Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.


관련 기술자료

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst ...
Figure 1: Scheme of liquid metal printing process

Effect of Aging Heat Treatment in an Al-4008 Produced byLiquid Metal Printing

C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal ...
Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled ...
Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

몰리브덴 분말층 융합-레이저 빔의 용융 풀 형태의 준안정성에 대한 분말 크기 및 공정 매개변수의 영향 Feipeng An, Linjie Zhang, Wei ...
Figure 3. The simulated temperature distribution and single-layer multi-track isothermograms of LPBF Hastelloy X, located at the bottom of the powder bed, are presented for various laser energy densities. (a) depicts the single-point temperature distribution at the bottom of the powder bed, followed by the isothermograms corresponding to laser energy densities of (b) 31 J/mm3 , (c) 43 J/mm3 , (d) 53 J/mm3 , (e) 67 J/mm3 , and (f) 91 J/mm3 .

An integrated multiscale simulation guiding the processing optimisation for additively manufactured nickel-based superalloys

적층 가공된 니켈 기반 초합금의 가공 최적화를 안내하는 통합 멀티스케일 시뮬레이션 Xing He, Bing Yang, Decheng Kong, Kunjie Dai, Xiaoqing ...
Figure 1. Experimental setup and materials. (a) Schematic of the DED process, where three types of base materials were adopted—B1 (IN718), B2 (IN625), and B3 (SS316L), and two types of powder materials were adopted—P1 (IN718) and P2 (SS316L). (b) In situ high-speed imaging of powder flow and the SEM images of IN718 and SS316L powder particle. (c) Powder size statistics, and (d) element composition of powder IN718 (P1) and SS316L (P2).

Printability disparities in heterogeneous materialcombinations via laser directed energy deposition:a comparative stud

Jinsheng Ning1,6, Lida Zhu1,6,∗, Shuhao Wang2, Zhichao Yang1, Peihua Xu1,Pengsheng Xue3, Hao Lu1, Miao Yu1, Yunhang Zhao1, Jiachen Li4, Susmita ...
Fig. 3. (a–c) Snapshots of the CtFD simulation of laser-beam irradiation: (a) Top, (b) longitudinal vertical cross-sectional, and (c) transversal vertical cross-sectional views. (d) z-position of the solid/liquid interface during melting and solidification.

Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field simulations and computational thermal-fluid dynamics

Masayuki Okugawa ab, Kenji Saito a, Haruki Yoshima a, Katsuhiko Sawaizumi a, Sukeharu Nomoto c, Makoto Watanabe c, Takayoshi Nakano ...
Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.

Revealing formation mechanism of end of processdepression in laser powder bed fusion by multiphysics meso-scale simulation

다중물리 메조 규모 시뮬레이션을 통해 레이저 분말층 융합에서 공정 종료의 함몰 형성 메커니즘 공개 Haodong Chen a,b, Xin Lin a,b,c, ...
Schematic diagram of HP-LPBF melting process.

Modeling and numerical studies of high-precision laser powder bed fusion

Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhouhttps://doi.org/10.1063/5.0191504 In order to comprehensively reveal the evolutionary dynamics of the molten pool and the ...
Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

금속 적층 제조 중 고체 상 변형 예측: Inconel-738의 전자빔 분말층 융합에 대한 사례 연구 Nana Kwabena Adomako a, Nima Haghdadi a, James F.L. Dingle bc, Ernst Kozeschnik d, Xiaozhou Liao bc, Simon P. Ringer bc, Sophie Primig a Abstract ...

금속 3D 프린팅 파우더 베드 해석(PBF해석)

Laser Powder Bed Additive Manufacturing

Heat transfer and fluid flow modeling

레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.

Numerical modeling approach

본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.

과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.

경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.

Result and discussion

그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.

볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.

Summary

L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.

뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.

Acknowledgements

이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.

References

[1] Y.S. Lee and W. Zhang, Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing, In: 2015 Annual International Solid Freeform Fabrication Symposium, Austin, TX, pp. 1154-1165, August 2015.

