Figure 1. Typical road and rail tunnel sections.

터널의 화재 위험을 평가하는 컴퓨터 모델(FASIT)

A Computer Model to Assess Fire Hazards in Tunnels (FASlT)

David A. Charters, W. Alan Gray, Andrew C. McIntosh
Charters is now with NHS Estates in Leeds (previously with AEA Consultancy
Services), and Gray and Mclntosh are with the University of Leeds, England.

Abstract

터널에서 화재 성장 움직임을 시뮬레이션하는 컴퓨터 모델이 설명되고 터널 시스템에 대한 간략한 개요가 표시됩니다. 질량 흐름, 속도, 연기 농도 및 열 전달을 예측하는 방법과 위험 출력 매개 변수 목록이 표시됩니다. 실험에 대한 모델의 유효성 검사와 향후 작업에 대한 가능한 방향도 제시됩니다.

Introduction

최근 도로 및 철도 터널의 화재 안전에 대해 운송 업계와 여행자들 사이에서 많은 우려가 제기되고 있습니다.

1,2,3 터널에서 연소 생성물은 한 방향 또는 두 방향을 제외한 모든 방향으로 제한되어 매우 빠른 연기 이동과 생명에 대한 빠른 위협을 초래할 수 있습니다.

이 분야의 많은 초기 작업은 Thomas에 의해 수행되었습니다. 4,5 AEA Consultancy Services와 University of Leeds의 연료 및 에너지부는 현재 터널의 구멍으로 인한 위험을 예측하는 컴퓨터 모델을 개발 중입니다.

이 모델은 터널 내 설비의 위험과 화재 위험 수준, 화재 방지 시스템의 이점을 평가하는 데 도움이 됩니다.

유사한 ‘구역’ 화재 모델에서 Considine et al. 7은 유해 물질 운송을 포함하는 피트에 대한 모델을 개발했으며 Miclea 등은 터널 환기에 대한 화재의 영향을 평가하고 비상 환기를 논의하는 터널 환기 모델을 개발했으며 Laage 등은 터널 환기 모델을 개발했습니다.

9는 특히 광산 네트워크의 화재에 대한 모델을 개발했습니다. 다른 터널 화재 모델에서 Kumar et al.10 및 Jones et al.11은 터널 화재의 유체 흐름을 예측하기 위해 전산 유체 역학(CFD) 또는 ‘장’ 모델을 사용합니다.

AEA/Leeds University에서 개발 중인 코드는 터널의 화재 위험을 예측하기 위한 더 큰 모델의 일부가 되도록 의도되었습니다.

이 코드는 FASIT(Fire growth And Smoke movement In Tunnels) 모델이라고 합니다.12 FASIT는 구조가 모듈식이므로 화염, 연기, 부력 흐름, 열 전달 등에 대한 개선된 모델을 많은 수의 재작성 없이 통합할 수 있습니다.

Figure 1. Typical road and rail tunnel sections.
Figure 1. Typical road and rail tunnel sections.
Figure 2. Tunnel zone/layer schematic.
Figure 2. Tunnel zone/layer schematic.
Figure 3. Schematic of plume mass flows°
Figure 3. Schematic of plume mass flows°

References

  1. Bertrand, A., “Opening Address,”Safety in Road and Rail Tunnels, 1992.
  2. Haack, A., “Fire Protection Traffic Tunnels-Initial Recognitions from Large Scale Tests,”Safety in Road and Rail Tunnels, 1992.
  3. Luchian, S.F., “The Central Artery/Tunnel Project Memorial Tunnel Fire Test Program,”Safety in Road and Rail Tunnels, 1992.
  4. Thomas, P.H., “The Movement of Buoyant Fluid Against a Stream and the Venting of Underground Fires,”Fire Research Note 351/1958, Fire Research Station, U.K., 1958.Google Scholar 
  5. Thomas, P.H., “The Movement of Smoke in Horizontal Passages Against an Air Flow,”Fire Research Note 723/1968, Fire Research Station, U.K., 1968.Google Scholar 
  6. Charters, D.A., “Fire Risk Assessment in Rail Tunnels,”Safety in Road and Rail Tunnels, 1992.
  7. Considine, M., Parry, S.T., and Blything, K.,Risk Assessments of Hazardous Substances Through Road Tunnels in the United Kingdom, Department of Transport, 1989.
  8. Miclea, P.C. and Murphy, R.E., “Assessment of Emergency Ventilation Capability in Case of Train Fire in a Tunnel Using Subway Environment Simulation (SES) Computer Program,”Proceedings of 4th U.S. Mine Ventilation Symposium, SME, 1989.
  9. Laage, L.W. and Yang, H., “Mine Fire Experiments at the Waldo Mine,”Proceedings of 5th U.S. Mine Ventilation Symposium, SME, 1991.
  10. Kumar, S. and Cox, G.,Mathematical Modeling of Fire in Road Tunnels—Validation of JASMINE Department of Transport, 1986.
  11. Simcox, S., Wilkies, N.S. and Jones, I.P., “Computer Simulation of the Flows of Hot Gases from Fire at King’s Cross Underground Station,”Institution of Mechanical Engineers, 1989.
  12. Charters, D.A., Gray, W. A., and McIntosh, A.C.,FASIT Tunnel Fire Computer Model—Physical Basis, AEA Technology/Leeds University, 1993.
  13. Heskestad, G., “Fire Plumes,”The SFPE Handbook of Fire Protection Engineering, SFPE/NFPA, 1988, Chapters 1–6.
  14. Drysdale, D.D.,An Introduction to Fire Dynamics, Wiley, 1985.
  15. British Standard (Draft for Development) 180,Guide for the Assessment of Toxic Hazards in Fire in Buildings and Transport British Standards Institution, 1989.
  16. Vantelon, J.P.,et al., Investigation of Fire-Induced Smoke Movement in Tunnels and Stations: An Application to the Paris Metro, Third International Symposium on Fire Safety Science, Elsevier, 1991.
  17. Heselden, A.J.M., “Studies of Fire and Smoke Behavior Relevant to Tunnels,”Current Paper CP66/78, Building Research Establishment, 1978.
  18. Emmons, H.W., “The Ceiling Jet in Fires,”Proceedings of the 3rd International Symposium of Fire Safety Science, Elsevier, 1991.
  19. Carslaw, H.S. and Jaeger, J.C.,Conduction of Heat in Solids, 2nd edition, Oxford University Press, 1959.
  20. Final Report on the Tests in the Ofenegg Tunnel, Commission for Safety Measures in Road Tunnels, Bern, 1965.
  21. Feizlmayr, A.H.,Brandversuche in Einen Tunnel, Bundesministerium für Banten und Technik, Heft 50, Vienna, 1976.Google Scholar 
  22. Keski-Rahkonen, O., Holmlund, C., Loikkanen, P., Ludrigsen, H., and Mikkola, E.,Two Full-Scale Pilot Fire Experiments in a Tunnel, VTT Finland, 1986.
  23. Marshall, I.A., Hines, M.A., Cutler, D.P., and Packer, S.D.,Fire Gallery Tests for Non-Metallic Materials Intended for Underground Use Project No. 7255-10/058, CEC, 1984.
  24. Private communication between Beckett, H. (HSE) and Burke, G. (AEA), 1986.
  25. McCaughey, M.N. and Fletcher, D.F.,Simulation of a Fire in a Tunnel, SRD, 1992.
  26. Fletcher, D.F. and Owens, M.P.,Tunnel Fire Modeling Using FLOW 3D: Progress and Suggested Future Work, SRD, 1993.
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China

Barrier Lake의 홍수 침수 진행 및 평가지역 생태 시공간 반응 사례 연구 (쓰촨-티베트 지역)

Flood Inundation Evolution of Barrier Lake and Evaluation of Regional Ecological Spatiotemporal Response — A Case Study of Sichuan-Tibet Region

Abstract

중국 쓰촨-티베트 지역은 댐 호수의 발생과 붕괴를 동반한 지진 재해가 빈번한 지역이었습니다. 댐 호수의 붕괴는 하류 직원의 생명과 재산 안전을 심각하게 위협합니다.

