Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.

MULTI-PHYSICS NUMERICAL MODELLING OF 316L AUSTENITIC STAINLESS STEEL IN LASER POWDER BED FUSION PROCESS AT MESO-SCALE

W.E. Alphonso1, M.Bayat1,*, M. Baier 2, S. Carmignato2, J.H. Hattel1
1Department of Mechanical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
2Department of Management and Engineering – University of Padova, Padova, Italy

ABSTRACT

L-PBF(Laser Powder Bed Fusion)는 레이저 열원을 사용하여 선택적으로 통합되는 분말 층으로 복잡한 3D 금속 부품을 만드는 금속 적층 제조(MAM) 기술입니다. 처리 영역은 수십 마이크로미터 정도이므로 L-PBF를 다중 규모 제조 공정으로 만듭니다.

기체 기공의 형성 및 성장 및 용융되지 않은 분말 영역의 생성은 다중물리 모델에 의해 예측할 수 있습니다. 또한 이러한 모델을 사용하여 용융 풀 모양 및 크기, 온도 분포, 용융 풀 유체 흐름 및 입자 크기 및 형태와 같은 미세 구조 특성을 계산할 수 있습니다.

이 작업에서는 용융, 응고, 유체 흐름, 표면 장력, 열 모세관, 증발 및 광선 추적을 통한 다중 반사를 포함하는 스테인리스 스틸 316-L에 대한 충실도 다중 물리학 중간 규모 수치 모델이 개발되었습니다. 완전한 실험 설계(DoE) 방법을 사용하는 통계 연구가 수행되었으며, 여기서 불확실한 재료 특성 및 공정 매개변수, 즉 흡수율, 반동 압력(기화) 및 레이저 빔 크기가 용융수지 모양 및 크기에 미치는 영향을 분석했습니다.

또한 용융 풀 역학에 대한 위에서 언급한 불확실한 입력 매개변수의 중요성을 강조하기 위해 흡수율이 가장 큰 영향을 미치고 레이저 빔 크기가 그 뒤를 잇는 주요 효과 플롯이 생성되었습니다. 용융 풀 크기에 대한 반동 압력의 중요성은 흡수율에 따라 달라지는 용융 풀 부피와 함께 증가합니다.

모델의 예측 정확도는 유사한 공정 매개변수로 생성된 단일 트랙 실험과 시뮬레이션의 용융 풀 모양 및 크기를 비교하여 검증됩니다.

더욱이, 열 렌즈 효과는 레이저 빔 크기를 증가시켜 수치 모델에서 고려되었으며 나중에 결과적인 용융 풀 프로파일은 모델의 견고성을 보여주기 위한 실험과 비교되었습니다.

Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology where a complex 3D metal part is built from powder layers, which are selectively consolidated using a laser heat source. The processing zone is in the order of a few tenths of micrometer, making L-PBF a multi-scale manufacturing process. The formation and growth of gas pores and the creation of un-melted powder zones can be predicted by multiphysics models. Also, with these models, the melt pool shape and size, temperature distribution, melt pool fluid flow and its microstructural features like grain size and morphology can be calculated. In this work, a high fidelity multi-physics meso-scale numerical model is developed for stainless steel 316-L which includes melting, solidification, fluid flow, surface tension, thermo-capillarity, evaporation and multiple reflection with ray-tracing. A statistical study using a full Design of Experiments (DoE) method was conducted, wherein the impact of uncertain material properties and process parameters namely absorptivity, recoil pressure (vaporization) and laser beam size on the melt pool shape and size was analysed. Furthermore, to emphasize on the significance of the above mentioned uncertain input parameters on the melt pool dynamics, a main effects plot was created which showed that absorptivity had the highest impact followed by laser beam size. The significance of recoil pressure on the melt pool size increases with melt pool volume which is dependent on absorptivity. The prediction accuracy of the model is validated by comparing the melt pool shape and size from the simulation with single track experiments that were produced with similar process parameters. Moreover, the effect of thermal lensing was considered in the numerical model by increasing the laser beam size and later on the resultant melt pool profile was compared with experiments to show the robustness of the model.

