참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

FLOW-3D AM 미세 구조 예측 | 열 응력 해석

미세 구조 예측

냉각 속도 및 온도 구배와 같은 FLOW-3D AM 데이터를 미세 구조 모델에 입력하여 결정 성장 및 수상 돌기 암 간격을 예측할 수 있습니다. 

레이저 파우더 베드 융합으로 제작 된 니켈 기반 초합금의 열전달, 유체 흐름 및 응고 미세 구조 모델링

오하이오 주립 대학의 연구원들은 니켈 기반 초합금의 미세 구조 진화를 예측하기 위해 용융 풀과 고체 / 액체 인터페이스의 적절한 위치에서 열 구배 및 냉각 속도 데이터를 추출했습니다.

참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.
참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

열 응력 | Thermal Stresses

FLOW-3D AM 시뮬레이션의 결과를 ABAQUS 또는 MSC NASTRAN과 같은 FEA 소프트웨어에 입력하여 추가 열 응력 분석을 실행할 수 있습니다. 여기에서 T- 조인트의 레이저 용접 시뮬레이션 결과를 추가 응력 분석을 위해 ABAQUS로 가져 오는 방법을 볼 수 있습니다. 마찬가지로 LPBF 시뮬레이션에서 응고 된 용융 풀 데이터의 결과를 사용하여 다른 FEA 소프트웨어에서 열 응력 및 왜곡 분석을 연구 할 수 있습니다.

Thermal Stresses Analysis Fig1
Thermal Stresses Analysis Fig1
Thermal Stresses Analysis Fig2
Thermal Stresses Analysis Fig2

Thermal Stresses Case Study

Directed Energy Deposition

DED (Directed Energy Deposition)는 레이저 또는 전자 빔과 같은 에너지 소스를 사용하여 가열 및 융합되는 와이어 또는 분말을 증착하여 부품을 만드는 적층 제조 공정입니다. FLOW-3D AM 은 분말 또는 와이어 이송 속도 및 크기 특성, 레이저 출력 및 스캔 속도와 같은 공정 매개 변수를 고려하여 DED 공정을 시뮬레이션 할 수 있습니다. 또한, 기판과 분말 재료의 서로 다른 합금에 대해 독립적 인 열 물리적 재료 특성을 정의하여 다중 재료 DED 프로세스를 시뮬레이션 할 수 있습니다. 

레이저 물리학의 구현과 열 전달, 응고, 표면 장력, 차폐 가스 효과 및 반동 압력을 포함한 압력 효과를 통해 연구원은 결과 용접 비드의 강도 및 균일성에 대한 공정 매개 변수의 영향을 정확하게 분석 할 수 있습니다. 또한 이러한 시뮬레이션을 여러 레이어로 확장하여 후속 레이어 간의 융합을 분석 할 수 있습니다. 

FLOW-3D AM

flow3d AM-product
FLOW-3D AM-product

와이어 파우더 기반 DED | Wire Powder Based DED

일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.

와이어 기반 DED | Wire Based DED

와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.

FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

Melting | 파우더 베드 용해

DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

Multilayer | 다층 적층 제조

용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.

해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

LPBF의 키홀 링 | Keyholing in LPBF

키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

Scan Strategy | 스캔 전략

스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.

Beam Shaping | 빔 형성

레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.

이 영역에서 수행 된 일부 작업에 대해 자세히 알아 보려면 “The Next Frontier of Metal AM”웨비나를 시청하십시오.

Multi-material Powder Bed Fusion | 다중 재료 분말 베드 융합

이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.

다중 재료 용접 사례 연구

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사

GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

The European Physical Journal Plus volume 136, Article number: 704 (2021) Cite this article

Abstract

Electromagnetic metal casting (EMC) is a casting technique that uses electromagnetic energy to heat metal powders. It is a faster, cleaner, and less time-consuming operation. Solid metals create issues in electromagnetics since they reflect the electromagnetic radiation rather than consume it—electromagnetic energy processing results in sounded pieces with higher-ranking material properties and a more excellent microstructure solution. For the physical production of the electromagnetic casting process, knowledge of electromagnetic material interaction is critical. Even where the heated material is an excellent electromagnetic absorber, the total heating quality is sometimes insufficient. Numerical modelling works on finding the proper coupled effects between properties to bring out the most effective operation. The main parameters influencing the quality of output of the EMC process are: power dissipated per unit volume into the material, penetration depth of electromagnetics, complex magnetic permeability and complex dielectric permittivity. The contact mechanism and interference pattern also, in turn, determines the quality of the process. Only a few parameters, such as the environment’s temperature, the interference pattern, and the rate of metal solidification, can be controlled by AI models. Neural networks are used to achieve exact outcomes by stimulating the neurons in the human brain. Additive manufacturing (AM) is used to design mold and cores for metal casting. The models outperformed the traditional DFA optimization approach, which is susceptible to local minima. The system works only offline, so real-time analysis and corrections are not yet possible.

Korea Abstract

전자기 금속 주조 (EMC)는 전자기 에너지를 사용하여 금속 분말을 가열하는 주조 기술입니다. 더 빠르고 깨끗하며 시간이 덜 소요되는 작업입니다.

고체 금속은 전자기 복사를 소비하는 대신 반사하기 때문에 전자기학에서 문제를 일으킵니다. 전자기 에너지 처리는 더 높은 등급의 재료 특성과 더 우수한 미세 구조 솔루션을 가진 사운드 조각을 만듭니다.

전자기 주조 공정의 물리적 생산을 위해서는 전자기 물질 상호 작용에 대한 지식이 중요합니다. 가열된 물질이 우수한 전자기 흡수재인 경우에도 전체 가열 품질이 때때로 불충분합니다. 수치 모델링은 가장 효과적인 작업을 이끌어 내기 위해 속성 간의 적절한 결합 효과를 찾는데 사용됩니다.

EMC 공정의 출력 품질에 영향을 미치는 주요 매개 변수는 단위 부피당 재료로 분산되는 전력, 전자기의 침투 깊이, 복합 자기 투과성 및 복합 유전율입니다. 접촉 메커니즘과 간섭 패턴 또한 공정의 품질을 결정합니다. 환경 온도, 간섭 패턴 및 금속 응고 속도와 같은 몇 가지 매개 변수 만 AI 모델로 제어 할 수 있습니다.

신경망은 인간 뇌의 뉴런을 자극하여 정확한 결과를 얻기 위해 사용됩니다. 적층 제조 (AM)는 금속 주조용 몰드 및 코어를 설계하는 데 사용됩니다. 모델은 로컬 최소값에 영향을 받기 쉬운 기존 DFA 최적화 접근 방식을 능가했습니다. 이 시스템은 오프라인에서만 작동하므로 실시간 분석 및 수정은 아직 불가능합니다.

electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig9
electromagnetic metal casting computation designs Fig9

References

  1. 1.J. Sun, W. Wang, Q. Yue, Review on electromagnetic-matter interaction fundamentals and efficient electromagnetic-associated heating strategies. Materials 9(4), 231 (2016). https://doi.org/10.3390/ma9040231ADS Article Google Scholar 
  2. 2.E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, electromagnetic and spark plasma sintering methods. Materials 10(11), 1255 (2017). https://doi.org/10.3390/ma10111255ADS Article Google Scholar 
  3. 3.D. Agrawal, Latest global developments in electromagnetic materials processing. Mater. Res. Innov. 14(1), 3–8 (2010). https://doi.org/10.1179/143307510×12599329342926Article Google Scholar 
  4. 4.S. Singh, P. Singh, D. Gupta, V. Jain, R. Kumar, S. Kaushal, Development and characterization of electromagnetic processed cast iron joint. Eng. Sci. Technol. Int. J. (2018). https://doi.org/10.1016/j.jestch.2018.10.012Article Google Scholar 
  5. 5.S. Singh, D. Gupta, V. Jain, Electromagnetic melting and processing of metal–ceramic composite castings. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1235–1243 (2016). https://doi.org/10.1177/0954405416666900Article Google Scholar 
  6. 6.S. Singh, D. Gupta, V. Jain, Novel electromagnetic composite casting process: theory, feasibility and characterization. Mater. Des. 111, 51–59 (2016). https://doi.org/10.1016/j.matdes.2016.08.071Article Google Scholar 
  7. 7.J. Lucas, J, What are electromagnetics? LiveScience. (2018). https://www.livescience.com/50259-Electromagnetics.html
  8. 8.R. Samyal, A.K. Bagha, R. Bedi, the casting of materials using electromagnetic energy: a review. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.255Article Google Scholar 
  9. 9.S. Singh, D. Gupta, V. Jain, Processing of Ni-WC-8Co MMC casting through electromagnetic melting. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1291954Article Google Scholar 
  10. 10.R. Singh, S. Singh, V. Mahajan, Investigations for dimensional accuracy of investment casting process after cycle time reduction by advancements in shell moulding. Procedia Mater. Sci. 6, 859–865 (2014). https://doi.org/10.1016/j.mspro.2014.07.103Article Google Scholar 
  11. 11.R.R. Mishra, A.K. Sharma, On melting characteristics of bulk Al-7039 alloy during in-situ electromagnetic casting. Appl. Therm. Eng. 111, 660–675 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.122Article Google Scholar 
  12. 12.S. Zhang, 10 Different types of casting process. (2021). MachineMfg.com, https://www.machinemfg.com/types-of-casting/
  13. 13.Envirocare, Foundry health risks. (2013). https://envirocare.org/foundry-health-risks/
  14. 14.S.S. Gajmal, D.N. Raut, A review of opportunities and challenges in electromagnetic assisted casting. Recent Trends Product. Eng. 2(1) (2019)
  15. 15.R.R. Mishra, A.K. Sharma, Electromagnetic-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos. Part A (2015). https://doi.org/10.1016/j.compositesa.2015.10.035Article Google Scholar 
  16. 16.S. Chandrasekaran, T. Basak, S. Ramanathan, Experimental and theoretical investigation on electromagnetic melting of metals. J. Mater. Process. Technol. 211(3), 482–487 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.001Article Google Scholar 
  17. 17.C.R. Bird, J.M. Mertz, U.S. Patent No. 4655276. (U.S. Patent and Trademark Office, Washington, DC, 1987)
  18. 18.R.R. Mishra, A.K. Sharma, Experimental investigation on in-situ electromagnetic casting of copper. IOP Conf. Ser. Mater. Sci. Eng. 346, 012052 (2018). https://doi.org/10.1088/1757-899x/346/1/012052Article Google Scholar 
  19. 19.V. Gangwar, S. Kumar, V. Singh, H. Singh, Effect of process parameters on hardness of AA-6063 in-situ electromagnetic casting by using taguchi method, in IOP Conference Series: Materials Science and Engineering, vol. 804(1) (IOP Publishing, 2020), p. 012019
  20. 20.X. Ye, S. Guo, L. Yang, J. Gao, J. Peng, T. Hu, L. Wang, M. Hou, Q. Luo, New utilization approach of electromagnetic thermal energy: preparation of metallic matrix diamond tool bit by electromagnetic hot-press sintering. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.183Article Google Scholar 
  21. 21.S. Das, A.K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Electromagnetic processing: an overview. Bull. Mater. Sci. 32(1), 1–13 (2009). https://doi.org/10.1007/s12034-009-0001-4Article Google Scholar 
  22. 22.K.L. Glass, D.M. Ashby, U.S. Patent No. 9050656. (U.S. Patent and Trademark Office, Washington, DC, 2015)
  23. 23.S. Verma, P. Gupta, S. Srivastava, S. Kumar, A. Anand, An overview: casting/melting of non ferrous metallic materials using domestic electromagnetic oven. J. Mater. Sci. Mech. Eng. 4(4), (2017). p-ISSN: 2393-9095; e-ISSN: 2393-9109
  24. 24.S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and electromagnetic furnaces. Scripta Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034Article Google Scholar 
  25. 25.Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.006Article Google Scholar 
  26. 26.D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for electromagnetic applications. J. Eur. Ceram. Soc. 33(1), 87–93 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.002Article Google Scholar 
  27. 27.M.H. Awida, N. Shah, B. Warren, E. Ripley, A.E. Fathy, Modeling of an industrial Electromagnetic furnace for metal casting applications. 2008 IEEE MTT-S Int. Electromagn. Symp. Digest. (2008). https://doi.org/10.1109/mwsym.2008.4633143Article Google Scholar 
  28. 28.P.K. Loharkar, A. Ingle, S. Jhavar, Parametric review of electromagnetic-based materials processing and its applications. J. Market. Res. 8(3), 3306–3326 (2019). https://doi.org/10.1016/j.jmrt.2019.04.004Article Google Scholar 
  29. 29.E.B. Ripley, J.A. Oberhaus, WWWeb search power page-melting and heat treating metals using electromagnetic heating-the potential of electromagnetic metal processing techniques for a wide variety of metals and alloys is. Ind. Heat. 72(5), 65–70 (2005)Google Scholar 
  30. 30.J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2015)Google Scholar 
  31. 31.B. Ravi, Metal Casting: Computer-Aided Design and Analysis, 1st edn. (PHI Learning Ltd, 2005)Google Scholar 
  32. 32.D.E. Clark, W.H. Sutton, Electromagnetic processing of materials. Annu. Rev. Mater. Sci. 26(1), 299–331 (1996)ADS Article Google Scholar 
  33. 33.A.D. Abdullin, New capabilities of software package ProCAST 2011 for modeling foundry operations. Metallurgist 56(5–6), 323–328 (2012). https://doi.org/10.1007/s11015-012-9578-8Article Google Scholar 
  34. 34.J. Ha, P. Cleary, V. Alguine, T. Nguyen, Simulation of die filling in gravity die casting using SPH and MAGMAsoft, in Proceedings of 2nd International Conference on CFD in Minerals & Process Industries (1999) pp. 423–428
  35. 35.M. Sirviö, M. Woś, Casting directly from a computer model by using advanced simulation software FLOW-3D Cast Ž. Arch. Foundry Eng. 9(1), 79–82 (2009)Google Scholar 
  36. 36.NOVACAST Systems, Nova-Solid/Flow Brochure, NOVACAST, Ronneby (2015)
  37. 37.AutoCAST-X1 Brochure, 3D Foundry Tech, Mumbai
  38. 38.EKK, Inc. Metal Casting Simulation Software and Consulting Services, CAPCAST Brochure
  39. 39.P. Muenprasertdee, Solidification modeling of iron castings using SOLIDCast (2007)
  40. 40.CasCAE, CT-CasTest Inc. Oy, Kerava
  41. 41.E. Dominguez-Tortajada, J. Monzo-Cabrera, A. Diaz-Morcillo, Uniform electric field distribution in electromagnetic heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans. Electromagn. Theory Tech. 55(1), 85–91 (2007). https://doi.org/10.1109/tmtt.2006.886913ADS Article Google Scholar 
  42. 42.B. Warren, M.H. Awida, A.E. Fathy, Electromagnetic heating of metals. IET Electromagn. Antennas Propag. 6(2), 196–205 (2012)Article Google Scholar 
  43. 43.S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J. Alloy. Compd. 466(1–2), 67–72 (2008). https://doi.org/10.1016/j.jallcom.2007.11.010Article Google Scholar 
  44. 44.Penn State, Metal Parts Made In The Electromagnetic Oven. ScienceDaily. (1999) Retrieved May 8, 2021, from www.sciencedaily.com/releases/1999/06/990622055733.htm
  45. 45.R.R. Mishra, A.K. Sharma, A review of research trends in electromagnetic processing of metal-based materials and opportunities in electromagnetic metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421ADS Article Google Scholar 
  46. 46.D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, Free-space measurement of complex permittivity and complex permeability of magnetic materials at Electromagnetic frequencies. IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). https://doi.org/10.1109/19.52520Article Google Scholar 
  47. 47.J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 38, 1096–1103 (1990)ADS Article Google Scholar 
  48. 48.M. Bologna, A. Petri, B. Tellini, C. Zappacosta, Effective magnetic permeability measurementin composite resonator structures. Instrum. Meas. IEEE Trans. 59, 1200–1206 (2010)Article Google Scholar 
  49. 49.B. Ravi, G.L. Datta, Metal casting–back to future, in 52nd Indian Foundry Congress, (2004)
  50. 50.D. El Khaled, N. Novas, J.A. Gazquez, F. Manzano-Agugliaro. Microwave dielectric heating: applications on metals processing. Renew. Sustain. Energy Rev. 82, 2880–2892 (2018). https://doi.org/10.1016/j.rser.2017.10.043Article Google Scholar 
  51. 51.H. Sekiguchi, Y. Mori, Steam plasma reforming using Electromagnetic discharge. Thin Solid Films 435, 44–48 (2003)ADS Article Google Scholar 
  52. 52.J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Study on the coupled effect of wave absorption and metal discharge generation under electromagnetic irradiation. Ind. Eng. Chem. Res. 53, 2042–2051 (2014)Article Google Scholar 
  53. 53.K.I. Rybakov, E.A. Olevsky, E.V. Krikun, Electromagnetic sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96(4), 1003–1020 (2013). https://doi.org/10.1111/jace.12278Article Google Scholar 
  54. 54.A.K. Shukla, A. Mondal, A. Upadhyaya, Numerical modeling of electromagnetic heating. Sci. Sinter. 42(1), 99–124 (2010)Article Google Scholar 
  55. 55.M. Chiumenti, C. Agelet de Saracibar, M. Cervera, On the numerical modeling of the thermomechanical contact for metal casting analysis. J. Heat Transf. 130(6), (2008). https://doi.org/10.1115/1.2897923Article MATH Google Scholar 
  56. 56.B. Ravi, Metal Casting: Computer-Aided Design and Analysis. (PHI Learning Pvt. Ltd., 2005)
  57. 57.J.H. Lee, S.D. Noh, H.-J. Kim, Y.-S. Kang, Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018). https://doi.org/10.3390/s18051428ADS Article Google Scholar 
  58. 58.B. Aksoy, M. Koru, Estimation of casting mold interfacial heat transfer coefficient in pressure die casting process by artificial intelligence methods. Arab. J. Sci. Eng. 45, 8969–8980 (2020). https://doi.org/10.1007/s13369-020-04648-7Article Google Scholar 
  59. 59.S.S. Miriyala, V.R. Subramanian, K. Mitra, TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur. J. Oper. Res. 264(1), 294–309 (2018). https://doi.org/10.1016/j.ejor.2017.05.026MathSciNet Article MATH Google Scholar 
  60. 60.J.K. Kittu, G.C.M. Patel, M. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. (2015). https://doi.org/10.1007/s40962-015-0001-7Article Google Scholar 
  61. 61.W. Chen, B. Gutmann, C.O. Kappe, Characterization of electromagnetic-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 1, 39–48 (2012)Article Google Scholar 
  62. 62.J. Walker, A. Prokop, C. Lynagh, B. Vuksanovich, B. Conner, K. Rogers, J. Thiel, E. MacDonald, Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.02.018Article Google Scholar 
  63. 63.G.C. Manjunath Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004Article Google Scholar 
  64. 64.G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86, 3051–3065 (2016). https://doi.org/10.1007/s00170-016-8416-8Article Google Scholar 
  65. 65.M. Ferguson, R. Ak, Y.T. Lee, K.H. Law, Automatic localization of casting defects with convolutional neural networks, in 2017 IEEE International Conference on Big Data (Big Data) (Boston, MA, USA, 2017), pp. 1726–1735. https://doi.org/10.1109/BigData.2017.8258115.
  66. 66.P.K.D.V. Yarlagadda, Prediction of die casting process parameters by using an artificial neural network model for zinc alloys. Int. J. Prod. Res. 38(1), 119–139 (2000). https://doi.org/10.1080/002075400189617Article MATH Google Scholar 
  67. 67.G.C. ManjunathPatel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018Article Google Scholar 
  68. 68.J. Zheng, Q. Wang, P. Zhao et al., Optimization of high-pressure die-casting process parameters using artificial neural network. Int. J. Adv. Manuf. Technol. 44, 667–674 (2009). https://doi.org/10.1007/s00170-008-1886-6Article Google Scholar 
  69. 69.E. Mares, J. Sokolowski, Artificial intelligence-based control system for the analysis of metal casting properties. J. Achiev. Mater. Manuf. Eng. 40, 149–154 (2010)Google Scholar 
  70. 70.K.S. Senthil, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters—a study. Exp. Tech. 37(6), 8–14 (2013)Article Google Scholar 
  71. 71.N.K. Bhoi, H. Singh, S. Pratap, P.K. Jain, Electromagnetic material processing: a clean, green, and sustainable approach. Sustain. Eng. Prod. Manuf. Technol. (2019). https://doi.org/10.1016/b978-0-12-816564-5.00001-3Article Google Scholar 
  72. 72.K.S. Senthil, D.A. Daniel, An investigation of boiler grade tube and tube plate without block by using friction welding process. Mater. Today Proc. 5(2), 8567–8576 (2018)Article Google Scholar 
  73. 73.E. Hetmaniok, D. Słota, A. Zielonka, Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms. Appl. Math. Modell. 39(16), 4797–4807 (2015). https://doi.org/10.1016/j.apm.2015.03.056Article MATH Google Scholar 
  74. 74.C.V. Kumar, S. Muthukumaran, A. Pradeep, S.S. Kumaran, Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int. J. Mech. Mater. Eng. 6(2), 300–306 (2011)Google Scholar 
  75. 75.T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 150, 1598 (2020). https://doi.org/10.1016/j.matpr.2019.10.051Article Google Scholar 
  76. 76.B.P. Pehrson, A.F. Moore (2014). U.S. Patent No. 8708031 (U.S. Patent and Trademark Office, Washington, DC, 2014)
  77. 77.Liu, J., & Rynerson, M. L. (2008). U.S. Patent No. 7,461,684. Washington, DC: U.S. Patent and Trademark Office.
  78. 78.K. Salonitis, B. Zeng, H.A. Mehrabi, M. Jolly, The challenges for energy efficient casting processes. Procedia CIRP 40, 24–29 (2016). https://doi.org/10.1016/j.procir.2016.01.043Article Google Scholar 
  79. 79.R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using electromagnetic heating. Int. J. Metal Cast. 10, 1–13 (2017). https://doi.org/10.1007/s40962-017-0176-1Article Google Scholar 
  80. 80.R.R. Mishra, A.K. Sharma, Effect of susceptor and Mold material on microstructure of in-situ electromagnetic casts of Al–Zn–Mg alloy. Mater. Des. 131, 428–440 (2017). https://doi.org/10.1016/j.matdes.2017.06.038Article Google Scholar 
  81. 81.S. Kaushal, S. Bohra, D. Gupta, V. Jain, On processing and characterization of Cu–Mo-based castings through electromagnetic heating. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00481-8Article Google Scholar 
  82. 82.S. Nandwani, S. Vardhan, A.K. Bagha, A literature review on the exposure time of electromagnetic based welding of different materials. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.10.056Article Google Scholar 
  83. 83.F.J.B. Brum, S.C. Amico, I. Vedana, J.A. Spim, Electromagnetic dewaxing applied to the investment casting process. J. Mater. Process. Technol. 209(7), 3166–3171 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.024Article Google Scholar 
  84. 84.M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through electromagnetic sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27(5), 606–614 (2017). https://doi.org/10.1016/j.pnsc.2017.08.015Article Google Scholar 
  85. 85.V.R. Kalamkar, K. Monkova, (Eds.), Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. (2021) https://doi.org/10.1007/978-981-15-3639-7
  86. 86.V. Bist, A.K. Sharma, P. Kumar, Development and microstructural characterisations of the lead casting using electromagnetic technology. Manager’s J. Mech. Eng. 4(4), 6 (2014). https://doi.org/10.26634/jme.4.4.2840Article Google Scholar 
  87. 87.A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater Today: Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.02.374Article Google Scholar 
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사

Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao PeiPages S66-S84 | Received 18 Jan 2021, Accepted 25 Feb 2021, Published online: 10 Mar 2021

ABSTRACT

Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° < θ ≤ 50°, powder adhesion is enhanced by the melt pool sinking and the increased contact area between the melt pool boundary and powder bed. When θ > 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply.

레이저 파우더 베드 퓨전 (L-PBF) 프린팅 오버행 영역의 표면 거칠기는 형상 정확도 / 표면 품질 저하의 주요 원인입니다. 이 연구 는 오버행 영역에서 표면 거칠기 (Ra ) 의 진화 뒤에 있는 메커니즘을 조사합니다 . 표면 형태의 진화는 오버행 각도 ( θ ) 와 밀접한 관련이있는 경계 트랙 윤곽, 분말 접착, 뒤틀림 변형 및 드로스 형성의 조합의 결과입니다 . 0° ≤  θ  ≤ 15° 인 경우 , 용융풀 경계의 작은 영역 만 분말 베드와 접촉하여 약간의 분말 접착이 발생하기 때문에 오버행 각도가 R a에 큰 영향을 주지 않습니다 . 15° < θ 일 때  ≤ 50°, 용융 풀 싱킹 및 용융 풀 경계와 분말 베드 사이의 증가된 접촉 면적으로 분말 접착력이 향상됩니다. θ  > 50° 일 때 오버행 윤곽의 큰 파형, 분말 클러스터의 접착, 심한 휨 변형 및 드 로스 형성이 Ra 급격히 증가 합니다.

KEYWORDS: Laser powder bed fusion (L-PBF), melt pool dynamics, overhang region, shape deviation, surface roughness

1. Introduction

레이저 분말 베드 융합 (L-PBF)은 첨단 적층 제조 (AM) 기술로, 집중된 레이저 빔을 사용하여 금속 분말을 선택적으로 융합하여 슬라이스 된 3D 컴퓨터 지원에 따라 층별로 3 차원 (3D) 금속 부품을 구축합니다. 설계 (CAD) 모델 (Chatham, Long 및 Williams 2019 ; Tan, Zhu 및 Zhou 2020 ). 재료가 인쇄 층 아래에 ​​존재하는지 여부에 따라 인쇄 영역은 각각 솔리드 영역 또는 돌출 영역으로 분류 될 수 있습니다. 따라서 오버행 영역은 고체 기판이 아니라 분말 베드 바로 위에 건설되는 특수 구조입니다 (Patterson, Messimer 및 Farrington 2017). 오버행 영역은지지 구조를 포함하거나 포함하지 않고 구축 할 수 있으며, 지지대가있는 돌출 영역의 L-PBF는 지지체가 더 낮은 밀도로 구축된다는 점을 제외 하고 (Wang and Chou 2018 ) 고체 기판의 공정과 유사합니다 (따라서 기계적 강도가 낮기 때문에 L-PBF 공정 후 기계적으로 쉽게 제거 할 수 있습니다. 따라서지지 구조로 인쇄 된 오버행 영역은 L-PBF 공정 후 지지물 제거, 연삭 및 연마와 같은 추가 후 처리 단계가 필요합니다.

수평 내부 채널의 제작과 같은 일부 특정 경우에는 공정 후 지지대를 제거하기가 어려우므로 채널 상단 절반의 돌출부 영역을 지지대없이 건설해야합니다 (Hopkinson and Dickens 2000 ). 수평 내부 채널에 사용할 수없는지지 구조 외에도 내부 표면, 특히 등각 냉각 채널 (Feng, Kamat 및 Pei 2021 ) 에서 발생하는 복잡한 3D 채널 네트워크의 경우 표면 마감 프로세스를 구현하는 것도 어렵습니다 . 결과적으로 오버행 영역은 (i) 잔류 응력에 의한 변형, (ii) 계단 효과 (Kuo et al. 2020 ; Li et al. 2020 )로 인해 설계된 모양에서 벗어날 수 있습니다 .) 및 (iii) 원하지 않는 분말 소결로 인한 향상된 표면 거칠기; 여기서, 앞의 두 요소는 일반적으로 mm 길이 스케일에서 ‘매크로’편차로 분류되고 후자는 일반적으로 µm 길이 스케일에서 ‘마이크로’편차로 인식됩니다.

열 응력에 의한 변형은 오버행 영역에서 발생하는 중요한 문제입니다 (Patterson, Messimer 및 Farrington 2017 ). 국부적 인 용융 / 냉각은 용융 풀 내부 및 주변에서 큰 온도 구배를 유도하여 응고 된 층에 집중적 인 열 응력을 유발합니다. 열 응력에 의한 뒤틀림은 고체 영역을 현저하게 변형하지 않습니다. 이러한 영역은 아래의 여러 레이어에 의해 제한되기 때문입니다. 반면에 오버행 영역은 구속되지 않고 공정 중 응력 완화로 인해 상당한 변형이 발생합니다 (Kamat 및 Pei 2019 ). 더욱이 용융 깊이는 레이어 두께보다 큽니다 (이전 레이어도 재용 해되어 빌드 된 레이어간에 충분한 결합을 보장하기 때문입니다 [Yadroitsev et al. 2013 ; Kamath et al.2014 ]),응고 된 두께가 설계된 두께보다 크기 때문에형태 편차 (예 : 드 로스 [Charles et al. 2020 ; Feng et al. 2020 ])가 발생합니다. 마이크로 스케일에서 인쇄 된 표면 (R a 및 S a ∼ 10 μm)은 기계적으로 가공 된 표면보다 거칠다 (Duval-Chaneac et al. 2018 ; Wen et al. 2018 ). 이 문제는고형화 된 용융 풀의 가장자리에 부착 된 용융되지 않은 분말의 결과로 표면 거칠기 (R a )가 일반적으로 약 20 μm인 오버행 영역에서 특히 심각합니다 (Mazur et al. 2016 ; Pakkanen et al. 2016 ).

오버행 각도 ( θ , 빌드 방향과 관련하여 측정)는 오버행 영역의 뒤틀림 편향과 표면 거칠기에 영향을 미치는 중요한 매개 변수입니다 (Kamat and Pei 2019 ; Mingear et al. 2019 ). θ ∼ 45 ° 의 오버행 각도 는 일반적으로지지 구조없이 오버행 영역을 인쇄 할 수있는 임계 값으로 합의됩니다 (Pakkanen et al. 2016 ; Kadirgama et al. 2018 ). θ 일 때이 임계 값보다 크면 오버행 영역을 허용 가능한 표면 품질로 인쇄 할 수 없습니다. 오버행 각도 외에도 레이저 매개 변수 (레이저 에너지 밀도와 관련된)는 용융 풀의 모양 / 크기 및 용융 풀 역학에 영향을줌으로써 오버행 영역의 표면 거칠기에 영향을줍니다 (Wang et al. 2013 ; Mingear et al . 2019 ).

용융 풀 역학은 고체 (Shrestha 및 Chou 2018 ) 및 오버행 (Le et al. 2020 ) 영역 모두에서 수행되는 L-PBF 공정을 포함한 레이저 재료 가공의 일반적인 물리적 현상입니다 . 용융 풀 모양, 크기 및 냉각 속도는 잔류 응력으로 인한 변형과 ​​표면 거칠기에 모두 영향을 미치므로 처리 매개 변수와 표면 형태 / 품질 사이의 다리 역할을하며 용융 풀을 이해하기 위해 수치 시뮬레이션을 사용하여 추가 조사를 수행 할 수 있습니다. 거동과 표면 거칠기에 미치는 영향. 현재까지 고체 영역의 L-PBF 동안 용융 풀 동작을 시뮬레이션하기 위해 여러 연구가 수행되었습니다. 유한 요소 방법 (FEM)과 같은 시뮬레이션 기술 (Roberts et al. 2009 ; Du et al.2019 ), 유한 차분 법 (FDM) (Wu et al. 2018 ), 전산 유체 역학 (CFD) (Lee and Zhang 2016 ), 임의의 Lagrangian-Eulerian 방법 (ALE) (Khairallah and Anderson 2014 )을 사용하여 증발 반동 압력 (Hu et al. 2018 ) 및 Marangoni 대류 (Zhang et al. 2018 ) 현상을포함하는 열 전달 (온도 장) 및 물질 전달 (용융 흐름) 프로세스. 또한 이산 요소법 (DEM)을 사용하여 무작위 분산 분말 베드를 생성했습니다 (Lee and Zhang 2016 ; Wu et al. 2018 ). 이 모델은 분말 규모의 L-PBF 공정을 시뮬레이션했습니다 (Khairallah et al. 2016) 메조 스케일 (Khairallah 및 Anderson 2014 ), 단일 트랙 (Leitz et al. 2017 )에서 다중 트랙 (Foroozmehr et al. 2016 ) 및 다중 레이어 (Huang, Khamesee 및 Toyserkani 2019 )로.

그러나 결과적인 표면 거칠기를 결정하는 오버행 영역의 용융 풀 역학은 문헌에서 거의 관심을받지 못했습니다. 솔리드 영역의 L-PBF에 대한 기존 시뮬레이션 모델이 어느 정도 참조가 될 수 있지만 오버행 영역과 솔리드 영역 간의 용융 풀 역학에는 상당한 차이가 있습니다. 오버행 영역에서 용융 금속은 분말 입자 사이의 틈새로 아래로 흘러 용융 풀이 다공성 분말 베드가 제공하는 약한 지지체 아래로 가라 앉습니다. 이것은 중력과 표면 장력의 영향이 용융 풀의 결과적인 모양 / 크기를 결정하는 데 중요하며, 결과적으로 오버행 영역의 마이크로 스케일 형태의 진화에 중요합니다. 또한 분말 입자 사이의 공극, 열 조건 (예 : 에너지 흡수,2019 ; Karimi et al. 2020 ; 노래와 영 2020 ). 표면 거칠기는 (마이크로) 형상 편차를 증가시킬뿐만 아니라 주기적 하중 동안 미세 균열의 시작 지점 역할을함으로써 기계적 강도를 저하시킵니다 (Günther et al. 2018 ). 오버행 영역의 높은 표면 거칠기는 (마이크로) 정확도 / 품질에 대한 엄격한 요구 사항이있는 부품 제조에서 L-PBF의 적용을 제한합니다.

본 연구는 실험 및 시뮬레이션 연구를 사용하여 오버행 영역 (지지물없이 제작)의 미세 형상 편차 형성 메커니즘과 표면 거칠기의 기원을 체계적이고 포괄적으로 조사합니다. 결합 된 DEM-CFD 시뮬레이션 모델은 경계 트랙 윤곽, 분말 접착 및 뒤틀림 변형의 효과를 고려하여 오버행 영역의 용융 풀 역학과 표면 형태의 형성 메커니즘을 나타 내기 위해 개발되었습니다. 표면 거칠기 R의 시뮬레이션 및 단일 요인 L-PBF 인쇄 실험을 사용하여 오버행 각도의 함수로 연구됩니다. 용융 풀의 침몰과 관련된 오버행 영역에서 분말 접착의 세 가지 메커니즘이 식별되고 자세히 설명됩니다. 마지막으로, 인쇄 된 오버행 영역에서 높은 표면 거칠기 문제를 완화 할 수 있는 잠재적 솔루션에 대해 간략하게 설명합니다.

The shape and size of the L-PBF printed samples are illustrated in Figure 1
The shape and size of the L-PBF printed samples are illustrated in Figure 1
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).

