
Figure 11 Wall deformations

토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.

Figure 12 Wall top movements
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
Figure 15 ‘FOS’ vs. H/V ratio

그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.

끝 맺는 말
세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.

이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.

익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.

자세한 내용은 원문을 참고하시기 바랍니다.

References
[1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172.
[2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580.
[3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry.
[4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195.
[5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603.
[6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225.
[7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580.
[8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649.
[9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846.
[10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74.
[11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies

Cavitation | 캐비테이션

캐비테이션이란 무엇입니까?

The spillways of the Glen Canyon dam in 1983 (Lee and Hoopes, 1996).

캐비테이션은 유체 흐름의 매우 낮은 압력 또는 포화 압력을 높이는 온도 상승으로 인해 유체 내에서 증기 또는 기포가 빠르게 발생하는 것입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유도 된 힘은 1983 년 Glen Canyon 댐의 배수로에서 경험 한 손상에서 볼 수 있듯이 며칠 내에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한 고압 다이 캐스팅에서 캐비테이션이 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 급속한 압력 강하를 초래하고 후속 캐비테이션으로 이어질 수 있습니다. 생성된 증기 기포는 최종 주조에서 다공성을 유발하거나 더 나쁜 경우 다이에 손상을 일으켜 주조품을 훼손시키고 다이 수명을 감소시킬 수 있습니다.

캐비테이션은 터빈과 파이프에 손상을 줄 수 있고, 댐의 배수로에서 콘크리트를 침식하는 등의 원인이 될 수 있습니다. 아래 이미지는 댐의 배수로 바닥 근처의 콘크리트 침식을 보여줍니다. 댐에 사용되는 콘크리트는 일반적으로 강도가 높지만 캐비테이션은 여전히 그것을 부식시킬 수 있습니다.

Eroded concrete due to cavitation on the spillway of a dam

캐비테이션은 때때로 오염 물질과 유기 분자를 분해하고, 소수성 화학 물질을 결합하고, 캐비테이션 기포의 파열로 인해 생성 된 충격파를 통해 신장 결석을 파괴하고, 혼합을위한 난류를 증가시켜 수질 정화와 같은 특정 산업 응용 분야에서 의도적으로 유도됩니다.

따라서 캐비테이션이 발생할 가능성이있는 위치와 그 강도를 이해하는 것이 중요합니다. 캐비테이션을 실험을 수행하거나 실험 결과의 현상을 시각화하는 것이 어렵고, 잠재적으로 손상 될 수 있으므로 수치해석 시뮬레이션으로 검토하는 것이 매우 필요하고, 유용합니다.

Real-World Applications | 실제 응용 분야

  • 물 및 환경 구조 내에서 손상을 주는 캐비테이션 시뮬레이션
  • 다이 손상 및 주조 다공성을 유발할 수 있는 고압 다이 캐스팅 중 캐비테이션 시뮬레이션
  • MEMS 장치 내의 열 거품 형성 시뮬레이션
  • 열 전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Modeling Cavitation in FLOW-3D

FLOW-3D의 캐비테이션 모델은 thermal bubble jets 와 MEMS devices를 시뮬레이션하는데 성공적으로 사용되었습니다. FLOW-3D는 “active”또는 “passive” 모델 옵션을 제공합니다. Active 모델은 기포 영역을 열고 수동 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전파하지만, 기포 영역의 형성을 시작하지는 않습니다.

Active모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합하며, Passive모델은 작은 기포의 간단한 모양이 예상되는 시뮬레이션에 가장 적합합니다. 활성 모델과 에너지 전송 계산을 통해 위상 변화도 옵션입니다. 기포는 계면에서의 증발 또는 응축으로 인해 추가로 팽창하거나 수축 할 수 있습니다.

Sample Results

아래 시뮬레이션은 수축 노즐을 보여줍니다. 애니메이션은 매우 일시적인 진동 동작을 보여주는 캐비테이션 버블의 진화를 보여줍니다. 캐비테이션 부피 분율은 초기 연속 액체에서 캐비테이션의 시작을 시각화하기 위해 플롯됩니다.

아래 애니메이션은 진입 속도가 8m/s이고 수렴 기울기가 18 °이고 발산 기울기가 8 ° 인 벤츄리 내의 캐비테이션을 보여줍니다. 다시 말하지만, 캐비테이션의 과도 동작은 잘 모델링되어 있으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션주기 기간을 예측합니다 (Stutz and Reboud 1997).

Cavitation in a venturi

물 탱크를 통해 이동하는 고속 발사체를 시뮬레이션하여 발사체 후류에서 생성 된 저압 영역의 공동 기둥을 보여줍니다. 발사체의 초기 속도는 600m / s입니다. 아래는 탱크의 움직임과 후행하는 캐비테이션 유체의 애니메이션입니다. 발사체가 감속함에 따라 캐비테이션 기둥의 반경이 좁아집니다.

@

High-speed bullet

References

Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.

Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.

Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.

Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

Filling / 충진

Filling / 충진

재료 비용을 줄이고 사이클 시간을 개선하기 위해 소비재 회사는 슬로 싱, 튀기 및 공기 혼입을 포함한 많은 자유 표면 유체 문제를 처리해야합니다.

Predicting Entrained Air in a Bottle Filling Example

혼입된 공기는 생산 라인에서 컨테이너가 채워질 때 액체의 부피를 증가시킬 수 있습니다. 아래 왼쪽 이미지는 높이가 약 20cm인 병에 1.2 초 동안 채우는 것을 보여줍니다. 색상 음영은 액체에서 공기의 부피 비율을 나타냅니다. 병에서 짧은 시간과 높은 수준의 혼합으로 인해 공기가 표면으로 올라와 빠져 나갈 시간이 없었습니다. 그러나 오른쪽 이미지에서 볼 수 있듯이 약 1.7 초의 추가 시간이 지나면 표면으로 상승하는 공기로 인한 액체 부피 감소가 명확하게 보입니다. FLOW-3D의 드리프트 플럭스 모델을 사용하면 액체의 기포와 같은 성분을 분리하여 분리 할 수 있습니다.

Air entrainment (left) and separation of air and liquid (right)

In by 9, out by 5 – Rapid evaluation of Tide® bottle filling

FLOW-3D를 사용하여 새로운 Tide 병 디자인의 채우기를 모델링하는 방법을 설명하는이 기사는 The Procter and Gamble Company의 기술 부문 책임자 인 John McKibben이 기고했습니다.

오전 9시에 긴급한 이메일을 받았다고 상상해보십시오.

새로운 Tide® 병 디자인 중 하나가 핸들을 채우고 충전 장비에 문제가있을 수 있음을 방금 깨달았습니다. 프로토 타입 병도없고 몇 주 동안도 없을 것입니다. 디자이너와 소비자는 디자인의 모양을 좋아하지만 그것이 채우는 방식은 우리 생산 시설의 쇼 스토퍼가 될 수 있습니다.
이 상황을 접했을 때 저는 3D 지오메트리 (그림 1)의 스테레오 리소그래피 (.stl) 파일을 요청하여 응답을 시작했고 제가 할 수있는 일을 확인했습니다. FLOW-3D는 .stl 파일을 사용하여 지오메트리를 입력 할 수 있으며 채우기에 대한 자유 표면 문제를 해결할 수 있어야한다는 것을 알고있었습니다. 나는 이것이 잠재적 인 문제에 대한 좋은 질적 이해를 제공 할 것으로 기대했지만,이 응용 프로그램에 대해 얼마나 정확한지에 대해서는 약간 불확실했습니다.

