Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

FLOW-3D POST, 그래픽 카드, 멀티모니터

좋은 하드웨어는 향상된 FLOW-3D POST 경험을 제공

FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.

고품질 그래픽 하드웨어

최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.

다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조). 

대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다. 

FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다. 

NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.

Nvidia 그래픽 카드

노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션

이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.

그래픽 카드를 Nvidia로 전환

비디오 드라이버 업데이트

비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.

RAM, RAM, RAM!

메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.

  • 초대형 (2 억 개 이상의 셀) : 최소 128GB
  • 대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
  • 중간 (3 천만 ~ 6 천만 셀) : 32-64GB
  • 소형 (3,000 만 셀 이하) : 최소 32GB

FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.


그래픽 카드를 업그레이드 교체 설치하는 방법

그래픽 카드를 업그레이드하는 것은 성능 향상을 위한 좋은 방법이다. 그래픽 카드 업그레이드를 통해 시각적으로 고사양을 요구하는 POST 작업을 쉽게 소화할 수 있는 컴퓨터로 진화할 수 있다. 

업그레이드를 위한 그래픽 카드 구매시 고려 사항, 기존 PC에 적합한가? 

원하는 그래픽 카드를 결정하는 것은 복잡하고 미묘한 문제다. AMD와 엔비디아는 200달러 미만에서부터 최대 1,500달러에 이르는 지포스(GeForce) RTX 3090에 이르기까지 거의 모든 예산에 대한 선택지를 제공하기 때문이다.

카드의 소음, 발열, 전력 소비 등과 같은 사항을 고려할 수 있겠지만, 일반적으로는 비용 대비 가장 큰 효과를 제공하는 그래픽 카드를 원한다.

컴퓨터가 새 그래픽 카드를 지원하는 적절한 하드웨어인지 확인한다. 

사용자가 겪는 가장 일반적인 문제는 부적절한 파워 서플라이(power supply)다. 충분한 전력을 공급할 수 없거나 사용 가능한 PCI-E 전원 커넥터가 충분하지 않을 수 있다. 필자의 경험상 파워 서플라이는 적어도 제조업체에서 권장하는 파워 서플라이의 요구 사항을 충족해야 한다. 예를 들어, 350W를 소비하는 지포스 GTX 3090을 구입했다면 8핀 전원 커넥터 한 쌍과 함께 엔비디아에서 제안한 최소 750W의 전력 공급 장치를 갖춰야 한다. 

현재 파워 서플라이가 얼마나 많은 전력을 제공하는지 알아보려면 PC 본체를 열고 모든 파워 서플라이에 기본 정보가 나열된 표준 식별 스티커를 확인하면 된다. 또한 사용 가능한 6핀 및 8핀 PCI-E 커넥터의 수를 확인할 수 있다. 

ⓒ Thomas Ryan 파워서플라이
ⓒ Thomas Ryan 파워서플라이

마지막으로 본체 내부에 새 그래픽 카드를 넣을 충분한 공간이 있는지 확인한다. 일부 고급 그래픽 카드는 길이가 상당히 길어 30Cm 이상일 수 있으며, 확장 슬롯이 2개 또는 3개가 될 수 있다. 해당 그래픽 카드의 실제 크기는 제조업체 웹사이트에서 찾을 수 있다. 

여기까지 해결했다면 이제 본격적으로 설치 작업에 착수한다. 


생각보다 간단한 그래픽 카드 설치 작업

그래픽 카드 설치에는 새 그래픽 카드, 컴퓨터, 그리고 십자 드라이버 3가지만 있으면 된다. 설치하기 전 PC를 끄고 전원 플러그를 뽑는다. 

기존 GPU를 제거해야 하는 경우가 아니면, 먼저 프로세서의 방열판에 가장 가까운 긴 PCI-E x16 슬롯을 찾아야 한다. 이 슬롯은 메인보드의 첫 번째 또는 두 번째 확장 슬롯이다. 

이 슬롯에 접근을 차단하는 느슨한 전선이 없는지 확인한다. 기존 그래픽 카드를 교체하는 경우, 연결된 케이블을 모두 분리하고, PC 본체 후면 내부에 고정 브래킷에서 나사를 제거한 다음, 카드를 제거한다. 대부분의 메인보드에는 그래픽 카드를 제자리에 고정하는 PCI-E 슬롯 끝에 작은 플라스틱 걸쇠(latch)가 있다. 이 걸쇠를 눌러 이전 그래픽 카드의 잠금을 해제하고 분리한다.

ⓒ Thomas Ryan PCI-E x16 슬롯에 설치
ⓒ Thomas Ryan PCI-E x16 슬롯에 설치

이제 새 그래픽 카드를 개방형 PCI-E x16 슬롯에 설치할 수 있다. 카드를 슬롯에 완전히 삽입한 다음, PCI-E 슬롯 끝에 있는 플라스틱 걸쇠를 눌러 제자리에 고정한다. 그런 다음 나사를 사용해 그래픽 카드의 금속 고정 브래킷을 PC 본체에 고정한다. 덮개 브래킷 또는 이전 그래픽 카드를 고정했던 나사를 재사용할 수 있다. 

ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결
ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결

대부분의 게임용 그래픽 카드에는 추가 전원 커넥터가 필요하다. 추가 전원이 필요한 경우, 해당 PCI-E 전원 케이블을 연결했는지 확인한다. 전원이 제대로 공급되지 않으면 그래픽 카드가 제대로 작동하지 않는다. 이 PCI-E 전원 케이블을 연결하지 않으면 PC 자체가 부팅되지 않을 수 있다.  

그래픽 카드를 고정하고 난 후, 전원을 켠 상태에서 본체 측면 패널을 제자리로 밀어넣고 디스플레이 케이블을 새 그래픽 카드에 연결해 작업을 완료한다. 이제 컴퓨터를 켠다. 

이제 그래픽 카드의 소프트웨어를 업그레이드할 단계가 왔다. 

새 그래픽 카드가 이전 카드와 동일한 브랜드일 경우에는 절차가 간단하다. 제조업체의 웹사이트로 이동해 운영체제에 맞는 최신 드라이버 패키지를 다운로드한다. 그래픽 드라이버는 일반적으로 약 500MB로, 상당히 크다. 인터넷 연결 속도에 따라 다운로드하는 데 시간이 걸릴 수도 있다. 드라이버를 설치하고 컴퓨터를 다시 시작하면 이제 새 그래픽 카드가 제공하는 부드럽고 매끄러운 프레임 속도를 즐길 수 있다.
  
그래픽 카드 제조업체가 바뀐 경우(인털에서 AMD로, 혹은 AMD에서 인텔로), 새 그래픽 카드용 드라이버를 설치하기 전에 이전 그래픽 드라이버를 제거하고 컴퓨터를 다시 시작해야 한다. 이전 드라이버를 제거하지 않으면 새 드라이버와 충돌할 수 있다. 

editor@itworld.co.kr 기사 일부 발췌 인용

그래픽 카드 GPU 온도 확인하는 방법

그래픽 카드 온도 확인은 아주 쉽다. 윈도우에서 바로 온도를 확인할 수 있는 내장 도구도 추가됐다. 또한, 무료 GPU 모니터링 도구가 많이 있고 그중 대다수가 온도를 측정해준다. 조금 더 자세히 알아보자.

ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인
ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인

마이크로소프트가 윈도우 10 2020년 5월 업데이트에서 GPU 온도 모니터링 툴을 작업 관리자에 추가했다. 무려 24년이나 걸렸다.

Ctrl+Shift+Esc를 열어 작업 관리자 대화창을 열거나 Ctrl+Alt+Delete에서 ‘작업 관리자’를 선택하거나 윈도우 시작 메뉴 아이콘을 오른쪽 클릭해서 ‘작업 관리자’를 선택한다. 여기에서 ‘성능’ 탭으로 들어가면 왼쪽에 GPU를 확인할 수 있을 것이다. 윈도우 10 2020년 5월 업데이트 혹은 그 이후 버전의 윈도우가 설치되어 있을 때만 사용할 수 있는 기능이다.

하지만 이 기능은 매우 단순하다. 시간 흐름에 따른 온도 변화를 추적하지 않고, 현재의 온도만을 보여준다. 그리고 업무를 하거나 오버클럭 조정 중에 작업 관리자를 여는 것도 귀찮을 수 있다. 마침내 윈도우에 GPU 온도를 확인할 수 있는 기능이 들어간 것은 환영하지만, 뒤이어 설명할 서드파티 도구가 훨씬 더 나은 GPU 온도 확인 옵션을 제공한다.

AMD 라데온 그래픽 카드 사용자가 라데온 세팅(Radeon Setting) 앱을 최신 버전으로 유지하고 있다면 방법은 쉽다. 2017년 AMD는 시각 설정을 변경할 수 있는 라데온 오버레이(Radeon Overlay)를 출시했다. 여기에도 GPU 온도와 다른 중요한 정보를 확인할 수 있는 성능 모니터 기능이 있다.

프로그램을 활성화하려면 Alt+R 키를 눌러 라데온 오버레이를 불러온다. 성능 모니터링 섹션에서 원하는 탭을 선택한다. Ctrl+Shift + 0을 눌러서 성능 모니터링 도구 설정을 단독으로 불러올 수 있다.

라데온 세팅 앱에서 오버클럭 도구인 와트맨(Wattman)으로 이동해 GPU 온도를 확인할 수 있다. 윈도우 바탕 화면을 우클릭하고, 라데온 설정을 선택한 후 게이밍(Gaming) > 글로벌 세팅(Global Setting) > 글로벌 와트맨(Global Wattman) 항목으로 이동한다. 도구를 사용해 지나친 오버클럭으로 그래픽 카드를 날려버리지 않겠다고 서약한 후에는 와트맨에 액세스하고 GPU 온도, 그리고 그래프 형태로 된 핵심적 통계 수치를 볼 수 있다. 여기까지가 전부다.

라데온 사용자가 아닌 사람도 많을 것이다. 스팀의 하드웨어 설문 조사는 전체 응답자 PC 중 75%가 엔비디아 지포스 그래픽 카드를 탑재했다는 결과를 발표했다. 그리고 지포스 익스피리언스 소프트웨어는 GPU 온도 확인 기능을 제공하지 않아서 서드파티 소프트웨어의 손을 빌려야 한다.

그래픽 카드 제조 업체는 보통 GPU 오버 클럭을 위한 특수한 소프트웨어를 제공한다. 이 도구에는 라데온 오버레이처럼 가장 중요한 측정을 실행할 때 OSD(On-Screen Display)를 지속하는 옵션 등이 있다. 여러 종류 중에서 가장 추천하는 것은 다재다능함을 갖춘 MSI의 애프터버너(Afterburner) 도구다. 이 제품은 오랫동안 인기를 얻었는데 엔비디아 지포스, AMD 라데온 그래픽 카드 두 제품 모두에서 잘 작동하고, 반길 만한 다른 기능도 더했다.

IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램
IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램

GPU 온도에 전혀 관심이 없다면? 그렇다면 시스템의 온도 센서를 보여주는 모니터링 소프트웨어를 설치하면 편리할 것이다. HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램으로, PC의 모든 부품의 가상 스냅샷을 보여준다. 스피드팬(SpeedFan) 과 오픈 하드웨어 모니터(Open Hardware Monitor)도 신뢰할 만한 서드파티 앱이다.

‘착한’ GPU 온도는 몇 도?

이제 그래픽 카드를 모니터링하는 소프트웨어를 갖췄다. 하지만 화면을 채우는 숫자는 맥락이 없이는 아무것도 아니다. 그래픽 카드 온도는 어디까지 괜찮은 것일까?

