Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

Abstract

This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD software) is an effective tool for studying droplet dynamics and mixing in microfluidic devices. The first example studied is a T-junction where flow patterns for both droplet generation and passive mixing are analyzed. The second example studied is a co-flowing device where the formation and breakup of bubbles is simulated. The effect of viscosity on bubble formation is also analyzed. For a T-junction the bubble size is corroborated with experimental data. Both the bubble size and frequency are studied and corroborated with experimental data for a co-flowing device. The third example studied is the electrowetting phenomenon observed in a small water droplet resting on a dielectric material. The steady-state contact angle is plotted against the voltage applied. The results are compared with both the Young-Lippmann curve and experimental results. 

이 논문은 FLOW-3D (범용 CFD 소프트웨어)의 유체 부피 (TruVOF) 방법이 미세 유체 장치에서 액적 역학 및 혼합을 연구하는데 효과적인 도구임을 보여줍니다.

연구된 첫 번째 예는 액적 생성 및 수동 혼합에 대한 흐름 패턴이 분석되는 T- 접합입니다. 연구된 두 번째 예는 기포의 형성 및 분해가 시뮬레이션 되는 동시 유동 장치입니다.

기포 형성에 대한 점도의 영향도 분석됩니다. T 접합의 경우 기포 크기는 실험 데이터로 확증됩니다. 기포 크기와 빈도 모두 공동 유동 장치에 대한 실험 데이터로 연구되고 확증됩니다.

연구된 세 번째 예는 유전 물질 위에 놓인 작은 물방울에서 관찰 된 전기 습윤 현상입니다. 정상 상태 접촉각은 적용된 전압에 대해 플롯됩니다. 결과는 Young-Lippmann 곡선 및 실험 결과와 비교됩니다.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2

References

Formation of bubbles in a simple co-flowing micro-channel

SaveAlertResearch FeedFormation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

SaveAlertResearch FeedCreating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,

SaveAlertResearch FeedFLOW DEVELOPMENT OF CO-FLOWING STREAMS IN RECTANGULAR MICRO-CHANNELS

SaveAlertResearch FeedA microfluidic system for controlling reaction networks in time.

SaveAlertResearch FeedElectrowetting: from basics to applications

SaveAlertResearch FeedVolume of fluid (VOF) method for the dynamics of free boundaries

The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션

ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab LinanLia ShibinWanga MengWangab
aSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, China
bKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, Chinac
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Received 23 September 2020, Revised 17 November 2020, Accepted 26 November 2020, Available online 11 December 2020.

Abstract

Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.

Korea Abstract

초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.

레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.

변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.

이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.

시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.

이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.

Keywords: Laser irradiation; Wettability; Droplet impact; Simulation; VOF

Introduction

서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].

자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].

일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].

<내용 중략> ……

 The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

References

[1] H.W. Chen, P.F. Zhang, L.W. Zhang, Y. Jiang, H.L. Liu, D.Y. Zhang, Z.W. Han, L.
Jiang, Continuous directional water transport on the peristome surface of Nepenthes
alata, Nature 532 (2016) 85-89.
[2] Y. Liu, K.T. Zhang, W.G. Yao, J.A. Liu, Z.W. Han, L.Q. Ren, Bioinspired
structured superhydrophobic and superoleophilic stainless steel mesh for efficient oilwater separation, Colloids Surf., A 500 (2016) 54-63.
[3] Y.X. Liu, W.L. Liu, G.L. Wang, J.C. Hou, H. Kong, W.L. Wang, A facile one-step
approach to superhydrophilic silica film with hierarchical structure using
fluoroalkylsilane, Colloids Surf., A 539 (2018) 109-115.
[4] F.P. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaflike bamboo surfaces through soft lithography, Colloids Surf., A 513 (2017) 389-395.
[5] W. Huang, X.Y. Tang, Z. Qiu, W.X. Zhu, Y.G. Wang, Y.L. Zhu, Z.F. Xiao, H.G.
Wang, D.X. Liang, Jian, L. Y.J Xie, Cellulose-based Superhydrophobic Surface
Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate
Water Harvesting, ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.0c12504.
[6] M.Y. Zhang, L.J. Ma, Q. Wang, P. Hao, X. Zheng, Wettability behavior of
nanodroplets on copper surfaces with hierarchical nanostructures, Colloids Surf., A
604 (2020) 125291.
[7] A.F. Pan, W.J. Wang, X.S. Mei, K.D. Wang, X.B. Yang, Rutile TiO2 flocculent
ripples with high antireflectivity and superhydrophobicity on the surface of titanium
under 10 ns laser irradiation without focusing, Langmuir 33 (2017) 9530-9538.
[8] M. Li, X.H. Liu, N. Liu, Z.H. Guo, P.K. Singh, S.Y. Fu, Effect of surface
wettability on the antibacterial activity of nanocellulose-based material with
quaternary ammonium groups, Colloids Surf., A 554 (2018) 122-128.
[9] T.C. Chen, H.T. Liu, H.F. Yang, W. Yan, W. Zhu, H. Liu, Biomimetic fabrication
of robust self-assembly superhydrophobic surfaces with corrosion resistance
properties on stainless steel substrate, RSC Adv. 6 (2016) 43937-43949.
[10] P. Zhang, F.Y. Lv, A review of the recent advances in superhydrophobic surfaces
and the emerging energy-related applications, Energy 82 (2015) 1068-1087.
[11] Z. Yang, X.P. Liu, Y.L. Tian, Novel metal-organic super-hydrophobic surface
fabricated by nanosecond laser irradiation in solution, Colloids Surf., A 587 (2020)
124343.
[12] J.Y. Peng, X.J. Zhao, W.F. Wang, X. Gong, Durable Self-Cleaning Surfaces with
Superhydrophobic and Highly Oleophobic Properties, Langmuir, 35 (2019) 8404-
8412.
[13] Z. Yang, X.P. Liu, Y.L. Tian, A contrastive investigation on anticorrosive
performance of laser-induced super-hydrophobic and oil-infused slippery coatings,
Prog. Org. Coat. 138 (2020) 105313.
[14] J.L. Yong, F. Chen, Q. Yang, J.L. Huo, X. Hou, Superoleophobic Surfaces,
Chem. Soc. Rev. 46 (2017) 4168-4217.
[15] D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-Scale Fabrication of
Durable and Robust Super-Hydrophobic Spray Coatings with Excellent Repairable
and Anti-Corrosion Performance, Chem. Eng. J. 367 (2019) 169-179.
[16] R.J. Liao, Z.P. Zuo, C. Guo, Y. Yuan, A.Y. Zhuang, Fabrication of
superhydrophobic surface on aluminum by continuous chemical etching and its antiicing property, Appl. Surf. Sci. 317 (2014) 701-709.
[17] Z. Yang. X.P. Liu, Y.L. Tian, Hybrid laser ablation and chemical modification for
fast fabrication of bio-inspired super-hydrophobic surface with excellent selfcleaning, stability and corrosion resistance, J Bionic Eng 16 (2019) 13-26.
[18] Z. Yang, Y.L. Tian, Y.C. Zhao, C.J. Yang, Study on the fabrication of superhydrophobic surface on Inconel alloy via nanosecond laser ablation, Materials 12
(2019) 278.
[19] Y. Wang, X. Gong, Superhydrophobic Coatings with Periodic Ring Structured
Patterns for Self-Cleaning and Oil-Water Separation, Adv. Mater. Interfaces 4 (2017)
1700190.
[20] N. Chik, W.S.W.M. Zain, A.J. Mohamad, M.Z. Sidek, W.H.W. Ibrahim, A. Reif,
J.H. Rakebrandt, W. Pfleging, X. Liu, Bacterial adhesion on the titanium and
stainless-steel surfaces undergone two different treatment methods: Polishing and ultrafast laser treatment, IOP Conf. Ser.: Mater. Sci. Eng.358 (2018) 012034.
[21] N.K.K. Win, P. Jitareerat, S. Kanlayanarat, S. Sangchote, Effects of cinnamon
extract, chitosan coating, hot water treatment and their combinations on crown rot
disease and quality of banana fruit, Postharvest Biol. Technol. 45 (2007) 333–340.
[22] A. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu.
Rev. Fluid Mech. 38 (2006) 159–192.
[23] N. Wang, L.L. Tang, Y.F. Cai, W. Tong, D.S. Xiong, Scalable superhydrophobic
coating with controllable wettability and investigations of its drag reduction, Colloids
Surf. A 555 (2018) 290–295.
[24] R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning
properties of artificial superhydrophobic surfaces, Langmuir 21 (2005) 956–61.
[25] U. Trdan, M. Hočevar, P. Gregorčič, Transition from superhydrophilic to
superhydrophobic state of laser textured stainless steel surface and its effect on
corrosion resistance, Corros. Sci. 123 (2017) 21–44.
[26] A.L. Biance, C. Clanet, D. Quere, First steps in the spreading of a liquid droplet,
Phys. Rev. E 69 (2004) 016301.
[27] S. Kulju, L. Riegger, P. Koltay et al, Fluid flow simulations meet high-speed
video: computer vision comparison of droplet dynamics, J. Colloid Interface Sci. 522
(2018) 48.
[28] C.J. Yong, B. Bhushan, Dynamic effects of bouncing water droplets on
superhydrophobic surfaces, Langmuir 24.12 (2008) 6262–6269.
[29] G. Karapetsas, N.T. Chamakos, A.G. Papathanasiou, Efficient modelling of
droplet dynamics on complex surfaces, J. Phys.: Condens. Matter 28.8 (2016) 085101.
[30] D. Khojasteh, N.M. Kazerooni, S. Salarian et al, Droplet impact on
superhydrophobic surfaces: a review of recent developments, J. Ind. Eng. Chem. 42
(2016) 1–14.
[31] S.H. Kim, Y. Jiang, H. Kim, Droplet impact and LFP on wettability and
nanostructured surface, Exp. Therm. Fluid Sci. 99 (2018) 85–93.
[32] M. Rudman, Volume‐Tracking Methods for Interfacial Flow Calculations, Int.
J. Numer. Methods Fluids 24.7 (1997) 671-691.

A new dynamic masking technique for time resolved PIV analysis

A new dynamic masking technique for time resolved PIV analysis

시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술

물체 가시성을 허용하기 위해 형광 코팅과 결합 된 새로운 프리웨어 레이 캐스팅 도구

Journal of Visualization ( 2021 ) 이 기사 인용

Abstract

Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.

광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.

Keywords

  • Time resolved PIV, Dynamics masking, Image processing, Vibration inducers, Fluorescent coating

그래픽 개요

소개

PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.

흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.

조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.

PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006). 

이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다. 

DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.

많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.

몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.

카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.

이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.

위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).

객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.

본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다. 

우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다. 

논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.

행동 양식

제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조  ) 음영 영역의 마스킹을 수행합니다.

형광 코팅

코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이  실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.

우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림  3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).

대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.

마스킹 소프트웨어

DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.

각 단계에 대한 자세한 내용은 다음과 같습니다.

  1. (ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
  2. (비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
  3. (씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.

레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.

그림
그림 1
그림 1

DM 검증

이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.

그림 2
그림 2
그림 3
그림 3

실험 설정

진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 ​​유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조   ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.

VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는  Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.

시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .

PIV 체인 분석 평가

사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.

첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그⁡(지δ)+8.5];(1)

여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그⁡(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림  4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.

두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조  하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.

그림 4
그림 4
그림 5
그림 5

결과

그림 6을 참조하여  순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.

제안 된 DM (그림 6 의 패널 a  )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.

NM 접근법 (그림 6 의 패널 b1  )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.

그림 6 의 패널 b2는  SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.

그림  6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를  살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 ​​비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.

그림 6
그림 6
그림 7
그림 7

결론

이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은

메모

  1. 1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.

참고 문헌

  1. Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6 Google 학술 검색 
  2. Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271 Google 학술 검색 
  3. Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137 Google 학술 검색 
  4. Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21 Google 학술 검색 
  5. Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
  6. Case N (2015) 시력 및 조명. GitHub 저장소. https://github.com/ncase/sight-and-light
  7. Curatolo M, La Rosa M, Prestininzi P (2019) 바이 모르 프 압전 캔틸레버의 굽힘에서 평면 상태 가정의 타당성. J Intell Mater Syst Struct 30 (10) : 1508–1517 Google 학술 검색 
  8. Curatolo M, Lombardi V, Prestininzi P (2020) 얇은 압전 캔틸레버의 유동 유도 진동 향상 : 실험 분석. In : River Flow 2020— 유체 유압에 관한 국제 회의 절차
  9. DantecDynamics : DynamicStudio 6.4 (2018) https://www.dantecdynamics.com/dynamicstudio-6-4-release-with-new-dynamic-masking-add-on/
  10. Driscoll K, Sick V, Gray C (2003) 고밀도 연료 ​​스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115 Google 학술 검색 
  11. Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478 Google 학술 검색 
  12. Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
  13. Flow Science I (2019) FLOW-3D, 버전 12.0. 산타페, NM https://www.flow3d.com/
  14. Foeth EJ, Van Doorne C, Van Terwisga T, Wieneke B (2006) 시간은 3d 시트 캐비테이션의 piv 및 유동 시각화를 해결했습니다. Experim 유체 40 (4) : 503–513 Google 학술 검색 
  15. Grant I (1997) 입자 이미지 속도 측정 : 리뷰. Proc Inst Mech Eng CJ Mech Eng Sci 211 (1) : 55–76 Google 학술 검색 
  16. Guérin A, Derr J, Du Pont SC, Berhanu M (2020) 흐르는 물막에 의해 생성 된 Streamwise 용해 패턴. Phys Rev Lett 125 (19) : 194502 Google 학술 검색 
  17. Keane RD, Adrian RJ (1992) piv 이미지의 상호 상관 분석 이론. Appl Sci Res 49 (3) : 191–215 Google 학술 검색 
  18. Keulegan GH (1938) 열린 수로에서 난류의 법칙, vol. 21. 미국 표준 국 (National Bureau of Standards)
  19. Khalitov D, Longmire EK (2002) 2 개 매개 변수 위상 차별에 의한 동시 2 상 piv. Experim 유체 32 (2) : 252–268 Google 학술 검색 
  20. Lindken R, Rossi M, Große S, Westerweel J (2009) 미세 입자 영상 속도계 (piv) : 최근 개발, 응용 및 지침. 랩 칩 9 (17) : 2551–2567 Google 학술 검색 
  21. Masullo A, Theunissen R (2017) 픽셀 강도 통계를 기반으로 한 piv 이미지 분석을위한 자동화 된 마스크 생성. Experim 유체 58 (6) : 70 Google 학술 검색 
  22. Mohammadshahi S, Samsam-Khayani H, Cai T, Kim KC (2020) 수로에서 진동하는 제트의 흐름 특성과 열 전달에 대한 실험 및 수치 연구. Int J 열 유체 흐름 86 : 108701 Google 학술 검색 
  23. Narayan S, Moravec DB, Dallas AJ, Dutcher CS (2020) 4 채널 미세 유체 유체 역학 트랩에서 물방울 모양 이완. Phys Rev Fluids 5 (11) : 113603 Google 학술 검색 
  24. Pedocchi F, Martin JE, García MH (2008) 입자 이미지 속도계를 사용하는 대규모 실험을위한 저렴한 형광 입자. Experim 유체 45 (1) : 183–186 Google 학술 검색 
  25. Prasad AK (2000) 입체 입자 영상 유속계. Experim 유체 29 (2) : 103–116 Google 학술 검색 
  26. Prestininzi P, Lombardi V (2021) DM @ PIV. https://it.mathworks.com/matlabcentral/fileexchange/75398-dm-piv . MATLAB Central 파일 교환. 2021 년 5 월 6 일 확인
  27. Sanchis A, Jensen A (2011) 자유 표면 흐름에서 라돈 변환을 사용한 piv 이미지의 동적 마스킹. Experim 유체 51 (4) : 871–880 Google 학술 검색 
  28. Scarano F (2013) Tomographic piv : 원리와 실행. Meas Sci Technol 24 (1)
  29. Taniguchi M, Lindsey JS (2018) photochemcad에 사용하기위한> 300 개의 일반적인 화합물의 흡수 및 형광 스펙트럼 데이터베이스. Photochem Photobiol 94 (2) : 290–327 Google 학술 검색 
  30. Taniguchi M, Du H, Lindsey JS (2018) Photochemcad 3 : 다중 스펙트럼 데이터베이스를 사용한 광 물리 계산을위한 다양한 모듈. Photochem Photobiol 94 (2) : 277–289 Google 학술 검색 
  31. Thielicke W (2020) PIVlab (2020). https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool . MATLAB Central 파일 교환. 5 월 8 일 확인
  32. Thielicke W, Stamhuis E (2014) PIVlab-matlab의 사용자 친화적이고 저렴하며 정확한 디지털 입자 이미지 속도계를 지향합니다. J Open Res Softw 2 (1)
  33. TSI Instruments (2014) PIV 이미지에 대한 동적 마스킹. TSI Incorporated 애플리케이션 노트 PIV-018
  34. Vennemann B, Rösgen T (2020) 컨볼 루션 오토 인코더를 사용하는 입자 이미지 속도 측정을위한 동적 마스킹 기술. Experim 유체 61 (7) : 1–11 Google 학술 검색 
  35. Westerweel J, Elsinga GE, Adrian RJ (2013) 복잡하고 난류 흐름에 대한 입자 이미지 유속계. Ann Rev Fluid Mech 45 (1) : 409–436. https://doi.org/10.1146/annurev-fluid-120710-101204MathSciNet  수학 Google 학술 검색 

참조 다운로드

자금

CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.

작가 정보

제휴

  1. 이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi

교신 저자

Valentina Lombardi에 대한 서신 .

추가 정보

발행인의 메모

Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.

오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .

재판 및 허가

이 기사에 대해

이 기사 인용

Lombardi, V., Rocca, ML & Prestininzi, P. 시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술. J Vis (2021). https://doi.org/10.1007/s12650-021-00756-0

인용 다운로드

이 기사 공유

다음 링크를 공유하는 사람은 누구나이 콘텐츠를 읽을 수 있습니다.공유 가능한 링크 받기

Springer Nature SharedIt 콘텐츠 공유 이니셔티브 제공

키워드

  • 시간 해결 PIV
  • 역학 마스킹
  • 이미지 처리
  • 진동 유도제
  • 형광 코팅
Figure 5.6 Experimental set-up equipped with high-speed camera system

COMPUTATIONAL FLUID DYNAMIC MODELLING OF LASER ADDITIVE MANUFACTURING PROCESS AND EFFECT OF GRAVITY

전산 유체 역학 레이저 첨가제 모델링 제조 공정 및 중력의 영향

A thesis submitted to
The University of Manchester
For the degree of
Doctor of Philosophy (PhD)
In the Faculty of Science and Engineering
2017
Heng Gu
School of Mechanical, Aerospace and Civil
Engineering

레이저 적층 제조 (LAM)는 재료를 층별로 선택적으로 추가하여 하나 또는 여러 개의 레이저 빔을 사용하여 재료를 융합하거나 응고시키는 3D 부품을 형성하는 것을 기반으로 합니다.