Setting up and Running the Simulation

오후 1 시경에 지오메트리 파일, 유량 및 유체 속성을 받았습니다. 몇 시간 내에 시뮬레이션이 실행되어 예비 결과를 제공했습니다. 저는 제 고객을 초대하여 결과를 간단히 살펴 보았고 그는 “보스의 상사”도 함께 살펴 보았습니다. 그래서 저녁 5 시까 지 예비 결과를보고 원래 우려 사항이 문제가 아니라고 판단했습니다.

그러나 결과는 몇 가지 다른 질문을 제기했습니다. 핸들을 채우면 유입되는 유체 분사가 많이 분리되었습니다. 나는 이것이 동반 된 공기와 거품의 양을 증가시킬 것이라는 것을 알고 있었다 (우리는 결국 세탁 세제를 채우고있다). FLOW-3D 공기 혼입 모델을 테스트하기로 결정했습니다. 이 모델은 원래 난류 제트 용으로 개발되었으며,이 층류 문제를 볼 때 얼마나 잘 수행 될지 확신 할 수 없었습니다.

Figure 2: Filled results
Experimental comparison of bottle filling model with and without the air entrainment model, courtesy of The Procter & Gamble Company.

그림 2는 공기 유입 모델이 있거나없는 병 충전 모델의 결과를 보여줍니다. 혼입 된 공기가 포함되면 충전 레벨이 크게 증가합니다. 혼입 된 공기가 병 상단에서 액체를 밀어 내지는 않지만 공기 혼입 정확도를 확인해야 할만큼 충분히 가깝습니다.

그림 3은 몇 주 후에 실행 된 실험의 이미지와 공기 혼입 수준을 비교합니다 (시제품 병이 제공되었을 때). 제트 분리 및 충진 수준의 정 성적 일치는 우수하며 시뮬레이션이 병 설계를 선별하기에 충분히 정확하다는 것을 확인했습니다.

원자력 시설물의 잔해물 거동 예측

Debris Transport in a Nuclear Reactor Containment Building

원자로 격리 건물에서 파편 운송

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Emergency Core Cooling System (ECCS)

파이프 파손 후 ECCS (비상 코어 냉각 시스템)가 활성화됩니다. 격리 건물 압력을 낮추고 대기에서 방사성 물질을 제거하기 위해 격리 스프레이를 켤 것입니다. 물은 부식 열을 제거하고 용융을 방지하기 위해 코어에 주입됩니다. 이 물은 이후 파이프 파손 부위에서 흘러 나옵니다. 격납 스프레이와 부식 열 제거에서 나온 물은 외부 탱크에서 ECCS 펌프에 의해 격납용기로 펌핑됩니다. 스프레이 및 브레이크 흐름을 통해 격리실로 펌핑된 물의 양은 격리실 바닥에 모이고 풀을 형성합니다.

Sump Strainers and Debris

외부 탱크의 물이 고갈된 후에는 ECCS 펌프에 대한 흡입기가 격납건물 내 하나 이상의 섬프로 전환됩니다(두 개의 섬프 스트레이너 예가 왼쪽에 표시됨). 섬프의 기능은 원자로 건물 풀에서 펌프 흡입구로 물을 재순환하는 것입니다. 각 섬프에는 이물질이 ECCS 펌프로 빨려 들어가 막힘이나 손상이 발생하는 것을 방지하기 위해 스트레이너 시스템이 있습니다. 그러나 스트레이너에 쌓인 이물질로 인해 펌프가 요구하는 순정 흡수헤드(NPSH)를 초과하는 헤드 손실이 발생하여 펌프가 고장을 일으키고 발전소를 안전하게 정지시킬 수 없습니다. 원자력규제위원회 일반안전문제(GSI) 191의 핵심입니다.

FLOW-3D Applied to Evaluate Performance

FLOW-3D는 격납용기 풀을 모델링하고 스트레이너에 도달할 수 있는 이물질의 양을 결정하는 데 사용됩니다. 파이프 파손, 직접 분무 구역(분무기가 비처럼 POOL에 유입되는 지역), 유출 분무 구역(분무수가 더 높은 고도에서 바닥에서 흘러나와 폭포처럼 POOL에 유입되는 지역)은 질량-모멘텀 소스 입자가 밀집된 지역으로 모델링되며, 적절한 유량과 속도가 할당됩니다. 후자는 POOL 표면까지의 자유 낙하 거리에 따라 달라집니다. 여과기 영역은 격납용기 POOL에서 물을 끌어오는 흡입구로 모델링됩니다.

Containment pool simulation

모델을 자유 표면으로 실행하여 (풀의 섬프 흡입 또는 초크 포인트로 인한) 상당한 수위 변화를 식별하고, RNG 모델을 활성화하여 풀의 난류를 예측합니다. 파괴된 절연체가 격납용기 풀을 통해 이동할 수 있는 능력은 정착 속도(정지 상태에서 이동할 수 있는 기능)와 텀블링 속도(바닥을 가로질러 이동할 수 있는 기능)의 기능입니다. 안착 속도는 절연체를 고정하는 데 필요한 운동 에너지의 양과 관련이 있습니다. 이러한 안착 및 텀블링 속도는 연도 및 탱크 테스트를 통해 결정되며, FLOW-3D 모델에 의해 계산된 값입니다.

모델이 정상 상태 상태에 도달한 후에는 FLOW-3D 결과가 후처리되어 다양한 이물질 유형을 POOL 바닥(빨간색으로 표시됨)으로 넘어뜨릴 수 있을 정도로 속도가 높은 영역 또는 난류가 서스펜션의 이물질을 운반할 수 있을 정도로 높은 영역(노란색으로 표시됨)을 결정합니다.

그런 다음 속도 벡터를 빨간색 및 노란색 영역과 함께 사용하여 흐름이 이물질을 스트레이너 쪽으로 운반하는지 여부를 확인합니다. 그런 다음 이러한 영역을 초기 이물질 분포 영역과 비교하여 각 이물질의 유형 및 크기에 대한 운송 분율을 결정합니다.

Conclusions

이물질 잔해 수송 테스트를 CFD 모델링과 결합하면 ECCS 스트레이너가 견딜 수 있어야하는 잔해 부하를 다른 방법으로는 가정해야하는 지나치게 보수적인 값에서 크게 줄일 수 있습니다. CFD는 또한 수두 손실 테스트를 지원하기 위해 ECCS 스트레이너 주변의 흐름 패턴, 수두 손실 테스트 및 플랜트 설계 수정을 식별하는 데있어 격납용 POOL 수위 변화를 식별하는데 유용함이 입증되었습니다.

Alion logo

1Alion Science and Technology is a consulting engineering company with the ITS Operation comprised of engineering professionals skilled at developing and completing diverse projects vital to power plant operations. Alion ITSO provides engineering, program management, system integration, human-systems integration, design review, testing, and analysis for nuclear, electrical and mechanical systems, as well as environmental services. Alion ITSO has developed a meticulous Quality Assurance Program, which is compliant with 10CFR50 Appendix B, 10CFR21, ASME NQA-1, ANSI N45.2 and applicable daughter standards. Alion ITSO has provided a myriad of turnkey services to customers, delivering the highest levels of satisfaction for almost 15 years.