References

  • Cai, Chao, Chrupcala Radoslaw, Jinliang Zhang, Qian Yan, Shifeng Wen, Bo Song, and Yusheng Shi. 2019. “In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior.” Powder Technology 342: 73–84. doi:10.1016/j.powtec.2018.09.088. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Wei Shian Tey, Jiayao Chen, Wei Zhu, Xingjian Liu, Tong Liu, Lihua Zhao, and Kun Zhou. 2021. “Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion.” Journal of Materials Processing Technology 288 (August 2020): 116882. doi:10.1016/j.jmatprotec.2020.116882. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Dong Qiu Chua, Chen Nan Sun, Jie Liu, Qingsong Wei, and Yusheng Shi. 2020. “Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance.” Journal of Materials Science and Technology 57: 51–64. doi:10.1016/j.jmst.2020.05.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Charles, Amal, Ahmed Elkaseer, Lore Thijs, and Steffen G. Scholz. 2020. “Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V.” Applied Sciences 10 (7): 2416. doi:10.3390/app10072416. [Crossref], [Google Scholar]
  • Chatham, Camden A., Timothy E. Long, and Christopher B. Williams. 2019. “A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing.” Progress in Polymer Science 93: 68–95. doi:10.1016/j.progpolymsci.2019.03.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Du, Yang, Xinyu You, Fengbin Qiao, Lijie Guo, and Zhengwu Liu. 2019. “A Model for Predicting the Temperature Field during Selective Laser Melting.” Results in Physics 12 (November 2018): 52–60. doi:10.1016/j.rinp.2018.11.031. [Crossref], [Web of Science ®], [Google Scholar]
  • Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54 (July 2017): 1–6. doi:10.1016/j.precisioneng.2018.03.006. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Shijie Chen, Amar M. Kamat, Ru Zhang, Mingji Huang, and Liangcai Hu. 2020. “Investigation on Shape Deviation of Horizontal Interior Circular Channels Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 36 (December): 101585. doi:10.1016/j.addma.2020.101585. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Chuanzhen Huang, Jun Wang, Hongtao Zhu, Peng Yao, and Zhanqiang Liu. 2017. “An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro-Machining.” Precision Engineering 47: 33–45. doi:10.1016/j.precisioneng.2016.07.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Amar M. Kamat, and Yutao Pei. 2021. “Design and Fabrication of Conformal Cooling Channels in Molds: Review and Progress Updates.” International Journal of Heat and Mass Transfer. doi:10.1016/j.ijheatmasstransfer.2021.121082. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Flow-3D V11.2 Documentation. 2016. Flow Science, Inc. [Crossref], [Google Scholar]
  • Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. 2016. “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed.” Materials and Design 89: 255–263. doi:10.1016/j.matdes.2015.10.002. [Crossref], [Web of Science ®], [Google Scholar]
  • “Geometrical Product Specifications (GPS) — Surface Texture: Profile Method — Rules and Procedures for the Assessment of Surface Texture (ISO 4288).” 1996. International Organization for Standardization. https://www.iso.org/standard/2096.html. [Google Scholar]
  • Günther, Johannes, Stefan Leuders, Peter Koppa, Thomas Tröster, Sebastian Henkel, Horst Biermann, and Thomas Niendorf. 2018. “On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by SLM.” Materials & Design 143: 1–11. doi:10.1016/j.matdes.2018.01.042. [Crossref], [Web of Science ®], [Google Scholar]
  • Hopkinson, Neil, and Phill Dickens. 2000. “Conformal Cooling and Heating Channels Using Laser Sintered Tools.” In Solid Freeform Fabrication Conference, 490–497. Texas. doi:10.26153/tsw/3075. [Crossref], [Google Scholar]
  • Hu, Zhiheng, Haihong Zhu, Changchun Zhang, Hu Zhang, Ting Qi, and Xiaoyan Zeng. 2018. “Contact Angle Evolution during Selective Laser Melting.” Materials and Design 139: 304–313. doi:10.1016/j.matdes.2017.11.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Hu, Cheng, Kejia Zhuang, Jian Weng, and Donglin Pu. 2019. “Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition.” International Journal of Mechanical Sciences 155 (October 2018): 536–553. doi:10.1016/j.ijmecsci.2019.03.019. [Crossref], [Web of Science ®], [Google Scholar]
  • Huang, Yuze, Mir Behrad Khamesee, and Ehsan Toyserkani. 2019. “A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer.” Optics & Laser Technology 109 (August 2018): 584–599. doi:10.1016/j.optlastec.2018.08.015. [Crossref], [Web of Science ®], [Google Scholar]
  • Kadirgama, K., W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, and H. Mehboob. 2018. “Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material.” International Journal of Advanced Manufacturing Technology 97 (1–4): 495–510. doi:10.1007/s00170-018-1913-1. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamat, Amar M, and Yutao Pei. 2019. “An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion.” Additive Manufacturing 29 (March): 100796. doi:10.1016/j.addma.2019.100796. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamath, Chandrika, Bassem El-Dasher, Gilbert F. Gallegos, Wayne E. King, and Aaron Sisto. 2014. “Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W.” International Journal of Advanced Manufacturing Technology 74 (1–4): 65–78. doi:10.1007/s00170-014-5954-9. [Crossref], [Web of Science ®], [Google Scholar]
  • Karimi, J., C. Suryanarayana, I. Okulov, and K. G. Prashanth. 2020. “Selective Laser Melting of Ti6Al4V: Effect of Laser Re-Melting.” Materials Science and Engineering A (July): 140558. doi:10.1016/j.msea.2020.140558. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., and Andy Anderson. 2014. “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder.” Journal of Materials Processing Technology 214 (11): 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. 2016. “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Edited by Adedeji B. Badiru, Vhance V. Valencia, and David Liu. Acta Materialia 108 (April): 36–45. doi:10.1016/j.actamat.2016.02.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Le, K. Q., C. H. Wong, K. H. G. Chua, C. Tang, and H. Du. 2020. “Discontinuity of Overhanging Melt Track in Selective Laser Melting Process.” International Journal of Heat and Mass Transfer 162 (December): 120284. doi:10.1016/j.ijheatmasstransfer.2020.120284. [Crossref], [Web of Science ®], [Google Scholar]
  • Lee, Y. S., and W. Zhang. 2016. “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 12: 178–188. doi:10.1016/j.addma.2016.05.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Leitz, K. H., P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L. S. Sigl. 2017. “Multi-Physical Simulation of Selective Laser Melting.” Metal Powder Report 72 (5): 331–338. doi:10.1016/j.mprp.2016.04.004. [Crossref], [Google Scholar]
  • Li, Jian, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. 2020. “Surface Roughness Control of Root Analogue Dental Implants Fabricated Using Selective Laser Melting.” Additive Manufacturing 34 (September 2019): 101283. doi:10.1016/j.addma.2020.101283. [Crossref], [Web of Science ®], [Google Scholar]
  • Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136 (February): 24–35. doi:10.1016/j.ijmecsci.2017.12.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Mazur, MacIej, Martin Leary, Matthew McMillan, Joe Elambasseril, and Milan Brandt. 2016. “SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices.” Rapid Prototyping Journal 22 (3): 504–518. doi:10.1108/RPJ-06-2014-0075. [Crossref], [Web of Science ®], [Google Scholar]
  • Mingear, Jacob, Bing Zhang, Darren Hartl, and Alaa Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27 (October 2018): 565–575. doi:10.1016/j.addma.2019.03.027. [Crossref], [Web of Science ®], [Google Scholar]
  • Pakkanen, Jukka, Flaviana Calignano, Francesco Trevisan, Massimo Lorusso, Elisa Paola Ambrosio, Diego Manfredi, and Paolo Fino. 2016. “Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys.” Metallurgical and Materials Transactions A 47 (8): 3837–3844. doi:10.1007/s11661-016-3478-7. [Crossref], [Web of Science ®], [Google Scholar]
  • Patterson, Albert E., Sherri L. Messimer, and Phillip A. Farrington. 2017. “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need.” Technologies 5 (4): 15. doi:10.3390/technologies5020015. [Crossref], [Web of Science ®], [Google Scholar]
  • Roberts, I. A., C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. 2009. “A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing.” International Journal of Machine Tools and Manufacture 49 (12–13): 916–923. doi:10.1016/j.ijmachtools.2009.07.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Shrestha, Subin, and Kevin Chou. 2018. “Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM.” In CFD Modeling and Simulation in Materials Processing 2018, edited by Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, and Brian G. Thomas, 85–95. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-319-72059-3_9. [Crossref], [Google Scholar]
  • Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15 (3): 359–370. doi:10.1080/17452759.2020.1779999. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Šmilauer, Václav, Emanuele Catalano, Bruno Chareyre, Sergei Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, et al. 2015. Yade Documentation. 2nd ed. The Yade Project. doi:10.5281/zenodo.34073. [Crossref], [Google Scholar]
  • Tan, Pengfei, Fei Shen, Biao Li, and Kun Zhou. 2019. “A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V.” Materials & Design 168 (April): 107642. doi:10.1016/j.matdes.2019.107642. [Crossref], [Web of Science ®], [Google Scholar]
  • Tan, Lisa Jiaying, Wei Zhu, and Kun Zhou. 2020. “Recent Progress on Polymer Materials for Additive Manufacturing.” Advanced Functional Materials 30 (43): 1–54. doi:10.1002/adfm.202003062. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Xiaoqing, and Kevin Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257 (February): 65–78. doi:10.1016/j.jmatprotec.2018.02.038. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Di, Yongqiang Yang, Ziheng Yi, and Xubin Su. 2013. “Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process.” International Journal of Advanced Manufacturing Technology 65 (9–12): 1471–1484. doi:10.1007/s00170-012-4271-4. [Crossref], [Web of Science ®], [Google Scholar]
  • Wen, Peng, Maximilian Voshage, Lucas Jauer, Yanzhe Chen, Yu Qin, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2018. “Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Applications: Processing, Formation Quality and Mechanical Properties.” Materials and Design 155: 36–45. doi:10.1016/j.matdes.2018.05.057. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu, Yu-che, Cheng-hung San, Chih-hsiang Chang, Huey-jiuan Lin, Raed Marwan, Shuhei Baba, and Weng-Sing Hwang. 2018. “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation.” Journal of Materials Processing Technology 254 (November 2017): 72–78. doi:10.1016/j.jmatprotec.2017.11.032. [Crossref], [Web of Science ®], [Google Scholar]
  • Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi:10.1016/j.jmatprotec.2012.11.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang, Dongyun, Pudan Zhang, Zhen Liu, Zhe Feng, Chengjie Wang, and Yanwu Guo. 2018. “Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy.” Additive Manufacturing 21 (100): 567–578. doi:10.1016/j.addma.2018.03.031. [Crossref], [Web of Science ®], [Google Scholar]
Simulating Porosity Factors

다공성 요인 시뮬레이션

Simulating Porosity Factors

https://www.foundrymag.com/issues-and-ideas/article/21926214/simulating-porosity-factors
Pamela Waterman

수치 모델링 도구는 일반적이지만 원인을 파악하기가 너무 어렵 기 때문에 코어 가스 블로우 결함을 거의 이해하지 못합니다. FLOW-3D 소프트웨어는 코어 가스 흐름을 모델링하여 더 나은 품질의 주조로 이어집니다.

파운드리는 첫 번째 시험에서 주조 품질을 달성하기 위해 많은 선행 엔지니어링을 수행해야합니다. 최근 몇 년 동안 금속 흐름, 응고, 미세 구조 진화 및 잔류 응력 모델링을위한 수치 도구가 보편화되었습니다.

그러나 아직 완전히 해결되지 않은 주조 결함 중 하나는 일반적인 코어 가스 블로우 결함입니다. 이 문제의 물리학은 금속, 코어 및 바인더 간의 복잡한 상호 작용을 포함하며 해결되기 전에 많은 주물을 스크랩 할 수 있습니다. 대부분의 경우, 문제는 더 높은 타설 온도를 사용하고 영향을받는 영역에 더 많은 벽 스톡을 추가함으로써 단순히 관리되지만 완전히 해결되지는 않습니다.

그러나 부품 설계가 복잡할수록 제조 문제가 발생할 가능성이 커집니다. 내부 세부 사항이 필요한 주조 조각의 경우 화학적으로 결합 된 모래 코어를 “인쇄”하여 모양을 만들고 금형 내부에 배치해야 합니다. 코어는 부품의 궁극적 인 기능에 중요한 내부 모양을 형성하며 제조 공정의 각 단계는 설계에 제약을 가합니다. 다양한 요구 사항이 코어 송풍 공정, 취급, 조립 및 가스 배출에 적용됩니다. 코어 디자인의 기술은 코어를 가열하는 동안 모양을 유지할 수 있을 만큼 견고하게 만드는 것과 부품이 냉각되었을 때 모래를 제거 할 수 있을 만큼 접착력이 끊어지는 것 사이의 미세한 균형입니다.

최적의 분해 설계

계획된 코어 분해의 메커니즘은 고체에서 가스로의 열 변환이지만 금형 설계는 그 가스가 코어 프린트를 통해 빠져 나갈 수 있도록해야합니다. 그렇지 않으면 금속이 기포를 가두어 모공을 형성 할 수 있습니다. 기껏해야 다공성은 표면 가공으로 밝혀집니다. 최악의 경우 부품이 더 아래쪽에서 실패합니다.

과거에 재료 및 주조 엔지니어가 코어 가스 기포로 인한 다공성 결함 문제를 발견하면 바인더 함량 감소, 코어 환기 증가, 코어 코팅 또는 베이킹과 같은 일련의 표준 문제 해결 작업을 수행했습니다. 미리 코어. 가스가 따라가는 경로를 볼 수 없었기 때문에 하나의 금형을 완료하는 데 종종 몇 주가 걸리는 긴 인출 공정이었습니다. 그리고 다른 부분에 문제가있을 때마다 반복해야했습니다.

이 처리 타임 라인을 압축해야하는 시장 주도적 요구는 주조 시뮬레이션 소프트웨어의 개발을 촉발했습니다. 설계와 제조 모두에 유용한 컴퓨터 기반 모델링을 통해 엔지니어는 실제 부품 비용이나 낭비없이 다양한 접근 방식을 테스트 할 수 있습니다. 파운드리가 특히 환기 설계에 시뮬레이션을 적용 할 수 있도록 Flow Science 는 최근 FLOW-3D 주조 해석 기능에 코어 가스 모델링을 추가했습니다.

흐름에 따라

FLOW-3D는 유체가 공기, 물, 용융 금속 또는 가스인지 여부에 관계없이 광범위한 일시적인 유체 흐름 프로세스에 대한 통찰력을 제공하는 전산 유체 역학 (CFD) 소프트웨어 패키지입니다. 다른 CFD 패키지와 비교할 때 움직이는 유체 표면을 모델링하고 추적하는 방식으로 인해 특히 정확합니다.

코어 가스 흐름에 CFD 방법을 적용하는 것은 어려운 일입니다. 수지 기반 바인더의 화학적 복잡성으로 인해 모래 코어 열 분해 후 가스가 흐르는 위치와 방식을 이해하는 것은 복잡한 과정입니다. 그러나 Flow Science는 여러 그룹과 협력하여 실험 데이터를 얻고 시뮬레이션 된 모델의 결과와 비교했습니다. 이 회사는 General Motors, Graham-White Manufacturing Co. 및 AlchemCast에서 코어 가스 유량 정보를 수집하여 알루미늄, 철 및 강철과 함께 사용되는 모래 수지 코어에 대한 실제 데이터를 얻었습니다.

GM Powertrain의 주조 분석 엔지니어 인 David Goettsch 박사는 15 년 동안 금속 주조의 충진 및 응고 분석에 FLOW-3D를 사용해 왔습니다. 새로운 코어 가스 모델은 설계 단계에서 재킷 코어 벤팅을 최적화하는 데 매우 유용했습니다. 코어 프린트에 대한 다른 모든 요구 사항이있는 기존 코어 박스에 벤트 트랙을 구현하는 것은 매우 어렵습니다. “코어 가스 배출에 대한 사전 분석 작업을 통해 시작하는 동안 높은 불량률을 줄일 수 있습니다.”라고 그는 설명합니다. “아마도 프로세스 기회가 문제를 해결할 수 있습니다. 하지만 그 지점에 도달하려면 테스트 기간이 오래 걸릴 수 있습니다.”

흐름 매개 변수 정의

도에 따라 금속 헤드 압력이 동일한 값에 도달하기 전에 가스 압력이 최고조에 달하여 가스가 거품을 형성 할 수 있습니다. 게이트 설계의 약간의 변경은 주입 속도를 높이는 데 도움이 될 수 있으므로 금속 압력이 더 빨리 생성되고 가스를 먼저 밀어 낼 수 있지만 물리적 시행 착오 접근 방식은 시간이 걸립니다. 가상 모델을 사용하여 지오메트리를 변경하는 방법을 식별하는 것은 코어 가스 시뮬레이션 소프트웨어 개발의 주요 목표였습니다.

Flow Science의 개발자는 바인더 분해 가스 공급원, 모래의 섬도, 무게 비율에 따른 바인더의 양, 작동 온도 및 코어의 물리적 투과성과 같은 프로세스 별 매개 변수와 흐름이면의 물리학을 결합했습니다. 이 모든 값은 샌드 쉘 바인더 및 폴리 우레탄 콜드 박스 바인더 (PUCB)의 산업 보정 샘플을 사용하여 검증되었습니다.

FLOW-3D 분석은 일정한 조성의 이상 기체를 가정하고 전체 바인더 분해의 최악의 시나리오를 취합니다. 타설하는 동안 코어 내에서 조건이 변화함에 따라 소프트웨어는 가스 압력의 변화, 가스 유동장의 기하학적 구조, 결합제 열화 영역 발생 및 금속으로의 가스 분사 가능한 표면 위치를 계산합니다. 모든 데이터는 사후 처리에 사용할 수 있습니다. 사용자는 가스 흐름을 쉽게 시각화하고 확대하고 특정 값을 얻기 위해 포인트를 클릭 할 수 있습니다.

이제 FLOW-3D v9.4에서 사용할 수있는 코어 가스 모델을 통해 Goettsch는 다양한 삽입 및 배출 위치를 시도하고 글로벌 진단을받을 수 있습니다. 가스 발생량, 가스 발생 위치, 금속 전면이 잡히기 전에 유출 된 가스량 확인 그것까지. “실제로 문제의 근본 원인을 확인할 수있을 때 매우 좋습니다.”라고 그는 말합니다. “이러한 시각화는 실제 현상이 무엇을하고 있는지에 대한 작은 창을 확보하는 데 유용합니다.”

멀티 코어 문제 Graham-White Manufacturing의 또 다른 숙련 된 파운드리 엔지니어 인 Elizabeth Ryder는 가스 다공성이 항상 조사하기 어려웠다는 의견을 반영합니다. 그녀는“특히 다중 코어의 경우 어떤 코어가 문제의 원인인지 파악하기가 어려웠습니다. 전체 시스템을 다루려고했습니다.”

1,700 개의 부품을 지속적으로 생산하고 있으며 그중 일부는 연간 10,000 개의 부품을 생산하는 Graham-White는 시뮬레이션을 통해 제조 프로세스를 개선하는 데 매우 만족했습니다. 얇은 벽 부품은 코어 대 금속 비율이 높고 가스가 많이 발생하는 특별한 문제입니다.

Graham-White는 레이저 스캐닝으로 생성 된 회색 철 부품 (약 34 인치)의 3D 모델을 사용하여 평가를 위해 현재 벤팅 설계를 제공했습니다. 이 게이팅 디자인은 수평으로 분할 된 몰드에서 패턴 플레이트 당 4 개의 인상으로 구성되었으며 각 인상에는 각 코어에 대한 통풍구가 있습니다. 중앙 스프 루를 통해 2 초 이내에 각 금형을 채울 수 있습니다.

FLOW-3D 소프트웨어를 사용한 시뮬레이션은 채움 률을 확인했지만 하나의 코어에 환기가 충분하지 않은 것으로 나타났습니다. Graham-White는 코어에 더 깊은 구멍을 뚫어 기존 통풍구를 통해 더 많은 가스를 전달하기 시작했습니다. 새로운 벤팅 설계로 접근 방식을 전환 한 후이 회사는 코어 블로우 스크랩이 약 30 % 감소했습니다.

또한 Flow Science 분석을 기반으로 엔지니어링 그룹은 문제가 있는 코어에 대한 추가 변경 사항을 평가하여 각 부품에 대한 추가 환기를 통해 두 부분으로 나눕니다. Ryder는 FLOW-3D 결과가 설계 초점을 좁히는데 도움이 되었고, 어떤 코어 (멀티 코어 설계)가 범인인지, 심지어 코어의 어느 영역이 문제의 원인인지 즉시 제로화 할 수 있었습니다. “미리 컴퓨터에서 더 많은 일을 할수록 더 좋습니다.”라고 그녀는 말합니다. “모든 것은 시간 절약으로 귀결됩니다.”

Where to go from here

파운드리 스크랩을 줄이고 주조 시뮬레이션 소프트웨어의 도움으로 자신의 핵심 인쇄 디자인의 효율성을 향상시킬 수 있습니다. Flow Science의 FLOW-3D CFD 분석 패키지의 새로운 코어 가스 모델은 중요한 다공성 계수를 시뮬레이션하여 설계자가 첫 번째 주조 전에 다양한 벤팅 설계를 평가하는 데 도움이 되기 때문에 중요합니다. 추가 재료 및 충진 방향에 대한 코어 가스 모델을 검증하는 개발이 계속됩니다.

Fig.4 Schematic of a package structure

Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling

Junichi Saeki and Tsutomu Kono
Production Engineering Research Laboratory, Hitachi Ltd.
292, Y shida-cho, Totsuka-ku, Yokohama, 244-0817 Japan

Abstract

Thermosetting molding compounds are widely used for encapsulating semiconductor devices and electronic modules. In recent years, the number of electronic parts encapsulated in an electronic module has increased, in order to meet the requirements for high performance. As a result, the configuration of inserted parts during molding has become very complicated. Meanwhile, package thickness has been reduced in response to consumer demands for miniaturization. These trends have led to complicated flow patterns of molten compounds in a mold cavity, increasing the difficulty of predicting the occurrence of void formation or gold-wire deformation.

A method of three-dimensional (3-D) flow analysis of thermosetting compounds has been developed with the objective of minimizing the trial term before mass production and of enhancing the quality of molded products. A constitutive equation model was developed to describe isothermal viscosity changes as a function of time and temperature. This isothermal model was used for predicting non-isothermal viscosity changes. In addition, an empirical model was developed for calculating the amount of wire deformation as a function of viscosity, wire configuration, and other parameters. These models were integrated with FLOW-3D® software, which is used for multipurpose 3-D flow analysis.

The mold-filling dynamics of an epoxy compound were analyzed using the newly developed modeling software during transfer molding of an actual high performance electronic module. The changes in the 3-D distributions of parameters such as temperature, viscosity, velocity, and pressure were compared with the flow front patterns. The predicted results of cavity filling behavior corresponded well with actual short shot data. As well, the predicted amount of gold-wire deformation at each LSI chip with a substrate connection also corresponded well with observed data obtained by X-ray inspection of the molded product.

Korea Abstract

열경화성 몰딩 컴파운드는 반도체 장치 및 전자 모듈을 캡슐화하는 데 널리 사용됩니다. 최근에는 고성능에 대한 요구 사항을 충족시키기 위해 전자 모듈에 캡슐화되는 전자 부품의 수가 증가하고 있습니다.

그 결과 성형시 삽입 부품의 구성이 매우 복잡해졌습니다. 한편, 소비자의 소형화 요구에 부응하여 패키지 두께를 줄였다. 이러한 경향은 몰드 캐비티에서 용융된 화합물의 복잡한 흐름 패턴을 야기하여 보이드 형성 또는 금선 변형의 발생을 예측하기 어렵게합니다.

열경화성 화합물의 3 차원 (3-D) 유동 분석 방법은 대량 생산 전에 시험 기간을 최소화하고 성형 제품의 품질을 향상시킬 목적으로 개발되었습니다. 시간과 온도의 함수로서 등온 점도 변화를 설명하기 위해 구성 방정식 모델이 개발되었습니다. 이 등온 모델은 비등 온 점도 변화를 예측하는 데 사용되었습니다.

또한 점도, 와이어 구성 및 기타 매개 변수의 함수로 와이어 변형량을 계산하기위한 경험적 모델이 개발되었습니다. 이 모델은 다목적 3D 흐름 분석에 사용되는 FLOW-3D® 소프트웨어와 통합되었습니다.

실제 고성능 전자 모듈의 트랜스퍼 몰딩 과정에서 새로 개발 된 모델링 소프트웨어를 사용하여 에폭시 화합물의 몰드 충전 역학을 분석했습니다. 온도, 점도, 속도 및 압력과 같은 매개 변수의 3D 분포 변화를 유동 선단 패턴과 비교했습니다.

캐비티 충전 거동의 예측 결과는 실제 미 성형 데이터와 잘 일치했습니다. 또한, 기판 연결이 있는 각 LSI 칩에서 예상되는 금선 변형량은 성형품의 X-ray 검사에서 얻은 관찰 데이터와도 잘 일치했습니다.

Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
Fig.2 Procedure for determining viscosity changes of thermosetting compounds
Fig.2 Procedure for determining viscosity changes of thermosetting compounds
Fig.4 Schematic of a package structure
Fig.4 Schematic of a package structure
Fig.6 Calculated results of filling behavior and temperature  distribution in the runner
Fig.6 Calculated results of filling behavior and temperature distribution in the runner
Fig.8 Comparison of cavity filling
Fig.8 Comparison of cavity filling

References

1)J.Saeki et al. ,6th annual meeting of PPS, 12KN1(1990)
2)J.Saeki et al. , JSME International Journal Series Ⅱ, 33,486(1990)
3)J.Saeki et al.,SEIKEI KAKOU,12,67(2000)
4) J.Saeki et al.,SEIKEI KAKOU,12,788(2000)
5) J.Saeki et al.,SEIKEI KAKOU,13,49(2001)

Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys

Mohamad Bayat Venkata K. Nadimpalli David B. Pedersen Jesper H. Hattel
Department of mechanical engineering, Technical University of Denmark (DTU), Building 425, 2800 Kgs., Lyngby, Denmark

Received 21 August 2020, Revised 18 November 2020, Accepted 25 November 2020, Available online 15 December 2020.

Abstract

Several different interfacial forces affect the free surface of liquid metals during metal additive manufacturing processes. One of these is thermo-capillarity or the so-called Marangoni effect. In this work, a novel framework is introduced for unraveling the effects of thermo-capillarity on the melt pool morphology/size and its thermo-fluid conditions during the Laser Powder Bed Fusion (L-PBF) process. In this respect, a multi-physics numerical model is developed based on the commercial software package Flow-3D. The model is verified and validated via mesh-independency analysis and by comparison of the predicted melt pool profile with those from lab-scale single-track experiments. Two sets of parametric studies are carried out to find the role of both positive and inverse thermo-capillarity on the melt pool shape and its thermal and fluid dynamics conditions. The thermo-fluid conditions of the melt pool are further investigated using appropriate dimensionless numbers. The results show that for the higher Marangoni number cases, the melt pool temperature drops, and at the same time, the temperature field becomes more uniform. Also, it is shown that at higher Marangoni numbers, temperature gradients decrease, thus reducing the role of conduction in the heat transfer from the melt pool. Furthermore, for the first time, a novel methodology is introduced for the calculation of the melt pool’s average Nusselt number. The average Nusselt numbers calculated for the positive and inverse thermo-capillarity are then used for finding the effective liquid conductivity required for a computationally cheaper pure heat conduction simulation. The results show that the deviation between the average melt pool temperature, using the pure conduction model with effective conductivity, and the one obtained from the advanced fluid dynamics model is less than 2%.

Keywords

Thermo-capillarity, Melt pool, Heat and fluid flow, Numerical model, L-PBF

Korea Abstract

금속 적층 제조 공정 중 액체 금속의 자유 표면에 여러 가지 다른 계면력이 영향을 미칩니다. 이들 중 하나는 열 모세관 또는 소위 Marangoni 효과입니다.

이 작업에서는 L-PBF (Laser Powder Bed Fusion) 공정 중 용융 풀 형태 / 크기 및 열 유동 조건에 대한 열 모세관의 영향을 밝히기 위한 새로운 프레임워크가 도입되었습니다.

이러한 점에서 상용 소프트웨어 패키지 Flow-3D를 기반으로 다중 물리 수치 모델이 개발되었습니다. 모델은 메쉬 독립 분석을 통해 그리고 예측 된 용융 풀 프로필을 실험실 규모의 단일 트랙 실험에서 얻은 프로필과 비교하여 검증 및 검증됩니다.

용융 풀 모양과 열 및 유체 역학 조건에 대한 양 및 역 열 모세관의 역할을 찾기 위해 두 세트의 매개 변수 연구가 수행됩니다. 용융 풀의 열 유동 조건은 적절한 무 차원 숫자를 사용하여 추가로 조사됩니다.

결과는 Marangoni 수가 더 높은 경우 용융 풀 온도가 떨어지고 동시에 온도 필드가 더 균일 해짐을 보여줍니다. 또한 Marangoni 수가 높을수록 온도 구배가 감소하여 용융 풀에서 열 전달에서 전도의 역할이 감소하는 것으로 나타났습니다.

또한 용융 풀의 평균 Nusselt 수를 계산하기위한 새로운 방법론이 처음으로 도입되었습니다. 그런 다음 양수 및 역 열 모세관에 대해 계산 된 평균 Nusselt 수는 계산적으로 더 저렴한 순수 열 전도 시뮬레이션에 필요한 효과적인 액체 전도도를 찾는 데 사용됩니다. 결과는 유효 전도도가 있는 순수 전도 모델을 사용한 평균 용융 풀 온도와 고급 유체 역학 모델에서 얻은 편차가 2 % 미만임을 보여줍니다.

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig1
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig1
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig2
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig2
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig3
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig3
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig4
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig4
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig5
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig5
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig6
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig6
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig8
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig8
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig9
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig9
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig10
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig10
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig11
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig11
Figure 3. Flow velocity on seawall in A2-3 modeling.

Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3D Software

Open Journal of Marine Science
Vol.06 No.02(2016), Article ID:65874,6 pages
10.4236/ojms.2016.62026

FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링

Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4
1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2Department of Marine Structures, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3Iran National Center for Oceanography and Atmospheric Sciences, Tehran, Iran
4Department of Civil Engineering, Excellence in Education Center of Jihad University of Khuzestan, Ahvaz, Iran
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.

Keywords: 플로우 속도, 방파제 크라운, 모델링, Flow Velocity, Seawall Crown, Modeling, FLOW-3D

1. 소개

방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].

2. 연구 역사

여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .

3. 재료 및 방법

이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.

표 1. 변수지정.

4. 숫자 모델

FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.

이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.

물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].

그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.

다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.

5. 결과

다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.

언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.

그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가

그림 1. A1 모델링의 방파제의 흐름 속도.

그림 2. A2-1 모델링의 방파제의 흐름 속도.

Figure 3. Flow velocity on seawall in A2-3 modeling.

그림 4. A3-1 모델링의 방파제의 흐름 속도.

그림 5. 방파제 유형 A(61° 경사)의 흐름 속도 의 변화.

그림 6. 방파제 형 B (56 ° 경사)의 흐름 속도의 변화.

그림 7. 방파제 유형 C(51° 경사)의 흐름 속도 의 변화.

그림 8. 방파제 유형 D(45° 경사)의 흐름 속도 변경입니다.

해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.

6. 결론

Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10
cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20
cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.

또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.

이 논문 인용

메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026

참조

  1. 1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  2. 2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York.   [Citation Time(s):1]
  3. 3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam.   [Citation Time(s):1]
  4. 4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual.
    http://www.overtopping-manual.com/manual.html?   [Citation Time(s):1]
  5. 5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771.   [Citation Time(s):1]
  6. 6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London.   [Citation Time(s):1]
  7. 7. Fenton, J.D. (1988) The Numerical Solution of Steady Water Wave Problems. Computers & Geosciences, 14.
    http://dx.doi.org/10.1016/0098-3004(88)90066-0   [Citation Time(s):1]
  8. 8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  9. 9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall.   [Citation Time(s):1]
  10. 10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague.   [Citation Time(s):1]
The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.

DNA Printing Integrated Multiplexer Driver Microelectronic Mechanical System Head (IDMH) and Microfluidic Flow Estimation

DNA 프린팅 통합 멀티플렉서 드라이버 Microelectronic Mechanical System Head (IDMH) 및 Microfluidic Flow Estimation

by Jian-Chiun Liou 1,*,Chih-Wei Peng 1,Philippe Basset 2 andZhen-Xi Chen 11School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan2ESYCOM, Université Gustave Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France*Author to whom correspondence should be addressed.

Abstract

The system designed in this study involves a three-dimensional (3D) microelectronic mechanical system chip structure using DNA printing technology. We employed diverse diameters and cavity thickness for the heater. DNA beads were placed in this rapid array, and the spray flow rate was assessed. Because DNA cannot be obtained easily, rapidly deploying DNA while estimating the total amount of DNA being sprayed is imperative. DNA printings were collected in a multiplexer driver microelectronic mechanical system head, and microflow estimation was conducted. Flow-3D was used to simulate the internal flow field and flow distribution of the 3D spray room. The simulation was used to calculate the time and pressure required to generate heat bubbles as well as the corresponding mean outlet speed of the fluid. The “outlet speed status” function in Flow-3D was used as a power source for simulating the ejection of fluid by the chip nozzle. The actual chip generation process was measured, and the starting voltage curve was analyzed. Finally, experiments on flow rate were conducted, and the results were discussed. The density of the injection nozzle was 50, the size of the heater was 105 μm × 105 μm, and the size of the injection nozzle hole was 80 μm. The maximum flow rate was limited to approximately 3.5 cc. The maximum flow rate per minute required a power between 3.5 W and 4.5 W. The number of injection nozzles was multiplied by 100. On chips with enlarged injection nozzle density, experiments were conducted under a fixed driving voltage of 25 V. The flow curve obtained from various pulse widths and operating frequencies was observed. The operating frequency was 2 KHz, and the pulse width was 4 μs. At a pulse width of 5 μs and within the power range of 4.3–5.7 W, the monomer was injected at a flow rate of 5.5 cc/min. The results of this study may be applied to estimate the flow rate and the total amount of the ejection liquid of a DNA liquid.

이 연구에서 설계된 시스템은 DNA 프린팅 기술을 사용하는 3 차원 (3D) 마이크로 전자 기계 시스템 칩 구조를 포함합니다. 히터에는 다양한 직경과 캐비티 두께를 사용했습니다. DNA 비드를 빠른 어레이에 배치하고 스프레이 유속을 평가했습니다.

DNA를 쉽게 얻을 수 없기 때문에 DNA를 빠르게 배치하면서 스프레이 되는 총 DNA 양을 추정하는 것이 필수적입니다. DNA 프린팅은 멀티플렉서 드라이버 마이크로 전자 기계 시스템 헤드에 수집되었고 마이크로 플로우 추정이 수행되었습니다.

Flow-3D는 3D 스프레이 룸의 내부 유동장과 유동 분포를 시뮬레이션 하는데 사용되었습니다. 시뮬레이션은 열 거품을 생성하는데 필요한 시간과 압력뿐만 아니라 유체의 해당 평균 출구 속도를 계산하는데 사용되었습니다.

Flow-3D의 “출구 속도 상태”기능은 칩 노즐에 의한 유체 배출 시뮬레이션을 위한 전원으로 사용되었습니다. 실제 칩 생성 프로세스를 측정하고 시작 전압 곡선을 분석했습니다. 마지막으로 유속 실험을 하고 그 결과를 논의했습니다. 분사 노즐의 밀도는 50, 히터의 크기는 105μm × 105μm, 분사 노즐 구멍의 크기는 80μm였다. 최대 유량은 약 3.5cc로 제한되었습니다. 분당 최대 유량은 3.5W에서 4.5W 사이의 전력이 필요했습니다. 분사 노즐의 수에 100을 곱했습니다. 분사 노즐 밀도가 확대 된 칩에 대해 25V의 고정 구동 전압에서 실험을 수행했습니다. 얻은 유동 곡선 다양한 펄스 폭과 작동 주파수에서 관찰되었습니다. 작동 주파수는 2KHz이고 펄스 폭은 4μs입니다. 5μs의 펄스 폭과 4.3–5.7W의 전력 범위 내에서 단량체는 5.5cc / min의 유속으로 주입되었습니다. 이 연구의 결과는 DNA 액체의 토 출액의 유량과 총량을 추정하는 데 적용될 수 있습니다.

Keywords: DNA printingflow estimationMEMS

Introduction

잉크젯 프린트 헤드 기술은 매우 중요하며, 잉크젯 기술의 거대한 발전은 주로 잉크젯 프린트 헤드 기술의 원리 개발에서 시작되었습니다. 잉크젯 인쇄 연구를 위한 대규모 액적 생성기 포함 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]. 연속 식 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점이 있습니다. 그러나이 방법의 잉크젯 프린트 헤드의 구조는 더 복잡하고 양산이 어려운 가압 장치, 대전 전극, 편향 전계가 필요하다. 주문형 잉크젯 시스템의 잉크젯 프린트 헤드는 구조가 간단하고 잉크젯 헤드의 다중 노즐을 쉽게 구현할 수 있으며 디지털화 및 색상 지정이 쉽고 이미지 품질은 비교적 좋지만 일반적인 잉크 방울 토출 속도는 낮음 [ 9 , 10 , 11 ].

핫 버블 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있습니다. 노즐은 매우 미세하여 풍부한 조화 색상과 부드러운 메쉬 톤을 생성할 수 있습니다. 잉크 카트리지와 노즐이 일체형 구조를 이루고 있으며, 잉크 카트리지 교체시 잉크젯 헤드가 동시에 업데이트되므로 노즐 막힘에 대한 걱정은 없지만 소모품 낭비가 발생하고 상대적으로 높음 비용. 주문형 잉크젯 기술은 배출해야 하는 그래픽 및 텍스트 부분에만 잉크 방울을 배출하고 빈 영역에는 잉크 방울이 배출되지 않습니다. 이 분사 방법은 잉크 방울을 충전할 필요가 없으며 전극 및 편향 전기장을 충전할 필요도 없습니다. 노즐 구조가 간단하고 노즐의 멀티 노즐 구현이 용이하며, 출력 품질이 더욱 개선되었습니다. 펄스 제어를 통해 디지털화가 쉽습니다. 그러나 잉크 방울의 토출 속도는 일반적으로 낮습니다. 열 거품 잉크젯, 압전 잉크젯 및 정전기 잉크젯의 세 가지 일반적인 유형이 있습니다. 물론 다른 유형이 있습니다.

압전 잉크젯 기술의 실현 원리는 인쇄 헤드의 노즐 근처에 많은 소형 압전 세라믹을 배치하면 압전 크리스탈이 전기장의 작용으로 변형됩니다. 잉크 캐비티에서 돌출되어 노즐에서 분사되는 패턴 데이터 신호는 압전 크리스탈의 변형을 제어한 다음 잉크 분사량을 제어합니다. 압전 MEMS 프린트 헤드를 사용한 주문형 드롭 하이브리드 인쇄 [ 12]. 열 거품 잉크젯 기술의 실현 원리는 가열 펄스 (기록 신호)의 작용으로 노즐의 발열체 온도가 상승하여 근처의 잉크 용매가 증발하여 많은 수의 핵 형성 작은 거품을 생성하는 것입니다. 내부 거품의 부피는 계속 증가합니다. 일정 수준에 도달하면 생성된 압력으로 인해 잉크가 노즐에서 분사되고 최종적으로 기판 표면에 도달하여 패턴 정보가 재생됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

“3D 제품 프린팅”및 “증분 빠른 제조”의 의미는 진화했으며 모든 증분 제품 제조 기술을 나타냅니다. 이는 이전 제작과는 다른 의미를 가지고 있지만, 자동 제어 하에 소재를 쌓아 올리는 3D 작업 제작 과정의 공통적 인 특징을 여전히 반영하고 있습니다 [ 19 , 20 , 21 , 22 , 23 , 24 ].

이 개발 시스템은 열 거품 분사 기술입니다. 이 빠른 어레이에 DNA 비드를 배치하고 스프레이 유속을 평가하기 위해 다른 히터 직경과 캐비티 두께를 설계하는 것입니다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목적은 분사되는 DNA 용액의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 변환해야 하는 경우 부스트 컨버터가 유일한 선택입니다. 부스트 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 통해 전압을 충전하여 부스트 출력의 목적을 달성하고, MOSFET이 꺼지면 인덕터는 부하 정류를 통해 방전됩니다.

인덕터의 충전과 방전 사이의 변환 프로세스는 인덕터를 통한 전압의 방향을 반대로 한 다음 점차적으로 입력 작동 전압보다 높은 전압을 증가시킵니다. MOSFET의 스위칭 듀티 사이클은 확실히 부스트 비율을 결정합니다. MOSFET의 정격 전류와 부스트 컨버터의 부스트 비율은 부스트 ​​컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전압은 출력 전압의 상한을 결정합니다. 일부 부스트 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정확한 제로 전류 턴 오프를 달성하여 부스트 변압기를 보다 효율적으로 만듭니다. 최대 전력 점 추적 장치를 통해 입력 전력을 실시간으로 모니터링합니다. 입력 전압이 최대 입력 전력 지점에 도달하면 부스트 컨버터가 작동하기 시작하여 부스트 컨버터가 최대 전력 출력 지점으로 유리 기판에 DNA 인쇄를 하는 데 적합합니다. 일정한 온 타임 생성 회로를 통해 온 타임이 온도 및 칩의 코너 각도에 영향을 받지 않아 시스템의 안정성이 향상됩니다.

잉크젯 프린트 헤드에 사용되는 기술은 매우 중요합니다. 잉크젯 기술의 엄청난 발전은 주로 잉크젯 프린팅에 사용되는 대형 액적 이젝터 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]를 포함하여 잉크젯 프린트 헤드 기술의 이론 개발에서 시작되었습니다 . 연속 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점을 가지고 있습니다. 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있으며 이러한 노즐은 매우 복잡합니다. 노즐은 풍부하고 조화로운 색상과 부드러운 메쉬 톤을 생성할 수 있습니다 [ 9 , 10 ,11 ]. 잉크젯은 열 거품 잉크젯, 압전 잉크젯 및 정전 식 잉크젯의 세 가지 주요 유형으로 분류할 수 있습니다. 다른 유형도 사용 중입니다. 압전 잉크젯의 기능은 다음과 같습니다. 많은 소형 압전 세라믹이 잉크젯 헤드 노즐 근처에 배치됩니다. 압전 결정은 전기장 아래에서 변형됩니다. 그 후, 잉크는 잉크 캐비티에서 압착되어 노즐에서 배출됩니다. 패턴의 데이터 신호는 압전 결정의 변형을 제어한 다음 분사되는 잉크의 양을 제어합니다. 압전 마이크로 전자 기계 시스템 (MEMS) 잉크젯 헤드는 하이브리드 인쇄에 사용됩니다. [ 12]. 열 버블 잉크젯 기술은 다음과 같이 작동합니다. 가열 펄스 (즉, 기록 신호) 하에서 노즐의 가열 구성 요소의 온도가 상승하여 근처의 잉크 용매를 증발시켜 많은 양의 작은 핵 기포를 생성합니다. 내부 기포의 부피가 지속적으로 증가합니다. 압력이 일정 수준에 도달하면 노즐에서 잉크가 분출되고 잉크가 기판 표면에 도달하여 패턴과 메시지가 표시됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

3 차원 (3D) 제품 프린팅 및 빠른 프로토 타입 기술의 발전에는 모든 빠른 프로토 타입의 생산 기술이 포함됩니다. 래피드 프로토 타입 기술은 기존 생산 방식과는 다르지만 3D 제품 프린팅 생산 과정의 일부 특성을 공유합니다. 구체적으로 자동 제어 [ 19 , 20 , 21 , 22 , 23 , 24 ] 하에서 자재를 쌓아 올립니다 .