쉬운 대답은 없다. 제품마다 다르다. 이럴 때는 구글이 친구가 된다. 대다수 칩은 섭씨 90도 중반에도 작동하고, 게이밍 노트북에서도 90도까지 온도가 올라가는 경우가 흔히 있다. 그러나 일반 데스크톱 PC 온도가 90도 이상으로 올라간다면 구조 신호나 다름없다. 공기 흐름이 원활한 GPU 1대 시스템에서는 80도 이상 올라가면 위험하다. 팬이 여러 개 달린 커스텀 그래픽 카드는 무거운 워크로드 하에서도 60~70도가 적당하고, 수냉쿨러가 달린 GPU라면 온도가 더 낮아야 할 것이다.

그래픽 카드가 최근 5년 안에 생산된 제품이고 90도 이상으로 뜨거워진다면, 또는 최근 몇 주간 온도가 급격히 상승했다면 다음의 냉각 방법을 고려해보자.


그래픽 카드 온도 낮추는 법

그래픽 카드 온도가 높아졌을 때 하드웨어 업그레이드에 돈을 들이지 않고 개선하지 않기란 어렵다. 그러나 돈을 쏟아붓기 전에 정말 그래야 하는지 필요성을 점검해 보자. 다시 한번 강조하지만 그래픽 카드는 뜨거운 온도를 버틸 수 있도록 설계되어 있다. PC가 무거운 게임이나 영상 편집 중에 강제 종료되는 경우가 아니라면 아마도 걱정할 필요가 없을 것이다.

우선, 시스템의 케이블을 깨끗하게 정리해 GPU 주변의 공기가 원활하게 순환되는지 확인하라. 케이블이 깔끔하게 정리됐다면 케이스에 팬을 추가하는 것도 고려한다. 모든 PC는 최적의 성능을 위해 공기를 빨아들이고 내보내는 팬이 여럿 달려 있는데, POST PC라면 팬은 더 많아야 한다. 저렴한 팬은 10달러부터 구입할 수 있고, RGB 조명이 붙은 화려한 제품은 조금 더 가격이 높다.

마지막으로, GPU와 히트싱크의 써멀 페이스트가 오래되어 말라 있다면 효율이 떨어질 수 있다. 특히 오래된 그래픽 카드라면 더더욱 그렇다. 그리고 아주 드문 경우지만 품질이 좋지 않은 써멀 페이스트가 발라져서 출시되는 경우도 있다. 다른 방법이 모두 효과가 없다면 써멀 페이스트를 다시 바르는 것을 시도해보자. 그러나 과정이 매우 어려울 수 있고 카드마다 조금씩 다르고, 잘못 손댈 경우 사용자 보증 기한의 보호를 받을 수 없게 된다. 

온도를 확실하게 낮추려면 수랭 쿨러를 위한 쿨링 시스템을 고려한다. 대다수 사용자에게는 지나친 모험이지만 대부분 수냉쿨러는 발열과 노이즈 감소 효과가 확실하고 공기 냉각에 있어 병목 현상도 없다.


“업무 효율 향상의 기본” 멀티 모니터 구축 가이드

듀얼 모니터를 사용하면 업무 생산성이 높아진다는 연구 결과가 있지만, 모니터가 많을수록 생산성이 높아지는지 여부에 대해서는 아직 이렇다 할 근거는 없다. 그러나 업무 생산성을 생각하지 않더라도 모니터를 여러 대(3대~6대까지) 사용하는 것은 멋진 일이며, 많은 화면을 봐야 하는 엔지니어는 정말 필요할지도 모른다.

모니터를 세로로 세워두면 긴 문서를 볼 때 스크롤을 적게 해도 된다는 장점이 있다. 멀티 디스플레이 환경을 구축하기 위해 고려해야 할 모든 것들을 살펴보겠다.

멀티 모니터 구축 가이드(www.itworld.co.kr)
멀티 모니터 구축 가이드(www.itworld.co.kr)

1단계 : 그래픽 카드 확인하기

보조 모니터를 구입하기 전에 컴퓨터가 물리적으로 이 모든 모니터들을 감당할 수 있을지 점검해 봐야 한다. 가장 쉬운 방법은 PC의 뒷면을 보고, 그래픽 포트(DVI, HDMI, 디스플레이포트, VGA 등)가 몇 개나 있는지 확인하는 것이다.

별도의 그래픽 카드가 없다면 포트를 2개밖에 발견하지 못할 것이다. 그래픽이 통합된 대부분의 마더보드는 모니터 2개 밖에 설치하지 못한다. 별도의 그래픽 카드가 있다면, 마더보드의 포트를 제외하고 최소 3개의 포트를 발견할 수 있을 것이다.

팁 : 마더보드와 별도 그래픽 카드의 포트를 모두 이용해서 멀티 모니터를 설치할 수도 있지만, 이 경우 성능 저하와 모니터끼리의 속도 차이가 발생할 것이다. 그래도 이렇게 하고 싶다면, PC의 BIOS에서 Configuration > Video > Integrated graphics 로 진입한 다음, ‘always enable’로 설정한다.

그러나 별도의 그래픽 카드에 3개 이상의 포트가 있다고 해서 이것을 모두 동시에 사용할 수 있다는 의미는 아니다. 예를 들어서 구형 엔비디아 카드는 포트가 2개 이상이어도 하나의 카드에 모니터를 2개 이상 연결할 수 없다. 자신의 그래픽 카드가 멀티 모니터를 지원하는지 판단하는 가장 좋은 방법은 그래픽 카드 모델명을 찾아서 원하는 모니터 개수와 함께 검색하는 것이다. 예를 들어, ‘엔비디아 GTX 1660 모니터 4대’라고 검색하면 된다.

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

그래픽 카드가 원하는 만큼 충분히 모니터를 지원할 수 있으면 좋지만, 그렇지 않다면 추가 그래픽 카드를 구입해야 한다. 그래픽 카드를 추가로 구입하기 전 타워 안에 충분한 공간(PCI 슬롯)이 있는지, 전원 공급은 충분한지 확인해야 한다.

멀티 모니터용으로만 그래픽 카드를 구입한다면 최신 그래픽 카드 중에서도 저렴한 옵션을 선택하는 것이 좋다. 

아니면 멀티 스트리밍이 지원되는 디스플레이포트를 탑재한 신형 모니터를 사용하는 방법도 있다. 그래픽 카드의 디스플레이포트 1.2에 연결하고, 디스플레이포트 케이블을 사용해 다음 모니터로 연결하는 것이다. 모니터의 크기나 해상도가 같지 않아도 된다. 뷰소닉(ViewSonic)의 VP2468이 이런 제품 중 하나다. 아마존에서 약 210달러에 판매되는 이 24인치 모니터는 디스플레이포트 아웃 외에도 프리미엄 IPS 스크린, 아주 얇은 베젤 등 멀티 모니터 설정에 이상적인 특징을 제공한다.

2단계 : 모니터 선택하기 

그래픽 카드에 대해서 파악했다면 이제 추가 모니터를 구입할 차례다. 사용자에 따라서 기존에 사용하고 있는 모니터, 책상 크기, 추가 모니터 용도 등에 따라서 완벽한 모니터가 달라질 것이다.

필자의 경우, 이미 24인치 모니터 2대를 가지고 있었기 때문에 중앙에 설치할 더 큰 모니터가 필요해서 27인치 모니터를 선택했다. 게임을 하지 않기 때문에 모니터 크기 차이는 상관없었다. 하지만 사용자에 따라서 멀티 모니터로 POST를 하거나 동영상을 보기 위해서는 이러한 구성보다 같은 모니터를 연결하는 것이 더 좋을 것이다.

모니터를 구입하기 전에 PC와 모니터의 포트 호환성을 설펴야 한다. DVI-HDMI 혹은 디스플레이포트-DVI 등 전환해주는 케이블을 이용할 수도 있지만 다소 귀찮다. 그러나 PC나 모니터에 VGA 포트가 있다면, 교체를 권한다. VGA는 아날로그 커넥터이기 때문에 선명도가 떨어진다.

3단계 : PC설정

모니터를 구입하고 나면 PC에 연결하고 PC의 전원을 켠다. 이것으로 모니터 설치가 끝났다. 하지만 완전히 끝난 것은 아니다.

윈도우가 멀티 모니터 환경에서 잘 동작하게 만들어야 하는데, 윈도우 7이나 윈도우 8 사용자라면 바탕화면에서 오른쪽 클릭하고 ‘화면 해상도’를 선택한다. 윈도우 10 사용자라면 ‘디스플레이 설정’을 클릭한다. 그러면 디스플레이를 정렬할 수 있는 창이 나타난다.

ⓒ ITWorld 디스플레이 설정
ⓒ ITWorld 디스플레이 설정

여기서 모니터들이 모두 탐지되는지 확인할 수 있다. ‘식별’을 클릭하면 각 디스플레이에 큰 숫자가 나타난다. 주 모니터(작업 표시줄과 시작 버튼이 나타나는 모니터)로 사용할 모니터에 1번이 나타나야 하는데, 원하는 것을 선택한 다음 아래 여러 디스플레이 설정에서 ‘이 디스플레이를 주 모니터로 만들기’를 클릭한다. 그 다음 ‘다중 디스플레이’ 드롭다운 메뉴에서 복제할 것인지 확장할 것인지를 선택하면 되는데, 대부분의 경우 ‘디스플레이 확장’이 적합하다.

GPU 제어판에서도 다중 모니터를 설정할 수 있다. 바탕화면에서 오른쪽 클릭을 하고 엔비디아, AMD, 인텔 등 그래픽 제조사의 제어판 메뉴를 열어 윈도우와 유사한 방식으로 디스플레이를 설정할 수 있다.

멀티 디스플레이를 구축할 경우에는 같은 모델을 이용하는 것이 해상도나 선명도, 색보정 등의 문제가 발생하지 않아 ‘끊김 없는’ 경험을 할 수 있다.

CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

FLOW-3D WELD 용접 사례

FLOW-3D WELD를 이용한 용접 해석 사례를 소개합니다.

  1. 열전도 형 용접 (레이저)
      두께가 다른 모재 맞대기
  2. 하이브리드
      레이저 / 아크 하이브리드
  3. 깊이 용해 형 (키 홀)
      알루미늄 평판에 의한 용해 깊이, 형상 확인
  4. 레이저 고기 모듬
      파우더 공급 및 용해
  5. 아크 용접
      오버레이 피팅 관통 평가
  6. 레이저 용접 (무릎 관절)
      무릎 관절의 실험과의 비교
  7. Selective Laser Sintering (3D printing)
      3 차원 프린터에의 응용

레이저 용접의 특징

에너지 밀도가 높고, 다른 재료도 시간 차이없이 녹아구슬 폭이 좁은비접촉 표면 성상 및 품질이 좋은제어 성이 우수전기 ⇒ 광 변환 효율이 나쁘다반사율이 높은 흡수율이 떨어진다weld_example1

열전도 형 용접

weld_example2

열전도 형 용접 결과

weld_example3weld_example4

하이브리드

강판의 레이저 / 아크 하이브리드 용접의 분석을 실시했습니다.