FLOW-3D 레이저분야 활용

FLOW-3D 레이저 용접분야 활용

FLOW-3D는 유체의 유동 및 열전달 수치 해석 소프트웨어이며, 자유표면(자유수면)을 가진 유체의 흐름을 정확하게 예측한다. FLOW-3D는 수 많은 물리적 유동 현상에 대한 시뮬레이션 모델을 제공하여, 설계 및 운영 단계에서 엔지니어가 쉽고 정확하게 판단할 수 있도록 해주기 때문에 수리, 주조, 기계, 항공, 용접, 적층 공정, 금속 3D 프린팅 등 여러 분야에서 사용되는 소프트웨어이다. 이번 호에서는 FLOW-3D의 다양한 활용 분야 중에서 레이저 용접 분야(Weld 모듈이 연계된 FLOW-3D Weld를 사용)에 대해 자세히 알아보고자 한다.

레이저 용접은 레이저 광선의 출력을 응용한 용접 방법을 말한다. 레이저 용접의 장점은 용접 강도가 좋고, 열 영향 부위가 작으며, 정밀도가 높고 변형이 적으며 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접할 수 있다는 것이다.
FLOW-3D Weld는 이러한 레이저 용접 공정에 대해 정확한 결과를 얻게 해 주며, 엔지니어가 레이저 프로세스를 최적화하는데 도움을 준다. FLOW-3D Weld는 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발 압력, shield gas 효과, 다중 레이저 반사 등과 같은 물리적 모델을 적용하여 Conduction 용접, Keyhole 용접, Porosity, 용융풀 거동 등을 분석할 수 있다.
이번 호에서는 레이저 용접 프로세스 및 결과물을 최적화하기 위해 필요한 물리적 설정과 대표적인 레이저 용접 해석 예제를 설명하고자 한다.

레이저 광원

1. 레이저 광원
레이저 용접을 하는데 있어 레이저 광원의 설정이 필요하다. FLOW-3D Weld에서 사용되는 레이저 광원은 원통형과 원추형으로 설정할 수 있으며, <그림 1>과 같이 Heat flux를 일정한 상태 또는 가우시안 분포(Gaussian distribution)  형태로 나타낼 수 있다.

레이저 광원의 형태를 원추형으로, 가우시안 분포를 가지도록 Heat flux를 설정하면 <그림 2>와 같이 광원이 원추형으로 나타나며, 반경 거리에 따른 Heat flux의 에너지 밀도 차이도 확인할 수 있다.

그리고, <그림 3>과 같이 레이저 광원의 위치 좌표와 속도 벡터를 설정하면, 레이저의 위치에 대한 광원의 움직임 설정이 가능하다.

기사 상세 내용은 PDF로 제공됩니다.

다운로드[2M] : [201906_FLOW3D_레이저용접]

작성자 | 양정호_에스티아이C&D 솔루션사업부 대리, 조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | flow3d@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2019년 06월호

Laser Metal Deposition and Fluid Particles

FLOW-3D의 신규 모듈 개발을 하면서, 입자 모델의 새로운 입자 부류 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도의 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고 된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 부여 받을 수도 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일 한 파티클 생성을 선택하고 파티클이 소스에서 추출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 함께 미세한 금속 분말을 융합하여 입체 금속 부품을 제작하는 3D printing 공정이다. 레이저 금속 증착는 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 프로그램을 찾습니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 밀도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융 / 응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 첨가제 제조 공정으로 만듭니다.

 

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반의 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 점을 계속 알고 있을 것입니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계는 직접적이고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고 된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다. 이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 매 5 초마다 기판이 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고 된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착 된 층의 형태에 큰 영향을주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 부가한다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발 한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착 된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 바꿀 때마다 입자 빔 동작의 일시적인 정지를 확인하십시오. 또한, 층이 증착됨에 따라, 새로운 층의 형상은 다공성 열원으로부터 각 층에 열의 불균등 한 첨가로 인해 변화됩니다. 각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수 인 분말 강도 분포를 정확하게 재현합니다. 입자 모델과 같은 수준의 제어와 정교함은 첨가제 제조 분야의 사용자와 공급자 모두가 제조 프로세스를 미세 조정하는 데 도움이 될 것으로 기대합니다.

