Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

관련 기술자료


The Fastest Laptops for 2024

FLOW-3D 수치해석용 노트북 선택 가이드

2024년 가장 빠른 노트북 PCMag이 테스트하는 방법 소개 : 기사 원본 출처: https://www.pcmag.com/picks/the-fastest-laptops CFD를 수행하기 위한 노트북 선정 기준은 별도로 ...
Schematic view of the experimental set-up

Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water

September 2023 DOI:10.30955/gnc2023.00436 Conference: 18th International Conference on Environmental Science and Technology CEST2023, 30 August to 2 September 2023, Athens, ...
Figure 1. US bath modified as an EC reactor

물에서 초음파를 이용한 전기화학적 스트론튬 제거에 대한 단시간 수치 시뮬레이션

전기화학 반응기에 대한 3D 수치 시뮬레이션 및 측정을 사용하여 동시 초음파 처리 유무에 관계없이 물에서 스트론튬 제거 효율을 분석했습니다. 초음파는 ...
Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

반노출 해저케이블의 국부 정련과정 및 영향인자에 대한 수치적 연구

Numerical Study of the Local Scouring Process and Influencing Factors of Semi-Exposed Submarine Cables by Qishun Li,Yanpeng Hao *,Peng Zhang,Haotian Tan,Wanxing Tian,Linhao ...
Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process

극저온 자체 가압 공정을 위한 인기 있는 액체-증기 상 변화 모델의 타당성 평가

액체-증기 상 변화 모델은 밀폐된 용기의 자체 가압 프로세스 시뮬레이션에 매우 큰 영향을 미칩니다. Hertz-Knudsen 관계, 에너지 점프 모델 및 ...
Figure 3. Different parts of a Searaser; 1) Buoy 2) Chamber 3) Valves 4) Generator 5) Anchor system

데이터 기반 방법을 활용한 재생 가능 에너지 변환기의 전력 및 수소 생성 예측 지속 가능한 스마트 그리드 사례 연구

Fatemehsadat Mirshafiee1, Emad Shahbazi 2, Mohadeseh Safi 3, Rituraj Rituraj 4,*1Department of Electrical and Computer Engineering, K.N. Toosi University of ...
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou 1, Vassilios Stergiopoulos 21 Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University, Muthgasse 18, 1190 Vienna, (actually ...
Figure 1: Drawing of the experimental set-up, Figure 2: Experimental tank with locations of temperature sensors

실험 및 수치 시뮬레이션에 기반한 극저온 추진제 탱크 가압 분석

Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical SimulationsCarina Ludwig? and Michael Dreyer***DLR - German Aerospace Center, ...
Figure 1: Mold drawings

3D Flow and Temperature Analysis of Filling a Plutonium Mold

플루토늄 주형 충전의 3D 유동 및 온도 분석 Authors: Orenstein, Nicholas P. [1] Publication Date:2013-07-24Research Org.: Los Alamos National Lab ...
Fig. 6 LH2 isotherms at 1020 s.

액체-수소 탱크를 위한 결합된 열역학-유체-역학 솔루션

Coupled thermodynamic-fluid-dynamic solution for a liquid-hydrogen tank G. D. Grayson Published Online:23 May 2012 https://doi.org/10.2514/3.26706 Read Now Tools Share Introduction ...

원자력 시설물의 잔해물 거동 예측

Debris Transport in a Nuclear Reactor Containment Building

원자로 격리 건물에서 파편 운송

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Emergency Core Cooling System (ECCS)

파이프 파손 후 ECCS (비상 코어 냉각 시스템)가 활성화됩니다. 격리 건물 압력을 낮추고 대기에서 방사성 물질을 제거하기 위해 격리 스프레이를 켤 것입니다. 물은 부식 열을 제거하고 용융을 방지하기 위해 코어에 주입됩니다. 이 물은 이후 파이프 파손 부위에서 흘러 나옵니다. 격납 스프레이와 부식 열 제거에서 나온 물은 외부 탱크에서 ECCS 펌프에 의해 격납용기로 펌핑됩니다. 스프레이 및 브레이크 흐름을 통해 격리실로 펌핑된 물의 양은 격리실 바닥에 모이고 풀을 형성합니다.