동시에 국내외 학자들은 주변의 댐 호수에 대해 우려하고 있으며 호수에 대한 생태 연구는 거의 없으며 댐 호수가 생태에 미치는 영향은 우리 호수 건설 프로젝트에서 매우 중요한 계몽 의의를 가지고 있습니다.

이 기사의 목적은 방벽호의 댐 붕괴 위험을 과학적으로 예측하고 생태 환경에 대한 영향을 조사하며 통제 조치를 제시하는 것입니다. 본 논문은 쓰촨-티베트 지역의 Diexihaizi, Tangjiashan 댐호, Hongshihe 댐의 4대 댐 호수 사건을 기반으로 원격 감지 이미지에서 수역을 추출하고 HEC-RAS 모델을 사용하여 위험이 있는지 여부를 결정합니다.

댐 파손 여부 및 댐의 경로 예측; InVEST 모델을 이용하여 1990년부터 2020년까지 가장 작은 행정 구역(군/구)이 위치한 서식지를 평가 및 분석하고, 홍수 침수 결과를 기반으로 평가합니다. 결과는 공학적 처리 후 안정적인 댐 호수(Diexi Haizi)가 서식지 품질 지수에 안정화 효과가 있음을 보여줍니다.

댐 호수의 형성은 인근 토지 이용 유형과 지역 경관 생태 패턴을 변화 시켰습니다. 서식지 품질 지수는 사이 호수 주변 1km 지역에서 약간 감소하지만 3km 지역과 5km 지역에서 서식지 품질이 향상됩니다. 인공 홍수 방류 및 장벽 호수의 공학적 보강이 필요합니다.

이 논문에서 인간의 통제가 강한 지역은 다른 지역의 서식지 질 지수보다 더 잘 회복될 것입니다.

The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel.

At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures.

Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation.

The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern.

The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions’ habitat quality index.

Fengshan Jiang (  florachaing@mail.ynu.edu.cn )
Yunnan University https://orcid.org/0000-0001-6231-6180
Xiaoai Dai
Chengdu University of Technology https://orcid.org/0000-0003-1342-6417
Zhiqiang Xie
Yunnan University
Tong Xu
Yunnan University
Siqiao Yin
Yunnan University
Ge Qu
Chengdu University of Technology
Shouquan Yang
Yunnan University
Yangbin Zhang
Yunnan University
Zhibing Yang
Yunnan University
Jiarui Xu
Yunnan University
Zhiqun Hou
Kunming institute of surveying and mapping

Keywords

dammed lake, regional ecology, flood simulation, habitat quality

Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China
Figure 8 Habitat quality changes in Maoxian County
Figure 8 Habitat quality changes in Maoxian County
Figure 9 Habitat quality changes in Beichuan County
Figure 9 Habitat quality changes in Beichuan County
Figure 10 Habitat quality change map of Qingchuan County
Figure 10 Habitat quality change map of Qingchuan County