Wave Energy Devices

파동 에너지 장치 모델링
최근 몇 년 동안 파력 에너지와 같은 재생 가능 자원을 사용하여 환경 영향이 적은 에너지를 생산하는 신기술 개발에 대한 국제적인 관심이 기하 급수적으로 증가했습니다. 바다 (해류, 파도 등)에서 전기를 유도하는 파동 에너지 장치는 특히 중요하며 FLOW-3D로 정확하게 모델링 할 수 있습니다.

포인트 흡수 장치
점 흡수 장치는 수면의 파도를 사용하여 에너지를 생성하는 많은 파도 장치 중 하나입니다. 포인트 흡수 에너지 장치는 기본적으로 파도에서 에너지를 흡수하고 바닥에 대한 부력 상단의 움직임을 전력으로 변환하는 부동 구조입니다.

이 시뮬레이션은 부력 구형 구조가 위에 있는 포인트 흡수기 장치를 보여주고, 들어오는 파동의 파고와 수조에 따라 위아래로 움직입니다. FLOW-3D의 이동 객체 모델은 x 또는 y 방향으로 이동을 제한하면서 z 방향으로 커플링 모션을 허용하는 데 사용됩니다. 스톡스 유형의 파장은 진폭 5m, 파장은 100m로 사용되었습니다. RNG 모델은 파동이 포인트 업소버 장치와 상호작용할 때 발생하는 난류를 포착하기 위해 사용되었습니다. 예상대로, 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 그림은 난류로 인해 장치 근처의 복잡한 속도장이 진화하기 때문에 질량 중심의 불규칙한 순환 운동을 보여줍니다.

Multi-Flap, Bottom-Hinged Wave Energy Converter

Oscillating flap은 바다의 파동으로부터 에너지를 추출하여 기계 에너지로 변환합니다. 암은 Water wave에 반응하여 피벗 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 멀티플랩파 에너지 변환기를 만들 수 있습니다. 3개의 플랩 배열이 아래 왼쪽에 표시된 CFD 시뮬레이션에서 시뮬레이션됩니다. 모든 플랩은 하단에 힌지로 연결되며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 깊이 30m에서 주파수가 10초인 4m 진폭 파형으로 작동 중입니다. 시뮬레이션은 한 플랩이 배열 내의 다른 플랩에 미치는 영향을 연구하는 데 중요한 중심 평면을 따라 복잡한 속도 ISO 표면을 보여줍니다. 3개의 플랩이 유사한 동적 모션으로 시작하는 동안, 곧 플랩의 상호 작용 효과가 모션을 위상 밖으로 렌더링합니다. 우측에는 유사한 플랩 에너지 변환기가 표시되어 있습니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 완전히 물에 잠깁니다. 이러한 에너지 변환기를 표면 천공 플랩 에너지 변환기라고 합니다. 이 두 시뮬레이션 예는 모두 미네르바 다이내믹스에 의해 제공되었습니다.

Oscillating Water Column

진동하는 물 기둥은 부분적으로 잠긴 속이 빈 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수선 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수있는 터빈을 통해 대기로 흐르게됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

위의 CFD 시뮬레이션은 진동하는 water columns를 보여줍니다. FLOW-3D로 포착된 물리학을 강조하기 위해 물기둥이 중공 구조에서 상승 및 하강하는 부분만 모델링합니다. 시뮬레이션은 파형 생성의 다른 선택을 제외하고 유사한 결과를 전달합니다. 왼쪽의 시뮬레이션은 웨이브 유형 경계 조건을 사용하고 오른쪽의 시뮬레이션은 움직이는 물체 모델을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

Lab-on-a-chip

다양한 표면 장력을 사용하는 패턴화된 표면

마이크로 채널의 패턴화된 표면은 액체 사이의 실제 물리적 벽 없이도 여러 액체가 나란히 흐르는 특정 경로를 따라 한 저장소에서 다른 저장소로 액체를 운반하는 데 사용할 수 있습니다. 패턴화된 표면은 랩 온어 칩 (lab-on-a-chip), 바이오어세이, 마이크로 리액터 및 화학적 및 생물학적 감지를 통해 유체를 운반하는 데 사용됩니다. 이 경우 표면 장력은 패턴화된 흐름을 생성하기 위해 마이크로 채널의 유체 흐름을 조작하는데 사용됩니다. 고체 표면에서 유체의 친수성 또는 소수성 거동을 이용하여 마이크로 채널을 통한 여러 유체의 움직임을 제어합니다. 마이크로 채널 내부의 유체 흐름은 층상이므로 여러 유체 흐름 (이 경우 2 개)이 난류 혼합없이 나란히 흐를 수 있습니다. 유체 흐름의 측면에는 물리적 벽이 없기 때문에 흐름은 소위 가상 벽에 의해 제한됩니다. 이 벽은 기본적으로 두 유체 사이의 친수성 경계입니다.

Patterned surfaces in micro channels
Experimental results showing the three phases – A, B and C (left to right), Bin Zhao et al.

위 그림은 마이크로 채널의 실험을 보여줍니다. 중앙 수평 채널의 중간 스트립은 친수성이지만 상부 및 하부 수직 채널과 함께 나머지 채널은 소수성의 정도가 다릅니다. 소수성은 접촉각의 몇도 정도만 다릅니다. 상부 채널의 접촉각은 118o이고 하부 채널의 접촉각은 112o입니다. 그러나 접촉각의 작은 차이는 유체가 이러한 영역으로 흐르기 위해 상당히 다른 압력을 필요로합니다.

Numerical Simulation

처음에는 모든 채널이 다른 유체(투명)로 채워집니다. 분홍색 액체가 수평 채널로 밀리면 중앙 영역(단계 A)의 친수성 경로를 사용합니다. 압력이 증가하면 유체는 하부 친수성-수성 장벽을 깨고 하부 친수성 영역(단계 B)으로 흐르기 시작합니다. 압력을 더 높이면 마침내 유체가 상부 친수성-수소성 장벽을 부수고 상부 영역에서도 흐르기 시작합니다(Phase C).

Numerical results - patterned surfaces using varied surface tension
Numerical results showing the three phases – A, B and C.

위의 수치 결과는 둘 사이에 중요한 차이가 있다는 점을 고려할 때 실험에서 패턴화된 표면 연구의 전반적인 아이디어와 합리적인 비교 가능성을 보여줍니다. 위에 표시된 수치 결과는 과도 상태 (압력이 지속적으로 증가)이므로 유체 경계가 실험 결과와 정확히 유사하지 않습니다. 마찬가지로 유체 특성은 실험에 사용 된 특성과 정확히 유사하지 않습니다. 그럼에도 불구하고 유체 1은 실험에서와 같이 압력이 증가함에 따라 단계 A, B 및 C를 통과합니다. 단계 B에서 투명한 유체는 계속해서 위쪽 채널을 통해 흐르지 만 분홍색 유체만 아래쪽 영역으로 흐릅니다. 이것은 실험과 일치합니다. 흥미로운 것은 C 단계에서 나타난 기포 형성입니다. C 단계에서 기포 형성과 같은 흥미로운 물리학에 대한 계시와 연구는 미세 유체 장치의 설계 및 제작 과정에 중요 할 수 있습니다.