분석 조건

weld_example5CO2 레이저 출력 : 3.5kw디 포커스 값 : 0 mm레이저 스폿 지름 : 0.3mm아크 전류 : 180A아크 전압 : 26V용접 속도 : 1m / min열원 사이의 거리 : 3mm금속 : 900 MPa high strength steel

메쉬

weld_example6

해석과 실험과의 비교

온도의 단위는 [K]입니다.

weld_example7

깊이 용해형 (키 홀)

해석 모델weld_example83D 온도 표시weld_example9

레이저 금속 침전 Laser Metal Deposition (LMD)

파우더 공급 레이저에 의한 용해

해석 모델weld_example103D 온도 표시weld_example11

아크 용접

TIG (Tungsten Inert Gas)방전 전극으로 텅스텐을 사용불활성 (Inert) 가스를 사용 (아르곤, 헬륨 등)목적에 따라 필러 금속을 첨가 (와이어 or 필러 봉)공업 적으로 사용되는 대부분의 금속에 대응weld_example12

분석 조건

weld_example13

분석 결과 : 온도 등고선 [K]

TIG (Tungsten Inert Gas)모재 온도가 상승하고 조금 늦게 용융 풀이 확대표면 장력에 의해 용융 풀 바닥은 녹아 떨어지지 않는 weld_example14

분석 결과 : 용융 부의 교반

TIG (Tungsten Inert Gas)상하 모재를 분류하고 교반의 모습을 확인weld_example15

분석 결과 : 용융 부 교반 유속 벡터

TIG (Tungsten Inert Gas)아크 압력 차폐 가스에 의한 함몰표면 장력에 의한 계면 위치의 회복계면의 진동weld_example16

분석 결과 : 구슬 모양

TIG (Tungsten Inert Gas)상하면 구슬 폭용접 시작부터 정상까지의 과도적인 변화weld_example17

분석 결과 : 고출력의 경우 온도 등고선 [K]

TIG (Tungsten Inert Gas)고출력 의해 함몰이 커진다용융 풀의 두께가 얇아지고 관통하는weld_example18

레이저 용접 (무릎 관절)

weld_example19

분석 결과와 실제의 단면 비교

weld_example20

Selective Laser Sintering (3D printing)

weld_example21

선택적 레이저 용융 분석

weld_example22weld_example24
weld_example23
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

Modeling and characterization of a carbon fiber emitter for electrospray ionization

A K Sen1, J Darabi1, D R Knapp2 and J Liu2
1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering,
University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
2 Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue,
Charleston, SC 29425, USA
E-mail: darabi@engr.sc.edu

뾰족한 탄소 섬유(CF)를 사용하는 새로운 마이크로 스케일 이미터는 질량 분석 (MS) 분석에서 전기 분무에 사용할 수 있습니다. 탄소 섬유는 360 µm OD 및 75 µm ID의 용융 실리카 모세관과 동축에 위치하며 날카로운 팁은 튜브 말단에서 30 µm 연장됩니다.

Abstract

전기 분무 이온화 (ESI) 프로세스는 전기 유체 역학을 해결하기 위한 Taylor–Melcher 누설 유전체 유체 모델 및 액체-가스 인터페이스 추적을 위한 유체 부피 (VOF) 접근 방식을 기반으로 하는 전산 유체 역학 (CFD) 코드를 사용하여 시뮬레이션 됩니다. CFD 코드는 먼저 기존 지오메트리에 대해 검증한 다음 CF 이미터 기반 ESI 모델을 시뮬레이션하는데 사용됩니다.

시뮬레이션된 전류 흐름 및 전류 전압 결과는 CF 이미터의 실험 결과와 잘 일치합니다. 이미터 형상, 전위차, 유속 및 액체의 물리적 특성이 CF 이미터의 전기 분무 거동에 미치는 영향을 철저히 조사합니다.

스프레이 전류와 제트 직경은 액체의 유속, 전위차 및 물리적 특성과 상관 관계가 있으며 상관 결과는 문헌에 보고된 결과와 정량적으로 비교됩니다. (이 기사의 일부 그림은 전자 버전에서만 색상입니다)

Introduction

1980 년대 후반부터 매트릭스 보조 레이저 탈착 이온화 (MALDI)와 전기 분무 이온화 (ESI)의 두 가지 이온화 기술을 구현하여 감도, 속도 및 구조 정보 수준 측면에서 MS 분석이 엄청나게 성장했습니다. 1980 년대 초까지 전자 충격 (EI) 또는 화학 이온화 (CI) 방법은 가스 크로마토 그래피에 적합한 작은 생체 분자를 이온화 하는 데 사용되었습니다.

그러나 크고 열에 민감한 비 휘발성 샘플은 적절한 사전 처리 없이 EI 또는 CI-MS 기술로 분석 할 수 없습니다 [1]. ESI 기술을 사용하면 액체상에서 직접 이러한 큰 분자를 분석 할 수 있습니다 [2]. Zeleny [3, 4]는 출구에 높은 전위를 적용하여 모세관에서 액체 용액을 분사 할 수 있음을 보여주었습니다.

Dole [5, 6] 및 Fenn [7]의 선구적인 연구는 ESI를 고분자 및 생체 분자와 같은 대형 화합물의 이온화 방법으로 표시했습니다. 이에 이어이 기술에 의한 기상 이온 발생에 관련된 과정과 메커니즘이 널리 조사되고 있습니다.

ESI 방법에서 기체 이온화 된 분자는 강한 전계가 있는 상태에서 미세한 물방울을 생성하여 액체 용액에서 생성됩니다. ESI 프로세스의 이러한 능력은 단백질 및 기타 생체 분자 연구에 자연적으로 적용됨을 발견했습니다. ESI 방법과 관련된 다양한 프로세스가 그림 1에 나와 있습니다.

Figure 1. Schematic of an ESI process.
Figure 1. Schematic of an ESI process.

ESI 전위는 일반적으로 전도성 물질로 코팅 된 이미 터 튜브를 통해 외부에서 샘플 액체에 적용되지만 액체 샘플 내부에 적용될 수도 있습니다. Herring과 Qin [8]은 이미 터 팁에 삽입된 팔라듐 와이어를 통해 전기 분무 전위가 적용되는 모세관 전기 영동 (CE)을위한 ESI 인터페이스를 보여주었습니다.

Chiou의 설계 [9]에서는 작은 PDMS 칩에 있는 샘플 저장소, 마이크로 채널 및 실리카 모세관 노즐과 통합 된 내장 전극을 통해 전기 분무를 위한 고전압이 적용되었습니다.

Cao and Moini [10]는 ESI 전압이 모세관 내부에 위치한 전극을 통해인가되고 전기적 접촉이 출구 근처 모세관 벽의 작은 구멍을 통해 유지되는 전기 분무 방출기를 설계했습니다. 작은 모세관 직경 (~ 10 µm)을 가진 이미 터를 사용하여 낮은 전압에서 전기 분무가 가능하지만, 더 작은 구멍은 과도한 배압으로 인해 쉽게 막힐 수 있습니다.

직경이 더 큰 (> 50µm) 이미 터를 처리하는 것이 더 쉽습니다. 그러나 그들은 더 작은 직경의 이미 터만큼 효율적이지 않습니다 [11]. 일반적으로 ESI 전압을 적용하기 위해 유리 또는 용융 실리카와 같은 절연 재료로 제작 된 저 유량 이미 터의 외주에 전도성 코팅이 적용됩니다.

용융 실리카 모세관의 끝 부분에있는 스퍼터 코팅 된 귀금속 층은 내구성에 빠르게 영향을 미치는 것으로 관찰되었습니다. 코팅의 빠른 열화는 방전, 전기 화학적 반응 및 층과 용융 실리카 표면 사이의 불량한 기계적 결합으로 인해 발생할 수 있습니다.

이러한 에미 터의 수명은 스퍼터 코팅 후에 금을 전기 도금하거나 [12] 스퍼터 코팅 된 금 위에 SiOx를 코팅하여 증가시킬 수 있습니다 [13]. 크롬 또는 니켈 합금의 접착층 위에 금으로 코팅 된 이미 터는 우수한 결합력을 제공 할 수 있으며 음극으로 작동 할 때 내구성이 있습니다.

그러나 양극으로 작동하는 동안 접착층은 금 막을 통해 화학적으로 용해됩니다. 이미 터의 안정성과 내구성을 향상시키기 위해 대체 전도성 코팅이 평가되었습니다.

안정적인 ESI 작동을 위해 콜로이드 흑연 코팅 이미 터가 사용되었으며 수명이 길었습니다 [14]. 폴리아닐린 (PANI) 코팅 이미 터는 두꺼운 코팅으로 인해 높은 내구성을 보여주고 방전에 강합니다. PANIcoated와 gold-coated nanospray emitter의 electrospray ionization 거동을 비교 한 결과 PANIcoated emitter는 goldcoated emitter와 비슷한 향상된 감도를 제공합니다 [15].

그라파이트-폴리이 미드 혼합물은 또한 무 접착 전기 분무 방출기의 경우 전도성 코팅으로 사용되었습니다. 전도성 코팅의 안정성은 산화 스트레스 동안 좋은 성능을 나타내는 전기 화학적 방법에 의해 조사되었습니다 [16].

탄소 코팅 이미 터의 기능은 마이크로 스프레이 및 시스리스 CE 및 ESI 응용 분야에서 입증되었습니다. 이 이미 터는 견고하지는 않지만 방수가 되지 않는 CE 또는 ESI 애플리케이션에 충분히 내구성이있었습니다 [17].

우리는 막힘 문제를 제거하고 시료 액체와 금층 사이의 접촉 문제를 피할 수있는 뾰족한 탄소 섬유 기반의 새로운 ESI 방출기를 도입하여 ESI 시스템의 적용 성, 신뢰성 및 내구성을 향상 시켰습니다 [18]. 이 작업에서 탄소 섬유 기반 ESI 이미 터는 전산 유체 역학 (CFD) 소프트웨어 패키지 FLOW-3D [19]를 사용하여 시뮬레이션됩니다.

실험은 새로운 CF 이미 터를 사용하여 수행됩니다. 모델 예측은 실험 결과와 비교됩니다. 새로운 이미 터의 ESI 성능은 이미 터의 기하학적 구조, 유속, 액체의 물리적 특성과 같은 다양한 매개 변수에 대한 반응을 연구하여 평가됩니다.

스프레이 전류 및 제트 직경은 유량 및 액체의 특성과 상관 관계가 있으며 상관 결과는 문헌에보고 된 결과와 정량적으로 비교됩니다. 다음 섹션에서 ESI 공정을 지배하는 전기 유체 역학 이론은 Taylor–Melcher 누설 유전체 모델 [20]을 참조하여 설명됩니다.

그런 다음 Hartman 등이 사용하는 ESI 구성을 고려하여 CFD 코드의 유효성을 확인합니다 [21]. 또한 CF 기반 ESI 모델에 대한 시뮬레이션 및 실험 결과가 제시되고 논의됩니다. 마지막으로 모수 연구 결과와 상관 관계를 제시하고 논의합니다.