References

  1. Chaoying Hu H S, Tianming Zhang. 2017. Environmental impact assessment of barrier lake treatment project based on
    ecological footprint[J]. People’s Yangtze River, 48: 30-32
  2. Dai F C, Lee C F, Deng J H, et al. 2004. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on
    the Dadu River, southwestern China[J]. Geomorphology, 65.
  3. Dongjing Chen Z X 2002. Research on Ecological Security Evaluation of Inland River Basin in Northwest China——A Case
    Study of Zhangye Region in the Middle Reaches of Heihe River Basin[J]. Arid zone geography: 219-224
  4. Dongsheng Chang L Z, Yao Xu, Runqiu Huang. 2009. Risk Assessment of Overtopping Dam Burst in Hongshi River Barrier
    Lake[J]. Journal of Engineering Geology, 17: 50-55
  5. Fan X, Yunus Ali P, Jansen John D, et al. 2019. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi
    area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27–42[J].
    Geomorphology.
  6. Feng Yu X L, Hong Wang, Hongjing Yu. 2006. Land Use Change and Ecological Security Evaluation in Huangfuchuan
    Watershed[J]. Acta Geographica Sinica: 645-653.
  7. Hafiyyan Q, Adityawan M B, Harlan D, et al. 2021. Comparison of Taylor Galerkin and FTCS models for dam-break
    simulation[J]. IOP Conference Series: Earth and Environmental Science, 737.
  8. Haiwen Li X B 2020. Comprehensive Evaluation of the Restoration Status of Damaged Ecological Space along the
    Plateau Fragile Area of the Sichuan-Tibet Railway[J]. Journal of Railway Science and Engineering, 17: 2412-2422.
  9. Haohao Li X R, Huabin Yang. 2008. Rescue construction and thinking of Hongshihe dammed lake in Qingchuan
    County[J]. Water Conservancy and Hydropower Technology (Chinese and English): 50-51+62
  10. Hejun Chai, Runqiu Huang, Hanchao Liu I O E G, Chengdu University of Technology 1997. Analysis and Evaluation of the
    Dangerous Degree of Landslide Blocking the River[J]. Chinese Journal of Geological Hazard and Control: 2-8+16
  11. Hong Wang Y L, Lili Song, Yun Chen. 2020. Comparison of characteristics of thunderstorm and gale activity and
    environmental factors in Sichuan-Tibet area[J]. Journal of Applied Meteorology, 31: 435-446.
  1. Hongyan X, Xu H, Jiang H, et al. 2020. Potential pollen evidence for the 1933 M 7.5 Diexi earthquake and implications for
    post-seismic landscape recovery[J]. Environmental Research Letters, 15.
  2. Hui Xu J C, Zhijiu Cui, Pei Guo. 2019. Analysis of Grain Size Characteristics of Sediment in Dammed Lake——Taking Diexi
    Ancient Dammed Lake in the Upper Minjiang River as an Example[J]. Acta Sedimentologica Sinica, 37: 51-61
  3. Jian Yang B P, Min Zhao. 2014. Research on Ecological Restoration Technology in Wenchuan Earthquake-Stricken Area
    ——Taking Tangjiashan Barrier Lake Area as an Example[J]. Sichuan Building Science Research, 40: 164-167.
  4. Jian Yang B P 2017. Evaluation of Ecological Quality of Tangjiashan Dammed Lake Region in Beichuan County[J].
    People’s Yangtze River, 48: 27-32
  5. Jianfeng Chen Y W, Yang Li. 2006. Application of HEC-RAS model in flood simulation[J]. Northeast Water Resources and
    Hydropower: 12-13+42+71.
  6. Jiankang Liu Z C, Tao Yu. 2016. Dam failure risk and its impact of Hongshiyan dammed lake in Ludian, Yunnan[J].
    Journal of Mountain Science, 34: 208-215
  7. Jianrong Fan B T, Genwei Cheng, Heping Tao, Jianqiang Zhang,Dong Yan, Fenghuan Su. 2008. Information extraction of
    dammed bodies induced by the May 12 Wenchuan earthquake based on multi-source remote sensing data[J]. Journal of
    Mountain Science: 257-262.
  8. Jinghuan Tian K Z, Meng Chen, Fuxin Chai. 2012. Research on the application of HEC-RAS model in flood risk analysis
    and assessment[J]. Hydropower Energy Science, 30: 23-25
  9. Juan He X W 2015. Dam-break flood analysis based on HEC-RAS and HEC-GeoRAS[J]. Journal of Water Resources and
    Water Transport Engineering: 112-116
  10. Junwei Gan L Y, Jinjun Li. 2017. Research on the Influencing Factors of Sichuan-Tibet Tourism Industry Competitiveness
    Based on DEMATEL[J]. Arid Land Resources and Environment, 31: 197-202
  11. Lansheng Wang L Y, Xiaoqun Wang, Liping Duan 2005. Discovery of the ancient dammed lake in Diexi, Minjiang River[J].
    Journal of Chengdu University of Technology (Natural Science Edition): 1-11
  12. Ma S, Zhu J, Ya. H. Year. Construction of Risk Assessment System of Dam-break in Barrier Lake Based on Collaborative
    Workflow: 9.
  13. Ming Zeng Y C, Bingyu Zou. 2019. Discussion on the Method of Forecasting the Flood Evolution of Barrier Lake Burst——
    Taking “11·3” Jinsha River Baige Barrier Lake as an Example[J]. Water Resources and Hydropower Express, 40: 11-14
  14. Ouyang C, An H, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at
    Baige village along the Jinsha River, China Landslides[J]. 16.
  15. Peng M, Zhang L M 2012. Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian
    networks[J]. Natural Hazards, 64.
  16. Qianfeng Li Y L, Gang Liu, Zhiyun Ouyang, Hua Zheng. 2013. The Impact of Land Use Change on Ecosystem Service
    Function——Taking Miyun Reservoir Watershed as an Example[J]. Acta Ecologica Sinica, 33: 726-736.
  17. Qiang Xu G Z, Weile Li, Zhaoyang He, Xiujun Dong, Chen Guo, Wenkai Feng. 2018. Analysis and study of two landslides
    and dams blocking the river in Baige on the Jinsha River in October and November 2018[J]. Journal of Engineering
    Geology, 26: 1534-1551
  18. Qin Ji J Y, Hongju Chen, Man Li. 2019. Analysis of Economic Differences Along the Sichuan-Tibet Railway from the
    Perspective of Spatial and Industrial Decomposition[J]. Glacier permafrost: 1-14
  19. Qingchun Li Y H, Yubing Shi. 2020. Study on the stability of the residual dam in Tangjiashan dammed lake[J]. Journal of
    Underground Space and Engineering, 16: 993-998
  20. Qiwen Xiang J P, Guangze Zhang, Zhengxuan Xu, Dingkai Zhang, Wenli Tu. 2020. Monitoring and Analysis of Surface
    Deformation in Zheduo Mountain Area of Sichuan-Tibet Railway Based on SBAS Technology[J]. Surveying Engineering,
    29: 48-54+59
  1. Shangfu Kuang X W, Jinchi Huang, Yinqi Wei 2008. Analysis and Evaluation of Dam-Break Risk of Barred Lake and Its
    Influence[J]. China Water Resources: 17-21.
  2. Sheng-Hsueh Y, Yii-Wen P, Jia-Jyun D, et al. 2013. A systematic approach for the assessment of flooding hazard and risk
    associated with a landslide dam[J]. Natural Hazards, 65.
  3. Sun L 2021. Research on Fast Perception and Simulation Calculation Method of Landslide Dam in Alpine and Gorge
    Area: Taking Baige Dammed Lake as an Example[J]. Water Conservancy and Hydropower Technology (Chinese and
    English), 52: 44-52
  4. Tamiru H, O. D M 2021. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River
    Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 36.
  5. Tao Pan S W, Erfu Dai, Yujie Liu. 2013. Spatio-temporal changes of water supply services in the ecosystem of the Three
    Rivers Source Region based on InVEST model[J]. Journal of Applied Ecology, 24: 183-189
  6. Vera K, Sergey C, Inna K, et al. 2017. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment
    in the downstream valley[J]. Frontiers of Earth Science, 11.
  7. Wang Z 1985. Preliminary Discussion on the Evaluation of Ecological Environment Quality in Minjiang River Basin[J].
    Journal of ecology: 29-32
  8. Wei Chen Z S, Hui Guo,Hao Wang, Ting Wei, Nan Li, Kaiyi Zhang Shuxiang Yang, Kaijia Dai. 2007. Analysis of Bird
    Resources and Habitats in Wuhan Urban Lakes and Urban Wetlands in Winter[J]. Forestry Investigation and Planning: 46-
    50
  9. Wei G, Gaohong X, Jun S, et al. 2020. Simulation of Flood Process Based on the Model of Improved Barrier Lake’s
    Gradual Dam Break Model %J Journal of Coastal Research[J]. 104.
  10. Wei X, Jiang H, Xu H, et al. 2021. Response of sedimentary and pollen records to the 1933 Diexi earthquake on the
    eastern Tibetan Plateau[J]. Ecological Indicators, 129.
  11. Wei Xu M L, Jie Yang, Chunzhi Li, Xiaojuan Shang. 2011. Risk Analysis of Flood Overflow in Huainan Section of Huaihe
    River Based on HEC-RAS[J]. Journal of Yangtze River Scientific Research Institute, 28: 13-18
  12. Weiwei Zhan R H, Xiangjun Pei, Weile Li. 2017. Research on empirical prediction model of channel type landslide-debris
    flow movement distance[J]. Journal of Engineering Geology, 25: 154-163
  13. Xianju Zheng H L, Wenhai Huang. 2015. Numerical Simulation of Reconstruction of Natural Dams Induced by Heavy Rain
    ——An Example of Tangjiashan Dammed Lake[J]. Business story: 62-63
  14. Xiao-Qun W, Xin H, Man S, et al. 2020. Possible relatedness between the outburst of the Diexi ancient dammed lake and
    ancient Chengdu’s cultural change[J]. Journal of Mountain Science, 17: 2497-2511.
  15. Xingbo Zhou X D, Yu Yao. 2019. Analysis of the dam-break flood of the Baige dammed lake on the Jinsha River[J].
    Hydroelectric Power, 45: 8-12+32
  16. Xinhua Zhang R X, Ming Wang, Zhiqiu Yu, Bingdong Li, Bo Wang. 2020. Investigation and analysis of flood disaster
    caused by dam break of Baige landslide on Jinsha River[J]. Engineering Science and Technology, 52: 89-100
  17. Xinxiao Yu B Z, Xizhi Lv, Zhige Yang. 2012. Evaluation of Forest Water Conservation Function of Beijing Mountainous
    Area Based on InVEST Model[J]. Forestry Science, 48: 1-5
  18. Xu J, Guo J, Zhang J, et al. 2021. Route choice model based on cellular automata and cumulative prospect theory: Case
    analysis of transportation network in Sichuan-Tibet region[J]. Journal of Intelligent & Fuzzy Systems, 40.
  19. Xuan Liang Z Z 2021. Research on the Influence of Numerical Simulation of Tailings Pond Based on FLOW-3D on
    Downstream[J]. Jiangxi Water Conservancy Science and Technology, 47: 11-20
  20. Yu Zheng P Z, Feng Tang, Li Zhao, Xu Zhao. 2018. Research on the Impact of Land Use Change on Habitat Quality in
    Changli County Based on InVEST Model[J]. China’s Agricultural Resources and Regionalization, 39: 121-128
  21. Yuanyuan Yang E D, Hua Fu. 2012. Research Framework of Value Evaluation of Ecosystem Service Function Based on
    InVEST Model[J]. Journal of Capital Normal University (Natural Science Edition), 33: 41-47
  1. Yunfei Ma T L, Jinbiao Xiong. 2021. Numerical simulation of dam-break flow based on VOF method and DFBI model[J].
    Applied Technology, 48: 23-28
  2. Zhe Wu X C, Beibei Liu, Jinfeng Chu, Lixu Peng. 2013. Research progress of InVEST model and its application[J]. Tropical
    Agriculture Science, 33: 58-62
  3. Zhengpeng Li Y H, Yilun Li, Yuehong Ying, Zehua Huangfu. 2021. Numerical simulation of dam-break flood in Qianping
    Reservoir based on BIM+GIS technology[J]. People’s Yellow River, 43: 160-164
  4. Zhenming Shi X X, Ming Peng, Minglang Lin. 2015. Analysis of Seepage Stability of Barrier Dam with High Permeability
    Area——Taking Hongshihe Barrier Dam as an Example[J]. Journal of Hydraulic Engineering, 46: 1162-1171.
  5. Zhu J, Qi H, Hu Y, et al. 2012. A DVGE service system for risk assessment of dam-break in barrier lake[J]. International
    Conference on Automatic Control and Artificial Intelligence (ACAI 2012).
  6. Zhu Y, Peng M, Cai S, et al. 2021. Risk-Based Warning Decision Making of Cascade Breaching of the Tangjiashan
    Landslide Dam and Two Smaller Downstream Landslide Dams[J]. Frontiers in Earth Science.
  7. Zuyu Chen G H, Qiang Zhang, Shuaifeng Wu. 2020. Disaster Mitigation Analysis of Cascade Hydropower Stations on the
    Jinsha River in “11.03” Baige Barrier Lake Emergency Treatment[J]. Hydropower, 46: 59-63
  8. Zuyu Chen S C, Lin Wang, Qiming Zhong, Qiang Zhang, Songli Jin. 2020. Inversion analysis of the “11.03” Baige barrier
    lake burst flood in the upper reaches of the Jinsha River[J]. Science in China: Technological Science, 50: 763-774.
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링

Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such systems usually involves fluid being transported by capillary forces. Capillarity can enhance fluid transport for small volumes of fluid and can provide a reliable alternative to micro-scale pumping mechanisms. Advantages of capillary systems include:

  • Low cost due to easy and fast fabrication
  • User friendliness due to the simplicity of their design
  • Increased portability ensured by the capillary actuation of fluids
  • Enhanced accessibility caused by the open-surface nature of their design
  • Complete elimination of air bubbles guaranteed by the uniformly moving fluid front

For these reasons, open capillary systems are the preferred design option for various POC systems.

개방형 표면 미세 유체 시스템은 생물학, 생명 공학, 의학, POC (Point-of-Care) 및 홈 케어 시스템 분야에서 점점 인기를 얻고 있습니다. 이러한 시스템의 설계에는 일반적으로 모세관 힘에 의해 유체가 운반됩니다. 모세관은 소량의 유체에 대한 유체 수송을 향상시킬 수 있으며 마이크로 규모 펌핑 메커니즘에 대한 신뢰할 수있는 대안을 제공 할 수 있습니다. 모세관 시스템의 장점은 다음과 같습니다.

  • 쉽고 빠른 제작으로 인한 저렴한 비용
  • 디자인의 단순성으로 인한 사용자 편의성
  • 유체의 모세관 작동으로 인한 휴대 성 향상
  • 디자인의 개방형 특성으로 인한 접근성 향상
  • 균일하게 움직이는 유체 전면으로 보장되는 기포의 완전한 제거

이러한 이유로 개방형 모세관 시스템은 다양한 POC 시스템에서 선호되는 설계 옵션입니다.

모세관 흐름의 시작 조건

V 홈 치수
그림 1. V 홈 채널의 단면 치수 : W = 150 μm, h1 = 300 μm, h2 = 1200 μm, α = 14.5ο.

University at Buffalo와 University of Grenoble의 연구원들의 최근 논문에서 마이크로 그루브가 잠재적으로 모세관 효과를 향상시킬 수있는 방법을 보여주었습니다 [1]. 이 논문의 결과를 바탕으로, FLOW-3D를 사용하여 평행 한 플레이트로 대체 된 좁은 V- 홈 마이크로 채널 내부 유체의 자발적 모세관 흐름 (SCF)에 대한 사례 연구를 논의 할 것  입니다. 모세관 흐름의 시작에 대한 특정 조건이 충족되면 혈류를 모니터링하기위한 POC 시스템의 설계를 위해 전혈과 같은 점성 유체를 사용해도 큰 유체 속도를 얻을 수 있습니다.

모세관 흐름의 조건은 Gibbs 자유 에너지의 최소화를 기반으로 한 정적 접근 방식을 사용하여 이론적으로 설정할 수 있습니다. 보다 구체적으로, 입구 압력이 0 일 때 모세관 흐름이 시작되는 조건은 다음과 같습니다.

(수식 1)           pF/pW < cos⁡ θ

여기서  θ  는 영 접촉각이고  F  및  W  는 각각 유동의 임의 단면에서 자유 및 습식 둘레입니다. 그림 1에 표시된 것과 같은 반각 α 를 갖는 V- 홈 마이크로 채널의  경우 몇 가지 수학적 조작 후 eq. 1은 다음과 같이 다시 작성할 수 있습니다.

(수식 2)         sin α = cos⁡ θ

우리의 경우  α  ≈ 14.5 ο 가 있으므로 모세관 흐름의 조건은  θ  <75.5 o 입니다.

FLOW-3D 에서 시뮬레이션

정적 접근 방식이 SCF의 시작에 관한 중요한 정보를 제공하지만 수치 접근 방식은 현장 진료 장치에서 유동 역학을 연구하는 데 더 적합합니다. 접촉각이 37 °  이고 전혈의 유체 특성 을 갖는 V- 홈 마이크로 채널에 대해 CFD 분석을 수행했습니다 . 혈액의 점도는 거의 일정하기 때문에 흐름 체제는 뉴턴으로 간주됩니다 [1]. 유체 운동이 모세관 효과에 의해서만 발생하도록 모든 경계와 계산 영역 전체에 균일 한 주변 압력이 적용되었습니다. 시뮬레이션은 처음 4mm의 유체 이동을 포함하는 초기 시뮬레이션과 4mm에서 8mm의 유체 이동을 예측하는 재시작 시뮬레이션의 두 부분으로 나뉩니다.

결과 및 검증

처음 8mm 이동에 대한 유동 역학은 그림 2에 나와 있습니다.이 그림은 세 가지 다른 시간에 슬롯에서 전진 인터페이스의 모양을 보여줍니다. 필라멘트 (Concus-Finn 필라멘트)의 점진적인 확장은 주 흐름보다 앞서 볼 수 있습니다.