LAM 공정을 조사하는 데 상당한 양의 작업을 할 수 있지만 다른 재료 성장 방향에서 중력 및 동적 유체 흐름 특성의 영향에 대해서는 알려진 바가 거의 없습니다.

레이저 제조 기술의 발전과 함께 LAM은 실린더 본체, 터빈 블레이드의 표면 클래딩, 해양 드릴링 헤드, 다양한 증착 방향이 일반적으로 필요한 슬리브 및 몰드의 측벽을 비롯한 다양한 환경에서 점점 더 많이 사용되고 있습니다. 또한 공간 적층 제조의 경우 운영 환경이 매우 낮거나 무중력을 경험하게 됩니다.

LAM 프로세스를 모델링하기 위한 수치적 방법 개발에 대한 이전 연구에서 많은 노력을 기울였습니다. 그러나 이전 모델링 작업의 대부분은 자유 표면 형성을 고려하지 않고 용융 풀 역학 개발에 초점을 맞추었습니다. 몇 가지 조사에만 동적 유동 용융 풀에 대한 재료 추가 분석이 포함됩니다.

다양한 재료 증착 방향 및 무중력 효과에서 수행 할 때 모든 복잡한 기능을 사용하여 증착 프로세스를 시뮬레이션하고 중력 효과를 고려할 수 있는 모델을 개발하는 작업은 발견되지 않았습니다.

이 연구에서는 재료 추가, 표면 장력, 용융 및 응고, 중력, 온도 의존 재료 속성, 자유 표면 형성 및 이동을 포함한 복합 공정 요인을 고려한 LAM 공정을 위해 3 차원 과도 전산 유체 역학 모델이 ​​구축되었습니다. 열원. 레이저 금속 증착 공정에 대한 더 나은 이해는 수치적으로 그리고 실험적으로 이루어졌습니다.

이 연구는 단일 레이어의 증착, 여러 인접 패스 및 돌출 된 피쳐가 있는 완전한 3 차원 형상을 다루었습니다. 증착 공정 중 다양한 증착 방향과 무중력 및 매우 낮은 중력에 대한 중력의 영향을 조사하고 그 영향을 최소화하기 위해 공정 매개 변수를 최적화 했습니다.

이 연구는 또한 층별 재료 추가를 기반으로 레이저 좁은 갭 용접 공정의 기본 현상과 용접 공정이 다른 방향으로 수행 될 때 중력이 홈 내부의 용융 풀 형성에 미치는 영향을 이해하는 데까지 확장되었습니다.

용융 풀 개발 이력 및 온도 분포를 분석하여 공정 중에 표면 장력 계수의 영향을 논의했습니다. 현재 모델의 도움으로 증착 불균일성, 증착 양단의 돌출부, 경사, 융착 부족, 계단 효과, 표면 파형, 중력 변화로 인한 붕괴 등 다양한 결함을 설명 하였습니다.

이러한 모든 결함을 제거하기 위한 해당 솔루션이 제시되었습니다. 무중력 레이저 적층 제조에 대한 연구는 이전에 보고되지 않았던 몇 가지 새로운 현상을 발견하여 우주에서 미래의 레이저 3D 프린팅을 위한 길을 닦았습니다.

Figure 1.1 Diagram for thesis structure
Figure 1.1 Diagram for thesis structure
Figure 2.1 Basic construction of a laser system [8]
Figure 2.1 Basic construction of a laser system [8]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.7 Lateral powder injection [12]
Figure 2.7 Lateral powder injection [12]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding,  wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding, wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface  tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape  formed by gravity force only, (c) Melt shape formed by the combination of those two  forces together [122]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape formed by gravity force only, (c) Melt shape formed by the combination of those two forces together [122]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with  different melt pool shape [120]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with different melt pool shape [120]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal  position
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal position
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental  cross section, (c) cross-section of modelling result
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental cross section, (c) cross-section of modelling result
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s,  b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s, b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting

6.5 Conclusion

좁은 갭 용접 공정의 다양한 측면을 다루는 3 차원 모델이 구축되었습니다. 용접 비드와 측벽 사이의 융합 현상이 없는 것은 필러 재료와 측벽을 녹일 수 있는 충분한 에너지를 제공 할 수 없는 낮은 열 입력으로 인한 것일 수 있습니다.

증가된 레이저 출력을 적용하거나 재 용융 패스를 수행 한 후 더 나은 표면 품질을 얻을 수 있고 측벽과의 융합 부족을 제거 할 수 있습니다. 용접 비드의 모양이 볼록한 모양에서 오목한 모양으로 바뀌고 측면 벽과의 좋은 젖음이 실현 될 수 있습니다.

다양한 위치에서 좁은 틈새 용접에 대한 중력의 영향을 조사했습니다. 용융 풀 전면의 경사 모양은 중력의 영향으로 다르게 나타납니다.

반면, 홈이 없는 기판의 증착 공정과 비교할 때 대부분의 열을 전달하는데 도움이 되는 측벽의 존재로 인해 중력의 영향이 감소했습니다.

마지막 패스 중에 중력은 일부 평평하지 않은 위치에서 심각한 낙하 및 붕괴 문제를 일으킬 수 있습니다. 이것은 표면에 더 큰 용융 풀이 형성되어 중력과 표면 장력 사이의 균형이 깨졌기 때문입니다. 수직 업 위치에서 좁은 간격 용접 공정 동안 다른 중력 수준이 적용되었습니다.

용접 비드와 측벽 사이의 융합 부족은 중력 수준이 증가함에 따라 관찰 될 수 있습니다. 중력이 증가하면 용융 풀의 뒤쪽 영역으로 더 많은 액체 재료가 이동하여 더 심각한 물방울과 볼록한 모양의 용접 비드가 발생합니다.

용융 풀 개발 이력의 도움으로 용접 비드가 더 이상 그루브에 있지 않거나 측벽과의 직접적인 접촉이 적을 때 전도를 통해 더 적은 열이 방출 될 수 있기 때문에 용융 풀 부피가 크게 증가한다는 것을 알 수 있습니다.

좁은 간격 용접 공정에 대한 표면 장력 계수의 영향을 조사했습니다. 양의 표면 장력 계수를 적용하면 용접 비드가 홈 내부에서 덜 오목한 것처럼 보였고 측벽의 습윤 조건이 음의 ∂γ / ∂T 조건의 경우만큼 좋지 않았습니다.

측벽이 없으면 용접 비드는 표면의 마지막 패스 동안 음의 계수와 양의 계수 케이스 사이에 더 많은 차이를 보여줍니다. 표면 장력 계수는 홈 내부의 측벽과의 융합 상태를 결정하는 데 중요한 역할을 했습니다.

두꺼운 부분의 좁은 틈새 용접 중에 여러 번 통과하는 용접 비드 개발이 조사되었습니다. 비드 모양은 열 축적으로 인해 더 많은 패스가 증착 될수록 더 오목 해집니다. 패스 간의 융합 부족은 때때로 다음 패스의 재 용융 공정을 통해 제거 될 수 있습니다. 이종 재료를 사용한 좁은 틈새 용접 프로세스가 성공적으로 시뮬레이션되었습니다.

중심선을 따라 용융 풀과 용접 비드의 비대칭 형성은 재료 열 특성의 차이에 기인 할 수 있으며, 결과적으로 측벽과의 융합 부족을 유발할 수 있습니다.

비드 비대칭 문제는 수평 위치에서 용접 공정을 수행하거나 총 열 입력을 증가시켜 열전도율이 높은 측벽을 녹이는 방식으로 피할 수 있습니다. 재 용융 공정은 표면 품질을 향상시키고 모재와의 융착 문제를 제거하기 위해 용접된 표면에 적용 할 때 유용한 것으로 밝혀졌습니다.

圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments

International Thermal Spray Conference – ITSC-2006
Seattle, Washington, U.S.A., May 2006

M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, R. Knight,
Drexel University, Philadelphia, Pennsylvania, USA
J. A. Baldoni
Duke University, North Carolina, USA

Abstract

거친 표면에 대한 입자 충격 및 변형의 3 차원 모델이 HVOF 스프레이 폴리머 입자에 대해 개발되었습니다. 유체 흐름 및 입자 변형은 FLOW-3D® 소프트웨어를 사용하는 유체 부피 (VoF) 방법으로 예측되었습니다. 스플래팅(splatting) 및 최종 스플랫 모양(splat shapes)의 역학에 대한 거칠기의 영향은 몇 가지 프로토타입 거친 표면을 사용하여 탐색 되었습니다 (예: 단계와 그루브)

또한 실제 그릿 블라스팅(grit blasted)된 강철 표면의 광학 간섭 측정에 의해 생성된 보다 사실적인 거친 표면의 수치 표현도 모델에 통합되었습니다. 예측된 스플랫 모양을 그릿 블라스팅 된 강철 기판에 증착된 나일론 11 스플랫의 SEM 이미지와 비교했습니다. 거친 기판은 부드러운 기판의 스플래팅 시뮬레이션에서 거의 관찰되지 않는 손가락 및 기타 비대칭 3 차원 불안정성을 생성했습니다.

Introduction

기판 거칠기가 용사 코팅의 접착력과 접착력을 향상 시킨다는 사실은 잘 알려져 있으며 일반적으로 받아 들여지고 있습니다 [1]. 스프레이하기 전에 기판 표면은 일반적으로 알루미나 또는 SiC와 같은 50 – 300 µm 각 세라믹 입자로 그릿 블라스팅으로 거칠게 처리됩니다.

기판 표면에 증착된 초기 스플랫의 형태는 코팅 / 기판 인터페이스의 무결성과 결과 코팅의 접착 강도에 중요한 역할을합니다. 단단하고 불규칙한 표면에 대한 열 스프레이 액적의 충격 및 변형은 액적 표면의 복잡한 대규모 3 차원 변형이 특징입니다.

충돌하는 물방울의 “스플래싱”이 발생하는 경우, 운지법 또는 위성 입자 생성 및 분리 중 새로운 표면 생성은 일반적으로 축 대칭이 아니므로 사실적인 splat 예측을 위해 3 차원 모델이 필요합니다. 이것은 정확한 3 차원 스플래팅 모델의 개발에 많은 수치적 도전을 야기합니다.

Fauchais et al. [2]는 스플랫 형성 과정과 관련하여 발표 된 논문의 대부분 (~ 98 %)이 매끄러운 표면에 대한 정상적인 액적 충격을 설명한다고보고했습니다. 게시된 작업의 2 % 미만은 매끄러운 표면에 대한 비정상적인 입자 영향과 관련이 있으며 ~ 0.1 %만이 거친 기판과 관련됩니다.

여러 저자 [3, 4]는 2 차원 모델을 사용하여 비평면 표면과 물방울의 상호 작용을 연구했거나 평행 그루브가 있는 표면에 대한 3 차원 충격 [5]을 연구했습니다. 그러나 이 접근법의 주요 단점은 거친 표면에 스플래팅의 비축 대칭 측면을 연구합니다.

최근 Raessi et al. [6] 이전에 개발된 VoF 모델 [7]을 확장하여 평평한 기판에 액적 스플래팅을 프로토 타입 거친 표면과 액적 상호 작용으로 확장했습니다. 표면 거칠기는 규칙적으로 정렬 된 정사각형 블록으로 근사화 되었습니다. Feng et al. [8]은 평평한 표면의 마찰 조건에 의해 표면 거칠기가 근사된 3 차원 Lagrangian 유한 요소 모델을 사용했습니다.

이 접근 방식은 소규모 점성 및 축 대칭 자유 표면 흐름과 관련하여 매우 정확할 수 있지만 fingering 생성 또는 satellites 생성 및 breakups 중 새로운 표면 생성과 관련된 물방울이 튀기는 경계 맞춤 기술에 적합하지 않습니다.

또한, 열 분무에 사용되는 그릿 블라스팅 표면의 평균 표면 거칠기 (Ra)는 일반적으로 50μm의 평균 액적 크기에 비해 ~ 5 ~ 30 % (~ 2 ~ 15μm)입니다. 평평한 표면에 간단한 마찰 흐름.

본 연구의 목표는 임의의 거친 기질에 영향을 미치는 HVOF 분무 중합체 입자의 모델을 개발하는 것이다. 매끄럽지 않은 표면에 대한 입자 분할 모델은 표면의 기하학적 불규칙성이 분할 거동과 최종 분할 형태에 어떻게 영향을 미치는지 더 잘 이해할 수 있게 해줄 것입니다.

HVOF 제트에서 미크론 크기의 공급 원료 입자로의 강제 대류는 높은 대류 열 전달 계수 (h ~ 5000 – 17,000 W / (m2 K))를 특징으로 합니다. 이로 인해 입자 표면 온도가 급격히 증가하지만 폴리머 입자의 높은 내부 열 저항 (높은 Bi 수)은 입자 내부가 동일한 속도로 가열되는 것을 방지합니다. 결과적으로 더 큰 (예 : 90 µm 직경) 나일론 11 입자는 기판에 충격을 주기 전에 코어와 표면 사이에 급격한 온도 구배를 나타냅니다 (그림 1) [9, 10, 11].

Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.

또한 가파른 내부 온도 구배를 가진 HVOF 스프레이 폴리머 입자가 얇은 디스크 중앙에 크고 거의 반구형 인 코어가있는 특징적인 “튀김 달걀”모양으로 퍼졌다고 보고되었습니다 [10]. 이 모양은 저온, 고점도 코어와 고온, 저점도 표면의 유동 특성 간에 큰 방사형 차이가 있음을 나타냅니다.

변형된 입자의 예측 된 모양 (그림 2a)은 유리 슬라이드에 증착된 실험적으로 관찰 된 스플랫과 좋은 질적 일치를 나타 냈습니다 (그림 2b). 액적의 오른쪽에 표시된 속도 장 벡터 (그림 2a)는 저점도 “피부”가 고점도 코어 주위를 흐르면서 특징적인 “튀김 달걀” splat 모양이 형성되었음을 나타냅니다.

이 작업에서 보고된 실험 중에 사용된 HVOF 스프레이 매개 변수는 나일론 11을 증착하는데 사용할 수 있는 일반적인 HVOF 스프레이 매개 변수를 나타냅니다. 그러나 실험 기준 매개 변수를 중심으로 개발된 수치 모델은 개별 스플랫의 흐름 거동을 더 잘 이해하는 데 사용할 수 있습니다. 증착 효율 향상을 위한 공정 최적화를 지원합니다.

Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

중략…….

References

  1. Davis, J. R., (Ed.) et al, Handbook of Thermal Spray Technology, ASM International®, 1st Ed., Materials Park,
    OH, (2004).
  2. Fauchais, P., Fukomoto, M., Vardelle, A. and Vardelle, M., Knowledge Concerning Splat Formation: An Invited
    Review, Journal of Thermal Spray Technology, 13 (3), pp. 337 – 360, (2004).
  3. Liu, H., Lavernia, E. J. and Rangel, R. H., Modeling of Molten Droplet Impingement on a Non-flat Surface, Acta
    Metall. Mater, 43(5), pp. 2053 – 2072, (1995).
  4. Sobolev, V. V., Guilemany, J. M. and Martin, A. J., Influence of Surface Roughness on the Flattening of
    Powder Particles during Thermal Spraying, Journal of Thermal Spray Technology 5(2), pp. 207 – 214, (1996).
    5 Patanker, N. A. and Chen, Y., Numerical Simulation of Droplet Shapes on Rough Surfaces, Proc. Int. Conference
    on Modeling and Simulations of Microsystems – MSM 2002, pp. 116 – 119, (2002)
    6 Raessi, M., Mostaghimi, J. and Bussmann, M., “Droplet Impact during the Plasma Spray Coating Process-Effect of
    Surface Roughness on Splat Shapes,” Proc. 17th Int. Symposium on Plasma Chemistry – ISPC 17, Toronto,
    Canada, (2005)
    7 Pasandideh-Fard, M., Chandra, S. and Mostaghimi, J., A Three-dimensional Model of Droplet Impact and
    Solidification, Int. J. Heat and Mass Transfer, 45, pp. 2229 – 2242, (2002).
    8 Feng, Z. G., Domaszewski, M., Montavon, G. and Coddet, C., Finite Element Analysis of Effect of Substrate Surface
    Roughness on Liquid Droplet Impact and Flattening Process, J. of Thermal Spray Technology, 11(1), pp. 62-68,
    (2002).
    9 Petrovicova, E., “Structure and Properties of Polymer Nanocomposite Coatings Applied by the HVOF Process,”
    Ph.D. Dissertation, Drexel University, (1999).
    10 Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc.
    ITSC-2005 International Thermal Spray Conference, DVS/IIW/ASM-TSS, Basel, Switzerland, (2005).
    11 Bao, Y., Gawne, D. T. and Zhang, T., The Effect of Feedstock Particle Size on the Heat transfer Rates and
    Properties of Thermally Sprayed Polymer Coatings, Trans. I. M. F., 73(4), pp 119 – 124, (1998).
    12 Ivosevic, M., Cairncross, R. A. and Knight, R., “Heating and Impact Modeling of HVOF Sprayed Polymer
    Particles,” Proc. 2004 International Thermal Spray Conference (ITSC-2004), DVS/IIW/ASM-TSS, Osaka,
    Japan, (2004).
    13 Hirt, C. W. and Nichols, B. D., Volume of Fluid (VoF) Method for the Dynamics of Free Boundaries, Journal of
    Computational Physics, 39, pp. 201 – 225, (1981).
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

Modeling and characterization of a carbon fiber emitter for electrospray ionization

A K Sen1, J Darabi1, D R Knapp2 and J Liu2
1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering,
University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
2 Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue,
Charleston, SC 29425, USA
E-mail: darabi@engr.sc.edu

뾰족한 탄소 섬유(CF)를 사용하는 새로운 마이크로 스케일 이미터는 질량 분석 (MS) 분석에서 전기 분무에 사용할 수 있습니다. 탄소 섬유는 360 µm OD 및 75 µm ID의 용융 실리카 모세관과 동축에 위치하며 날카로운 팁은 튜브 말단에서 30 µm 연장됩니다.

Abstract

전기 분무 이온화 (ESI) 프로세스는 전기 유체 역학을 해결하기 위한 Taylor–Melcher 누설 유전체 유체 모델 및 액체-가스 인터페이스 추적을 위한 유체 부피 (VOF) 접근 방식을 기반으로 하는 전산 유체 역학 (CFD) 코드를 사용하여 시뮬레이션 됩니다. CFD 코드는 먼저 기존 지오메트리에 대해 검증한 다음 CF 이미터 기반 ESI 모델을 시뮬레이션하는데 사용됩니다.