Figure 2. Forces in the liquid cone.
Figure 2. Forces in the liquid cone.
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 15. Electric field contours at various time steps
Figure 15. Electric field contours at various time steps
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

References

[1] Siuzdak M 1996 Mass Spectrometry for Biotechnology (New York: Academic)
[2] Cole R B (ed) 1997 Electrospray Ionization Mass Spectrometry (New York: Wiley-Interscience)
[3] Zeleny J 1914 Phys. Rev. 3 69–91
[4] Zeleny J 1917 Phys. Rev. 10 1–6
[5] Dole M, Mack L L, Hines R L, Mobley R C, Ferguson L D and Alice M B 1968 Molecular beams of macroions
J. Chem. Phys. 49 2240–9
[6] Clegg G A and Dole M 1971 Molecular beams of macroions: III. Zein and polyvinylpyrrolidone Biopolymers
10 821–6
[7] Fenn J B, Mann M, Meng C K, Wong S F and Whitehouse C M 1989 Electrospray ionization for mass
spectrometry of large biomolecules Science 246 64–71
[8] Herring C J and Qin J 1999 An on-line preconcentrator and the evaluation of electrospray interfaces for the capillary
electrophoresis/mass spectrometry of peptides Rapid Commun. Mass Spectr. 13 1–7
[9] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C B 2002 Microscale Tools for Sample Preparation, Separation
and Detection of Neuropeptides Sensors Actuators B 86 280–6
[10] Cao P and Moini M 1997 A novel sheathless interface for capillary electrophoresis/electrospray ionization mass
spectrometry using an in-capillary electrode J. Am. Soc. Mass Spectrom 8 561–4
[11] Janini G M, Conards T P, Wilkens K L, Issaq H J and Veenstra T D 2003 A sheathless nanoflow electrospray
interface for on-line capillary electrophoresis mass spectrometry Anal. Chem 75 1615–9
[12] Barroso M B de Jong and Ad P 1999 Sheathless preconcentration-capillary zone electrophoresis-mass
spectrometry applied to peptide analysis J. Am. Soc. Mass Spectrom 10 1271–8
[13] Valaskovic G A and McLafferty F W 1996 Long-lived metallized tips for nanoliter electrospray mass spectrometry
J. Am. Soc. Mass Spectrom. 7 1270–2
[14] Zhu X, Thiam S, Valle B C and Warner I M 2002 A colloidal graphite coated emitter for seathless capillary
electrophoresis/nanoelectrospray ionization mass spectrometry Anal. Chem 74 5405–9
[15] Maziarz E P I II, Lorenz S A, White T P and Wood T D 2000 Polyaniline: a conductive polymer coating for durable
nanospray emitters J. Am. Soc. Mass. Spectrom 11 659–63
[16] Nilsson S, Wetterhall M, Bergquist J, Nyholm L and Markides K E 2001 A simple and robust conductive
graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry Rapid
Commun. Mass Spectr. 15 1997–2000
[17] Chang Y Z and Her G R 2000 Sheathless capillary electrophoresis/electospray mass spectrometry using a
carbon-coated tapered fused silica capillary with a beveled edge Anal. Chem. 72 626–30
[18] Liu J, Ro K W, Busman M and Knapp D R 2004 Electrospray ionization with a pointed carbon fiber emitter Anal. Chem. 76 3599–606
[19] Hirt C W 2004 Electro-hydrodynamics of semi–conductive fluids: with application to electro–spraying Flow Science
Technical Note 70 FSI–04–TN70 1–7
[20] Saville D A 1997 Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model Annu. Rev. Fluid Mech. 29 27–64
[21] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M and Scarlett B 1999
Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet J. Aerosol Sci.
30 823–49
[22] Castellanos A 1998 Basic Concepts and Equations in Electrohydrodynamics Electrohydrodynamics
ed A Castellanos (Berlin: Springer)
[23] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press)
[24] Hirt C W and Nichols B D 1981 Volume of fluid (VOF) method for the dynamics of free boundaries J. Comp. Phys.
39 201–25
[25] De la Mora F J and Loscertales I G 1994 The current emitted by highly conducting Taylor cones J. Fluid Mech. 260
155–84
[26] Ganan-Calvo A M 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal
scaling laws in electrospraying Phys. Rev. Lett. 79 217–20
[27] Higuera F J 2004 Current/flow–rate characteristic of an electrospray with a small meniscus J. Fluid Mech.
513 239–46
[28] Zeng J, Sobek D and Korsmeyer T Electro-hydrodynamic modeling of electrospray ionization: cad for a microfluidic
device-mass spectrometer interface Transducers ’03: 12th Int. Conf. on Solid State Sensors, Actuators and
Microsystems 2 1275–8
[29] Ganan–Calvo A M, Davila J and Barrero A 1997 Current and droplet size in the electrospraying of liquids. Scaling laws J. Aerosol Sci. 28 249–75
[30] Cloupeau M and Prunet-Foch B 1989 Electrostatic spraying of liquids in cone–jet mode J. Electrost. 22 135–59

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

Drop-on-demand 잉크젯 인쇄는 상업 및 소비자 이미지 재생을 위한 잘 정립 된 방법입니다. 이 기술을 주도하는 동일한 원리는 인쇄 및 적층 제조 분야에도 적용될 수 있습니다. 기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르기까지 다양한 재료를 증착하고 패턴화하여 다양한 기능성 매체, 조직 및 장치를 인쇄하는 데 사용되었습니다 [1, 2]. 이 작업의 초점은 잉크젯 기반 기술을 3D 솔리드 금속 구조 인쇄로 확장하는 데 있습니다 [3, 4]. 현재 대부분의 3D 금속 프린팅 응용 프로그램은 고체 물체를 형성하기 위해 레이저 [6] 또는 전자 빔 [7]과 같은 외부 지향 에너지 원의 영향을 받아 증착 된 금속 분말 소결 또는 용융을 포함합니다. 그러나 이러한 방법은 비용 및 프로세스 복잡성 측면에서 단점이 있습니다. 예를 들어, 3D 프린팅 프로세스에 앞서 분말을 생성하기 위해 시간과 에너지 집약적인 기술이 필요합니다.

이 기사에서는 MHD (자기 유체 역학) drop-on-demand 방출 및 움직이는 기판에 액체 방울 증착을 기반으로 3D 금속 구조의 적층 제조에 대한 새로운 접근 방식에 대해 설명합니다. 프로세스의 각 부분을 연구하기 위해 많은 시뮬레이션이 수행되었습니다.

단순화를 위해 이 연구는 두 부분으로 나뉘었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 Lorentz 힘 밀도에 의해 생성 된 압력을 추정 한 다음 FLOW-3D 모델의 경계 조건으로 사용됩니다. 액적 방출 역학을 연구하는 데 사용되었습니다.

두 번째 부분에서는 이상적인 액적 증착 조건을 식별하기 위해 FLOW-3D 매개 변수 분석을 수행했습니다. 모델링 노력의 결과는 그림 1에 표시된 장치의 설계를 안내하는데 사용되었습니다.

코일은 배출 챔버를 둘러싸고 전기적으로 펄스되어 액체 금속을 투과하고 폐쇄 루프를 유도하는 과도 자기장을 생성합니다. 그 안에 일시적인 전기장. 전기장은 순환 전류 밀도를 발생시키고, 이는 과도장에 역 결합되고 챔버 내에서 자홍 유체 역학적 로렌츠 힘 밀도를 생성합니다. 힘의 방사형 구성 요소는 오리피스에서 액체 금속 방울을 분출하는 역할을 하는 압력을 생성합니다. 분출된 액적은 기질로 이동하여 결합 및 응고되어 확장된 고체 구조를 형성합니다. 임의의 형태의 3 차원 구조는 입사 액적의 정확한 패턴 증착을 가능하게 하는 움직이는 기판을 사용하여 층별로 인쇄 될 수 있습니다. 이 기술은 상표명 MagnetoJet으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다.

이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성 되었습니다.

Computational Models

프로토 타입 장치 개발의 일환으로, 성능 (예 : 액적 방출 역학, 액적-공기 및 액적-기질 상호 작용)에 대한 설계 개념을 스크리닝하기 위해 프로토타입 제작 전에 계산 시뮬레이션을 수행했습니다. 분석을 단순화하기 위해 CFD 분석 뿐만 아니라 컴퓨터 전자기(CE)를 사용하는 두 가지 다른 보완 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반 액적 분출 거동과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서는 열-유체 CFD 분석을 사용하여 기판상의 액적 패턴화, 유착 및 응고를 연구했습니다.

MHD 분석 후, 첫 번째 모델에서 등가 압력 프로파일을 추출하여 액적 분출 및 액적-기질 상호 작용의 과도 역학을 탐구하도록 설계된 FLOW-3D 모델의 입력으로 사용되었습니다. FLOW-3D 시뮬레이션은 액적 분출에 대한 오리피스 안과 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부와 외부 모두에서 유체 초기화 수준을 변경하고 펄스 주파수에 의해 결정된 펄스 사이의 시간을 허용함으로써 크기 및 속도를 포함하여 분출 된 액 적의 특성 차이를 식별 할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화 함으로써, 인쇄된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속 방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속 방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적인 온도 구배에 대한 조정이 신속하게 이루어져야 하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성 되었습니다.

이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

Damascene templates

High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials

지난 10 년 동안 나노 크기의 재료와 공정을 제품에 통합하는 데 제한적인 성공을 거두면서 나노 기술에 상당한 투자와 발전이 있었습니다.

잉크젯, 그라비아, 스크린 프린팅과 같은 접근 방식은 나노 물질을 사용하여 구조와 장치를 만드는 데 사용됩니다. [1–7] 그러나 상당히 느리고 µm 스케일 분해능 만 제공 할 수 있습니다. 다양한 모양과 크기의 100nm 미만의 특징을 달성하기 위해 딥펜 리소그래피 (DPN) [8-11] 및 소프트 리소그래피 [12-16]와 같은 다양한 기술이 개발되고 광범위하게 연구되었습니다.

DPN은 직접 쓰기 기술로, atomic force microscopy 현미경 팁을 사용하여 다양한 기판에 여러 패턴을 생성합니다. DPN을 사용한 확장 성을 해결하기 위해 단일 AFM 팁 대신 2D 형식으로 배포 된 AFM (Atomic Force Microscopy) 팁 [17,18]이 사용되었습니다. 소프트 리소그래피에서는 나노 물질을 포함하는 잉크로 적셔진 원하는 릴리프 패턴을 가진 경화된 엘라스토머가 기판과 컨 포멀 접촉하게 되며, 여기서 패턴 화 된 나노 물질이 전달되어 기판에서 원하는 특징을 달성합니다.

이 논문에서는 작거나 큰 영역에서 몇 분 만에 나노, 마이크로 또는 거시적 구조를 인쇄 할 수 있는 다중 스케일 오프셋 인쇄 접근 방식을 제시합니다. 이 프로세스는 나노 입자 (NP), 탄소 나노 튜브 (CNT) 또는 용해 된 폴리머를 포함하는 서스펜션 (잉크)에서 나노 물질의 전기 영동 방향 조립을 사용하여 특별히 제작 된 재사용 가능한 Damascene 템플릿에 패턴을 “inking” 하는 것으로 시작됩니다. 이 잉크 프로세스는 실온과 압력에서 수행됩니다.

두 번째 단계는 템플릿에 조립된 나노 물질이 다른 기판으로 전송되는 “printing”로 구성됩니다. 전송 프로세스가 끝나면 템플릿은 다음 조립 및 전송주기에서 즉시 재사용 할 수 있습니다. 이 오프셋 인쇄 프로세스를 통해 NP (폴리스티렌 라텍스 (PSL), 실리카,은) 및 CNT (다중 벽 및 단일 벽)를 100μm에서 500nm까지의 크기 범위를 가진 패턴에 조립하고 유동성 기판에 성공적으로 옮깁니다.

다양한 나노 물질을 다양한 아키텍처로 조립하기 위해 템플릿 유도 유동, 대류, 유전 영동 (DEP) 및 전기 영동 조립과 같은 몇 가지 직접 조립 프로세스가 조사되었습니다. 모세관력이 지배적인 조립 메커니즘인 유체 조립 공정은 다양한 나노 물질에 적용 할 수 있습니다.

대류 조립 공정은 현탁 메니 스커 스와 증발을 활용하여 단일 나노 입자 분해능으로 정밀 조립을 가능하게 합니다. 이러한 조립 공정 중 많은 부분이 트렌치와 같은 마이크로 및 나노 스케일 기능으로 고해상도의 직접 조립을 보여 주었지만, 확장성 부족, 느린 공정 속도 및 반복성과 같은 많은 단점이 있습니다.

DEP 어셈블리는 NP와 전극 사이에 고배향 탄소 나노 튜브 어셈블리를 사용하여 나노 와이어 및 구조를 만드는 데 사용되었습니다. 조립 효율은 전기장과 전기장 구배에 상당한 영향을 미치는 전극의 기하학적 구조와 간격에 크게 좌우됩니다. 전기 영동 기반 조립 공정은 유체 조립에 비해 훨씬 짧은 시간에 전도성 표면에 표면 전하를 가진 나노 물질을 조립하는 것을 포함합니다. [34–37]

그러나 전기 영동 조립은 조립이 전도성 표면에 발생해야 하므로 다양한 장치를 만드는 데 실용적이지 않습니다. 한 가지 해결책은 원하는 나노 스케일 구조를 기반으로 전도성 패턴이 있는 템플릿을 만들고, 전기 영동 공정을 사용하여 패턴 위에 나노 물질을 조립 한 다음 조립 된 구조를 수용 기판에 옮기는 것입니다.