이 연구에서 개발된 시스템은 열 기포 방출 기술을 사용했습니다. 이 빠른 어레이에 DNA 비드를 배치하기 위해 히터에 대해 다른 직경과 다른 공동 두께가 사용되었습니다. 그 후, 스프레이 유속을 평가했다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목표는 분사되는 DNA 액체의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 수정해야하는 경우 승압 컨버터가 유일한 옵션입니다. 승압 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 충전하여 출력 전압을 증가시킵니다. MOSFET이 꺼지면 부하 정류를 통해 인덕턴스가 방전됩니다. 충전과 방전 사이에서 인덕터를 변경하는 과정은 인덕터를 통과하는 전압의 방향을 변경합니다. 전압은 입력 작동 전압을 초과하는 지점까지 점차적으로 증가합니다. MOSFET 스위치의 듀티 사이클은 부스트 ​​비율을 결정합니다. MOSFET의 승압 컨버터의 정격 전류와 부스트 비율은 승압 컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전류는 출력 전압의 상한을 결정합니다. 일부 승압 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정밀한 제로 전류 셧다운을 실현할 수 있으므로 셋업 컨버터의 효율성을 높일 수 있습니다. 최대 전력 점 추적 장치는 입력 전력을 실시간으로 모니터링하는 데 사용되었습니다. 입력 전압이 최대 입력 전력 지점에 도달하면 승압 컨버터가 작동을 시작합니다. 스텝 업 컨버터는 DNA 프린팅을 위한 최대 전력 출력 포인트가 있는 유리 기판에 사용됩니다.

MEMS Chip Design for Bubble Jet

이 연구는 히터 크기, 히터 번호 및 루프 저항과 같은 특정 매개 변수를 조작하여 5 가지 유형의 액체 배출 챔버 구조를 설계했습니다. 표 1 은 측정 결과를 나열합니다. 이 시스템은 다양한 히터의 루프 저항을 분석했습니다. 100 개 히터 설계를 완료하기 위해 2 세트의 히터를 사용하여 각 단일 회로 시리즈를 통과하기 때문에 100 개의 히터를 설계할 때 총 루프 저항은 히터 50 개의 총 루프 저항보다 하나 더 커야 합니다. 이 연구에서 MEMS 칩에서 기포를 배출하는 과정에서 저항 층의 면저항은 29 Ω / m 2입니다. 따라서 모델 A의 총 루프 저항이 가장 컸습니다. 일반 사이즈 모델 (모델 B1, C, D, E)의 두 배였습니다. 모델 B1, C, D 및 E의 총 루프 저항은 약 29 Ω / m 2 입니다. 표 1 에 따르면 오류 범위는 허용된 설계 값 이내였습니다. 따라서야 연구에서 설계된 각 유형의 단일 칩은 동일한 생산 절차 결과를 가지며 후속 유량 측정에 사용되었습니다.

Table 1. List of resistance measurement of single circuit resistance.
Table 1. List of resistance measurement of single circuit resistance.

DNA를 뿌린 칩의 파워가 정상으로 확인되면 히터 버블의 성장 특성을 테스트하고 검증했습니다. DNA 스프레이 칩의 필름 두께와 필름 품질은 히터의 작동 조건과 스프레이 품질에 영향을 줍니다. 따라서 기포 성장 현상과 그 성장 특성을 이해하면 본 연구에서 DNA 스프레이 칩의 특성과 작동 조건을 명확히 하는 데 도움이 됩니다.

설계된 시스템은 기포 성장 조건을 관찰하기 위해 개방형 액체 공급 방법을 채택했습니다. 이미지 관찰을 위해 발광 다이오드 (LED, Nichia NSPW500GS-K1, 3.1V 백색 LED 5mm)를 사용하는 동기식 플래시 방식을 사용하여 동기식 지연 광원을 생성했습니다. 이 시스템은 또한 전하 결합 장치 (CCD, Flir Grasshopper3 GigE GS3-PGE-50S5C-C)를 사용하여 이미지를 캡처했습니다. 그림 1핵 형성, 성장, 거품 생성에서 소산에 이르는 거품의 과정을 보여줍니다. 이 시스템은 기포의 성장 및 소산 과정을 확인하여 시작 전압을 관찰하는 데 사용할 수 있습니다. 마이크로 채널의 액체 공급 방법은 LED가 깜빡이는 시간을 가장 큰 기포 발생에 필요한 시간 (15μs)으로 설정했습니다. 이 디자인은 부적합한 깜박임 시간으로 인한 잘못된 판단과 거품 이미지 캡처 불가능을 방지합니다.

Figure 1. The system uses CCD to capture images.
Figure 1. The system uses CCD to capture images.

<내용 중략>…….

Table 2. Open pool test starting voltage results.
Table 2. Open pool test starting voltage results.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 10. A Type-Sample01 flow test.
Figure 10. A Type-Sample01 flow test.
Figure 11. A Type-Sample01 drop volume.
Figure 11. A Type-Sample01 drop volume.
Figure 12. A Type-Sample01 flow rate.
Figure 12. A Type-Sample01 flow rate.
Figure 13. B1-00 flow test.
Figure 13. B1-00 flow test.
Figure 14. C Type-01 flow test.
Figure 14. C Type-01 flow test.
Figure 15. D Type-02 flow test.
Figure 15. D Type-02 flow test.
Figure 16. E1 type flow test.
Figure 16. E1 type flow test.
Figure 17. E1 type ejection rate relationship.
Figure 17. E1 type ejection rate relationship.

Conclusions

이 연구는 DNA 프린팅 IDMH를 제공하고 미세 유체 흐름 추정을 수행했습니다. 설계된 DNA 스프레이 캐비티와 20V의 구동 전압에서 다양한 펄스 폭의 유동 성능이 펄스 폭에 따라 증가하는 것으로 밝혀졌습니다.

E1 유형 유량 테스트는 해당 유량이 3.1cc / min으로 증가함에 따라 유량이 전력 변화에 영향을 받는 것으로 나타났습니다. 동력이 증가함에 따라 유량은 0.75cc / min에서 3.5cc / min으로 최대 6.5W까지 증가했습니다. 동력이 더 증가하면 유량은 에너지와 함께 증가하지 않습니다. 이것은 이 테이블 디자인이 가장 크다는 것을 보여줍니다. 유속은 3.5cc / 분이었다.
작동 주파수가 2KHz이고 펄스 폭이 4μs 및 5μs 인 특수 설계된 DNA 스프레이 룸 구조에서 다양한 전력 조건 하에서 유량 변화를 관찰했습니다. 4.3–5.87 W의 출력 범위 내에서 주입 된 모노머의 유속은 5.5cc / 분이었습니다. 이것은 힘이 증가해도 변하지 않았습니다. DNA는 귀중하고 쉽게 얻을 수 없습니다. 이 실험을 통해 우리는 DNA가 뿌려진 마이크로 어레이 바이오칩의 수천 개의 지점에 필요한 총 DNA 양을 정확하게 추정 할 수 있습니다.

<내용 중략>…….

References

  1. Pydar, O.; Paredes, C.; Hwang, Y.; Paz, J.; Shah, N.; Candler, R. Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sens. Actuators Phys. 2014205, 199–203. [Google Scholar] [CrossRef]
  2. Ohtani, K.; Tsuchiya, M.; Sugiyama, H.; Katakura, T.; Hayakawa, M.; Kanai, T. Surface treatment of flow channels in microfluidic devices fabricated by stereolitography. J. Oleo Sci. 201463, 93–96. [Google Scholar] [CrossRef]
  3. Castrejn-Pita, J.R.; Martin, G.D.; Hoath, S.D.; Hutchings, I.M. A simple large-scale droplet generator for studies of inkjet printing. Rev. Sci. Instrum. 200879, 075108. [Google Scholar] [CrossRef] [PubMed]
  4. Asai, A. Application of the nucleation theory to the design of bubble jet printers. Jpn. J. Appl. Phys. Regul. Rap. Short Notes 198928, 909–915. [Google Scholar] [CrossRef]
  5. Aoyama, R.; Seki, M.; Hong, J.W.; Fujii, T.; Endo, I. Novel Liquid Injection Method with Wedge-shaped Microchannel on a PDMS Microchip System for Diagnostic Analyses. In Transducers’ 01 Eurosensors XV; Springer: Berlin, Germany, 2001; pp. 1204–1207. [Google Scholar]
  6. Xu, B.; Zhang, Y.; Xia, H.; Dong, W.; Ding, H.; Sun, H. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 201313, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
  7. Nayve, R.; Fujii, M.; Fukugawa, A.; Takeuchi, T.; Murata, M.; Yamada, Y. High-Resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE. J. Microelectromech. Syst. 200413, 814–821. [Google Scholar] [CrossRef]
  8. O’Connor, J.; Punch, J.; Jeffers, N.; Stafford, J. A dimensional comparison between embedded 3D: Printed and silicon microchannesl. J. Phys. Conf. Ser. 2014525, 012009. [Google Scholar] [CrossRef]
  9. Fang, Y.J.; Lee, J.I.; Wang, C.H.; Chung, C.K.; Ting, J. Modification of heater and bubble clamping behavior in off-shooting inkjet ejector. In Proceedings of the IEEE Sensors, Irvine, CA, USA, 30 October–3 November 2005; pp. 97–100. [Google Scholar]
  10. Lee, W.; Kwon, D.; Choi, W.; Jung, G.; Jeon, S. 3D-Printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 20155, 7717. [Google Scholar] [CrossRef] [PubMed]
  11. Shin, D.Y.; Smith, P.J. Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters. J. Appl. Phys. 2008103, 114905-1–114905-11. [Google Scholar] [CrossRef]
  12. Kim, Y.; Kim, S.; Hwang, J.; Kim, Y. Drop-on-Demand hybrid printing using piezoelectric MEMS printhead at various waveforms, high voltages and jetting frequencies. J. Micromech. Microeng. 201323, 8. [Google Scholar] [CrossRef]
  13. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Thermal design modifications to improve firing frequency of back shooting inkjet printhead. Sens. Actuators Phys. 2004114, 387–391. [Google Scholar] [CrossRef]
  14. Rose, D. Microfluidic Technologies and Instrumentation for Printing DNA Microarrays. In Microarray Biochip Technology; Eaton Publishing: Norwalk, CT, USA, 2000; p. 35. [Google Scholar]
  15. Wu, D.; Wu, S.; Xu, J.; Niu, L.; Midorikawa, K.; Sugioka, K. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-abottle biochip. Laser Photon. Rev. 20148, 458–467. [Google Scholar] [CrossRef]
  16. McIlroy, C.; Harlen, O.; Morrison, N. Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing. J. Non Newton. Fluid Mech. 2013201, 17–28. [Google Scholar] [CrossRef]
  17. Anderson, K.; Lockwood, S.; Martin, R.; Spence, D. A 3D printed fluidic device that enables integrated features. Anal. Chem. 201385, 5622–5626. [Google Scholar] [CrossRef] [PubMed]
  18. Avedisian, C.T.; Osborne, W.S.; McLeod, F.D.; Curley, C.M. Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water. Proc. R. Soc. A Lond. Math. Phys. Sci. 1999455, 3875–3899. [Google Scholar] [CrossRef]
  19. Lim, J.H.; Kuk, K.; Shin, S.J.; Baek, S.S.; Kim, Y.J.; Shin, J.W.; Oh, Y.S. Failure mechanisms in thermal inkjet printhead analyzed by experiments and numerical simulation. Microelectron. Reliab. 200545, 473–478. [Google Scholar] [CrossRef]
  20. Shallan, A.; Semjkal, P.; Corban, M.; Gujit, R.; Breadmore, M. Cost-Effective 3D printing of visibly transparent microchips within minutes. Anal. Chem. 201486, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
  21. Cavicchi, R.E.; Avedisian, C.T. Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles. Phys. Rev. Lett. 200798, 124501. [Google Scholar] [CrossRef] [PubMed]
  22. Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.; Chen, Y. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 201517, 36. [Google Scholar] [CrossRef] [PubMed]
  23. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Firing frequency improvement of back shooting inkjet printhead by thermal management. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors.Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 8–12 June 2003; Volume 1, pp. 380–383. [Google Scholar]
  24. Laio, X.; Song, J.; Li, E.; Luo, Y.; Shen, Y.; Chen, D.; Chen, Y.; Xu, Z.; Sugoioka, K.; Midorikawa, K. Rapid prototyping of 3D microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 201212, 746–749. [Google Scholar] [CrossRef] [PubMed]
Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineersv.17 no.3 = no.99 , 2009년, pp.45 – 53  신현우 (두원공과대학 메카트로닉스과 ) ;  정연준 ( 현대자동차(주) ) ;  강승구 ( 인지AMT(주))

Abstract

Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

Keywords: 오일팬 , 내열마그네슘합금, 알루미늄 합금,  다이캐스팅, 유동해석

서론

크랭크케이스의 하부에 부착되는 오일팬은 오일 펌프에 의해 펌핑된 오일이 윤활작용을 마치고 다시 모이는 부품이다. 오일의 온도에 의해 가열되므로 일반적으로 사용되는 마그네슘 합금인 AZ나 AM계열의 합금은 사용이 불가하며 내열소재의 적용이 불가피하다.

현재 ADC12종 알루미늄 오일팬 둥이 적용되고 있으며, 이를 마그네슘으로 대체할 경우 밀도가 알루미늄 2.8g/cm3‘, 마그네슘 1.8g/cm3‘이므로 약 35%의 경량화가 가능하다고 단순하게 말할 수 있다.

그러나 탄성계수는 알루미늄 73GPa이 고 마그네슘 45GPa이므로 외부 하중을 지지하고 있는 부품의 경우는 단순한 재질의 변경만으로는 알루미늄과 같은 정도의 강성을 나타내지 못하므로 형상의 변경 등을 통한 설계 최적화가 요구된다.

마그네슘은 현재까지 개발된 여러 가지 구조용 합금들 중에서 최소의 밀도를 가지고 있으며 동시에 우수한 비강도 및 비탄성 계수를 가지고 있다.1.2)

그러나 이러한 우수한 특성을 가지는 마그네슘 합금은 경쟁 재료에 비해 절대 강도 및 인성이 낮으며 고온에서 인장 강도가 급격히 감소하고 내부식 성능이 떨어지는 등의 문제점이 있다. 현재까지 자동차 부품 중 마그네슘 합금은 Cylinder head cover, Steering wheel, Instrument panel, Seat frame 등 비교적 내열성이 요구되지 않는 부분에만 한정적으로 적용되고 있다.
자동차 산업에서 좀 더 많은 부품에 마그네슘 합금을 적용하기 위해서는 내열성을 향상 시키고 고온강도를 향상시키기 위한 새로운 합금의 개발이 이루어져야 한다. 최근 마그네슘 합금개발에 대한 연구동향은 비교적 저가인 원소를 값비싼 원소가 첨가된 합금계에 부분적으로 첨가하거나 대체함으로써 비슷한 내열 특성을 가지는 합금을 개발하고,34) 이를 자동차 산업이나 전자 산업의 내열 부품 적용으로 확대하기 위하여 진행되고 있다. 현재 마그네슘 내열 부품은 선진국에서 자동차 부품으로 개발되고 있으나6-8)

국내에서는 아직 자동차 부품에 폭 넓게 적용되고 있지 않다. 그러므로 국내 자동차 산업이 치열한 국제 시장에서 생존하기 위해서는 마그네슘 합금의 내열 부품 제조기술을 조기에 개발하여 선진국보다 기술적, 경제적 우위를 확보하는 것이 절실히 요구된다.

본 연구에서는 내열 마그네슘합금을 이용하여 알루미늄 오일팬을 대체할 수 있는 새로운 오일팬의 개발올 위한 적절한 다이캐스팅 공정방안을 도출하고자 한다.

<중략>…….

Fig. 1 Current Al oil pan and cooling lines
Fig. 1 Current Al oil pan and cooling lines
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 5 Filling pattern of current Al oil pan
Fig. 5 Filling pattern of current Al oil pan
Fig. 11 Temperature distribution at t-=1.825sec
Fig. 11 Temperature distribution at t-=1.825sec

<중략>…….

결론

오일팬은 엔진 내부에서 순환되어 돌아오는 오일의 열을 외부로 발산하는 냉각기능 및 엔진으로부터 발생하는 소음이 외부로 전달되지 않도록 소음을 차단하는 역할을 수행하는 매우 중요한 부품 중의 하나이다. 본 연구에서는 현재 개발 중에 있는 새로운 내열 마그네슘 합금을 이용하여 현재 사용하고 있는 알루미늄 오일팬을 대체할 마그네슘 오일팬을 개발하고 시험 생산하였으며 다음과 같은 결론을 얻었다.

  1. 알루미늄 합금과 마그네슘 합금의 단위 부피당 열 용량은 각각 3.07x10J/m/K, 2.38x10J/m/K로서 동일 주조 조건 시 응고 속도 차이가 제품 성형에 영향을 미칠 것으로 예상되었으며, 주조해석 및 제품분석을 통해 확인하였다. 따라서 주조 조건에 가장 큰 영향을 미치는 것으로 확인된 용탕, 금형온도, 주조속도 등을 변경하여 최적 주조공정 조건을 확립하였다.
  2. 제품 및 시험편 성형에 영향을 미치는 것으로 확인된 런너의 곡률 반경을 증대시키고 게이트의 갯수 및 오버플로우 위치와 형상을 조절함으로서 제품 및 시험편의 용탕 흐름을 원활하게 조절 할 수 있었다.
  3. MRI153M 합금은 AE44 합금에 비해 응고 시작점에서 완료점까지의 응고시간이 길어 응고 완료 후, 내부 수축기포가 보다 많이 관찰되었다.
    따라서 MRI153M 합금 주조시 슬리브 충진율, 게이트 통과속도, 충진시간 등을 달리하여 최적 주조 품을 생산할 수 있었다.

Reference

  1. W. Sebastian, K. Droder and S. Schumann, Properties and Processing of Magnesium Wrought Products for Automotive Applications; Conference Paper at Magnesium Alloys and Their Applications,Munich, Germany, 2000 
  2. J. Hwang and D. Kang, “FE Analysis on the press forging of AZ31 Magnesium alloys,” Transactions ofKSAE, Vo1.14, No.1, pp.86-91, 2006  원문보기 
  3. S. Koike, K. Washizu, S. Tanaka, K. Kikawa and T. Baba, “Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines,” SAE 2000-01-1117, 2000 
  4. D.M. Kim, H.S. Kim and S.I. Park, “Magnesium for Automotive Application,” Journal ofKSAE, Vo1.18, No.5, pp.53-67, 1996 
  5. P. Lyon, J. F. King and K. Nuttal, “A New Magnesium HPDC Alloy for Elevated Temperature Use,” Proceedings of the 3rd International Magnesium Conference, ed. G. W. Lorimer, Manchester, UK, pp.1 0-12, 1996 
  6. S. Schumann and H. Friedrich, The Use ofMg in Cars – Today and in Future, Conference Paper at Mg Alloys and Their Applications, Wolfsburg, Germany, 1998 
  7. F. von Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger and D. Eliezer, “New Die Casting Alloy MRI 153 for Power Train Applications,” Magnesium Technology 2002, pp.61-68, 2002 
  8. M.C. Kang and K.Y. Sohn, “The Trend and Prospects of Magnesium Alloys Consumption for Automotive Parts in Europe,” Proceedings of KSAE Autumn Conference, pp.1569-l576, 2003 
Fig. 1.Schematic of wire feeding in a melting line.

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt

Bok-Hyun Kang*, Ki-Young Kim
Korea University of Technology and Education

코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가

Abstract

To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production line. The variables calculated included wire feed rate, melt temperature, wire diameter, melt flow rate and wire temperature. Efficiency was evaluated after a series of calculations based on the penetration depth of the alloy-wire into the molten copper bath. Of the five variables investigated, the wire feed rate and wire diameter were the most influential factors affecting the feeding efficiency of the cored-wire.

Keywords: Cored wire feeding, Cu melt, Efficiency, Alloying elements

1. 서론

소재산업이 고품질, 환경친화적,저에너지 소비기술을 지향하면서 보다 고효율 공정의 활용이 증가하는 추세에 있다. 철강이나 비철소재에 있어서도 탈산, 탈황, 개재물 처리 및 합금화 등과 같은 청정화를 위한 용탕 처리 뿐만 아니라목표하는 합금의 화학 조성의 정확한 조절이 요구되고 있다.

분말 원재료를 금속 피복재 등으로 감싸서 와이어의 형태로 만들고 이를 릴에 감은 후 순차적으로 풀어서 용탕에 투입하는 코어드 와이어(cored wire)방식은 첨가되는 원재료의 손실을 최소화하고 높은 효율성을 얻을 수 있는 이점이 있다.

용강의 탈산을 위한 Ca투입 시에도 Ca분말을 피복하여 사용한 경우의 회수율이 높아지고,미량의 V나 Al를 합금원소로참가할 때에도 효율적이라고 보고되고 있다[1-5]. 그리고 코어드 와이어를 사용할 경우의 용해 메커니즘에 대한 모델 및 열전달에 관한연구도 보고된 바 있다[6-9].

또한 철강산업에서 뿐만 아니라 주철 제조시에도 코어드 와이어법이 이용되고 있는데, 주철의 구상화 처리[10], 선철의 탈황[11]등에서도 활용이 되고 있다.

한편, 비철산업에서는 코어드 와이어법이 아직 활발히 채용이 되지 않고 있는 상태이나, 전자부품 용동 합금소재와 같이정밀한 합금화가 필요하거나 산화가 용이하여 분말로 첨가 시 회수율이 낮은 원소의 합금 시 그 활용이 기대되고 있다.

실제 정확한 장입 계산으로 합금 원소를 투입 하더라도 최종 목표 조성을 관리하는 것은 쉽지 않다. 특히 산화가 쉬운원소의 경우 용탕에 투입했을 때 회수율의 변동성이 심하고, 마이크로 합금화(micro alloying)와 같이 첨가량이 매우 적다면 화학조성의 조절이 더욱 어렵고, 회수율의 예측 또한 힘들다.

일반적으로 동합금의 제조시 합금원소는 용해 라인에서 연속적으로 첨가 되는데, 기존 공정라인에서의 합금화는 배합로에서 합금원소를 덩어리 또는 분말형태로 투입하여 진행한다. 그러나 이러한 배합방식은 많은 양의 분진 발생으로 작업 환경을 나쁘게 하고, 특히 분말의 상태로 용탕과 접촉하므로 산화가 용이하여 회수율의 변동이 심한 단점이 있다.

동합금 제조에 있어서 코어드 와이어법의 적용에 대한 실험실적 연구는 수행된 바 있으나[12], 다양한 공정변수를 고려하기 위해서는 실제 동합금의 용해, 연주라인에서 실험하는 것은 어려우므로, 전산모사를 활용하여 각 변수의 영향을 알아보는 것도 효과적인 방법 중의 하나이다.

본 연구에서는 아직까지 Cu 합금의 제조에 사용되지 않은 코어드 와이어 피딩법의 전산모사를 통하여 와이어 피딩 시의효율에 미치는 공정변수의 영향을 조사하였다.

2.연구방법

Fig. 1은 용해라인에서의 와이어피딩 모식도를 나타낸 것으로, 배합로에서 합금을 투입한다고 가정하였다. 또한 용탕의유속은 연주되는 슬라브의 유량과 용탕유로의 단면적으로 유로내에서의 용탕유속을 산출하였고, 이러한 용탕의 흐름을가정하여 유체의X+ 방향으로의 유속을 정의하였다.

Fig. 2는계산모델을 나타낸 것으로 100×500×20 mm 크기의 모델을 길이 방향으로 50개, 높이 방향으로 250개, 두께 방향으로 10개의 소로 나누었다. 용탕은 순 Cu로 가정하였고, 와이어의 재질은 Cu이며, 튜브 안에 Cu 분말이 들어있는 것으로 가정하였다.

계산상 합금분말은 정의가 안되기 때문에, 코어드 와이어의 밀도는 벌크 재질 밀도의60%의 밀도로 입력 하였다. 계산에 사용한 재질별 물성은T able 1과 같다.

용탕의 흐름, Cu용탕과 와이어 사이의 열 이동은 상용 유체해석 소프트웨어인 Flow-3D를 이용하여 3차원 계산을 수행하였다. 계산 변수는 와이어의 송급속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도로 하였으며, 상세는 Table2와 같다. 와이어의 송급 속도는 Z- 방향으로 당겨지는 것으로 입력하였다.

Fig. 1.Schematic of wire feeding in a melting line.
Fig. 1.Schematic of wire feeding in a melting line.

<중략>…….

Flg. 2.Three dimensional model for wire feeding simulation
Flg. 2.Three dimensional model for wire feeding simulation
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K

Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
ig. 9.Effect of melt flow rate on the penetration depth of wire.
ig. 9.Effect of melt flow rate on the penetration depth of wire.
Fig. 10.Effect of wire temperature on the penetration depth of wire
Fig. 10.Effect of wire temperature on the penetration depth of wire

<중략>…

4. 결론

코어드와이어 피딩 공정을 와이어의 송급 속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도를 공정변수로 하여 전산 모사하고, 피딩공정의 효율은 와이어의 침투 깊이로 평가하였다.

그 결과, 와이어의 송급 속도와 와이어의 직경이 와이어의 침투 깊이에 가장 영향이 큰 것으로 나타났다. 즉 와이어가 용탕의 상면 가까이에서 용해되어 버리면 산화가 용이하게 되고, 부상하여 슬래그 중으로 들어가기 쉬우므로 효율이 떨어지나, 용탕의 저부에서 용해되면, 대부분 Cu 용탕 중으로 녹아 들어가므로 첨가하는 합금 원소의 회수율이 높아지게 됨을 기대할 수 있다. 연속 주조 라인에서는 빌렛의 최종 조성의 조절이 중요한데, 와이어의 직경과 적정 송급 속도의 조화가 필요하다.

References

[1] P. Murray, Metallurgist, “Use of cored wire to introducemetallic powders into molten metal”,41(1997) 53-55.
[2] S. Basak, R. Kumar Dhal and G. G. Roy, Ironmaking andSteelmaking, “Efficacy and recovery of calcium during CaSicored wire injection in steel melts”,37(2010) 161-168.
[3] D.A. Dyudkin, V.V. Kisilenko, V.P. Onishchuk, A.A. Larionov,and B.V. Neboga, Metallurgist, “Effectiveness of alloyingsteel with vanadium from cored wire”,46(2002) 203-204.
[4] Y. Heikiki and M. Juha, Scandinavian J. of Metallurgy, “Steelcomposition adjustment by wire feeding at Rautaruukki OyRaaha steel works”,19(1990) 142-145.
[5] S.V. Kazakov, A.A. Neretin, S.M. Chumakov, S.D. Zinchenkoand A. B. Lyatin, Metallurgist, “Treatment of converter steelwith calcium-aluminum wire”,42(1998) 173-175.
[6] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, Steel ResearchInt., “Dissolution kinetics of cored wire in molten steel”,77(2006) 541-549.
[7] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, ISIJ Int., “AnImproved Model of Cored Wire Injection in Steel Melts”,44(2004) 1157-1166.
[8] S. Sanyal, J.K. Saha, S. Chandra and C. Bhanu, ISIJ Int.,“Model based optimazation of aluminum wire injection insteel melts”,46(2006) 779-781.
[9] M.G. Kim, D.C. Hwang, J.J. Choi, S.Y. Yoon, B.J. Ye, J.H.Kim and W.B. Kim, J. KFS, “Heat Flow Analysis of FerriticStainless Steel Melt during Ti wire feeding”,29(2009) 277-283.
[10] I. Ruiz, F. Wolfsgruber and J. L. Enriquez, Inter. J. of CastMetals Research, “Production of ductile iron with the coredwire technology”,16(2003) 7-10.
[11] A.M. Zborshchik, Metallurgist, “Cost-effectiveness of de-sulfurizing pig iron with magnesium-bearing cored wire”,45(2001) 360-362.
[12] B.H. Kang, W.H. Lee, J.Y. Cho, M.J. Lee and K.Y. Kim,Advanced Mater. Reasearch, “Yield of alloying elements fedby cored wire into a copper melt”,690-693(2013) 62-65

Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.

The effect of alloying elements of gas metal arc welding (GMAW) wire on weld pool flow and slag formation location in cold metal transfer (CMT)

가스 금속 아크 용접 (GMAW) 와이어의 합금 원소가 CMT (Cold Metal Transfer)에서 용접 풀 흐름 및 슬래그 형성 위치에 미치는 영향

Md. R. U. Ahsan1,3, Muralimohan. Cheepu2, Yeong-Do Park* 2,3
1Department of Mechanical Engineering, International University of Business, Agriculture and Technology,
Dhaka 1230, Bangladesh.
r.ahsan06me@gmail.com
2Department of Advanced Materials and Industrial Management Engineering, Dong-Eui University, Busan
47340, Republic of Korea.
muralicheepu@gmail.com
3Department of Advanced Materials Engineering, Dong-Eui University, B

Abstract

용접시 표면 장력 구동 흐름 또는 마랑고니 흐름은 용접 비드 모양을 제어하는데 중요한 역할을 하므로 용접 접합 품질에 영향을 미칩니다. 용해된 금속의 표면 장력은 보통 음의 온도 계수를 가지므로 용접 풀이 중심에서 토우 방향으로 흐르게 됩니다.

표면 장력의 이 온도 계수는 황(S), 산소(O), 셀레늄(Se) 및 텔루륨(Te)과 같은 표면 활성 요소가 있는 경우 양의 계수로 변경할 수 있습니다. 소모품에 존재하는 탈산화 원소의 양이 용접 금속에 존재하는 산소량을 결정합니다. 탈산화제 양이 적으면 용접 금속에 산소 농도가 높아집니다.

적절한 양의 산소가 있으면 용융지에 표면 장력 구배의 양의 온도 계수가 발생할 수 있습니다. 이 경우 용접 풀은 토우에서 중앙 방향으로 흐릅니다. 그 결과, 아크와 용융지에 있는 화농성 반응의 경우, 합금 요소의 다양한 산화물이 슬래그(slag)라고 합니다. 슬래그는 용융지 표면에 떠서 용융지 흐름 패턴에 따라 누적됩니다.

그 결과, 슬래그는 용융지 흐름 패턴에 따라 용접 비드 중심 또는 토우 중심을 따라 형성됩니다. 슬래그는 용접 비드의 외관과 도장 접착력을 저하시키므로 제거해야 합니다. 쉽게 분리할 수 있기 때문에 용접 비드 중심 부근에서 슬래그가 형성되는 것이 좋습니다.

용접 풀의 현장 고속 비디오 촬영, 용접 금속 화학 성분 분석, 소모품 합금 요소가 용접 풀 흐름 패턴 및 슬래그 형성 위치에 미치는 영향이 공개되어 CMT-GMAW의 생산성 향상을 위해 용접 소모품 선택을 용이하게 할 수 있습니다.

The surface tension driven flow or Marangoni flow in welding plays an important role in governing weld bead shape hence affecting the weld joint quality. The surface tension of molten metal usually has a negative temperature coefficient causing the weld pool to flow from the center towards the toe.

This temperature coefficient of the surface tension can be altered to be a positive one in the presence of surface-active elements like sulfur (S), oxygen (O), selenium (Se) and tellurium (Te). The amount of deoxidizing elements present in the consumables governs the amount of oxygen present in the weld metal. The presence of a lower amount of deoxidizers results in higher concentration of oxygen in the weld metal.

The presence of adequate amount of oxygen can result in a positive temperature coefficient of surface tension gradient in the weld pool. In such situation, the weld pool flows from the toe towards the direction of the center. As a result, of pyrometallurgical reactions in the arc and the weld pool various oxides of the alloying elements are former which are referred as slag.

The slags float on the weld pool surface and accumulate following the weld pool flow pattern. As a result, slags form either along the center of the weld bead or the toe depending on the weld pool flow pattern. The slags need to be removed as they degrade the weld bead appearance and paint adhesiveness.

Due to easy detachability, slag formation near the center of the weld bead is desired. From in-situ high-speed videography of weld pool, weld metal chemical composition analysis, the effect of consumables alloying elements on weld pool flow pattern and slag formation location are disclosed, which can facilitate the selection of the welding consumables for better productivity in CMT-GMAW.

Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
Fig. 3: Quantitative analysis data on slag formation for different wire.
Fig. 3: Quantitative analysis data on slag formation for different wire.

References

[1] S. Lu, H. Fujii, and K. Nogi: “Marangoni convection and weld shape variations in He-CO2 shielded gas
tungsten arc welding on SUS304 stainless steel,” J. Mater. Sci., Vol. 43, No. 13 (2008), pp. 4583–4591.
[2] Y. Wang and H. L. Tsai: “Effects of surface active elements on weld pool fluid flow and weld penetration in
gas metal arc welding,” Metall. Mater. Trans. B, Vol. 32, No. 3 (2001), pp. 501–515.
[3] P. Sahoo, T. Debroy, and M. J. McNallan: “Surface tension of binary metal-surface active solute systems under
conditions relevant to welding metallurgy,” Metall. Trans. B, Vol. 19, No. 2 (1988), pp. 483–491.
[4] M. J. Mcnallan and T. Debroy: “Effect of Temperature and in Fe-Ni-Cr Alloys Containing Sulfur,”Metall.
Trans. B,Vol. 22, No. 4 (1991) pp. 557-560.
[5] S. Kou, C. Limmaneevichitr, and P. S. Wei: “Oscillatory Marangoni flow: A fundamental study by conductionmode laser spot welding,” Weld. J., Vol. 90, No. 12 (2011), pp. 229–240.
[6] M. Hasegawa, M. Watabe, and W. H. Young: “Theory of the surface tension of liquid metals,” J. Phys. F Met.
Phys., Vol. 11, No. 8 (2000), pp. 173–177.
[7] C. Heiple and J. Roper: “Effect of selenium on GTAW fusion zone geometry,” Weld. J., (1981), pp. 143–145.
[8] C. R. Heiple and J. R. Roper: “Mechanism for Minor Element Effect on {GTA} Fusion Zone Geometry,”
Weld. J., Vol. 61, (1982)pp. 97–102.
[9] C. Heiple, J. Roper, R. Stagner, and R. Aden: “Surface active element effects on the shape of GTA, laser and
electron beam welds,” Weld. J., (1983) pp. 72–77.
[10] C. R. Heiple and P. Burgardt: “Effects of SO2 Shielding Gas Additions on GTA Weld Shape,” Weld. J., (1985)
pp. 159–162.
[11] P. F. Mendez, and T. W. Eagar: “Penetration and Defect Formation in High-Current Arc Welding,” Weld. J.,
(2003) pp. 296–306.
[12] B. Ribic, S. Tsukamoto, R. Rai, and T. DebRoy: “Role of surface-active elements during keyhole-mode laser
welding,” J. Phys. D. Appl. Phys., Vol. 44, No. 48 (2011), pp. 485–203.
[13] C. Limmaneevichitr and S. Kou, “Experiments to simulate effect of Marangoni convection on weld pool shape,”
Weld. J., Vol. 79, (2000)pp. 231–237.
[14] C. Limmaneevichitr and S. Kou: “Visualization of Marangoni convection in simulated weld pools containing a
surface-active agent,” Weld. J., vol. 79, No. 11 (2000), pp. 324–330.
[15] Y. Wang and H. L. Tsai: “Impingement of filler droplets and weld pool dynamics during gas metal arc welding
process,” Int. J. Heat Mass Transf., Vol. 44, No. 11 (2001), pp. 2067–2080.
[16] S. Liu: “Pyrometallurgical Studies of Molten Metal Droplets for the Characterization of Gas Metal Arc
Welding,” Proc 9thTrends in Welding Research Conf., Chicago, Illinois, June 2012, pp. 353–361.
[17] Y. Umehara, R. Suzuki and T. Nakano: “Development of the innovative GMA wire improving the flow
direction of molten pool” Quart. J. Japan Weld. Soc., Vol. 27, NO. 2 (2009), pp. 163–168.

Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성

Won‐Sang Shin 1,†, Dae‐Won Cho 2,†, Donghyuck Jung 1, Heeshin Kang 3, Jeng O Kim 3, Yoon‐Jun Kim 1,*
and Changkyoo Park 3,*

Al 리본과 Cu 시트의 펄스 레이저 용접은 전력 전자 모듈의 전기적 상호 연결에 대해 조사되었습니다. 결함 없는 Al / Cu 조인트를 얻기 위해 레이저 출력, 스캔 속도 및 열 입력이 서로 다른 다양한 실험 조건이 사용되었습니다. Al / Cu 레이저 용접 중에 금속 간 화합물이 용접 영역에 형성되었습니다. 전자 탐침 마이크로 분석기와 투과 전자 현미경으로 Al4Cu9, Al2Cu, AlCu 등으로 밝혀진 금속 간 화합물의 상을 확인했습니다. 전산 유체 역학 시뮬레이션은 Marangoni 효과가 용융 풀의 순환을 유도하여 혼합물을 생성하는 것으로 나타났습니다. Al과 Cu의 결합과 Al / Cu 조인트에서 소용돌이 모양의 구조 형성. Al / Cu 접합부의 인장 전단강도와 전기 저항을 측정하였으며 용접 면적과 강한 상관 관계를 보였다. Al / Cu 접합부의 용접 면적이 증가함에 따라 기계적 강도의 감소와 전기 저항의 증가가 측정 되었습니다. 또한 무결점 Al / Cu 접합을 위한 공정 창을 개발하고 Al / Cu 레이저 브레이즈 용접을 위한 실험 조건을 조사하여 Al / Cu 접합에서 금속 간 화합물 형성을 최소화했습니다.

Introduction

전기 상호 연결은 전력 전자 모듈을 패키징하는 데 중요합니다. 우수한 기계적 및 전기적 특성을 가진 견고한 전기적 상호 연결은 전력 전자 모듈의 전기적 고장을 방지하는 데 필수적입니다. 저항 스폿 용접, 브레이징, 납땜 및 초음파 용접 (USW)이 전기 상호 연결에 사용되었습니다.