Sump Strainers and Debris

외부 탱크의 물이 고갈된 후에는 ECCS 펌프에 대한 흡입기가 격납건물 내 하나 이상의 섬프로 전환됩니다(두 개의 섬프 스트레이너 예가 왼쪽에 표시됨). 섬프의 기능은 원자로 건물 풀에서 펌프 흡입구로 물을 재순환하는 것입니다. 각 섬프에는 이물질이 ECCS 펌프로 빨려 들어가 막힘이나 손상이 발생하는 것을 방지하기 위해 스트레이너 시스템이 있습니다. 그러나 스트레이너에 쌓인 이물질로 인해 펌프가 요구하는 순정 흡수헤드(NPSH)를 초과하는 헤드 손실이 발생하여 펌프가 고장을 일으키고 발전소를 안전하게 정지시킬 수 없습니다. 원자력규제위원회 일반안전문제(GSI) 191의 핵심입니다.

FLOW-3D Applied to Evaluate Performance

FLOW-3D는 격납용기 풀을 모델링하고 스트레이너에 도달할 수 있는 이물질의 양을 결정하는 데 사용됩니다. 파이프 파손, 직접 분무 구역(분무기가 비처럼 POOL에 유입되는 지역), 유출 분무 구역(분무수가 더 높은 고도에서 바닥에서 흘러나와 폭포처럼 POOL에 유입되는 지역)은 질량-모멘텀 소스 입자가 밀집된 지역으로 모델링되며, 적절한 유량과 속도가 할당됩니다. 후자는 POOL 표면까지의 자유 낙하 거리에 따라 달라집니다. 여과기 영역은 격납용기 POOL에서 물을 끌어오는 흡입구로 모델링됩니다.

Containment pool simulation

모델을 자유 표면으로 실행하여 (풀의 섬프 흡입 또는 초크 포인트로 인한) 상당한 수위 변화를 식별하고, RNG 모델을 활성화하여 풀의 난류를 예측합니다. 파괴된 절연체가 격납용기 풀을 통해 이동할 수 있는 능력은 정착 속도(정지 상태에서 이동할 수 있는 기능)와 텀블링 속도(바닥을 가로질러 이동할 수 있는 기능)의 기능입니다. 안착 속도는 절연체를 고정하는 데 필요한 운동 에너지의 양과 관련이 있습니다. 이러한 안착 및 텀블링 속도는 연도 및 탱크 테스트를 통해 결정되며, FLOW-3D 모델에 의해 계산된 값입니다.

모델이 정상 상태 상태에 도달한 후에는 FLOW-3D 결과가 후처리되어 다양한 이물질 유형을 POOL 바닥(빨간색으로 표시됨)으로 넘어뜨릴 수 있을 정도로 속도가 높은 영역 또는 난류가 서스펜션의 이물질을 운반할 수 있을 정도로 높은 영역(노란색으로 표시됨)을 결정합니다.

그런 다음 속도 벡터를 빨간색 및 노란색 영역과 함께 사용하여 흐름이 이물질을 스트레이너 쪽으로 운반하는지 여부를 확인합니다. 그런 다음 이러한 영역을 초기 이물질 분포 영역과 비교하여 각 이물질의 유형 및 크기에 대한 운송 분율을 결정합니다.

Conclusions

이물질 잔해 수송 테스트를 CFD 모델링과 결합하면 ECCS 스트레이너가 견딜 수 있어야하는 잔해 부하를 다른 방법으로는 가정해야하는 지나치게 보수적인 값에서 크게 줄일 수 있습니다. CFD는 또한 수두 손실 테스트를 지원하기 위해 ECCS 스트레이너 주변의 흐름 패턴, 수두 손실 테스트 및 플랜트 설계 수정을 식별하는 데있어 격납용 POOL 수위 변화를 식별하는데 유용함이 입증되었습니다.