시뮬레이션된 전류 흐름 및 전류 전압 결과는 CF 이미터의 실험 결과와 잘 일치합니다. 이미터 형상, 전위차, 유속 및 액체의 물리적 특성이 CF 이미터의 전기 분무 거동에 미치는 영향을 철저히 조사합니다.

스프레이 전류와 제트 직경은 액체의 유속, 전위차 및 물리적 특성과 상관 관계가 있으며 상관 결과는 문헌에 보고된 결과와 정량적으로 비교됩니다. (이 기사의 일부 그림은 전자 버전에서만 색상입니다)

Introduction

1980 년대 후반부터 매트릭스 보조 레이저 탈착 이온화 (MALDI)와 전기 분무 이온화 (ESI)의 두 가지 이온화 기술을 구현하여 감도, 속도 및 구조 정보 수준 측면에서 MS 분석이 엄청나게 성장했습니다. 1980 년대 초까지 전자 충격 (EI) 또는 화학 이온화 (CI) 방법은 가스 크로마토 그래피에 적합한 작은 생체 분자를 이온화 하는 데 사용되었습니다.

그러나 크고 열에 민감한 비 휘발성 샘플은 적절한 사전 처리 없이 EI 또는 CI-MS 기술로 분석 할 수 없습니다 [1]. ESI 기술을 사용하면 액체상에서 직접 이러한 큰 분자를 분석 할 수 있습니다 [2]. Zeleny [3, 4]는 출구에 높은 전위를 적용하여 모세관에서 액체 용액을 분사 할 수 있음을 보여주었습니다.

Dole [5, 6] 및 Fenn [7]의 선구적인 연구는 ESI를 고분자 및 생체 분자와 같은 대형 화합물의 이온화 방법으로 표시했습니다. 이에 이어이 기술에 의한 기상 이온 발생에 관련된 과정과 메커니즘이 널리 조사되고 있습니다.

ESI 방법에서 기체 이온화 된 분자는 강한 전계가 있는 상태에서 미세한 물방울을 생성하여 액체 용액에서 생성됩니다. ESI 프로세스의 이러한 능력은 단백질 및 기타 생체 분자 연구에 자연적으로 적용됨을 발견했습니다. ESI 방법과 관련된 다양한 프로세스가 그림 1에 나와 있습니다.

Figure 1. Schematic of an ESI process.
Figure 1. Schematic of an ESI process.

ESI 전위는 일반적으로 전도성 물질로 코팅 된 이미 터 튜브를 통해 외부에서 샘플 액체에 적용되지만 액체 샘플 내부에 적용될 수도 있습니다. Herring과 Qin [8]은 이미 터 팁에 삽입된 팔라듐 와이어를 통해 전기 분무 전위가 적용되는 모세관 전기 영동 (CE)을위한 ESI 인터페이스를 보여주었습니다.

Chiou의 설계 [9]에서는 작은 PDMS 칩에 있는 샘플 저장소, 마이크로 채널 및 실리카 모세관 노즐과 통합 된 내장 전극을 통해 전기 분무를 위한 고전압이 적용되었습니다.

Cao and Moini [10]는 ESI 전압이 모세관 내부에 위치한 전극을 통해인가되고 전기적 접촉이 출구 근처 모세관 벽의 작은 구멍을 통해 유지되는 전기 분무 방출기를 설계했습니다. 작은 모세관 직경 (~ 10 µm)을 가진 이미 터를 사용하여 낮은 전압에서 전기 분무가 가능하지만, 더 작은 구멍은 과도한 배압으로 인해 쉽게 막힐 수 있습니다.

직경이 더 큰 (> 50µm) 이미 터를 처리하는 것이 더 쉽습니다. 그러나 그들은 더 작은 직경의 이미 터만큼 효율적이지 않습니다 [11]. 일반적으로 ESI 전압을 적용하기 위해 유리 또는 용융 실리카와 같은 절연 재료로 제작 된 저 유량 이미 터의 외주에 전도성 코팅이 적용됩니다.

용융 실리카 모세관의 끝 부분에있는 스퍼터 코팅 된 귀금속 층은 내구성에 빠르게 영향을 미치는 것으로 관찰되었습니다. 코팅의 빠른 열화는 방전, 전기 화학적 반응 및 층과 용융 실리카 표면 사이의 불량한 기계적 결합으로 인해 발생할 수 있습니다.

이러한 에미 터의 수명은 스퍼터 코팅 후에 금을 전기 도금하거나 [12] 스퍼터 코팅 된 금 위에 SiOx를 코팅하여 증가시킬 수 있습니다 [13]. 크롬 또는 니켈 합금의 접착층 위에 금으로 코팅 된 이미 터는 우수한 결합력을 제공 할 수 있으며 음극으로 작동 할 때 내구성이 있습니다.

그러나 양극으로 작동하는 동안 접착층은 금 막을 통해 화학적으로 용해됩니다. 이미 터의 안정성과 내구성을 향상시키기 위해 대체 전도성 코팅이 평가되었습니다.

안정적인 ESI 작동을 위해 콜로이드 흑연 코팅 이미 터가 사용되었으며 수명이 길었습니다 [14]. 폴리아닐린 (PANI) 코팅 이미 터는 두꺼운 코팅으로 인해 높은 내구성을 보여주고 방전에 강합니다. PANIcoated와 gold-coated nanospray emitter의 electrospray ionization 거동을 비교 한 결과 PANIcoated emitter는 goldcoated emitter와 비슷한 향상된 감도를 제공합니다 [15].

그라파이트-폴리이 미드 혼합물은 또한 무 접착 전기 분무 방출기의 경우 전도성 코팅으로 사용되었습니다. 전도성 코팅의 안정성은 산화 스트레스 동안 좋은 성능을 나타내는 전기 화학적 방법에 의해 조사되었습니다 [16].

탄소 코팅 이미 터의 기능은 마이크로 스프레이 및 시스리스 CE 및 ESI 응용 분야에서 입증되었습니다. 이 이미 터는 견고하지는 않지만 방수가 되지 않는 CE 또는 ESI 애플리케이션에 충분히 내구성이있었습니다 [17].

우리는 막힘 문제를 제거하고 시료 액체와 금층 사이의 접촉 문제를 피할 수있는 뾰족한 탄소 섬유 기반의 새로운 ESI 방출기를 도입하여 ESI 시스템의 적용 성, 신뢰성 및 내구성을 향상 시켰습니다 [18]. 이 작업에서 탄소 섬유 기반 ESI 이미 터는 전산 유체 역학 (CFD) 소프트웨어 패키지 FLOW-3D [19]를 사용하여 시뮬레이션됩니다.

실험은 새로운 CF 이미 터를 사용하여 수행됩니다. 모델 예측은 실험 결과와 비교됩니다. 새로운 이미 터의 ESI 성능은 이미 터의 기하학적 구조, 유속, 액체의 물리적 특성과 같은 다양한 매개 변수에 대한 반응을 연구하여 평가됩니다.

스프레이 전류 및 제트 직경은 유량 및 액체의 특성과 상관 관계가 있으며 상관 결과는 문헌에보고 된 결과와 정량적으로 비교됩니다. 다음 섹션에서 ESI 공정을 지배하는 전기 유체 역학 이론은 Taylor–Melcher 누설 유전체 모델 [20]을 참조하여 설명됩니다.

그런 다음 Hartman 등이 사용하는 ESI 구성을 고려하여 CFD 코드의 유효성을 확인합니다 [21]. 또한 CF 기반 ESI 모델에 대한 시뮬레이션 및 실험 결과가 제시되고 논의됩니다. 마지막으로 모수 연구 결과와 상관 관계를 제시하고 논의합니다.

Figure 2. Forces in the liquid cone.
Figure 2. Forces in the liquid cone.
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 15. Electric field contours at various time steps
Figure 15. Electric field contours at various time steps
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

References

[1] Siuzdak M 1996 Mass Spectrometry for Biotechnology (New York: Academic)
[2] Cole R B (ed) 1997 Electrospray Ionization Mass Spectrometry (New York: Wiley-Interscience)
[3] Zeleny J 1914 Phys. Rev. 3 69–91
[4] Zeleny J 1917 Phys. Rev. 10 1–6
[5] Dole M, Mack L L, Hines R L, Mobley R C, Ferguson L D and Alice M B 1968 Molecular beams of macroions
J. Chem. Phys. 49 2240–9
[6] Clegg G A and Dole M 1971 Molecular beams of macroions: III. Zein and polyvinylpyrrolidone Biopolymers
10 821–6
[7] Fenn J B, Mann M, Meng C K, Wong S F and Whitehouse C M 1989 Electrospray ionization for mass
spectrometry of large biomolecules Science 246 64–71
[8] Herring C J and Qin J 1999 An on-line preconcentrator and the evaluation of electrospray interfaces for the capillary
electrophoresis/mass spectrometry of peptides Rapid Commun. Mass Spectr. 13 1–7
[9] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C B 2002 Microscale Tools for Sample Preparation, Separation
and Detection of Neuropeptides Sensors Actuators B 86 280–6
[10] Cao P and Moini M 1997 A novel sheathless interface for capillary electrophoresis/electrospray ionization mass
spectrometry using an in-capillary electrode J. Am. Soc. Mass Spectrom 8 561–4
[11] Janini G M, Conards T P, Wilkens K L, Issaq H J and Veenstra T D 2003 A sheathless nanoflow electrospray
interface for on-line capillary electrophoresis mass spectrometry Anal. Chem 75 1615–9
[12] Barroso M B de Jong and Ad P 1999 Sheathless preconcentration-capillary zone electrophoresis-mass
spectrometry applied to peptide analysis J. Am. Soc. Mass Spectrom 10 1271–8
[13] Valaskovic G A and McLafferty F W 1996 Long-lived metallized tips for nanoliter electrospray mass spectrometry
J. Am. Soc. Mass Spectrom. 7 1270–2
[14] Zhu X, Thiam S, Valle B C and Warner I M 2002 A colloidal graphite coated emitter for seathless capillary
electrophoresis/nanoelectrospray ionization mass spectrometry Anal. Chem 74 5405–9
[15] Maziarz E P I II, Lorenz S A, White T P and Wood T D 2000 Polyaniline: a conductive polymer coating for durable
nanospray emitters J. Am. Soc. Mass. Spectrom 11 659–63
[16] Nilsson S, Wetterhall M, Bergquist J, Nyholm L and Markides K E 2001 A simple and robust conductive
graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry Rapid
Commun. Mass Spectr. 15 1997–2000
[17] Chang Y Z and Her G R 2000 Sheathless capillary electrophoresis/electospray mass spectrometry using a
carbon-coated tapered fused silica capillary with a beveled edge Anal. Chem. 72 626–30
[18] Liu J, Ro K W, Busman M and Knapp D R 2004 Electrospray ionization with a pointed carbon fiber emitter Anal. Chem. 76 3599–606
[19] Hirt C W 2004 Electro-hydrodynamics of semi–conductive fluids: with application to electro–spraying Flow Science
Technical Note 70 FSI–04–TN70 1–7
[20] Saville D A 1997 Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model Annu. Rev. Fluid Mech. 29 27–64
[21] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M and Scarlett B 1999
Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet J. Aerosol Sci.
30 823–49
[22] Castellanos A 1998 Basic Concepts and Equations in Electrohydrodynamics Electrohydrodynamics
ed A Castellanos (Berlin: Springer)
[23] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press)
[24] Hirt C W and Nichols B D 1981 Volume of fluid (VOF) method for the dynamics of free boundaries J. Comp. Phys.
39 201–25
[25] De la Mora F J and Loscertales I G 1994 The current emitted by highly conducting Taylor cones J. Fluid Mech. 260
155–84
[26] Ganan-Calvo A M 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal
scaling laws in electrospraying Phys. Rev. Lett. 79 217–20
[27] Higuera F J 2004 Current/flow–rate characteristic of an electrospray with a small meniscus J. Fluid Mech.
513 239–46
[28] Zeng J, Sobek D and Korsmeyer T Electro-hydrodynamic modeling of electrospray ionization: cad for a microfluidic
device-mass spectrometer interface Transducers ’03: 12th Int. Conf. on Solid State Sensors, Actuators and
Microsystems 2 1275–8
[29] Ganan–Calvo A M, Davila J and Barrero A 1997 Current and droplet size in the electrospraying of liquids. Scaling laws J. Aerosol Sci. 28 249–75
[30] Cloupeau M and Prunet-Foch B 1989 Electrostatic spraying of liquids in cone–jet mode J. Electrost. 22 135–59

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

Drop-on-demand 잉크젯 인쇄는 상업 및 소비자 이미지 재생을 위한 잘 정립 된 방법입니다. 이 기술을 주도하는 동일한 원리는 인쇄 및 적층 제조 분야에도 적용될 수 있습니다. 기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르기까지 다양한 재료를 증착하고 패턴화하여 다양한 기능성 매체, 조직 및 장치를 인쇄하는 데 사용되었습니다 [1, 2]. 이 작업의 초점은 잉크젯 기반 기술을 3D 솔리드 금속 구조 인쇄로 확장하는 데 있습니다 [3, 4]. 현재 대부분의 3D 금속 프린팅 응용 프로그램은 고체 물체를 형성하기 위해 레이저 [6] 또는 전자 빔 [7]과 같은 외부 지향 에너지 원의 영향을 받아 증착 된 금속 분말 소결 또는 용융을 포함합니다. 그러나 이러한 방법은 비용 및 프로세스 복잡성 측면에서 단점이 있습니다. 예를 들어, 3D 프린팅 프로세스에 앞서 분말을 생성하기 위해 시간과 에너지 집약적인 기술이 필요합니다.

이 기사에서는 MHD (자기 유체 역학) drop-on-demand 방출 및 움직이는 기판에 액체 방울 증착을 기반으로 3D 금속 구조의 적층 제조에 대한 새로운 접근 방식에 대해 설명합니다. 프로세스의 각 부분을 연구하기 위해 많은 시뮬레이션이 수행되었습니다.

단순화를 위해 이 연구는 두 부분으로 나뉘었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 Lorentz 힘 밀도에 의해 생성 된 압력을 추정 한 다음 FLOW-3D 모델의 경계 조건으로 사용됩니다. 액적 방출 역학을 연구하는 데 사용되었습니다.

두 번째 부분에서는 이상적인 액적 증착 조건을 식별하기 위해 FLOW-3D 매개 변수 분석을 수행했습니다. 모델링 노력의 결과는 그림 1에 표시된 장치의 설계를 안내하는데 사용되었습니다.

코일은 배출 챔버를 둘러싸고 전기적으로 펄스되어 액체 금속을 투과하고 폐쇄 루프를 유도하는 과도 자기장을 생성합니다. 그 안에 일시적인 전기장. 전기장은 순환 전류 밀도를 발생시키고, 이는 과도장에 역 결합되고 챔버 내에서 자홍 유체 역학적 로렌츠 힘 밀도를 생성합니다. 힘의 방사형 구성 요소는 오리피스에서 액체 금속 방울을 분출하는 역할을 하는 압력을 생성합니다. 분출된 액적은 기질로 이동하여 결합 및 응고되어 확장된 고체 구조를 형성합니다. 임의의 형태의 3 차원 구조는 입사 액적의 정확한 패턴 증착을 가능하게 하는 움직이는 기판을 사용하여 층별로 인쇄 될 수 있습니다. 이 기술은 상표명 MagnetoJet으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다.

이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성 되었습니다.

Computational Models

프로토 타입 장치 개발의 일환으로, 성능 (예 : 액적 방출 역학, 액적-공기 및 액적-기질 상호 작용)에 대한 설계 개념을 스크리닝하기 위해 프로토타입 제작 전에 계산 시뮬레이션을 수행했습니다. 분석을 단순화하기 위해 CFD 분석 뿐만 아니라 컴퓨터 전자기(CE)를 사용하는 두 가지 다른 보완 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반 액적 분출 거동과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서는 열-유체 CFD 분석을 사용하여 기판상의 액적 패턴화, 유착 및 응고를 연구했습니다.

MHD 분석 후, 첫 번째 모델에서 등가 압력 프로파일을 추출하여 액적 분출 및 액적-기질 상호 작용의 과도 역학을 탐구하도록 설계된 FLOW-3D 모델의 입력으로 사용되었습니다. FLOW-3D 시뮬레이션은 액적 분출에 대한 오리피스 안과 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부와 외부 모두에서 유체 초기화 수준을 변경하고 펄스 주파수에 의해 결정된 펄스 사이의 시간을 허용함으로써 크기 및 속도를 포함하여 분출 된 액 적의 특성 차이를 식별 할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화 함으로써, 인쇄된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속 방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속 방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적인 온도 구배에 대한 조정이 신속하게 이루어져야 하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성 되었습니다.

이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

igure 1:Essential componentsof the MHD printhead (a) cross-sectional view of printhead showing flow of liquid metal.(b) simulation model showing the magneticfield generated by a pulsed magnetic coil as well as an ejecteddroplet of liquid aluminum.

Timeline of molten metal droplet ejection

용융 금속 액적 분출 타임 라인

Keywords: Magnetohydrodynamicdroplet ejection, droplet on demandprinting, 3D printing of molten metal, additive manufacturing, thermo-fluidic analysis, molten aluminum.

우리는 액체 금속 방울을 사용하여 3D 고체 금속 구조의 DOD (drop-on-demand) 프린팅을 위한 새로운 방법을 제시합니다. 이 방법은 MHD (Magnetohydrodynamic) 기반 방울 생성에 의존합니다. 특히, 외부 코일에 의해 공급되는 맥동 자기장은 액체 금속으로 채워진 분사 챔버 내에서 MHD 기반 힘 밀도를 유도하여 물방울이 노즐을 통해 분사되도록 합니다.

임의의 모양의 3 차원 (3D) 고체 금속 구조는 드롭 방식의 유착 및 응고와 함께 방울의 층별 패턴 증착을 통해 인쇄 할 수 있습니다. 샘플 인쇄 구조와 함께 이 프로토 타입 MHD 인쇄 시스템을 소개합니다. 또한 드롭 생성을 제어하는 기본 물리학에 대해 논의하고 장치 성능을 예측하기 위한 계산 모델을 소개합니다.