납땜과 납땜 모두 저온 공정으로 인해 접합부에서 한계 변형과 잔류 응력이 발생합니다 [1]. 필러 합금은 두 공정 모두 견고한 전기 접촉을 달성하는 데 필수적입니다. 따라서 조인트는 서로 접촉하는 서로 다른 금속으로 구성됩니다.

결과적으로 조인트는 부식 환경에서 갈바닉 부식에 취약 할 수 있습니다 [2,3]. 더욱이, 비금속과 충전재 사이의 친화도를 고려해야 하기 때문에 제한된 충전재 만 특정 조인트에 사용할 수 있습니다 [1]. USW는 용접 온도가 낮고 용접 시간이 짧기 때문에 접합부의 변형이 비교적 적습니다.

따라서 이는 특히 연질 재료 (예 : Al, Cu, Ag, Au 및 Ni)의 경우 기존 접합 방법을 대체하고 있습니다 [4–6]. 그러나 Cu를위한 USW 공정의 경우, 표면 산화물이 강해 용접성이 저하되는 것을 방지하기 위해 Cu 표면에 Sn 또는 Ni 코팅이 필요하며, 이는 공정 속도를 늦추고 산업적 응용을위한 경제적 측면을 악화시킨다 [7 , 8].

레이저 용접은 쉬운 제어, 고정밀 및 원격 처리의 특성으로 인해 전력 전자 모듈의 전기 연결에 대한 유망한 후보입니다. 열의 영향을 받는 작은 영역과 변형은 전기 접점의 손상을 최소화 할 것으로 예상됩니다 [9-11]. 또한 레이저 용접을 위해 추가 표면 준비가 필요하지 않습니다.

이종 재료의 용접은 산업 응용 분야에서 중요했습니다. 더욱이 그림 1 [12,13]에서 볼 수 있듯이 전기 연결을위한 와이어 또는 리본 본딩에 여러 다른 조인트가 필요하기 때문에 전력 전자 모듈에서 필수적인 기술이되고 있습니다.

전기 접점의 다양한 조합 중에서 Al과 Cu는 높은 전기 전도성으로 인해 전기 연결에 중요한 재료로 종종 간주됩니다 [14]. 그러나 Al과 Cu의 서로 다른 용접은 금속 간 화합물 (IMC)의 형성을 촉진하고 동시에 Al / Cu 조인트의 기계적 및 전기적 특성에 영향을 줍니다. 일반적으로 Al / Cu 조인트 내부에 IMC가 있으면 연성 및 전기 저항에 해를 끼치므로 균열이 쉽게 발생하고 용접을 통한 전기 전도도를 방해합니다 [15,16].

따라서 견고한 Al / Cu 조인트를 얻으려면 IMC의 형성을 피해야합니다. 여러 연구에서 Al 및 Cu 시트의 레이저 빔 용접을 조사했습니다. 연속파 (CW) 레이저가 Al / Cu 조인트에 사용되었습니다 [17-23]. 큰 열 입력과 상당한 IMC 형성으로 인해 용접 영역에서 많은 균열이 관찰되었습니다 [18,19].

CW 레이저 빔의 공간 진동은 Al / Cu 조인트의 용접 품질을 향상시키는 것으로 나타났습니다. 직선 CW 레이저 빔 [18-20]과 비교하여 용접 영역에서 IMC 크기가 더 작은 기공과 균열이 더 적습니다.

Al과 Cu 시트의 겹침 접합에는 CW 단일 모드 파이버 레이저를 사용했으며, IMC 형성을 억제하여 높은 용접 속도 (즉, 50m / min)에서 견고한 Al / Cu 접합을 얻었습니다 [22]. Mai et al. [23]은 다른 Al / Cu 용접을 달성하기 위해 펄스 레이저를 사용했습니다.

그들은 Al / Cu 용접성이 레이저 공정 매개 변수에 크게 의존한다는 것을 밝혔으며 100mm / min 미만의 스캔 속도에서 균열없는 Al / Cu 접합을 달성하는 데 성공했습니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20,
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (d) 27/20.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 13. Stress–strain curves obtained by the tensile shear tests.
Figure 13. Stress–strain curves obtained by the tensile shear tests.

References

  1. Schwartz, M.M.; Aircraft, S. Introduction to Brazing and Soldering. ASM Int. 2018, 6, doi.org/10.31399/asm.hb.v06.a0001344.
  2. Vianco, P.T. Corrosion issues in solder joint design and service. Weld. J. 1999, 78, 39–46.
  3. Shi, Y.; Li, J.; Zhang, G.; Huang, J.; Gu, Y. Corrosion Behavior of Aluminum‐Steel Weld‐Brazing Joint. J. Mater. Eng. Perform.
    2016, 25, 1916–1923, doi:10.1007/s11665‐016‐2020‐9.
  4. Harman, G.G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 3rd ed; McGraw‐Hill Education: New
    York, NY, USA, 2010; ISBN 9780071642651.
  5. Aonuma, M.; Nakata, K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater. Sci.
    Eng. B Solid State Mater. Adv. Technol. 2012, 177, 543–548, doi:10.1016/j.mseb.2011.12.031.
  6. Sasaki, T.; Watanabe, T.; Hosokawa, Y.; Yanagisawa, A. Analysis for relative motion in ultrasonic welding of aluminium sheet.
    Sci. Technol. Weld. Jt. 2012, 18, 19–24, doi:10.1179/1362171812Y.0000000066.
  7. Maeda, M.; Sato, T.; Inoue, N.; Yagi, D.; Takahashi, Y. Anomalous microstructure formed at the interface between copper ribbon
    and tin‐deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 2011, 51, 130–136, doi:10.1016/j.microrel.2010.05.009.
  8. Maeda, M.; Yagi, D.; Takahashi, Y. Interfacial microstructure between copper ribbon and nickel‐coated copper plate formed by
    ultrasonic bonding. Q. J. Jpn. Weld. Soc. 2013, 31, 188–191, doi:10.2207/qjjws.31.188s.
  9. Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214, doi:10.1007/BF00361499.
  10. Yan, S.; Hong, Z.; Watanabe, T.; Jingguo, T. CW/PW dual‐beam YAG laser welding of steel/aluminum alloy sheets. Opt. Lasers
    Eng. 2010, 48, 732–736, doi:10.1016/j.optlaseng.2010.03.015.
  11. Mehlmann, B.; Gehlen, E.; Olowinsky, A.; Gillner, A. Laser micro welding for ribbon bonding. Phys. Procedia 2014, 56, 776–781,
    doi:10.1016/j.phpro.2014.08.085.
  12. Nwanoro, K.C.; Lu, H.; Yin, C.; Bailey, C. An analysis of the reliability and design optimization of aluminium ribbon bonds in
    power electronics modules using computer simulation method. Microelectron. Reliab. 2018, 87, 1–14,
    doi:10.1016/j.microrel.2018.05.013.
  13. Li, H.; Cao, B.; Yang, J.W.; Liu, J. Modeling of resistance heat assisted ultrasonic welding of Cu‐Al joint. J. Mater. Process. Technol.
    2018, 256, 121–130, doi:10.1016/j.jmatprotec.2018.02.008.
  14. Davis, J.R. Copper and Copper Alloys. In ASM Speciality Handbook; ASM International: Almere, The Netherlands, 2001; ISBN
    2001022956
  1. Rabkin, D.M.; Ryabov, V.R.; Lozovskaya, A.V.; Dovzhenko, V.A. Preparation and properties of copper‐aluminum intermetallic
    compounds. Sov. Powder Metall. Met. Ceram. 1970, 9, 695–700, doi:10.1007/BF00803820.
  2. Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond
    strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239, doi:10.2320/matertrans.47.1232.
  3. Schmidt, P.A.; Schweier, M.; Zaeh, M.F. Joining of lithium‐ion batteries using laser beam welding: Electrical losses of welded
    aluminum and copper joints. J. Laser Appl. 2012, 915, doi:10.2351/1.5062563.
  4. Smith, S.; Blackburn, J.; Gittos, M.; De Bono, P.; Hilton, P. Welding of dissimilar metallic materials using a scanned laser beam.
    J. Laser Appl. 2013, 493, doi:10.2351/1.5062921.
  5. Solchenbach, T.; Plapper, P. Mechanical characteristics of laser braze‐welded aluminium‐copper connections. Opt. Laser Technol.
    2013, 54, 249–256, doi:10.1016/j.optlastec.2013.06.003.
  6. Kraetzsch, M.; Standfuss, J.; Klotzbach, A.; Kaspar, J.; Brenner, B.; Beyer, E. Laser Beam Welding with High‐Frequency Beam
    Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers. Phys. Procedia 2011, 12, 142–149,
    doi:10.1016/j.phpro.2011.03.018.
  7. Solchenbach, T.; Plapper, P.; Cai, W. Electrical performance of laser braze‐welded aluminum‐copper interconnects. J. Manuf.
    Process. 2014, 16, 183–189, doi:10.1016/j.jmapro.2013.12.002.
  8. Lee, S.J.; Nakamura, H.; Kawahito, Y.; Katayama, S. Effect of welding speed on microstructural and mechanical properties of
    laser lap weld joints in dissimilar Al and Cu sheets. Sci. Technol. Weld. Jt. 2014, 19, 111–118, doi:10.1179/1362171813Y.0000000168.
  9. Mai, T.A.; Spowage, A.C. Characterisation of dissimilar joints in laser welding of steel‐kovar, copper‐steel and copper‐
    aluminium. Mater. Sci. Eng. A 2004, 374, 224–233, doi:10.1016/j.msea.2004.02.025.
  10. Zhang, G.; Takahashi, Y.; Heng, Z.; Takashima, K.; Misawa, K. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar
    joint formation mode. Mater. Trans. 2015, 56, 1842–1851, doi:10.2320/matertrans.M2015251.
  11. Zhu, B.; Zhen, L.; Xia, H.; Su, J.; Niu, S.; Wu, L.; Tan, C.; Chen, B. Effect of the scanning path on the nanosecond pulse laser
    welded Al/Cu lapped joint. Opt. Laser Technol. 2021, 139, 106945, doi.org/10.1016/j.optlastec.2021.106945.
  12. Kumar, A.; Gupta, M.P.; Banerjee, J.; Neogy, S.; Keskar, N.; Bhatt, R.B.; Behere, P.G.; Biswas, D.J. Micro‐Welding of Stainless
    Steel and Copper Foils Using a Nano‐Second Pulsed Fiber Laser. Lasers Manuf. Mater. Process. 2019, 6, 158–172,
    doi.org/10.1007/s40516‐019‐00088‐w.
  13. Trinh, L.N.; Lee, D. The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium‐Ion
    Battery. Metals 2020, 10, 842, doi.org/10.3390/met10060842.
  14. Cho, D.W.; Park, J.H.; Moon, H.S. A study on molten pool behavior in the one pulse one drop GMAW process using
    computational fluid dynamics. Int. J. Heat Mass Transf. 2019, 139, 848–859, doi:10.1016/j.ijheatmasstransfer.2019.05.038.
  15. Cho, W.I.; Na, S.J.; Cho, M.H.; Lee, J.S. Numerical study of alloying element distribution in CO2 laser‐GMA hybrid welding.
    Comput. Mater. Sci. 2010, 49, 792–800, doi:10.1016/j.commatsci.2010.06.025.
  16. Cho, D.W.; Kiran, D.V.; Na, S.J. Analysis of molten pool behavior by flux‐wall guided metal transfer in low‐current submerged
    arc welding process. Int. J. Heat Mass Transf. 2017, 110, 104–112, doi:10.1016/j.ijheatmasstransfer.2017.02.060.
  17. Cho, W.‐I.; Na, S.‐J. Impact of Wavelengths of CO2, Disk, and Green Lasers on Fusion Zone Shape in Laser Welding of Steel. J.
    Weld. Jt. 2020, 38, 235–240, doi:10.5781/jwj.2020.38.3.1.
  18. Sim, A.; Chun, E.J.; Cho, D.W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu‐Bearing Medium
    Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217, doi:10.1007/s12540‐019‐00577‐9.
  19. Jarwitz, M.; Fetzer, F.; Weber, R.; Graf, T. Weld seam geometry and electrical resistance of laser‐welded, aluminum‐copper
    dissimilar joints produced with spatial beam oscillation. Metals 2018, 8, 510, doi:10.3390/met8070510.
  20. Weigl, M.; Albert, F.; Schmidt, M. Enhancing the ductility of laser‐welde copper‐aluminum connections by using adapted filler
    materia. Phys. Procedia 2011, 12, 335–341, doi:10.1016/j.phpro.2011.03.141.
  21. Chen, J.; Lai, Y.S.; Wang, Y.W.; Kao, C.R. Investigation of growth behavior of Al‐Cu intermetallic compounds in Cu wire
    bonding. Microelectron. Reliab. 2011, 51, 125–129, doi:10.1016/j.microrel.2010.09.034.
  22. Chen, H.; Yang, L.; Long, J. First‐principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al‐
    Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156–165, doi:10.1016/j.spmi.2014.11.005.
  23. Liu, H.J.; Shen, J.J.; Zhou, L.; Zhao, Y.Q.; Liu, C.; Kuang, L.Y. Microstructural characterisation and mechanical properties of
    friction stir welded joints of aluminium alloy to copper. Sci. Technol. Weld. Jt. 2011, 16, 92–99,
    doi:10.1179/1362171810Y.0000000007.
  24. Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper‐clad aluminium thin wires. Mater. Sci. Eng. A
    2011, 528, 7103–7106, doi:10.1016/j.msea.2011.05.077.
  25. Braunović, M.; Alexandrov, N. Intermetallic Compounds At Aluminum‐To‐Copper Electrical Interfaces: Effect of Temperature
    And Electric Current. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 78–85, doi:10.1109/95.296372.
  26. Lee, W.B.; Bang, K.S.; Jung, S.B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded
    Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219, doi:10.1016/j.jallcom.2004.07.057.
FIGURE 1. - FLOW-3D MODEL OF K-SITE TANK PRESSUR-IZATION.

Prediction of the Ullage Gas Thermal Stratification in a NASP Vehicle Propellant Tank Experimental Simulation Using FLOW-3D

FLOW-3D를 사용한 NASP 차량 추진 탱크 실험 시뮬레이션에서 Ullage 가스 열 층화 예측

Personal AuthorHardy, T. L.; Tomsik, T. M.

NASP (National Aero-Space Plane) 프로젝트의 일환으로 2D 온도 프로파일에 대한 중력, 초기 탱크 압력, 초기 유면 온도 및 열 전달 속도의 다차원 효과를 연구했습니다.

상업용 유한 차분 유체 흐름 모델인 FLOW-3D가 평가에 사용되었습니다. 이러한 효과는 기체 수소 가압제를 사용한 이전 액체 수소 실험 데이터를 기반으로 조사되었습니다.

FLOW-3D 결과는 기존 1D 모델과 비교되었습니다. 또한 메쉬 크기와 수렴 기준이 분석 결과에 미치는 영향을 조사했습니다. NASP 탱크 모델링을위한 향후 수정 및 FLOW-3D 사용에 대한 제안도 제공됩니다.

KeywordsAerospace planesComputer programsFluid flowHeat transferNational aerospace plane programPropellant tanksUllageComputational gridsConvergenceFinite difference theoryLiquid hydrogenMathematical modelsSimulationStratificationTemperature profiles
FIGURE 1. - FLOW-3D MODEL OF K-SITE TANK PRESSUR-IZATION.
FIGURE 1. – FLOW-3D MODEL OF K-SITE TANK PRESSUR-IZATION.
FIGURE 3. - EFFECT OF GRAVITY ON TEMPERATURE CONTOURS
FIGURE 3. – EFFECT OF GRAVITY ON TEMPERATURE CONTOURS
FIGURE 6.- EFFECT OF INITIAL PRESSURE ON VELOCITY PROFILE
FIGURE 6.- EFFECT OF INITIAL PRESSURE ON VELOCITY PROFILE
FIGURE 10. - EFFECT OF INITIAL TEMPERATURE ON TEMPERATURE CONTOURS
FIGURE 10. – EFFECT OF INITIAL TEMPERATURE ON TEMPERATURE CONTOURS
FIGURE 13. - EFFECT OF HEAT TRANSFER ON TEMPERATURE CONTOURS
FIGURE 13. – EFFECT OF HEAT TRANSFER ON TEMPERATURE CONTOURS
FIGURE 16. - EFFECT OF CONVERGENCE CRITERIA ON TEMPERATURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, 6 = 32.2 FT/SECZ, 24 SEC PRESSURIZATION
FIGURE 16. – EFFECT OF CONVERGENCE CRITERIA ON TEMPERATURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, 6 = 32.2 FT/SECZ, 24 SEC PRESSURIZATION
FIGURE 17. - COMPAR ISON OF CENTERLINE TEMPERATURES USING VARIOUS CONVERGENCE CRITERIA, 55 PERCENT ULLAGE, G = 32,2 FT/SEC2, P;= 17.4 PSI, 24 SEC PRESSURIZATION.
FIGURE 17. – COMPAR ISON OF CENTERLINE TEMPERATURES USING VARIOUS CONVERGENCE CRITERIA, 55 PERCENT ULLAGE, G = 32,2 FT/SEC2, P;= 17.4 PSI, 24 SEC PRESSURIZATION.
FIGURE 19. - EFFECT OF CONVERGENCE CRITERIA ON VELOCITY PROFILE,
FIGURE 19. – EFFECT OF CONVERGENCE CRITERIA ON VELOCITY PROFILE,
FIGURE 21. - EFFECT OF MESH SIZE ON TEMPERA- TURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, G = 0.0 FT/SEC2, , e = . 02, dt = , 005 SEC, 24 SEC PRESSURIZATION.
FIGURE 21. – EFFECT OF MESH SIZE ON TEMPERA- TURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, G = 0.0 FT/SEC2, , e = . 02, dt = , 005 SEC, 24 SEC PRESSURIZATION.

Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

청정 및 에너지 절약 단조 기술을 위한 혁신적인 다이 재료 및 윤활 전략

이 최종 기술 보고서에는 수상 번호 DE-FC07-01ID14206에 따라 미국 에너지 부에서 부분적으로 자금을 지원 한 “청정 및 에너지 절약 단조 기술을위한 혁신적인 다이 재료 및 윤활 전략”프로젝트에서 수행 된 작업이 포함되어 있습니다. 프로젝트 수행을위한 계약 시간은 2001 년 9 월 30 일부터 2005 년 9 월 29 일까지였습니다. 그러나 DOE / OIT는 2003 년과 2004 년 회계 연도 지난 2 년 동안 자금을 제공 할 수 없었고 프로젝트는 2003-04 회계 연도에 조기 종료되었습니다. 결과적으로 많은 주요 연구 과제가 특정 이정표를 달성하기 위해 수정되거나 완료되지 않고 종료되었습니다. Ohio State University의 산업, 용접 및 시스템 공학 교수 인 Rajiv Shivpuri 박사는이 프로젝트의 프로젝트 책임자이자 수석 조사자였습니다. 이상은 오하이오 주립 대학 연구 재단 (OSURF)에서 관리했습니다. OSURF는 모든 재정 및 행정 문제도 담당했습니다. 재정 보고서는 별도로 제출됩니다. 에너지 부서, 산업 기술 사무소의 프로그램 관리자는 Golden Office의 Mr. Ramesh Jain과 Mr. Dibyajyoti Aichbhowmik이었습니다.
이 프로젝트의 주요 성과는 다음과 같습니다.

• 단조 산업 및 해당 공급 업체와 함께 산업 응용 분야를위한 혁신적인 다이 재료 및 윤활 전략을 탐색하기위한 주요 협력 노력이 수립되었습니다. 여기에는 단조 산업과 협력하는 워크숍과 심포지엄이 포함되었습니다. 단조 산업 전체에 결과를 전파하기 위해 단조 산업 기술 컨퍼런스에서 발표되었습니다.

• 단조 산업 협회와 단조 산업 교육 연구 재단의 후원으로 단조 기술 우수 센터 설립. 이 센터의 일부로 산업, OSU, 오하이오 주 및 DOE 지원과 함께 2 개의 단조 셀이 설치되었습니다. 1300 톤 기계식 프레스 셀과 350 톤 유압 프레스 셀입니다. 이것은 단조 연구에 150 만 달러를 투입 한 것입니다.

• LENS (Laser Enhanced Net Shaping) 기반 니켈 알루미나 이드 코팅 오버레이 (자세한 내용은 부록 A 참조)를 포함하여 혁신적인 다이 코팅이 탐색되었습니다.

• 열간 단조 응용 분야를위한 금형 재료를 최적으로 선택하고 설계하기 위해 혁신적인 실험 설정 및 예측 열 연화 소프트웨어가 개발되었습니다 (부록 B, C 및 D).

• 윤활 전략 및 단일 액적 기반 윤활 모델은 확산 및 열 전달을위한 열간 단조 윤활제의 최적 증착을 위해 개발되었습니다 (부록 E 및 F).

• 윤활유 분해 및 바운스 용 모델이 개발되었습니다. 이 모델은 뜨거운 다이 표면의 흑연 윤활로 인한 공기 및 지하수 오염을 줄이는 데 사용할 수 있습니다.

(부록 G). 이 보고서는 Shivpuri 박사와 Yijun Zhu (연구원)가 작성했습니다. 여기에는 다른 외부 또는 내부 지원과 함께 프로젝트 종료 후 일부 연구 계획 및 프로젝트 기간 동안 완료된 작업에 대한 세부 정보가 포함되어 있습니다.

1.1 프로젝트 목표

이 프로젝트의 목표는 혁신적인 다이 재료 및 윤활 전략을 개발 및 구현하여 다이 수명을 8 배 늘리고, 에너지 투입량을 15 % 줄이며, 부품 당 에너지 비용을 50 % 줄이며, 윤활유에서 나오는 미립자 배출량을 90 % 줄이며, 다이 관련 가동 시간을 90 %까지 늘립니다.

단조 산업, 공급 업체 (철강 및 알루미늄 생산 업체 (IOF), 윤활유, 표면 기술 및 다이 소재 공급 업체) 및 고객 (OEM)에 미치는 최대의 광범위한 에너지 영향을 위해 전략이 선택되었습니다.

여기에는 최적의 윤활제 스프레이 기술, 고급 표면 엔지니어링에 의한 열간 단조의 흑연 제거, 경사 다이 재료 및 다이 엔지니어링, 열간 단조를위한 윤활 및 다이 활성화 등이 포함됩니다.

미국의 단조 산업은 1997 년에 약 120 억 달러였습니다 (DOD 국가 안보). 평가). 제품 총 판매 가치의 약 15 %가 에너지에 할당되며 연간 약 50 조 BTU입니다. 흑연 사용 (열간 단조) 및 냉간 단조 전환 코팅 사용으로 인한 환경 영향은 제품 비용에 20 % 이상 추가 될 것으로 예상됩니다.

Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface
Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

BACKGROUND

실온 (저온) 및 고온 (온 및 고온)에서 수행되는 단조는 진화하는 야금, 공구 표면의 마찰 및 금속의 흐름 특성을 포함하는 잘 이해되지 않는 복잡한 현상입니다. 이 프로젝트에서 다루어 진 기술적 장애물은 다음과 같습니다.

• 냉간 및 열간 단조의 윤활 작용에 대한 지식 부족. 윤활유 및 윤활 기술의 선택은 윤활유 및 장비 공급 업체에 맡겨집니다. 이로 인해 윤활유의 과도하고 불량한 사용과 과도한 환경 오염이 발생합니다.

• 고급 단조 응용 분야를위한 새로운 표면 엔지니어링 및 다이 재료 기술의 성숙도가 부족합니다. 실제 생산에서이를 구현하는 데 따른 기술적 및 재정적 위험이 매우 높아 사용을 제한합니다. 이러한 기술의 시장 침투는 거의 존재하지 않습니다.

• 다이와 윤활 시스템의 설계 최적화를위한 계산 도구가 부족합니다.

윤활유 및 다이 소재 기술에서 다음과 같은 전략을 통해 프로젝트 목표를 실현할 계획이었습니다.

• 전략 # 1 : 오염을 제거하고, 윤활제 사용을 줄이며, 다이 냉각 감소로 인한 그물 성형을 가능하게하는 윤활제 스프레이 공정의 최적 설계를위한 시스템 개발. 또한 흑연 기반 윤활유의 필요성을 줄여줍니다.

• 전략 # 2 : 철 및 비철 부품의 온간 단조 (빌릿 가열이 1250F에서 900F로 감소)를위한 다이 수명과 공정을 개선하기 위한 윤활제 및 다이 코팅 가능 요소를 개발합니다. 단조 온도를 낮추면 공차가 개선되고 부품 당 에너지가 크게 절약됩니다.

• 전략 # 3 : 저 마찰 다이 표면 엔지니어링 (DLC (비철) 및 WC / C 코팅)을 사용하여 냉간 단조 빌릿에 인광 코팅을 사용하지 않습니다.

• 전략 # 4 : 열간 단조 금형을위한 고급 표면 클래딩 (렌즈 및 열 스프레이에 의한 단단한 표면) 및 이중 코팅 기술을 개발합니다. 기존의 코팅과 표면 공학 기술은 상당한 이득을 얻지 못했습니다.

• 전략 # 5 : 재료 및 공정 설계를 통해 냉간 및 열간 단조에서 공정 중 다이 고장을 제거하고 예측 다이 유지 보수를위한 소프트웨어를 개발합니다. 이는 스크랩 감소 및 다이 관련 다운 타임에 상당한 영향을 미칩니다.

개발중인 많은 기술은 수치 모델링, 윤활 및 냉각수 기술, 표면 기술, 재료의 신속한 프로토 타이핑, 레이저 기술 등과 같은 교차 절단 R & D 가능 요소를 다루고 있습니다. 이러한 기술은 지원 산업의 로드맵에서도 중요한 기술로 확인되었습니다.

미래의 산업으로. IOF를 위해 250 조 BTU의 에너지 절약과 3500 톤의 오염 물질이 예상됩니다. 프로젝트가 전액 지원을받지 못하고 프로젝트가 2004 년 9 월 30 일에 종료되었으므로 전략 # 1, # 4, # 5 만 추구했습니다. 연구 및 구현에 대한 세부 사항은 부록에 포함되어 있습니다.

Effect of lubricant heat

템퍼링, 마모 및 공구 열화에 대한 단조 윤활유의 효과를 평가하기 위해 다양한 열 전달 계수로 여러 시뮬레이션을 수행했습니다. 컴퓨터 시뮬레이션에 사용 된 열전달 계수의 값은 얻은 값과 일치하며 경우에 따라 Sridhar 등이 오하이오 주립 대학에서 수행 한 테스트에서 추정 한 값입니다. 사용 된 계면 열전달 계수의 값은 12 KW / m2 ° C, 24 KW / m2 ° C 및 33 KW / m2 ° C였으며, 이는 20 부, 30 부 및 100 부 물로 희석 된 수성 흑연 윤활제에 해당합니다 (희석 비율 1:20, 1:30 및 1 : 100). 이러한 각 희석 비율에 대해 3000 및 5000 샷 후 상부 다이의 경도 분포는 그림 C.3, C.4 및 C.5에 나와 있습니다. 희석 비 1:20에 대한 표면 경도 분포는 그림 C.6에 나와 있습니다.

Figure C. 2: stage gear blank forging sequence (Courtesy: Sypris Technologies
Figure C. 2: stage gear blank forging sequence (Courtesy: Sypris Technologies
Figure C. 3: Hardness distribution after 3000 and 5000 shots, heat transfer coefficient used = 12 KW/m2°C, press type: mechanical press
Figure C. 3: Hardness distribution after 3000 and 5000 shots, heat transfer coefficient used = 12 KW/m2°C, press type: mechanical press

F.5.3 Results of the Lubricant Properties

표 F.1은 윤활유의 측정 된 특성을 보여줍니다. DP는 107 및 CA 모세관 작용 방법에서 펜던트 드롭 방법을 나타냅니다. 테스트 된 액체에는 순수한 물이 포함됩니다. 다음과 같은 사실을 관찰 할 수 있습니다. a). 더 높은 표면 장력을 가진 더 높은 희석 비율 회사; 비). 희석 비율이 1 : 1보다 큰 액체의 경우 표면 장력이 물의 장력에 접근합니다. 드롭 펜던트 법으로 추정 한 모든 표면 장력은 동일한 경향을 공유하지만 약 10dynes / cm에 대해 모세관 작용법에 의한 것보다 작다는 것을 알 수 있습니다. 물의 표면 장력이 72.8dynes / cm라는 점을 감안할 때 모세관 작용법에서 얻은 결과가 실제 값에 더 가깝다고 생각합니다.

Figure F. 10: simulation results of lubricant 1:1 with 4mm diameter droplet at impact velocity 10cm/s.
Figure F. 10: simulation results of lubricant 1:1 with 4mm diameter droplet at impact velocity 10cm/s.
Figure F. 12: Experimental results of maxξ v.s. TD. We = 27.
Figure F. 12: Experimental results of maxξ v.s. TD. We = 27.
Figure G. 1: Dryoff process of a lubricant droplet at film boiling: (a)- (c) fluid dynamic process, (d). quasi-steady dryoff process.
Figure G. 1: Dryoff process of a lubricant droplet at film boiling: (a)- (c) fluid dynamic process, (d). quasi-steady dryoff process.
Figure 5.6 Experimental set-up equipped with high-speed camera system

COMPUTATIONAL FLUID DYNAMIC MODELLING OF LASER ADDITIVE MANUFACTURING PROCESS AND EFFECT OF GRAVITY

전산 유체 역학 레이저 첨가제 모델링 제조 공정 및 중력의 영향

A thesis submitted to
The University of Manchester
For the degree of
Doctor of Philosophy (PhD)
In the Faculty of Science and Engineering
2017
Heng Gu
School of Mechanical, Aerospace and Civil
Engineering

레이저 적층 제조 (LAM)는 재료를 층별로 선택적으로 추가하여 하나 또는 여러 개의 레이저 빔을 사용하여 재료를 융합하거나 응고시키는 3D 부품을 형성하는 것을 기반으로 합니다.

LAM 공정을 조사하는 데 상당한 양의 작업을 할 수 있지만 다른 재료 성장 방향에서 중력 및 동적 유체 흐름 특성의 영향에 대해서는 알려진 바가 거의 없습니다.

레이저 제조 기술의 발전과 함께 LAM은 실린더 본체, 터빈 블레이드의 표면 클래딩, 해양 드릴링 헤드, 다양한 증착 방향이 일반적으로 필요한 슬리브 및 몰드의 측벽을 비롯한 다양한 환경에서 점점 더 많이 사용되고 있습니다. 또한 공간 적층 제조의 경우 운영 환경이 매우 낮거나 무중력을 경험하게 됩니다.

LAM 프로세스를 모델링하기 위한 수치적 방법 개발에 대한 이전 연구에서 많은 노력을 기울였습니다. 그러나 이전 모델링 작업의 대부분은 자유 표면 형성을 고려하지 않고 용융 풀 역학 개발에 초점을 맞추었습니다. 몇 가지 조사에만 동적 유동 용융 풀에 대한 재료 추가 분석이 포함됩니다.

다양한 재료 증착 방향 및 무중력 효과에서 수행 할 때 모든 복잡한 기능을 사용하여 증착 프로세스를 시뮬레이션하고 중력 효과를 고려할 수 있는 모델을 개발하는 작업은 발견되지 않았습니다.

이 연구에서는 재료 추가, 표면 장력, 용융 및 응고, 중력, 온도 의존 재료 속성, 자유 표면 형성 및 이동을 포함한 복합 공정 요인을 고려한 LAM 공정을 위해 3 차원 과도 전산 유체 역학 모델이 ​​구축되었습니다. 열원. 레이저 금속 증착 공정에 대한 더 나은 이해는 수치적으로 그리고 실험적으로 이루어졌습니다.

이 연구는 단일 레이어의 증착, 여러 인접 패스 및 돌출 된 피쳐가 있는 완전한 3 차원 형상을 다루었습니다. 증착 공정 중 다양한 증착 방향과 무중력 및 매우 낮은 중력에 대한 중력의 영향을 조사하고 그 영향을 최소화하기 위해 공정 매개 변수를 최적화 했습니다.

이 연구는 또한 층별 재료 추가를 기반으로 레이저 좁은 갭 용접 공정의 기본 현상과 용접 공정이 다른 방향으로 수행 될 때 중력이 홈 내부의 용융 풀 형성에 미치는 영향을 이해하는 데까지 확장되었습니다.

용융 풀 개발 이력 및 온도 분포를 분석하여 공정 중에 표면 장력 계수의 영향을 논의했습니다. 현재 모델의 도움으로 증착 불균일성, 증착 양단의 돌출부, 경사, 융착 부족, 계단 효과, 표면 파형, 중력 변화로 인한 붕괴 등 다양한 결함을 설명 하였습니다.

이러한 모든 결함을 제거하기 위한 해당 솔루션이 제시되었습니다. 무중력 레이저 적층 제조에 대한 연구는 이전에 보고되지 않았던 몇 가지 새로운 현상을 발견하여 우주에서 미래의 레이저 3D 프린팅을 위한 길을 닦았습니다.

Figure 1.1 Diagram for thesis structure
Figure 1.1 Diagram for thesis structure
Figure 2.1 Basic construction of a laser system [8]
Figure 2.1 Basic construction of a laser system [8]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.7 Lateral powder injection [12]
Figure 2.7 Lateral powder injection [12]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding,  wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding, wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface  tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape  formed by gravity force only, (c) Melt shape formed by the combination of those two  forces together [122]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape formed by gravity force only, (c) Melt shape formed by the combination of those two forces together [122]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with  different melt pool shape [120]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with different melt pool shape [120]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal  position
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal position
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental  cross section, (c) cross-section of modelling result
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental cross section, (c) cross-section of modelling result
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s,  b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s, b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting

6.5 Conclusion

좁은 갭 용접 공정의 다양한 측면을 다루는 3 차원 모델이 구축되었습니다. 용접 비드와 측벽 사이의 융합 현상이 없는 것은 필러 재료와 측벽을 녹일 수 있는 충분한 에너지를 제공 할 수 없는 낮은 열 입력으로 인한 것일 수 있습니다.

증가된 레이저 출력을 적용하거나 재 용융 패스를 수행 한 후 더 나은 표면 품질을 얻을 수 있고 측벽과의 융합 부족을 제거 할 수 있습니다. 용접 비드의 모양이 볼록한 모양에서 오목한 모양으로 바뀌고 측면 벽과의 좋은 젖음이 실현 될 수 있습니다.

다양한 위치에서 좁은 틈새 용접에 대한 중력의 영향을 조사했습니다. 용융 풀 전면의 경사 모양은 중력의 영향으로 다르게 나타납니다.

반면, 홈이 없는 기판의 증착 공정과 비교할 때 대부분의 열을 전달하는데 도움이 되는 측벽의 존재로 인해 중력의 영향이 감소했습니다.

마지막 패스 중에 중력은 일부 평평하지 않은 위치에서 심각한 낙하 및 붕괴 문제를 일으킬 수 있습니다. 이것은 표면에 더 큰 용융 풀이 형성되어 중력과 표면 장력 사이의 균형이 깨졌기 때문입니다. 수직 업 위치에서 좁은 간격 용접 공정 동안 다른 중력 수준이 적용되었습니다.

용접 비드와 측벽 사이의 융합 부족은 중력 수준이 증가함에 따라 관찰 될 수 있습니다. 중력이 증가하면 용융 풀의 뒤쪽 영역으로 더 많은 액체 재료가 이동하여 더 심각한 물방울과 볼록한 모양의 용접 비드가 발생합니다.

용융 풀 개발 이력의 도움으로 용접 비드가 더 이상 그루브에 있지 않거나 측벽과의 직접적인 접촉이 적을 때 전도를 통해 더 적은 열이 방출 될 수 있기 때문에 용융 풀 부피가 크게 증가한다는 것을 알 수 있습니다.

좁은 간격 용접 공정에 대한 표면 장력 계수의 영향을 조사했습니다. 양의 표면 장력 계수를 적용하면 용접 비드가 홈 내부에서 덜 오목한 것처럼 보였고 측벽의 습윤 조건이 음의 ∂γ / ∂T 조건의 경우만큼 좋지 않았습니다.

측벽이 없으면 용접 비드는 표면의 마지막 패스 동안 음의 계수와 양의 계수 케이스 사이에 더 많은 차이를 보여줍니다. 표면 장력 계수는 홈 내부의 측벽과의 융합 상태를 결정하는 데 중요한 역할을 했습니다.

두꺼운 부분의 좁은 틈새 용접 중에 여러 번 통과하는 용접 비드 개발이 조사되었습니다. 비드 모양은 열 축적으로 인해 더 많은 패스가 증착 될수록 더 오목 해집니다. 패스 간의 융합 부족은 때때로 다음 패스의 재 용융 공정을 통해 제거 될 수 있습니다. 이종 재료를 사용한 좁은 틈새 용접 프로세스가 성공적으로 시뮬레이션되었습니다.

중심선을 따라 용융 풀과 용접 비드의 비대칭 형성은 재료 열 특성의 차이에 기인 할 수 있으며, 결과적으로 측벽과의 융합 부족을 유발할 수 있습니다.

비드 비대칭 문제는 수평 위치에서 용접 공정을 수행하거나 총 열 입력을 증가시켜 열전도율이 높은 측벽을 녹이는 방식으로 피할 수 있습니다. 재 용융 공정은 표면 품질을 향상시키고 모재와의 융착 문제를 제거하기 위해 용접된 표면에 적용 할 때 유용한 것으로 밝혀졌습니다.

圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.

Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

NASA/TM—2010-216749

Kevin Breisacher and Jeffrey Moder
Glenn Research Center, Cleveland, Ohio

Prepared for the57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meetingsponsored by the JANNAF Interagency Propulsion CommitteeColorado Springs, Colorado, May 3–7, 2010

Abstract

극저온 추진제의 장기 공간 저장을 위해 축류 제트 믹서는 탱크 압력을 제어하고 열 층화를 줄이기위한 하나의 개념입니다. 1960 년대부터 현재까지 10 피트 이하의 탱크 직경에 대한 광범위한 지상 테스트 데이터가 존재합니다.

Ares V EDS (Earth Departure Stage) LH2 탱크 용으로 계획된 것과 같이 직경이 30 피트 정도 인 탱크 용 축류 제트 믹서를 설계하려면 훨씬 더 작은 탱크에서 사용 가능한 실험 데이터를 확장하고 미세 중력을 설계해야 합니다.

이 연구는 10 배 차이가 나는 2 개의 탱크 크기에서 기존의 지상 기반 축류 제트 혼합 실험의 시뮬레이션을 수행하여 이러한 규모의 변화를 처리하는 전산 유체 역학 (CFD)의 능력을 평가합니다. 저궤도 (LEO) 해안 동안 Ares V 스케일 EDS LH2 탱크에 대한 여러 축 제트 구성의 시뮬레이션이 평가되고 선택된 결과도 제공됩니다.

두 가지 탱크 크기 (직경 1 및 10 피트)의 물을 사용하여 General Dynamics에서 1960 년대에 수행한 제트 혼합 실험 데이터를 사용하여 CFD 정확도를 평가합니다. 제트 노즐 직경은 직경 1 피트 탱크 실험의 경우 0.032 ~ 0.25 인치, 직경 10 피트 탱크 실험의 경우 0.625 ~ 0.875 인치였습니다.