Alion logo

1Alion Science and Technology is a consulting engineering company with the ITS Operation comprised of engineering professionals skilled at developing and completing diverse projects vital to power plant operations. Alion ITSO provides engineering, program management, system integration, human-systems integration, design review, testing, and analysis for nuclear, electrical and mechanical systems, as well as environmental services. Alion ITSO has developed a meticulous Quality Assurance Program, which is compliant with 10CFR50 Appendix B, 10CFR21, ASME NQA-1, ANSI N45.2 and applicable daughter standards. Alion ITSO has provided a myriad of turnkey services to customers, delivering the highest levels of satisfaction for almost 15 years.

수치해석 용역 실적

FLOW-3D Case Studies
FLOW-3D Case Studies

수행 실적

주식회사 에스티아이씨앤디의 수치해석 컨설팅 수행회사 입니다. 아래 회사 목록은 많은 회사로부터 기술개발 및 수치해석 컨설팅을 의뢰받아 수행한 회사입니다.

한국수자원공사 ,도화종합기술공사 ,한국수자원공사 ,대우건설 ,도화종합, 삼안건설, 한국종합개발기술공사 ,도화종합, 삼안건설기술공사 ,삼안건설기술공사 ,한국시설안전관리공단 ,한국종합엔지니어링 ,현대엔지니어링 ,SK건설 ,선진엔지니어링 ,엘지건설 ,한국동서발전주식회사 ,한국종합기술개발공사 ,벽산엔지니어링 ,부강테크(GS건설) ,신우엔지니어링 ,유신코퍼레이션 ,한화건설 ,항도엔지니어링(포스코건설) ,(주)삼안 ,건화엔지니어링 ,삼성건설 ,한국전력기술 ,한국지질자원연구원 ,대림기업(주) ,에스케이건설 ,엘지전자 ,포스코 ,한국생산기술연구원 ,한국시설안전기술공단 ,한수테크니컬서비스 ,현대자동차 ,제이슨기술단 ,(주)바셈 ,계룡건설산업 ,(주)건화 ,(주)대우건설 ,(주)도화종합기술공사 ,(주)엔지비 ,(주)유신 ,태영건설 ,도화 ,매탈젠텍(POSCO) ,매탈젠텍(RIST) ,이산 ,코다코(캐스트맨 매출) ,현대기아기술연구소 ,현대제철 ,태성종합기술 ,선진ENG ,그레넥스 ,엔바이로솔루션 ,기아차 ,농어촌공사(충남도본부 예산지사) ,농어촌공사(충남도본부) ,지자체(수원시) ,지자체(전남공흥군) ,해피콜 ,HMK ,국민대학교 ,대림산업 ,도화엔지니어링 ,삼진정밀 ,오투엔비 ,한국건설기술연구원 ,해안해양기술 ,E&H컨설턴트 ,GS칼텍스 ,서울시립대학교 ,선일엔바이로 ,알이디 ,오투앤비 ,전남대학교 ,제이에스테크 ,한국농어촌공사 ,그린텍환경컨설팅 ,제일테크 ,창원대학교(ADD) ,한국종합기술 ,한국항공우주연구원 ,GS건설 ,유신 ,두산중공업 ,세메스 ,(재)포항산업과학연구원 ,(주)그린텍환경컨설팅 ,LG전자(평택) ,LG전자(창원)