Figure 1: a) Computational domain for single track L-PBF which includes a 200 μm thick substrate and 45 μm powder layer thickness b) 3D temperature contour plot after scanning a single track with melt pool contours at two locations along the scanning direction where the green region indicates the melted regions.
Figure 1: a) Computational domain for single track L-PBF which includes a 200 μm thick substrate and 45 μm powder layer thickness b) 3D temperature contour plot after scanning a single track with melt pool contours at two locations along the scanning direction where the green region indicates the melted regions.
Figure 2: Main effects plot of uncertain parameters: absorptivity, recoil pressure coefficient and laser beam radius on the melt pool dimensions (width and depth)
Figure 2: Main effects plot of uncertain parameters: absorptivity, recoil pressure coefficient and laser beam radius on the melt pool dimensions (width and depth)
Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.
Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.
Figure 4: Validation of Numerical model with Recoil pressure coefficient B= 20, absorptivity = 0.45 and a) laser beam radius = 15 µm b) laser beam radius = 20 µm
Figure 4: Validation of Numerical model with Recoil pressure coefficient B= 20, absorptivity = 0.45 and a) laser beam radius = 15 µm b) laser beam radius = 20 µm

CONCLUSION

In this work, a high-fidelity multi-physics numerical model was developed for L-PBF using the FVM method in Flow-3D. The impact of uncertainty in the input parameters including absorptivity, recoil pressure and laser beam size on the melt pool is addressed using a DoE method. The DoE analysis shows that absorptivity has the highest impact on the melt pool. The recoil pressure and laser beam size only become significant once absorptivity is 0.45. Furthermore, the numerical model is validated by comparing the predicted melt pool shape and size with experiments conducted with similar process parameters wherein a high prediction accuracy is achieved by the model. In addition, the impact of thermal lensing on the melt pool dimensions by increasing the laser beam spot size is considered in the validated numerical model and the resultant melt pool is compared with experiments.

REFERENCES

[1] T. Bonhoff, M. Schniedenharn, J. Stollenwerk, P. Loosen, Experimental and theoretical analysis of thermooptical effects in protective window for selective laser melting, Proc. Int. Conf. Lasers Manuf. LiM. (2017)
26–29. https://www.wlt.de/lim/Proceedings2017/Data/PDF/Contribution31_final.pdf.
[2] L.R. Goossens, Y. Kinds, J.P. Kruth, B. van Hooreweder, On the influence of thermal lensing during selective
laser melting, Solid Free. Fabr. 2018 Proc. 29th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf.
SFF 2018. (2020) 2267–2274.
[3] J. Shinjo, C. Panwisawas, Digital materials design by thermal-fluid science for multi-metal additive
manufacturing, Acta Mater. 210 (2021) 116825. https://doi.org/10.1016/j.actamat.2021.116825.
[4] Z. Zhang, Y. Huang, A. Rani Kasinathan, S. Imani Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, 3-
Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat
sources based on varied thermal conductivity and absorptivity, Opt. Laser Technol. 109 (2019) 297–312.
https://doi.org/10.1016/j.optlastec.2018.08.012.
[5] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and
experimental validation, Addit. Manuf. 30 (2019) 100835. https://doi.org/10.1016/j.addma.2019.100835.
[6] M. Bayat, S. Mohanty, J.H. Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution
in IN718 made by multi-track/multi-layer L-PBF, Int. J. Heat Mass Transf. 139 (2019) 95–114.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003.
[7] J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, B. Van Hooreweder, On the influence
of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf. 23 (2018) 161–169.
https://doi.org/10.1016/j.addma.2018.08.006.

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys

Mohamad Bayat Venkata K. Nadimpalli David B. Pedersen Jesper H. Hattel
Department of mechanical engineering, Technical University of Denmark (DTU), Building 425, 2800 Kgs., Lyngby, Denmark

Received 21 August 2020, Revised 18 November 2020, Accepted 25 November 2020, Available online 15 December 2020.

Abstract

Several different interfacial forces affect the free surface of liquid metals during metal additive manufacturing processes. One of these is thermo-capillarity or the so-called Marangoni effect. In this work, a novel framework is introduced for unraveling the effects of thermo-capillarity on the melt pool morphology/size and its thermo-fluid conditions during the Laser Powder Bed Fusion (L-PBF) process. In this respect, a multi-physics numerical model is developed based on the commercial software package Flow-3D. The model is verified and validated via mesh-independency analysis and by comparison of the predicted melt pool profile with those from lab-scale single-track experiments. Two sets of parametric studies are carried out to find the role of both positive and inverse thermo-capillarity on the melt pool shape and its thermal and fluid dynamics conditions. The thermo-fluid conditions of the melt pool are further investigated using appropriate dimensionless numbers. The results show that for the higher Marangoni number cases, the melt pool temperature drops, and at the same time, the temperature field becomes more uniform. Also, it is shown that at higher Marangoni numbers, temperature gradients decrease, thus reducing the role of conduction in the heat transfer from the melt pool. Furthermore, for the first time, a novel methodology is introduced for the calculation of the melt pool’s average Nusselt number. The average Nusselt numbers calculated for the positive and inverse thermo-capillarity are then used for finding the effective liquid conductivity required for a computationally cheaper pure heat conduction simulation. The results show that the deviation between the average melt pool temperature, using the pure conduction model with effective conductivity, and the one obtained from the advanced fluid dynamics model is less than 2%.