제트 믹서를 켜기 전에 두 탱크에서 열 층화 층이 생성되었습니다. 제트 믹서 효율은 층화 층이 섞일 때까지 탱크의 열전대 레이크의 온도를 모니터링하여 결정되었습니다. 염료는 층화된 탱크에 자주 주입되었고 침투가 기록되었습니다. 실험 데이터에서 사용 가능한 속도나 난류량은 없었습니다.

제시된 시뮬레이션에는 자유 표면 추적 (Flow Science, Inc.의 FLOW-3D)이 포함된 시판되고 시간 정확도가 높은 다차원 CFD 코드가 사용됩니다. 서로 다른 시간에 탱크의 다양한 축 위치에서 계산 된 온도와 실험적으로 관찰된 온도를 비교합니다. 획득한 합의에 대한 다양한 모델링 매개 변수의 영향을 평가합니다.

Introduction

Constellation 프로그램의 일부인 Ares V는 우주 비행사를 달로 돌려 보내도록 설계된 무거운 리프트 발사기입니다. Ares V 스택의 일부인 EDS (Earth Departure Stage)는 지구의 중력에서 벗어나 승무원 차량과 달 착륙선을 달로 보내는데 필요합니다.

이러한 차량의 질량과 달로 보내는 데 필요한 에너지 때문에 EDS의 액체 수소(LH2)와 액체 산소(LO2) 추진제 탱크는 매우 클 것입니다(직경 10m). 탱크 내부로의 환경적 열 누출로 인해 혼합 장치를 포함한 열역학적 환기 시스템(TV)은 설계 한계 내에서 탱크 압력을 유지하고 엔진 시동에 필요한 한도 내에서 액체 온도를 유지하기 위해 며칠의 순서에 따라 공간 내 저장 기간 동안 필요할 수 있습니다.

이러한 혼합 장치 중 하나는 그림 1과 2와 같이 탱크 바닥 근처에 있는 (순가속과 관련하여) 탱크 축을 따라 중심에 있는 축 제트입니다. 축방향 제트 혼합기와 TVS에 통합된 것은 1960년대 중반부터 연구되어 왔으며(참조 1~5), 광범위한 축방향 제트 접지 테스트 데이터(비사이로젠(참조 1~9), 극저온(참조 10~16) 유체 사용), 에탄올을 사용한 일부 드롭 타워 테스트 데이터(참조 17 및 18)가 있습니다. 극저온 추진제를 사용하는 축방향 제트에 대한 기존 접지 테스트 데이터는 3m(10ft) 이하의 탱크 직경으로 제한됩니다.

저자가 알고 있는 바와 같이, 현재 임계 미달의 극저온 추진체를 사용하는 폐쇄형 탱크에 축방향 제트가 포함된 낙하탑, 항공기 또는 우주 비행 시험 데이터는 없습니다.

축방향 제트(Axial jet)는 지구 저궤도(LEO) 연안의 며칠 동안 EDS LH2 탱크에서 작동하는 혼합 장치의 후보 중 하나입니다. 제안된 EDS 탱크 척도의 극저온 저장 탱크에서 작동하는 축 제트 실험 데이터가 존재하지 않기 때문에, EDS 탱크를 위한 축 제트 TV의 초기 설계는 기존 데이터에 대해 고정된 상관 관계 및 CFD 분석에 의존할 필요가 있습니다.

이 연구는 두 개의 탱크 척도에서 크기 순서로 다른 축방향 제트 열분해 성능을 예측하기 위한 CFD 정확도 평가의 현재 진행 상황을 보고합니다. CFD 시뮬레이션은 물을 작동 유체로 사용하는 접지 테스트 축 제트 데이터(참조 1 – 4)와 비교됩니다. 이 평가를 위해 선택된 CFD 코드는 Flow Science(참조 21)의 상용 코드 FLOW-3D로, 극저온 저장 탱크 및 축방향 제트(참조 22~24)의 이전 분석에서 사용되었습니다.

LEO의 대표적인 EDS LH2 탱크에 대한 예비 축 제트 시뮬레이션도 여러 축 제트 구성에 대해 수행됩니다. 이러한 축방향 제트 구성의 열분해 성능을 평가하고 선택된 결과를 제시합니다.

이러한 예비 축방향 제트 EDS 시뮬레이션은 비교적 짧은 시간 동안 혼합기 성능만 평가합니다. 탱크 열 누출, 위상 변화 및 일반적인 자기 압력(제트 오프)/압력 붕괴(제트 온) 사이클을 포함한 보다 상세한 시뮬레이션이 향후 작업에서 추진될 수 있습니다.

Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)

상세 내용은 원문을 참조하시기 바랍니다.


Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity

Summary and Conclusions

사용 가능한 유사성 상관 관계를 사용하는 스케일링 전략은 EDS 클래스 제트 믹서에 대한 적절한 제트 크기 및 작동 조건을 결정하기 위해 개발되었습니다. 물 탱크 시뮬레이션에서 결정된 모델링 매개 변수를 사용하여 열 층화를 제어하기 위해 제트 믹서를 사용하여 EDS 등급 추진제 탱크의 혼합 이력에 대한 CFD 시뮬레이션을 수행했습니다.

시뮬레이션 결과는 다양한 믹싱 동작을 보여 주며 유사성 매개 변수의 사용에서 예상되는 것과 일치했습니다. 이러한 결과는 하위 규모 테스트 및 유사성 상관 관계와 함께 CFD 시뮬레이션이 EDS 등급 탱크를위한 효율적인 제트 믹서 설계를 허용 할 것이라는 확신을 제공합니다.

CFD 시뮬레이션은 다양한 크기의 직경과 제트를 가진 탱크의 제트 믹서에서 수행되었습니다. 1 피트 직경의 물 탱크에서 제트 혼합에 대해 사용 가능한 실험 데이터와 합리적으로 일치하는 모델링 매개 변수가 결정되었습니다. 동일한 모델링 매개 변수를 사용하여 대략 10 배 정도 떨어져있는 스케일로 워터 제트 혼합 실험에서 혼합을 시뮬레이션했습니다. 시뮬레이션 결과는 실험 온도 데이터와 잘 일치하는 것으로 나타났습니다.

References 1.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 1 – Mixer design and experimental investigations,” NASA CR-73908, Nov 1968. 2.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 2 – Experimental data Final report,” NASA CR-73909, Nov 1968. 3.Scale Experimental Mixing Investigations and Liquid-Oxygen Mixer Design,” NASA CR-113897, Sep 1970. 4.Van Hook, J.R. and Poth, L.J., “Study of Cryogenic Fluid Mixing Techniques. Volume 1 – Large-Van Hook, J.R., “Study of Cryogenic Fluid Mixing Techniques. Volume 2 – Large-Scale Mixing Data,” NASA CR-113914, Sep 1970. 5.Poth, L.J. and Van Hook, J.R., “Control of the Thermodynamic State of Space-Stored Cryogens by Jet Mixing,” J. Spacecraft, Vol. 9, No. 5, 1972. 6.Lovrich, T.N. and Schwartz, S.H., “Development of Thermal Stratification and Destratification Scaling Concepts – Volume II. Stratification Experimental Data,” NASA CR-143945, 1975. 7.Dominick, S.M., “Mixing Induced Condensation Inside Propellant Tanks,” AIAA–1984–0514. 8.Meserole, J.S., Jones, O.S., Brennan, S.M. and Fortini, A., “Mixing-Induced Ullage Condensation and Fluid Destratification,” AIAA–1987–2018. 9.Barsi, S., Kassemi, M., Panzarella, C.H. and Alexander, J.I., “A Tank Self-Pressurization Experiment Using a Model Fluid in Normal Gravity,” AIAA–2005–1143. 10.Stark, J.A. and Blatt, M.H., “Cryogenic Zero-Gravity Prototype Vent System,” NAS8-20146, Convair Report GDC-DDB67-006, Oct 1967. 11.Bullard, B.R., “Liquid Propellant Thermal Conditioning System Test Program,” NAS3-12033, Lockheed Missiles & Space Co., NASA CR-72971, July 1972. 12.Erickson, R.C., “Space LOX Vent System,” NAS8-26972, General Dynamics Convair Report CASD-NAS 75-021, April 1975.

13.Lin, C.S., Hasan, M.M. and Nyland, T.W., “Mixing and Transient Interface Condensation of a Liquid Hydrogen Tank,” NASA TM-106201 (or AIAA–1993–1968), 1993. 14.Lin, C.S., Hasan, M.M. and Van Dresar, N.T., “Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank,” NASA TM-106629 (or AIAA–1994–2079), 1994. 15.Olsen, A.D., Cady, E.C., Jenkins, D.S. and Hastings, L., “Solar Thermal Upper Stage Cryogenic System Engineering Checkout Test,” AIAA–1999–2604. 16.Van Overbeke, T.J., “Thermodynamic Vent System Test in a Low Earth Orbit Simulation,” NASA/TM—2004-213193 (or AIAA–2004–3838), Oct 2004. 17.Aydelott, J.C., “Axial Jet Mixing of Ethanol in Cylindrical Containers During Weightlessness,” NASA-TP-1487, July 1979. 18.Aydelott, J.C., “Axial Modeling of Space Vehicle Propellant Mixing,” NASA-TP-2107, Jan 1983. 19.Bentz, M.D., “Tank Pressure Control in Low Gravity by Jet Mixing,” NASA CR–191012, Mar. 1993. 20.Hasan, M.M., Lin, C.S., Knoll, R.H. and Bentz, M.D., “Tank Pressure Control Experiment: Thermal Phenomena in Microgravity,” NASA-TP-3564, 1996. 21.FLOW-3D User’s Manual, version 9.4, Flow Science, Inc., Santa Fe, NM 2009. 22.Grayson, G.D., Lopez, A., Chandler, F.O., Hastings, L.J. and Tucker, S.P., “Cryogenic Tank Modeling for the Saturn AS-203 Experiment,” AIAA–2006–5258. 23.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J., and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks,” AIAA–2007–5552. 24.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J. and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity,” AIAA–2008–5104. 25.Thomas, R.M., “Condensation of Steam on Water in Turbulent Motion,” Int. J. Multiphase Flow, Vol. 5, No. 1, pp. 1–15, 1979. 26.Zimmerli, G.A., Asipauskas, M., Chen, Y. and Weislogel, M.M., “A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks,” AIAA–2010–1294.

Adiabatic Bubbles Options

[FLOW-3D 물리모델]Adiabatic Bubbles / 단열 버블

Adiabatic Bubbles / 단열 버블

단일유체 자유표면 유동에서 유체에 의해 둘러싸인 resolved void regions 공간은 버블이라 불린다. 이 버블은 정확한 해석을 위해 10 개 이상의 격자로 구성되어야 타당 하지만, 버블 직경은 최소 3개 이상의 격자를 포함해야 한다. Model Setup–>Physics–>Bubble and Phase Change  창에서Adiabatic bubbles 옵션은 버블에 대한 압력-온도-체적 관계는 단열법칙을 따른다. 이 경우 각 버블에서의 압력은 Gamma 거듭제곱에 대한 볼륨에 반비례한다. 이를테면 모든 압력은 절대값(게이지 압력이 아닌)으로 표기되어야 하고 모든 압력과 비열의 비율인 Gamma는 1.28과 1.67사이의 양수이어야 한다. 단 γ = 1인 등온 버블에 해당하는 특수한 경우도 있다.

단열 조건(가정)에 대한 더 자세한 설명은 이론 부분의Bubble and Void Region Models 섹션을 참조한다.

Adiabatic Bubbles Options
Adiabatic Bubbles Options

이 버블 모델은 유체부분이 0인 지정된 압력경계와 접촉하고 있는 버블에는 적용되지 않는다. 이런 보이드 영역은 항상 경계 압력을 가정합니다.

버블 압력을 계산하는 데는 implicit 알고리즘을 사용하며, 이는 default 이고 Numerics 탭에서 bubble pressure  선택을 수정함으로써 변경할 수 있습니다.

또한 이론 매늉얼의 Bubble and Void Region Models을 참조한다.

Cad2Stl

FLOW-3D 유틸리티 프로그램 안내

이 문서에서는 FLOW-3D에서 사용할 수 있는 일부 Utility Program에 대해 설명합니다. 유틸리티 프로그램의 목적은 시뮬레이션을 수행할 때 반드시 필요한 것은 아니지만 특정 작업을 쉽게 수행할 수 있도록 돕는 것입니다. 각 개별 유틸리티의 사용법은 다음과 같습니다.

  1. 파일 변환 및 STL 품질 검사 도구

FLOW-3D는 중립 형식인 STL파일 형식만 지원하며 대부분의 CAD 패키지에서 STL형식을 지원하지만 형상을 STL형식으로 만들 수 없는 이유가 있을 수 있습니다. 이로 인해 FLOW-3D 사용자는 여러 파일 변환 유틸리티를 사용할 필요가 있을 수 있습니다. 또한 STL 파일 품질을 확인하는데 사용할 수 있는 여러 유틸리티도 사용할 수 있습니다. 아래 나열된 이러한 유틸리티는 다음 섹션에서 자세히 설명합니다.

  • Cad2Stl : 다양한 CAD 형식에서 변환 파일을 사용하는.STL파일
  • Topo2STL : 파일을topo형식에서.STL파일로 변환하는 데 사용
  • MiniMagics :.STL파일의 오류를 확인하는 데 사용
  • qAdmesh :.STL파일의 오류를 확인하고 사소한 문제를 해결하는데 사용

Cad2Stl

Cad2Stl 은 다른 CAD 파일 형식을 FLOW-3D에서 사용되는 STL 파일 형식으로 변환하기 위한 파일 변환 도구입니다. Cad2Stl 은 다음 파일 형식을 STL 형식으로 변환합니다.

  • Autodesk 3D Max :.3ds
  • Autodesk 별명 :.obj
  • IGES: .igs,.iges
  • BREP :.brep
  • 단계 : .stp,.step
  • 아바쿠스 6.2+ :.inp
  • NASTRAN :.blk
  • Marc Mentat : 고정 형식과 쉼표로 구분.dat

Cad2Stl 은 파일에서 역 법선 벡터를 보정하는 기능도 있습니다. 이 유틸리티는 유지 보수 계약이 유효한 모든 FLOW-3D 고객에게 무료로 제공되며 FLOW-3D Usre Site의 유틸리티 페이지에서 다운로드 할 수 있습니다.

Cad2Stl 은 Flow Science Japan에서 FLOW-3D 사용자를 위해 개발되었습니다 .

Cad2Stl Program
  1. 변환 목록에 변환할 파일 추가
    • 추가 -변환 목록에 파일을 추가합니다.
    • 제거 -변환 목록에서 파일을 제거합니다. 제거하려면 변환 목록에서 파일을 강조 표시하고 제거를 선택하십시오.
    • 기본적으로 파일 이름은 import file 이름과 일치하는 CAD파일을 STL파일 이름으로 지정하는데 변경이 필요하면 더블 클릭하고 이름을 바꾸면 변경할 수 있습니다.
  2. 구체화 옵션을 사용하여 STL 파일의 품질을 선택하십시오. 선택하고 볼 수 있는 네 가지 수준의 정확도가 있습니다. 파일이 변환될 때마다 STL로 작성된 파일이 표시되므로 사용자가 만족스럽거나 더 높은 수준의 세분화가 필요한지 여부를 결정할 수 있습니다. 정확성이 향상되면 파일 크기는 증가하지만 처리 시간은 크게 증가하지 않습니다. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다. 이것은 BREP, IGES및 STEP 파일 형식에만 적용됩니다.
  3. 원하는 작업을 선택하십시오. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다.
    • 변환 -파일을 변환합니다. 한 파일을 변환하려면 로드할 파일 목록에서 해당 파일을 강조 표시하여 변환하십시오.
    • 모두 변환 -모든 파일을 변환
    • 표시 -변환된 파일을 강조 표시합니다
    • 면 방향 수정 -일반 수정 루틴
    • 변환 목록 숨기기 -더 나은 부품 표시를 위해 보기 화면을 증가 시킵니다.
    • 와이어 프레임 오버레이 -각 STL 패싯의 패싯 모서리를 오버레이 합니다. 이것은 오른쪽 하단의 확인란입니다.
    • 로그 지우기 – 변환 로그 텍스트 상자에 대한 모든 데이터 출력을 지웁니다.
  4. 종료 -프로그램을 닫습니다

qAdmesh

qAdmesh는 .STL파일에 오류 가 있는지 확인하는 도구이며 연결이 끊어진 패싯, 반전된 법선, 연결이 끊어진 패싯 및 누락된 패싯과 같은 사소한 문제를 해결하는 데 사용할 수 있습니다. qAdmesh를 시작하려면:

  • GUI에서: Model Setup 탭의 Tools ‣ qAdmesh로 이동하십시오.
  • Windows: 바탕 화면 아이콘을 클릭하거나 시작 메뉴에서 FLOW-3D v12.0 폴더의 형상 도구 하위 디렉토리에 있는 Admesh 항목으로 이동하십시오.
  • Linux의 경우: $F3D_HOME/utilities/qAdmesh을 실행하십시오.

명령: qAdmesh를 열고 찾아보기 버튼을 사용하여 지오메트리 파일을 로드 하십시오. 문제를 해결하고 수정 사항으로 새 형상 파일을 생성하려면 기본 옵션을 그대로 두고 출력 유형을 선택하고 새 형상 파일의 경로를 지정하십시오. 이진 STL 은 ASCII STL 옵션 보다 작은 파일을 생성하므로 권장됩니다 (이진 및 ASCII 형식 만 FLOW-3D 로 인식됨). 그런 다음 적용을 클릭하여 파일을 확인하고 수정하십시오.

qAdmesh program
qAdmesh program

qAdmesh의 출력은 인터페이스의 메시지 섹션에 표시됩니다. 출력에는 감지된 오류와 출력 옵션이 선택된 경우 이러한 문제점을 해결하기 위해 수행할 조치가 표시됩니다.

사용자 정의 검사 옵션은 파일을 고정할 때 프로그램이 어떤 작업을 수행하는지에 대한 자세한 제어를 제공할 수 있습니다. 또한 변형 및 공차 탭에는 .STL 파일의 회전, 미러링, 크기 조정, 변환 및 병합 기능을 제공하는 옵션이 있습니다.

qAdmesh는 무료 유틸리티입니다만 FSI에서 지원하지 않습니다. qAdmesh가 문제를 해결하는 능력은 심각도에 따라 다릅니다. 문제의 수가 증가함에 따라 qAdmesh 가 문제를 해결할 수 있는 가능성이 줄어 듭니다. 문제를 해결할 수 없는 경우 CAD 패키지를 사용하여  .STL 파일을 재생성 하는 것이 좋습니다.

MiniMagics 

MiniMagics 는 무료 STL파일 시각화 및 복구 유틸리티입니다. 설치는 FLOW-3D 홈 디렉토리 의 Utilites 폴더에서 찾을 수 있으며 파일 분석 및 복구를 위한 유용한 도구로 qAdmesh에서 수행된 수정 사항을 시각화하거나 qAdmesh의 대안으로 사용할 수 있습니다.

$F3D_HOME/UtilitiesSTL

  • Topo2STL

FLOW-3D가 지원하는 유일한 CAD 파일 형식은 .STL이지만 형식을 포함하여 다른 형식의 지형 데이터를 갖는 것은 드문 일이 아닙니다. Topo2STL의 유틸리티로 변환할 수 있습니다. Topo2STL 은 Windows 시스템에서만 사용 가능하며 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다.

명령

  1. 지형 파일은 다음 형식의 ASCII 파일입니다. 각 선은 점을 나타내며 동일한 단위 시스템에서 3 개의 좌표 (일반적으로 피트 또는 미터)를 포함합니다. 좌표는 공백으로 구분됩니다. 선의 좌표 순서는 XYZ 여야 합니다. 여기서 Z는 표고입니다. 두 좌표는 동일한 XY 점을 공유할 수 없습니다. 포인트의 순서 (파일의 줄)는 중요하지 않습니다. 좌표를 포함하지 않는 머리글 줄이나 꼬리 줄이 없어야 합니다.
  2. Topo2stl.exe유틸리티가 추출된 위치에 있는 파일을 실행하여 Topo2STL에 액세스 할 수 있습니다.
  3. 유틸리티를 시작하면 변환할 파일을 선택하라는 topo 파일 찾아보기 창이 나타납니다. 파일 찾아보기 창을 이용하여 파일을 선택합니다.
  4. topo파일이 선택되면, Topo2STL의 창이 나타나고, X, Y의 범위와 Z 계산할 topo데이터 익스텐트가 계산되면 Topo 데이터 익스텐트 및 데이터의 총 포인트 수에 대한 정보가 Information: Topo data extents 아래에 표시됩니다.
Topo2STL
Topo2STL
Topo2STL
Topo2STL
  1. 변환에 필요한 사용자 입력은 공간 분해능 및 STL 최소 Z 좌표입니다. 기본적으로 공간 해상도는 0.002 * min (X 범위, Y 범위)이고 STL 최소 Z 좌표는 ZMIN-(ZMAX-ZMIN)입니다. 여기서 ZMIN 및 ZMAX는 Topo 데이터의 범위입니다.
    • 공간 해상도는 STL 파일을 생성하는 동안 Topo 데이터가 얼마나 정밀하게 분석되는지 제어합니다.
    • STL 최소 Z 좌표는 Topo 데이터의 ZMAX보다 작은 값이어야 합니다. 이것은 STL파일의 최소 ​​Z 두께를 효과적으로 설정합니다.
  2. Browse 버튼은 파일 출력 위치를 설정하는 데 사용할 수 있습니다.
  3. 변환을 클릭하면 변환 프로세스가 시작됩니다. 이 시점에서 변환 취소를 사용하여 변환이 완료되거나 종료될 때까지 Topo2STL 창을 닫을 수 없습니다.
Topo2STL
Topo2STL
  1. 변환이 완료 (또는 종료)되면 변환 단추가 변환 추가로 변경되어 사용자가 변환할 다른 Topo 파일을 선택할 수 있습니다.
Topo2STL
  1. FSAI를 사용한 유한 요소 메쉬 파일 형식 변환

FSAI의 도구에서 유한 요소 메시를 변환하는 유틸리티입니다 Abaqus6.2 이후 형식과 NASTRAN 벌크 형식에 사용되는 형식을 변환하는 FSAI는 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다. FSAI를 사용하려면 다음을 수행하십시오. EXODUS II

  • 적절한 모드에서 유틸리티를 엽니다 (초기 메쉬의 Abaqus 형식인지 NASTRAN 형식인지 여부에 따라 다름 )
  • 파일에서 생성 필드에서 입력 유한 요소 메쉬를 찾습니다.
  • 생성된 파일 위치 필드에서 원하는 출력 위치를 찾으십시오.
  • 생성된 파일 이름 필드에서 원하는 출력 파일 이름을 설정하십시오.
  • 생성을 누릅니다.

 노트

이 FSAI 프로그램을 사용하려면 FLOW-3D 와 별개의 라이센스가 필요합니다. 자세한 내용은 FLOW-3D 영업 담당자에게 문의하십시오.

  1. 계산기

유틸리티 드롭 다운 메뉴에 여러 계산기가 추가되어 알려진 매개 변수 (예: 유체 속성 등)를 기반으로 입력 수량을 추정할 수 있습니다. 사용 가능한 계산기는 다음을 계산합니다.

  • 냉각 채널의 열전달 계수
  • 재료 특성 및 시뮬레이션 시간에 따른 열 침투 깊이
  • 샷 슬리브의 유체 높이
  • 고압 다이캐스팅을 위한 피스톤 속도
  • 밸브 압력 계수
  1. MPDB (Material Properties Database) 확장

MPDB (Material Properties Database)는 FLOW-3D 와 별도로 Flow Science, Inc 에서 구입할 수 있는 타사 데이터베이스입니다. 여기에는 문헌의 다양한 온도 의존성 고체 재료 특성이 포함되어 있습니다. FLOW-3D 용 MPDB는 사용자가 FLOW-3D의 기본 데이터베이스와 호환되는 파일 형식을 내보낼 수 있도록 하여 데이터를 FLOW-3D 로 편리하게 가져올 수 있는 MPDB 독점 버전입니다. MPDB의 재료 특성은 대부분 고체상입니다. 따라서 FLOW-3D 모든 모델 고체 특성을 요구하는 데이터, 특히 유체 구조 상호 작용, 응고 및 열 응력 진화 모델을 활용할 수 있습니다.

MPDB는 다양한 형식으로 데이터를 내보낼 수 있는 독립형 데이터베이스로 사용될 수 있습니다. MPDB에 대한 일반적인 지침은 JAHM Software, Inc.를 방문하십시오. 여기에서는 FLOW-3D 와 함께 MPDB를 사용하는 방법에 대한 지침을 제공합니다. FLOW-3D 와 제대로 통합하려면 MPDB 용 실행 파일이 Windows와 Linux에 있어야 합니다. 실행 파일은 FLOW-3D GUI에 의해 감지되며 재료 메뉴 아래 MPDB에서 재료 가져오기 메뉴 항목 이 활성화됩니다. 이러한 조건 중 하나라도 충족되지 않으면 FLOW-3D GUI를 통해 액세스 할 수 없습니다. MPDB%F3D_HOME%\Utilities$F3D_HOME/UtilitiesMPDB_for_FLOW-3D

FLOW-3D MPDB
FLOW-3D MPDB

material를 클릭 MPDB에서 가져오기 및 사용자 인터페이스 MPDB는 별도의 창에서 열립니다. 재료는 주요 요소로 분류되었습니다. Materials 탭, 테이블에서 요소를 마우스 오른쪽 버튼으로 클릭하여, 사용자는 해당 요소를 포함하는 물질의 목록을 볼 수 있습니다.

(Material Properties Database)
(Material Properties Database)

예를 들어 다음 그림은 철 (Fe)이 포함된 데이터베이스의 재료 목록을 보여줍니다.

FLOW-3D MPDB(Fe)
FLOW-3D MPDB(Fe)

사용자는 다른 합금, 세라믹, 유리 또는 기타 분류되지 않은 재료를 분류하는 다른 탭으로 전환할 수도 있습니다. 다음 그림은 Al & Cu 합금 목록을 보여줍니다.

FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Fe,Ni - 1006 (UNS G10060))
FLOW-3D MPDB(Fe,Ni – 1006 (UNS G10060))

재료가 식별되면 재료를 두 번 클릭하면 해당 재료에 사용할 수 있는 속성 목록이 있는 별도의 창이 나타납니다. 예를 들어 Fe 및 Ni 합금에서 1006 (UNS G10060)을 엽니다. 이러한 속성이 모두 FLOW-3D에 사용되는 것은 아닙니다.

FLOW-3D MPDB(1006(UNS G10060))
FLOW-3D MPDB(1006(UNS G10060))

각 속성은 이 창의 오른쪽에서 선택할 수 있는 다른 형식으로 파일에 표시, 플로팅 또는 저장할 수 있습니다. 그러나 이러한 속성 중 일부가 FLOW-3D 로 인식되는 것은 아닙니다. 

FLOW-3D 와 호환되는 파일 형식을 생성하려면 재료 창을 닫고 FLOW-3D/SolidWorks/ANSYS 메뉴에서 시작하십시오. 재료의 특성으로 FLOW-3D로 가져올 수 있는 세 가지 파일 형식이 있습니다.  유체 데이터베이스 형식(.f3d_dbf 확장), 고체 데이터베이스 형식 (.f3d_dbs 확장), 일반 쉼표로 구분된 값(CSV형식)으로 부터 시뮬레이션에 적합한 FLOW-3D 호환 형식을 선택하십시오. MPDB의 재료는 대부분 고체이지만 사용자가 응고된 유체의 특성을 가져오려면 FLOW-3D에서 응고된 유체 특성이 유체 특성의 일부이므로 Fluids 데이터베이스 형식을 선택해야 합니다. 솔리드 및 유체 데이터베이스 파일 형식과 파일은 현재 사용자의 문서 폴더와 Windows 및 Linux에 저장됩니다.

CSV<My Documents>\FLOW-3D\gui\MaterialsDatabase/home/<user>/FLOW-3D/gui/MaterialsDatabase

이러한 위치는 FLOW-3D의 데이터베이스가 사용자 정의 재료를 찾는 곳입니다. MPDB에서 이러한 위치로 내보낸 모든 자료는 FLOW-3D의 기본 데이터베이스에 의해 선택됩니다.

1006 (UNS G10060) 철 합금을 선택하십시오.

FLOW-3D MPDB(UNS G10060)
FLOW-3D MPDB(UNS G10060)

이전에 사용 가능했던 일부 특성은 FLOW-3D 와 관련이 없기 때문에 사용 불가능 합니다. 각 속성이 처리되자 마자 플롯 되거나 해당 데이터가 표시되면 참조 및 메모 섹션이 활성화됩니다. 참조 탭 속성에서 찍은 위치를 나타내는 참고 섹션은 일반적으로 데이터의 구성과 정확성에 관한 사항이 포함되어 있습니다. 

온도에 따른 특성의 동작을 이해하는 데 도움이 되도록 각 특성을 플롯 할 수 있습니다. 또한 데이터의 유효성에 대한 경고가 있을 수 있습니다. 

예를 들어 열전도도를 먼저 플로팅하면 저온 경고가 표시됩니다. 온도의 함수로 플롯을 표시하기 전에 .f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 

재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Temperature Plot)
FLOW-3D MPDB(Temperature Plot)

.f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

경우에 따라 재료에 사용자에게 필요한 속성이 없습니다. 데이터베이스에 사용 가능한 속성을 추가한 후 이러한 상황에서 누락된 속성은 유사한 속성을 가진 합금 (사용자의 위험 부담)에서 얻을 수 있습니다. 데이터베이스가 열려있는 동안 FLOW-3D에서 사용될 하나의 재료에 대해 속성을 혼합하고 일치시킬 수 있습니다.

FLOW-3D MPDB(Select properties to write to file)
FLOW-3D MPDB(Select properties to write to file)

데이터베이스를 닫은 후 파일 이름을 묻는 메시지가 사용자에게 표시됩니다. 기본값은 MPDB 가 재료에 지정하는 것입니다. FLOW-3D 가 재료를 사용자 정의 재료로 인식하도록 파일의 위치와 확장자가 미리 설정되어 있습니다.

FLOW-3D MPDB(File locate position)
FLOW-3D MPDB(File locate position)

CSV파일을 선택한 경우에도 동일한 프로세스가 적용됩니다. 데이터가 파일에 기록되면 각 테이블 형식 속성 창의 값 가져오기 버튼에서 데이터를 검색할 수 있습니다.

첫 번째 열은 항상 온도입니다.

FLOW-3D MPDB(csv file)
FLOW-3D MPDB(csv file)
  1. grfedit를 사용하여 flsgrf 파일 편집

명령 줄 유틸리티이므로 runscript와 같은 적절한 환경에서 실행해야 합니다 ( Runscripts 사용 참조 ).


Runscripts 사용

실행 스크립트는 작업 문제 디렉토리에서 실행되도록 설계되었습니다. 스크립트는 $F3D_HOME/local디렉토리에 있습니다. 스크립트를 사용하려면 다음 환경 변수를 설정해야합니다.

  • F3D_HOMEFLOW-3D 설치 디렉터리 의 경로를 지정합니다 .
  • F3DTKNUX_LICENSE_FILEFLOW-3D 라이선스 서버 의 위치를 ​​지정 합니다.
  • PATHPATH포함하도록 환경 변수를 수정해야합니다. $F3D_HOME/local그렇지 않으면 실행 스크립트를 찾을 수 없습니다.
  • F3D_VERSION: 사용할 솔버 버전을 지정합니다. 유효한 옵션은 double배정 밀도 버전 및 prehyd사용자 지정 배정 밀도 솔버입니다.

명령 줄에서 실행하려면 :

  1. 명령 프롬프트 또는 터미널을 엽니 다.
  2. 필요한 환경 변수를 설정하십시오.
    • Windows : FLOW-3D 를 시작하는 데 사용되는 배치 파일에서 환경을 복사하여 수행 할 수 있습니다 . 배치 파일의 내용은 FLOW-3D 아이콘 을 마우스 오른쪽 버튼으로 클릭 하고 편집을 선택 하여 액세스 할 수 있습니다 .
    • Linux : 설치 디렉토리 에서 파일을 flow3dvars.sh가져옵니다 local.
  3. 솔버가 실행중인 디렉토리로 변경하십시오.
  4. 원하는 runscript 명령을 입력하십시오. runhyd <ext2>

  • grfedit를 연 후 사용자에게 소스 파일 (flsgrf.*데이터가 복사될 파일)의 경로를 묻는 메시지가 표시됩니다. 파일의 전체 경로 (예 c:\users\username\FLOW-3D\simulation\flsgrf.simulation:)를 입력하고 <enter>를 누르십시오.
  • 이제, 파일 입력 확장의 목표 예를 들어, (데이터를 기록할 위치로 파일) 파일을 new_output. 데이터가 파일에 기록됩니다 c:\users\username\FLOW-3D\simulation\flsgrf.new_output. 대상 파일이 존재하면 파일을 덮어쓰거나 대상 파일에 데이터를 추가하라는 메시지가 표시됩니다. 대상 파일의 시간보다 늦게 시뮬레이션 시간을 가진 소스 파일 편집 만 추가됩니다.
  • 이 시점에서 프로그램은 어떤 히스토리 데이터 편집, 데이터 편집 재시작 및 대상 파일에 쓰기 위해 선택된 데이터 편집을 묻습니다. 프롬프트에 따라 작성할 데이터 편집을 선택하십시오.
  • 대상 파일을 작성한 후 프로그램이 닫히고 다른 flsgrf.*파일처럼 사용할 수 있습니다.

 노트

  • grfedit는 FLOW-3D v11.1 이상에서 작성된 결과 파일에서만 작동합니다.
  • 소스 flsgrf.*파일은 grfedit에 의해 수정되지 않습니다
  • FLOW-3D/MP의 출력 파일로 작업할 때는 flsgrf1의 위로 flsgrf 교체 하십시오 .
  • 소스 및 대상 파일 모두에 허용되는 유일한 이름은 flsgrf및 flsgrf1입니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

FLOW-3D POST, 그래픽 카드, 멀티모니터

좋은 하드웨어는 향상된 FLOW-3D POST 경험을 제공

FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.

고품질 그래픽 하드웨어

최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.

다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조). 

대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다. 

FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다. 

NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.

Nvidia 그래픽 카드

노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션

이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.

그래픽 카드를 Nvidia로 전환

비디오 드라이버 업데이트

비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.

RAM, RAM, RAM!

메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.

  • 초대형 (2 억 개 이상의 셀) : 최소 128GB
  • 대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
  • 중간 (3 천만 ~ 6 천만 셀) : 32-64GB
  • 소형 (3,000 만 셀 이하) : 최소 32GB

FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.


그래픽 카드를 업그레이드 교체 설치하는 방법

그래픽 카드를 업그레이드하는 것은 성능 향상을 위한 좋은 방법이다. 그래픽 카드 업그레이드를 통해 시각적으로 고사양을 요구하는 POST 작업을 쉽게 소화할 수 있는 컴퓨터로 진화할 수 있다. 

업그레이드를 위한 그래픽 카드 구매시 고려 사항, 기존 PC에 적합한가? 

원하는 그래픽 카드를 결정하는 것은 복잡하고 미묘한 문제다. AMD와 엔비디아는 200달러 미만에서부터 최대 1,500달러에 이르는 지포스(GeForce) RTX 3090에 이르기까지 거의 모든 예산에 대한 선택지를 제공하기 때문이다.

카드의 소음, 발열, 전력 소비 등과 같은 사항을 고려할 수 있겠지만, 일반적으로는 비용 대비 가장 큰 효과를 제공하는 그래픽 카드를 원한다.

컴퓨터가 새 그래픽 카드를 지원하는 적절한 하드웨어인지 확인한다. 

사용자가 겪는 가장 일반적인 문제는 부적절한 파워 서플라이(power supply)다. 충분한 전력을 공급할 수 없거나 사용 가능한 PCI-E 전원 커넥터가 충분하지 않을 수 있다. 필자의 경험상 파워 서플라이는 적어도 제조업체에서 권장하는 파워 서플라이의 요구 사항을 충족해야 한다. 예를 들어, 350W를 소비하는 지포스 GTX 3090을 구입했다면 8핀 전원 커넥터 한 쌍과 함께 엔비디아에서 제안한 최소 750W의 전력 공급 장치를 갖춰야 한다. 

현재 파워 서플라이가 얼마나 많은 전력을 제공하는지 알아보려면 PC 본체를 열고 모든 파워 서플라이에 기본 정보가 나열된 표준 식별 스티커를 확인하면 된다. 또한 사용 가능한 6핀 및 8핀 PCI-E 커넥터의 수를 확인할 수 있다. 

ⓒ Thomas Ryan 파워서플라이
ⓒ Thomas Ryan 파워서플라이

마지막으로 본체 내부에 새 그래픽 카드를 넣을 충분한 공간이 있는지 확인한다. 일부 고급 그래픽 카드는 길이가 상당히 길어 30Cm 이상일 수 있으며, 확장 슬롯이 2개 또는 3개가 될 수 있다. 해당 그래픽 카드의 실제 크기는 제조업체 웹사이트에서 찾을 수 있다. 

여기까지 해결했다면 이제 본격적으로 설치 작업에 착수한다. 


생각보다 간단한 그래픽 카드 설치 작업

그래픽 카드 설치에는 새 그래픽 카드, 컴퓨터, 그리고 십자 드라이버 3가지만 있으면 된다. 설치하기 전 PC를 끄고 전원 플러그를 뽑는다. 

기존 GPU를 제거해야 하는 경우가 아니면, 먼저 프로세서의 방열판에 가장 가까운 긴 PCI-E x16 슬롯을 찾아야 한다. 이 슬롯은 메인보드의 첫 번째 또는 두 번째 확장 슬롯이다. 

이 슬롯에 접근을 차단하는 느슨한 전선이 없는지 확인한다. 기존 그래픽 카드를 교체하는 경우, 연결된 케이블을 모두 분리하고, PC 본체 후면 내부에 고정 브래킷에서 나사를 제거한 다음, 카드를 제거한다. 대부분의 메인보드에는 그래픽 카드를 제자리에 고정하는 PCI-E 슬롯 끝에 작은 플라스틱 걸쇠(latch)가 있다. 이 걸쇠를 눌러 이전 그래픽 카드의 잠금을 해제하고 분리한다.

ⓒ Thomas Ryan PCI-E x16 슬롯에 설치
ⓒ Thomas Ryan PCI-E x16 슬롯에 설치

이제 새 그래픽 카드를 개방형 PCI-E x16 슬롯에 설치할 수 있다. 카드를 슬롯에 완전히 삽입한 다음, PCI-E 슬롯 끝에 있는 플라스틱 걸쇠를 눌러 제자리에 고정한다. 그런 다음 나사를 사용해 그래픽 카드의 금속 고정 브래킷을 PC 본체에 고정한다. 덮개 브래킷 또는 이전 그래픽 카드를 고정했던 나사를 재사용할 수 있다. 

ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결
ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결

대부분의 게임용 그래픽 카드에는 추가 전원 커넥터가 필요하다. 추가 전원이 필요한 경우, 해당 PCI-E 전원 케이블을 연결했는지 확인한다. 전원이 제대로 공급되지 않으면 그래픽 카드가 제대로 작동하지 않는다. 이 PCI-E 전원 케이블을 연결하지 않으면 PC 자체가 부팅되지 않을 수 있다.  

그래픽 카드를 고정하고 난 후, 전원을 켠 상태에서 본체 측면 패널을 제자리로 밀어넣고 디스플레이 케이블을 새 그래픽 카드에 연결해 작업을 완료한다. 이제 컴퓨터를 켠다. 

이제 그래픽 카드의 소프트웨어를 업그레이드할 단계가 왔다. 

새 그래픽 카드가 이전 카드와 동일한 브랜드일 경우에는 절차가 간단하다. 제조업체의 웹사이트로 이동해 운영체제에 맞는 최신 드라이버 패키지를 다운로드한다. 그래픽 드라이버는 일반적으로 약 500MB로, 상당히 크다. 인터넷 연결 속도에 따라 다운로드하는 데 시간이 걸릴 수도 있다. 드라이버를 설치하고 컴퓨터를 다시 시작하면 이제 새 그래픽 카드가 제공하는 부드럽고 매끄러운 프레임 속도를 즐길 수 있다.
  
그래픽 카드 제조업체가 바뀐 경우(인털에서 AMD로, 혹은 AMD에서 인텔로), 새 그래픽 카드용 드라이버를 설치하기 전에 이전 그래픽 드라이버를 제거하고 컴퓨터를 다시 시작해야 한다. 이전 드라이버를 제거하지 않으면 새 드라이버와 충돌할 수 있다. 

editor@itworld.co.kr 기사 일부 발췌 인용

그래픽 카드 GPU 온도 확인하는 방법

그래픽 카드 온도 확인은 아주 쉽다. 윈도우에서 바로 온도를 확인할 수 있는 내장 도구도 추가됐다. 또한, 무료 GPU 모니터링 도구가 많이 있고 그중 대다수가 온도를 측정해준다. 조금 더 자세히 알아보자.

ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인
ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인

마이크로소프트가 윈도우 10 2020년 5월 업데이트에서 GPU 온도 모니터링 툴을 작업 관리자에 추가했다. 무려 24년이나 걸렸다.

Ctrl+Shift+Esc를 열어 작업 관리자 대화창을 열거나 Ctrl+Alt+Delete에서 ‘작업 관리자’를 선택하거나 윈도우 시작 메뉴 아이콘을 오른쪽 클릭해서 ‘작업 관리자’를 선택한다. 여기에서 ‘성능’ 탭으로 들어가면 왼쪽에 GPU를 확인할 수 있을 것이다. 윈도우 10 2020년 5월 업데이트 혹은 그 이후 버전의 윈도우가 설치되어 있을 때만 사용할 수 있는 기능이다.

하지만 이 기능은 매우 단순하다. 시간 흐름에 따른 온도 변화를 추적하지 않고, 현재의 온도만을 보여준다. 그리고 업무를 하거나 오버클럭 조정 중에 작업 관리자를 여는 것도 귀찮을 수 있다. 마침내 윈도우에 GPU 온도를 확인할 수 있는 기능이 들어간 것은 환영하지만, 뒤이어 설명할 서드파티 도구가 훨씬 더 나은 GPU 온도 확인 옵션을 제공한다.

AMD 라데온 그래픽 카드 사용자가 라데온 세팅(Radeon Setting) 앱을 최신 버전으로 유지하고 있다면 방법은 쉽다. 2017년 AMD는 시각 설정을 변경할 수 있는 라데온 오버레이(Radeon Overlay)를 출시했다. 여기에도 GPU 온도와 다른 중요한 정보를 확인할 수 있는 성능 모니터 기능이 있다.

프로그램을 활성화하려면 Alt+R 키를 눌러 라데온 오버레이를 불러온다. 성능 모니터링 섹션에서 원하는 탭을 선택한다. Ctrl+Shift + 0을 눌러서 성능 모니터링 도구 설정을 단독으로 불러올 수 있다.

라데온 세팅 앱에서 오버클럭 도구인 와트맨(Wattman)으로 이동해 GPU 온도를 확인할 수 있다. 윈도우 바탕 화면을 우클릭하고, 라데온 설정을 선택한 후 게이밍(Gaming) > 글로벌 세팅(Global Setting) > 글로벌 와트맨(Global Wattman) 항목으로 이동한다. 도구를 사용해 지나친 오버클럭으로 그래픽 카드를 날려버리지 않겠다고 서약한 후에는 와트맨에 액세스하고 GPU 온도, 그리고 그래프 형태로 된 핵심적 통계 수치를 볼 수 있다. 여기까지가 전부다.

라데온 사용자가 아닌 사람도 많을 것이다. 스팀의 하드웨어 설문 조사는 전체 응답자 PC 중 75%가 엔비디아 지포스 그래픽 카드를 탑재했다는 결과를 발표했다. 그리고 지포스 익스피리언스 소프트웨어는 GPU 온도 확인 기능을 제공하지 않아서 서드파티 소프트웨어의 손을 빌려야 한다.

그래픽 카드 제조 업체는 보통 GPU 오버 클럭을 위한 특수한 소프트웨어를 제공한다. 이 도구에는 라데온 오버레이처럼 가장 중요한 측정을 실행할 때 OSD(On-Screen Display)를 지속하는 옵션 등이 있다. 여러 종류 중에서 가장 추천하는 것은 다재다능함을 갖춘 MSI의 애프터버너(Afterburner) 도구다. 이 제품은 오랫동안 인기를 얻었는데 엔비디아 지포스, AMD 라데온 그래픽 카드 두 제품 모두에서 잘 작동하고, 반길 만한 다른 기능도 더했다.

IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램
IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램

GPU 온도에 전혀 관심이 없다면? 그렇다면 시스템의 온도 센서를 보여주는 모니터링 소프트웨어를 설치하면 편리할 것이다. HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램으로, PC의 모든 부품의 가상 스냅샷을 보여준다. 스피드팬(SpeedFan) 과 오픈 하드웨어 모니터(Open Hardware Monitor)도 신뢰할 만한 서드파티 앱이다.

‘착한’ GPU 온도는 몇 도?

이제 그래픽 카드를 모니터링하는 소프트웨어를 갖췄다. 하지만 화면을 채우는 숫자는 맥락이 없이는 아무것도 아니다. 그래픽 카드 온도는 어디까지 괜찮은 것일까?

쉬운 대답은 없다. 제품마다 다르다. 이럴 때는 구글이 친구가 된다. 대다수 칩은 섭씨 90도 중반에도 작동하고, 게이밍 노트북에서도 90도까지 온도가 올라가는 경우가 흔히 있다. 그러나 일반 데스크톱 PC 온도가 90도 이상으로 올라간다면 구조 신호나 다름없다. 공기 흐름이 원활한 GPU 1대 시스템에서는 80도 이상 올라가면 위험하다. 팬이 여러 개 달린 커스텀 그래픽 카드는 무거운 워크로드 하에서도 60~70도가 적당하고, 수냉쿨러가 달린 GPU라면 온도가 더 낮아야 할 것이다.

그래픽 카드가 최근 5년 안에 생산된 제품이고 90도 이상으로 뜨거워진다면, 또는 최근 몇 주간 온도가 급격히 상승했다면 다음의 냉각 방법을 고려해보자.


그래픽 카드 온도 낮추는 법

그래픽 카드 온도가 높아졌을 때 하드웨어 업그레이드에 돈을 들이지 않고 개선하지 않기란 어렵다. 그러나 돈을 쏟아붓기 전에 정말 그래야 하는지 필요성을 점검해 보자. 다시 한번 강조하지만 그래픽 카드는 뜨거운 온도를 버틸 수 있도록 설계되어 있다. PC가 무거운 게임이나 영상 편집 중에 강제 종료되는 경우가 아니라면 아마도 걱정할 필요가 없을 것이다.

우선, 시스템의 케이블을 깨끗하게 정리해 GPU 주변의 공기가 원활하게 순환되는지 확인하라. 케이블이 깔끔하게 정리됐다면 케이스에 팬을 추가하는 것도 고려한다. 모든 PC는 최적의 성능을 위해 공기를 빨아들이고 내보내는 팬이 여럿 달려 있는데, POST PC라면 팬은 더 많아야 한다. 저렴한 팬은 10달러부터 구입할 수 있고, RGB 조명이 붙은 화려한 제품은 조금 더 가격이 높다.

마지막으로, GPU와 히트싱크의 써멀 페이스트가 오래되어 말라 있다면 효율이 떨어질 수 있다. 특히 오래된 그래픽 카드라면 더더욱 그렇다. 그리고 아주 드문 경우지만 품질이 좋지 않은 써멀 페이스트가 발라져서 출시되는 경우도 있다. 다른 방법이 모두 효과가 없다면 써멀 페이스트를 다시 바르는 것을 시도해보자. 그러나 과정이 매우 어려울 수 있고 카드마다 조금씩 다르고, 잘못 손댈 경우 사용자 보증 기한의 보호를 받을 수 없게 된다. 

온도를 확실하게 낮추려면 수랭 쿨러를 위한 쿨링 시스템을 고려한다. 대다수 사용자에게는 지나친 모험이지만 대부분 수냉쿨러는 발열과 노이즈 감소 효과가 확실하고 공기 냉각에 있어 병목 현상도 없다.


“업무 효율 향상의 기본” 멀티 모니터 구축 가이드

듀얼 모니터를 사용하면 업무 생산성이 높아진다는 연구 결과가 있지만, 모니터가 많을수록 생산성이 높아지는지 여부에 대해서는 아직 이렇다 할 근거는 없다. 그러나 업무 생산성을 생각하지 않더라도 모니터를 여러 대(3대~6대까지) 사용하는 것은 멋진 일이며, 많은 화면을 봐야 하는 엔지니어는 정말 필요할지도 모른다.

모니터를 세로로 세워두면 긴 문서를 볼 때 스크롤을 적게 해도 된다는 장점이 있다. 멀티 디스플레이 환경을 구축하기 위해 고려해야 할 모든 것들을 살펴보겠다.

멀티 모니터 구축 가이드(www.itworld.co.kr)
멀티 모니터 구축 가이드(www.itworld.co.kr)

1단계 : 그래픽 카드 확인하기

보조 모니터를 구입하기 전에 컴퓨터가 물리적으로 이 모든 모니터들을 감당할 수 있을지 점검해 봐야 한다. 가장 쉬운 방법은 PC의 뒷면을 보고, 그래픽 포트(DVI, HDMI, 디스플레이포트, VGA 등)가 몇 개나 있는지 확인하는 것이다.

별도의 그래픽 카드가 없다면 포트를 2개밖에 발견하지 못할 것이다. 그래픽이 통합된 대부분의 마더보드는 모니터 2개 밖에 설치하지 못한다. 별도의 그래픽 카드가 있다면, 마더보드의 포트를 제외하고 최소 3개의 포트를 발견할 수 있을 것이다.

팁 : 마더보드와 별도 그래픽 카드의 포트를 모두 이용해서 멀티 모니터를 설치할 수도 있지만, 이 경우 성능 저하와 모니터끼리의 속도 차이가 발생할 것이다. 그래도 이렇게 하고 싶다면, PC의 BIOS에서 Configuration > Video > Integrated graphics 로 진입한 다음, ‘always enable’로 설정한다.

그러나 별도의 그래픽 카드에 3개 이상의 포트가 있다고 해서 이것을 모두 동시에 사용할 수 있다는 의미는 아니다. 예를 들어서 구형 엔비디아 카드는 포트가 2개 이상이어도 하나의 카드에 모니터를 2개 이상 연결할 수 없다. 자신의 그래픽 카드가 멀티 모니터를 지원하는지 판단하는 가장 좋은 방법은 그래픽 카드 모델명을 찾아서 원하는 모니터 개수와 함께 검색하는 것이다. 예를 들어, ‘엔비디아 GTX 1660 모니터 4대’라고 검색하면 된다.

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

그래픽 카드가 원하는 만큼 충분히 모니터를 지원할 수 있으면 좋지만, 그렇지 않다면 추가 그래픽 카드를 구입해야 한다. 그래픽 카드를 추가로 구입하기 전 타워 안에 충분한 공간(PCI 슬롯)이 있는지, 전원 공급은 충분한지 확인해야 한다.

멀티 모니터용으로만 그래픽 카드를 구입한다면 최신 그래픽 카드 중에서도 저렴한 옵션을 선택하는 것이 좋다. 

아니면 멀티 스트리밍이 지원되는 디스플레이포트를 탑재한 신형 모니터를 사용하는 방법도 있다. 그래픽 카드의 디스플레이포트 1.2에 연결하고, 디스플레이포트 케이블을 사용해 다음 모니터로 연결하는 것이다. 모니터의 크기나 해상도가 같지 않아도 된다. 뷰소닉(ViewSonic)의 VP2468이 이런 제품 중 하나다. 아마존에서 약 210달러에 판매되는 이 24인치 모니터는 디스플레이포트 아웃 외에도 프리미엄 IPS 스크린, 아주 얇은 베젤 등 멀티 모니터 설정에 이상적인 특징을 제공한다.

2단계 : 모니터 선택하기 

그래픽 카드에 대해서 파악했다면 이제 추가 모니터를 구입할 차례다. 사용자에 따라서 기존에 사용하고 있는 모니터, 책상 크기, 추가 모니터 용도 등에 따라서 완벽한 모니터가 달라질 것이다.

필자의 경우, 이미 24인치 모니터 2대를 가지고 있었기 때문에 중앙에 설치할 더 큰 모니터가 필요해서 27인치 모니터를 선택했다. 게임을 하지 않기 때문에 모니터 크기 차이는 상관없었다. 하지만 사용자에 따라서 멀티 모니터로 POST를 하거나 동영상을 보기 위해서는 이러한 구성보다 같은 모니터를 연결하는 것이 더 좋을 것이다.

모니터를 구입하기 전에 PC와 모니터의 포트 호환성을 설펴야 한다. DVI-HDMI 혹은 디스플레이포트-DVI 등 전환해주는 케이블을 이용할 수도 있지만 다소 귀찮다. 그러나 PC나 모니터에 VGA 포트가 있다면, 교체를 권한다. VGA는 아날로그 커넥터이기 때문에 선명도가 떨어진다.

3단계 : PC설정

모니터를 구입하고 나면 PC에 연결하고 PC의 전원을 켠다. 이것으로 모니터 설치가 끝났다. 하지만 완전히 끝난 것은 아니다.

윈도우가 멀티 모니터 환경에서 잘 동작하게 만들어야 하는데, 윈도우 7이나 윈도우 8 사용자라면 바탕화면에서 오른쪽 클릭하고 ‘화면 해상도’를 선택한다. 윈도우 10 사용자라면 ‘디스플레이 설정’을 클릭한다. 그러면 디스플레이를 정렬할 수 있는 창이 나타난다.

ⓒ ITWorld 디스플레이 설정
ⓒ ITWorld 디스플레이 설정

여기서 모니터들이 모두 탐지되는지 확인할 수 있다. ‘식별’을 클릭하면 각 디스플레이에 큰 숫자가 나타난다. 주 모니터(작업 표시줄과 시작 버튼이 나타나는 모니터)로 사용할 모니터에 1번이 나타나야 하는데, 원하는 것을 선택한 다음 아래 여러 디스플레이 설정에서 ‘이 디스플레이를 주 모니터로 만들기’를 클릭한다. 그 다음 ‘다중 디스플레이’ 드롭다운 메뉴에서 복제할 것인지 확장할 것인지를 선택하면 되는데, 대부분의 경우 ‘디스플레이 확장’이 적합하다.

GPU 제어판에서도 다중 모니터를 설정할 수 있다. 바탕화면에서 오른쪽 클릭을 하고 엔비디아, AMD, 인텔 등 그래픽 제조사의 제어판 메뉴를 열어 윈도우와 유사한 방식으로 디스플레이를 설정할 수 있다.

멀티 디스플레이를 구축할 경우에는 같은 모델을 이용하는 것이 해상도나 선명도, 색보정 등의 문제가 발생하지 않아 ‘끊김 없는’ 경험을 할 수 있다.

마란 고니 효과 있음

Ti-6Al-4V 금속 분말에 의한 선택적 레이저 용융법 수치 해석

Ti-6Al-4V 금속 분말에 의한 선택적 레이저 용융법 수치 해석

선택적 레이저 용융법(SLM: Selective Laser Melting)은 3D 프린팅 기술의 하나로 최근 주목 받고 있습니다. SLM에서는 레이저 조사 중 높은 온도 구배로 인해, 용융과 재응고 현상이 일어나므로 용융금속 유체의 거동이 중요한 역할을 담당하고 있어, 구성 부품의 최종 구조를 결정합니다.

FLOW-3D@ WELD를 이용하여 T-6Al-4V(64티타늄 합금)에 대한 선택적 레이저 용융법 (SLM) 시뮬레이션이 가능합니다.

SLM 프린터
SLM 프린터
SLM 공정
SLM 공정
SLM 열전달 모델
SLM 열전달 모델

금속 분말을 얇게 깔아 생긴 분말층에 레이저를 조사하면 조사된 부분만 용융, 응고 됩니다. 이 공정을 반복하면서 적층하여 3차원 형상을 만듭니다. 금속을 재료로 하여 고강도 제품을 만들수 있으므로, 기존의 시작 제품(Rapid Prototyping)뿐만 아니라, 짧은 납기일, 저비용, 고기능 등을 목적으로 한 Additive Manufactuing 기술로서 주목받고 있습니다.

FLOW-3D@ WELD를 이용한 해석을 통해서, 표면의 경사에 따라 용융지의 형상과 온도 분포가 결정된다는 것을 알 수 있습니다.

용융 풀의 최대 깊이는 SLM의 형태학적 변화에 따라 달라지며 평균 깊이는 42μm입니다.

선택적 레이저 용융법 (SLM) 해석 결과
선택적 레이저 용융법 (SLM) 해석 결과
마란 고니 효과 있음
마란 고니 효과 있음
마란 고니 효과 없음
마란 고니 효과 없음

결론

  1. 비교에서 표면의 기울기는 용융 풀과 온도 분포의 형태 결정에 지배적이다.
  2. 용융 풀의 최대 깊이는 SLM 중의 형태 변화에 의존하고 있으며, 평균 깊이는 42μm였다.

 *Source: National Cheng Kung University, Department of Materials Science and Engineering, Taiwan YC Wu, WS Hwang

CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

FLOW-3D WELD 용접 사례

FLOW-3D WELD를 이용한 용접 해석 사례를 소개합니다.

  1. 열전도 형 용접 (레이저)
      두께가 다른 모재 맞대기
  2. 하이브리드
      레이저 / 아크 하이브리드
  3. 깊이 용해 형 (키 홀)
      알루미늄 평판에 의한 용해 깊이, 형상 확인
  4. 레이저 고기 모듬
      파우더 공급 및 용해
  5. 아크 용접
      오버레이 피팅 관통 평가
  6. 레이저 용접 (무릎 관절)
      무릎 관절의 실험과의 비교
  7. Selective Laser Sintering (3D printing)
      3 차원 프린터에의 응용

레이저 용접의 특징

에너지 밀도가 높고, 다른 재료도 시간 차이없이 녹아구슬 폭이 좁은비접촉 표면 성상 및 품질이 좋은제어 성이 우수전기 ⇒ 광 변환 효율이 나쁘다반사율이 높은 흡수율이 떨어진다weld_example1

열전도 형 용접

weld_example2

열전도 형 용접 결과

weld_example3weld_example4

하이브리드

강판의 레이저 / 아크 하이브리드 용접의 분석을 실시했습니다.

분석 조건

weld_example5CO2 레이저 출력 : 3.5kw디 포커스 값 : 0 mm레이저 스폿 지름 : 0.3mm아크 전류 : 180A아크 전압 : 26V용접 속도 : 1m / min열원 사이의 거리 : 3mm금속 : 900 MPa high strength steel

메쉬

weld_example6

해석과 실험과의 비교

온도의 단위는 [K]입니다.

weld_example7

깊이 용해형 (키 홀)

해석 모델weld_example83D 온도 표시weld_example9

레이저 금속 침전 Laser Metal Deposition (LMD)

파우더 공급 레이저에 의한 용해

해석 모델weld_example103D 온도 표시weld_example11

아크 용접

TIG (Tungsten Inert Gas)방전 전극으로 텅스텐을 사용불활성 (Inert) 가스를 사용 (아르곤, 헬륨 등)목적에 따라 필러 금속을 첨가 (와이어 or 필러 봉)공업 적으로 사용되는 대부분의 금속에 대응weld_example12

분석 조건

weld_example13

분석 결과 : 온도 등고선 [K]

TIG (Tungsten Inert Gas)모재 온도가 상승하고 조금 늦게 용융 풀이 확대표면 장력에 의해 용융 풀 바닥은 녹아 떨어지지 않는 weld_example14

분석 결과 : 용융 부의 교반

TIG (Tungsten Inert Gas)상하 모재를 분류하고 교반의 모습을 확인weld_example15

분석 결과 : 용융 부 교반 유속 벡터

TIG (Tungsten Inert Gas)아크 압력 차폐 가스에 의한 함몰표면 장력에 의한 계면 위치의 회복계면의 진동weld_example16

분석 결과 : 구슬 모양

TIG (Tungsten Inert Gas)상하면 구슬 폭용접 시작부터 정상까지의 과도적인 변화weld_example17

분석 결과 : 고출력의 경우 온도 등고선 [K]

TIG (Tungsten Inert Gas)고출력 의해 함몰이 커진다용융 풀의 두께가 얇아지고 관통하는weld_example18

레이저 용접 (무릎 관절)

weld_example19

분석 결과와 실제의 단면 비교

weld_example20

Selective Laser Sintering (3D printing)

weld_example21

선택적 레이저 용융 분석

weld_example22weld_example24
weld_example23
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments

International Thermal Spray Conference – ITSC-2006
Seattle, Washington, U.S.A., May 2006

M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, R. Knight,
Drexel University, Philadelphia, Pennsylvania, USA
J. A. Baldoni
Duke University, North Carolina, USA

Abstract

거친 표면에 대한 입자 충격 및 변형의 3 차원 모델이 HVOF 스프레이 폴리머 입자에 대해 개발되었습니다. 유체 흐름 및 입자 변형은 FLOW-3D® 소프트웨어를 사용하는 유체 부피 (VoF) 방법으로 예측되었습니다. 스플래팅(splatting) 및 최종 스플랫 모양(splat shapes)의 역학에 대한 거칠기의 영향은 몇 가지 프로토타입 거친 표면을 사용하여 탐색 되었습니다 (예: 단계와 그루브)

또한 실제 그릿 블라스팅(grit blasted)된 강철 표면의 광학 간섭 측정에 의해 생성된 보다 사실적인 거친 표면의 수치 표현도 모델에 통합되었습니다. 예측된 스플랫 모양을 그릿 블라스팅 된 강철 기판에 증착된 나일론 11 스플랫의 SEM 이미지와 비교했습니다. 거친 기판은 부드러운 기판의 스플래팅 시뮬레이션에서 거의 관찰되지 않는 손가락 및 기타 비대칭 3 차원 불안정성을 생성했습니다.

Introduction

기판 거칠기가 용사 코팅의 접착력과 접착력을 향상 시킨다는 사실은 잘 알려져 있으며 일반적으로 받아 들여지고 있습니다 [1]. 스프레이하기 전에 기판 표면은 일반적으로 알루미나 또는 SiC와 같은 50 – 300 µm 각 세라믹 입자로 그릿 블라스팅으로 거칠게 처리됩니다.

기판 표면에 증착된 초기 스플랫의 형태는 코팅 / 기판 인터페이스의 무결성과 결과 코팅의 접착 강도에 중요한 역할을합니다. 단단하고 불규칙한 표면에 대한 열 스프레이 액적의 충격 및 변형은 액적 표면의 복잡한 대규모 3 차원 변형이 특징입니다.

충돌하는 물방울의 “스플래싱”이 발생하는 경우, 운지법 또는 위성 입자 생성 및 분리 중 새로운 표면 생성은 일반적으로 축 대칭이 아니므로 사실적인 splat 예측을 위해 3 차원 모델이 필요합니다. 이것은 정확한 3 차원 스플래팅 모델의 개발에 많은 수치적 도전을 야기합니다.

Fauchais et al. [2]는 스플랫 형성 과정과 관련하여 발표 된 논문의 대부분 (~ 98 %)이 매끄러운 표면에 대한 정상적인 액적 충격을 설명한다고보고했습니다. 게시된 작업의 2 % 미만은 매끄러운 표면에 대한 비정상적인 입자 영향과 관련이 있으며 ~ 0.1 %만이 거친 기판과 관련됩니다.

여러 저자 [3, 4]는 2 차원 모델을 사용하여 비평면 표면과 물방울의 상호 작용을 연구했거나 평행 그루브가 있는 표면에 대한 3 차원 충격 [5]을 연구했습니다. 그러나 이 접근법의 주요 단점은 거친 표면에 스플래팅의 비축 대칭 측면을 연구합니다.

최근 Raessi et al. [6] 이전에 개발된 VoF 모델 [7]을 확장하여 평평한 기판에 액적 스플래팅을 프로토 타입 거친 표면과 액적 상호 작용으로 확장했습니다. 표면 거칠기는 규칙적으로 정렬 된 정사각형 블록으로 근사화 되었습니다. Feng et al. [8]은 평평한 표면의 마찰 조건에 의해 표면 거칠기가 근사된 3 차원 Lagrangian 유한 요소 모델을 사용했습니다.

이 접근 방식은 소규모 점성 및 축 대칭 자유 표면 흐름과 관련하여 매우 정확할 수 있지만 fingering 생성 또는 satellites 생성 및 breakups 중 새로운 표면 생성과 관련된 물방울이 튀기는 경계 맞춤 기술에 적합하지 않습니다.

또한, 열 분무에 사용되는 그릿 블라스팅 표면의 평균 표면 거칠기 (Ra)는 일반적으로 50μm의 평균 액적 크기에 비해 ~ 5 ~ 30 % (~ 2 ~ 15μm)입니다. 평평한 표면에 간단한 마찰 흐름.

본 연구의 목표는 임의의 거친 기질에 영향을 미치는 HVOF 분무 중합체 입자의 모델을 개발하는 것이다. 매끄럽지 않은 표면에 대한 입자 분할 모델은 표면의 기하학적 불규칙성이 분할 거동과 최종 분할 형태에 어떻게 영향을 미치는지 더 잘 이해할 수 있게 해줄 것입니다.

HVOF 제트에서 미크론 크기의 공급 원료 입자로의 강제 대류는 높은 대류 열 전달 계수 (h ~ 5000 – 17,000 W / (m2 K))를 특징으로 합니다. 이로 인해 입자 표면 온도가 급격히 증가하지만 폴리머 입자의 높은 내부 열 저항 (높은 Bi 수)은 입자 내부가 동일한 속도로 가열되는 것을 방지합니다. 결과적으로 더 큰 (예 : 90 µm 직경) 나일론 11 입자는 기판에 충격을 주기 전에 코어와 표면 사이에 급격한 온도 구배를 나타냅니다 (그림 1) [9, 10, 11].

Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.

또한 가파른 내부 온도 구배를 가진 HVOF 스프레이 폴리머 입자가 얇은 디스크 중앙에 크고 거의 반구형 인 코어가있는 특징적인 “튀김 달걀”모양으로 퍼졌다고 보고되었습니다 [10]. 이 모양은 저온, 고점도 코어와 고온, 저점도 표면의 유동 특성 간에 큰 방사형 차이가 있음을 나타냅니다.

변형된 입자의 예측 된 모양 (그림 2a)은 유리 슬라이드에 증착된 실험적으로 관찰 된 스플랫과 좋은 질적 일치를 나타 냈습니다 (그림 2b). 액적의 오른쪽에 표시된 속도 장 벡터 (그림 2a)는 저점도 “피부”가 고점도 코어 주위를 흐르면서 특징적인 “튀김 달걀” splat 모양이 형성되었음을 나타냅니다.

이 작업에서 보고된 실험 중에 사용된 HVOF 스프레이 매개 변수는 나일론 11을 증착하는데 사용할 수 있는 일반적인 HVOF 스프레이 매개 변수를 나타냅니다. 그러나 실험 기준 매개 변수를 중심으로 개발된 수치 모델은 개별 스플랫의 흐름 거동을 더 잘 이해하는 데 사용할 수 있습니다. 증착 효율 향상을 위한 공정 최적화를 지원합니다.

Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

중략…….

References

  1. Davis, J. R., (Ed.) et al, Handbook of Thermal Spray Technology, ASM International®, 1st Ed., Materials Park,
    OH, (2004).
  2. Fauchais, P., Fukomoto, M., Vardelle, A. and Vardelle, M., Knowledge Concerning Splat Formation: An Invited
    Review, Journal of Thermal Spray Technology, 13 (3), pp. 337 – 360, (2004).
  3. Liu, H., Lavernia, E. J. and Rangel, R. H., Modeling of Molten Droplet Impingement on a Non-flat Surface, Acta
    Metall. Mater, 43(5), pp. 2053 – 2072, (1995).
  4. Sobolev, V. V., Guilemany, J. M. and Martin, A. J., Influence of Surface Roughness on the Flattening of
    Powder Particles during Thermal Spraying, Journal of Thermal Spray Technology 5(2), pp. 207 – 214, (1996).
    5 Patanker, N. A. and Chen, Y., Numerical Simulation of Droplet Shapes on Rough Surfaces, Proc. Int. Conference
    on Modeling and Simulations of Microsystems – MSM 2002, pp. 116 – 119, (2002)
    6 Raessi, M., Mostaghimi, J. and Bussmann, M., “Droplet Impact during the Plasma Spray Coating Process-Effect of
    Surface Roughness on Splat Shapes,” Proc. 17th Int. Symposium on Plasma Chemistry – ISPC 17, Toronto,
    Canada, (2005)
    7 Pasandideh-Fard, M., Chandra, S. and Mostaghimi, J., A Three-dimensional Model of Droplet Impact and
    Solidification, Int. J. Heat and Mass Transfer, 45, pp. 2229 – 2242, (2002).
    8 Feng, Z. G., Domaszewski, M., Montavon, G. and Coddet, C., Finite Element Analysis of Effect of Substrate Surface
    Roughness on Liquid Droplet Impact and Flattening Process, J. of Thermal Spray Technology, 11(1), pp. 62-68,
    (2002).
    9 Petrovicova, E., “Structure and Properties of Polymer Nanocomposite Coatings Applied by the HVOF Process,”
    Ph.D. Dissertation, Drexel University, (1999).
    10 Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc.
    ITSC-2005 International Thermal Spray Conference, DVS/IIW/ASM-TSS, Basel, Switzerland, (2005).
    11 Bao, Y., Gawne, D. T. and Zhang, T., The Effect of Feedstock Particle Size on the Heat transfer Rates and
    Properties of Thermally Sprayed Polymer Coatings, Trans. I. M. F., 73(4), pp 119 – 124, (1998).
    12 Ivosevic, M., Cairncross, R. A. and Knight, R., “Heating and Impact Modeling of HVOF Sprayed Polymer
    Particles,” Proc. 2004 International Thermal Spray Conference (ITSC-2004), DVS/IIW/ASM-TSS, Osaka,
    Japan, (2004).
    13 Hirt, C. W. and Nichols, B. D., Volume of Fluid (VoF) Method for the Dynamics of Free Boundaries, Journal of
    Computational Physics, 39, pp. 201 – 225, (1981).
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

A non-fluorine mold release agent for Ni stamp in nanoimprint process

Tien-Li Chang a,*, Jung-Chang Wang b
, Chun-Chi Chen c
, Ya-Wei Lee d
, Ta-Hsin Chou a
a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan
cNational Nano Device Laboratories, Taiwan
d Research and Development Division, Ordnance Readiness Development Center, Taiwan

Abstract

이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.

Introduction

나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.

따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].

오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.

각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.

Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].

그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.

본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.

Experiment

먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 ​​메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.

디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.

이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.

Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.
Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.

마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.

PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.

수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.

200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.

마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.

Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

References

[1] M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Nature 417 (2002) 835.
[2] S.Y. Chou, C. Keimel, J. Gu, Appl. Phys. Lett. 84 (2004) 5299.
[3] Q. Wang, G. Farrell, P. Wang, G. Rajan, T. Thomas, Sensor Actuator A 134 (2007) 405.
[4] C. Kentsch, W. Henschel, D. Wharam, D.P. Kern, Microelectron. Eng. 83 (2006) 1753.
[5] T.L. Chang, Y.W. Lee, C.C. Chen, F.H. Ko, Microelectron. Eng. 84 (2007) 1689.
[6] S. Tisa, F. Zappa, A. Tosi, S. Cova, Sensor Actuator A 140 (2007) 113.
[7] M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Lab Chip 5 (2005) 5545.
[8] W. Hu, E.K.F. Yim, R.M. Reano, K.W. Leong, S.W. Pang, J. Vac. Sci. Technol. B 84 (2005) 2984.
[9] H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht, Microelectron. Eng. 423 (2002) 61.
[10] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, Microelectron. Eng. 73–74 (2004) 196.
[11] A. Yokoo, M. Nakao, H. Yoshikawa, H. Masuda, T. Tamamura, Jpn. J. Appl. Phys. 38 (1999) 7268.

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Figure 8 Evaluation test of thermal sprayed coatings

Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines

고효율 가스 터빈용 신소재 및 제조 기술 개발

Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015)

가스 터빈 복합 화력 (GTCC) 발전 시장은 재생 에너지와 공존 할 수 있는 가장 깨끗하고 경제적인 화력 발전 시스템으로 장기적으로 성장할 것으로 예상됩니다. 효율성을 더욱 높이려면 터빈 부품 재료의 특성을 개선하고 첨단 블레이드 설계에 필요한 복잡한 구조를 구축하기 위한 제조 기술 개발이 필수적입니다.

이 보고서는 가스 터빈의 고온 적용을 위한 재료 및 제조 기술로서 합금 설계 및 주조, 코팅, 용접 수리 및 냉각 구멍 드릴링 공정을 포함한 기술 개발을 제시합니다.

최근 몇 년 동안 세계 에너지 수요는 특히 중국과 인도와 같은 아시아 국가에서 현저하게 증가하고 있습니다. 2035 년 글로벌 에너지 소비량은 2010 년 대비 약 1.5 배 수준에이를 것으로 예상됩니다. 일본에서는 에너지 자급률이 10 % 미만이며 에너지 사용 효율을 높이고 환경 부하를 줄이는 것이 시급한 문제입니다. . 특히 현재 일본 전기 생산량의 거의 90 %를 차지하고있는 화력 발전의 효율화가 필요하다. 발전 효율은 가스 터빈 (시스템의 주요 구성 요소)의 연소 온도에 크게 영향을받습니다. 온도가 상승함에 따라 열 순환 효율이 향상 될 수 있기 때문에 Mitsubishi Hitachi Power Systems, Ltd.

(MHPS)는 1980 년대 초부터 더 높은 온도 / 더 나은 효율성 및 더 큰 용량을 가진 고급 시스템을 개발했습니다.
그림 11에서 보듯이 터빈 입구 온도는 1984 년 (Type D) 1,100 ° C 등급에서 시작하여 1989 년 1,350 ° C 등급 (Type F), 1997 년 1,500 ° C 등급 (Type 지).

또한 2011 년에는 1,600 ° C 급 가스 터빈 (J 형)이 출범했습니다 .2 2004 회계 연도부터 국가 프로젝트 “1,700 ° C 급 가스 터빈을위한 원소 기술 개발”이 시작되었습니다. J 형 가스 터빈 개발 프로젝트는 첨단 열 차단 코팅 (TBC) 및 냉각 / 공기 역학 기술과 같은 결과도 활용되었습니다 (그림 2).

가스 터빈 온도를 더욱 높이려면 이러한 고온을 견딜 수있는 신소재를 설계하고 터빈 부품의 특성을 개선하며 고급 블레이드 설계에 필요한 복잡한 구조를 구축하기 위한 제조 기술을 발명하는 것이 중요합니다.
이 보고서는 MHPS가 Mitsubishi Heavy Industries, Ltd. (MHI) 연구 및 혁신 센터와 함께 개발하고 있는 이러한 기술을 소개합니다.

 Figure 1    Increase in the turbine inlet temperature and transition of applied materials and technologies
Figure 1 Increase in the turbine inlet temperature and transition of applied materials and technologies
Characteristics of the M501J gas turbine
Characteristics of the M501J gas turbine

MHPS와 MHI는 MGA1400, MGA1400DS, MGA2400을 고온 환경에서 사용할 수 있을 만큼 내구성이 있는 고강도 Ni 계 초합금으로 개발하여 자사 제품에 적용하고 있습니다. 일반적으로 인터 빈 블레이드에 사용되는 초합금은 주조 방법에 따라 기존 주조 합금, 방향 응고 합금, 단결정 합금 중 하나로 분류됩니다.

이 세 가지 유형 중 MGA1400 및 MGA2400은 기존 주조 합금의 범주에 해당하는 반면 MGA1400DS는 방향성 응고 합금입니다 . 단결정 합금은 입자 경계가 없기 때문에 가장 강하고 (그 존재는 재료 강도 측면에서 불리 함) 입자 경계 강화를 고려하지 않고 합금 조성을 최적화 할 수 있습니다.

그러나 주조 공정에서 발생하는 주조 결함은 강도를 크게 저하시킬 수 있으므로 제조 기술의 확립이 중요합니다. 산업용 가스 터빈 블레이드는 크기가 크기 때문에 항공기 엔진보다 제조하기가 더 어렵습니다.

MHI 연구 혁신 센터는 1700 ° C 급 가스 터빈을 건설하기 위해 NIMS (National Institute for Materials Science)와 공동 연구를 수행하여 단결정 블레이드용 고내열 소재를 개발했습니다. 고온에서 재료의 강도를 검증하는 것 뿐만 아니라 결함이 없는 좋은 단결정 구조를 얻기 위한 주조 기술 개발도 필수적입니다.

신소재는 원재료 및 주조 비용 등 경제성 측면에서도 만족스러워야 한다. 또한 고온에서 필요한 모든 재료 특성 (예 : 크리프 강도, 열 피로 강도 및 내 산화성)을 나타내야 합니다. 특히 크리프 강도와 열 피로 강도의 공존을 실현하기 위한 기술 개발이 어려웠습니다.

NIMS 합금 설계 프로그램에 의해 결정된 조성으로 테스트 합금을 조사하는 동안 MHI와 NIMS는 속성 예측을 위한 데이터베이스를 확장하기 위해 주로 열 피로 강도에 대한 데이터를 수집했습니다. 이러한 노력으로 인해 크리프 강도와 열 피로 강도 모두에서 우수한 특성을 가진 단결정 합금 인 MGA1700이 개발되었습니다 (그림 3).