주문형 잉크젯 인쇄는 상업용 및 소비자용 이미지 재생을 위한 잘 정립된 방법입니다. 이 기술을 주도하는 동일한 원리는 기능 인쇄 및 적층 제조 분야에도 적용될 수 있습니다. 기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르기까지 다양한 재료를 증착하고 패턴 화하여 다양한 기능성 매체, 조직 및 장치를 인쇄하는 데 사용되어 왔습니다 [1, 2]. 이 작업의 초점은 잉크젯 기반 기술을 3D 솔리드 금속 구조 프린팅으로 확장하는 데 있습니다 [3, 4]. 현재 대부분의 3D 금속 프린팅 응용 분야에는 레이저 (예 : 선택적 레이저 소결 [5] 및 직접 레이저 금속 소결 [6]) 또는 전자 빔 (예 : 레이저 소결 [6])과 같은 외부 지향 에너지 원의 영향으로 증착 된 금속 분말 소결 또는 용융이 포함됩니다. 전자빔 용융 [7])을 사용하여 고체 물체를 형성합니다. 그러나 이러한 방법은 비용 및 복잡성 측면에서 단점이 있습니다. 3D 프린팅 프로세스에 앞서 금속을 밀링해야 합니다.

igure  1:Essential componentsof the MHD printhead (a) cross-sectional  view  of  printhead  showing  flow  of liquid metal.(b) simulation model showing the magneticfield  generated  by  a  pulsed  magnetic  coil  as  well  as an ejecteddroplet of liquid aluminum.
igure 1:Essential componentsof the MHD printhead (a) cross-sectional view of printhead showing flow of liquid metal.(b) simulation model showing the magneticfield generated by a pulsed magnetic coil as well as an ejecteddroplet of liquid aluminum.

이 작업에서 우리는 자기 유체 역학의 원리에 기반한 금속 구조물의 적층 제조에 대한 새로운 접근 방식을 소개합니다. 이 방법에서는 감긴 고체 금속 와이어가 MHD 프린트 헤드의 아세라 미치 팅 챔버에 연속적으로 공급되고 용융되어 그림 1에 표시된 것처럼 모세관 힘을 통해 배출 챔버에 공급되는 액체 금속 저장소를 형성합니다. 코일이 배출 챔버를 둘러싸고 있습니다. 액체 금속 내에서 과도 전기장을 유도하는 과도 자기장을 생성하도록 전기적으로 펄스됩니다. 전기장은 유도 된 순환 전류 밀도를 생성하며, 이는 적용된 자기장과 결합하여 챔버 내에서 오리피스의 액체 금속 방울을 방출하는 역할을하는 로렌츠 힘 밀도 (fMHD)를 생성합니다. 분출 된 액 적은 기질로 이동하여 결합 및 응고되어 확장 된 고체 구조를 형성합니다. 임의의 형태의 3 차원 구조는 입사 액 적의 정확한 패턴 증착을 가능하게하는 움직이는 기판을 사용하여 층별로 인쇄 될 수 있습니다. 이 기술은 Vader Systems (www.vadersystems.com)에서 MagnetoJet이라는 상표명으로 개척하고 상용화했습니다. MagnetoJet 인쇄 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의의 모양의 3D 금속 구조를 인쇄하는 것입니다. 이 작업에서는 MagnetoJet 프로토 타입 프린팅 프로세스에 대해 논의하고 샘플 3D 프린팅 구조를 시연하며 합리적인 설계 및 장치 성능 예측을 가능하게하는 계산 모델을 소개합니다.

Figure 2:Printed     3D structures: (a) ring showing as printed base and processed    upper    portion, and (b) cat
Figure 2:Printed 3D structures: (a) ring showing as printed base and processed upper portion, and (b) cat
Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.

Lattice Boltzmann method for contact line dynamics

접촉선 역학을 위한 Lattice Boltzmann 방법

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op woensdag 7 mei 2014 om 16:00 uur

Introduction

움직이는 접촉선은 본질적으로 어디에나 존재하며, 표면에 미끄러지는 물방울은 우리가 일상에서 만나는 일반적인 예입니다. 유체 역학의 접촉선은 일반적으로 액체, 고체 및 주변 공기/증기 사이의 공통 경계라고합니다.

최근 미세 유체 공학의 발전으로 인해 접촉 라인의 역학을 제어하는 힘과 흐름 조건에 대한 근본적인 이해와 기술에 대한 많은 요구가 제기되었습니다. 이 논문은 접촉선의 물리학, 분석 및 수치 모델링 및 고무적인 산업 기하학과 관련된 측면을 포함합니다.

동기를 부여하는 산업 응용 분야는 이머전 리소그래피 (ASML)와 잉크젯 노즐 (Océ)의 프린트 헤드입니다. 이 두 가지 문제는 몇 가지 특징적인 길이 및 시간 척도, 고도로 구부러진 유체 인터페이스, 다상 흐름 및 복잡한 경계 조건을 포함하므로 분석 및 수치 연구가 어렵습니다.

포토 리소그래피는 서브 마이크론 정확도로 마스크에서 실리콘 웨이퍼로 패턴을 전송할 수 있는 복잡한 절차입니다 [1]. 포토 리소그래피 공정의 핵심 단계 중 하나는 고해상도 광학 시스템을 사용하여 실리콘 웨이퍼에 코팅 된 포토 레지스트를 DUV (심 자외선) 빛으로 노출시키는 것입니다. 광학 시스템을 사용하여 웨이퍼에 마스킹 할 수 있는 가장 작은 특징 또는 임계 치수 CD는 Rayleigh 기준으로 결정됩니다.

여기서 NA는 광학 시스템의 개구 수를 나타내고, λ는 사용 된 빛의 파장이고 k는 공정 종속 상수입니다. 광학 분야에서 광학 시스템의 개구 수 NA = n sin α는 시스템이 빛을 받아들이거나 방출 할 수 있는 각도 범위를 특성화하는 무차원 숫자입니다.

여기서 α는 렌즈의 수용 각도입니다 (0 < α <π / 2) 및 n은 렌즈와 포토 레지스트 사이의 매질의 굴절률입니다. CD의 가치가 감소하면 전자 장치가 더 작고 빨라집니다. 식에 의해 주어진 레일리 기준에 따르면. (1.1), 더 작은 CD 값은 k 또는 λ를 줄이거 나 NA를 늘림으로써 얻을 수 있습니다. 현재 KrF 및 ArF 엑시머 레이저의 경우 빛의 파장은 각각 최대 280nm 및 193nm까지 감소 될 수 있습니다 [1]. k는 분해능 향상 기술을 사용하여 0.4까지 감소 된 공정 의존 상수입니다 [2 ]. 개구 수는 sin α 또는 n을 증가시켜 증가시킬 수 있습니다.

sin α에 대한 실제 한계는 0.93으로, 이론적 한계 | sin α |에 매우 가깝습니다. ≤ 1. n을 늘리는 것이 이머전 리소그래피 사용의 기본 아이디어입니다. Immersion lithography는 렌즈와 포토 레지스트 사이의 에어 갭이 물로 대체되는 포토 리소그래피 기법입니다 (그림 1.1 (왼쪽 패널) 참조). 침지 리소그래피에 사용되는 물은 193nm 파장에 대해 1.44의 굴절률을 가진 고도로 정제 된 탈 이온수입니다 [3]. 이 굴절률 값은 분해 가능한 피처 크기의 해상도를 약 30 % 정도 증가시킵니다 [3].

이 방법은 훨씬 더 비싼 리소그래피 기술 [4]로 큰 변화를 가져 오지 않아도 된다는 장점을 가지고 더 작은 피처 크기를 달성하는 저렴한 방법입니다. 물이 웨이퍼의 포토 레지스트와 직접 접촉하기 때문에 이머전 리소그래피 기술은 주로 렌즈와 포토 레지스트의 오염 가능성과 관련된 몇 가지 문제를 야기합니다.

특히 웨이퍼 플레이트가 렌즈에 비해 Up 속도로 움직일 때 액체-공기-고체 접촉 라인도 움직입니다 (그림 1.1 (오른쪽 패널) 참조). 특정 최소 속도를 넘어 서면 전진 및 후퇴 접촉 선 (그림 1.1, 오른쪽 패널 참조)이 불안정 해지고 각각 공기를 동반하거나 액체 필름을 웨이퍼로 끌 수 있습니다 [5].

공기와 액체 필름은 결국 기포 나 액체 방울로 부서져서 리소그래피 공정에 부정적인 영향을 미칩니다. 이 논문에서 우리는 플레이트의 속도, 웨이퍼의 습윤 특성 및 주변 공기의 점도에 따라 전진 및 후퇴하는 접촉 라인의 안정성 연구에 기여했습니다.

1.1.2 Drop-on-demand inkjet printer

최신 잉크젯 인쇄 기술은 CIJ (연속 잉크젯) 및 DOD (주문형 드롭) 잉크젯의 두 가지 주요 유형으로 나눌 수 있습니다. CIJ 프린터에서 미세 노즐에서 나오는 액체 분사는 RP (Rayleigh-Plateau) 불안정성으로 인해 물방울로 분해됩니다. 이 RP 불안정성은 액체의 흐름을 정확하게 제어 할 수있는 음향 변동을 생성하는 압전 결정에 의해 유발되어 일정한 간격으로 물방울로 분해됩니다 [7].

DOD 잉크젯 프린터는 작동 원리에 따라 두 가지 범주로 더 나눌 수 있습니다 [8]. 여기서는 압전 잉크젯 (PIJ) 프린터에만 중점을 둡니다. PIJ 프린터에서 낙하 형성은 압전 소자에 의해 생성 된 압력 파에 의해 발생합니다. PIJ 프린터의 프린트 헤드 개략도가 그림 1.2에 나와 있습니다.

PIJ 프린터는 CIJ 프린터에 비해 상대적으로 느리지 만 인쇄 품질이 훨씬 더 높습니다 [7]. 프린터의 품질은 일반적으로 평방 인치당 도트 수 (dpi)로 측정되며 최신 응용 프로그램에는 더 작은 물방울 (높은 dpi)과 더 나은 정확도가 필요합니다. 방울의 정확도와 크기에 영향을 미치는 여러 요인 중에서 노즐, 노즐 플레이트의 젖음성 및 방울 형성 ​​빈도 fDOD가 중요한 역할을합니다 [8].

좋은 방울 형성을 위해 접촉 라인의 위치는 노즐 내에서 정밀하게 제어되어야 합니다. 이 논문에서는 PIJ 프린터에서 드롭 형성의 일부 측면에만 중점을 둡니다. 우리의 연구는 노즐 습윤성과 DOD 주파수가 방울 형성 ​​과정에 미치는 영향을 연구 할 수 있는 수치 도구의 개발을 목표로 합니다.

Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.
Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.
Figure 2.2: The liquid-vapor interface at the microscopic length scale obtained from a molecular dynamics (MD) simulation using Lennard-Jones potential
Figure 2.2: The liquid-vapor interface at the microscopic length scale obtained from a molecular dynamics (MD) simulation using Lennard-Jones potential. The vertical axis is in units of the molecular diameter σ and the stress shown in panel (c) is measured in /σ3 . Here,  is the energy scale corresponding to the intermolecular forces. (a) Snapshot of the liquid-vapor interface in the MD simulation. The red dotted line divides the system in two parts: Left and right. (b) Time-averaged normalized density profile ρ ∗ (z) across the interface. (c) Tangential force per unit area exerted by the left part on the right part of the system. The plot shows the difference between the normal and the tangential components of stress tensor: Π(z) = σ n − σ t . Images reproduced from [16].
Figure 2.3: Left panel: Water drops on a glass substrate
Figure 2.3: Left panel: Water drops on a glass substrate (Image source: http: // way2science. com/ molecular-theory-of-surface-tension).The red dotted line in the figure shows the position of the contact line. The shape of the big drops is affected by the force due to gravity. Right panel: Schematics of a liquid drop on a smooth non-deformable solid surface. The figure shows the contact angle, θe, in thermodynamic equilibrium.
Figure 6.1: Left panel: schematic of a single nozzle unit in the printhead
Figure 6.1: Left panel: schematic of a single nozzle unit in the printhead. Right panel: schematic of the channel-nozzle section of the printhead. The axisymmetric channel-nozzle section (right panel) is the simulation domain for our LB simulation (R = Rc).
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.

Coupled CFD-Response Surface Method (RSM) Methodology for Optimizing Jettability Operating Conditions

분사성 작동 조건을 최적화하기 위한 결합된 CFD-Response Surface Method(RSM)

Nuno Couto 1, Valter Silva 1,2,* , João Cardoso 2, Leo M. González-Gutiérrez 3 and Antonio Souto-Iglesias 41
INEGI-FEUP, Faculty of Engineering, Porto University, 4200-465 Porto, Portugal;
nunodiniscouto@hotmail.com
2 VALORIZA, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal; jps.cardoso@ipportalegre.pt
3 CEHINAV, DMFPA, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain; leo.gonzalez@upm.es
4 CEHINAV, DACSON, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
antonio.souto@upm.es

  • Correspondence: valter.silva@ipportalegre.pt; Tel.: +351-245-301-592

소개

물방울 생성에 대한 이해는 여러 산업 응용 분야에서 매우 중요합니다 [ 1 ]. 잉크젯 프린팅 프로세스는 일반적으로 10 ~ 100 μm [ 1 ] 범위의 독특하고 작은 액적 크기를 특징으로 하며 연속적 또는 충동적 흐름을 사용하여 얻을 수 있습니다 (마지막 방식은 주문형 드롭 (DoD)이라고도 함). 잉크젯).

여러 장점 덕분에 DoD 방법은 산업 환경에서 상당한 수용을 얻고 있습니다 [ 2 ].DoD는 복잡한 프로세스이며 유체 속성, 노즐 형상 및 구동 파형 [ 1 , 3 ]의 세 가지 주요 범주로 분류되는 여러 매개 변수에 따라 달라집니다 .그러나 길이와 시간 척도가 모두 마이크로 오더 [ 4 ] 이기 때문에 실험을하기가 어렵습니다 .

결과적으로 실험 설정은 항상 비용이 많이 들고 복잡하며 CFD (전산 유체 역학)와 같은 고급 수치 접근 방식이 엄격한 요구 사항입니다 [ 5 , 6 ]. VOF (volume-of-fluid) 접근 방식은 액체 분해 및 액적 생성에 대한 다상 공정을 시뮬레이션하기위한 적절한 대안으로 밝혀졌으며 과거 연구에서 그대로 사용되었습니다 [ 7 , 8], 인쇄 프로세스의 맥락에서 전자는 여전히 현재 연구의 주제입니다. 

또한 VOF 체계를 사용하면 단일 운동량 방정식 세트를 해결하고 도메인 전체에 걸쳐 각 유체의 체적 분율을 추적하여 명확하게 정의된 인터페이스로 둘 이상의 혼합 불가능한 유체를 효과적으로 시뮬레이션 할 수 있습니다. Feng [ 9 ]는 VOF 접근 방식을 사용하여 일시적인 유체 인터페이스 변형 및 중단을 효과적으로 추적하는 패키지 FLOW-3D를 사용하여 낙하 배출 중 복잡한 유체 역학 프로세스를 시뮬레이션하는 선구자 작업 중 하나를 수행했습니다.

주요 목표는 볼륨 및 속도와 같은 민감한 변수를 더 잘 이해하면서 장치 개발에서 일반적인 설계 규칙을 구현하는 것이 었습니다. 이러한 종류의 공정과 관련된 주요 질문 중 하나는 안정적인 액적 형성을 위한 작동 범위의 정의입니다.

Fromm [ 10 ]은 Reynolds 수와 Weber 수의 제곱근 비율이 2보다 작으면 안정적인 방울을 생성 할 수 없다는 것을 확인했습니다. 이 무차원 값은 나중에 Z 번호로 알려졌으며 분사 가능성 범위 [ 11 ]를 정의합니다 . 문헌에서 분사 가능성을 위한 Z 간격은 1 ~ 10 [ 12 ], 4 ~ 14 [ 13 ] 또는 0.67 ~ 50 [ 14]을 찾을 수 있습니다. 

이것은 Z 값 만으로는 분사 가능성 조건을 나타낼 수 없음을 분명히 의미합니다. 실제로, 다른 속성을 가진 유체는 다른 인쇄 품질을 나타내면서 동일한 Z 값을 나타낼 수 있습니다. 액적 생성 공정과 해당 분사 성은 주로 전체 공정 품질에 큰 영향을 미치는 매개 변수 세트에 의해 결정됩니다. 

토대 메커니즘을 더 잘 이해하려면 확장 된 작동 조건 및 매개 변수 세트를 고려하여 여러 실험 또는 수치 실행을 수행해야 합니다. DoE (design-of-experiment) 접근 방식과 같은 체계적인 접근 방식이 없으면 이것은 달성하기 매우 어려운 작업이 될 수 있습니다. 최적화 문제를 해결하기 위해 반응 표면 방법을 사용하여 처음으로 체계화된 접근 방식이 개발된 Box and Wilson [ 15 ] 의 선구자 기사 이후 ,이 입증된 방법론은 많은 화학 및 산업 공정[ 16 ] 및 기타 관련 학계에 성공적으로 적용되었습니다.

예를 들어 Silva와 Rouboa [ 17 ]는 직접 메탄올 연료 전지의 출력 밀도에 영향을 미치는 관련 매개 변수를 식별하기 위해 반응 표면 방법론 (RSM)을 사용했습니다. 많은 실제 산업 응용 분야에서 실험 연구는 작동 매개 변수를 조절하기 어렵 기 때문에 제한적이지만 주로 설정을 개발하거나 실험을 실행하는 데 드는 비용이 높기 때문입니다. 

따라서 솔루션은 주요 시스템 응답을 시뮬레이션하고 예측할 수 있는 효과적인 수학적 모델의 개발에 의존합니다. DoE와 같은 최적화 방법론을 수치 모델과 결합하면 비용이 많이 들고 시간이 많이 걸리는 실험을 피하고 다양한 입력 조합을 사용하여 최적의 조건을 얻을 수 있습니다 [ 16 ]. 

실바와 루 보아 [ 18] CFD 프레임 워크 하에서 개발 된 2D Eulerian-Eulerian 바이오 매스 가스화 모델에서 얻은 결과를 RSM과 결합하여 다양한 응용 분야에서 합성 가스를 생성하기 위한 최적의 작동 조건을 찾습니다. 

저자는 입력 요인으로 인한 최상의 응답과 최소한의 변동을 모두 보장하는 작동 조건을 찾을 수 있었습니다. Frawley et al. [ 19 ] CFD 및 DoE 기술 (특히 RSM)을 결합하여 파이프의 팔꿈치에서 고체 입자 침식에 대한 다양한 주요 요인의 영향을 조사하여 침식 예측 모델을 개발할 수 있습니다.우리가 아는 한, DoD 잉크젯 프로세스의 개선 및 더 나은 이해에 적용되는 DoE 접근법 (실험적으로 또는 모든 종류의 수치 모델과 결합)을 구현하는 연구는 없습니다. 선도 기업이 이러한 접근 방식을 적용 할 가능성이 있지만 관련 결과는 민감할 수 있으므로 더 넓은 커뮤니티에서 사용할 수 없습니다. 이 사실은 DoD 잉크젯 공정에서 액적 생성에 대한 여러 매개 변수의 영향을 평가하기 위한 이러한 종류의 연구로서 현재 논문의 영향을 증가 시킬 수 있습니다.