FLOW-3D DEM

FLOW DEM

 

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법) 기법인 입자의 거동을 분석해주는 제품입니다.

입자 – 입자 간, 입자 – 벽 사이의 접촉이나 상호 작용을 모델링 할 수 있으므로 보다 현실적인 입자 거동의 해석이 가능합니다. 
또한 유체 부분은 전문적인 FLOW-3D 분석 기능을 사용하기 때문에 유체 와 입자거동의 연성해석을 정밀하게 또한 효율적으로 분석할 수 있습니다.

주요 기능 :
  • 고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용
  • Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응
  • 가변 밀도 / 가변 직경
  • 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소
  • 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1
dem2

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

 
  • 스프링 : 변형에 관련된 힘
  • 대시 포트 : 충돌시의 상대 속도에 관련된 힘
    (점성 감쇠)
  • 스프링 및 대시 포트를 병렬로 연결
    ⇒ Voigt model
  • 힘은 법선 방향과 접선 방향으로 나누어진다

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로 평가되는 항목이 추가되는 형태로 되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4
dem5
dem6
void + DEM1-fluid + DEM1-fluid 자유계면 + DEM

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7-균일
-밀도 변화
-입자크기 변화

응용 분야

1. Mechanical Engineering 분야

Resin filling, screw conveyance, powder conveyance

dem8
dem9
dem10

2. Civil Engineering분야

Debris flow, gravel, falling rock

dem11
dem2

3. Chemical Engineering, Pharmaceutics 분야

Fluidized bed, cyclone, stirrer

dem12
dem13
dem14

4. MEMS, Electrical Engineering 분야

전기 입자를 포함한 전기장 해석 등

dem15

dem16

 

 

 

 

 

 

 

Coarse Graining

DEM은 일반적으로 다수의 입자를 필요로 하는 해석에 사용이 되고 있습니다. 다만 이 경우, 계산 부하가 높아지므로 현실적인 계산자원을 고려하면, 입자 수가 줄여 해석할 필요가 있습니다 .

Particle Size Increase 경우

 

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds

레이저 용접 수치해석(FLOW WELD)

Laser Welding

뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 높고 변형이 적으며 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다. 보다 나은 프로세스 제어를 통해 다공성을 최소화할 수 있습니다. 열 영향부위 및 마이크로-구조를 제어합니다. FLOW-3D는 자유표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀 시뮬레이션을 해석하는데 적합합니다. 용접의 추가 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas효과, 용융 풀의 반동압력 및 다중 레이저반사와 같은 물리적 모델을 FLOW-3D에 통합하기 위해 개발되었습니다. Keyhole 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 포착하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 다공성을 최소화하며, 레이저 용접공정의 수지결정 성장을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16KW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융지 역학을 포착할 수 있었습니다. 그들은 또한 FLOW-3D공정을 시뮬레이션하여 해석과 실험결과가 경향이 일치하는 것을 나타내었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
 
Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm
 
 
 
 
Schematic of computation domain in FLOW-3D

 

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 공정변수, 즉 keyhole 용접에서 다공성 발생 에 대해 용접속도 및 용접각도와 같은 공정 매개 변수가 미치는 영향을 이해하기 위해 협력하여 연구를 진행하였습니다.

 
레이저 용접된 Al 접합부 단면의 다공성을 용접합니다. Keyhole 유도 된 다공성은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 다공성을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole용접에서 유도된 다공성의 주요 원인으로 불안정한Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 다공성을 초래시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 포착되었을 때 다공성이 유도되었습니다.

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해보다 안정적인 keyhole이 구성됩니다. 연구진은 FLOW-3D를 사용하여 높은 용접 속도와 큰 용접 경사각으로 다공성을 완화시킬 수 있다고 예측했습니다.