일반적으로 레늄과 같은 고가의 희귀 금속을 포함하는 고강도의 다른 단결정 합금과 달리 MGA1700은 콘없이 고강도를 실현하는 획기적인 합금입니다.

 Figure 3    Micro structure and high-temperature strength property of the designed alloy
Figure 3 Micro structure and high-temperature strength property of the designed alloy
   Figure 8    Evaluation test of thermal sprayed coatings
Figure 8 Evaluation test of thermal sprayed coatings
 Figure 11    Schematic diagram of LMD Figure 13    Cross-sectional comparison of weld beads between analysis results and LMD application      Figure 12    Analytical model and a typical result of the analysis
Figure 11 Schematic diagram of LMD Figure
Figure 12 Analytical model and a typical result of the analysis
13 Cross-sectional comparison of weld beads between analysis results and LMD application

중략 ……

References

1. Komori, T. et al., the 41th GTSJ Seminar material (2013) pp. 57-64 2. Yuri, M. et al., Development of 1600°C-Class High-efficiency Gas Turbine for Power Generation Applying J-Type Technology, Mitsubishi Heavy Industries Technical Review Vol. 50 No. 3 (2013) pp.1-10. 3. Okada, I. et al., Development of Ni base Superalloy for Industrial Gas Turbine, Superalloy2004,(2004),p707-712. 4. Kishi, K. et al., Welding Repair Technology for Single Crystal Blade and Vane,Proceedings of the International Gas Turbine Congress, (2014), IGTC07-116S. 5. KREUTZ, E.W. et al., Process Development and Control of Laser Drilled and Shaped Holes in TurbineComponents, JLMN-Journal of Laser Micro/Nanoengineering, Vol.2 No.2 (2007), p123. 6. Sezer, H.K. et al., Mechanisms of Acute Angle Laser Drilling induced Thermal Barrier CoatingDelamination,Journal of Manufacturing Science and Engineering, vol.131 (2009), p.051014-1 7. Goya, S. et al., High-Speed & High-Quality Laser Drilling Technology Using a Prism Rotator, MitsubishiHeavy Industries Technical Review Vol. 52 No. 1 (2015) pp. 106-109

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

Drop-on-demand 잉크젯 인쇄는 상업 및 소비자 이미지 재생을 위한 잘 정립 된 방법입니다. 이 기술을 주도하는 동일한 원리는 인쇄 및 적층 제조 분야에도 적용될 수 있습니다. 기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르기까지 다양한 재료를 증착하고 패턴화하여 다양한 기능성 매체, 조직 및 장치를 인쇄하는 데 사용되었습니다 [1, 2]. 이 작업의 초점은 잉크젯 기반 기술을 3D 솔리드 금속 구조 인쇄로 확장하는 데 있습니다 [3, 4]. 현재 대부분의 3D 금속 프린팅 응용 프로그램은 고체 물체를 형성하기 위해 레이저 [6] 또는 전자 빔 [7]과 같은 외부 지향 에너지 원의 영향을 받아 증착 된 금속 분말 소결 또는 용융을 포함합니다. 그러나 이러한 방법은 비용 및 프로세스 복잡성 측면에서 단점이 있습니다. 예를 들어, 3D 프린팅 프로세스에 앞서 분말을 생성하기 위해 시간과 에너지 집약적인 기술이 필요합니다.

이 기사에서는 MHD (자기 유체 역학) drop-on-demand 방출 및 움직이는 기판에 액체 방울 증착을 기반으로 3D 금속 구조의 적층 제조에 대한 새로운 접근 방식에 대해 설명합니다. 프로세스의 각 부분을 연구하기 위해 많은 시뮬레이션이 수행되었습니다.

단순화를 위해 이 연구는 두 부분으로 나뉘었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 Lorentz 힘 밀도에 의해 생성 된 압력을 추정 한 다음 FLOW-3D 모델의 경계 조건으로 사용됩니다. 액적 방출 역학을 연구하는 데 사용되었습니다.

두 번째 부분에서는 이상적인 액적 증착 조건을 식별하기 위해 FLOW-3D 매개 변수 분석을 수행했습니다. 모델링 노력의 결과는 그림 1에 표시된 장치의 설계를 안내하는데 사용되었습니다.

코일은 배출 챔버를 둘러싸고 전기적으로 펄스되어 액체 금속을 투과하고 폐쇄 루프를 유도하는 과도 자기장을 생성합니다. 그 안에 일시적인 전기장. 전기장은 순환 전류 밀도를 발생시키고, 이는 과도장에 역 결합되고 챔버 내에서 자홍 유체 역학적 로렌츠 힘 밀도를 생성합니다. 힘의 방사형 구성 요소는 오리피스에서 액체 금속 방울을 분출하는 역할을 하는 압력을 생성합니다. 분출된 액적은 기질로 이동하여 결합 및 응고되어 확장된 고체 구조를 형성합니다. 임의의 형태의 3 차원 구조는 입사 액적의 정확한 패턴 증착을 가능하게 하는 움직이는 기판을 사용하여 층별로 인쇄 될 수 있습니다. 이 기술은 상표명 MagnetoJet으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다.

이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성 되었습니다.

Computational Models

프로토 타입 장치 개발의 일환으로, 성능 (예 : 액적 방출 역학, 액적-공기 및 액적-기질 상호 작용)에 대한 설계 개념을 스크리닝하기 위해 프로토타입 제작 전에 계산 시뮬레이션을 수행했습니다. 분석을 단순화하기 위해 CFD 분석 뿐만 아니라 컴퓨터 전자기(CE)를 사용하는 두 가지 다른 보완 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반 액적 분출 거동과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서는 열-유체 CFD 분석을 사용하여 기판상의 액적 패턴화, 유착 및 응고를 연구했습니다.

MHD 분석 후, 첫 번째 모델에서 등가 압력 프로파일을 추출하여 액적 분출 및 액적-기질 상호 작용의 과도 역학을 탐구하도록 설계된 FLOW-3D 모델의 입력으로 사용되었습니다. FLOW-3D 시뮬레이션은 액적 분출에 대한 오리피스 안과 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부와 외부 모두에서 유체 초기화 수준을 변경하고 펄스 주파수에 의해 결정된 펄스 사이의 시간을 허용함으로써 크기 및 속도를 포함하여 분출 된 액 적의 특성 차이를 식별 할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화 함으로써, 인쇄된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속 방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속 방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적인 온도 구배에 대한 조정이 신속하게 이루어져야 하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성 되었습니다.

이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

Fig. 3. Nylon 11 impact sequence onto a preheated substrate

Impact Modeling of Thermally Sprayed Polymer Particles

Ivosevic, M., Cairncross, R. A., Knight, R., Philadelphia / USA

열 스프레이는 전통적으로 금속, 카바이드 및 세라믹 코팅을 증착하는 데 사용되어 왔지만 최근에는 HVOF (High Velocity Oxy-Fuel) 열 스프레이 공정의 높은 운동 에너지로 인해 용융 점도가 높은 폴리머의 무용제 처리도 가능하다는 사실이 밝혀졌습니다. , 유해한 휘발성 유기 용매가 필요하지 않습니다. 이 작업의 주된 목표는 지식 기반을 개발하고 HVOF 연소 스프레이 공정에 의해 분사되는 폴리머 입자의 충격 거동에 대한 질적 이해를 개선하는 것이 었습니다. 고분자 입자의 HVOF 분사 중 입자 가속, 가열 및 충격 변형의 수치 모델이 개발되었습니다. Volume-of-Fluid (VoF) 전산 유체 역학 패키지 인 Flow3D®는 입자가 강철 기판과 충돌하는 동안 유체 역학 및 열 전달을 모델링하는 데 사용되었습니다. 입자 가속 및 열 전달 모델을 사용하여 예측 된 방사형 온도 프로파일은 저온, 고점도 코어 및 고온, 저점도 표면을 가진 폴리머 입자를 시뮬레이션하기 위해 온도 의존 점도 모델과 함께 Flow3D®의 초기 조건으로 사용되었습니다. 이 접근법은 얇은 디스크 내에서 크고 거의 반구형 인 코어를 나타내는 변형 된 입자를 예측했으며 광학 현미경을 사용하여 만든 열 스프레이 스 플랫의 실험 관찰과 일치했습니다.

폴리머 증착에 열 분무 공정을 사용하는 주요 이점은 다음과 같습니다. (i) 휘발성 유기 화합물 (VOCs)을 사용하지 않는 무용제 코팅; (ii) 거의 모든 환경 조건에서 큰 물체를 코팅 할 수있는 능력; (iii) 용융 점도가 높은 폴리머 코팅을 적용하는 능력; 및 (iv) 일반적으로 정전기 분말 코팅 및 용제 기반 페인트에 필요한 오븐 건조 또는 경화와 같은 증착 후 처리없이 “즉시 사용 가능한”코팅을 생산할 수있는 능력. 이러한 공정에 비해 주요 단점은 다음과 같습니다. (i) 낮은 증착 효율, (ii) 낮은 품질의 표면 마감 및 (iii) 높은 공정 복잡성 (종종 폴리머 용융 및 분해 온도에 의해 정의되는 좁은 공정 창). 폴리머 증착에 세 가지 열 스프레이 공정이 사용 된 것으로 알려졌습니다 [1].

  • 기존의 화염 분사.
  • HVOF 연소 스프레이.
  • 플라즈마 스프레이.

HVOF 및 플라즈마 스프레이 공정에 의해 분사되는 폴리머의 수는 제한되어 있으며 HVOF 및 플라즈마 스프레이 폴리머 코팅의 상업적 응용은 아직 개발 단계에 있습니다 [1]. 폴리머의 HVOF 스프레이는 화염 스프레이 [최대 ~ 100m / s]에 비해 상당히 높은 입자 속도 [최대 1,000m / s]로 인해 주로 주목을 받았습니다. 이는 특히 고 분자량 폴리머 및 높은 (> 5 vol. %) 세라믹 강화 함량을 갖는 폴리머 / 세라믹 복합재를 포함하여 용융 점도가 높은 코팅의 증착에있어 중요한 이점입니다.

Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 3. Nylon 11 impact sequence onto a preheated substrate
Fig. 3. Nylon 11 impact sequence onto a preheated substrate, (I) partially melted particle before impact, (II) “fried-egg” shaped splat, (III) post-deposition flow of a fully molten droplet, (IV) droplet shrinkage during cooling.
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.

Particles | 입자

입자 / Particles

본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.

금속 증착 시뮬레이션으로 시각화된 Lagrangian 입자
FLOW-3D의 Lagrangian 입자 모델

FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.

  • 마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
  • 가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.

각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.

다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.

가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.

액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.

각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.

Lagrangian 입자를 직접 금속 증착에 적용

직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.

laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.

  • 용융 풀의 크기와 모양
  • 금속 흐름 및 그 내부의 냉각 속도
  • 응고된 층의 형상

이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.

입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.

시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.

새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.

Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

탠덤 빔 레이저(Tandem laser)에 의한 플럭스리스 브레이징

탠덤 빔 레이저(Tandem laser)에 의한 플럭스리스 브레이징

자료 제공: 오사카대학
자료 제공: FLOW Science Japan

자동차 경량화를 위해 주요 구성 재료인 철강과 비강도가 높은 알루미늄 접합 기술이 요구되고 있습니다. FLOW-3D Weld 에서는 플럭스의 사용을 피하기 위해 주빔에 더해 예열빔을 이용한 탠덤빔에 의한 레이저 브레이징 과정을 검토할 수 있습니다.

탠덤 빔 레이저에 의한 플럭스리스 브레이징
탠덤 빔 레이저에 의한 플럭스리스 브레이징

주빔의 영향을 용융재 초기 온도, 예열빔의 영향을 모재의 온도 분포로 각각 모델화하고, 알루미늄 합금과 아연도금강의 레이저 브레이징 과정에서의 용융재료의 젖음과 유동성을 해석하였습니다. 여기에서는 아연도금강이 ScG270(GA)인 경우와 l170(GI)인 경우를 비교하고 있습니다.

불균일한 온도장에서 FLOW3D의 표면장력 접촉각기능을 통해 누수확대 재현
불균일한 온도장에서 FLOW3D의 표면장력 접촉각기능을 통해 누수확대 재현

GI강 조인트는 GA강 조인트에 비해 용융 밀림, 퍼짐성이 뛰어납니다. FLOW-3D@에 의한 해석 결과도 실험 결과와 잘 일치합니다. 이음매의 차이 이 외에도 주빔/예열빔 출력, 빔 간의 어긋남 거리등의 최적화 설계가 가능합니다.

Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.

Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles

기판 냉각 및 액적 모양 및 조성이 액적 증발 및 입자 증착에 미치는 영향

by Vahid Bazargan
M.A.Sc., Mechanical Engineering, The University of British Columbia, 2008
B.Sc., Mechanical Engineering, Sharif University of Technology, 2006
B.Sc., Chemical & Petroleum Engineering, Sharif University of Technology, 2006

고착 방울은 평평한 기판에 놓인 액체 방울입니다. 작은 고정 액적이 증발하는 동안 액적의 접촉선은 고정된 접촉 영역이 있는 고정된 단계와 고정된 접촉각이 있는 고정 해제된 단계의 두 가지 단계를 거칩니다. 고정된 접촉 라인이 있는 증발은 액적 내부에서 접촉 라인을 향한 흐름을 생성합니다.

이 흐름은 입자를 운반하고 접촉 선 근처에 침전시킵니다. 이로 인해 일반적으로 관찰되는 “커피 링”현상이 발생합니다. 이 논문은 증발 과정과 고착성 액적의 증발 유도 흐름에 대한 연구를 제공하고 콜로이드 현탁액에서 입자의 침착에 대한 통찰력을 제공합니다. 여기서 우리는 먼저 작은 고착 방울의 증발을 연구하고 증발 과정에서 기판의 열전도도의 중요성에 대해 논의합니다.

현재 증발 모델이 500µm 미만의 액적 크기에 대해 심각한 오류를 생성하는 방법을 보여줍니다. 우리의 모델에는 열 효과가 포함되어 있으며, 특히 증발 잠열의 균형을 맞추기 위해 액적에 열을 제공하는 기판의 열전도도를 포함합니다. 실험 결과를 바탕으로 접촉각의 진화와 관련된 접촉 선의 가상 움직임을 정의하여 고정 및 고정 해제 단계의 전체 증발 시간을 고려합니다.

우리의 모델은 2 % 미만의 오차로 500 µm보다 작은 물방울에 대한 실험 결과와 일치합니다. 또한 유한한 크기의 라인 액적의 증발을 연구하고 증발 중 접촉 라인의 복잡한 동작에 대해 논의합니다. 에너지 공식을 적용하고 접촉 선이 구형 방울의 후퇴 접촉각보다 높은 접촉각을 가진 선 방울의 두 끝에서 후퇴하기 시작 함을 보여줍니다. 그리고 라인 방울 내부의 증발 유도 흐름을 보여줍니다.

마지막으로, 계면 활성제 존재 하에서 접촉 라인의 거동을 논의하고 입자 증착에 대한 Marangoni 흐름 효과에 대해 논의합니다. 열 Marangoni 효과는 접촉 선 근처에 증착 된 입자의 양에 영향을 미치며, 기판 온도가 낮을수록 접촉 선 근처에 증착되는 입자의 양이 많다는 것을 알 수 있습니다.

Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.5: Schematic of the sessile droplet on a substrate
Figure 2.5: Schematic of the sessile droplet on a substrate. The evaporation rate at the surface of the droplet is enhanced toward the edge of the droplet.
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.

Bibliography

[1] R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” Journal of Colloid and Interface Science, vol. 61, pp. 336–350, Sept. 1977. → pages viii, 8, 9, 18, 42
[2] H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Advances in Colloid and Interface Science, vol. 170, pp. 67–86, Jan. 2012. → pages 1
[3] R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, and M. S. Strano, “Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets,” Nano Lett., vol. 7, no. 9, pp. 2693–2700, 2007. → pages 1, 54, 71
[4] S. Tokonami, H. Shiigi, and T. Nagaoka, “Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications,” Analytica Chimica Acta, vol. 641, pp. 7–13, May 2009. →pages 71
[5] A. A. Sagade and R. Sharma, “Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature,” Sensors and Actuators B: Chemical, vol. 133, pp. 135–143, July 2008. → pages
[6] W. R. Small, C. D. Walton, J. Loos, and M. in het Panhuis, “Carbon nanotube network formation from evaporating sessile drops,” The Journal of Physical Chemistry B, vol. 110, pp. 13029–13036, July 2006. → pages 71
[7] S. H. Ko, H. Lee, and K. H. Kang, “Hydrodynamic flows in electrowetting,” Langmuir, vol. 24, pp. 1094–1101, Feb. 2008. → pages 42
[8] T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, and A. Chattopadhyay, “Evaporation-induced patterns from droplets containing motile and nonmotile bacteria,” Langmuir, vol. 23, pp. 8655–8658, Aug. 2007. → pages 1
[9] R. Sharma and M. S. Strano, “Centerline placement and alignment of anisotropic nanotubes in high aspect ratio cylindrical droplets of nanometer diameter,” Advanced Materials, vol. 21, no. 1, p. 6065, 2009. → pages 1, 54, 71
[10] V. Dugas, J. Broutin, and E. Souteyrand, “Droplet evaporation study applied to DNA chip manufacturing,” Langmuir, vol. 21, pp. 9130–9136, Sept. → pages 2, 71
[11] Y.-C. Hu, Q. Zhou, Y.-F. Wang, Y.-Y. Song, and L.-S. Cui, “Formation mechanism of micro-flows in aqueous poly(ethylene oxide) droplets on a substrate at different temperatures,” Petroleum Science, vol. 10, pp. 262–268, June 2013. → pages 2, 34, 54
[12] T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, “Nanochromatography driven by the coffee ring effect,” Analytical Chemistry, vol. 83, pp. 1871–1873, Mar. 2011. → pages 71
[13] J.-H. Kim, S.-B. Park, J. H. Kim, and W.-C. Zin, “Polymer transports inside evaporating water droplets at various substrate temperatures,” The Journal of Physical Chemistry C, vol. 115, pp. 15375–15383, Aug. 2011. → pages 54
[14] S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, “Coffee-ring effect-based three dimensional patterning of Micro/Nanoparticle assembly with a single droplet,” Langmuir, vol. 26, pp. 11690–11698, July 2010. → pages
[15] D. Wang, S. Liu, B. J. Trummer, C. Deng, and A. Wang, “Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells,” Nature biotechnology, vol. 20, pp. 275–281, Mar. PMID: 11875429. → pages 2, 54, 71
[16] H. K. Cammenga, “Evaporation mechanisms of liquids,” Current topics in materials science, vol. 5, pp. 335–446, 1980. → pages 3
[17] C. Snow, “Potential problems and capacitance for a conductor bounded by two intersecting spheres,” Journal of Research of the National Bureau of Standards, vol. 43, p. 337, 1949. → pages 9
[18] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Physical Review E, vol. 62, p. 756, July 2000. → pages 10, 14, 18, 27, 53, 54, 71, 84
[19] H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” The Journal of Physical Chemistry B, vol. 106, pp. 1334–1344, Feb. 2002. → pages 12, 18, 29, 43, 44, 48, 49, 53, 61, 71, 84
[20] Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Physical Review E, vol. 71, p. 036313, Mar. 2005. → pages 14, 27, 43, 44, 45, 54
[21] H. Gelderblom, A. G. Marin, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Physical Review E, vol. 83, no. 2, p. 026306,→ pages
[22] F. Girard, M. Antoni, S. Faure, and A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, pp. 36–49, June 2008. → pages 18
[23] Y. Y. Tarasevich, “Simple analytical model of capillary flow in an evaporating sessile drop,” Physical Review E, vol. 71, p. 027301, Feb. 2005. → pages 19, 54, 62, 72
[24] A. J. Petsi and V. N. Burganos, “Potential flow inside an evaporating cylindrical line,” Physical Review E, vol. 72, p. 047301, Oct. 2005. → pages 22, 55, 62, 68, 71
[25] A. J. Petsi and V. N. Burganos, “Evaporation-induced flow in an inviscid liquid line at any contact angle,” Physical Review E, vol. 73, p. 041201, Apr.→ pages 23, 53, 55, 72
[26] H. Masoud and J. D. Felske, “Analytical solution for stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes,” Physics of Fluids, vol. 21, pp. 042102–042102–11, Apr. 2009. → pages 23, 55, 62, 71, 72
[27] H. Hu and R. G. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir, vol. 21, pp. 3972–3980, Apr. 2005. → pages 24, 28, 53, 54, 56, 62, 68, 71, 72, 74, 84
[28] R. Bhardwaj, X. Fang, and D. Attinger, “Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study,” New Journal of Physics, vol. 11, p. 075020, July 2009. → pages 28
[29] A. Petsi, A. Kalarakis, and V. Burganos, “Deposition of brownian particles during evaporation of two-dimensional sessile droplets,” Chemical Engineering Science, vol. 65, pp. 2978–2989, May 2010. → pages 28
[30] J. Park and J. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir, vol. 22, pp. 3506–3513, Apr. 2006. → pages 28
[31] H. Hu and R. G. Larson, “Marangoni effect reverses coffee-ring depositions,” The Journal of Physical Chemistry B, vol. 110, pp. 7090–7094, Apr. 2006. → pages 29, 74
[32] K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, “Quantitative visualization of flow inside an evaporating droplet using the ray tracing method,” Measurement Science and Technology, vol. 15, pp. 1104–1112, June 2004. → pages 34
[33] S. T. Beyer and K. Walus, “Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing,” Langmuir, vol. 28, pp. 8753–8759, June 2012. → pages 42, 71
[34] G. McHale, “Surface free energy and microarray deposition technology,” Analyst, vol. 132, pp. 192–195, Feb. 2007. → pages 42
[35] R. Bhardwaj, X. Fang, P. Somasundaran, and D. Attinger, “Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram,” Langmuir, vol. 26, pp. 7833–7842, June→ pages 42
[36] G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” Journal of Fluid Mechanics, vol. 623, no. 1, p. 329351, 2009. → pages 44
[37] M. S. Plesset and A. Prosperetti, “Flow of vapour in a liquid enclosure,” Journal of Fluid Mechanics, vol. 78, pp. 433–444, 1976. → pages 44
[38] S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: liquid droplet coffee stain? effect,” RSC Advances, vol. 2, pp. 8390–8401, Aug. 2012. → pages 53
[39] B. J. Fischer, “Particle convection in an evaporating colloidal droplet,” Langmuir, vol. 18, pp. 60–67, Jan. 2002. → pages 54
[40] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology, vol. 7, p. 452, Dec. 1996. → pages 54
[41] T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits,” Advanced Materials, vol. 13, no. 21, p. 16011605, 2001. → pages 71
[42] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Advanced Materials, vol. 16, no. 3, p. 203213, 2004. → pages 71
[43] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123–2126, Dec. 2000. PMID:→ pages
[44] D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir, vol. 24, pp. 2224–2231, Mar. 2008. → pages 54
[45] R. Tadmor and P. S. Yadav, “As-placed contact angles for sessile drops,” Journal of Colloid and Interface Science, vol. 317, pp. 241–246, Jan. 2008. → pages 56
[46] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 116, pp. 43–54, Sept. 1996. → pages 56
[47] R. Tadmor, “Line energy, line tension and drop size,” Surface Science, vol. 602, pp. L108–L111, July 2008. → pages 69
[48] C.-H. Choi and C.-J. C. Kim, “Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights,” Langmuir, vol. 25, pp. 7561–7567, July 2009. → pages 71
[49] K. F. Baughman, R. M. Maier, T. A. Norris, B. M. Beam, A. Mudalige, J. E. Pemberton, and J. E. Curry, “Evaporative deposition patterns of bacteria from a sessile drop: Effect of changes in surface wettability due to exposure to a laboratory atmosphere,” Langmuir, vol. 26, pp. 7293–7298, May 2010.
[50] D. Brutin, B. Sobac, and C. Nicloux, “Influence of substrate nature on the evaporation of a sessile drop of blood,” Journal of Heat Transfer, vol. 134, pp. 061101–061101, May 2012. → pages 71
[51] D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Condra, and H. Durou, “Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor,” Journal of Power Sources, vol. 195, pp. 1266–1269, Feb. 2010. → pages 71
[52] J. Bachmann, A. Ellies, and K. Hartge, “Development and application of a new sessile drop contact angle method to assess soil water repellency,” Journal of Hydrology, vol. 231232, pp. 66–75, May 2000. → pages 71
[53] H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: constant contact angle mode,” Langmuir, vol. 18, no. 7, pp. 2636–2641, 2002. → pages
[54] X. Fang, B. Li, J. C. Sokolov, M. H. Rafailovich, and D. Gewaily, “Hildebrand solubility parameters measurement via sessile drops evaporation,” Applied Physics Letters, vol. 87, pp. 094103–094103–3, Aug.→ pages
[55] Y. C. Jung and B. Bhushan, “Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces,” Journal of Microscopy, vol. 229, no. 1, p. 127140, 2008. → pages 71
[56] J. Drelich, J. D. Miller, and R. J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,”
Journal of Colloid and Interface Science, vol. 179, pp. 37–50, Apr. 1996. →pages 72, 75
[57] D. Bargeman and F. Van Voorst Vader, “Effect of surfactants on contact angles at nonpolar solids,” Journal of Colloid and Interface Science, vol. 42, pp. 467–472, Mar. 1973. → pages 73
[58] J. Menezes, J. Yan, and M. Sharma, “The mechanism of alteration of macroscopic contact angles by the adsorption of surfactants,” Colloids and Surfaces, vol. 38, no. 2, pp. 365–390, 1989. → pages
[59] T. Okubo, “Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface,” Journal of Colloid and Interface Science, vol. 171, pp. 55–62, Apr. 1995. → pages 73, 76
[60] R. Pyter, G. Zografi, and P. Mukerjee, “Wetting of solids by surface-active agents: The effects of unequal adsorption to vapor-liquid and solid-liquid interfaces,” Journal of Colloid and Interface Science, vol. 89, pp. 144–153, Sept. 1982. → pages 73
[61] T. Mitsui, S. Nakamura, F. Harusawa, and Y. Machida, “Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions,” Kolloid-Zeitschrift und Zeitschrift fr Polymere, vol. 250, pp. 227–230, Mar. 1972. → pages 73
[62] S. Phongikaroon, R. Hoffmaster, K. P. Judd, G. B. Smith, and R. A. Handler, “Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance,” Journal of Chemical & Engineering Data, vol. 50, pp. 1602–1607, Sept. 2005. → pages 73, 80
[63] V. S. Vesselovsky and V. N. Pertzov, “Adhesion of air bubbles to the solid surface,” Zh. Fiz. Khim, vol. 8, pp. 245–259, 1936. → pages 75
[64] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, pp. 2313–2318, Apr. 1998. → pages
[65] R. J. Good and M. Koo, “The effect of drop size on contact angle,” Journal of Colloid and Interface Science, vol. 71, pp. 283–292, Sept. 1979. → pages

Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.

Effect of the surface morphology of solidified droplet on remelting
between neighboring aluminum droplets

Abstract

인접한 물방울 사이의 좋은 야금학적 결합은 droplet 기반 3D 프린팅에서 필수적입니다. 그러나 재용해 메커니즘이 명확하게 마스터되었지만, 콜드 랩은 균일한 알루미늄 액적 증착 제조에서 형성된 부품의 일반적인 내부 결함이며, 이는 응고된 액 적의 표면 형태를 간과하기 때문입니다.

여기에서 처음으로 물방울 사이의 융합에 대한 잔물결과 응고각의 차단 효과가 드러났습니다. 재용해의 자세한 과정을 조사하기 위해 VOF (체적 부피) 방법을 기반으로 3D 수치 모델을 개발했습니다. 실험과 시뮬레이션을 통해 인접한 액적 간의 재 용융 공정은 두 번째 액 적과 기판 사이의 과도 접촉에 따라 두 단계로 나눌 수 있음을 보여줍니다.

첫 번째 단계에서는 재용해 조건이 이론적으로 충족 되더라도 콜드 랩이 형성 될 수 있다는 직관적이지 않은 결과가 관찰됩니다. 이전에 증착된 액적 표면의 잔물결은 새로운 액적과의 직접 접촉을 차단합니다. 두 번째 단계에서는 응고 각도가 90 °보다 클 때 액체 금속이 불완전하게 채워져 바닥 표면에 콜드랩이 형성됩니다. 또한 이러한 콜드 랩은 온도 매개 변수를 개선하여 완전히 피하는 것이 어렵습니다.

이 문제를 해결하기 위해 기판의 열전도 계수를 감소시키는 새로운 전략이 제안 되었습니다. 이 방법은 잔물결을 제거하고 응고 각도를 줄임으로써 물방울 사이의 재용해를 효과적으로 촉진합니다.

Keywords: 3D printing; aluminum droplets; metallurgical bonding; ripples; solidification angle.

Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.

References

[1] D. Zhang, L. Qi, J. Luo, H. Yi, X. Hou, Direct fabrication of unsupported inclined aluminum pillars
based on uniform micro droplets deposition, International Journal of Machine Tools and Manufacture,
116 (2017) 18-24.
[2] H. Yi, L. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact
on solid surfaces, Applied Physics Letters, 108 (2016) 041601.
[3] T. Zhang, X. Wang, T. Li, Q. Guo, J. Yang, Fabrication of flexible copper-based electronics with
high-resolution and high-conductivity on paper via inkjet printing, Journal of Materials Chemistry C, 2
(2014) 286-294.
[4] T. Zhang, M. Hu, Y. Liu, Q. Guo, X. Wang, W. Zhang, W. Lau, J. Yang, A laser printing based
approach for printed electronics, Applied Physics Letters, 108 (2016) 103501.
[5] H. Gorter, M. Coenen, M. Slaats, M. Ren, W. Lu, C. Kuijpers, W. Groen, Toward inkjet printing of
small molecule organic light emitting diodes, Thin Solid Films, 532 (2013) 11-15.
[6] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor
for efficient energy storage under extreme environmental temperatures, Nano Energy, 8 (2014) 231-237.
[7] C.W. Visser, R. Pohl, C. Sun, G.W. Römer, B. Hu is in‘t Veld, D. Lohse, Toward 3D printing of
pure metals by laser‐induced forward transfer, Advanced materials, 27 (2015) 4087-4092.
[8] M. Fang, S. Chandra, C. Park, Heat transfer during deposition of molten aluminum alloy droplets to
build vertical columns, Journal of Heat Transfer, 131 (2009) 112101.
[9] Q. Xu, V. Gupta, E. Lavernia, Thermal behavior during droplet-based deposition, Acta materialia,
48 (2000) 835-849.
[10] W. Liu, G. Wang, E. Matthys, Thermal analysis and measurements for a molten metal drop
impacting on a substrate: cooling, solidification and heat transfer coefficient, International Journal of
Heat and Mass Transfer, 38 (1995) 1387-1395.
[11] R. Rangel, X. Bian, Metal-droplet deposition model including liquid deformation and substrate
remelting, International journal of heat and mass transfer, 40 (1997) 2549-2564.
[12] B. Kang, Z. Zhao, D. Poulikakos, Solidification of liquid metal droplets impacting sequentially on
a solid surface, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS
JOURNAL OF HEAT TRANSFER, 116 (1994) 436-436.

Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).

Inkjet Printability of Electronic Materials Important to the Manufactur Manufacture of Fully Printed O ully Printed OTFTs

Sooman Lim
Western Michigan University, sooman.lim@gmail.com

초록

본 연구에서는 OTFT(Printed Organic Thin Film Transistors) 제작에 중요한 재료의 잉크젯 인쇄성이 조사되었습니다. 잉크젯 인쇄 잉크의 분사 진화를 이해하기 위해 나노 구리 및 나노 입자 은 잉크로 시뮬레이션이 수행되었습니다. 나노 구리 잉크의 잉크젯 적합성을 예측하기 위해 온도 차이가 있는 Z와 Oh 수를 측정했습니다. FLOW-3D를 이용한 시뮬레이션 연구의 결과를 Dimatix 잉크젯 프린터를 사용하여 얻은 실험 결과와 비교했습니다.

반도체 잉크의 경우, 두 유기 반도체의 잉크젯 인쇄성 P2TDC17FT4(poly[(3,7-dipdecdecyltheno[3,2-b]theno[2′,3′:4,5]theno[2,3-diopneo] 티오페인-2,6-diopeo[2,6-diotyl)]입니다.HT(poly-3 hexylthiophene)를 비교하여 낙하 속도, 낙하 볼륨 및 점화 전압 간의 관계를 확인하고, 낙하 간격 및 기판 온도가 인쇄 품질에 미치는 영향을 확인했습니다.

이러한 연구를 통해 인쇄 가능성과 인쇄 품질은 잉크젯으로 인쇄된 상단 게이트 OTFT를 완벽하게 구현하기에 충분했습니다. 주변 조건에서 인쇄되는 P2TDC17FT4의 성능은 저비용 완전 인쇄 OTFT의 실현에 중요한 영향을 미칩니다.

후처리 연구로 은색 잉크의 유망한 대체품인 나노 구리 잉크를 IPL(Incensive Pulsed Light)로 소결시키는 것이 연구되었습니다. 잉크 필름 두께와 소결 시 필요한 에너지 사이의 관계가 확인되었습니다. 잉크 필름 두께와 관련하여 유리와 PET에 소결하는데 필요한 에너지 수준을 비교한 결과, 이 잉크의 처리 요구 사항에 대한 기판의 열적 기여도가 밝혀졌습니다. 이 조사 결과는 자재 특성 요구 사항에 대한 현재의 이해와 완전히 잉크젯으로 인쇄된 OTFT를 달성하기 위한 과제를 진전시킵니다.

Schematic design showing the principles of operation of a continuous inkjet (CIJ) printer.
Schematic design showing the principles of operation of a continuous inkjet (CIJ) printer.
Illustration of the piezo movement under an applied voltage.
Illustration of the piezo movement under an applied voltage.
Construction of a traditional piezoelectric squeeze type print head.
Construction of a traditional piezoelectric squeeze type print head.
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).
Marangoni effect, where Tc is the CT line temperature, Ta is the drop apex temperature,  and a is the drop apex surface tension
Marangoni effect, where Tc is the CT line temperature, Ta is the drop apex temperature, and a is the drop apex surface tension
Comparison of drop evolution and drop ejection pictures droplet obtained experimentally and using CFD software for the nano copper ink
Comparison of drop evolution and drop ejection pictures droplet obtained experimentally and using CFD software for the nano copper ink
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

관련 기술자료


Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이 Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode Abstract 국내․외에서 다양한 ...
더 보기
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey Abstract: 차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 ...
더 보기
Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션 To cite this article: Halah Kais Jalal and ...
더 보기
Abb. 3 Detail des Rechens am Vorversuch zum Seilrechen – Blick in Fließrichtung

Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D

Abstract Sebastian Krzyzagorski · Roman Gabl · Jakob Seibl · Heidi Böttcher · Markus AuflegerOnline publiziert: 17. Februar 2016© Die ...
더 보기
Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

청정 및 에너지 절약 단조 기술을 위한 혁신적인 다이 재료 및 윤활 전략 이 최종 기술 보고서에는 수상 번호 DE-FC07-01ID14206에 ...
더 보기
(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertationsubmitted to the Graduate School of UNISTin partial fulfillment of therequirements for the degree ofMaster of ScienceHaneol Park07/09/2019Approved by_________________________AdvisorIn ...
더 보기
Figure 8 Evaluation test of thermal sprayed coatings

Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines

고효율 가스 터빈용 신소재 및 제조 기술 개발 Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015) 가스 ...
더 보기
Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b

Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways

눈사태가 일리노이 고속도로에 미치는 영향을 줄이기 위한 생활장벽 설계 John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 ...
더 보기
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics 우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 ...
더 보기
Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy 전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다 ...
더 보기

FLOW-3D Weld

FLOW-3D Weld

FLOW-3D  WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어를 통해 다공성, 열 영향 영역을 최소화하고, 미세 구조 변화를 제어 할 수 있습니다. 레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리학을 구현합니다.

 

낮은 열 입력,  뛰어난 생산성, 속도는 기존의 용접 방법을 대체하는 레이저 용접 프로세스로 이어집니다. 레이저 용접이 제공하는 장점 중 일부는 더 나은 용접 강도, 더 작은 열 영향 영역, 더 정밀한 정밀도, 최소 변형 및 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 / 합금을 용접 할 수있는 능력을 포함합니다.

공정 최적화

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 공정 최적화를 달성하는 데 도움이됩니다. 더 나은 공정 제어로 다공성을 최소화하고 열 영향을받는 영역을 제한하며 미세 구조 변화를 제어 할 수 있습니다. FLOW-3D WELD 는 자유 표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀을 시뮬레이션하는 데 매우 적합합니다. FLOW-3D WELD 는 관련 물리적 모델을 FLOW-3D 에 추가로 통합하여 개발되었습니다.  레이저 소스에 의해 생성된 열유속, 용융 금속의 증발 압력, 차폐 가스 효과, 용융 풀의 반동 압력 및 키홀 용접의 다중 레이저 반사. 현실적인 공정 시뮬레이션을 위해 모든 관련 물리 현상을 포착하는 것이 중요합니다.

 

얕은 용입 용접 (왼쪽 상단); 실드 가스 효과가 있는 깊은 용입 용접 (오른쪽 상단); 쉴드 가스 및 증발 압력을 사용한 심 용입 용접 (왼쪽 하단); 쉴드 가스, 증발 압력 및 다중 레이저 반사 효과 (오른쪽 하단)를 사용한 깊은 침투 용접.

FLOW-3D WELD 는 레이저 용접의 전도 모드와 키홀 모드를 모두 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D WELD 를 사용하여 용융 풀 역학을 분석하고 공정 매개 변수를 최적화하여 다공성을 최소화하며 레이저 용접 수리 공정에서 결정 성장을 예측합니다.

완전 관통 레이저 용접 실험

한국의 KAIST와 독일의 BAM은 16K kW 레이저를 사용하여 10mm 강판에 완전 침투 레이저 용접 실험을 수행했습니다. CCD 카메라의 도움으로 그들은 완전 침투 레이저 용접으로 인해 형성된 상단 및 하단 용융 풀 역학을 포착 할 수있었습니다. 그들은 또한 FLOW-3D WELD 에서 프로세스를  시뮬레이션하고 시뮬레이션과 실험 결과 사이에 좋은 일치를 얻었습니다.

실험 설정 레이저 용접
CCD 카메라로 상단 및 하단 용융 풀을 관찰하는 실험 설정
레이저 용접 회로도
FLOW-3D의 계산 영역 개략도
레이저 용접 시뮬레이션 실험 결과
상단의 시뮬레이션 결과는 용융 풀 길이가 8mm 및 15mm 인 반면 실험에서는 용융 풀 길이가 7mm 및 13mm임을 나타냅니다.
 