FLOW-3D Results

아래 애니메이션은 위의 실험에 대한 FLOW-3D의 시뮬레이션 결과를 보여줍니다. 유체 1 (하늘색)은 실험의 분홍색 유체와 동일합니다. 처음에는 전체 도메인이 Fluid 2 (투명 유체)로 채워집니다. 압력은 단계적으로 증가하고 시뮬레이션이 진행됨에 따라 세 단계를 모두 볼 수 있습니다.

Evolution of fluid flow with increasing pressure in patterned micro channels created by varying contact angles.

Ref: Bin Zhao, Jeffrey S. Moore, David J. Beebe, Surface-Directed Liquid Flow Inside Microchannels, Science 291, 1023 (2001)

Learn more about the power and versatility of modeling microfluidic applications with FLOW-3D

모델링 기능(Modeling Capabilities)

모델링 기능(Modeling Capabilities)

범용 CFD 소프트웨어인 FLOW-3D는 40년의 역사를 통해 개발 된 비압축 유체의 내부 및 외부의 자유 표면 흐름, 열 전달, 난류, 이동 및 변형하는 고체, 표면 장력 및 상변화와 같은 광범위한 물리적 및 수치적 기능을 갖추고 있습니다. FLOW-3D를 성공적으로 사용하여 광범위한 공학적 및 과학적 문제를 해결하고 설계를 최적화하며 복잡한 과정에 대한 통찰력을 얻을 수 있습니다.

 

 

FLOW-3D의 단열 버블 및 표면 장력 모델과 결합 된 1 유체 VOF 방식을 사용하면 유체를 사용하여 빈 공간을 효과적으로 모델링 할 수 있습니다. 이 솔루션은 빠르고 강력하며 정확하고 복잡한 2 유체 VOF 접근 방식을 우회합니다.

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오

2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.

작업 공간 열기

3.작업 공간을 로드 하려면 OK누르십시오.

작업 공간에서 시뮬레이션 작업

작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.

Example를 추가하십시오

작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는
방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.

1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오

2.File -> Add example 선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가선택할 수 있습니다.

3.예제 대화 상자에서 예제를 선택하고 열기를 누르십시오. 자연 대류(Natural Convection) 예제를 선택했습니다.

시뮬레이션 예제 추가

4.새 시뮬레이션 대화 상자가 열립니다.

5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.

6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.

7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.

작업 공간에서의 시뮬레이션

작업 공간에서 시뮬레이션 제거

작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를 선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.

2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.

모든 작업 공간 및 디스크에서 시뮬레이션 삭제

작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션
파일을 삭제하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션
삭제를
선택하십시오.

2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.

3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.

경고

이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.

작업 공간에 기존 시뮬레이션 추가

기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.

1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가 선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation 을 선택할 수도 있습니다.

2.prepin.*파일 위치로 이동하여 열기를 선택하십시오.

작업 공간에 기존 시뮬레이션 추가

3.시뮬레이션이 이제 작업 공간에 나타납니다.

작업 공간에 새로운 시뮬레이션 추가

대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가 선택하십시오.

2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example 불러오십시오.

3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금
각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기
충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.

4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI CGS 단위의 경우 Celsius
Kelvin, 엔지니어링 단위의 경우 Fahrenheit Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량
및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.

노트

새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.

5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우
찾아보기 아이콘 (
browse_icon_v12)을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.

6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( browse_icon_v12)을 사용하여 원하는 위치로 이동하십시오.

7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.

heat transfer example

새로운 시뮬레이션 추가

다른 옵션

우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.

일반적으로 사용되는 Add Simulation Copy… 그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을
작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.

추가 정보

재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.

전처리 및 시뮬레이션 실행

시뮬레이션 전처리

시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에
유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local 선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.

추가 정보

자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.

시뮬레이션 실행

시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히
정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의
아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다
.

추가 정보

시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

작업 공간에서 모든 시뮬레이션 실행

작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

대기열

사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장을 참조하십시오.

파일 시스템에서 파일 찾기

어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.

파일 링크

4.모델 설정

Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체,
기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.

이 섹션은 물에 잠긴 모래(; 파랑)의 바닥에서 가열된 구리 블록(; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.

예제 문제

이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에
대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.

시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.

탐색

모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여 Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.

시뮬레이션의 다양한 측면을 정의하기위한 탐색 아이콘

통제 수단

다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.

행동

버튼/

동작

기술

회전

왼쪽

길게 클릭

마우스 왼쪽 버튼을 클릭 한 채로 Meshing & Geometry 창에서
마우스를 움직입니다. 그에 따라 모델이 회전합니다.

중간 버튼/스크롤

스크롤/클릭 한
상태

마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭
한 상태로 유지하십시오.

우측

길게 클릭

마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.

객체에 초점 설정

해당 없음

객체 위에 커서를 놓기

커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를
통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry 탭에서 Tools->
Mouse Hover
Selection
환경 설정 이 활성화된 경우에만
수행됩니다.

선택

왼쪽

더블 클릭

객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가
조작을 위해 객체를 선택하고 활성화합니다. Meshing
& Geometry
탭에서 Tools
->Mouse Hover Selection 환경 설정 이
비활성화 된 경우에만 활성화됩니다.

액세스 객체 속성

우측

딸깍 하는 소리

강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체
식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.

커서 좌표 반환 (프로브)

왼쪽

Shift + 클릭

Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.

피벗 점 배치

왼쪽

cntrl + 클릭

Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가
피벗 점을 중심으로 회전합니다. 토글 사용자 정의 피벗 피벗 점을 끕니다.
보기 창 위의 버튼을 누릅니다.

도움이
되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.

메시 및 지오메트리 탭의 컨트롤

글로벌

이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면
시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.

글로벌 아이콘 f3d_global_icon을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.

글로벌 탭 예를 들어 문제

추가 정보

자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.

물리

물리 f3d_models_icon아이콘을 클릭하여 물리 위젯을 엽니다.

모델 선택을위한 물리 위젯

이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.

관련 물리 메커니즘(, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고활성화 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.

·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.

문제 평가를위한 밀도 평가 모델

·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.

예를 들어 중력 모델

·
Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.

열전달 모델 예 : 문제

·
Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.

예를 들어 문제의 점도 모델

추가 정보

자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.

유체

유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon f3d_fluids_icon아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼Matdatbas을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.

이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 207e-6을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.

유체 특성 (예 : 문제)

추가 정보

자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

Geometry(기하)

기하형상 f3d_geometry_icon아이콘을 클릭하여 물리 위젯을 엽니다.

이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.

구리 블록을 만들려면 먼저 지정된 상자 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.

예제 문제에 대한 구리 블록 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.

상자아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.

예를 들어 침대 문제 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.

예제 문제에 대한 형상 정의

새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.

노트

표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 즐겨 찾기옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.

추가 정보

자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.

구성 요소 속성

열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘f3d_geometry_icon을 클릭하여 구성 요소 속성 위젯에서 설정합니다.

구성 요소 특성 위젯

각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.

구리 블록 고체 특성

여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드 Matdatbas 아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz 선택하고 Load를 선택하십시오.

베드 솔리드 속성

추가 정보

l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.

Meshing(메싱)

Mesh Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. f3d_mesh_icon아이콘을 눌러 add_iconMesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.

메시 블록을 형상에 맞추기

Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton 탭을 선택하고 Mesh Plane 2 0.2를 입력합니다.

z 높이 조정

이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.

y 메쉬 평면 조정

최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.

또한 솔버가 Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면 즐겨 찾기아이콘을 클릭한 다음 생성을 선택하십시오.

호의

잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.