 
 
Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접분야 활용

Conduction 용접

하이브리드 레이저 용접

깊은 용접 레이저용접

레이저 적층 공법

TIG 용접

이종소재 레이저 용접

FLOW-3D 교육 안내

education_banner

HIGH-END TOP CLASS
FLOW-3D CFD EDUCATION

FLOW-3D 분야별 교육 과정 안내


  • 교육 과정명 : 수리 분야

댐, 하천의 여수로, 수문 등 구조물 설계 및 방류, 월류 등 흐름 검토를 하기 위한 유동 해석 방법을 소개하는 교육 과정입니다. 유입 조건(수위, 유량 등)과 유출 조건에 따른 방류량 및 유속, 압력 분포 등 유체의 흐름을 검토를 할 수 있도록 관련 예제를 통해 적절한 기능을 습득하실 수 있습니다.

  • 교육 과정명 : 수처리 분야

정수처리 및 하수처리 공정에서 각 시설물들의 특성에 맞는 최적 운영조건 검토 및 설계 검토을 위한 유동해석 방법을 소개하는 교육 과정입니다. 취수부터 시작하여 혼화지, 분배수로, 응집지, 침전지, 여과지, 정수지, 협기조, 호기조, 소독조 등 각 공정별 유동 특성을 검토하기 위한 해석 모델을 설정하는 방법에 대해 알려드립니다.

  • 교육 과정명 : 주조 분야

주조 분야 사용자들이 쉽게 접근할 수 있도록 각 공정별로 해석 절차 및 해석 방법을 소개하는 교육 과정입니다. 고압다이캐스팅, 저압다이캐스팅, 경동주조, 중력주조, 원심주조, 정밀주조 등 주조 공법 별 관련 예제를 통해 적절한 기능들을 습득할 수 있도록 도와 드립니다.

  • 교육 과정명 : Micro/Bio/Nano Fluidics 분야

점성력 및 모세관력 같은 유체 표면에 작용하는 힘이 지배적인 미세 유동의 특성을 정확하게 표현할 수 있는 해석 방법에 대해 소개하는 교육 과정입니다. 열적, 전기적 물리 현상을 구현할 수 있도록 관련 예제와 함께 해석 방법을 알려드립니다.

  • 교육 과정명 : 코팅 분야 과정

코팅 공정에 따른 코팅액의 두께, 균일도, 유동 특성 분석을 위한 해석 방법을 소개하는 교육 과정입니다. Slide coating, Dip coating, Spin coating, Curtain coating, Slot coating, Roll coating, Gravure coating 등 각 공정별 예제와 함께 적절한 기능을 습득하실 수 있도록 도와 드립니다.

  • 교육 과정명 : 레이저 용접 분야

레이저 용접 해석을 하기 위한 물리 모델과 용접 조건들을 설정하는 방법에 대해 소개하는 교육 과정입니다. 해석을 통해 용접 공정을 최적화할 수 있도록 관련 예제와 함께 적절한 기능들을 습득할 수 있도록 도와 드립니다.

  • 교육 과정명 : 3D프린팅 분야 과정

Powder Bed Fusion(PBF)와 Directed Energy Deposition(DED) 공정에 대한 해석 방법을 소개하는 교육 과정입니다. 파우더 적층 및 레이저 빔을 조사하면서 동시에 금속 파우더 용융지가 적층되는 공정을 해석하는 방법을 관련 예제와 함께 습득하실 수 있습니다.

  • 교육 과정명 : 해양/항만 분야

해안, 항만, 해양 구조물에 대한 파랑의 영향 및 유체의 수위, 유속, 압력의 영향을 예측할 수 있는 해석 방법을 소개하는 과정입니다. 항주파, 슬로싱, 계류 등 해안, 해양, 에너지, 플랜트 분야 구조물 설계 및 검토에 필요한 유동해석을 하실 수 있는 방법을 알려드립니다. 각 현상에 대한 적절한 예제를 통해 기능을 습득하실 수 있습니다.