CFD 프레임 워크 내에서 VOF 접근 방식을 사용하여 여러 컴퓨터 실험의 설계를 개발하고 RSM을 분석 도구로 사용했습니다. 충분한 수치 정확도와 수용 가능한 시간 계산 시뮬레이션의 균형을 맞추기 위해 메쉬 수렴 연구가 수행되었습니다. 설계 목적을 위해 점도, 표면 장력, 입구 속도 및 노즐 직경이 입력 요인으로 선택되었습니다. 응답은 break-up 시간과 break-up 길이였습니다.

Figure 1. Schematic of the computational domain
Figure 1. Schematic of the computational domain
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).

References

  1. Hutchings, I.M.; Martin, G.D. Inkjet Technology for Digital Fabrication; John Wiley & Sons Ltd.: Hoboken, NJ,
    USA, 2013.
  2. Waasdorp, R.; Heuvel, O.; Versluis, F.; Hajee, B.; GhatKesar, M. Acessing individual 75-micron diameter
    nozzles of a desktop inkjet printer to dispense picoliter droplets on demand. RSC Adv. 2018, 8, 14765.
  3. Zhang, H.; Wang, J.; Lu, G. Numerical investigation of the influence of companion drops on drop-ondemand ink jetting. Appl. Phys. Eng. 2012, 13, 584–595.
  4. Dong, H.; Carr, W. An experimental study of drop-on-demand drop formation. Phys. Fluids 2006, 18,
    072102.
  5. Patel, M.; Pericleous, K.; Cross, M. Numerical Modelling of Circulating Fluidized beds. Int. J. Comput.
  6. Fluid Dyn. 1993, 1, 161–176. [CrossRef]
  7. Zhao, X.; Glenn, C.; Xiao, Z.; Zhang, S. CFD development for macro particle simulations. Int. J. Comput.
  8. Fluid Dyn. 2014, 28, 232–249. [CrossRef]
  9. Hasan, M.N.; Chandy, A.; Choi, J.W. Numerical analysis of post-impact droplet deformation for direct-print.
  10. Eng. Appl. Comput. Fluid Mech. 2015, 9, 543–555. [CrossRef]
  11. Ghafouri-Azar, R.; Mostaghimi, J.; Chandra, S. Numerical study of impact and solidification of a droplet
  12. over a deposited frozen splat. Int. J. Comput. Fluid Dyn. 2004, 18, 133–138. [CrossRef]
  13. Feng, J. A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices. J. Imaging
  14. Sci. Technol. 2002, 46, 398–408.
  15. Fromm, J. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM J. Res. Dev. 1984, 28,
  16. 322–333. [CrossRef]
  17. Nallan, H.; Sadie, J.; Kitsomboonloha, R.; Volkman, S.; Subramanian, V. Systematic Design of Jettable
  18. Nanoparticle-Based Inkjet Inks: Rheology, Acoustics and Jettability. Langmuir 2014, 30, 13470–13477.
  19. [CrossRef] [PubMed]
  20. Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modelling and Experiments of Droplet Formation;
  21. Chapter in MRS Online Proceeding Library Archive; Cambridge University Press: Cambridge, UK, 2000;
  22. Volume 624, pp. 117–122.
  23. Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25,
  24. 2629–2635. [CrossRef] [PubMed]
  25. Tai, J.; Gan, H.Y.; Liang, Y.N.; Lok, B.K. Control of Droplet Formation in Inkjet Printing Using Ohnesorge
  26. Number Category: Materials and Processes. In Proceedings of the 10th Electronics Packaging Technology
  27. Conference, EPTC, Singapore, 9–12 December 2008; pp. 761–766.
  28. Box, G.; Wilson, K. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13,
  29. 1–45.
  30. Silva, V.; Rouboa, A. Optimizing the gasification operating conditions of forest residues by coupling a
  31. two-stage equilibrium model with a response surface methodology. Fuel Process. Technol. 2014, 122, 163–169.
  32. [CrossRef]
  33. Silva, V.; Rouboa, A. Optimizing the DMFC Operating Conditions using a Response Surface Method.
  34. Appl. Math. Comput. 2012, 218, 6733–6743. [CrossRef]
  35. Silva, V.; Rouboa, A. Combining a 2-D multiphase CFD model with a Response Surface Methodology to
  36. optimize the gasification of Portuguese biomasses. Energy Convers. Manag. 2015, 99, 28–40. [CrossRef]
  37. Frawley, P.; Corish, J.; Niven, A.; Geron, M. Combination of CFD and DOE to analyse solid particle erosion
  38. in elbows. Int. J. Comput. Fluid Dyn. 2009, 23, 411–426. [CrossRef]
  39. Morrison, N.F.; Harlen, O.G. Viscoelasticity in inkjet printing. Rheol. Acta 2010, 49, 619–632. [CrossRef]
  40. ANSYS Inc. ANSYS Fluent Tutorial Guide; Release 15.0; ANSYS Inc.: Canonsburg, PA, USA, November 2013.
  41. ANSYS Inc. ANSYS Fluent Theory Guide; Release 17.0; ANSYS Inc.: Canonsburg, PA, USA, January 2016.
  42. Dinsenmeyer, R.; Fourmigué, J.F.; Caney, N.; Marty, P. Volume of fluid approach of boiling flows in
  43. concentrated solar plants. Int. J. Heat Fluid Flow 2017, 65, 177–191. [CrossRef]
  44. Das, S.; Weerasiri, L.D.; Yang, W. Influence of surface tension on bubble nucleation, formation and onset of
  45. sliding. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 23–31. [CrossRef]
  46. Du, W.; Zhang, J.; Lu, P.; Xu, J.; Wei, W.; He, G.; Zhang, L. Advanced understanding of local wetting
  47. behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method. Chem. Eng. Sci.
  48. 2017, 170, 378–392. [CrossRef]
  49. Shrestha, S.; Chou, K. A build surface study of Powder-Bed electron beam additive manufacturing by
  50. 3D thermo-fluid simulation and white-light interferometry. Int. J. Mach. Tools Manuf. 2017, 121, 37–49.
  51. [CrossRef]
  52. Zhong, Y.; Fang, H.; Ma, Q.; Dong, X. Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid
  53. Mech. 2018, 845, 378–391. [CrossRef]
  54. Zhang, X. Dynamics of drop formation in viscous flows. Chem. Eng. Sci. 1999, 54, 1759–1774. [CrossRef]
  55. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [CrossRef]
  56. Kim, C.S.; Park, S.; Sim, W.; Kim, Y.; Yoo, Y. Modelling and characterization of an industrial inkjet head for
  57. micro-patterning on printed circuit boards. Comput. Fluids 2009, 38, 602–612. [CrossRef]
  58. ChemEngineering 2018, 2, 51 19 of 19
  59. Wang, P. Numerical Analysis of Droplet Formation and Transport of a Highly Viscous Liquid. Master’s Thesis,
  60. University of Kentucky, Lexington, KY, USA, 2014.
  61. Zhang, Z.; Xiong, R.; Corr, D.; Huang, Y. Study of Impingement Types and Printing Quality during Laser
  62. Printing of Viscoelastic Alginate Solutions. Langmuir 2016, 32, 3004–3014. [CrossRef] [PubMed]
  63. Derby, B. Inkjet Printing Ceramics: From Drops to Solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [CrossRef]
  64. Kim, E.; Baek, J. Numerical Study on the Effects of Non Dimensional Parameters on Drop-on-Demand
  65. Droplet Formation Dynamics and Printability Range in the up-Scaled Model. Phys. Fluids 2012, 24, 082103.
  66. [CrossRef]
Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.

Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles

기판 냉각 및 액적 모양 및 조성이 액적 증발 및 입자 증착에 미치는 영향

by Vahid Bazargan
M.A.Sc., Mechanical Engineering, The University of British Columbia, 2008
B.Sc., Mechanical Engineering, Sharif University of Technology, 2006
B.Sc., Chemical & Petroleum Engineering, Sharif University of Technology, 2006

고착 방울은 평평한 기판에 놓인 액체 방울입니다. 작은 고정 액적이 증발하는 동안 액적의 접촉선은 고정된 접촉 영역이 있는 고정된 단계와 고정된 접촉각이 있는 고정 해제된 단계의 두 가지 단계를 거칩니다. 고정된 접촉 라인이 있는 증발은 액적 내부에서 접촉 라인을 향한 흐름을 생성합니다.

이 흐름은 입자를 운반하고 접촉 선 근처에 침전시킵니다. 이로 인해 일반적으로 관찰되는 “커피 링”현상이 발생합니다. 이 논문은 증발 과정과 고착성 액적의 증발 유도 흐름에 대한 연구를 제공하고 콜로이드 현탁액에서 입자의 침착에 대한 통찰력을 제공합니다. 여기서 우리는 먼저 작은 고착 방울의 증발을 연구하고 증발 과정에서 기판의 열전도도의 중요성에 대해 논의합니다.

현재 증발 모델이 500µm 미만의 액적 크기에 대해 심각한 오류를 생성하는 방법을 보여줍니다. 우리의 모델에는 열 효과가 포함되어 있으며, 특히 증발 잠열의 균형을 맞추기 위해 액적에 열을 제공하는 기판의 열전도도를 포함합니다. 실험 결과를 바탕으로 접촉각의 진화와 관련된 접촉 선의 가상 움직임을 정의하여 고정 및 고정 해제 단계의 전체 증발 시간을 고려합니다.

우리의 모델은 2 % 미만의 오차로 500 µm보다 작은 물방울에 대한 실험 결과와 일치합니다. 또한 유한한 크기의 라인 액적의 증발을 연구하고 증발 중 접촉 라인의 복잡한 동작에 대해 논의합니다. 에너지 공식을 적용하고 접촉 선이 구형 방울의 후퇴 접촉각보다 높은 접촉각을 가진 선 방울의 두 끝에서 후퇴하기 시작 함을 보여줍니다. 그리고 라인 방울 내부의 증발 유도 흐름을 보여줍니다.

마지막으로, 계면 활성제 존재 하에서 접촉 라인의 거동을 논의하고 입자 증착에 대한 Marangoni 흐름 효과에 대해 논의합니다. 열 Marangoni 효과는 접촉 선 근처에 증착 된 입자의 양에 영향을 미치며, 기판 온도가 낮을수록 접촉 선 근처에 증착되는 입자의 양이 많다는 것을 알 수 있습니다.

Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.5: Schematic of the sessile droplet on a substrate
Figure 2.5: Schematic of the sessile droplet on a substrate. The evaporation rate at the surface of the droplet is enhanced toward the edge of the droplet.
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.

Bibliography

[1] R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” Journal of Colloid and Interface Science, vol. 61, pp. 336–350, Sept. 1977. → pages viii, 8, 9, 18, 42
[2] H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Advances in Colloid and Interface Science, vol. 170, pp. 67–86, Jan. 2012. → pages 1
[3] R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, and M. S. Strano, “Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets,” Nano Lett., vol. 7, no. 9, pp. 2693–2700, 2007. → pages 1, 54, 71
[4] S. Tokonami, H. Shiigi, and T. Nagaoka, “Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications,” Analytica Chimica Acta, vol. 641, pp. 7–13, May 2009. →pages 71
[5] A. A. Sagade and R. Sharma, “Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature,” Sensors and Actuators B: Chemical, vol. 133, pp. 135–143, July 2008. → pages
[6] W. R. Small, C. D. Walton, J. Loos, and M. in het Panhuis, “Carbon nanotube network formation from evaporating sessile drops,” The Journal of Physical Chemistry B, vol. 110, pp. 13029–13036, July 2006. → pages 71
[7] S. H. Ko, H. Lee, and K. H. Kang, “Hydrodynamic flows in electrowetting,” Langmuir, vol. 24, pp. 1094–1101, Feb. 2008. → pages 42
[8] T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, and A. Chattopadhyay, “Evaporation-induced patterns from droplets containing motile and nonmotile bacteria,” Langmuir, vol. 23, pp. 8655–8658, Aug. 2007. → pages 1
[9] R. Sharma and M. S. Strano, “Centerline placement and alignment of anisotropic nanotubes in high aspect ratio cylindrical droplets of nanometer diameter,” Advanced Materials, vol. 21, no. 1, p. 6065, 2009. → pages 1, 54, 71
[10] V. Dugas, J. Broutin, and E. Souteyrand, “Droplet evaporation study applied to DNA chip manufacturing,” Langmuir, vol. 21, pp. 9130–9136, Sept. → pages 2, 71
[11] Y.-C. Hu, Q. Zhou, Y.-F. Wang, Y.-Y. Song, and L.-S. Cui, “Formation mechanism of micro-flows in aqueous poly(ethylene oxide) droplets on a substrate at different temperatures,” Petroleum Science, vol. 10, pp. 262–268, June 2013. → pages 2, 34, 54
[12] T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, “Nanochromatography driven by the coffee ring effect,” Analytical Chemistry, vol. 83, pp. 1871–1873, Mar. 2011. → pages 71
[13] J.-H. Kim, S.-B. Park, J. H. Kim, and W.-C. Zin, “Polymer transports inside evaporating water droplets at various substrate temperatures,” The Journal of Physical Chemistry C, vol. 115, pp. 15375–15383, Aug. 2011. → pages 54
[14] S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, “Coffee-ring effect-based three dimensional patterning of Micro/Nanoparticle assembly with a single droplet,” Langmuir, vol. 26, pp. 11690–11698, July 2010. → pages
[15] D. Wang, S. Liu, B. J. Trummer, C. Deng, and A. Wang, “Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells,” Nature biotechnology, vol. 20, pp. 275–281, Mar. PMID: 11875429. → pages 2, 54, 71
[16] H. K. Cammenga, “Evaporation mechanisms of liquids,” Current topics in materials science, vol. 5, pp. 335–446, 1980. → pages 3
[17] C. Snow, “Potential problems and capacitance for a conductor bounded by two intersecting spheres,” Journal of Research of the National Bureau of Standards, vol. 43, p. 337, 1949. → pages 9
[18] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Physical Review E, vol. 62, p. 756, July 2000. → pages 10, 14, 18, 27, 53, 54, 71, 84
[19] H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” The Journal of Physical Chemistry B, vol. 106, pp. 1334–1344, Feb. 2002. → pages 12, 18, 29, 43, 44, 48, 49, 53, 61, 71, 84
[20] Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Physical Review E, vol. 71, p. 036313, Mar. 2005. → pages 14, 27, 43, 44, 45, 54
[21] H. Gelderblom, A. G. Marin, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Physical Review E, vol. 83, no. 2, p. 026306,→ pages
[22] F. Girard, M. Antoni, S. Faure, and A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, pp. 36–49, June 2008. → pages 18
[23] Y. Y. Tarasevich, “Simple analytical model of capillary flow in an evaporating sessile drop,” Physical Review E, vol. 71, p. 027301, Feb. 2005. → pages 19, 54, 62, 72
[24] A. J. Petsi and V. N. Burganos, “Potential flow inside an evaporating cylindrical line,” Physical Review E, vol. 72, p. 047301, Oct. 2005. → pages 22, 55, 62, 68, 71
[25] A. J. Petsi and V. N. Burganos, “Evaporation-induced flow in an inviscid liquid line at any contact angle,” Physical Review E, vol. 73, p. 041201, Apr.→ pages 23, 53, 55, 72
[26] H. Masoud and J. D. Felske, “Analytical solution for stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes,” Physics of Fluids, vol. 21, pp. 042102–042102–11, Apr. 2009. → pages 23, 55, 62, 71, 72
[27] H. Hu and R. G. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir, vol. 21, pp. 3972–3980, Apr. 2005. → pages 24, 28, 53, 54, 56, 62, 68, 71, 72, 74, 84
[28] R. Bhardwaj, X. Fang, and D. Attinger, “Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study,” New Journal of Physics, vol. 11, p. 075020, July 2009. → pages 28
[29] A. Petsi, A. Kalarakis, and V. Burganos, “Deposition of brownian particles during evaporation of two-dimensional sessile droplets,” Chemical Engineering Science, vol. 65, pp. 2978–2989, May 2010. → pages 28
[30] J. Park and J. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir, vol. 22, pp. 3506–3513, Apr. 2006. → pages 28
[31] H. Hu and R. G. Larson, “Marangoni effect reverses coffee-ring depositions,” The Journal of Physical Chemistry B, vol. 110, pp. 7090–7094, Apr. 2006. → pages 29, 74
[32] K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, “Quantitative visualization of flow inside an evaporating droplet using the ray tracing method,” Measurement Science and Technology, vol. 15, pp. 1104–1112, June 2004. → pages 34
[33] S. T. Beyer and K. Walus, “Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing,” Langmuir, vol. 28, pp. 8753–8759, June 2012. → pages 42, 71
[34] G. McHale, “Surface free energy and microarray deposition technology,” Analyst, vol. 132, pp. 192–195, Feb. 2007. → pages 42
[35] R. Bhardwaj, X. Fang, P. Somasundaran, and D. Attinger, “Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram,” Langmuir, vol. 26, pp. 7833–7842, June→ pages 42
[36] G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” Journal of Fluid Mechanics, vol. 623, no. 1, p. 329351, 2009. → pages 44
[37] M. S. Plesset and A. Prosperetti, “Flow of vapour in a liquid enclosure,” Journal of Fluid Mechanics, vol. 78, pp. 433–444, 1976. → pages 44
[38] S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: liquid droplet coffee stain? effect,” RSC Advances, vol. 2, pp. 8390–8401, Aug. 2012. → pages 53
[39] B. J. Fischer, “Particle convection in an evaporating colloidal droplet,” Langmuir, vol. 18, pp. 60–67, Jan. 2002. → pages 54
[40] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology, vol. 7, p. 452, Dec. 1996. → pages 54
[41] T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits,” Advanced Materials, vol. 13, no. 21, p. 16011605, 2001. → pages 71
[42] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Advanced Materials, vol. 16, no. 3, p. 203213, 2004. → pages 71
[43] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123–2126, Dec. 2000. PMID:→ pages
[44] D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir, vol. 24, pp. 2224–2231, Mar. 2008. → pages 54
[45] R. Tadmor and P. S. Yadav, “As-placed contact angles for sessile drops,” Journal of Colloid and Interface Science, vol. 317, pp. 241–246, Jan. 2008. → pages 56
[46] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 116, pp. 43–54, Sept. 1996. → pages 56
[47] R. Tadmor, “Line energy, line tension and drop size,” Surface Science, vol. 602, pp. L108–L111, July 2008. → pages 69
[48] C.-H. Choi and C.-J. C. Kim, “Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights,” Langmuir, vol. 25, pp. 7561–7567, July 2009. → pages 71
[49] K. F. Baughman, R. M. Maier, T. A. Norris, B. M. Beam, A. Mudalige, J. E. Pemberton, and J. E. Curry, “Evaporative deposition patterns of bacteria from a sessile drop: Effect of changes in surface wettability due to exposure to a laboratory atmosphere,” Langmuir, vol. 26, pp. 7293–7298, May 2010.
[50] D. Brutin, B. Sobac, and C. Nicloux, “Influence of substrate nature on the evaporation of a sessile drop of blood,” Journal of Heat Transfer, vol. 134, pp. 061101–061101, May 2012. → pages 71
[51] D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Condra, and H. Durou, “Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor,” Journal of Power Sources, vol. 195, pp. 1266–1269, Feb. 2010. → pages 71
[52] J. Bachmann, A. Ellies, and K. Hartge, “Development and application of a new sessile drop contact angle method to assess soil water repellency,” Journal of Hydrology, vol. 231232, pp. 66–75, May 2000. → pages 71
[53] H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: constant contact angle mode,” Langmuir, vol. 18, no. 7, pp. 2636–2641, 2002. → pages
[54] X. Fang, B. Li, J. C. Sokolov, M. H. Rafailovich, and D. Gewaily, “Hildebrand solubility parameters measurement via sessile drops evaporation,” Applied Physics Letters, vol. 87, pp. 094103–094103–3, Aug.→ pages
[55] Y. C. Jung and B. Bhushan, “Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces,” Journal of Microscopy, vol. 229, no. 1, p. 127140, 2008. → pages 71
[56] J. Drelich, J. D. Miller, and R. J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,”
Journal of Colloid and Interface Science, vol. 179, pp. 37–50, Apr. 1996. →pages 72, 75
[57] D. Bargeman and F. Van Voorst Vader, “Effect of surfactants on contact angles at nonpolar solids,” Journal of Colloid and Interface Science, vol. 42, pp. 467–472, Mar. 1973. → pages 73
[58] J. Menezes, J. Yan, and M. Sharma, “The mechanism of alteration of macroscopic contact angles by the adsorption of surfactants,” Colloids and Surfaces, vol. 38, no. 2, pp. 365–390, 1989. → pages
[59] T. Okubo, “Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface,” Journal of Colloid and Interface Science, vol. 171, pp. 55–62, Apr. 1995. → pages 73, 76
[60] R. Pyter, G. Zografi, and P. Mukerjee, “Wetting of solids by surface-active agents: The effects of unequal adsorption to vapor-liquid and solid-liquid interfaces,” Journal of Colloid and Interface Science, vol. 89, pp. 144–153, Sept. 1982. → pages 73
[61] T. Mitsui, S. Nakamura, F. Harusawa, and Y. Machida, “Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions,” Kolloid-Zeitschrift und Zeitschrift fr Polymere, vol. 250, pp. 227–230, Mar. 1972. → pages 73
[62] S. Phongikaroon, R. Hoffmaster, K. P. Judd, G. B. Smith, and R. A. Handler, “Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance,” Journal of Chemical & Engineering Data, vol. 50, pp. 1602–1607, Sept. 2005. → pages 73, 80
[63] V. S. Vesselovsky and V. N. Pertzov, “Adhesion of air bubbles to the solid surface,” Zh. Fiz. Khim, vol. 8, pp. 245–259, 1936. → pages 75
[64] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, pp. 2313–2318, Apr. 1998. → pages
[65] R. J. Good and M. Koo, “The effect of drop size on contact angle,” Journal of Colloid and Interface Science, vol. 71, pp. 283–292, Sept. 1979. → pages

Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.

Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces

평면 및 구형 표면의 액적 충돌을위한 고밀도 비율 격자-볼츠만 모델 적용

Duo Zhang1,2, K. Papadikis1∗, Sai Gu1
1Xi’an Jiaotong-Liverpool University, No. 111 Ren’ai Road, Suzhou Dushu Lake Higher Education
Town, Suzhou, China 215123.
2The University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom.
Tel: 0086-512-88161752
Email: Konstantinos.Papadikis@xjtlu.edu.cn
∗Corresponding author

현재 연구에서는 고밀도 비율을 견딜 수있는 3 차원 격자 Boltzmann 모델을 사용하여 액체 방울이 평면 및 구형 타겟에 충돌하는 것을 시뮬레이션합니다. Weber 및 Reynolds 수의 범위에 대해 운동 학적, 확산, 이완 및 평형 단계와 같이 평평한 표면에 대한 액적 충돌의 4 단계를 얻었습니다. 예측 된 최대 확산 계수는 문헌에 발표 된 실험 데이터와 잘 일치합니다. 액체 방울이 구형 타겟에 미치는 영향에 대해 타겟 표면에서 필름 두께의 시간적 변화를 조사합니다. 필름 역학의 세 가지 다른 시간적 위상, 즉 초기 낙하 변형 위상, 관성 지배 위상 및 점도 지배 위상이 재현되고 연구됩니다. 액적 레이놀즈 수와 목표 대 드롭 크기 비율이 필름 흐름 역학에 미치는 영향을 조사합니다.

고체 표면의 물방울 충돌은 땅에 떨어지는 빗방울, 잉크젯 인쇄, 뜨거운 표면의 스프레이 냉각, 스프레이 페인팅 및 코팅, 플라즈마 스프레이, 연소실의 연료 스프레이, 고정식 촉매 처리와 같은 일반적인 현상입니다. 베드 반응기 및 최근에는 미세 가공 및 미세 채널 [1]. 따라서 고체 표면에 영향을 미치는 물방울에 대한 연구는 연구원들의 큰 관심을 끌고 있습니다. Rein [2]은이 현상에 대한 포괄적 인 리뷰를 발표했습니다. Rioboo 등 [3]에 의해 체계적인 연구가 수행되었으며, 여기서 건식 벽에 대한 낙하 충격의 6 가지 가능한 결과, 즉 퇴적, 신속한 스플래시, 코로나 스플래시, 후퇴 이탈, 부분 반동 및 완전 반동이 밝혀졌습니다.

Keywords: Multiphase flow, Lattice Boltzmann, high-density-ratio, droplet impact, spread
factor, film thickness

Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.

References

References
[1] A.L.Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing. . . , Annu. Rev. Fluid Mech. 38(2006) 159-192.
[2] M.Rein, Phenomena of liquid drop impact on solid and liquid surface, Fluid. Dyn.
Res. 12(1993) 61-93.
[3] R.Rioboo, M.Marengo, C.Tropea, Time evolution of liquid drop impact onto solid,
dry surfaces, Exp. Fluids. 33(2002) 112-124.
[4] A.Asai, M.Shioya, S.Hirasawa, T.Okazaki, Impact of an ink drop on paper, J Imaging
Sci Techn. 37(1993) 205-207.
[5] B.L.Scheller, D.W.Bousfield, Newtonian drop impact with a solid surface, AIChE J.
41(1995) 1357-1367.
[6] S. Chandra and C. T. Avedesian, On the collision of a droplet with a solid surface,
Proc. R. Soc. London, Ser. A 432(1991) 13.
[7] M.Pasandideh-Fard, Y.M.Qiao, S.Chandra, J.Mostaghimi, Capillary effects during
droplet impact on a solid surface, Phys Fluids. 8(1996) 650-660.
[8] T.Mao, D.C.S.Kuhn, H.Tran, Spread and rebound of liquid droplets upon impact on
flat surfaces, AIChE J. 43(1997) 2169-2179.
[9] I.V.Roisman, R.Rioboo, C.Tropea, Normal impact of a liquid drop on a dry surface:
Model for spreading and receding, Proc. R. Soc. London, Ser. A 458(2002) 1411-1430.
[10] H.Dong, W.W.Carr, D.G.Bucknall, J.F.Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53(2007), 2606-2617.
[11] L.S.Hung, S.C.Yao, Experimental investigation of the impaction of water droplets
on cylindrical objects, Int. J. Multiphase Flow 25(1999) 1545-1559.

[12] Y.Hardalupas, A.M.K.P.Taylor, J.H.Wilkins, Experimental investigation of submillimeter droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow 20 (1999)
477-485.
[13] S.Bakshi, L.V.Roisman, C.Tropea, Investigations on the impact of a drop onto a
small spherical target, Phys Fluids. 19(2007) 032102.
[14] S.Mukherjee, Numerical simulation of wall impinging drops, Ph.D.thesis, School of
Mechanical Engineering, Purdue University 2006.
[15] G.Trapaga, J.Szekely, Mathematical Modeling of the Isothermal Impingement of
Liquid Droplets in Spraying Processes, Metall. Trans. B. 22(1991) 901-914.
[16] M.Bussmann, S.Afkhami, Drop impact simulation with a velocity-dependent contact
angle, Chem. Eng. Sci. 62(2007) 7214-7224.
[17] A.Gupta, R.Kumar, Droplet impingement and breakup on a dry surface, Comput.
Fluids. 39(2010) 1696-1703.
[18] A.Gupta, R.Kumar, Two-dimensional lattice Boltzmann model for droplet impingement and breakup in ow density ratio liquids, Comm. Comp. Phys. 10(2011) 767-784.
[19] Y.Y.Yan, Y.Q.Zu, A lattice Boltzmann method for incompressible two-phase flows
on partial wetting surface with large density ratio, J. Comput. Phys. 227(2007) 763-
775.
[20] T.Inamuro, T.Ogata, S.Tajima, N.Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198(2004)
628-644.
[21] A.J.Briant, P.Papatzacos, J.M.Yeomans, Lattice Boltzmann simulations of contact
line motion in a liquid-gas system, Philos. Trans. Roy. Soc. Lond. A. 360(2002) 485-
495.

[22] A.Fakhari, M.H.Rahimian, Phase-field modeling by the method of lattice Boltzmann
equations, Phys. Rev. E. 81(2010) 036707.
[23] M.R.Swift, E.Orlandini, W.R.Osborn, J.M.Yeomans, Lattice Boltzmann simulations
of liquid-gas and binary fluid systems, Phys. Rev. E. 54(1996) 5041-5052.
[24] S.Q.Shen, F.F.Bi, Y.L.Guo, Simulation of droplets impact on curved surfaces with
lattice Boltzmann method, Int. J. Heat Mass Tranf. 55(2012) 6938-6943.
[25] X.Shan, H.Chen, Simulation of nonideal gases and liquid-gas phase transitions by
the lattice Boltzmann equation, Phys. Rev. E. 49(1994) 2941-2948.
[26] P.Yuan, L.Schaefer, Equations of state in a lattice Boltzmann model, Phys Fluids.
18(2006) 042101.
[27] D.H.Rothman, J.M.Keller, Immiscible cellular-automation fluids, J. Statist. Phys.
52(1988) 1119-1129.
[28] X.He, S.Chen, R.Zhang, A lattice Boltzmann scheme for incompressible multiphase
flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys.
152(1999) 642-663.
[29] T.Reis, T.N.Phillips, Lattice Boltzmann model for simulating immiscible two-phase
flows, J. Phys. A: Math. Theor. 40(2007) 4033-4053.
[30] S.Leclaire, M.Reggio, J.-Y.Trepanier, Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. 36(2012) 2237-2252.
[31] S.Leclaire, P.Nicolas, M.Reggio, J.-Y.Trepanier, Enhanced equilibrium distribution
functions for simulationg immiscible multiphase flows with variable density ratios in
a class of lattice Boltzmann models. 57(2013) 159-168.
[32] H.B.Huang, H.W.Zheng, X.Y.Lu, C.Shu, An evaluation of a 3D free-energy-based
lattice Boltzmann model for multiphase flows with large density ratio, Int. J. Numer.
Meth. Fluids. 63(2009) 1193-1207.

[33] T.Lee, C.L.Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys.
206(2005) 16-47.
[34] H.W.Zheng, C.Shu, Y.T.Chew, A lattice Boltzmann model for multiphase flows with
large density ratio, J. Comput. Phys. 218(2006) 353-371.
[35] D.A.Perumal, A.K.Dass,Application of lattice Boltzmann method for incompressibe
viscous flows, Applied Mathematical Modelling. 37(2013) 4075-4092.

Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.

Effect of the surface morphology of solidified droplet on remelting
between neighboring aluminum droplets

Abstract

인접한 물방울 사이의 좋은 야금학적 결합은 droplet 기반 3D 프린팅에서 필수적입니다. 그러나 재용해 메커니즘이 명확하게 마스터되었지만, 콜드 랩은 균일한 알루미늄 액적 증착 제조에서 형성된 부품의 일반적인 내부 결함이며, 이는 응고된 액 적의 표면 형태를 간과하기 때문입니다.

여기에서 처음으로 물방울 사이의 융합에 대한 잔물결과 응고각의 차단 효과가 드러났습니다. 재용해의 자세한 과정을 조사하기 위해 VOF (체적 부피) 방법을 기반으로 3D 수치 모델을 개발했습니다. 실험과 시뮬레이션을 통해 인접한 액적 간의 재 용융 공정은 두 번째 액 적과 기판 사이의 과도 접촉에 따라 두 단계로 나눌 수 있음을 보여줍니다.

첫 번째 단계에서는 재용해 조건이 이론적으로 충족 되더라도 콜드 랩이 형성 될 수 있다는 직관적이지 않은 결과가 관찰됩니다. 이전에 증착된 액적 표면의 잔물결은 새로운 액적과의 직접 접촉을 차단합니다. 두 번째 단계에서는 응고 각도가 90 °보다 클 때 액체 금속이 불완전하게 채워져 바닥 표면에 콜드랩이 형성됩니다. 또한 이러한 콜드 랩은 온도 매개 변수를 개선하여 완전히 피하는 것이 어렵습니다.

이 문제를 해결하기 위해 기판의 열전도 계수를 감소시키는 새로운 전략이 제안 되었습니다. 이 방법은 잔물결을 제거하고 응고 각도를 줄임으로써 물방울 사이의 재용해를 효과적으로 촉진합니다.

Keywords: 3D printing; aluminum droplets; metallurgical bonding; ripples; solidification angle.

Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.

References

[1] D. Zhang, L. Qi, J. Luo, H. Yi, X. Hou, Direct fabrication of unsupported inclined aluminum pillars
based on uniform micro droplets deposition, International Journal of Machine Tools and Manufacture,
116 (2017) 18-24.
[2] H. Yi, L. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact
on solid surfaces, Applied Physics Letters, 108 (2016) 041601.
[3] T. Zhang, X. Wang, T. Li, Q. Guo, J. Yang, Fabrication of flexible copper-based electronics with
high-resolution and high-conductivity on paper via inkjet printing, Journal of Materials Chemistry C, 2
(2014) 286-294.
[4] T. Zhang, M. Hu, Y. Liu, Q. Guo, X. Wang, W. Zhang, W. Lau, J. Yang, A laser printing based
approach for printed electronics, Applied Physics Letters, 108 (2016) 103501.
[5] H. Gorter, M. Coenen, M. Slaats, M. Ren, W. Lu, C. Kuijpers, W. Groen, Toward inkjet printing of
small molecule organic light emitting diodes, Thin Solid Films, 532 (2013) 11-15.
[6] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor
for efficient energy storage under extreme environmental temperatures, Nano Energy, 8 (2014) 231-237.
[7] C.W. Visser, R. Pohl, C. Sun, G.W. Römer, B. Hu is in‘t Veld, D. Lohse, Toward 3D printing of
pure metals by laser‐induced forward transfer, Advanced materials, 27 (2015) 4087-4092.
[8] M. Fang, S. Chandra, C. Park, Heat transfer during deposition of molten aluminum alloy droplets to
build vertical columns, Journal of Heat Transfer, 131 (2009) 112101.
[9] Q. Xu, V. Gupta, E. Lavernia, Thermal behavior during droplet-based deposition, Acta materialia,
48 (2000) 835-849.
[10] W. Liu, G. Wang, E. Matthys, Thermal analysis and measurements for a molten metal drop
impacting on a substrate: cooling, solidification and heat transfer coefficient, International Journal of
Heat and Mass Transfer, 38 (1995) 1387-1395.
[11] R. Rangel, X. Bian, Metal-droplet deposition model including liquid deformation and substrate
remelting, International journal of heat and mass transfer, 40 (1997) 2549-2564.
[12] B. Kang, Z. Zhao, D. Poulikakos, Solidification of liquid metal droplets impacting sequentially on
a solid surface, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS
JOURNAL OF HEAT TRANSFER, 116 (1994) 436-436.

Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

연속 잉크젯 인쇄

Continuous Inkjets

연속 잉크젯 인쇄는 약 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동하면 연속적인 유체 흐름이있는 액적 생성 방법입니다. 이 개념은 1867 년 Lord Kelvin에 의해 처음 특허를 받았지만 80 년 이상 지난 1951 년 Siemens가 최초의 상용 장치를 선보였습니다. 처음에 이 기술은 만료일, 배치 코드, 이름 및 제품 로고와 같은 가변 정보의 비접촉식 고속 인쇄에 사용되었습니다.

물방울 생성

노즐 크기 선택

액적 생성을위한 시스템 매개 변수를 계산하기 위해 Rayleigh 제트 불안정성 이론을 사용할 수 있습니다. 이 이론에 따르면 물방울 형성으로 이어지는 제트 분리에 대한 자극의 최적 파장 (λ)은 대략 다음과 같습니다.

Nozzle size selection
Nozzle size selection

작동 주파수 선택

최적의 드롭 생성 주파수는 최적의 파장에서 직접 계산할 수 있습니다. 위의 이론과 알려진 산업 매개 변수를 사용하여 FLOW-3D 에서 계산 모델을 설정하는 동안 125μm의 노즐 반경과 10kHz의 주파수가 사용되었습니다

FLOW-3D 결과 검증

FLOW-3D 는 강력하고 정확한 표면 장력 모델로 인해 연속 잉크젯 인쇄와 같은 액적 기반 공정을 시뮬레이션하는 데 적합합니다.

아래 시뮬레이션 결과에서 10kHz의 주파수에서 진동하는 입력 압력 펄스를 볼 수 있습니다. 평균 액적 크기는 약 240 μm이며 이론적으로 추정 된 액적 크기 약 250 μm와 잘 일치합니다.

Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse
Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

OLED Mura Problem

이론적으로는 정확히 동일한 진폭으로 압력 펄스를 생성 할 수 있습니다. 그러나 OLED의 잉크젯 인쇄와 같은 산업 응용 분야에서 모든 노즐은 본질적으로 불완전한 제조 또는 작동 매개 변수로 인해 약간 다릅니다. 이러한 모든 결함은 액적 부피의 변동을 일으켜 OLED 패널의 각 하위 픽셀에 증착 된 유기 화합물의 부피를 변화시켜 증착 된 필름 두께의 비례적인 변화를 초래합니다. 이러한 두께 변화는 잉크젯 인쇄 OLED 디스플레이에서 패널 휘도 불균일의 가장 중요한 원인 중 하나입니다 (Madigan et al. ). 이러한 패널 휘도의 불균일성을 “무라 효과”라고합니다.