그림 1a와 같이 절연 필름에 전도성 와이어와 같은 패턴 구조가있는 기존 템플릿을 사용하면 나노 스케일 와이어의 잠재적 인 큰 강하로 인해 어셈블리가 불균일 해지며 대부분의 입자는 그림 1에 표시된 마이크로 와이어 b. 또한 NP는 3D 와이어의 측벽에도 조립되므로 바람직하지 않습니다. 또한 나노 스케일 와이어와 템플릿 사이의 작은 접촉 면적으로 인해 나노 스케일 와이어는 이송 과정에서 쉽게 벗겨집니다.

Damascene templates
Figure 1. Damascene templates: a) A schematic of a conventional wire template used for electrophoretic assembly. In these templates nanowire are connected to a micrometer scale electrodes, which are in turn connected, to a large metal pad through which the potential is applied. b) SEM images of a typical nanoparticle assembly result obtained for confi guration shown in (a). c) A schematic of a Damascene template where all of the wires (nano- or micrometer scale) and the metal pad are connected to a conductive fi lm underneath the insulating fi lm. d) A schematic of Damascene template fabrication. Inset is artifi cially colored cross-sectional SEM image showing the metal nanowires to be at the same height as that of the SiO 2 and showing the conductive fi lm underneath the insulator. e) An optical image of a 3 inch Damascene template.
Offset printing
Figure 2. Offset printing: a) A schematic of the nanoscale offset printing approach. The insulating (SiO 2 ) surface of the Damascene template is selectively coated with a hydrophobic SAM (OTS). Using electrophoresis, nanomaterials are assembled on the conductive patterns of the Damascene template (“inking”), which are then transferred to a recipient substrate (“printing”). After the transfer, the template is ready for the next assembly and transfer cycle. b) SEM image of 50 nm PSL particles assembly with high density on 1 µm wide electrodes. c) Silica particles (20 nm) assembly on crossbar 2D patterns demonstrating the versatility of the Damascene template. Inset fi gure is a high-resolution image of assembled silica particles. d) SEM image of assembled SWNTs on micrometer scale patterns. e) MWNTs assembled on 100 µm features. f) Cellulose assembled on 2 µm electrodes. g) SWNTs assembled in cross bar architecture patterns. h) Flexible devices with array of transferred SWNTs and metal electrodes (printed on PEN). Inset is the microscopy image of two electropads and transferred SWNTs on PEN fi lm.
Analysis of nanomaterial assembly on electrodes
Figure 3. Analysis of nanomaterial assembly on electrodes

이것은 또한 그림 3b에 표시된대로 유한 체적 모델링 (Flow 3D)을 사용하는 전기장 윤곽 시뮬레이션 결과에 의해 확인됩니다. 전기장 강도의 윤곽은 전도성 패턴의 가장자리에있는 전기장이 중앙에있는 것보다 더 강하다는 것을 나타냅니다. 그러나 적용된 전위가 2.5V로 증가하면 그림 3c에 표시된대로 100nm 실리카 입자가 Damascene 템플릿을 가로 질러 전도성 패턴의 표면에 완전히 조립되어 조립을위한 임계 전기장 강도에 도달했음을 나타냅니다. 정렬 된 SWNT는 여과 전달 경로를 피하고 나노 튜브 사이의 접합 저항을 최소화하여 소자 성능의 최소 변화를 가져 오기 때문에 많은 응용 분야에서 고도로 조직화 된 SWNT가 필요합니다.

References

[1] M.Abulikemu, E.H.Da’as, H.Haverinen, D.Cha, M.A.Malik, G.E.Jabbour, Angew.Chem.Int.Ed.2014, 53, 599.
[2] a) Z.Lu, M.Layani, X.Zhao, L.P.Tan, T.Sun, S.Fan, Q.Yan, S.Magdassi, H.H.Hng, Small 2014, 10, 3551; b) H.Ko, J.Lee, Y.Kim, B.Lee, C.H.Jung, J.H.Choi, O.S.Kwon, K.Shin, Adv.Mater.2014, 26, 2286.
[3] C.J.Hansen, R.Saksena, D.B.Kolesky, J.J.Vericella, S.J.Kranz, G.P.Muldowney, K.T.Christensen, J.A.Lewis, Adv.Mater.2013, 25, 2.
[4] F.C.Krebs, N.Espinosa, M.Hösel, R.R.Søndergaard, M.Jørgensen, Adv.Mater.2014, 26, 29.
[5] W.Honda, S.Harada, T.Arie, S.Akita, K.Takei, Adv.Funct.Mater. 2014, 24, 3298.
[6] R.Guo, Y.Yu, Z.Xie, X.Liu, X.Zhou, Y.Gao, Z.Liu, F.Zhou, Y.Yang, Z.Zheng, Adv.Mater.2013, 25, 3343.
[7] A.Dzwilewski, T.Wågberg, L.Edman, J.Am.Chem.Soc.2009, 131, 4006.
[8] R.D.Piner, J.Zhu, F.Xu, S.Hong, C.A.Mirkin, Science 1999, 283, 661.
[9] J.-H.Lim, C.A.Mirkin, Adv.Mater.2002, 14, 1474.
[10] X.Liu, L.Fu, S.Hong, V.P.Dravid, C.A.Mirkin, Adv.Mater.2002,14, 231.
[11] D.A.Weinberger, S.Hong, C.A.Mirkin, B.W.Wessels, T.B.Higgins, Adv.Mater.2000, 12, 1600.
[12] J.P.Rolland, E.C.Hagberg, G.M.Denison, K.R.Carter, J.M.DeSimone, Angew.Chem.2004, 116, 5920.
[13] T.Granlund, T.Nyberg, L.S.Roman, M.Svensson, O.Inganäs, Adv.Mater.2000, 12, 269.
[14] Y.Xia, G.M.Whitesides, Annu.Rev.Mater.Sci.1998, 28, 153.
[15] W.S.Beh, I.T.Kim, D.Qin, Y.Xia, G.M.Whitesides.Adv.Mater. 1999, 11, 1038.
[16] Y.Yin, B.Gates, Y.Xia.Adv.Mater.2000, 12, 1426.
[17] K.Salaita, Y.Wang, J.Fragala, R.A.Vega, C.Liu, C.A.Mirkin,Angew.Chem.2006, 118, 7378.
[18] D.Bullen, S.-W.Chung, X.Wang, J.Zou, C.A.Mirkin, C.Liu, Appl.Phys.Lett.2004, 84, 789.
[19] Y.L.Kim, H.Y.Jung, S.Park, B.Li, F.Liu, J.Hao, Y.-K.Kwon, Y.J.Jung, S.Kar, Nat.Photonics 2014, 8, 239.
[20] X.Xiong, L.Jaberansari, M.G.Hahm, A.Busnaina, Y.J.Jung, Small 2007, 3, 2006.
[21] A.B.Marciel, M.Tanyeri, B.D.Wall, J.D.Tovar, C.M.Schroeder, W.L.Wilson, Adv.Mater.2013, 25, 6398.
[22] J.T.Wang, J.Wang, J.J.Han, Small 2011, 7, 1728.
[23] S.Y.Lee, S.H.Kim, H.Hwang, J.Y.Sim, S.M.Yang, Adv.Mater. 2014, 26, 2391.
[24] J.Y.Oh, J.T.Park, H.J.Jang, W.J.Cho, M.S.Islam, Adv.Mater. 2014, 26, 1929.
[25] K.W.Song, R.Costi, V.Bulovi, Adv.Mater.2013, 25, 1420.
[26] P.Maury, M.Escalante, D.N.Reinhoudt, J.Huskens, Adv.Mater. 2005, 17, 2718.
[27] Y.Xia, Y.Yin, Y.Lu, J.McLellan, Adv.Funct.Mater.2003, 13, 907.
[28] L.Jaber-Ansari, M.G.Hahm, S.Somu, Y.E.Sanz, A.Busnaina, Y.J.Jung, J.Am.Chem.Soc.2008, 131, 804.
[29] T.Kraus, L.Malaquin, H.Schmid, W.Riess, N.D.Spencer, H.Wolf,Nat.Nanotechnol.2007, 2, 570.
[30] K.D.Hermanson, S.O.Lumsdon, J.P.Williams, E.W.Kaler, O.D.Velev, Science 2001, 294, 1082.
[31] H.-W.Seo, C.-S.Han, D.-G.Choi, K.-S.Kim, Y.-H.Lee, Microelectron.Eng.2005, 81, 83.
[32] E.M.Freer, O.Grachev, X.Duan, S.Martin, D.P.Stumbo, Nat.Nanotechnol.2010, 5, 525.
[33] D.Xu, A.Subramanian, L.Dong, B.J.Nelson, IEEE Trans.Nanotechnol.2009, 8, 449.
[34] X.Xiong, P.Makaram, A.Busnaina, K.Bakhtari, S.Somu, N.McGruer, J.Park, Appl.Phys.Lett.2006, 89, 193108.
[35] R.C.Bailey, K.J.Stevenson, J.T.Hupp, Adv.Mater.2000, 12, 1930.
[36] Q.Zhang, T.Xu, D.Butterfi eld, M.J.Misner, D.Y.Ryu, T.Emrick, T.P.Russell, Nano Lett.2005, 5, 357.
[37] E.Kumacheva, R.K.Golding, M.Allard, E.H.Sargent, Adv.Mater. 2002, 14, 221.
[38] M.Wei, Z.Tao, X.Xiong, M.Kim, J.Lee, S.Somu, S.Sengupta, A.Busnaina, C.Barry, J.Mead, Macromol.Rapid Commun.2006, 27, 1826.
[39] a) D.Schwartz, S.Steinberg, J.Israelachvili, J.Zasadzinski, Phys.Rev.Lett.1992, 69, 3354; b) W.Yang, P.Thordarson, J.J.Gooding, S.P.Ringer, F.Braet, Nanotechnology 2007, 18, 412001.
[40] S.Siavoshi, C.Yilmaz, S.Somu, T.Musacchio, J.R.Upponi, V.P.Torchilin, A.Busnaina, Langmuir 2011, 27, 7301.
[41] E.Artukovic, M.Kaempgen, D.Hecht, S.Roth, G.Grüner, NanoLett.2005, 5, 757.
[42] L.Hu, D.Hecht, G.Grüner, Nano Lett.2004, 4, 2513.
[43] M.Fuhrer, J.Nygård, L.Shih, M.Forero, Y.G.Yoon, H.J.Choi, J.Ihm, S.G.Louie, A.Zettl, P.L.McEuen, Science 2000, 288,
494.
[44] J.J.Gooding, A.Chou, J.Liu, D.Losic, J.G.Shapter, D.B.Hibbert,Electrochem.Commun.2007, 9, 1677.
[45] A.Chou, T.Böcking, N.K.Singh, J.J.Gooding, Chem.Commun. 2005, 7, 842.
[46] D.Hines, V.Ballarotto, E.Williams, Y.Shao, S.Solin, J.Appl.Phys. 2007, 101, 024503.
[47] H.Park, A.Afzali, S.-J.Han, G.S.Tulevski, A.D.Franklin, J.Tersoff, J.B.Hannon, W.Haensch, Nat.Nanotechnol.2012, 7, 787.
[48] S.Somu, H.Wang, Y.Kim, L.Jaberansari, M.G.Hahm, B.Li, T.Kim, X.Xiong, Y.J.Jung, M.Upmanyu, A.Busnaina, ACS Nano 2010, 4, 4142.
[49] L.Jaber-Ansari, M.G.Hahm, T.H.Kim, S.Somu, A.Busnaina, Y.J.Jung, Appl.Phys.A 2009, 96, 373.
[50] B.Li, M.G.Hahm, Y.L.Kim, H.Y.Jung, S.Kar, Y.J.Jung, ACS Nano 2011, 5, 4826.
[51] B.Li, H.Y.Jung, H.Wang, Y.L.Kim, T.Kim, M.G.Hahm, A.Busnaina, M.Upmanyu, Y.J.Jung, Adv.Funct.Mater.2011, 21, 1810.
[52] M.A.Meitl, Z.T.Zhu, V.Kumar, K.J.Lee, X.Feng, Y.Y.Huang, I.Adesida, R.G.Nuzzo, J.A.Rogers, Nat.Mater.2005, 5, 33.
[53] F.N.Ishikawa, H.Chang, K.Ryu, P.Chen, A.Badmaev, L.GomezDe Arco, G.Shen, C.Zhou, ACS Nano 2008, 3, 73.
[54] N.Inagaki, Plasma Surface Modifi cation and Plasma Polymerization, CRC, Boca Raton, FL, USA 1996.
[55] E.Liston, L.Martinu, M.Wertheimer, J.Adhes.Sci.Technol.1993, 7, 1091.
[56] T.Tsai, C.Lee, N.Tai, W.Tuan, Appl.Phys.Lett.2009, 95, 013107.
[57] J.G.Bai, Z.Z.Zhang, J.N.Calata, G.-Q.Lu, IEEE Trans.Compon.Packag.Technol.2006, 29, 589.
[58] J.G.Toffaletti, Crit.Rev.Clin.Lab.Sci.1991, 28, 253.
[59] J.-L.Vincent, P.Dufaye, J.Berré, M.Leeman, J.-P.Degaute, R.J.Kahn, Crit.Care Med.1983, 11, 449.
[60] R.Henning, M.Weil, F.Weiner, Circ.Shock 1982, 9, 307.

Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.

Effect of the surface morphology of solidified droplet on remelting
between neighboring aluminum droplets

Abstract

인접한 물방울 사이의 좋은 야금학적 결합은 droplet 기반 3D 프린팅에서 필수적입니다. 그러나 재용해 메커니즘이 명확하게 마스터되었지만, 콜드 랩은 균일한 알루미늄 액적 증착 제조에서 형성된 부품의 일반적인 내부 결함이며, 이는 응고된 액 적의 표면 형태를 간과하기 때문입니다.

여기에서 처음으로 물방울 사이의 융합에 대한 잔물결과 응고각의 차단 효과가 드러났습니다. 재용해의 자세한 과정을 조사하기 위해 VOF (체적 부피) 방법을 기반으로 3D 수치 모델을 개발했습니다. 실험과 시뮬레이션을 통해 인접한 액적 간의 재 용융 공정은 두 번째 액 적과 기판 사이의 과도 접촉에 따라 두 단계로 나눌 수 있음을 보여줍니다.

첫 번째 단계에서는 재용해 조건이 이론적으로 충족 되더라도 콜드 랩이 형성 될 수 있다는 직관적이지 않은 결과가 관찰됩니다. 이전에 증착된 액적 표면의 잔물결은 새로운 액적과의 직접 접촉을 차단합니다. 두 번째 단계에서는 응고 각도가 90 °보다 클 때 액체 금속이 불완전하게 채워져 바닥 표면에 콜드랩이 형성됩니다. 또한 이러한 콜드 랩은 온도 매개 변수를 개선하여 완전히 피하는 것이 어렵습니다.

이 문제를 해결하기 위해 기판의 열전도 계수를 감소시키는 새로운 전략이 제안 되었습니다. 이 방법은 잔물결을 제거하고 응고 각도를 줄임으로써 물방울 사이의 재용해를 효과적으로 촉진합니다.

Keywords: 3D printing; aluminum droplets; metallurgical bonding; ripples; solidification angle.

Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.

References

[1] D. Zhang, L. Qi, J. Luo, H. Yi, X. Hou, Direct fabrication of unsupported inclined aluminum pillars
based on uniform micro droplets deposition, International Journal of Machine Tools and Manufacture,
116 (2017) 18-24.
[2] H. Yi, L. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact
on solid surfaces, Applied Physics Letters, 108 (2016) 041601.
[3] T. Zhang, X. Wang, T. Li, Q. Guo, J. Yang, Fabrication of flexible copper-based electronics with
high-resolution and high-conductivity on paper via inkjet printing, Journal of Materials Chemistry C, 2
(2014) 286-294.
[4] T. Zhang, M. Hu, Y. Liu, Q. Guo, X. Wang, W. Zhang, W. Lau, J. Yang, A laser printing based
approach for printed electronics, Applied Physics Letters, 108 (2016) 103501.
[5] H. Gorter, M. Coenen, M. Slaats, M. Ren, W. Lu, C. Kuijpers, W. Groen, Toward inkjet printing of
small molecule organic light emitting diodes, Thin Solid Films, 532 (2013) 11-15.
[6] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor
for efficient energy storage under extreme environmental temperatures, Nano Energy, 8 (2014) 231-237.
[7] C.W. Visser, R. Pohl, C. Sun, G.W. Römer, B. Hu is in‘t Veld, D. Lohse, Toward 3D printing of
pure metals by laser‐induced forward transfer, Advanced materials, 27 (2015) 4087-4092.
[8] M. Fang, S. Chandra, C. Park, Heat transfer during deposition of molten aluminum alloy droplets to
build vertical columns, Journal of Heat Transfer, 131 (2009) 112101.
[9] Q. Xu, V. Gupta, E. Lavernia, Thermal behavior during droplet-based deposition, Acta materialia,
48 (2000) 835-849.
[10] W. Liu, G. Wang, E. Matthys, Thermal analysis and measurements for a molten metal drop
impacting on a substrate: cooling, solidification and heat transfer coefficient, International Journal of
Heat and Mass Transfer, 38 (1995) 1387-1395.
[11] R. Rangel, X. Bian, Metal-droplet deposition model including liquid deformation and substrate
remelting, International journal of heat and mass transfer, 40 (1997) 2549-2564.
[12] B. Kang, Z. Zhao, D. Poulikakos, Solidification of liquid metal droplets impacting sequentially on
a solid surface, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS
JOURNAL OF HEAT TRANSFER, 116 (1994) 436-436.

FLOW-3D Weld

FLOW-3D Weld

FLOW-3D  WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어를 통해 다공성, 열 영향 영역을 최소화하고, 미세 구조 변화를 제어 할 수 있습니다. 레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리학을 구현합니다.

 

낮은 열 입력,  뛰어난 생산성, 속도는 기존의 용접 방법을 대체하는 레이저 용접 프로세스로 이어집니다. 레이저 용접이 제공하는 장점 중 일부는 더 나은 용접 강도, 더 작은 열 영향 영역, 더 정밀한 정밀도, 최소 변형 및 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 / 합금을 용접 할 수있는 능력을 포함합니다.

공정 최적화

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 공정 최적화를 달성하는 데 도움이됩니다. 더 나은 공정 제어로 다공성을 최소화하고 열 영향을받는 영역을 제한하며 미세 구조 변화를 제어 할 수 있습니다. FLOW-3D WELD 는 자유 표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀을 시뮬레이션하는 데 매우 적합합니다. FLOW-3D WELD 는 관련 물리적 모델을 FLOW-3D 에 추가로 통합하여 개발되었습니다.  레이저 소스에 의해 생성된 열유속, 용융 금속의 증발 압력, 차폐 가스 효과, 용융 풀의 반동 압력 및 키홀 용접의 다중 레이저 반사. 현실적인 공정 시뮬레이션을 위해 모든 관련 물리 현상을 포착하는 것이 중요합니다.

 

얕은 용입 용접 (왼쪽 상단); 실드 가스 효과가 있는 깊은 용입 용접 (오른쪽 상단); 쉴드 가스 및 증발 압력을 사용한 심 용입 용접 (왼쪽 하단); 쉴드 가스, 증발 압력 및 다중 레이저 반사 효과 (오른쪽 하단)를 사용한 깊은 침투 용접.

FLOW-3D WELD 는 레이저 용접의 전도 모드와 키홀 모드를 모두 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D WELD 를 사용하여 용융 풀 역학을 분석하고 공정 매개 변수를 최적화하여 다공성을 최소화하며 레이저 용접 수리 공정에서 결정 성장을 예측합니다.

완전 관통 레이저 용접 실험

한국의 KAIST와 독일의 BAM은 16K kW 레이저를 사용하여 10mm 강판에 완전 침투 레이저 용접 실험을 수행했습니다. CCD 카메라의 도움으로 그들은 완전 침투 레이저 용접으로 인해 형성된 상단 및 하단 용융 풀 역학을 포착 할 수있었습니다. 그들은 또한 FLOW-3D WELD 에서 프로세스를  시뮬레이션하고 시뮬레이션과 실험 결과 사이에 좋은 일치를 얻었습니다.

실험 설정 레이저 용접
CCD 카메라로 상단 및 하단 용융 풀을 관찰하는 실험 설정
레이저 용접 회로도
FLOW-3D의 계산 영역 개략도
레이저 용접 시뮬레이션 실험 결과
상단의 시뮬레이션 결과는 용융 풀 길이가 8mm 및 15mm 인 반면 실험에서는 용융 풀 길이가 7mm 및 13mm임을 나타냅니다.
 

레이저 용접 다공성 사례 연구

General Motors, Michigan 및 Shanghai University는 중국의 공정 매개 변수, 즉 용접 속도 및 용접 경사각이 키홀 용접에서 다공성 발생에 미치는 영향을 이해하기 위해 상세한 연구를 공동으로 진행했습니다.

키홀 유도 용접 다공성
레이저 용접된 알루미늄 조인트 단면의 용접 다공성, 키홀 유도 다공성은 유동 역학으로 인해 발생하며 균열을 일으킬 수 있습니다. 최적화 된 공정 매개 변수는 이러한 종류의 다공성을 완화 할 수 있습니다.

연구원들은 FLOW-3D WELD를 사용 하여 증발 및 반동 압력, 용융풀 역학, 온도 의존적 ​​표면 장력 및 키홀 내에서 여러 번의 레이저 반사 동안 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

시뮬레이션 모델을 기반으로 연구진은 키홀 용접에서 유도 다공성의 주요 원인으로 불안정한 키홀을 식별했습니다. 아래 이미지에서 볼 수 있듯이 후방 용융 풀의 과도한 재순환으로 인해 후방 용융 풀이 전방 용융 풀 벽에서 붕괴되고 공극이 발생하여 다공성이 발생합니다. 이러한 갇힌 공극이 진행되는 응고 경계에 의해 포착되었을 때 다공성이 유도되었습니다.

높은 용접 속도에서는 더 큰 키홀 개구부가 있으며 이는 일반적으로 더 안정적인 키홀 구성을 가져옵니다. 사용 FLOW-3D 용접 , 연구진은 그 높은 용접 속도와 경사도 완화 다공성의 큰 용접 각도를 예측했습니다.

레이저 용접 수치 실험 결과
시뮬레이션 (위) 및 실험 (아래)에서 볼 수있는 세로 용접 섹션의 다공성 분포

FLOW Weld

FLOW Weld  모듈은 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다.

FLOW-3D 의 표면 장력 자유 표면 분석, 용융, 응고, 증발, 상 변화 모델 등의 기본 기능을

응용하여 각종 용접 현상을 분석 할 수 있습니다.