 수리/수자원 분야
01 교량 설치에 따른 하천흐름 및 세굴영향 검토
컨설팅내용
  • 교량 설치로 인한 3차원 모형의 수리영향 검토
  • 세굴방지공 설치로 교량의 수리적 안정성 확보
필요데이터
  • 교각 3차원 형상 또는 도면
  • 하천 수심측량 자료 및 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 하천의 유동해석 수행 후 최고유속에 해당하는 교각 선정
  • 선정교각 대상을 중심으로 세굴 모형 적용
결과물
  • 하천 유동흐름, 수위분석
  • 평형세굴심 도달시간
  • 최대세굴심 및 최대퇴적고 등
02 댐체 월류 시 수리/수문 구조적 안정성 검토
컨설팅내용
  • 상류 댐 붕괴 시 급격한 방류로 인하여 하류 댐에 미치는 영향을 검토하기 위해 댐체 월류 시 수리/수문 구조적 안정성검토
필요데이터
  • 공도교 및 수문 구조물 상세 도면
  • 하천 수심측량자료 및 주변 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 상류 댐 붕괴시 홍수위/홍수량 정보입력
  • 구조물/수문 분리 후 취약한 수문 선정
  • 수문 구조해석 및 Total 힘 분석
결과물
  • 수문/구조물 받는 힘 분석
  • 굥도교 월류 여부 및 수위/유속 분포
  • 방류량 및 구조물 부압 등
 수처리 분야
01 정수처리시설 구조물 최적설계
컨설팅내용
  • 정수시설 구조물에 대한 유동, 유량, 압력, 온도분포 분석
  • 수처리과정에 발생하는 현상분석
필요데이터
  • 정수시설 구조물의 제원
  • 분배수로, 침전지 등 도면 및 3D CAD 자료
  • 초기 수위데이터 등
해석방법
  • 정수시설 구조물의 경계조건 설정
  • 형상에 따른 유동흐름 및 유량 등 초기조건 
결과물
  • 정수시설물에 작용하는 압력분포 확인
  • 유동 유입에 따른 유동양상, 유량, 유속데이터 분석
  • 온도변화에 따른 유동 및 침전효율 분석

02 하수처리시설 방류량 및 유동양상 분석
컨설팅내용
  • 토출수조의 수위 및 유동현상검토
  • 각 방류 Box의 방류유량분포 및 유속분석 
필요데이터
  • 구조물관련 설계도면 자료
  • 전체 모형 작성 및 지형데이터
  • 유체 유입량, 초기 수위관련 자료
해석방법
  • 시설 구조물에 따른 경계조건 설정
  • 초기 수위조건 및 유동현상 등 조건 확인
결과물
  • 토출 수조의 수위량 및 유동흐름
  • 유동 유입에 따른 유량, 유속데이터 분석
  • 구조물 단면의 유량흐름 데이터
 
 주조 분야
01 수축 결함최소화를 위한 주조해석
컨설팅내용
  • 주조 시 산화물 혼입방지 설계
  • 조립부 수축결함 최소화 
필요데이터
  • Frame형상 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 용탕 주입시간, 충진속도, 온도 등의 데이터
해석방법
  • 금형형상에 따른 주조해석 경계조건 설정
  • 초기 조건설정에 따른 파라미터분석
결과물
  • 충진시 산화물발생 위치 및 수축공 발생 위치
  • Solidification 확인, 결함부 현상분석
  • Gate, Runner 위치 최적화
         
02 금형 최적설계를 위한 주조해석
컨설팅내용
  • 충진 온도유지 및 제품 결함 최소화를 위한 최적설계
필요데이터
  • 금형관련 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 주조 공정조건 데이터
해석방법
  • 금형형상에 맞는 Runner, Gate 모델링
  • 용탕온도, 속도, 압력 등 조건에 따른 제품 최적설계
결과물
  • 충진시 압력분포 및 산화물 발생 위치분석
  • Solid Fraction, Solidification 등 현상분석
  • 결함부위 최소화를 위한 Gate, Runner 위치 최적화
 코팅 분야
01 Nozzle 분사를 이용한 Slit Coating 해석
컨설팅내용
  • 표면 Coating에 적합한 Nozzle 형상 설계
  • Coating 구동조건 및 압력분포 분석
필요데이터
  • 초기 Nozzle 형상 제원
  • 형상 도면자료 및 3D CAD자료
  • 초기 Coating 도포현상 및 구동조건 데이터
해석방법
  • Nozzle 구동에 따른 Coating 분석
  • 액상조건에 따른 Coating 도포형상 분석
결과물
  • Nozzle 형상 파라미터에 따른 Coating 현상분석
  • Coating 분포에 따른 높이 균일성 확인
  • 액상 온도에 따른 도포량분석
  