무라 문제를 해결하는 한 가지 접근 방식은 평균 법칙을 사용하는 것입니다. 이것이 의미하는 바는 서로 다른 노즐 (픽셀 내 혼합)의 방울을 무작위로 결합하여 방울 부피의 양 및 음 오류를 평균화하여 방울 부피 오류를 거의 0에 가깝게 만드는 것입니다.

FLOW-3D 에서 픽셀 내 혼합 과정을 시뮬레이션하기 위해 입력 압력 펄스 진폭에 약간의 임의성이 추가되었습니다. 최대 변동의 크기는 1.7MPa의 원래 압력 진폭에 더하여 200kPa로 설정되었습니다. 아래 애니메이션은 무작위성이있는 케이스와 무작위성이없는 초기 케이스의 비교를 보여줍니다.

압력 펄스의 무작위성 대 일정한 진폭의 경우를 비교하는 애니메이션.

예상대로 액적 생성은 액적 모양, 액적 크기, 액적 간 간격 및 비행 속도 측면에서 균일하지 않습니다. 그러나 오른쪽의 일정한 진폭 케이스는 균일 한 모양과 크기의 균일 한 간격의 물방울을 생성합니다.

연속 잉크젯 인쇄는 저장소에서 마이크로 미터 크기의 노즐 뱅크로 액체를 보내는 고압 펌프로 시작하여 진동하는 압전 결정의 진동에 의해 결정되는 주파수에서 연속적인 물방울 흐름을 생성합니다. 특히 인쇄 응용 분야의 경우, 잉크 방울은 외부 전기장의 존재로 인해 연속 흐름에서 편향됩니다. 이것은 인쇄 매체의 표면에 패턴을 생성합니다. 이 기술의 장점 중 일부는 높은 처리량, 높은 액적 속도, 프린트 헤드에서 기판까지의 거리 증가, 연속 작동으로 인한 노즐 막힘 없음입니다. 이러한 긍정적 인 특성 덕분에이 기술은 오늘날 종이에 일반 인쇄 잉크에서 다양한 재료 (생존 세포 포함)를 증착하는 것으로 발전했습니다.

Continuous inkjet animation

결론

FLOW-3D 는 연속 잉크젯 인쇄 프로세스와 관련된 물리학에 대한 이해를 촉진하는 데 사용되었습니다. 강력한 표면 장력 모델 덕분에 FLOW-3D 는 다양한 고급 액적 생성 및 증착 응용 분야에서도 유용 할 수 있습니다. 예를 들어 OLED 프린팅의 경우 FLOW-3D 를 사용하여 픽셀 내 혼합 중에 발생하는 액 적의 변화를 효과적으로 이해하여 OLED 패널의 품질을 높일 수 있습니다.

References

Madigan C. F., Hauf C. R., Barkley L. D., Harjee N., Vronsky E., Slyke S. A. V., Advancements in Inkjet Printing for OLED Mass Production. Kateeva, Inc.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

Thermocapillary Actuation

Thermocapillary Actuation

표면 장력의 온도 의존성은 유체 방울을 패턴 있는 표면 위로 전달하는 데 사용될 수 있습니다. 표면은 유체 방울이 친수성-수소성 인터페이스에 의해 형성된 채널을 따르도록 제한되도록 친수성 또는 친수성 접촉 각도로 패턴화됩니다. 또한 프로그램 가능한 방식으로 가열된 마이크로 히터의 배열은 열전압 작동을 유발하여 유체 방울을 뜨거운 영역에서 차가운 지역으로 유도합니다. 아래 이미지는 문제 설정의 상단 및 단면 뷰(Anton A)를 보여줍니다. Darhuber 외.) 다음에 Flow-3D를 설정합니다.

Liquid droplet moving along hydrophilic microstripe
Top-view of a liquid droplet moving along a hydrophilic microstripe. The array of Ti-resistors (shown in light gray) beneath the hydrophilic stripes locally heat the droplet thereby modifying the surface tension and propelling the liquid toward the colder regions of the device surface. The dark gray stripes represent the leads and contacts (Au) for the heating resistors.
Cross sectional view of device
Cross-sectional view of a portion of the device containing two micro-heaters and an overlying droplet.

더 차가운 표면 온도 영역은 인접한 따뜻한 지점보다 더 높은 표면 장력을 유지하여 액체를 당기는 접선 표면 힘을가합니다. 부분적 습윤 (접촉각> 0) 표면은 전체 습윤 표면 (접촉각 = 0)에 비해 부피 손실이 적은 유체 수송을 허용하기 때문에 바람직한 옵션입니다.

FLOW-3D setup of three microheaters

Top view of the setup in FLOW-3D showing three microheaters in pink, yellow and blue respectively. The central hydrophilic strip is shown in black with a fluid (water) droplet in sky blue.

아래 애니메이션은 완전히 젖은 표면과 부분적으로 젖은 표면의 비교를 보여줍니다. 예상대로 완전히 젖은 표면은 부분적으로 젖은 표면보다 액적을 더 평평하게 (그리고 더 많이 퍼지게) 만듭니다. 히터가 한 번에 하나씩 활성화되면 물방울이 더 차가운 영역으로 이동됩니다. 더 많은 유체가 남겨질수록 시뮬레이션이 끝날 때까지 완전히 젖은 표면은 더 많은 유체 볼륨을 잃는 것을 볼 수 있습니다. 따라서 부분적으로 젖은 표면은 유체 손실을 줄이기위한 더 바람직한 옵션입니다. 두 경우 모두 소수성 표면으로 둘러싸인 중앙 친수성 스트립으로 인해 물방울이 중앙에 머물러야합니다.

Animation of the results post-processed in FlowSight.

References

Anton A. Darhuber, Joseph P. Valentino, Sandra M. Trian and Sigurd Wagner, Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays, Journal of Microelectrochemical Systems, Vol. 12, No. 6, December 2003

Electrokinetics

Dielectrophoresis

유전 영동은 분극성 입자에 힘을 생성하여 균일하지 않은 전기장 (일반적으로 AC 전기장)에서 움직임을 유도합니다. 유전 영동력은 마이크로스케일 및 나노스케일 바이오 입자를 특성화, 처리 또는 조작하는 데 사용할 수 있습니다. 여기에는 세포, 바이러스, 박테리아, DNA 등의 분류, 포획 및 분리가 포함될 수 있습니다. 유전 영동은 FLOW-3D에서 완전히 설명 할 수 있으며 날카로운 인터페이스가 있거나 없는 단일 유체 또는 2 유체 흐름과 같이 코드에서 사용할 수있는 다른 모든 유체 흐름 옵션과 함께 활성화 될 수 있습니다.

Electro-wetting

전도성 액적에서 액체와 전극 사이에 인가되는 얇은 유전체 코팅 전위를 갖는 전극 상에 배치되면, 드롭 평면화와 전극 표면 확산이 일어납니다. 이 현상은 종종electro-wetting라 부릅니다. 현상은 전하 층의 발달과 관련되어 있으므로, 외부 전기장을 그들을 이동, 합체, 깨지거나 하는 원인을 조작하기 위해 사용될 수 있습니다.

 

Lab-On-Chip Electro-wetting Applications

Lab-on-chip 기반electro-wetting 은 분리된 물방울을 조절할 수 있어 설계자들이 복잡한 절차를 전통적인 실험실 장치를 달지만 훨씬 작은 volumes 으로 비슷한 실험을 수행할 수 있습니다. 이러한 기기는 효율적으로 운송, 병합되어 있으며 분리된 물방울들이 요구합니다. FLOW-3D는 사용자가이 장치를 조작하는 데 사용되는 기하학적 파라미터들 및 전압의 영향을 시뮬레이션 할 수 있도록 하여 설계 프로세스에 유용한 도구가 될 수 있습니다.

아래의 애니메이션은 수송 시뮬레이션 병합 및 분할 방울에 FLOW-3D의 기능을 보여줍니다. Lab-on-chip은 약 300 ㎛로 분리 된 두 개의 평행 한 플레이트로 구성됩니다. 바닥 판은 방울을 조작하기 위해 사용되는 그 안에 삽입 된 전극을 보유하고 있습니다. 액 적은 물 (약간 도전성) 실리콘 오일에 의해 둘러싸여 있습니다. 액체 방울의 부피가 800nl 관한 것입니다.

This lab-on-a-chip electrowetting simulation demonstrates an electric field being applied in order to split a small droplet.

Here an electric field is being applied in order to merge two small droplets.

This simulation shows an electric field being applied to a small droplet to control its motion.

접촉선의 이해(Contact Line Insights)

접촉선의 이해(Contact Line Insights)

FLOW-3D는 코팅 성능 향상에 관심이있는 엔지니어에게 이상적인 수치 모델링 기능을 많이 갖추고 있습니다. 전산 시뮬레이션은 코팅 흐름에 영향을 미치는 여러 물리적 과정의 상대적 중요성과 효과를 연구 할 수있는 훌륭한 방법입니다. 물리적인 테스트에서 항상 프로세스를 분리하거나 해당 프로세스의 크기를 임의로 조정할 수있는 것은 아닙니다. 여기에서는 리 볼렛 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면에서의 접촉선 이동 및 유체 흡수와  관련하여 정적 및 동적 접촉각에 대하여 FLOW-3D의 처리에 대해 설명합니다.

 

정적 및 동적 접촉각(Static and Dynamic Contact Angles)

FLOW-3D는 정적 접촉각의 함수로 동적 접촉각을 정확하게 계산하고 입력으로 설정하며 자유 표면 인터페이스에서 작용하는 관련된 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사를 따라 내려갈 때 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

 

흡수(Absorption)

종이 기판에 액 적의 충격 및 흡수는 전산 유체 역학 소프트웨어를 사용하여 연구 할 수 있습니다. 여기서 FLOW-3D는 섬유층에서 물방울 충돌을 시뮬레이션하는데 사용되며 표면 장력, 접촉각 및 점도와 관련된 유체 전면의 전파를 살펴 봅니다.

 

 

아래의 FLOW-3D 시뮬레이션에서, 낙하는 직경이 40 미크론이며 초기 하향 속도는 300 cm / s입니다. 기재는 종이이고, 기공률이 30 % 인 20 미크론 두께입니다.

 

 

액체 필름의 핑거링(Fingering in Liquid Films)

FLOW-3D에서 동적 접촉선은 동적 접촉각이나 접촉선의 위치를 ​​지정할 필요없이 직접 모델링됩니다. 이는 소량의 유체에서 유체에 영향을 미치는 모든 동적 힘을 포함하는 수치 모델을 사용하여 수행됩니다. 정적 접촉각은 액체-고체 접착력을 특성화 하는데 사용됩니다.

액체 시트의 핑거링. 왼쪽은 0 °, 오른쪽은 70 °

여기서, 이러한 접근법의 힘의 적용은 경사 표면 아래로 흐르는 액체 필름에서 관찰 된 핑거링에 의해 제공됩니다. 실험적 관찰에 따르면 두 가지 뚜렷한 핑거링 패턴이 발생합니다. 첫 번째 패턴은 작은 정적 접촉각(즉, 습윤 조건)이며 상하한이 모두 하향으로 움직이는 쐐기형 핑거를 나타냅니다. 두 번째 패턴은 큰 정적 접촉각(즉, 습윤 조건이 열악함)이며 가장 균일한 폭을 가진 긴 핑거이고 가장 큰 한계점은 하향으로 움직이지 않는 것이 특징입니다.

 

 

증발 효과(Evaporative Effects)

퇴적(Deposit)

분산 된 고체 물질을 함유하는 액 적은 고체 표면에서 건조 될 때, 함유하고 있는 고체 물질을 침전물로서 남깁니다. 이 침전물의 형상이 많은 인쇄 공정, 청소 및 코팅 공정에 중요한 영향을 미칩니다. 한 종류의 퇴적물의 전형적인 예는 위의 이미지와 같이 엎질러 진 커피 패치의 둘레를 따라 링 얼룩이 형성되는 “커피 링” 문제입니다. 이 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로, 특히 낙하 둘레에서 발생합니다.

 

건조(Drying)

FLOW-3D의 증발 잔류 액체 모델은 건조 후 톨루엔으로 형성된 잔류된 물의 3D형상을 시뮬레이션합니다. (30 배 확대)

건조는 코팅 공정의 중요한 부분입니다. 하지만 건조의 결함으로 잘 도포 된 코팅을 완전히 취소 할 수도 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 유동을 유도 할 수 있으며, 이는 코팅 품질을 잠재적으로 파괴 할 수 있습니다. FLOW-3D의 증발 잔류 물 모델을 사용하면 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

 

모델링 링 형성(Modeling Ring Formation)

증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션

윗쪽 그림에서 FLOW-3D는 증발이 가장 큰 접촉선에서의 증착으로 인해 에지 피닝(edge pinning)이 발생함을 보여줍니다. 증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 접촉선 주변에서 증발이 가장 커서, 액체가 접촉선을 향해 흘러 정적 조건을 재설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 현탁 된 고체의 증착입니다.

 

 

참고
[1] Deegan, R., Bakajin, O., Dupont, T. et al. Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827–829 (1997).

 

다공성 매체 / Porous Media

다공성 매체 / Porous Media

FLOW-3D는 다공성 매체 내의 포화 및 불포화 흐름을 모두 시뮬레이션할 수 있습니다. 포화된 다공성 미디어 흐름은 포화 구역과 불포화 구역 사이에 예리한(또는 거의 날카로운) 계면이 있고 계면에 특정 모세관 압력이 존재하는 상황에 적용됩니다. 이러한 상황은 지하수 흐름에서 발생합니다. 불포화 다공성 미디어 흐름은 포화 구역에서 불포화 구역으로 점진적으로 전환되는 상황에 적용됩니다. 이러한 상황에서는 설정된 모세관 압력이 없습니다. 모세관 압력은 현재 포화 수준과 다공성 물질 내 포화 이력의 함수입니다.

두 경우 모두 각 성분에 대해 서로 다른 다공성, 투과성 및 습윤성(모세관 압력 또는 모세관 압력 대 포화도)을 독립적으로 지정할 수 있으며 투과성은 등방성(모든 방향에서 동일) 또는 비등방성(흐름 방향에 따라 달라짐)일 수 있습니다.

아래 동영상은 종이와 같은 다공성 물질로 스며드는 물방울의 경우를 보여줍니다. 이 경우 다공성 물질은 불포화 상태로 모델링되므로 습윤성은 국부 포화에 따라 달라집니다. 이미 젖은 영역은 모세관 압력이 더 강한 반면, 낙하 가장자리에 있는 영역은 모세관 압력이 더 낮습니다. 이 작업은 별도의 주입 및 배출 곡선을 사용하여 수행됩니다. 따라서 방울이 재료에 균일하게 퍼지지 않습니다. 이러한 행동은 젖은 종이 타월을 짜는 것으로 볼 수 있습니다; 모든 물을 짜내는 것보다 종이를 적시는 것이 훨씬 쉽습니다.


다공성 매질에 흡수 된 물방울 시뮬레이션

다공성 매체에서의 불포화 흐름은 포화 흐름 조건에서는 존재하지 않는 많은 복잡한 현상을 수반합니다. 예를 들어 구성을 알 수 없는 자유 경계와 모세관 힘이 존재하여 액체를 포화도가 낮은 영역으로 끌어들이는 큰 음압을 발생시킬 수 있습니다. 또한 모세관 압력은 실험적인 판단과 모델링을 더욱 어렵게 만드는 이력(hysteresis) 동작을 보일 수 있습니다. 불포화 흐름과 관련된 합병증은 가장 간단한 경우를 제외한 모든 상황에서 수치적 해결 절차의 필요성을 나타냅니다. 이러한 유형의 흐름의 자유 표면적인 측면 때문에, FLOW-3D® 프로그램을 불포화 흐름의 일반적인 사례로 확장할 것을 생각하는 것은 당연합니다. 이 확장 작업을 수행하는 데 필요한 수정 사항은 아래 보고서에 설명되어 있습니다. 이후의 섹션에서 더 자세히 설명했듯이, 물질을 통과하는 흐름을 정확하게 모형화하기 위해서는 다공성 물질과 이를 관통하는 액체에 대한 충분한 경험적 데이터가 필요합니다. 모세관 압력과 투과성을 위해 여기에 보고된 모델에는 일부 재료에 대한 수정이 필요할 수 있는 일반적인 특성이 있습니다.

보고서 원문  : UNSATURATED FLOW IN POROUS MEDIA

Micro/Biofluidics with FLOW-3D – Liquid handling (액체 취급)

나노리터 물방울의 정밀 분배

  • 섬세하고 정확한 분석
  • 원액의 소비를 정확하게 제어할 수 있음
  • 유체 특성/동역학에 기반한 공정 파라미터
    – 자유 표면 흐름의 복잡성을 고려
    – 자연스러운 모세관 중심 불안정을 고려
    – 씨닝 및 핀치 오프를 고려

방울의 형성 및 분리

  • 모세관, 관성, 점성 및 중력의 복잡한 상호 작용
  • 표면 장력과 점성력이 “핀치 오프”를 넘어가면 분리가 발생
  • FLOW-3D는 예측할 수 있음
    – 근본적인 응력
    – 확장된 유동장
    – 희석된 액체 필라멘트 내의 유동장을 시각화

미세 방울의 병합을 위한 유전영동

  • 유전영동력은 불균일한 전기장(일반적으로 AC전기장)에서 움직임을 유발함
  • 나노리터 유체 또는 나노 규모 입자의 특성을 다루고 처리하는데 사용

유동 집중

  • 다유체 계면 장력 파악
  • 방울 형성의 세부 사항 확인
  • 미세 방울의 진화 파악 (형태/크기)

Computational Analysis of Drop Formation and Detachment

Computational Analysis of Drop Formation and Detachment

Introduction and Problem Statement

신속, 반복, 작은 물방울의 생성 및 증착, 작은 형상의 프린팅 또는 패터닝 (예 : l = 10-3-1 mm), 스프레이로  균일한 두께의 박막 형성은 다양한 산업에 매우 중요합니다(1-5). 액체 이동과 액적 형성 / 증착 공정은 복잡한 자유 표면 흐름, 자연적인 모세관운동 형성, thinning, pinch-off를 수반한다 (1-5). 단순한 뉴턴 및 비탄성 유체에 대해 액적 생성 및 액적 이동을 분석하기위한 실험적, 이론적 및 1 차원 시뮬레이션 연구가 진행되었지만 프린팅 또는 패터닝에 대한 기계론적인 이해는 여전히 과제로 남아 있습니다. 현재의 계산에 대한 주된 목표는 뉴턴 유체의 pinch-off에 대한 기계론적 이해를 얻기 위해 FLOW-3D에 내장된 VOF(volume-of-fluid) 접근법으로 시험하는 것입니다. 전산해석은 모세관, 관성, 점성 응력의 복잡한 상호 작용을 포착하여 자기유사 모세관의 thinning and pinch-off를 결정합니다. 뉴턴 유체의 물방울 형성 ​​및 분리현상은  전산해석으로부터 얻어진 자기유사 모세관현상 이론, 보편적인 축소화 기법인 1D 시뮬레이션 (1-7)과 실험 (1, 2, 8-12)을 이용하여 설명될 수 있음을 보여준다. 이러한 우리가 진행한 원형흐름 시뮬레이션은 유한한 시간의 비선형 역학, 위성 낙하현상, 복잡한 형상의 프린팅과 같이 어려운 전산해석의 기반이 될 것 입니다.