모세관 흐름 시뮬레이션
그림 2. 세 가지 다른 시간에서 FLOW-3D를 사용하여 진행하는 모세관 흐름의 동적 계산 : (a) 0.04, (b) 0.07 및 (c) 0.11 초와 삽입물 (i1), (i2) 및 (i3) Concus-Finn 필라멘트의 진화 [1].

분석, 수치 및 실험 결과 간의 비교는 그림 3에 나와 있습니다. 수치 예측과 실험 간에는 탁월한 일치가 있습니다. 분석 솔루션도 플롯되었지만 채널 하단에있는 Concus – Finn 필라멘트의 효과가 고려되지 않았기 때문에 수치 및 실험 결과에 대한 유효한 비교를 나타내지 않을 수 있습니다.

모세관 흐름 검증
그림 3. (A) 시간의 함수로서 채널의 속도. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도. (B) 시간의 함수로서 액체 전면의 원점으로부터의 거리. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도 [1].

전혈 이외에도 식용 색소로 착색 한 물과 점성이 높은 알기 네이트 용액을 포함하여 장치가 고점도 유체를 이동시킬 수있는 가능성을 테스트하는 등 다양한 유체를 연구했습니다. 혈액과 같은 고점도 액체는 1 초 이내에 이동할 수 있습니다 (아래 애니메이션 참조).https://www.youtube.com/embed/v4OYoHStJ1w?controls=1&rel=0&playsinline=0&modestbranding=0&autoplay=0&enablejsapi=1&origin=https%3A%2F%2Fwww.flow3d.com&widgetid=1

사례 연구는 상대적으로 큰 점도 (물의 4 배)를 갖는 전혈의 경우 최대 7.5cm / s의 속도를 달성했음을 보여줍니다. 실험 결과 및  FLOW-3D  예측에 따라 전체 채널은 0.2 초 이내에 혈액으로 채워졌습니다. FLOW-3D  시뮬레이션 결과는 실험 관찰 결과와 매우 일치하며, V-groove 내부의 거리에 따라 속도가 감소하지만 장치의 전체 길이에 걸쳐 중요 함을 나타냅니다.

참고 문헌

  1. Berthier, J., K. Brakke, E. P. Furlani, I. H. Karampelas, and G. Delapierre. “Open-surface microfluidics.” In Proceedings of the Nanotech International Conference, pp. 15-19. 2014.
  2. Hirt, Cyril W., and Billy D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of computational physics 39, no. 1 (1981): 201-225.
  3. Rajaratnam, N., and M. R. Chamani. “Energy loss at drops.” Journal of Hydraulic Research 33, no. 3 (1995): 373-384.
Figure2 Outline of a flap gate

FLAP GATE TO PREVENT URBAN AREA FROM TSUNAMI

Osamu Kiyomiya 1, and Kazuya Kuroki 2

1 일본 도쿄 와세다 대학교 토목 공학과 교수
2일본 도쿄 와세다 대학교   토목 공학과 학생

요약

저자들은 쓰나미로부터 보호하기 위해 플랩 게이트를 제안하고 게이트의 특성과 디자인 및 유압에 대한 연구를 시작했습니다. 쓰나미의 위험이 예상되면 몇 분 안에 플랩이 일어 서서 쓰나미 침해로부터 해안 거주 지역을 보호합니다.

이 백서에서는 플랩 게이트 설계에 필요한 파압 및 게이트 동작을 확인하기 위해 보어 파 생성기를 사용하여 수로 탱크에서 2 차원 유압 모델 테스트를 논의합니다. 또한, 모델 테스트 결과를 비교하기 위해 VOF 방법을 사용하여 쓰나미로 인한 수력 특성을 시뮬레이션했습니다.

수치 해석의 결과는 일반적으로 모델 테스트에서 얻은 결과를 추적했습니다. 그러나 수치 해석에서의 파압은 파단 조건에서 모델 시험 결과와 일치하지 않았습니다. Flow 3D에 의한 3 차원 FEM은 또한 플랩 게이트가 포트 입구에 설치된 포트 영역에서 쓰나미의 런업 동작을 시뮬레이션했습니다.

테스트와 계산을 통해 쓰나미 플랩 게이트는 항구 거주 지역에 대한 쓰나미 침해에 효율적입니다.

일본은 많은 생명과 재산을 잃은 해안선을 따라 많은 쓰나미 침해 이력을 가지고 있습니다. 최근에는 쓰나미가 수반되는 대규모 지진으로 인한 피해도 예측하고 있습니다. 따라서 해안 지역의 쓰나미 대책 개선이 요구됩니다. 저자들은 이러한 대책 중 하나로 플랩 게이트의 사용을 제안하고, 현재 수력 학적 특성에 대한 연구를 진행하고 있습니다.

그림 2에서 볼 수 있듯이 플랩 게이트는 하단 가장자리에 핀 메커니즘으로 설계되었으며 일반적으로 해저에 위치합니다. 쓰나미가 해안 지역을 강타 할 것으로 예상되면 플랩의 cell이 공기로 부풀려 부력이 빠르게 위로 떠오르게됩니다.

쓰나미가 지나간 후에는 문에있는 cell에 물이 채워져 다시 해저에 가라 앉습니다. 플랩 작동 시간은 쓰나미에 대해 몇 분으로 설정됩니다. 이탈리아의 “Progetto Moze”에서는 플랩 게이트의 작동 메커니즘이 이미 채택되었지만이 게이트는 폭풍 해일에는 적합하지만 쓰나미에는 적합하지 않습니다.

여기에 소개된 플랩 게이트는 해안 거주지의 쓰나미를 방지하기 위해 만이나 강 하구에 설치됩니다. 이 게이트는 도시의 쓰나미 침해를 막기 위해 해안선을 따라 육지에 설치할 수도 있습니다. 플랩 게이트 설치는 일본의 여러 지역에서 계획 단계에 있습니다. 플랩 게이트의 유효성을 확인하기 위해 유압 모델 테스트와 수치 시뮬레이션을 수행했습니다.  

Figure 1 Tsunami attacks coast line
Figure 1 Tsunami attacks coast line
Figure2 Outline of a flap gate
Figure2 Outline of a flap gate

OUTLINE OF MODEL TESTS

2.1 FLAP GATE 모델을  

부상 플랩 게이트의 두 종류가 있습니다: 첫 번째 유형은 플랩의 하부 표면에 설치된 스토퍼를 사용하여 플랩의 움직임을 제어하고 다른 하나는로드와 케이블로 트러스 메커니즘으로 플랩을 안정화합니다. 플랩은 바다 방향으로 자유롭게 이동하지만 육지로 이동할 수는 없습니다. 닫았을 때 수직이거나 바다쪽으로 기울어 진 플랩에 추가합니다.

Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)
Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)

그림 3 게이트의 초기 단계 그림 4 쓰나미 발생 (보어 웨이브) 모델의 규모는 S = 1 / 50으로 설정되었습니다. 플랩의 각도는 75°와 90°로 설정되었습니다. 텐션로드는수평에서 39° 각도로 똑 바르고 기울어 지도록 설정 됩니다. 인장로드는 직사각형 단면이 있는 3 개의 스테인리스 스틸 빔을 사용하여 제조되며 핀으로 연결됩니다. 초기 위치에서 텐션로드는 해저에 세 번 접힌 상태로 설치됩니다. 그림 3은 모델의 초기 설치 위치를 보여줍니다. 쓰나미 지루 파의 도착과 함께 플랩은 부력과 양력으로 인해 위로 떠 오릅니다. 수위가 0 일 때 보어 웨이브가 도착하더라도 수위가 상승하면 플랩이 즉시 위로 쉽게 이동할 수 있습니다. 이것은 플랩 게이트가 해안선을 따라 도로 또는 호안과 같은 육지 지역에 적용 가능하다는 것을 의미합니다. 플랩은 스티렌 폼으로 채워진 아크릴 및 폴리 염화 비닐 플레이트를 사용하여 제조되었습니다.

구조의 질량은 19.4kg이며, 모델 구조는 높이 475mm, 깊이 790mm, 두께 50mm입니다. 테스트는 그림 4에 표시된 게이트 리프트 보어 생성기를 사용하여 유량 탱크에서 수행되었습니다. 실험 수로 치수는 길이 25,000mm, 폭 1,000mm (수류 섹션) 및 높이 1,500mm입니다. 저수조는 수로 좌측에 위치하고 있으며, 무거운 무게로 현관 문 (보어 생성 게이트)을 빠르게 들어 올려 보어 웨이브를 생성합니다. 이 방법은 댐 파괴 방법이라고도합니다. 플랩 모델은 수로의 채널 바닥에 설치할 수 있도록 설계되었으며 길이 735mm, 깊이 100mm입니다.

2.2 측정 방법  

플랩 동작과 쓰나미 파형은 디지털 비디오 카메라를 사용하여 기록되었습니다. 용량 성 파고계 6 대를 설치하여 보어 파의 수위와 유속을 측정 하였다. 유속은 지정된 수위에서 미터 사이의 시간 차이를 측정 한 다음 미터 사이의 거리를 해당 시간 차이로 나누어 계산했습니다. 고정 모형 시험에서는 5cm 간격으로 9 개의 파압 계를 배치하여 파압을 측정 하였다. 진동 모델 테스트에서는 파동 압력 게이지를 5 개 위치에 설치하여 파압을 측정했습니다. 고정 모델 테스트에서는 플랩에서 작동하는 회전 모멘트를 측정하기 위해 플랩의 회전 중심에서 450mm 떨어진 위치에 플랩에 수직 인 위치에로드 셀을 부착했습니다. 진동 모델 테스트에서 스트레인 게이지는로드 장력을 측정하기 위해 플랩의 회전 중심에서 450mm 위치에로드에 부착되었습니다. 회전 모멘트는 힘의 수평 성분을 사용하여 계산되었습니다.  

테스트 결과는 아래 문서를 참고하시기 바랍니다.

Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles

나노 입자의 직접 조립을 사용한 3 차원 결정질 및 균질 금속 나노 구조

Cihan Yilmaz,† Arif E. Cetin,‡ Georgia Goutzamanidis,† Jun Huang,† Sivasubramanian Somu,†
Hatice Altug,‡,§ Dongguang Wei,^ and Ahmed Busnaina†,*

†NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, Massachusetts 02115, United States, ‡
Photonics Center and Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States, §
Bioengineering Department, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015, Switzerland, and ^
Carl Zeiss Microscopy, One Zeiss Drive, Thornwood, New York 10594, United States

ABSTRACT

나노 빌딩 블록의 직접 조립은 고유 한 특성을 가진 복잡한 나노 구조를 생성하는 다양한 경로를 제공합니다. 나노 입자의 상향식 조립은 이러한 기능적이고 새로운 나노 구조를 제작하는 가장 좋은 방법 중 하나로 간주되었습니다.

그러나 결정질, 고체 및 균질 나노 구조를 만드는 데 대한 연구가 부족합니다. 이를 위해서는 나노 입자의 조립을 유도하는 힘에 대한 근본적인 이해와 원하는 나노 구조의 형성을 가능하게하는 이러한 힘의 정밀한 제어가 필요합니다. 여기에서, 우리는 콜로이드 나노 입자가 외부에서 적용된 전기장을 사용하여 단일 단계로 조립되고 동시에 3D 고체 나노 구조로 융합 될 수 있음을 보여줍니다.

다양한 조립 매개 변수의 영향을 이해함으로써, 우리는 1 분 이내에 25nm의 작은 피처 크기를 가진 나노 기둥, 나노 박스 및 나노 링과 같은 복잡한 형상을 가진 3D 금속 재료의 제조를 보여주었습니다.

제작된 금 나노 기둥은 다결정 성질을 가지며 전기 도금 된 금보다 낮거나 동등한 전기 저항을 가지며 강력한 플라즈몬 공명(plasmonic resonances)을 지원합니다. 또한 제조 공정이 전기 도금만큼 빠르며 밀리미터 단위로 확장 할 수있는 다용도성을 보여줍니다. 이러한 결과는 제시된 접근법이 실온과 압력에서 수용액에서 새로운 3D 나노 물질 (균질 또는 하이브리드)의 제조를 용이하게 하는 동시에 반도체 나노 전자 공학 및 나노 포토닉스의 많은 제조 과제를 해결함을 의미합니다.

. Fabricating 3-D nanostructures through electric field-directed assembly of NPs. (a,b) NPs suspended in aqueous
solution are (a) assembled and (b) fused in the patterned via geometries under an applied AC electric field. (c) Removal of the
patterned insulator film after the assembly process produces arrays of 3-D nanostructures on the surface.

복잡한 지오메트리와 3 차원 (3-D) 아키텍처를 가진 나노 구조는 우수한 장치 성능과 소형화를 가능하게하기 때문에 최근 전자, 광학, 에너지 및 생명 공학을 포함한 많은 분야에서 상당한 관심을 받고 있습니다. 이러한 나노 구조를 제조하기위한 대부분의 접근 방식은 진공 기반 박막 증착 또는 전기 도금에 의존하며, 이는 시드 층과 많은 화학 첨가제를 필요로합니다. 나노 입자 (NPs)의 직접 조립은 실온과 압력에서 수용액에서 기능성 나노 물질과 나노 구조를 구축하는 유망한 대안 인 것으로 나타났습니다 .

중략…

 

Effect of via geometries on nanopillar formation. (ac) SEM images of (a) 50, (b) 100, (c) 200 nm-wide nanopillars.
The nanostructure height is 150 nm. (df) Cross-sectional view (from the 3-D simulation) of different size vias, revealing the
simulated localized electric field. (g) Electric field intensity in the via (at the center of the via) as a function of the aspect ratio
(depth/diameter) for different via diameters. The spacing between the vias is 1 μm in these simulations. (h) Electric field
intensity in the via (at the center of the via) as a function of the spacing between the vias. The via depth was 150 nm in these
simulations. The scale bars in the inset figures in (g) and (h) are 100 nm.

결정질, 고체 및 균질 나노 구조를 제조하는 연구는 부족합니다. 이것은 주로 NP의 조립 및 원하는 형상으로의 융합을 제어하는 ​​데 어려움이 있기 때문입니다. 입자 구성, 기능화 및 크기에 따라 NP의 조립 및 융합을 제어하는 ​​힘과 에너지가 다를 수 있습니다. 예를 들어, 현탁 매체를 기반으로하여 NP는 표면 에너지 및 전하와 같은 다른 표면 특성을 가질 수 있으며, 이는 조립 공정 및 기판과의 NP 상호 작용에 영향을 줄 수 있습니다 .