선호하는 결과

추가 정보

l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.

l FAVORTM FAVORize
옵션에 대한 자세한 내용은 모델 설정 즐겨 찾기장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.

경계 조건

FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다(f3d_bc_icon ).

이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.

·X Min :

o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.

XMIN 경계 조건

·다음으로, 유체 분율 사용에서 유체 표고 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

·마지막으로 온도를 298K로 설정하십시오.

XMIN 경계 조건

·
X Max :

o경계 조건 위젯의 경계 섹션 아래에 있는 X 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로, 유체 분율 사용에서 유체 높이 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

o마지막으로 온도를 298K로 맞춥니다.

oXMAX 경계 조건

·
Z 최대 :

o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로 유체 분율을 0.0으로 설정하십시오.

o마지막으로 온도를 298K로 맞춘다.

ZMAX 경계 조건

추가 정보

자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.

초기 조건

도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.

·
구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.

유체 초기 조건

유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.

f3d_initial_icon 아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.

유체 초기 조건

다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.

유체 초기 조건 계속

추가 정보

자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.

출력

FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력 f3d_output_icon 아이콘을 클릭합니다.

다른 데이터 유형은 다음과 같습니다.

·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.

·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.

·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.

일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.

출력 탭 설정

추가 정보

자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.

Numerics

기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.

이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.

추가 정보

자세한 내용은 모델 설정 장의 Numerics 옵션 섹션을 참조하십시오.

일반 시뮬레이션 설정 점검 목록

시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.

시작하기 전에

1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.

2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.

3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.

모델 설정 : 일반

1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.

2.사용할 솔버와 프로세서 수를 선택하십시오.

3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 ( : mm-gm-msec)사용하고 규모가 큰 문제는 큰 단위 ( : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.

4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 f> 0(유체 1을 나타내는) 또는 유체 분획 f \ geq 0(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스
추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는 f = 0두 유체 문제에서 처리되는 영역을 정의합니다.

5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.

6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.

모델 설정 : 물리

1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화

모델 설정 : 유체

1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.

2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.

3.인터페이스의 속성 정의: f = 1 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.

모델 설정 : Mesh 및 형상

1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상
정의와 관련된 문제를 파악하는 데 도움이 됩니다.

2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.

3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.

4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.

5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이 0 <f <1있는 셀과 셀이 f = 1다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다.f = 0 ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. f = 1 f = 0 .

6.지오메트리를 정의하는 모든 배플 정의

7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.

8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다.t = 0 .주석이
달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.

9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)

모델 설정 : 출력

1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.

2.재시작 데이터에 추가할 출력을 선택하십시오.

3.선택한 데이터에 기록할 정보를 선택하십시오.

4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.

모델 설정 : 숫자

1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.

5.FLOW-3D에서 후 처리

이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서 FlowSight에 대한 튜토리얼은 FlowSight 설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.

FlowSight 사용에 대한 기본 참조는 FlowSight Help->helpLocal Help 메뉴에서 액세스하는 FlowSight 사용자 설명서입니다.

추가 정보

기존 플롯

기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.

1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.

2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리 flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.

3. 확인을 선택 flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.

기존 결과 대화 상자

4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.

기존 플롯보기

커스텀 플롯

1.분석 탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를 선택하십시오.

2.전체 출력 파일을 보려면 사용자 정의 단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.

3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을 클릭하십시오.

FLOW-3D 결과 대화 상자

이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.

·Custom : 이 매뉴얼 의 FLSINP 파일을 사용하여 플롯합니다. 사용자 정의 섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.

·프로브 : 개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브 플롯 프로브 : 특정 시점의 데이터와 시간 을 참조하십시오.

·1-D : 셀 데이터는 X, Y 또는 Z 방향의 셀 라인을 따라 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 1-D 플롯 1-D : 라인을 따른 데이터 시간 을 참조하십시오.

·2-D : 셀 데이터는 XY, YZ 또는 XZ 평면에서 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 속도 벡터 및 입자를 추가할 수 있습니다. 자세한 내용은 2 차원 플롯 2 차원 : 평면의 데이터와 시간의 데이터 를 참조하십시오.

·3-D : 유체와 고체의 표면 플롯을 생성하고 셀 데이터로 채색 할 수 있습니다. 속도 벡터, 입자 (있는 경우) 및 유선과 같은 추가 정보를 추가할 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 3D 플롯 3D : 표면의 데이터 시간 을 참조하십시오.

·텍스트 출력 : cell-by-cell 재시작, 선택 및 응고 데이터를 텍스트 파일에 쓸 수 있습니다. 자세한 내용은 텍스트 출력 텍스트 : ASCII 형식의 공간 데이터 출력 시간 을 참조하십시오.

·중립 파일 : 재시작 및 선택된 데이터는 별도의 텍스트 파일에 정의 된 지정된 지점(보간 또는 셀 중심)에서 출력 될 수 있습니다. 자세한 내용은 중립 파일 : 사용자 정의 좌표에서의 공간 데이터 출력 시간 을 참조하십시오.

·FSI TSE : 유한 요소 유체 / 고체 상호 작용 및 열 응력 진화 물리학 패키지에서 출력됩니다. 자세한 내용은 FSI / TSE : 표면의 구조 데이터와 시간 을 참조하십시오.

3 차원 도표

1.Analyze -> 3-D 탭을 선택하십시오.

2.Iso-surface = Fraction of fluid 선택하십시오. 이것은 표면을 그리는 데 사용되는 변수입니다. 선택한 등면 변수에 대한 등고선 값 기준을 충족하는 모든 셀을 통해 표면이 그려집니다. 유체의 분율이 기본값이며 유체 표면이 표시됩니다.

등 면형

3.색상 변수 = 압력을 선택하십시오. 이 선택은 등위면의 색을 지정하는 데 사용되는 변수를 결정합니다 (이 경우 유체 표면은 압력에 의해 색이 그려집니다).

색상 변수 유형

4.Component iso-surface overlay = Solid volume 선택하십시오. 솔리드 볼륨 은 유체와 함께 솔리드 구성 요소를 표시합니다. 이전 단계에서는 체적 분수의 보완을 등위면으로 선택하여 이 작업을 수행했지만 이 옵션을 사용하면 유체와 고체 표면을 동시에 플롯 할 수 있습니다.

등표면 옵션

5.이동 시간 프레임의 최소 및 최대 위치들 (0 내지 1.25 )에 슬라이더 위치.

시간대 옵션

6.렌더 버튼을 클릭하여 디스플레이 탭으로 전환하고 t = 0.0에서 1.25 초 사이에 일련의 11 플롯을 생성하여 압력에 의해 채색된 유체 표면과 위어 구조를 보여줍니다. 데이터 다시 시작 이 선택되었으므로 11 개의 플롯이 있습니다.

7.사용 가능한 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 다음을 클릭하여 시간 프레임 사이를 이동하거나 시간 프레임을 두 번 클릭하여 표시하십시오. 첫 번째 및 마지막 시간 프레임은 다음과 같아야 합니다.

위어 구조 렌더링

8.Analyze -> 3-D 탭으로 돌아가서 Data Source 그룹에서 Selected data 라디오 버튼을 선택하십시오.