레이저 용접 다공성 사례 연구

General Motors, Michigan 및 Shanghai University는 중국의 공정 매개 변수, 즉 용접 속도 및 용접 경사각이 키홀 용접에서 다공성 발생에 미치는 영향을 이해하기 위해 상세한 연구를 공동으로 진행했습니다.

키홀 유도 용접 다공성
레이저 용접된 알루미늄 조인트 단면의 용접 다공성, 키홀 유도 다공성은 유동 역학으로 인해 발생하며 균열을 일으킬 수 있습니다. 최적화 된 공정 매개 변수는 이러한 종류의 다공성을 완화 할 수 있습니다.

연구원들은 FLOW-3D WELD를 사용 하여 증발 및 반동 압력, 용융풀 역학, 온도 의존적 ​​표면 장력 및 키홀 내에서 여러 번의 레이저 반사 동안 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

시뮬레이션 모델을 기반으로 연구진은 키홀 용접에서 유도 다공성의 주요 원인으로 불안정한 키홀을 식별했습니다. 아래 이미지에서 볼 수 있듯이 후방 용융 풀의 과도한 재순환으로 인해 후방 용융 풀이 전방 용융 풀 벽에서 붕괴되고 공극이 발생하여 다공성이 발생합니다. 이러한 갇힌 공극이 진행되는 응고 경계에 의해 포착되었을 때 다공성이 유도되었습니다.

높은 용접 속도에서는 더 큰 키홀 개구부가 있으며 이는 일반적으로 더 안정적인 키홀 구성을 가져옵니다. 사용 FLOW-3D 용접 , 연구진은 그 높은 용접 속도와 경사도 완화 다공성의 큰 용접 각도를 예측했습니다.

레이저 용접 수치 실험 결과
시뮬레이션 (위) 및 실험 (아래)에서 볼 수있는 세로 용접 섹션의 다공성 분포

FLOW Weld

FLOW Weld  모듈은 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다.

FLOW-3D 의 표면 장력 자유 표면 분석, 용융, 응고, 증발, 상 변화 모델 등의 기본 기능을

응용하여 각종 용접 현상을 분석 할 수 있습니다.

주요 기능 :열원 모델 (출력 지정, 가우스분포, 디 포커스 등) 열원의 자유로운 이동 증발 압력 (그에 따른 반력) 실드 가스 압력 다중 반사 용접에 관한 대표적인 출력 (온도 구배 냉각 속도, 에너지 분포 등)
분석 용도 :높은 방사선 강도와 고온에 의해 직접 관찰이 어려운 현상을 시각화 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 매개 변수 연구 결함 예측 (기공, 응고, 수축 등)

FLOW -3D Weld 분석 기능

weld_flow
  1. 열원 모델의 이동
      출력량 지정, 가우스분포
  2. 에너지 밀도의 분포 , 가공 속도
      가우스 테이블 입력
  3. 증발 압력
      온도 의존성
  4. 다중 반사
      용해 깊이에 미치는 영향
  5. 결과 처리
      용해 모양, 에너지 분포, 온도 구배 냉각 속도
  6. 다양항형상의 레이저와 거동 (+ csv 파일로드)
      다양한 모양을 csv 파일 형식으로 정의 회전 + 이동
      임의 형상 이동을 csv 파일로 로드 (나선형)
  7.  이종 재료
      이종 재료의 용접
  8.  3D Printing Method  
      Cladding 적층공정

1. 열원 모델의 이동

weld16-1weld16-2
에너지 밀도공간 분포

2. 에너지 밀도의 분포, 가공 속도

열 플럭스 r 방향의 분포 단면은 원형으로, r 방향으로 열유속 분포를 제공합니다.

에너지 밀도의 공간적 분포

가우스 : 원추형의 경우는 조사 방향으로 변화하고 열유속의 면적 분은 동일합니다.

가공 속도

가공 노즐을 x, y, z 방향, 시간 – 속도의 테이블에서 지정합니다.
또한 노즐 (광원) 위치 좌표 조사 방향 벡터 성분을 지정합니다.

3. 증발 압력

에너지 밀도가 높은 경우, 용융 부 계면이 증발하고 그 반력에 의해 계면에 함몰이 발생합니다.
특히 깊은 용융부를 포함한 레이저 용접은 증발 압력을 고려한 모델링이 필요합니다.

증발 압력의 평가는 일반적인 수학적 모델이 없기 때문에 다음 모델 식을 사용합니다.

증발 가스의 상승 효과 (키 홀, 스퍼터 등)

증기의 상승 흐름의 영향을 동압, 전단력으로 평가합니다.

weld5-1 

4. 다중 반사

키홀 거동의 비교

weld9
다중 반사 없음다중 반사 있음

다중 반사를 고려한 레이저

weld10

5. 결과 처리

용접 기능에 관한 대표적인 출력 예입니다.

6. 다양한 형상의 레이저와 거동 (+ csv 파일 읽기)

weld17weld18

7. 이종 재료

이종 재료 간이 분석

재료 : 철, 구리

밀도고상율
weld19

이종 재료를 이용한 레이저 용접

재료 : 구리, 철

재료 체적 비율온도
weld20

8. 금속 3D 프린팅 기법  

– 적층 제조 (Additive Manufacturing) 공정

– DED(Direct Energy Deposition) 공정 

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

그림 2 : FLOW-3D를 사용한 흐름 및 형태 시뮬레이션. 파스칼 단위의 압력 및 mm 단위의 거리.

Microscopic Bubbles Switch Fiber-Optic Circuits

Figure 1: The Agilent Photonic Switching Platform
Figure 1: The Agilent Photonic Switching Platform

컴퓨터 시뮬레이션은 광섬유 회로에서 광 신호를 전환하는데 사용되는 혁신적인 스위치에서 미세 기포 문제를 이해하고 해결하는 데 중요한 역할을 했습니다. Agilent Photonic Switching Platform은 평면 광파 회로에서 잘린 작은 트렌치의 올바른 지점에 거품을 불어서 작동합니다. 버블은 광섬유 네트워크를 재구성하기 위해 광선을 다른 경로로 리디렉션 합니다. 초기 프로토타입은 기포 반사로 인해 무언가 불안정하다는 것을 나타내는 성능 문제를 보여주었습니다. 그러나 거품의 크기가 작기 때문에 문제를 진단하고 해결하는데 필요한 포괄적인 물리적 측정을 수행할 수 없었습니다.

애질런트의 선임 과학자인 John Uebbing은 전산 유체 역학 (CFD) 소프트웨어를 사용하여 거품을 시뮬레이션했습니다. 기포는 실리콘 기판에 위치한 전기 히터에 의해 유도된 증발에 의해 유지됩니다. 애질런트 팀은 트렌치 벽의 응결로 인해 유체가 축적된다는 사실을 발견했습니다. 스위치 동작의 대부분을 결정하는 것은 이러한 축적입니다. 추가 시뮬레이션을 통해 연구원들은 안정적인 신호를 제공하기 위해 장치를 변경하는 두 가지 다른 방법을 검증 할 수 있었습니다.  “처음에 우리 팀원 중 일부는 이러한 결과를 믿지 않았지만 계속된 물리적 테스트를 통해 사실이 입증되었습니다.”라고 Uebbing은 말했습니다. “CFD가 없었다면 이 문제의 해결책에 도달하지 못했을 것입니다.”

신기술 개발

광섬유 케이블은 데이터 통신 처리량을 크게 증가 시켰으며, 광 신호 전환을 위한 전기 신호로 전환한 다음 다시 광 신호로 전환하지 않고도 대량의 광섬유 데이터를 전환 할 수 있기를 원했습니다. 1990 년대 중반 Agilent Laboratories (Hewlett-Packard Labs 소속)는 전광 회로 스위치의 중요성을 인식하고 이러한 기술을 개발하기 위한 연구 프로그램을 시작했습니다. 현재 Agilent Labs의 CORL (Communications and Optical Research Laboratory) 내에 엔지니어와 과학자 팀이 구성되어 컴팩트하고 확장 가능하며 광 신호에 최소한의 영향을 미치는 이 고유한 스위치 패브릭을 개발했습니다.

 시뮬레이션은 딤플의 원인을 정확히 파악하는데 도움이 되었으며 여러 대안 솔루션을 식별하고 평가하는 데 도움이되었습니다. 버블 스위치 엔지니어링의 이러한 발전은 FLOW-3D  소프트웨어 에서 사용할 수 있는 고급 모델링 기능 없이는 불가능했을 것  입니다. 우리에게 중요한 것은 프로젝트 시작부터 Flow Science 팀이 입증한 지식과 무결성이었습니다. 우리가 이야기 한 다른 소프트웨어 회사에는 관련된 문제에 대한 표면적 이해만 있는 영업 담당자가 있었지만 Flow Science는 전문 지식을 갖춘 기술 직원을 고용하여 우리가 달성하고자 하는 것을 정확히 이해했습니다. 프로세스의 여러 단계에서 중요한 장애물을 극복 할 수 있는 중요한 도움을 제공했습니다.
– John Uebbing, 애질런트 선임 과학자

작동을 위해 Agilent Photonic Switching Platform은 두 개의 광섬유 네트워크의 교차점에 배치됩니다 (그림 1). 광 신호가 광섬유를 통해 들어 오면 직선 도파관을 통해 방해받지 않고 평면 광파 회로를 통과 할 수 있습니다. 그러나 신호가 다른 광섬유로 리디렉션되어야하는 경우 잉크젯 기술은 두 도파관 경로의 교차점에 거품을 삽입하여 광학 특성을 변경하고 신호를 출력 광섬유로의 경로 아래로 반사합니다. 기포는 거울이나 기계적으로 움직이는 부품을 사용하지 않고도 5 밀리 초 이내에 형성 및 제거 할 수 있습니다. 이 스위치는 교차된 광 도파관 배열과 인덱스 매칭되는 유체에 거품을 불어서 작동합니다. 기포는 소자 기판의 전기 히터에 의해 유도 된 증발에 의해 형성됩니다. 유체는 도파관의 교차점에 위치한 일련의 마이크로 트렌치를 채웁니다. 기포 벽으로부터의 내부 전반사로 인해 빛이 한 도파관에서 다른 도파관으로 전환됩니다. 문제는 광 도파관의 수용 각 또는 개구 수가 상당히 낮다는 것입니다. 기포의 수직 반사벽이 도파관의 축에 수직이 아니면 빛이 출력 도파관으로 제대로 반사되지 않고 신호 손실이 발생합니다.

프로토 타입의 딤플 충격 성능

초기 프로토 타입에서 광범위한 실험 테스트를 수행하여 히터 전력 및 주변 압력이 광학 반사 특성과 기포 모양 및 크기에 미치는 영향을 보여주었습니다. 이 테스트는 반사된 광 신호 대 히터 전력 곡선이 효과적인 광 스위칭에 필요한 엄격한 요구 사항을 충족하지 못하고 반사된 광 신호에 불안정성이 있음을 보여주었습니다.

그림 2 : FLOW-3D를 사용한 흐름 및 형태 시뮬레이션. 파스칼 단위의 압력 및 mm 단위의 거리.
그림 2 : FLOW-3D를 사용한 흐름 및 형태 시뮬레이션. 파스칼 단위의 압력 및 mm 단위의 거리.

컴퓨터 시뮬레이션에서 그림 2와 같이 버블의 각 면에 딤플이 형성되어 있음을 보여 주었을 때, 딤플이 전력 곡선의 혹의 원인이 되었고 반사된 신호가 그렇게 불안정한 이유 일 수 있다는 사실이 애질런트 연구팀에 나타났습니다. 센서로 물리적 측정을 수행하는 팀의 능력은 MEMS 장치의 규모까지 확장되지 않았습니다. 그들이 할 수 있는 최선은 특수 광학 장치를 사용하여 현미경 사진을 찍는 것입니다. 이 사진은 딤플이 파장 스케일에서 매우 얇기 때문에 딤플을 직접 보여줄 수 없습니다.

거품 시뮬레이션

처음에는 버블의 작동을 시뮬레이션하기 위한 여러 가지 대안이 고려되었습니다. 팀은 다양한 분석 모델을 사용하여 기포 형성을 조사했지만 이 모델은 현재 프로토 타입이 좋은 기포를 생성해야 한다고 예측했기 때문에 문제를 포착하기에는 너무 단순했습니다. 맞춤 소프트웨어를 작성하기 위해 대학 교수를 고용했지만 이 프로젝트를 완료하는 데 상당한 시간이 소요되었습니다. 그 동안 Uebbing은 문제의 복잡한 물리학을 처리 할 수 있는 상용 소프트웨어 패키지를 찾기 시작했습니다. “저는 여러 CFD 소프트웨어 개발자들과 이야기를 나눴지만 그들 중 누구도 광범위한 수정 없이 문제를 해결할 수 있는 버블 모델을 가지고 있지 않다고 판단했습니다.”라고 Uebbing은 말했습니다. “반면에 Flow Science는

Flow Science의 새로운 균질 기포 모델은 균일한 기포 압력과 온도를 가정합니다. 이것은 현실에 대한 좋은 근사치입니다. 주요 문제 중 하나는 액체, 증기 및 고체가 모두 결합되는 접점 라인의 모델링입니다. 동질 버블 모델은 이 시점에서 계산 셀의 힘과 플럭스의 균형을 맞춥니 다. Uebbing은 이전 버전의 소프트웨어를 사용하기 시작했지만 새 모델이 출시 되자마자 Uebbing은 문제를 해결해 보았습니다. “시뮬레이션 결과는 결국 실험을 설명하는 데 매우 중요한 dimple 을 보여주었습니다.”라고 Uebbing은 말했습니다. 흥미롭게도 시뮬레이션 결과 버블이 35kHz에서 진동하는 것으로 나타났습니다. 우리는 그것이 실제로 그 주파수에서 진동한다는 것을 보여주는 실험 데이터를 가져 왔지만 우리는 이유를 몰랐습니다.

현실과의 다소 예상치 못한 상관 관계는 팀에게 시뮬레이션 결과에 대한 확신을주었습니다. 시뮬레이션 결과는 문제 영역의 모든 지점에서 유속, 압력 및 온도를 보여줌으로써 테스트에서 측정 할 수 있었던 것 이상이었습니다. 이 결과로 우리는 무슨 일이 일어나고 있는지 파악할 수 있었습니다. dimple은 모세관 현상으로 인해 발생합니다. 응축액이 거품 벽에 쌓입니다. 트렌치 벽에 있는 액체의 얇은 막을 통해 빠져 나 가려고 합니다. 이러한 얇은 층을 통해 액체를 밀어 넣으려면 상당한 압력 차이가 필요합니다. 기포 벽 중앙의 높은 압력으로 인해 기포가 dimple을 형성합니다.”

문제 해결

딤플이 어떻게 형성되었는지 이해하면 안정적인 신호를 제공하기 위해 거품 모양을 수정하는 두 가지 방법이 제안되었습니다. 첫 번째는 트렌치의 유리 측벽 아래로 버블 히터를 확장하는 것입니다. 그런 다음 열이 마이크로 트렌치의 벽 위로 흘러 표면을 건조시킵니다. FLOW-3D를 사용한 시뮬레이션   은 건식 벽 거품이 매우 안정적인 스위치 신호를 제공함을 보여줍니다. 기본 물리학에 따르면 기포 온도가 벽 온도보다 낮 으면 벽이 건조해질 것입니다. 이러한 기대는 FLOW-3D  시뮬레이션 으로 확인되었습니다  .

FLOW-3D로 확인 된 두 번째 방법은 마이크로 트렌치에 소위 정적 버블을 만드는 것입니다. 장치 온도가 압력 설정 저장소 온도보다 약간 더 높으면 정적 거품이 존재합니다. 이 장치 온도는 기포를 트렌치의 모서리로 밀어 넣을 수있는 충분한 압력을 생성하지만 기포가 도파관 어레이와 히터 기판 사이의 틈을 통해 불어 나기에는 충분하지 않습니다. 이러한 정적 기포는 근처의 “crusher”기포를 사용하여 끌 수 있습니다. 이 기포는 일시적으로 충분한 과압을 생성하여 정적 기포가 붕괴되도록합니다. 분쇄기 거품 자체는 더 작은 트렌치에 있으므로 표면 장력이 작업을 완료 한 후 붕괴 될 수 있습니다. FLOW-3D 시뮬레이션은 이 모드에서 스위치 작동을 보여주기 위해 사용되었습니다.

FLOW-3D를 사용 하여 미세 유체 애플리케이션 모델링  의 성능과 다양성에 대해 자세히 알아보십시오. 

2D velocity vector and temperature contours along the plane through door B (existing system)

작업장 환기 시스템의 평가 및 개선을 위한 CFO 기법 활용| The use of CFD techniques for the assessment and improvement of a workshop ventilation system

ST AWOLESI, MSc(Energy), BSc(Hons), Envirotrak Ltd, Cambridgeshire, UK.
HB AWBI, PhD, MSc, 8Sc, CEng, MCIBSE, University of Reading, Berkshire, UK.
MJ SEYMOUR, BSc(Hons), BSRIA, Bracknell, Berkshire, UK.
RA HILEY, MSc(Energy), BA(Hons), AEA Technology, Harwell, Oxon, UK.

SYNOPSIS

본 논문에서는 현재 환기 시스템의 성능을 검사하고 개선하여 COSHH 규정 요건을 1개 충족한다는 관점에서 작업장 내 공기 흐름 시뮬레이션에 CFO(Computational Fluid Dynamics) 기법을 적용하는 방법을 제시하고 설명합니다. 예측된 공기 흐름 패턴과 세 CFD 코드가 작업장 내의 선택된 지점에서 측정한 공기의 분배를 비교한 결과, 일반적으로 일치된 것으로 나타났으며, 기존 환기 시스템의 성능이 오염물질의 제거 가능성에 대해 불만족스러운지 확인합니다. CFD 기법을 사용하여 작업장 환기 및 오염 문제에 대한 실용적인 솔루션을 식별할 수 있었습니다.

INTRODUCTION

산업 공장에서 환기 시스템을 갖추는 목적은 열적 쾌적성을 촉진하고 유해 오염 물질에 대한 작업자의 잠재적 노출을 방지하는 것입니다. 작업장 내 근로자에게 미치는 건강상의 영향을 위해 보건 및 안전 행정부는 광범위한 산업 물질에 대한 단기 및 장기 노출에 대한 직업상 노출 제한(1) 목록을 발행합니다.

본사의 보건 물리학 부서에서 일상적으로 실시하는 현장 테스트*는 대기 오염물질의 높은 수위가 COSHH 법에 따라 요구되는 작업 한계를 초과함을 나타냅니다. 당사는 COSHH 규정에서 요구하는 대로 작업 수준 내에서 공기 오염 농도 수준을 가져오기 위해 작업장 내의 공기 흐름에 대한 광범위한 조사를 수행하도록 회사로부터 의뢰 받았습니다.

작업장 내의 공기 흐름 패턴이 상당히 복잡하다는 것을 알게 되었고, 원하는 공기 품질 개선을 달성하기 위해 실내 공기 이동에 대한 측정, 연기 흐름 시각화 및 컴퓨터 모델링을 수행할 필요가 있는 것으로 판단되었습니다.

우리의 목표는 현재의 환기 시스템을 평가하면서 이러한 방법을 간략히 보고하고 B에 워크샵 내의 오염이라는 ait의 수준을 감소시킬 수 있는 실용적인 솔루션을 제안하며, 3개의 CFO 프로그램과의 아웃·측정 및 계산 간의 합의를 평가하는 것입니다.

최근, 건물의 공기 흐름 패턴을 예측하기 위해 계산 유체 역학(CFD)의 사용에 대한 관심이 증가하고 있습니다. CFD 기법의 적용 범위를 나타내기 위해 그러한 몇 가지 예가 보고되었습니다(2) * 프로젝트의 기밀성 때문에 해당 회사의 이름을 지정할 수 없습니다.

DESCRIPTION OF THE WORKSHOP AND ITS
VENTILATION SYSTEM

작업장 및 환기 시스템에 대한 설명 메인 룸은 9m 길이 x 7 m폭 및 4.5m 높이의 주요 치수를 가진 작업장 단지의 일부입니다. 그리고 ante-room은 8m 길이 x 2m폭 x 2.5m 높이 크기를 가지고 있습니다. 아주 높아요. 여기에는 각 제어 장치와 동일한 세 가지 시설, 선반 부스, 드릴 부스, 페틀링 부스, 지역 배기 후드 및 다수의 작업 벤치가 포함되어 있습니다(그림 참조).

실내 환기 시스템은 레지스터 및 기타 개구부를 통한 공급과 추출물로 구성됩니다. 추출 측면은 앞서 언급한 세 개의 부스에 추가 추출이 있는 세 개의 용해로 위의 세 개의 국부 배기 후드와 벽면에 위치한 두 개의 일반 실내 추출물로 구성됩니다.

DISCUSSION OF RESULTS FROM MEASUREMENTS
AND SMOKE FLOW VISUALISATION

입력 측면은 메인 입구 도어(도어 B)의 개구부에서 유입되는 입력 공기가 추가된 6개의 공급 레지스터와 인접 룸을 연결하는 도어(도어 A)에 위치한 또 다른 개방으로 구성됩니다. 작업장에서 수행한 측정은 공기 흐름 패턴, 공기 온도, 속도, 인클로저 표면 온도, 입구 및 출구 공기 온도와 관련이 있습니다.

DISCUSSION OF RESULTS FROM MEASUREMENTS
AND SMOKE FLOW VISUALISATION

작업장 내의 다양한 위치에서 측정된 속도 및 압력 측정과 연기 흐름 시각화 결과, 공급 레지스터의 흡입 유량 기여도가 도어 개구부 A 및 B의 기여율보다 상당히 낮고 시간당 10회의 공기 변화라는 기계적 환기 속도보다 낮았습니다.

A.E.C.P. (3) 및 C.I.B.S.E. (4) 가이드에 의해 종료됩니다. 원칙적으로, 그러한 차이는 중요하지 않을 것입니다. 그러나 이 경우 도어 개구부에서 유입되는 공기에는 이미 오염 물질이 포함되어 있어 작업장의 오염 수준이 증가할 수 있습니다.

따라서 총 흡입 유량의 80-90% 순서로 공급 레지스터를 통과하는 공급 공기의 비율이 더 높은 것이 바람직합니다. 또한 6개의 공급 레지스터 중 하나, 다수의 로컬 추출 후드 및 2개의 일반 객실 추출물을 재설계하거나 상당한 업그레이드가 필요한 것으로 확인되었습니다.

요약하자면, 공기 흐름 측정 및 연기 흐름 시각화는 작업장 내의 공기 흐름 패턴이 두 개의 큰 흐름 영역에 의해 지배된다는 것을 나타냅니다.

작업 수준의 영역 1은 도어 A 및 B의 개구부에서 나오는 강한 에어 제트에 의해 지배되고, 다른 영역은 작업장 상층에 위치한 약한 재순환의 넓은 영역에 의해 지배됩니다.

작은 방과 관련하여, 일부 연기가 그 지역에 도달한 것으로 관측되었지만, 일단 그곳에 도달한 후에는 상당한 시간 동안 남아 있었습니다.

COMPUTER MODELLING OF AIRFLOW

측정 및 연기 흐름 시각화를 통해 작업장 내의 공기 흐름은 매우 복잡하고 3차원적이라는 것을 알 수 있었습니다. 따라서 연기 흐름 시각화 및 제한된 수의 국소 기류 측정만을 기반으로 오염 문제에 대한 해결책을 제안하는 것은 많은 중요한 흐름 특징을 간과할 수 있기 때문에 신중하지 못할 것으로 판단되었습니다.

따라서 이 문제를 조사하기 위해 긍정적인 조치를 취하기로 결정되었습니다. 이는 CFD(Computational Fluid Dynamic) 기법을 활용하여 작업장 내에 현재 존재하는 공기 흐름을 초기에 시뮬레이션한 후 가능한 변경의 영향을 조사하기 위해 구성되었습니다.

컴퓨터 시뮬레이션은 처음에는 HARWELL FLOW-3D 소프트웨어를 사용하여 HARWELL CRAY-2 슈퍼 컴퓨터 시스템에서 수행되었습니다. 작업장의 공기 흐름, 온도 및 오염 분포에 대한 계산 결과가 최근 저자 중 한 명이 제시되었으며 다음과 같은 결과를 나타냈습니다. (이하 일부 내용 생략… 자세한 내용은 하단부의 원문 참조 바랍니다.)

The workshop showing the ante-room, supply, and extract systems
The workshop showing the ante-room, supply, and extract systems
2D velocity vector and temperature contours along the plane through door B (existing system)
2D velocity vector and temperature contours along the plane through door B (existing system)
20 velocity vector and temperature contours along -the plane through furnace hood (existing system)
20 velocity vector and temperature contours along -the plane through furnace hood (existing system)
Existing system; airborne particle tracks
Existing system; airborne particle tracks
20 velocity vector along the plane through door B (proposed system)
20 velocity vector along the plane through door B (proposed system)
20 velocity vector along the plane through furnace hood (proposed system)
20 velocity vector along the plane through furnace hood (proposed system)
Proposed system; airborne particle tracks
Proposed system; airborne particle tracks
FLOW-3D Spillway Visualization

Volume of Fluid (VOF) History

Volume of Fluid (VOF)

FLOW-3D Spillway Visualization

VOF(Volume of Fluid) 방법은 이전의 MAC(Marker-and-Cell) 방법을 기반으로 한다[1]. MAC 방법은 표식기 입자를 사용하여 유체가 고정된 오일러 그리드 내에 존재하는 위치를 찾아냈다. MAC는 자유로운 표면으로 압축할 수 없는 유체의 역학을 시뮬레이션한 최초의 연산 방법이었다. 유체를 추적하기 위한 마커 입자의 사용은 특히 3차원에서 계산적으로 비용이 많이 들고, 입자가 한 그리드 소자에서 다른 그리드 소자로 이동할 때 그리드 요소 특성(질량 등)의 변화가 이산적인 변화를 겪기 때문에 연산 노이즈를 도입한다. 마커 입자를 인터페이스 추적 체계로 대체하려는 다양한 시도가 있었지만, 유체 질량이 종종 분리되거나 결합되어 인터페이스 표면의 생성과 파괴로 이어지기 때문에 대부분 실패했다.

유체 표면 대신 유체 부피를 추적하는 유체 부피(Volume of fluid method)의 발상은 유체 변수의 부피를 사용하는 것이 관례인 2상(물과 증기) 문제에 대한 연구로부터 비롯되었다. 증기의 부피 분율은 물과 증기가 혼합된 상태에서 증기의 양을 기록하는 연속 변수다. 이 체적 개념을 불압성 유체의 자유 표면을 찾기 위해 불연속 변수에까지 확장(예: 액체와 0의 단위 값)한 것은 1975년 간행물 “다차원, 과도 자유 표면 흐름 계산을 위한 방법”[2]에서 니콜스와 허트의 “다차원, 과도 자유 표면 흐름”에서 처음 입증되었다.

계산적 의미 만들기

VOF 개념은 플로우 모델이 일반적으로 압력, 밀도, 온도 등과 같은 종속 변수를 저장하기 위해 각 그리드 요소에서 하나의 숫자 값만 사용하기 때문에 계산이 타당하다. 그렇다면 왜 요소 내의 유체 분포를 정의하기 위해 둘 이상의 변수가 필요할까? 예를 들어, 원소의 유체가 둘 이상의 blob으로 분포된 경우, 각 blob에 대해 더 많은 종속 변수가 필요할 것이다. 이런 관점에서 보면 원소의 유체량만 기록하는 것이 타당하다. 그러나 문제는 체적분율 변수의 추정 불연속적 특성이다. 오일러 그리드를 통한 불연속 유체 인터페이스의 이동을 추적하려면 더 많은 정보가 필요하다.

Making Computational Sense

이 문제는 많은 출판사에서 많은 사람들이 다루어 왔다. 제안된 거의 모든 방법은 인접한 그리드 요소의 볼륨 분율 검사에 기초한 근사치의 어떤 유형에 의존한다. 예를 들어, 1차원 흐름에서는 정확한 방법을 도출하기 쉽다. 액체와 기체를 분리하는 예리한 인터페이스를 가진 1차원 도관을 따라 액체가 흐르고 있다고 가정해 보자. 인터페이스 업스트림 그리드 요소에서, 볼륨 분율은 1과 같고, 인터페이스 다운스트림에서는 볼륨 분율은 0과 같다. 0과 1 사이의 볼륨 비율 값을 갖는 인터페이스를 포함하는 그리드 요소에서 액체는 1의 볼륨 비율을 포함하는 인접 셀에 연결된 셀의 측면에 위치해야 하기 때문에 해당 셀 내에서 인터페이스를 쉽게 찾을 수 있다. 그런 다음 인터페이스는 체적 분율의 곱에 셀의 크기를 곱한 곱에 의해 액체 이웃에 연결된 셀 가장자리로부터 다운스트림 거리에 위치한다. 이 위치는 인터페이스가 날카로운 불연속성을 유지하도록 유체를 삽입할 때 사용할 수 있다. 불행하게도, 2, 3차원에서는 그리드 요소 내에서 인터페이스를 위치시키는 간단한 방법이 존재하지 않는다.

One method proposed for advecting discontinuous fluid interfaces was presented in the 1980 Los Alamos Scientific Laboratory report, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” [3] by Nichols, Hirt and Hotchkiss, and in a 1981 publication, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,쓴 [히트와 니콜스가 쓴 [4]. 주로 경수-원자로 안전 연구를 위한 이 프로그램의 초기 적용은 [5]와 [6]에서 확인할 수 있다.

VOF Variations | VOF 변형 모델

VOF 방법의 많은 변형이 문헌에 보고되었지만, 대부분은 원본에서 사용된 방법을 따르지 않는다[4]. 특히 원래의 VOF 방식은 주변 가스가 아닌 압축 불가능한 액체에서만 유체 역학을 위한 Navier-Stokes 방정식을 해결했다. 대신에 유체가 없는 표면은 경계 조건에 의해 처리되었고 유체가 포함된 그리드 요소의 목록은 지속적으로 업데이트되었다. 원래 모델의 가스 영역은 모멘텀을 무시할 수 있는 낮은 밀도를 가지며, 공간적으로 균일한 가스 압력을 가지는 것으로 가정했다. 다른 대부분의 VOF 모델에서 사용하는 대안은 인터페이스에 경계 조건을 설정하지 않기 위해 2-유체 시뮬레이션을 사용하는 것이다. 이 옵션은 가스 역학을 위해 해결해야 하기 때문에 원래 방법보다 상당히 많은 계산 자원을 필요로 한다. 또한 대부분의 2-유체 모델은 인터페이스에서 가스와 액체 사이에 존재하는 속도 “슬립”의 가능성을 무시한다. 슬립의 존재를 무시하고 가스/액체 혼합물의 평균 속도로 인터페이스를 이동하면 심각한 오류가 발생할 수 있다.

Modeling Fluid Advection | 모델링 유체 부착

대체 VOF 방법 개발자들이 항상 높이 평가하지 않는 또 다른 점은 VOF 유체 분율 수량 F의 첨부를 위해 모델링된 방정식이다. 원래의 방법 [4]은 F에 대한 보수적인 운송 방정식을 사용했다.

∂F∂t+∇∙(Fu→)=0

부착을 위해 레벨 설정 방법을 사용하는 것과 같은 많은 대안 VOF 공식은 비보수적 전송 방정식을 사용한다.

∂F∂t+u→∙∇F=0

보수적인 방법의 장점은 변경되어서는 안 되는 유체량을 쉽게 계산하고 표시하기 때문에 시뮬레이션에서 한 번의 간단한 불압력 정밀도 검사를 제공한다는 것이다.

TruVOF 솔루션

이용 가능한 인기 있는 상용 코드 중 FLOW-3D만이 [4]에서 참조한 원래의 1유체 모델을 기반으로 한다. 물론, 열 전달, 표면 장력, 위상 변화, 이동 장애물 및 유체 구조 상호작용과 같은 다양한 물리적 프로세스에 대한 많은 모델을 포함하여 이 소프트웨어에 대한 많은 개선이 평생에 걸쳐 이루어졌다.

다른 기사 읽기 : VOF (Volume of Fluid) 란 무엇인가? | FLOW-3D

참고문헌

References

  1. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow,” Phys. Fluids 8, 2182 (1965); J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, “THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces,” Los Alamos Scientific Laboratory report LA-3425 (March 1966).
  2. D. Nichols and C. W. Hirt, “Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies,” Proc. Of the First International Conference on Numerical Ship Hydrodynamics, Gaithersburg, Maryland, October 20-23, 1975.
  3. D. Nichols, C. W. Hirt and R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” Los Alamos Scientific Laboratory report LA-8355 (August 1980).
  4. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Jour. Computational Physics, 39, 201 (1981).
  5. D. Nichols and C. W. Hirt, Numerical Simulation of BWR Vent Clearing Hydrodynamics,” Proc. 1978 Annual Meeting ANS, San Diego, CA; Nuc. Sci. Eng. 73, 196 (1980).
  6. W. Hirt and B. D. Nichols, “A Computational Method for Free Surface Hydrodynamics,” ASME 1980 Pressure Vessels and Piping Conf. San Francisco, CA (August 1980) Jour, Pressure Vessel Technology, 103, 136 (1981)

Simulation of Joule heating-based Core Drying

This article was contributed by Eric Riedel 1,2

1Otto-von-Guericke-University Magdeburg, Institute of Manufacturing Technology and Quality Management, Germany

2Soplain GmbH, Germany

현대의 주조 생산에는 샌드 코어를 사용해야 합니다. 환경 인식의 확대는 물론 규제 강화로 인해 코어가 열로 건조되고 치유되는 무기, 무배출 바인더 시스템 개발이 뒷받침되고 있습니다. 핫박스 공정이라고 하는 것에서는 코어 박스에서 열이 발생하여 샌드바인더 혼합물로 전달됩니다. 그러나 핫박스 공정은 크게 두 가지 기술적 단점을 보입니다.

첫 번째 단점은 약 1 W/(m·K)의 석영 모래의 열전도율이 매우 낮다는 것입니다. 외부 열 전달로 인해 공정에 시간이 많이 소요되고 쉘 형성과 그에 따른 품질 문제가 발생할 수 있습니다. 이 때문에 최대 523.15K 이상의 매우 높은 코어 박스 온도가 적용되어 열 전달을 가속합니다. 열상자 공정의 두 번째 단점은 코어 건조 자체를 실시간으로 직접 측정하고 디지털화할 수 없다는 점입니다. 대신 코어 박스에서와 같은 주변 파라미터를 기록해야만 수동적으로 측정할 수 있습니다.

ACS 프로세스

특허받은 새로운 ACS(Advanced Core Solution) 프로세스는 시간과 에너지 효율이 높은 코어 건조 및 양생을 목표로 합니다. ACS 프로세스는 모든 무기 바인더 시스템에 공통적인 특성을 사용합니다.

물 기반이기 때문에 전기적으로 전도성이 있습니다. 주요 요인은 전기 전도성 코어 박스 재료의 개발로, 모래-바인더 혼합물에 대한 전도도를 조정할 수 있습니다. 전압이 인가되면 그림 1에서와 같이 코어 박스와 모래-바인더 혼합물을 통해 전류가 균일하게 흐릅니다. 좀 더 정확히 말하면, 전류가 모래 알갱이 사이에 있는 전기 전도성 바인더 브리지를 통해 흐릅니다. 

고유의 전기 저항으로 인해 모래 중심부는 셸 형성 없이 균일하게 가열됩니다. Joule heating이라 불리는 그 이면의 과학적 원리는 Joule 의 제1법칙에 근거하고 있습니다. 직렬 공정에서 전기 전도성 코어 박스는 Joule heating을 통해 가열되어 건조 공정이 추가로 가속화됩니다. 이는 ACS 공정의 경우 코어 박스 내부의 복잡한 가열 장치가 더 이상 필요하지 않으므로 코어 박스 구조가 단순화되기 때문에 더욱 중요한 장점입니다.

이 새로운 프로세스를 통해 처음으로 열이 필요한 곳, 즉 코어 내에서 직접 생성됩니다. 필요한 열은 균질하게 분포된 바인더를 통해 생성되어 인접 모래로 전달되기 때문에, 석영 모래의 낮은 열전도율은 더 이상 제한 공정 인자가 아닙니다. 또한 최초로 건조별 전기 파라미터를 기록함으로써 건조 프로세스 자체를 포괄적으로 실시간 모니터링할 수 있습니다. FLOW-3D를 사용하여 ACS 프로세스를 시뮬레이션할 수 있으며, 프로세스 편익의 정량화를 포함한 산업적 적용에 대한 중요한 기준을 충족합니다.

그림 1: 전류 흐름의 기본 비교: a) 미포함, b) 코어 박스의 전기 전도도를 모래-바인더 혼합물에 대한 조정

모델 설명

모델링은 Starobin 등의 작업을 기반으로 합니다. [1], 그러나 FLOW-3D의 전기-기계 모델로 확장합니다. 전기 전위(즉, 냄비 = 1)를 활성화하면 전기-열 효과, 즉 줄 가열(에테르모 = 1)을 고려해야 합니다. 

모델 세부 정보는 [2]에서 확인할 수 있습니다. 구성 요소의 전기적 특성을 통해 코어 박스는 전기 전도도(초)와 유전 전위(오디엘)를 가진 동적 전위(오이포템 = 1)를 할당받으며, 전체 모래-바인더 혼합물의 전기 전도도를 설명하기 위해 모래 코어에도 동일하게 적용됩니다. 

전극에는 한 전극에 대해 고정 전위(외전 = 0), 전기 전도도, 음전위(외전)가 할당되고 다른 전극에 대해서는 양의 전위(외전)가 할당됩니다. 전기 전도도에 대한 온도에 의존하는 정의는 아직 가능하지 않기 때문에, 우리는 재시동 시뮬레이션과 능동 시뮬레이션 제어로 작업했습니다. 

이렇게 하면 각 온도 범위의 평균 전기 전도도, 즉 293.15 ~ 303.15 K, 303.15 ~ 313.15 K 등을 고려할 수 있다. 다음의 조사는 1유체 시뮬레이션에 초점을 맞춘 조사, 즉 purging 은 고려하지 않았습니다.

예제

첫 번째 단계에서는 상업적으로 이용 가능한 무기 모래-바인더 혼합물이 가열 및 온도에 의존하는 전기 전도성을 조사하기 위해 시뮬레이션 모델의 실험 조사 및 유효성 검사를 위해 사용되었습니다. 

373.15 K에 도달하는 데 필요한 시간뿐만 아니라 모래 코어에 입력되는 전력 및 에너지를 측정하였다. 실험 분석과 결과를 바탕으로 기초적인 시뮬레이션 모델을 만들었습니다. 재량권을 이유로, 기초 결과 중 일부는 질적으로만 제시된다. 결과는 그림 2에 제시되어 있으며, 측정값과 시뮬레이션 사이의 높은 수준을 보여줍니다.

Comparison of experimental and simulation results
그림 2: 실험 결과와 시뮬레이션 결과의 비교.
 측정 지점은 293.15 K: a) 온도 상승 전력 입력- 측정값으로부터의 평균 편차: 0,95 %, b) 에너