 MEMS 분야
01 연료전지 시스템의 최적설계를 위한 유동해석
컨설팅내용
  • 연료전지 내부형상에 따른 유동장변화 데이터
  • 유량분배에 적절한 최적의 형상조건 설계
필요데이터
  • 초기 형상 도면자료 및 3D CAD자료
  • 연료전지의 구동조건 및 물성조건
  • Actuator의 작동, 토출량, 유동 등의 데이터
해석방법
  • Micro-Channel에서의 유동분배 설정
  • 액체의 특성에 따른 토출조건 확인
결과물
  • Actuator의 속도에 따른 유동량 분석
  • Micro-Channel에서의 유동양상
  • 공동현상 최소화를 위한 최적의 구동조건

FlowSight

FlowSight

FlowSight는 FLOW-3DFLOW-3D CAST결과의 정교한 시각화를 제공하도록 설계된 고급 후 처리 도구입니다. FlowSight는 직관적인 후처리 인터페이스 내에서 우수한 결과 분석 기능을 갖춘 모델을 제공합니다. 스플 라인 경로를 따라 임의의 2D클립, 3D클립 및 투명도, 볼륨 렌더링, 고급 데이터 타임 시리즈 플로팅, 간소화 및 벡터 플롯은 사용 가능한 놀라운 도구의 일부에 불과합니다. FlowSight를 사용하면 여러 뷰 포트와 동적 객체 시각화 도구로 구성된 풍부한 기능 세트와 결합되어 있으므로 엔지니어는 분석 및 프레젠테이션 요구 사항에 맞게 CFD결과를 최대한 활용할 수 있습니다.

FlowSight는 모든 FLOW-3DFLOW-3D CAST라이센스에 포함되어 추가비용 없이 사용할 수 있습니다.

새로운–스플 라인 클립!

FlowSight의 스플라인 클립 기능을 사용하면 복잡한 곡면을 따라 클립을 생성할 수 있습니다. ogee weir 위로 물이 흐르는 시뮬레이션에서, 스플 라인은 ogee weir의 표면을 따라 형성됩니다. 그런 다음 스플 라인이 돌출되어 웨어 표면을 따라 물의 자유 표면 높이에 의해 색상이 지정된 클립을 생성합니다.

키 프레임 기능

크고 복잡한 시뮬레이션을 분석 할 때 매우 일반적인 문제는 관심 영역이 형상에 의해 가려지거나 시뮬레이션이 시간이 지남에 따라 변경됨에 따라 관심 영역이 변경 될 수 있다는 것입니다. 키 프레임은 분석 중에 형상을 “분리되도록”허용하고 시점이 시간과 공간을 통해 이동할 수 있도록 하여 이 문제를 해결합니다.

이 애니메이션은 FlowSight의 키 프레임 기능을 사용하여 충전하는 동안 다이 반쪽을 “시각적으로”열고 다이를 채우는 금속을 표시하면서 다이 표면에 고체 온도를 표시하는 방법을 보여줍니다.

Particle Visualization

FlowSight는 파티클(입자) 시각화 기능을 완벽하게 갖추고 있습니다. 입자는 입자 직경, 입자 밀도, 입자 수명, 속도 및 관련성이 있는 기타 변수에 의해 색상이 지정될 수 있습니다. 이 경우, 입자는 각각의 직경의 크기에 의해 착색됩니다.

속도 벡터 필드

FlowSight는 사용자에게 평면 또는 도메인 전체에 걸친 전체 볼륨 속도 및 방향 분석에 속도 벡터 필드를 시각화하는 옵션을 제공합니다. 사용자 지정 가능한 벡터 필드를 사용하면 다양한 색상 지정 및 밀도 조정이 가능하여 선명도를 높일 수 있습니다.

Streamlines & Pathlines

FlowSight의 유선(Streamlines) 기능은 복잡한 동적 패턴을 완전한 충실도로 시각화하여 유동장 속도 방향에 대해 실시간 스냅 샷을 제공합니다. 경로 선(Pathlines)은 시간을 따른 유체 입자의 궤적을 시뮬레이션하는 동안, 히스토리 라인은 유동장에서 유체 입자를 애니메이션 합니다.