방울 형성의 전산 분석
그림 1 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭 형성 및 분리에 대한 전산해석 : (a) 5개의 저점도 유체에 대한 물방울의 necking에 대한 반경이 시간변화에 따라 표시됩니다. 물방울 necking의 반지름이 오른쪽에서 왼쪽으로 시간에 따른 전개를 보여줍니다. 마찬가지로 스냅 샷은 necking의 반경이 오른쪽에서 왼쪽으로 줄어듭니다. 속도의 크기 (단위 : cm/s) 와 화살표의 방향에 대한 컬러 맵을 사용하면 변형장을 결정할 수 있으며 Fluid 5 (표 1 참조)의 경우에는 순식간에 신장이됩니다. 이미지 II에 캡처 된 pinch-off 하기 전에 형성된 원추형 necking은 실험을 통해 얻은 necking 모양과 유사합니다.

Modeling Approach and Parameter Space

표면 장력 및 중력 모델을 적용한 FLOW-3D 에서 균일한 메쉬 크기를 사용하여 노즐에서 드롭 형성 및 분리에 대한 시뮬레이션을 수행하였습니다. 유한 체적의 유체를 떨어뜨리거나 분리하는 일은 물방울의 성장과 드롭, 노즐에 연결되는 모세관 현상, 관성, 점도 및 중력에 대한 상호 작용을 수반합니다. 시뮬레이션에서 스테인레스 강 노즐 ( {{D} _ {0}} = 2 {{R} _ {0}} = 1.7 \, \ text {mm}) 에서 유한 체적의 뉴턴 유체가 발생합니다. 표면 장력이 중력을 겪으면 새로 형성된 액적 분리가 발생합니다 (mg> 2 \ pi \ sigma {{R} _ {0}}). 시뮬레이션은 유체점도의 영향을 설명하기 위해 두 그룹으로 나누어져 있습니다: 저점도 유체 (글리세롤 함량이 40 % 미만인 물과 글리세롤/물 혼합물) 및 점도가 높은 유체 (예 : 글리세롤과 글리세롤/물 혼합물 점도 > 100x 물 점도). 두 그룹의 유체 특성은 각각 표 1과 2에 나와 있습니다.

계산 분석 드롭 형성 저점도

그림 2 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭형성 및 분리에 대한 전산 해석 : 반경 플롯에서 4개의 고점도 뉴톤유체에 대해 necking 반경을 시간변화에 따라 표시합니다. 낙하 분리 중 모세관 현상이 스냅 샷으로 표시됩니다. 컬러 맵은 Fluid 8의 속도 크기 (단위 : cm/s)의 변화를 포착합니다 (표2 참조). 화살표는 성장하는 물방울과 얇아지는 물방울내에서 흐름방향을 나타냅니다. FLOW-3D 시뮬레이션으로 얻은 necking 모양은 고점도의 뉴턴유체에 대한 특징인 원통형 유체요소로 이어집니다.

 

<표 1 : FLOW-3D를 사용하여 시뮬레이션 된 저점도 유체의 특성>
Fluid PropertyFluid 1Fluid 2Fluid 3Fluid 4Fluid 5
Viscosity [Pa · s]0.050.020.010.00750.005
Surface Tension  [mN / m]6868686868
Density [g / cm 3 ]11111
Ohnesorge Number0.210.080.040.030.021
 저점도 유체 (표 1의 유체 2) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s)이며 속도벡터가 표시됩니다.

 

<표 2 : FLOW-3D를 사용하여 시뮬레이션 된 고점도 유체의 특성>
Fluid PropertyFluid 6Fluid 7Fluid 8Fluid 9
Viscosity [Pa · s]1.50.80.50.25
Surface Tension  [mN / m ]68686868
Density [g / cm 3 ]1111
Ohnesorge Number6.243.332.081.04

고점도 유체 (표 2의 유체 8) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s) 이며 속도 벡터가 표시됩니다.

Discussion of the Simulation Results

드롭 형성 및 분리는 표1과 표2에 열거 된 유체에 대해 FLOW-3D 를 사용하여 시뮬레이션 하였고, 시간 경과에 따른 necking 모양, 반경을 분석하였습니다. 물방울의 necking 모양과 저점도에서의 necking에 대한 역학(그림 1 참조)은 실험, 흐름 이론, 1D 시뮬레이션, 자기유사 관성에 대한 모세현상의 특성을 나타냅니다 (1, 2, 6, 7, 13) :

(1)  \ displaystyle \ frac {{R (t)}} {{{{R} _ {0}}}} \ approx 0.8 R {{{{왼쪽} {R} {0} 3}}} 오른쪽}) ^ {{{{frac {1} {3}}} {{왼쪽 {{{{왼쪽}}} {2} {3}}}}

여기서 R (t)가  necking의 순간 반경이고, R0는 노즐의 외부반경이며,  \ displaystyle \ sigma 는 표면 장력,  \ displaystyle \ rho 는 유체의 밀도 tC 는 pinch-off 시간이다. 마찬가지로, 이러한 더 높은 점도의 뉴턴유체에 대한 반경 변화데이터는 시간에 따른 반경의 감소를 나타내는 것이며,  Papageorgiou’s visco-capillary scaling (8, 9)은 아래의 식으로 표현된다.

(2)  \ {0 \} {} {} {} {} {} {} {} {} {} {} {} {} { } ({{t} _ {p}} - t)

모세관 속도(표면 장력과 점도의 비)의 측정 값은 McKinley와 Tripathi (8)에 의해 Capillary Break-Up Extensional Rheometer (CaBER)라고 불리는 상업적으로 이용 가능한 장비를 사용하여 얻은 값과 모세관 속도는 공칭 표면 장력과 점도를 사용하여 계산됩니다.

FLOW-3D 는 물방울의 necking부분을 속도 벡터로 시각화하여 유체의 흐름을 나타낼 수 있습니다. 또한, 이는 그림 1과 같이 전단, 확장을 겪은 후 얇아지는 물방울이 흐르는 과정의 순간을 결정할 수 있는 가능성을 줍니다. 추가로, 낮은 점도의 뉴턴유체는 높은 점도의 뉴턴 유체에 비해 질적으로 다른 거동을 보여준다(그림 2참조). 낮은 점도의 뉴턴 유체에 대한 necking 프로파일은 이론(6,13)에 따라 자기 유사성이 됩니다.

Conclusions, Outlook and Ongoing work

우리의 예비결과는 FLOW-3D 기반의 전산해석이 액적 형성과 탈착의 기초가 되는 프로토타입의 자유 표면흐름을 시뮬레이션하는데 사용될 수 있음을 보여줍니다 . 시뮬레이션된 반경변화 프로파일이 실험적으로 관찰된 높은 유체 및 이론적으로 예측된 유체인 스케일링 법칙 및 pinch-off dynamics과 일치하는 것을 발견하였습니다.

자주 사용되는 1D 또는 2D 모델과 달리 FLOW-3D 는 기본 응력 및 확장 유동장 (균일도 및 크기)의 강도와 얇은 액체 필라멘트 내 흐름에 대한 시각화를 나타낼 수 있습니다(그림1과 2 참조). 확장 유동장과 연관된 흐름 방향 속도 구배는 모세관현상이 나타나는 물방울의 얇은 부분 내에서 발생합니다. 유동학적으로 복잡한 유체에서 non Newtonian shear 및 신장, 점도뿐만 아니라 그외의 탄성 응력이 nonlinear pinch-off dynamics을 급격하게 변화시킵니다(2, 10-12). 우리는 현재 점탄성과 non-Newtonian 유동학을 사용하여 FLow-3D에 복합 유체의 처리 성능평가를 위한 강력한 연산 프로토콜을 개발하고 있습니다.

References

  1. J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865-929 (1997).
  2. G. H. McKinley, Visco-elasto-capillary thinning and break-up of complex fluids. Rheology Reviews, 1-48 (2005).
  3. B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research 40, 395-414 (2010).
  4. O. A. Basaran, H. Gao, P. P. Bhat, Nonstandard Inkjets. Annual Review of Fluid Mechanics 45, 85-113 (2013).
  5. S. Kumar, Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annual Review of Fluid Mechanics 47, 67-94 (2014).
  6. R. F. Day, E. J. Hinch, J. R. Lister, Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704-707 (1998).
  7. J. Eggers, M. A. Fontelos, Singularities: Formation, Structure, and Propagation. (Cambridge University Press, Cambridge, UK, 2015), vol. 53.
  8. G. H. McKinley, A. Tripathi, How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653-670 (2000).
  9. D. T. Papageorgiou, On the breakup of viscous liquid threads. Phys. Fluids 7, 1529-1544 (1995).
  10. J. Dinic, L. N. Jimenez, V. Sharma, Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids. Lab on a Chip 17, 460-473 (2017).
  11. J. Dinic, Y. Zhang, L. N. Jimenez, V. Sharma, Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions. ACS Macro Letters 4, 804-808 (2015).
  12. V. Sharma et al., The rheology of aqueous solutions of Ethyl Hydroxy-Ethyl Cellulose (EHEC) and its hydrophobically modified Analogue (hmEHEC): Extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter 11, 3251-3270 (2015).
  13. J. R. Castrejón-Pita et al., Plethora of transitions during breakup of liquid filaments. Proc. Natl. Acad. Sci. U.S.A. 112, 4582-4587 (2015).

표면 장력 / Surface Tension

표면 장력 / Surface Tension

FLOW-3D에 추가 된 최초의 물리 모델 중 하나는 표면 장력이었습니다.

이 모델은 잉크젯, 무중력 환경에서의 액체 연료 거동 및 다양한 MEMS (마이크로 전자 기계 시스템) 장치와 같이 다양한 종류의 응용 분야에서 수년 동안 널리 사용되어 왔습니다. 이 후에 모델의 개선 및 확장에 대한 많은 사용자 요청이 처리되었습니다.
표면 장력에 대해 보다 나은 성능개선을 위해 FLOW-3D 버전 11에 대한 새로운 모델이 개발되었습니다. 이 모델은 계산된 모든 표면 장력의 정확성과 임의 형상의 솔리드 표면을 잡아 당기는 접착력의 정확성을 향상시킵니다. 또한 이 새로운 모델은 다공성 물질의 모세관 압력과 비 균일한 표면 장력으로 인한 접선 표면 장력을 가지고 있습니다.

새로운 모델의 예는 무중력에 포함된 원형 벽을 적시는 단순한 문제입니다.

그림 1은 실린더와 접촉각이 0 도인 물로 채워진 0.25m 직경의 실린더 75 %의 경우를 보여줍니다. 버블은 10 초 전에 벽에서 깨끗하게 분리되어 탱크를 가로 질러 움직입니다. 비 구형은 기포 표면에서 모세관 파가 전파되기 때문입니다.

그림 1. 0.0, 2.5, 5.0 및 10.0 초에 무중력에서 접촉 각이 0 인 실린더 표면의 유체 (적색) 습윤 표면.

다른 예가 그림5에 도시되어 있습니다. 2에서 서로 다른 밀도의 2 개의 초기 구형 방울이 (플롯의 색으로 표시됨) 단단한 벽을 향해 아래로 이동합니다. 플롯의 시간은 0.0, 0.01, 0.02 및 0.03 초입니다. 방울은 직경이 0.0017m, 밀도가 다르지만 표면 장력 계수는 1.872 뉴턴 / m입니다.

그림 2. 접시쪽으로 움직이는 구형의 물방울. 새로운 표면 장력 모델로 시뮬레이션. 색상은 밀도를 나타냅니다.

표면 장력 모델에 대해 자세히 알아보십시오.

Download the Flow Science Report on Surface Tension

Download Surface Tension Validation – Simple Test Problems

Multi-phase Flows

Multi-phase Flows

FLOW-3D, 물리적 모델을 다양화 함으로 연구원들과 개발자들이 수행할droplet-based microdevice 들의 성능을 최적화 하는데 도움을 줄 수 있습니다. 또한 FLOW-3D는 Droplet-based 미세 미량 화학 분석 시스템, micromixing 과정, 화학, 생화학적 검사, 효소 반응 속도론, 그리곤 실험에서 성능을 강화하도록 도울 수 있습니다. 유체 압력, 점성과 표면 장력 이 microdevices의 기능에 큰 역할을 하게 됩니다. 좀 더 자세한 정보를 알고자 하면 Multi-phase 사이트를 방문하여 주십시요.

multi-phase flows >

Two-Phase Microfluidic Channels

Two-phase 미세 유체 채널 시스템에서 물방울 형성은 혼합할 수 없는 액체-액체 흐름 및 기체-액체 흐름에 대해 광범위하게 연구되어 왔습니다. Droplet-based microsystems 또한 반응의 femtoliter의 물방울 안에서 microliter권 시약 형기에 의해 소형화가 가능하게 됩니다. 작은 물방울에 가두어진 시약은 시약의 신속한 혼합, 반응시간의 제어 그리고 약품 수송 능력을 제공합니다.

Simulating droplet formation in a T-junction device. Post-processed with FlowSight.

Contact Line Insights

Contact Line Insights

FLOW-3D의 수치 모델링 기능은 코팅 성능 향상에 관심이 있는 엔지니어에게 이상적입니다. 계산 시뮬레이션은 코팅 흐름에 영향을 미치는 다양한 물리적 공정의 상대적 중요성과 효과를 연구하는 훌륭한 방법입니다. 물리적 테스트에서 프로세스를 분리하거나 해당 프로세스의 규모를 임의로 조정하는 것이 항상 가능한 것은 아닙니다. 이 섹션에서는 리 블릿 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면 위의 접촉선 이동 및 유체 흡수와 관련하여 FLOW-3D의 정적 및 동적 접촉각 처리에 대해 설명합니다.

Static and Dynamic Contact Angles

FLOW-3D는 입력으로 설정된 정적 접촉각의 함수로 동적 접촉각과 자유 표면 인터페이스에서 작용하는 관련 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사면 아래로 이동함에 따라 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

L.M. Hocking 박사는 그의 저서 [“A moving fluid interface on a rough surface,” J. Fluid Mech., 76, 801, (1976)]에서 표면에 미세한 요철이 흐름 구조를 유도하기 때문에 Contact line이 고체 표면을 통해 이동할 수 있으며 이는 거시적 관점에서 “velocity slip”로 해석 될 수 있다고 했습니다.

이 가설에 대한 전산 해석은 FLOW-3D를 이용하여 쉽게 수행됩니다. 선택된 테스트는 가로, 규칙적으로 이격 된 직사각형 슬롯 패턴 이차원 고체 표면 구성됩니다. 슬롯은 2mm 깊이 10mm 폭, 그리고 그들 사이 폭 10mm 고체 조각을 갖고 이격 됩니다. 이 크기는 전형적으로 상대적으로 부드러운 표면에 긁힌 모양입니다. 액체와 고체 사이의 정적인 접촉각이 60 °가 되도록 선택 하였습니다. 작동 유체는 물로 선정되었고 시험은 채널을 통해 속도30cm / s의 평균 물높이 15mm의 채널의 바닥에 있는 거친 표면을 두고 구동 이루어져 있습니다. 채널의 상단은 free-slip boundary로 정해집니다.

Hocking의 주장대로 micro-scale 교란이 Large scale 관점에서 보았을 때 계산된 속도장으로 보면 velocity slip의 한 종류로서 해석 될 수 있습니다. 아래는 계산된 수평 속도 분포를 나타내고 있습니다. 이것은 표면 바로 위에 제어 볼륨 층의 계산 된 수평 속도 분포를 제공하는 X-Y 플롯에 그래픽으로 보여 주고 있습니다. 격자 미세화에 의해 표면의 고체 부분의 윗쪽 속도가 영이 되는 경향이 있지만, 슬롯들 위에 있는 속도는 영이 안되게 유지됩니다. 많은 요철 위의 이러한 속도의 평균은 효과적인 슬립으로 해석 될 수 있는 non-zero 수평 이송 속도를 일으킵니다.

Evaporative Effects

분산된 고체 물질을 포함하는 액체 방울이 고체 표면에서 건조되면 고체 물질이 침전물로 남습니다. 이 퇴적물의 패턴은 많은 인쇄, 청소 및 코팅 공정에 중요한 의미를 갖습니다. 한 가지 유형의 침전물의 전형적인 예는 왼쪽 이미지와 같이 유출 된 커피 조각의 둘레를 따라 링 얼룩이 형성되는 “커피 링”문제입니다. 이러한 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로 발생하며, 특히 방울 주변에서 발생합니다 [1].

Drying

건조는 코팅 공정의 중요한 부분입니다. 잘 도포된 코팅은 건조 결함으로 인해 완전히 손상될 수 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 흐름을 유도 할 수 있으며, 이로 인해 잠재적으로 코팅 품질이 손상 될 수 있습니다. FLOW-3D의 증발 잔류물 모델을 통해 사용자는 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

FLOW-3D’s evaporation residue model simulates a 3D view of residue formed from toluene after drying (magnified 30x)

Modeling Ring Formation

FLOW-3D는 증발이 가장 큰 접촉 라인에서의 증착으로 인해 에지 고정이 발생 함을 보여줍니다.

링 형성 모델링
증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션
증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 증발은 접촉 라인 근처에서 가장 크므로 액체가 접촉 라인을 향해 흐르게하여 정적 상태를 다시 설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 부유 고체가 증착됩니다.

FLOW-3D의 접촉 선 고정 모델에 대해 자세히 알아보십시오.

Simulation of flow generated at a contact line by evaporation

Absorption

Absorption

paper substrate에 대한 물방울의 충격 및 흡수는 전산 유체 역학 소프트웨어로 연구 할 수 있습니다. 여기에서 FLOW-3D는 표면 장력, 접촉각 및 점도와 관련하여 유체 전면의 전파를 살펴보면서 섬유층에 액적 충돌을 시뮬레이션하는 데 사용됩니다.

아래의 FLOW-3D 시뮬레이션에서 물방울 직경이 40 마이크론이며 초기 하향 속도는 300cm / s입니다. 기판은 종이이며 두께는 20 미크론이며 주어진 다공성은 30 %입니다.

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :

    제목* :

    성명* :

    이메일 주소* :

    연락 전화번호* :

    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거

    Fuel Tank Simulation
    Fuel Tank Simulation
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD

    aerospace-sloshing-simulation
    aerospace-sloshing-simulation