이 기사의 내용은 Littler Diecast Corporation 의 Mark Littler가 제공했습니다.
고압 다이 캐스팅 주조업체인 Littler Diecast 회사는 최근 항공 우주 분야에 사용될 제품을 위한 전기 스위치 프레임을 재 설계하고 다이캐스팅 할 수 있었습니다. 이전에는 다른 제조업체에 위탁 생산을 했지만 많은 주조 결함 문제가 있었으며 낮은 스크랩 비율을 달성하기 위해 새로운 디자인이 필요했습니다. Littler Diecast는 이 문제에 대한 사전 지식없이 FLOW-3D를 이용한 CFD 시뮬레이션을 통해 결함을 찾아 낼 수 있었습니다. 이것은 그들이 수주에 성공할 수 있을 만큼 고객에게 충분한 인상을 주었습니다.
- 문제 파악
문제가 된 제품 스위치는 A380 알루미늄으로 주조되며, 크기는 약 1 ¼”x 1”x 1/2”입니다. Littler Diecast는 다공성 공기 갇힘 문제가 플레이트와 기둥의 두 위치에서 부품 결함을 유발하고 있음을 발견했습니다. 이것은 고객에 의해 확인되었습니다. 부품이 충진되는 방식으로 인해 각 위치에 구멍이 형성되었습니다. 용탕 흐름은 그림1과 같이 단일 게이트를 통해 유입되어 플레이트의 먼쪽으로 분사된 다음, 백 채우기를 하여, 초기 응고로 인해 항상 배출되지 않은 에어 포켓을 포집합니다. 기둥에서도 동일한 문제가 발견되었습니다. 유체가 가장 먼 곳까지 분사된 다음 역류하여 파팅 라인을 통해 배출되지 않는 공기가 갇히게 됩니다.
다공성 문제를 보여주는 원래 부품의 X-ray 사진
그림 1: 단일 게이트를 사용한 원래 디자인 (속도 분포)
그림 2: 게이트가 3개인 최종 디자인(속도 분포)
- 오리지널 부품 디자인
부품의 원래 디자인에는 다른 문제들이 있었습니다. 잠금 와셔의 슬롯 주위와 플레이트 바닥의 씰링 표면에는 많은 다이 부식이 있었습니다. 부품의 모서리에 있는 오버플로는 결함이 밖으로 유출될 정도로 크지 않았습니다.
FLOW-3D를 사용하여, Littler Diecast는 유동 현상을 분석하고 시각적으로 분석할 수 있었습니다. 이러한 작은 부품의 경우, 얇은 부위의 빠른 냉각으로 인해 조기 응고가 문제가 됩니다. 유동이 부품을 가로 질러 분사되는 경우, 용탕이 냉각되고 공기 갇힘이 생성되어 더 많은 시간이 걸립니다. 가장 뜨거운 용탕이 마지막에 주입되는 것이 가장 좋습니다. 이를 염두에 두고 Littler Diecast는 많은 아이디어를 테스트하고 문제 발생 가능성을 최소화하는 디자인을 만들었습니다.
- 최종 부품 설계
세 가지 주요 설계 변경 후 부품 품질이 크게 향상되었습니다. 먼저, 게이트 및 러너를 재 설계하여 유체가 완전히 새로운 방향으로 3개의 게이트를 통해 유입되었습니다. 이는 더 큰 오버플로를 생성하는 두 번째 설계 변경과 결합하여 플레이트에 역류 현상이 훨씬 줄어들어 가장 뜨거운 용탕이 마지막으로 유입될 수 있음을 의미했습니다. 셋째, 게이트의 접근 각도와 위치가 변경되어 기둥의 역류를 방지하는데 도움이 되었습니다.
이 새로운 디자인은 또한 새로운 툴에서 다이 침식의 가능성을 줄였습니다. 대신, 기둥의 중앙 구멍에 사용되는 코어 핀으로 유체가 분출됩니다. 코어 핀은 쉽게 교할 수 있어서 다이를 수리하는 것보다 훨씬 빠르고 비용이 적게 듭니다. 이로 인해 많은 비용이 소모되는 다이 수정을 피할 수 있게 되어 엔지니어링 프로세스가 개선되었습니다.
- 물리적 검증
Littler Diecast는 생산 시설을 시험 가동한 short shots, x-ray 및 파괴 검사를 통해 디자인 변경 사항을 확인할 수 있었습니다. 짧은 샷은 균형 잡힌 러너를 보여주었고 x-ray에는 기포가 보이지 않았습니다. 파괴 시험은 기포가 없는 일관된 결정입자 구조를 보여주었으며, 이는 주조 결함이 아니라 재료의 강도에 기인한 것으로 입증되었습니다.
작업 현장에서 가져온 샘플 (최종 부품의 다른 각도에서 X-Rays)