마찬가지로 더 큰 크기의 NP는 작은 것은 단단한 구조로 융합하기 어렵습니다. 원하는 재료와 기하학적 구조로 나노 구조를 성공적으로 제작하려면 조립 공정에 관련된 힘을 제어하는 ​​지배적 인 매개 변수를 식별하는 것이 중요합니다. 이 연구에서 우리는 다양한 금속 NP의 조립 및 융합을 가능하게하는 직접 조립 기술을 개발하여 표면에 고도로 조직화 된 3D 결정질, 고체 나노 구조를 제작했습니다.

이 기술에서는 콜로이드 NP가 조립되고 동시에 외부에서 적용된 전기장을 사용하여 3D 나노 구조로 융합됩니다. 이 방법을 사용하여 금, 구리, 알루미늄 및 텅스텐으로 만든 3 차원 나노 구조체를 시드 층과 화학 첨가제없이 실온과 압력에서 1 분 이내에 25nm의 작은 피처 크기로 제작했습니다.

나노 구조 치수의 제어는 전압, 주파수, 조립 시간 및 입자 농도와 같은 많은 지배 매개 변수의 함수로 조사되었습니다. 재료 및 전기적 특성은 제작 된 금 나노 구조가 다결정 특성을 가지며 매우 낮은 저항률 (1.96 10 7 Ω 3 m)을 가지고 있음을 보여줍니다. 제작 된 고체 3D 나노 구조는 또한 13nm의 좁은 선폭으로 강력한 플라즈 모닉 공명을 지원하는 높은 광학 품질을 보여줍니다. 이것은 단백질의 매우 민감한 플라즈몬 기반 바이오 센싱을 가능하게합니다.

자세한 내용은 본문을 참고하시기 바랍니다.

Micro/Bio/Nano Fluidics

Micro/Bio/Nano Fluidics

기계적, 유체적, 광학적 및 전자적 기능을 매우 작은 패키지에 통합한 현대적인 마이크로 유체 장치는 비용, 규모 및 대규모 시스템에 직접 통합하는 능력 면에서 기존 장치에 비해 중요한 장점을 가지고 있다. 3D모델링 및 시각화는 풍부한 기능을 제공하는 효율적인 도구이다. Ivy분석을 통해 연구 시간, 설계 및 생산 비용을 크게 절감할 수 있습니다. 마이크로, 바이오 및 나노 유체 역학은 FLOW-3D의 자유 표면 및 다중 유체 모델링 기능으로 쉽고 정확하게 시뮬레이션할 수 있습니다. 이 섹션의 시뮬레이션을 통해 보다 잘 이해할 수 있는 다양한 애플리케이션과 프로세스를 살펴보시기 바랍니다.

FLOW-3D는 시각적 관찰과 양호한 정량적 추세 예측을 바탕으로 우수한 정성적 합의를 제공했습니다. 마찬가지로 중요한 것은 소프트웨어가 설계 민감도를 정확하게 예측한다는 점이다. 그 결과, FLOW-3D는 Kodak의 고급 연구 개발 작업을 지원하는 데 유용한 통찰력을 제공했습니다.

FLOW-3D는 시각적 관찰과 양호한 정량적 추세 예측을 바탕으로 우수한 정성적 합의를 제공했습니다. 마찬가지로 중요한 것은 소프트웨어가 설계 민감도를 정확하게 예측한다는 점이다. 그 결과, FLOW-3D는 Kodak의 고급 연구 개발 작업을 지원하는 데 유용한 통찰력을 제공했습니다.

Christopher Delametter, Senior Research Scientist, Eastman Kodak Company

Acoustophoresis
Acoustophoresis
Microfluidics palette
Cell Behavior
Microfluidics particle sorting using hydrodynamics
Continuous Flow Microfluidics
Digital microfluidics
Digital Microfluidics
Droplet based microfluidics
Droplet Based Microfluidics
Optofluidics
Optofluidics
Phase change
Phase Change

Customer Case Studies

육안으로 볼 수 있는 것보다 더 작은 도전은 FLOW-3D를 사용하여 미세 유체 소자 응용 프로그램을 모델링하는 고객들이 매일 직면하는 과제입니다. FLOW-3D를 통해 이러한 엔지니어와 과학자들은 실험실에서 복제할 수 없는 것을 모델링하고, 생명을 구하는 의료 기기를 검증하고, 잉크젯 형성을 연구하며, 경우에 따라 육안 모델을 제작할 수 있습니다. 때로는 가장 작은 문제가 가장 큰 문제이기도 하지만, FLOW-3D가 도움이 될 수 있습니다.

CFD analysis of stem cell culture
Advances in Nanotechnology
Computational analysis drop formation low viscosity
Computational Analysis of Drop Formation and Detachment
Inkjet formations simulations
Inkjet Printhead Performance
Thermal bubble model
Kodak Develops New Printhead Design in 1/3rd the Time
Photonic switching platform
Microscopic Bubbles Switch Fiber-Optic Circuits
Blood volumetric fraction
Optimization of Magnetic Blood Cleansing Microdevices

관련 기술자료

Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.

Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics

마이크로 컴퓨터 단층 촬영 검사 특성을 가진 Si 다공성 프리폼에 AlSi12 합금의 침투에 대한 실험적 연구 및 수치 시뮬레이션 Ruizhe ...
더 보기
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting BrandonHayes,Travis Hainsworth, Robert MacCurdyUniversity of Colorado Boulder, Department of Mechanical ...
더 보기
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-Chip Fabrication and In-Flow 3D-Printing of Cell-Laden Microgel Constructs: From Chip to Scaffold Materials in One Integral Process

세포가 함유된 마이크로겔의 온칩 제작 및 인-플로우 3D 프린팅구성:하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지 Vollmer, Gültekin Tamgüney, Aldo BoccaciniSubmitted date: ...
더 보기
Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and ...
더 보기
Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Year 2021, Volume 7, Issue 6, 1489 - 1505, 02.09.2021 N. TONEKABONI H. SALARIAN M. Eshagh NIMVARI J. KHALEGHINIA https://doi.org/10.18186/thermal.990897 ...
더 보기
Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. Chinaa ...
더 보기
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

by  Cristina González Fernández1, Jenifer Gómez Pastora2, Arantza Basauri1, Marcos Fallanza1, Eugenio Bringas1, Jeffrey J. Chalmers2 and Inmaculada Ortiz1,* 1Department of Chemical and Biomolecular Engineering, ETSIIT, ...
더 보기
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Jenifer Gómez-Pastora,  Ioannis H. Karampelas,  Eugenio Bringas,  Edward P. Furlani &  Inmaculada Ortiz  Scientific Reports volume 9, Article number: 7265 (2019) Cite this article Abstract 이 연구에서는 ...
더 보기
Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

A. Chandorkar Published 2009 Abstract This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD ...
더 보기
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링 Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, ...
더 보기
Agitational Stresses

Agitational Stresses / 동요 스트레스

This article was contributed by Ge Bai, Scientist, MedImmune LLC.