Keywords

Thermo-capillarity, Melt pool, Heat and fluid flow, Numerical model, L-PBF

Korea Abstract

금속 적층 제조 공정 중 액체 금속의 자유 표면에 여러 가지 다른 계면력이 영향을 미칩니다. 이들 중 하나는 열 모세관 또는 소위 Marangoni 효과입니다.

이 작업에서는 L-PBF (Laser Powder Bed Fusion) 공정 중 용융 풀 형태 / 크기 및 열 유동 조건에 대한 열 모세관의 영향을 밝히기 위한 새로운 프레임워크가 도입되었습니다.

이러한 점에서 상용 소프트웨어 패키지 Flow-3D를 기반으로 다중 물리 수치 모델이 개발되었습니다. 모델은 메쉬 독립 분석을 통해 그리고 예측 된 용융 풀 프로필을 실험실 규모의 단일 트랙 실험에서 얻은 프로필과 비교하여 검증 및 검증됩니다.

용융 풀 모양과 열 및 유체 역학 조건에 대한 양 및 역 열 모세관의 역할을 찾기 위해 두 세트의 매개 변수 연구가 수행됩니다. 용융 풀의 열 유동 조건은 적절한 무 차원 숫자를 사용하여 추가로 조사됩니다.

결과는 Marangoni 수가 더 높은 경우 용융 풀 온도가 떨어지고 동시에 온도 필드가 더 균일 해짐을 보여줍니다. 또한 Marangoni 수가 높을수록 온도 구배가 감소하여 용융 풀에서 열 전달에서 전도의 역할이 감소하는 것으로 나타났습니다.

또한 용융 풀의 평균 Nusselt 수를 계산하기위한 새로운 방법론이 처음으로 도입되었습니다. 그런 다음 양수 및 역 열 모세관에 대해 계산 된 평균 Nusselt 수는 계산적으로 더 저렴한 순수 열 전도 시뮬레이션에 필요한 효과적인 액체 전도도를 찾는 데 사용됩니다. 결과는 유효 전도도가 있는 순수 전도 모델을 사용한 평균 용융 풀 온도와 고급 유체 역학 모델에서 얻은 편차가 2 % 미만임을 보여줍니다.

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig1
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig1
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig2
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig2
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig3
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig3
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig4
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig4
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig5
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig5
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig6
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig6
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig8
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig8
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig9
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig9
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig10
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig10
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig11
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig11

Digital Microfluidics

Electrowetting은 전기장을 사용하여 표면 습윤 특성을 변경하는 과정입니다. Digital microfluidics는 전기 습식이 개별 유체 방울을 제어하고 조작하는데 사용되는 미세 유체 분야입니다. 이 아이디어는 디지털 마이크로 일렉트로닉스에서 영감을 얻었지만 전류 대신 이산 (또는 디지털화 된)액적을 사용하여 특정 시간 내에 특정 거리에 포함된 특정 양의 유체 또는 반응물을 이동합니다. 디지털 마이크로 플루이딕스는 높은 재구성 가능성과 대규모 병렬화를 통해 프로세스 속도를 높일 수있는 능력 때문에 다양한 바이오칩 설계에서 응용 분야를 찾습니다.

가장 중요한 표면 습윤 특성은 유체와 표면 사이의 접촉각입니다. FLOW-3D의 강력한 표면장력 모델은 전기 운동 모델과 함께 유전 영동, 열 모세관 작동 (온도에 따른 표면 장력을 통한 작동) 및 전기 습윤 자체와 같은 디지털 미세 유체 공정에서 습윤 역학을 포착하는 데 사용됩니다.

Capillary Flows

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서 긴 마이크로 채널은 종종 액체 용액을 한 장소에서 다른 장소로 전달하는 데 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력이 액체를 마이크로 채널로 당깁니다(액체가 칩 표면에 “습기”되는 경우). 이 페이지에서는 충전, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D에 대한 몇 가지 특정 용도에 대해 다룹니다.

Marangoni Flows

마랑고니는 그 중심에 가열된 물 접시에 흐릅니다. 균일하지 않은 표면 장력에 의해 발생하는 흐름은 20ºC의 초기 온도에서 깊이 0.75cm의 얕은 8.0cm의 물 접시에 의해 입증됩니다. 원형 접시 중앙에 놓인 원통형 막대는 직경 0.5cm로 80Cº의 온도로 가열되고 0.05cm의 깊이까지 수면에 잠깁니다. 핫 로드 주변의 물이 가열되면 표면 장력이 0.1678dyne/cm/ºC만큼 감소하여 표면이 접시의 바깥쪽 림 쪽으로 수축됩니다. 수축은 처음에 표면에 뿌려진 질량이 없는 마커 입자에 의해 나타납니다.