주요 기능 :열원 모델 (출력 지정, 가우스분포, 디 포커스 등) 열원의 자유로운 이동 증발 압력 (그에 따른 반력) 실드 가스 압력 다중 반사 용접에 관한 대표적인 출력 (온도 구배 냉각 속도, 에너지 분포 등)
분석 용도 :높은 방사선 강도와 고온에 의해 직접 관찰이 어려운 현상을 시각화 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 매개 변수 연구 결함 예측 (기공, 응고, 수축 등)

FLOW -3D Weld 분석 기능

weld_flow
  1. 열원 모델의 이동
      출력량 지정, 가우스분포
  2. 에너지 밀도의 분포 , 가공 속도
      가우스 테이블 입력
  3. 증발 압력
      온도 의존성
  4. 다중 반사
      용해 깊이에 미치는 영향
  5. 결과 처리
      용해 모양, 에너지 분포, 온도 구배 냉각 속도
  6. 다양항형상의 레이저와 거동 (+ csv 파일로드)
      다양한 모양을 csv 파일 형식으로 정의 회전 + 이동
      임의 형상 이동을 csv 파일로 로드 (나선형)
  7.  이종 재료
      이종 재료의 용접
  8.  3D Printing Method  
      Cladding 적층공정

1. 열원 모델의 이동

weld16-1weld16-2
에너지 밀도공간 분포

2. 에너지 밀도의 분포, 가공 속도

열 플럭스 r 방향의 분포 단면은 원형으로, r 방향으로 열유속 분포를 제공합니다.

에너지 밀도의 공간적 분포

가우스 : 원추형의 경우는 조사 방향으로 변화하고 열유속의 면적 분은 동일합니다.

가공 속도

가공 노즐을 x, y, z 방향, 시간 – 속도의 테이블에서 지정합니다.
또한 노즐 (광원) 위치 좌표 조사 방향 벡터 성분을 지정합니다.

3. 증발 압력

에너지 밀도가 높은 경우, 용융 부 계면이 증발하고 그 반력에 의해 계면에 함몰이 발생합니다.
특히 깊은 용융부를 포함한 레이저 용접은 증발 압력을 고려한 모델링이 필요합니다.

증발 압력의 평가는 일반적인 수학적 모델이 없기 때문에 다음 모델 식을 사용합니다.

증발 가스의 상승 효과 (키 홀, 스퍼터 등)

증기의 상승 흐름의 영향을 동압, 전단력으로 평가합니다.

weld5-1 

4. 다중 반사

키홀 거동의 비교

weld9
다중 반사 없음다중 반사 있음

다중 반사를 고려한 레이저

weld10

5. 결과 처리

용접 기능에 관한 대표적인 출력 예입니다.

6. 다양한 형상의 레이저와 거동 (+ csv 파일 읽기)

weld17weld18

7. 이종 재료

이종 재료 간이 분석

재료 : 철, 구리

밀도고상율
weld19

이종 재료를 이용한 레이저 용접

재료 : 구리, 철

재료 체적 비율온도
weld20

8. 금속 3D 프린팅 기법  

– 적층 제조 (Additive Manufacturing) 공정

– DED(Direct Energy Deposition) 공정 

FLOW-3D AM

flow3d AM-product
flow3d AM-product

FLOW-3D AM 은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

L-PBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 사용하면 아래 동영상처럼 입자의 분포를 무작위로 떨어뜨려 파우더 베드 배치 프로세스를 시뮬레이션할 수 있습니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

파우더 베드 용해

파우더 베드를 놓은 후 FLOW-3D  WELD 에서 레이저 빔 공정 매개 변수를 지정 하여 고 충실도 용융 풀 시뮬레이션을 수행 할 수 있습니다  . 온도, 속도, 고체 분율, 온도 구배 및 고체 속도의 플롯을 자세히 분석 할 수 있습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

다층 적층 제조

첫 번째 용융 층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고 된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

dem9
dem10

FLOW DEM

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

주요 기능 :고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7

응용 분야

1. Mechanical Engineering 분야

수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

2. Civil Engineering분야

3. Civil Engineering 분야

파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

dem11

3. Chemical Engineering, Pharmaceutics 분야

유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

dem12

4. MEMS, Electrical Engineering 분야

하전 입자를 포함한 전기장 해석 등

dem15

입자 그룹 가시화

그룹 가시화

DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

원래 입자수
입자 사이즈를 키운경우
그룹 가시화
  • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
  • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
  • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

주조 시뮬레이션에 DEM 적용

그룹 가시화 비교 예

그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Numerical modelling of a two-degree-of-freedom Wave Energy Converter

Energy Presentations | 에너지 프레젠테이션

Energy Presentations | 에너지 프레젠테이션

 지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오  .

2019 년

Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model

2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용

Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl
Marco Negri 및 Stefano Malavasi, Politecnico di Milano
Filippo Palo, XC Engineering Srl

Numerical modelling of a two-degree-of-freedom Wave Energy Converter
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.

다운로드

2015 년

Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state

생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션

Peter Arnold, Minerva Dynamics Limited

생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.

다운로드

Wave propagation and reflection at an inclined plane – simulations and experiments

경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험

Boris Huber, 비엔나 기술 대학교

20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다  . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.

다운로드

2013 년

Flap type wave power device in near shore conditions

해안 근처에서 플랩 형 파력 장치

Ibis Group, Inc의 Stephen Saunders

FLOW-3D  v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다  . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D  는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한  FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.

다운로드

Ocean waves resonance analysis of an oscillating water column energy converter

진동 수주 에너지 변환기의 해양 파도 공명 분석

José Manuel Grases ; 센데 키아

SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D  는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.

다운로드

Plate 1.1: Overall view of infiltration rig with permeable pavement

Modular Permeable Pavements | 모듈식 투과성 포장

이 기사는 Mohd Aminur Rashid ( UNITEN ), Prof Ismail Abustan (USM) 및 Prof Meor Othman Hamzah ( USM ) 가 기고했습니다.

모듈 식 투과성 포장은 전통적인 불 침투성 아스팔트 및 콘크리트 포장의 대안입니다. 물이 표면을 통해 빠르게 침투 할 수있는 능력 때문에 모듈 식 투과성 포장은 유출량과 최고 유출률을 줄일 수 있습니다. 모듈 식 투과성 포장 도로는 우수 제어를 돕는 효과적인 도구로 간주됩니다. 이 연구는  실험실 및 현장 실험 결과를 검증하기 위해 FLOW-3D 를 사용하여 투과성 포장의 변화를 모델링하고 시각화하는 데 중점을 둡니다  .

실험 설정

Plate 1.1: Overall view of infiltration rig with permeable pavement
Plate 1.1: Overall view of infiltration rig with permeable pavement
Plate 1.2: Physical model of the permeable pavement in laboratory
Plate 1.2: Physical model of the permeable pavement in laboratory

투과성 포장의 물리적 모델은 폭 525mm, 길이 565mm 인 모델의 전면보기를 위해 3면 20mm 두께의 PVC와 20mm 두께의 Perspex로 만들어진 Plate 1.2와 같이 수직 직사각형 수로에 배치되었습니다. 이 투과성 포장 도로에는 그림 1.1과 같이 표층 두께 110mm, 자갈 바닥 두께 300mm, 부기 층 두께 200mm의 세 가지 레이어가 있습니다. 서브베이스 레이어는 200mm 깊이까지 두 ​​개의 HMPS 레이어를 리그에 추가하여 구성되었습니다. 부기 층이 완성 된 후, 침투 리그에 15mm에서 20mm 크기의 세척 된 깨끗한 입방체 골재를 첨가하여 자갈 기저층을 시공 하였다. HMPS의 표면층은 5mm 깨끗한 입방체 골재가있는 PVC의 육각 기둥으로 구성됩니다.


그림 1.1 : 경계 조건 구성
Figure 1.1: Configuration of boundary conditions
Figure 1.1: Configuration of boundary conditions

모델 검증

모델은 20L / m, 15L / m, 10L / m, 5L / m의 유속에 대한 시뮬레이션 데이터와 실험실 데이터를 비교하여 검증되었습니다. 데이터는 시간 함수로서 포장 층 하단의 유체 축적 높이로 구성됩니다. 이러한 데이터는 FLOW-3D 의 짧은 런타임 때문에 선택되었습니다  . 그림 1.2는 20L / m 실험에서 관찰 된 결과와 계산 된 결과를 비교 한 것입니다. 관찰 시간과 계산 시간의 차이는 약 5 초로 매우 작습니다. 이것은 육각형 모듈 포장 시스템의 계산 모델, HMPS 및이 FLOW-3D 를 실행하는 데 사용 된 모든 데이터를 확인했습니다.  시뮬레이션은 실험실 조건과 일치했습니다. 15L / m에 대해 관찰 된 데이터와 계산 된 데이터 간의 비교가 그림 1.3에 나와 있습니다. 그래프는 동일한 추세선과 약 5 초의 차이도 보여줍니다. 그림 1.4는 10L / m에 대해 계산 된 데이터와 관찰 된 데이터 간의 비교 그래프를 보여줍니다. 이 사례는 시뮬레이션 된 데이터와 관찰 된 데이터에 대해 약 5 초 더 많은 것을 제외하고는 완전히 일치 함을 보여줍니다. 시뮬레이션 및 관찰 된 데이터는 차이가 5 초 미만인 5L / m 케이스에 대해 그림 1.5에 플롯되었습니다.

Comparison between observed and computed data
Figure 1.2: Comparison between observed and computed data on 20L/m
Figure 1.3: Comparison between observed and computed data on 15L/m
Figure 1.4: Comparison between observed and computed data on 10L/m
Figure 1.5: Comparison between observed and computed data on 5L/m

층 두께의 영향

시뮬레이션된 각 사례의 경우 속도 필드는 비슷하지만 FORD™ 방법이 형상을 해석하는 방식으로 차이를 관찰할 수 있습니다. 그물이 너무 거칠어서 PVC 육각형 기둥의 벽을 해결할 수 없을 경우 벽 내부와 외부 사이에 액체가 누출될 수 있습니다. 결과는 그림 1.9의 압력이 가장 거친 메시의 솔루션과 다른 두 메시의 메시 독립적 솔루션 사이에 뚜렷한 차이와 함께 서로 상당히 잘 일치한다는 것을 보여줍니다. 특히, 수면과 침대의 차이는 기하와 수면의 위치를 근사한 그물에 의해 발생하며, 이는 흐름장 내 세포의 0이 아닌 속도와 Fi와 같이 장애물 내 또는 수면 위 인접 세포의 0 속도 사이의 보간 차이를 초래합니다.1.10, 1.11 및 1.12입니다. 더 미세한 메시를 사용하여 불일치를 최소화해야 합니다.

Figure 1.6: Surface pavements of HMPS in FLOW-3D simulation
Figure 1.7: Effect of thickness of surface pavement on fraction of fluid
Figure 1.8: Effect of thickness of surface pavement on volume of fluid

시뮬레이션 된 각 경우에 대해 속도 필드는 비슷하지만 FAVOR ™ 방법이 형상을 해석하는 방식에서 차이가 관찰 될 수 있습니다. 메쉬가 너무 거칠어 서 PVC 육각 기둥의 벽을 해결할 수없는 경우 벽 내부와 외부 사이에 유체 누출이있을 수 있습니다. 결과는 그림 1.9의 압력이 가장 거친 메쉬의 솔루션과 다른 두 메쉬의 메쉬 독립 솔루션 사이에 현저한 차이가 있음을 알 수 있습니다. 특히 수면과 수면의 차이는 기하학과 수면의 위치를 ​​근사하는 메쉬에 의해 발생합니다. 이는 그림 1.10, 1.11 및 1.12에서와 같이 유동장에서 세포의 0이 아닌 속도와 장애물 내부 또는 수면 위의 인접한 세포의 속도가 0이 아닌 사이의 보간 차이를 초래합니다. 더 미세한 메시를 사용하여 불일치를 최소화해야합니다.