  • 교육 과정명 : 우주/항공 분야

항공기 및 우주선의 연료 탱크와 추진체 관리장치의 내부 유동, 엔진 및 터빈 노즐 내부의 유동해석을 하실 수 있도록 관련 메뉴에 대한 설명, 설정 방법을 소개하는 과정입니다. 경계조건 설정, Mesh 방법 등 유동해석을 위한 기본적인 내용과 함께 관련 예제를 통해 기능들을 습득하실 수 있습니다.

고객 맞춤형 과정


상기 과정 이외의 경우 고객의 사업 업무 환경에 적합한 사례를 중심으로 맞춤형 교육을 실시합니다. 필요하신 부분이 있으시면 언제든지 교육 담당자에게 연락하여 협의해 주시기 바랍니다.

고객센터 및 교육 담당자

  • 전화 : 02)2026-0450, 02)2026-0455
  • 이메일 : flow3d@stikorea.co.kr

교육 일정 안내


Education Banner

교육은 매월 정해진 일정에 시행되는 정기 교육과 고객의 요청에 의해 시행되는 비정기 교육이 있습니다. 비정기 교육은 별도문의 바랍니다.

1. 연간교육 일정


2. 교육 내용 : FLOW-3D Basic

  1. FLOW-3D 소개 및 이론
    • FLOW-3D 소개  – 연혁, 특징 등
    • FLOW-3D 기본 개념
      • VOF
      • FAVOR
    • 해석사례 리뷰
  2. GUI 소개 및 사용법
    • 해석 모델 작성법  – 물리 모델 설정
      • 모델 형상 정의
      • 격자 분할
      • 초기 유체 지정
      • 경계 조건 설정
    • 해석 결과 분석 방법  – 해석 모델 설명
  3. 해석 모델 작성 실습
    • 해석 모델 작성 실습  – 격자 분할
      • 물리 모델 설정
      • 모델 형상 및 초기 조건 정의
      • 경계 조건 설정
      • 해석 과정 모니터링
      • 해석 결과 분석
    • 질의 응답 및 토의

3. 교육 과정 : FLOW-3D Advanced

  1. Physics Ⅰ
    • Density evaluation
    • Drift flux
    • Scalars
    • Sediment scour
    • Shallow water
  2. Physics Ⅱ
    • Gravity and non-inertial reference frame
    • Heat transfer
    • Moving objects
    • Solidification
  3. FLOW-3D POST (Post-processor)
    • FLOW-3D POST 소개
    • Interface Basics
    • 예제 실습

FLOW-3D 교육 신청 방법 안내


  • 교육 신청은 홈페이지의 교육 신청 창에서 최소 3일 전에 신청합니다.
  • 모든 교육과정은 신청 인원이 2인 이상일때 개설되며, 선착순 마감입니다.
  • 교육 신청을 완료하시면, 신청시 입력하신 메일주소로 교육 담당자가 확인 메일을 보내드립니다.
  • 교육 시간은 Basic : 오전10시~오후5시, Advanced : 오후1시30분~오후5시30분까지입니다.
  • 교육비 안내
    • FLOW-3D, FLOW-3D CAST, FLOW-3D HYDRO Basic (2일) : 기업 66만원, 학생 55만원
    • FLOW-3D WELD/AM Basic 레이저용접, 3D 프린팅(2일) : 기업 88만원, 학생 66만원
    • FLOW-3D Advanced (1일) : 기업 33만원, 학생 25만원
    • 상기 가격은 부가세 포함 가격입니다.
  • 교육비는 현금(계좌이체)로 납부 가능하며, 교재 및 중식이 제공됩니다.
  • 세금계산서 발급을 위해 사업자등록증 또는 신분증 사본을 함께 첨부하여 신청해 주시기 바랍니다.
  • 교육 종료 후 이메일로 수료증이 발급됩니다.
고객센터 및 교육 담당자
  • 전화 : 02)2026-0450, 02)2026-0455
  • 이메일 : flow3d@stikorea.co.kr
교육 장소 안내
  • 지하철 1호선/가산디지털단지역 (8번출구), 지하철 7호선/가산디지털단지역 (5번출구)
  • 우림라이온스밸리 B동 302호 또는 교육장
  • 당사 건물에 주차할 경우 무료 주차 1시간만 지원되오니, 가능하면 대중교통을 이용해 주시기 바랍니다.
오시는 길

금속 3D 프린팅 파우더 베드 수치해석

Laser Powder Bed Additive Manufacturing

 

Heat transfer and fluid flow modeling

레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.