데이터 소스

9.시간 프레임 선택기의 두 슬라이더가 모두 오른쪽에 있으므로 마지막 시간 프레임 만 생성됩니다. 사용 가능한 시간 프레임이 많고 렌더링하는데 시간이 오래 걸리므로 선택한 데이터를 선택하면 인터페이스에서 자동으로 수행됩니다. 사용 가능한 모든 시간 프레임을 렌더링 하려면 왼쪽 슬라이더를 Time Frame Min = 0 으로 이동하십시오.

10. 렌더링 버튼을 클릭하십시오. 몇 초 안에 뷰가 디스플레이 창으로 전환되고 101 개의 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 시간 프레임 사이를 이동하려면 다음을 반복해서 클릭하십시오.

대칭 흐름 표시

위어 중심 아래로 대칭 평면을 사용하여 시뮬레이션을 설정했으므로 위어 구조의 절반만 시뮬레이션되고 표시됩니다. 프리젠테이션 목적으로 대칭 모델의 두 반쪽을 모두 표시할
수 있습니다.

1.아래와 같이 Analyze -> 3-D 탭으로 돌아가서 Open Symmetry Boundaries 확인란을 선택하십시오.

열린 대칭 경계

2.렌더링을 클릭하십시오. 유체 표면이 디스플레이 탭의 대칭 경계에서 열린 상태로 나타납니다.

3.화면 위의 도구 모음 메뉴에서 도구 -> 대칭을 선택하십시오.

4.대화 상자에서 Y 방향 확인란을 선택하여 Y = 0 평면에서 결과를 미러링합니다.

대조

5.적용 닫기를 선택하십시오.

6.마지막 시간 프레임을 두 번 클릭하십시오. 디스플레이는 아래와 같이 전체 위어 구조를 보여줍니다.

전체 위어 구조

3 차원 애니메이션 만들기

다음 단계는 3 차원 유체 표면의 애니메이션을 만드는 것입니다. 애니메이션은 사용 가능한 시간 프레임 목록의 프레임에서 만든 동영상입니다. 애니메이션의 시각적 효과를 향상시키려면 모든 프레임에 공통 색상 스케일을 적용하는 것이 좋습니다.

1.분석 -> 3-D 탭으로 돌아갑니다.

2.윤곽 제한 그룹 상자에서 전역 라디오 버튼을 모두 선택하십시오.

윤곽 제한

3.렌더 클릭 하여 다시 그리고 디스플레이 탭으로 돌아갑니다.

4.도구 -> 대칭 -> Y 방향 -> 적용 선택을 반복하여 Y = 0 평면에서 결과를 반영합니다.

5.선택 도구 -> 애니메이션 -> 러버 밴드 캡처를 다음과 같이 선택 확인 Mesh지가 나타납니다 그것을 읽은 후.

러버 밴드 캡처

6.마우스 왼쪽 버튼을 클릭 한 상태에서 드래그하여 애니메이션을 적용할 화면 부분을 선택하십시오. 선택한 영역 주위에 선택 상자가 나타납니다.

X, Y, 너비 및 높이 상자

7.디스플레이 창 위에서 빨간색 캡처 버튼을 선택하십시오. 애니메이션을 시작하는 대화 상자가 나타납니다.

8.애니메이션의 기본 이름은 out.avi입니다. 아래에 표시된 것처럼 보다 구체적인 이름이 권장됩니다.

9.기본 프레임 속도는 초당 10 프레임입니다. 이 시뮬레이션의 마감 시간은 1.25 초이고, 일정한 시간 간격으로 100 개의 플롯이 있으므로실제속도는 초당 80 프레임입니다. 너무 빠를 수 있으므로 대신 5 입력 하고 확인을 누르십시오.

AVI 캡처

10. 각 시간 프레임이 표시 창에 렌더링 되고 비트 맵 파일이 시뮬레이션 디렉토리에 작성됩니다. 이 프로세스가 완료되면 다음 대화 상자가 나타납니다.

생성 된 이미지 소스 파일

  1. 프로세스의 다음 단계를 시작하려면 확인 버튼을 클릭하십시오. 새로운 프로세스 (BMP2VAI.exe)가 시작되고 압축 방법을 선택할 수 있는 새로운 비디오 압축 창이 나타납니다. 다른 창 뒤에 숨겨져 있으면 앞으로 가져옵니다.
  2. 애니메이션의 기본 압축은 압축되지 않습니다. 파일 크기가 너무 커서 뷰어에 로드 할 수 없으므로 대부분의 애니메이션에는 권장되지 않습니다. Windows를 사용하는 경우 Microsoft Video 1, Linux를 사용하는 경우 Cinepak 선택하십시오. 여기에서 선택하는 것은 컴퓨터에서 사용할 수 있는 비디오 코덱과 비디오를 표시하는 데 사용하는 기계에서 사용할 수 있는 것입니다.
  3. 애니메이션 속도가 데이터 속도에 의해 제한되지 않도록 데이터 속도 확인란을 선택 취소하십시오.
비디오 압축

  1. 압축 프로세스를 시작하려면 확인을 클릭하십시오. 압축이 완료되면 다음 대화 상자가 나타납니다.
AVI 파일 생성

  1. 확인을 클릭하십시오. 애니메이션 프로세스가 완료되었습니다.
  2. Windows 탐색기에서 .avi 파일을 찾는 가장 빠른 방법 은 시뮬레이션 관리자 탭으로 이동하여 시뮬레이션 입력 파일 링크를 클릭하는 것 입니다.
  3. .avi파일 을 두 번 클릭하여 애니메이션을 재생 하십시오. 이전에 선택한 압축 형식을 읽을 수 있는 올바른 코덱이 설치되어 있지 않으면 오픈 소스 다중 코덱 비디오 플레이어 설치를 고려하십시오.

2 차원 도표

1.Analyze -> 2-D 탭을 선택하십시오. 이 시뮬레이션의 결과를 보는 데 가장 유용한 평면은 평면 Y = 0.0에있는 위어 중심선의 XZ 평면입니다.

2.XZ 평면 라디오 버튼을 선택하십시오.

3.Y 제한 슬라이더를 모두 Y = 0.25 (Y = 0.0에 가장 가까운 셀 중심 y 좌표)로 드래그 합니다. 또한 동일한 위치가 J = 2 로 식별되어 해당 셀이 도메인에서 두 번째임을 나타냅니다. 첫 번째 셀 (J = 1) Mesh 외부에 있으며 경계
조건 속성을 계산하는 데 사용됩니다. 기본
윤곽 변수는 압력이며 기본 속도 벡터는 기본적으로 선택됩니다. 솔리드 형상은 모든 2D 플롯과 함께 자동으로 표시되므로 3D 플롯과 같이 활성화 할 필요가 없습니다.

4.벡터 옵션을 클릭하고 X = 2 Z = 2 입력하십시오. 벡터는 이제 다른 모든 셀에 플롯 됩니다. 벡터 옵션을 적용하려면 확인을 선택하십시오.

벡터 옵션

5.Y = 0 평면에서 2 차원 압력 플롯의 시간 시퀀스를 생성하려면 렌더링을 클릭하십시오. T = 0.0 (왼쪽) 인 다음과 유사한 그래픽이 나타납니다. T = 0.125 (중간); 그리고 T = 1.25 (오른쪽).

2D 결과

6.디스플레이 화면의 오른쪽 상단에 있는 형식 버튼을 선택하십시오.