Iso-surfaces

Iso-surfaces 은 유체 및 고체 표면을 시각화하는 강력하고 빠른 방법으로, 일정한 난류 에너지 영역을 표시하는 데 적합합니다.

Volume Render

iso-surface에서만 변수를 표시하는 대신 사용자 지정 가능한 볼륨 맵을 사용하여 볼륨 전체에 걸쳐 변수를 표시합니다. 그림에 표시된 바와 같이 각 기포와 주변 액체의 변형률 크기는 볼륨 렌더링과 함께 표시됩니다.

 

Multiple Data Views

숫자 및 다양한 그래프 등의 시각적 형식으로 분석하기

Visualizing Non-inertial Reference Frame Motion

Non-inertial reference frame visualization는 편리한 시뮬레이션 설정을 제공하고 계산 시간을 단축하며 사용자가 사실적인 방식으로 모델을 시각화 할 수 있게합니다.

2D Clips

2D 클립은 모든 단면 평면에서 유체 매개 변수를 시각화하는 데 사용됩니다.

3D Clipping

3D 클리핑 도구를 사용하면 사용자가 6 개 방향 모두에서 등면을 동시에 슬라이스 할 수 있으며, 높은 결함 영역을 감지하고 유체 및 고체 영역 내부의 온도, 압력, 속도 프로파일을 시각화하는 데 유용합니다.

  • 특정 방향의 범위 사이에 애니메이션 제공
  • 한 번에 한 방향으로 스왑
  • 양방향 애니메이션 : 앞으로 및 뒤로

Arbitrary Clips

평면, 원통형, 상자, 원뿔형, 구형 및 간소화된 표면에 대한 시각화를 포함하여 광범위한 유연성으로 표면 뷰를 분석할 수 있습니다. 유체 흐름이 평면이 아닌 표면에 대한 시각화가 필요한 경우 유용합니다. 임의 클립을 사용하면 연속적으로 여러 클립을 만들 수도 있습니다.

Probe Data

포인트 프로브는 시간에 따른 변수의 진화를 보여주고, 라인 프로브는 거리에 따른 변수 값의 변화를 반환합니다. 오른쪽, 프로브는 유체의 응고 비율을 보여줍니다.

Vortex Cores

와류 코어 식별에 사용할 수있는 두 가지 옵션인 와류 및 고유 분석을 통해 코어 강도에 따라 필터링 가능한 결과 생성이 가능합니다.

엔지니어들은 연구를 위해 다양한 시각화 방법을 사용합니다. 유체 흐름에서 와류 코어의 분석은 중요한 문제로, 와류 코어는 속도 필드 내에 와류 구조 (중앙 트레이스)를 나타내는 선 입니다. 기술적으로, FlowSight는 와류 방법 및 고유치 분석에서 속도 벡터와 소용돌이 벡터의 속도장에서의 식별위치는 평행합니다. FlowSight는 사용자에게 와류 코어 식별을 위한 두 가지 옵션을 제공합니다. 코어는 특정 강도 이상 또는 이하로 FlowSight에서 필터링 될 수 있습니다. 코어는 일반적으로 코어 주위에 회전 또는 단순히 순환 강도의 비율에 의해 채색됩니다. 아래의 예에서는, 와류 코어 고유치 값 분석을 이용하여 생성됩니다. 강한 코어는 소용돌이의 중심에 형성되어있는 것을 알 수 있습니다. 이를 통해 사용자는 펌프로 공기 흡입의 가능성을 연구 할 수 있습니다. 코어가 너무 강한 경우, 공기는 강한 와류로 인해 야기되는 열린 통로로부터 흡입될 수 있습니다.

History Data

그래프 도구는 일반적인 히스토리, 진단 및 메시 종속 데이터에 강력한 수준의 분석을 제공하여 서로 다른 시뮬레이션 데이터를 상대적으로 보여줍니다.