Numerical modeling approach

본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.

과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.

경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.

약 600 마이크로 초 길이의 L-PBF의 과도 시뮬레이션은 약 40 시간의 클럭 시간이 소요되었으며 인텔 ® 제온 ® 프로세서 E5335 및 4GB RAM의 중간 정도급의 워크 스테이션에서 수행되었습니다.

Result and discussion

그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.

볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.

 

Summary

L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.

뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.

Acknowledgements

이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.

References

[1] Y.S. Lee and W. Zhang, Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing, In: 2015 Annual International Solid Freeform Fabrication Symposium, Austin, TX, pp. 1154-1165, August 2015.

금속 3D 프린팅 / 적층 제조 수치해석(FLOW-3D Weld/DEM)

Binder jetting

바인더 분사 시뮬레이션은 모세관 힘의 영향을 받는 파우더 베드의 바인더 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미친다.

Direct energy deposition

FLOW-3D의 Particle 모델을 사용하여 직접 에너지 축적 프로세스를 시뮬레이션 할 수도 있습니다. 고체 기판에 분말 주입 속도와 열유속 입사를 지정함으로써, 고체 입자는 용융풀을 통해 질량, 추진력 및 에너지를 추가할 수 있습니다. 다음 동영상에서는 용융풀을 통해 고체 금속 입자가 주입되고 이어서 기판에 용융풀응 응고시키는 과정이 관찰됩니다.


관련 기술자료

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst ...
Figure 1: Scheme of liquid metal printing process

Effect of Aging Heat Treatment in an Al-4008 Produced byLiquid Metal Printing

C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal ...
Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled ...
Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

몰리브덴 분말층 융합-레이저 빔의 용융 풀 형태의 준안정성에 대한 분말 크기 및 공정 매개변수의 영향 Feipeng An, Linjie Zhang, Wei ...
Figure 3. The simulated temperature distribution and single-layer multi-track isothermograms of LPBF Hastelloy X, located at the bottom of the powder bed, are presented for various laser energy densities. (a) depicts the single-point temperature distribution at the bottom of the powder bed, followed by the isothermograms corresponding to laser energy densities of (b) 31 J/mm3 , (c) 43 J/mm3 , (d) 53 J/mm3 , (e) 67 J/mm3 , and (f) 91 J/mm3 .

An integrated multiscale simulation guiding the processing optimisation for additively manufactured nickel-based superalloys

적층 가공된 니켈 기반 초합금의 가공 최적화를 안내하는 통합 멀티스케일 시뮬레이션 Xing He, Bing Yang, Decheng Kong, Kunjie Dai, Xiaoqing ...
Figure 1. Experimental setup and materials. (a) Schematic of the DED process, where three types of base materials were adopted—B1 (IN718), B2 (IN625), and B3 (SS316L), and two types of powder materials were adopted—P1 (IN718) and P2 (SS316L). (b) In situ high-speed imaging of powder flow and the SEM images of IN718 and SS316L powder particle. (c) Powder size statistics, and (d) element composition of powder IN718 (P1) and SS316L (P2).

Printability disparities in heterogeneous materialcombinations via laser directed energy deposition:a comparative stud

Jinsheng Ning1,6, Lida Zhu1,6,∗, Shuhao Wang2, Zhichao Yang1, Peihua Xu1,Pengsheng Xue3, Hao Lu1, Miao Yu1, Yunhang Zhao1, Jiachen Li4, Susmita ...
Fig. 3. (a–c) Snapshots of the CtFD simulation of laser-beam irradiation: (a) Top, (b) longitudinal vertical cross-sectional, and (c) transversal vertical cross-sectional views. (d) z-position of the solid/liquid interface during melting and solidification.

Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field simulations and computational thermal-fluid dynamics

Masayuki Okugawa ab, Kenji Saito a, Haruki Yoshima a, Katsuhiko Sawaizumi a, Sukeharu Nomoto c, Makoto Watanabe c, Takayoshi Nakano ...
Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.

Revealing formation mechanism of end of processdepression in laser powder bed fusion by multiphysics meso-scale simulation

다중물리 메조 규모 시뮬레이션을 통해 레이저 분말층 융합에서 공정 종료의 함몰 형성 메커니즘 공개 Haodong Chen a,b, Xin Lin a,b,c, ...
Schematic diagram of HP-LPBF melting process.

Modeling and numerical studies of high-precision laser powder bed fusion

Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhouhttps://doi.org/10.1063/5.0191504 In order to comprehensively reveal the evolutionary dynamics of the molten pool and the ...
Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

금속 적층 제조 중 고체 상 변형 예측: Inconel-738의 전자빔 분말층 융합에 대한 사례 연구 Nana Kwabena Adomako a, Nima Haghdadi a, James F.L. Dingle bc, Ernst Kozeschnik d, Xiaozhou Liao bc, Simon P. Ringer bc, Sophie Primig a Abstract ...

금속 3D 프린팅 수치해석

Non-Newtonian Ink Additive Manufacturing

Non-Newtonian Ink Additive Manufacturing

Non-Newtonian 잉크 프린팅은 적층 제조의 미래입니다. 추가적인 열은 필요하지 않습니다. 대신에 두꺼운 농도의 재료를 제작 플랫폼으로 배출하기 위해 펌프에 의존합니다. 그러나 다른 3D프린팅 방법과 마찬가지로 동일한 제품에 여러 잉크를 사용할 경우 문제가 발생합니다. 여러 개의 압출기를 사용하면 압출기의 전이와 관련된 고유의 부정확함이 수반됩니다. 해결책은 프로그램 가능한 방식으로 단일 프린터 헤드를 사용하는 것입니다. 이 예에서는 FLOW-3D를 사용하여 잉크를 프린팅하기 위해 two-ink microfluidic 프린트 헤드를 시뮬레이션한 것입니다.

Multi-material T-junction microfluidic printhead
Plots of volumetric flow rates set in the printhead and corresponding pressures in nozzle

프린터 헤드의 설정은 그림(a)에 나와 있습니다. 잉크의 점도는 변형률 비율에 따라 달라지므로, FLOW-3D를 사용하면 변형률-점도 곡선을 나타내는 표 형식으로 유체 특성을 지정할 수 있습니다. 그림(b)는 프린터 헤드의 양 끝에서 잉크의 유입 배출 속도에 대한 프로그램 가능한 제어를 보여줍니다. FLOW-3D에서는 정확한 경계 조건이 지정되었습니다. FLOW-3D의 Moving Objects모델은 지정된 속도로 프린팅 플랫폼의 이동을 시뮬레이션 합니다. 이 경우 설정 값은 2.65 mm/sec입니다. 정량적으로, 1600 micro-liter /min의 최대 방전 비율에 대해, 잉크의 액체 비율이 1에서 0으로 감소하는 거리가 1mm이내인 것으로 나타났습니다. 0.5mm 정도의 프린팅된 잉크 줄무늬가 완전히 변하는 것이 관찰됩니다. 이 값은 실험 결과와 일치합니다.

위의 애니메이션은 프로그래밍 방식으로 한 잉크에서 다른 잉크로 전환하는 과정을 보여줍니다. 파란 색에서 빨간 색 잉크로의 전환 길이는 1mm이내이며, 실험 결과에 따라 급격한 전환이 될 수 있습니다.

This study is based on the paper from James O. Hardin, Thomas J. Ober, Alexander D. Valentine, Jennifer A. Lewis. Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks, 2015. Figures (a) and (b) have been extracted from this paper.

Learn more about simulating additive manufacturing processes with FLOW-3D >