형식 옵션

7.선 색상, 벡터 길이 및 화살촉 크기 변경과 같은 다양한 옵션을 시험해보십시오. 변경 사항을 보려면 적용을 선택하십시오. 완료되면 재설정 확인을 선택하여
기본 설정으로 돌아가서 대화 상자를 닫습니다. 모든 플롯에 대해 선호하는 옵션 세트가 있는 경우
저장 버튼을 선택하여 저장할 수 있습니다.

1 차원 도표

  1. 분석 -> 1-D 탭을 선택하십시오. 이 탭에서는 하나 이상의 플롯 시간에서 셀 행을 따라 압력, 유체 깊이, 유체 상승 및 속도와 같은 셀별 출력 변수의 꺾은 선형
    차트 플롯을 사용할 수 있습니다.
  2. 데이터 소스 로 선택을 선택합니다. 사용 가능한 변수는 이제 더 빈번한 플로팅을 위해 선택된 변수 만 표시합니다.
  3. 자유 변수 표고데이터 변수 로 선택하십시오. 유압 데이터출력 탭에서 선택되었으므로 사용할 수 있습니다.
ID 그래픽을 위해 선택된 데이터

  1. 이 시뮬레이션의 흐름 방향은 주로 x 축과 평행하므로 X 방향을 선택하십시오.
  2. Y 방향 슬라이더를 0.25(J = 2)로 이동하여 Y 방향에서 흐름 중심선에 가장 가까운 셀이 표시됩니다.
  3. 기본적으로 전체 X 범위가 표시됩니다. 플롯의 범위를 제한하려는 경우 X 방향 슬라이더를 이동할 수 있습니다. Z 방향 슬라이더의 위치는 주어진 x, y 위치에서 z 셀의 각 열에 대해 하나의 자유 표면 높이만 기록되므로 중요하지 않습니다. 시간 프레임 슬라이더는 0초와 1.25초여야 합니다.
흘러가는 방향

  1. 렌더링을 클릭하십시오. t = 0.0에서 t = 1.25s까지의 시리즈 플롯이 디스플레이 탭의 플롯 목록에 나열됩니다. 이러한 플롯을 볼 수 있는 여러 가지 모드가
    있습니다. 기본 모드는
    단일 모드이며 형식 버튼 아래의 드롭 다운 상자에 표시됩니다.
기본 단일 모드

  1. 다양한 시간에 유체 표면 높이의 플롯을 비교하려면 드롭 다운 상자에서 오버레이 모드를 선택하십시오.
  2. 오른쪽 창에서 플롯 1, 13 101 선택하려면 클릭하십시오. 플롯 이름에는 또한 기록된 시간이 표시됩니다 (t = 0.0, 0.15s 1.25 ). 출력은 아래와 같이 나타납니다.
자유 표면 고도

  1. 이 플롯을 비트 맵 또는 포스트 스크립트 파일에 저장하려면 출력 버튼을 선택하십시오.
  2. 확인 화면에 플롯 오버레이 플롯을 캡처하는 확인란을 (그리고 단 하나의 출력 파일을).
  3. 쓰기 버튼을 선택하여 이미지 파일을 만듭니다.
  4. 결과 이미지 파일은 시뮬레이션 디렉토리에 있으며 (시뮬레이션 관리자 탭 에서이 파일을 찾는 방법을 기억하십시오) 이름이 지정한 plots_on_screen.bmp됩니다.
출력 사진

프로브 플롯

1.
분석 -> 프로브 탭을 선택하십시오. 시간 기록 플롯은이 탭에서 변수 대 시간의 라인 그래프 또는 텍스트 출력으로 생성됩니다. FLOW-3D 에는 데이터 소스 그룹에서 선택되는 세 가지 유형의 시간 종속 데이터가 있습니다.

·공간 데이터 : 재시작 선택된 데이터 소스. 단일 x, y, z 셀 중심 좌표의 시간 종속 값이 표시됩니다. 값은 시간과 관련하여 통합되거나 시간과 관련하여 차별화되거나 이동 평균 (시간)으로 통합될 수 있습니다.

·일반 history 데이터 :. 글로벌 수량은 시간에 따라 다릅니다. 일반적인 양은 평균 운동 에너지, 시간 단계 및 대류 볼륨 오류입니다. 또한 이 데이터 유형에는 모델 설정 -> 메싱 및 지오메트리 탭에서 이러한 옵션을 선택한 경우 지정된 측정 위치(배플, 샘플링 볼륨, 히스토리 프로브)의 모든 데이터와 이동 또는 정지 상태의 솔리드 및 스프링/로프를
위한 통합 출력이 포함됩니다.

·Mesh-dependent data : 메쉬 경계에서 시간에 따른 수량(계산 또는 사용자 지정)입니다. 일반적인 수량은 경계에서의 유량 및 경계에서의 지정된 유체 높이입니다.

2.데이터 원본에서 일반 기록 라디오 버튼을 선택합니다. X, Y Z 데이터 점 슬라이더가 회색으로 바뀝니다. 이는 일반 기록 데이터가 특정 셀과 연결되어 있지 않기 때문입니다.

3.목록에서 질량  평균 유체 평균 운동 에너지를 선택하십시오.

그래픽 데이터 출력

4. 단위를 선택하여 플로팅 단위 대화 상자를 엽니다.

5. 플롯에 단위 표시를 선택하십시오.

6. SI, CGS, slugs/feet/seconds 또는 pounds/inches/seconds를 선택하여 원하는 단위 시스템으로 결과를 변환하고 출력합니다. 장치를 표시하고 변환하려면 모델 설정 -> 일반 탭에서 장치 시스템을 선택해야 합니다. 이전 단계에서 이 항목을 확인했으며, 지오메트리 및 유체 특성은 centimeters/grams/seconds 시스템에서 지정되었습니다.

플로팅 단위

7.Plotting Units 대화 상자를 닫으려면 OK를 선택하십시오.

8.데이터의 그래픽 출력을 생성하려면 렌더를 선택하십시오. 출력은 시간에 따른 영역의 모든 유체에 대한 질량 평균 평균 운동 에너지를 보여줍니다. 이전 단계에서 선택한 사항에 따라 단위 레이블과 함께 그림이 나타납니다. 플롯은 총 운동 에너지가 일부 평균값 주위에서 진동하고 있음을 나타냅니다. 진동이 작아짐에 따라 시뮬레이션은 정상 상태 흐름에 접근합니다.

프로브 MKE 출력

9.분석 -> 프로브 탭으로 돌아갑니다.

10. 출력 양식 그룹에서 텍스트를 선택하여 그래프를 텍스트 데이터로 출력한 다음 렌더링을 다시 선택하십시오.

출력 형태

11. 나타나는 텍스트 대화 상자에서 다른 이름으로 저장 버튼을 선택하여 출력을 텍스트 파일로 저장할 수 있습니다.

12. 출력 창을 닫으려면 계속을 선택하십시오.

텍스트 출력

1.Analyze -> Text Output 탭을 선택하십시오.

2.텍스트 출력 은 셀별 데이터 ( 다시 시작 또는 선택됨 ) 만 출력 할 수 있고 (구성 요소, 측정 스테이션 또는 글로벌 데이터 없음) 둘 이상의 셀을 선택할 수 있다는 점을 제외하고 프로브 탭 과 동일한 방식으로 작동합니다. 각 플롯 시간에 대한 출력 데이터. 셀은 슬라이더를 사용하여 3D 블록에서 선택됩니다. 기본 공간 범위는 전체 도메인으로 설정됩니다.

3.직접 텍스트 데이터를 출력해보십시오.