Agitation instruments and glass vial

Agitation 연구는 생물 요법 발달에 있어 흔하고 중요한 부분이지만, 관련된 스트레스의 근본적인 특성과 단백질 안정성에 대한 영향은 완전히 이해되지 않았습니다. 동요된 스트레스 방법의 특성화는 단백질 분해 메커니즘이나 특정 민감도를 식별하는데 매우 중요합니다. 전단, 경계면, 캐비 테이션 또는 기타 유체 및 계면 장력에 의한 응력은 실험적 방법으로 측정하기 어렵거나 불가능합니다. 최근에는 다양한 주파수에서 회전 장치(Rotator), 궤도 셰이커, 자석 교반기, 와류 혼합기(그림 1참조)를 포함한 다양한 계측기를 사용하여 3-4S 유리 바이알에서 동요하는 액체의 유체 역학을 모델링하여 단백질 안정성에 잠재적으로 중요한 응력을 확인하고 정량화하였습니다. 25°C에서 물의 유동성 특성이 이러한 시뮬레이션에 사용되었습니다.

Gaining better understanding on agitational stresses applied to proteins for biopharmaceutical development

표준 FLOW3D코드는 최대 시스템 전단율, 볼륨 평균 전단률, 공기-액체 및 고체-액체 인터페이스 근처의 볼륨 평균 전단률, 총 전단, 고체-액체 인터페이스의 면적, 그리고 공기음 재생 인터페이스와 같은 단백질에 대한 잠재적으로 유해한 응력을 수치적으로 계산할 수 있도록 맞춤화하였다. 표준 소프트웨어 패키지의 추가 출력으로 표시됩니다. 시뮬레이션과 실험 사이에 바이알에 있는 유체의 자유 표면 형태를 비교하여 CFD모델을 검증하였습니다(그림 2).

Orbital schaker simulation
그림 2. CFD시뮬레이션과 300rpm정상 상태에서의(A)궤도 쉐이커와(B)35rpm, 55°위치에서의 회전 장치(Rotator)회전 장치(Rotator)에 대한 실험 사이의 유체 없는 표면 형태 비교.
Instantaneous shear rates
그림 3. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 경계면 부근에서의 순간 전단율.

응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 소수성 절 표면에 국소적으로 강한 전단을 제시하였다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

Air-liquid interface generation rates
그림 4. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 공기 액상 인터페이스 생성 속도.

우리는 설명한 각각의 동요된 방법에서 유리 용기 안의 액체에 복수의 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 저하 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

생명 공학 응용 분야

표준 FLOW-3D 코드는 시스템 전단 속도, 부피 평균 전단 속도, 공기-액체 및 고체-액체 계면 근처의 부피 평균 전단 속도, 총 전단, 고체 면적과 같은 단백질에 잠재적으로 유해한 응력이 발생하도록 맞춤화되었습니다. 액체 인터페이스 및 공기-액체 인터페이스 재생률을 수치적으로 계산하고, 표준 소프트웨어 패키지의 추가 출력과 비교할 수 있습니다. 시뮬레이션과 실험 사이에 VIAL에있는 유체의 자유 표면 모양을 비교하여 CFD 모델을 검증했습니다 (그림 2).

Orbital schaker simulation
Figure 2. Comparison of the shape of fluid free surface between CFD simulation and experiment for (A) orbital shaker at 300 rpm at steady state and (B) rotator at 35 rpm, 55° position.
Instantaneous shear rates
Figure 3. Instantaneous shear rates near interfaces at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있습니다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 hydrophobic stir bar 표면에 국소적으로 강한 전단을 제시합니다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

Air-liquid interface generation rates
Figure 4. Air-liquid interface generation rates at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

우리는 설명한 각각의 교반 방법에서 유리 용기 안의 액체에 여러가지 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 분해 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈습니다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

Micro/Biofluidics with FLOW-3D (미세/생명 유체공학)

미세/생명유체공학에 관한 모델링

  • In-Vitro Diagnostics(IVD) : 체외 진단
  • Drug Delivery : 약물 전달
  • Point of Care Devices : 현장 진료 장비
  • Microarrays : 마이크로어레이
  • Lab-on-a-chip : 랩온어칩
  • MEMS(MicroElectroMechanical Systems) : 미세전자기계시스템

미세/생명유체공학에 관한 개념

  • 대류/확산 효과
  • 표면 장력
  • 자유 표면 역학
  • 점도 효과
  • 관성 효과
  • 다공성 매체
  • 전기 역학
  • 미립자 역학
  • 반응 속도론

바이오 분야

Biotechnology

생명 공학 분야에 전산 유체 역학을 적용하는 것은 비교적 새로운 방법으로, 다양한 의료 기기를 효과적으로 사용하거나, 분석 구현하는 방법을 개선하는데 큰 도움이 될 수 있습니다.
FLOW-3D는 하나의 패키지로 구성되어 있으며, 광범위한 범위를 갖는 강력한 시뮬레이션 해석 프로그램 입니다.
FLOW-3D가 가지고 있는 기능으로 자유 표면과 제한된 갇혀 있는 유체의 흐름, 가변 밀도, 상 변화, 움직이는 물체, 기계 및 열 응력 해석이 가능합니다.
 
자세한 내용은 FLOW-3D의 모델링 기능의 전체 목록을 살펴보십시오.
Von Mises stress 분포.
FLOW-3D‘s fluid-structure interaction model 을 이용한 안압 분석 결과.
Courtesy University at Buffalo.

바이오 분야의 다양한 해석 사례


관련 기술자료

Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.

Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics

마이크로 컴퓨터 단층 촬영 검사 특성을 가진 Si 다공성 프리폼에 AlSi12 합금의 침투에 대한 실험적 연구 및 수치 시뮬레이션 Ruizhe ...
더 보기
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting BrandonHayes,Travis Hainsworth, Robert MacCurdyUniversity of Colorado Boulder, Department of Mechanical ...
더 보기
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-Chip Fabrication and In-Flow 3D-Printing of Cell-Laden Microgel Constructs: From Chip to Scaffold Materials in One Integral Process

세포가 함유된 마이크로겔의 온칩 제작 및 인-플로우 3D 프린팅구성:하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지 Vollmer, Gültekin Tamgüney, Aldo BoccaciniSubmitted date: ...
더 보기
Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and ...
더 보기
Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Year 2021, Volume 7, Issue 6, 1489 - 1505, 02.09.2021 N. TONEKABONI H. SALARIAN M. Eshagh NIMVARI J. KHALEGHINIA https://doi.org/10.18186/thermal.990897 ...
더 보기
Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. Chinaa ...
더 보기
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

by  Cristina González Fernández1, Jenifer Gómez Pastora2, Arantza Basauri1, Marcos Fallanza1, Eugenio Bringas1, Jeffrey J. Chalmers2 and Inmaculada Ortiz1,* 1Department of Chemical and Biomolecular Engineering, ETSIIT, ...
더 보기
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Jenifer Gómez-Pastora,  Ioannis H. Karampelas,  Eugenio Bringas,  Edward P. Furlani &  Inmaculada Ortiz  Scientific Reports volume 9, Article number: 7265 (2019) Cite this article Abstract 이 연구에서는 ...
더 보기
Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

A. Chandorkar Published 2009 Abstract This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD ...
더 보기
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링 Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, ...
더 보기

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :
    제목* :
    성명* :
    이메일 주소* :
    연락 전화번호* :
    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거

    Fuel Tank Simulation
    Fuel Tank Simulation
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD

    aerospace-sloshing-simulation
    aerospace-sloshing-simulation