Capillary Filling

모세관 충전 공정을 이해하는 것은 칩 설계에 중요합니다. 액체 흐름 경로의 기하학적 구조가 다르면 기포를 고정할 수 있는 등의 모세관 충진 동작이 달라질 수 있습니다. 충전 프로세스에 대한 지식은 설계자가 챔버, 결합 기둥, 분할 및 밸브와 같은 칩의 내부 구조를 정렬하는 데 도움이 됩니다. 오른쪽의 시뮬레이션은 모세관 작용의 분석적 예측을 검증합니다. 모세관 충전은 표면 장력과 중력에 의해 균형을 이루며, 이는 FLOW-3D로 정확하게 예측되는 기본 공정입니다.

Thermocapillary Switch

910/5000광선의 경로 안팎으로 이동하는 소량의 액체는 굴절이나 반사를 통해 다른 경로로 방향을 바꿀 수 있습니다. 이 개념은 광선이 광섬유에 들어가면 내부 반사에 의해 포착되는 광섬유와 관련하여 특히 매력적입니다. 복잡한 광학 회로를 만들려면 한 광섬유에서 다른 광섬유로 빛을 리디렉션 할 수있는 “스위치”가 필요합니다.

제안 된 한 가지 개념은 열 모세관을 기반으로합니다. 광섬유 광선을 교차하는 마이크로 채널에 액체의 작은 방울을 놓습니다. 방울이 채널을 따라 빔이 통과해야하는 곳으로 이동하면 빔이 다른 섬유로 반사됩니다. 방울은 양면을 다르게 가열하여 이동합니다. 이것은 방울이 채널의 더 차가운 끝쪽으로 당겨 지도록 방울의 양쪽에있는 반월판의 표면 장력의 변화를 일으 킵니다.

Whole Blood Spontaneous Capillary Flow

Sketch of the cross section of the device (w=150 µm, h1=300 µm, h2=1200 µm, α=14.5o)

모세관 기반 마이크로 시스템은 추가 작동 메커니즘이 필요하지 않기 때문에 저렴하고 제작하기 쉽습니다. 마이크로펌프나 주사기와 같은 일반적인 마이크로 시스템은 부피가 크고 휴대할 수 없는 흐름 작동을 필요로 합니다.

버팔로 대학의 최근 연구는 모세관 유동 작용을 사용하여 미세 기기에서 액체를 이동시키는 간단한 해결책을 연구했습니다. 이 작업은 FLOW-3D를 사용하여 수정된 V-그루브 채널에서 자발적 모세관 흐름을 시뮬레이션합니다. 좁은 V-그루브 기하학(왼쪽)은 전혈과 같은 높은 점도의 유체도 이 유체를 통해 이동할 수 있기 때문에 좋은 솔루션을 제공합니다. 홈의 끝부분은 자발적인 모세관 흐름을 촉진하고 평행판은 충분한 혈액수송을 보장합니다.

본 연구에서는 FLOW-3D를 사용하여 채널 내 유체 헤드의 유속과 액체 전방의 진행을 추정합니다.

결과는 실험 및 분석(간단한) 결과와 비교됩니다. 아래 그림은 수치, 실험 및 분석 결과의 비교를 보여줍니다. FLOW-3D 결과는 실험 결과와 매우 일치합니다.

FLOW-3D Results

Analysis A: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes
Analysis B: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes

Animation of the results post-processed in FlowSight.

References

J. Berthiera, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Pohera, D. Gosselin, M. Cubizolles, P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 2014

Lab-on-a-chip – Thermocapillary actuation (열 모세관 작동)

Thermocapillary actuation (열 모세관 작동)

  • 열 효과를 사용한 랩온어칩의 미세 액체의 길
    – 온도에 의존하는 표면 장력
    – 외부의 기계적인 힘이 필요하지 않음
    – 프로그래밍이 가능한 마이크로 히터 어레이를 통해 열 효과 추가
  • 유체의 고유한 습윤성으로 인해 유체 손실이 발생
    – 열 모세관 작동 외에도 패턴화 된 (친수성 또는 소수성) 표면을 배치하여 손실을 최소화 할 수 있음

공간의 다양한 표면 장력

  • 차가운 유체에서 표면 장력이 높기 때문에 공간의 변화가 발생함
    – 높은 표면 장력으로 유체를 함께 유지
    – 유체가 따뜻한 곳에서 차가운 곳으로 당겨짐
    – 유체의 움직임은 다음의 식을 통해 알 수 있음

FLOW-3D에서의 시뮬레이션

  • 미세 액체는 인접 구역의 온도에 따라 움직임 (소수성과 친수성)