 

FLOW-3D TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조

  • 최첨단 Foam 잔여물 추적
  • 진보된 Foam 증발 및 금속 유동 모델링
  • 응고, 다공성 및 표면 결함 분석

Workspace Overview

Lost Foam Casting Workspace(소실모형주조) 는 Lost Foam Casting에 필요한 충진, 응고 및 냉각 하위 프로세스를 시뮬레이션하는 모든 도구를 제공합니다. 각 하위 프로세스는 해석 엔지니어가 사용하기 쉬운 인터페이스를 제공하도록 맞춤화된 템플릿 디자인을 기반으로합니다.

Lost Foam Casting 의 결함은 충진 프로파일에서 추적할 수 있기 때문에  FLOW-3D  CAST 의 용탕유동 및 소실모형(foam)의 연소 시뮬레이션의 탁월한 정확도는 고품질의 Lost Foam Casting 주물을 생산하는 데 귀중한 통찰력을 제공합니다. 기포. 잔류물 형성과 같은 주입 결함은 최종 주조에서 정확하게 추적되고 처리됩니다.

Lost Foam Casting Workspace | FLOW-3D CAST
Lost Foam Residue Tracking – Filling Simulation | FLOW-3D CAST
Lost Foam Impeller Tree – Filling Simulation | FLOW-3D CAST
Lost Foam Residue Simulation | FLOW-3D CAST

PROCESSES MODELED

  • Filling
  • Solidification
  • Cooling

FLEXIBLE MESHING

  • Structured meshing for fast, easy generation
  • Multi-block meshing for localized accuracy control
  • Foam-conforming meshes for memory optimization

MOLD MODELING

  • Ceramic filters
  • Inserts – standard and porous
  • Air vents
  • Chills
  • Insulating and exothermic sleeves
  • Moving ladles and stoppers

ADVANCED SOLIDIFICATION

  • Chemistry-based solidification
  • Dimensionless Niyama criteria
  • Cooling rates, SDAS, grain size mechanical properties

FILLING ACCURACY

  • Foam/melt interface tracking
  • Gas/bubble entrapment
  • Automatic melt flow drag calculation in filters

DEFECT PREDICTION

  • Foam residue defect tracking
  • Cold shuts
  • Porosity prediction
  • Shrinkage
  • Hot spots

DYNAMIC SIMULATION CONTROL

  • Probe-controlled pouring control

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Sand Casting Workspace, 사형주조

Sand Casting Workspace Highlights, 사형주조

  • 모래 특성의 통합에는 투과성, 코어 가스 및 수분 함량이 포함됩니다.
  • 주입 컵 채우기 조건에 따라 동적 래들 주입 및 동적 래들 동작
  • 첨단 솔루션을 통해 정확한 가스 포집 및 다공성 제공

Workspace Overview

Sand Casting Workspace(사형주조)는 샌드 캐스터에 주입, 응고 및 냉각 분석을 시뮬레이션하는 데 필요한 모든 도구를 제공합니다. Sand Casting Workspace는 엔지니어의 언어를 사용하여, 사용이 간편한 인터페이스를 제공하도록 설계되어 있습니다.

사형주조의 결함은 흔히 충전 단계에서 추적할 수 있습니다. FLOW3D CAST는 뛰어난 금속 흐름 예측에 대해 뛰어난 정확도를 제공하여, 쉽게 결함을 파악할 수 있습니다. 산화물 형성 및 콜드샷을 정확하게 추적하여 최종 주물에서의 발생 위치를 확인합니다. 압탕의 크기를 조정하고 핫 스팟(최종응고부)에 배치하는 한편, 진보된 응고 및 수축 분석을 통해 가장 까다로운 제조 환경에서도 최종적으로 최적화된 설계를 달성할 수 있습니다.

프로세스 모델링

  • 충전재
  • 응고
  • 냉각

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 적합 메쉬

주형 모델링

  • 가스 및 수분 배출이 가능한 투과성 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 공기 통로

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마(Niyama ) 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

충전 정확도

  • 가스/버블 포획
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산
  • 난류 모델링

코어 모델링

  • 가스 생성을 포함한 모래 코어
  • 소금 코어

결함 예측

  • 혼입 공기
  • 산화물 형성 및 추적
  • 콜드 샷
  • 다공성 예측
  • 수축
  • 핫 스팟

라이저 공구

  • 발열체 조립체
  • 절연 및 발열 슬리브

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Die Casting Workspace, 저압주조

Workspace Highlights, 저압주조

  • 매우 정확한 충진을 위한 압력 제어 주입
  • 공극, 배기 및 역압 효과를 포함한 전체 프로세스 모델링
  • 다공성과 같은 정밀한 조기 동결 및 응고 결함을 해결하기 위한 향상된 응고 및 열 전달 제어

Workspace Overview

저압주조 Workspace 는 엔지니어가 FLOW-3D CAST를 통해 저압주조 제품을 성공적으로 모델링하도록 설계된 직관적인 모델링 환경입니다. 

유연한 압력 제어를 통해 엔지니어는 가압, 벤트 및 배압 조건을 정확하게 재현하여 주입, 공기 갇힘 및 미세수축결함에 대한 완전한 분석을 수행할 수 있습니다.

금형온도해석 및 최첨단 응고 모델은 작업 공간의 서브 프로세스 아키텍처를 통해 원활하게 충전 상태에 연결됩니다. 저압주조 Workspace은 단순하면서도 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

프로세스 모델링

  • 중력 저 압력 다이 캐스트 주조

유연한 메쉬

  • FAVOR™단순 메시 생성 도구
  • 멀티 블록 메쉬
  • 중첩된 메쉬

다이 열 관리

  • 열사이 사이클
  • 열 포화도
  • 풀 열 전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫 스폿 식별
  • 기계적 특성 예측
  • 마이크로 아키텍처 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

진공 및 환기

  • 대화형 프로브 배치
  • 면적 및 손실 계수 계산기

LADLE운동

  • 6도의 자유 동작 정의

주입 정확도

  • 가스 및 기포 걸림
  • 표면 산화물 계산
  • RNG및 LES난류 모델
  • 배경 압력

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

동적 시뮬레이션 컨트롤

  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 컨트롤

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

High Pressure Die Casting Workspace, 고압다이캐스팅

High Pressure Die Casting Workspace Highlights

  • 주입 정확도가 탁월합니다.
  • 전체 프로세스 모델링에는 고급 환기, PQ2 및 스프레이 냉각이 포함됩니다.
  • 동적 시뮬레이션 제어를 통해 동적 런타임 프로세스를 제어할 수 있습니다.
  • 최첨단 알루미늄 실리콘 합금 고형화입니다.

고압 다이 캐스팅 Workspace

고압 다이 캐스팅 Workspace은 엔지니어가 FLOW-3D CAST를 사용하여, 고압 다이 캐스팅 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

FLOW-3D CAST v5.1은 첨단 다이 열 제어, 기계 파라미터 모델링,주입 및 배압 조건의 정확한 해석기능과 결합된 샷 슬리브 모션의 완전한 제어는 가장 까다로운 HPDC 시뮬레이션에 필요한 최적화된 솔루션입니다. HPDC Workspace에는 진보된 미세수축공 예측 및 후처리 기능 외에도 Al-Si 및 Al-Cu 기반 합금에 대한 최첨단 화학 기반 응고 및 재료 강도 모델이 포함되어 있습니다.