2D different thickness of surface pavement
Figure 1.9: Pressure fields for the 2D different thickness of surface pavement
Figure 1.10: Velocity fields for the 2D different thickness of surface pavement
Figure 1.11: Pressure fields for the 2D different thickness of surface pavement
Figure 1.12: Velocity fields in the z-direction for the 2D different thickness of surface pavement

결론

수행 된 테스트의 범위에서 FLOW-3D는 모듈식 포장 도로, HMPS의 흐름을 적절하게 모델링 한다는 결론을 내릴 수 있습니다. 결과는 또한 복잡한 2D 흐름이 항상 적절하게 모델링 되었음을 나타냅니다. 특히 물 표면 프로필을 물리적 모델의 프로필과 비교할 때 더욱 그렇습니다. 이는 동일한 운영 상황에서 실험 결과와 모델 결과를 비교하기 위한 이 연구의 세 번째 목표에 부합합니다. 또한 시뮬레이션은 대체 다공성 매체 모델 또는 축척 또는 프로토타입 치수로 실행할 수 있습니다. 이 연구는  FLOW-3D가 포장 구조를 통과하는 흐름의 일반적인 특성을 모델링 할 수 있을 만큼 충분히 발전되었습니다. 더 자세한 연구를 위해서는 더 강력한 컴퓨터가 필요합니다. 이러한 결과는 이 특정 경우에 유효하며 다른 디자인을 연구 할 때 지침으로 사용해야 합니다.

마지막으로 이 연구를 통해 포장 구조가 통합 유압 시스템으로 작동함을 알 수 있습니다. 이 시스템의 성능은 시스템 내의 모든 구성 요소와 관련이 있습니다. 본 연구의 다음 단계는 본 연구에서 제시 한 분석 방법을 기반으로 단순화된 모델을 개발하는 것입니다. 전산 유체 역학 모델에 사용 된 재료 특성의 추정을 개선하려면 토양 물 특성 곡선에 대해 더 많은 실험실 테스트를 수행해야 합니다.

2D velocity vector and temperature contours along the plane through door B (existing system)

작업장 환기 시스템의 평가 및 개선을 위한 CFO 기법 활용| The use of CFD techniques for the assessment and improvement of a workshop ventilation system

ST AWOLESI, MSc(Energy), BSc(Hons), Envirotrak Ltd, Cambridgeshire, UK.
HB AWBI, PhD, MSc, 8Sc, CEng, MCIBSE, University of Reading, Berkshire, UK.
MJ SEYMOUR, BSc(Hons), BSRIA, Bracknell, Berkshire, UK.
RA HILEY, MSc(Energy), BA(Hons), AEA Technology, Harwell, Oxon, UK.

SYNOPSIS

본 논문에서는 현재 환기 시스템의 성능을 검사하고 개선하여 COSHH 규정 요건을 1개 충족한다는 관점에서 작업장 내 공기 흐름 시뮬레이션에 CFO(Computational Fluid Dynamics) 기법을 적용하는 방법을 제시하고 설명합니다. 예측된 공기 흐름 패턴과 세 CFD 코드가 작업장 내의 선택된 지점에서 측정한 공기의 분배를 비교한 결과, 일반적으로 일치된 것으로 나타났으며, 기존 환기 시스템의 성능이 오염물질의 제거 가능성에 대해 불만족스러운지 확인합니다. CFD 기법을 사용하여 작업장 환기 및 오염 문제에 대한 실용적인 솔루션을 식별할 수 있었습니다.

INTRODUCTION

산업 공장에서 환기 시스템을 갖추는 목적은 열적 쾌적성을 촉진하고 유해 오염 물질에 대한 작업자의 잠재적 노출을 방지하는 것입니다. 작업장 내 근로자에게 미치는 건강상의 영향을 위해 보건 및 안전 행정부는 광범위한 산업 물질에 대한 단기 및 장기 노출에 대한 직업상 노출 제한(1) 목록을 발행합니다.

본사의 보건 물리학 부서에서 일상적으로 실시하는 현장 테스트*는 대기 오염물질의 높은 수위가 COSHH 법에 따라 요구되는 작업 한계를 초과함을 나타냅니다. 당사는 COSHH 규정에서 요구하는 대로 작업 수준 내에서 공기 오염 농도 수준을 가져오기 위해 작업장 내의 공기 흐름에 대한 광범위한 조사를 수행하도록 회사로부터 의뢰 받았습니다.

작업장 내의 공기 흐름 패턴이 상당히 복잡하다는 것을 알게 되었고, 원하는 공기 품질 개선을 달성하기 위해 실내 공기 이동에 대한 측정, 연기 흐름 시각화 및 컴퓨터 모델링을 수행할 필요가 있는 것으로 판단되었습니다.

우리의 목표는 현재의 환기 시스템을 평가하면서 이러한 방법을 간략히 보고하고 B에 워크샵 내의 오염이라는 ait의 수준을 감소시킬 수 있는 실용적인 솔루션을 제안하며, 3개의 CFO 프로그램과의 아웃·측정 및 계산 간의 합의를 평가하는 것입니다.

최근, 건물의 공기 흐름 패턴을 예측하기 위해 계산 유체 역학(CFD)의 사용에 대한 관심이 증가하고 있습니다. CFD 기법의 적용 범위를 나타내기 위해 그러한 몇 가지 예가 보고되었습니다(2) * 프로젝트의 기밀성 때문에 해당 회사의 이름을 지정할 수 없습니다.

DESCRIPTION OF THE WORKSHOP AND ITS
VENTILATION SYSTEM

작업장 및 환기 시스템에 대한 설명 메인 룸은 9m 길이 x 7 m폭 및 4.5m 높이의 주요 치수를 가진 작업장 단지의 일부입니다. 그리고 ante-room은 8m 길이 x 2m폭 x 2.5m 높이 크기를 가지고 있습니다. 아주 높아요. 여기에는 각 제어 장치와 동일한 세 가지 시설, 선반 부스, 드릴 부스, 페틀링 부스, 지역 배기 후드 및 다수의 작업 벤치가 포함되어 있습니다(그림 참조).

실내 환기 시스템은 레지스터 및 기타 개구부를 통한 공급과 추출물로 구성됩니다. 추출 측면은 앞서 언급한 세 개의 부스에 추가 추출이 있는 세 개의 용해로 위의 세 개의 국부 배기 후드와 벽면에 위치한 두 개의 일반 실내 추출물로 구성됩니다.

DISCUSSION OF RESULTS FROM MEASUREMENTS
AND SMOKE FLOW VISUALISATION

입력 측면은 메인 입구 도어(도어 B)의 개구부에서 유입되는 입력 공기가 추가된 6개의 공급 레지스터와 인접 룸을 연결하는 도어(도어 A)에 위치한 또 다른 개방으로 구성됩니다. 작업장에서 수행한 측정은 공기 흐름 패턴, 공기 온도, 속도, 인클로저 표면 온도, 입구 및 출구 공기 온도와 관련이 있습니다.

DISCUSSION OF RESULTS FROM MEASUREMENTS
AND SMOKE FLOW VISUALISATION

작업장 내의 다양한 위치에서 측정된 속도 및 압력 측정과 연기 흐름 시각화 결과, 공급 레지스터의 흡입 유량 기여도가 도어 개구부 A 및 B의 기여율보다 상당히 낮고 시간당 10회의 공기 변화라는 기계적 환기 속도보다 낮았습니다.

A.E.C.P. (3) 및 C.I.B.S.E. (4) 가이드에 의해 종료됩니다. 원칙적으로, 그러한 차이는 중요하지 않을 것입니다. 그러나 이 경우 도어 개구부에서 유입되는 공기에는 이미 오염 물질이 포함되어 있어 작업장의 오염 수준이 증가할 수 있습니다.

따라서 총 흡입 유량의 80-90% 순서로 공급 레지스터를 통과하는 공급 공기의 비율이 더 높은 것이 바람직합니다. 또한 6개의 공급 레지스터 중 하나, 다수의 로컬 추출 후드 및 2개의 일반 객실 추출물을 재설계하거나 상당한 업그레이드가 필요한 것으로 확인되었습니다.

요약하자면, 공기 흐름 측정 및 연기 흐름 시각화는 작업장 내의 공기 흐름 패턴이 두 개의 큰 흐름 영역에 의해 지배된다는 것을 나타냅니다.

작업 수준의 영역 1은 도어 A 및 B의 개구부에서 나오는 강한 에어 제트에 의해 지배되고, 다른 영역은 작업장 상층에 위치한 약한 재순환의 넓은 영역에 의해 지배됩니다.

작은 방과 관련하여, 일부 연기가 그 지역에 도달한 것으로 관측되었지만, 일단 그곳에 도달한 후에는 상당한 시간 동안 남아 있었습니다.

COMPUTER MODELLING OF AIRFLOW

측정 및 연기 흐름 시각화를 통해 작업장 내의 공기 흐름은 매우 복잡하고 3차원적이라는 것을 알 수 있었습니다. 따라서 연기 흐름 시각화 및 제한된 수의 국소 기류 측정만을 기반으로 오염 문제에 대한 해결책을 제안하는 것은 많은 중요한 흐름 특징을 간과할 수 있기 때문에 신중하지 못할 것으로 판단되었습니다.

따라서 이 문제를 조사하기 위해 긍정적인 조치를 취하기로 결정되었습니다. 이는 CFD(Computational Fluid Dynamic) 기법을 활용하여 작업장 내에 현재 존재하는 공기 흐름을 초기에 시뮬레이션한 후 가능한 변경의 영향을 조사하기 위해 구성되었습니다.

컴퓨터 시뮬레이션은 처음에는 HARWELL FLOW-3D 소프트웨어를 사용하여 HARWELL CRAY-2 슈퍼 컴퓨터 시스템에서 수행되었습니다. 작업장의 공기 흐름, 온도 및 오염 분포에 대한 계산 결과가 최근 저자 중 한 명이 제시되었으며 다음과 같은 결과를 나타냈습니다. (이하 일부 내용 생략… 자세한 내용은 하단부의 원문 참조 바랍니다.)

The workshop showing the ante-room, supply, and extract systems
The workshop showing the ante-room, supply, and extract systems
2D velocity vector and temperature contours along the plane through door B (existing system)
2D velocity vector and temperature contours along the plane through door B (existing system)
20 velocity vector and temperature contours along -the plane through furnace hood (existing system)
20 velocity vector and temperature contours along -the plane through furnace hood (existing system)
Existing system; airborne particle tracks
Existing system; airborne particle tracks
20 velocity vector along the plane through door B (proposed system)
20 velocity vector along the plane through door B (proposed system)
20 velocity vector along the plane through furnace hood (proposed system)
20 velocity vector along the plane through furnace hood (proposed system)
Proposed system; airborne particle tracks
Proposed system; airborne particle tracks
삼성 870 EVO SATA

수치해석에 유용한 SSD (메모리디스크) 가이드

본 자료는 ITWORLD 기사에서 2021년 1월과 20일 자료와 그 이전 자료에서 발췌 인용된 자료입니다. (출처 : www.itworld.co.kr)

수치해석을 하는 경우 계산과정에서 생성되는 결과 파일 사이즈는 매우 크기 때문에, 빠른 디스크 속도는 사용자의 총 해석시간을 줄이는데 큰 도움이 됩니다.

수치해석에서 SSD가 필요한가?

수치해석 업무를 담당하는 사용자에게 SSD가 필요한가? 한마디로 말하면 수치해석을 하는 모든 사람은 보유하고 있는 수치해석 장비의 디스크를 SSD로 업그레이드하는 것이 좋다. 가장 빠른 기계식 하드 드라이브도 SSD 속도에는 미치지 못한다.

기존 노트북, 또는 데스크톱의 하드 드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. 수치해석을 하는 사용자는 SSD를 구입하는 것은 컴퓨터를 업그레이드하는데 가장 적합한 옵션이다.

SSD는 기계식 하드 드라이브보다 기가바이트 당 비용이 더 많이 들기 때문에 초 고용량으로 제공되지 않는 경우가 많다. 속도와 저장 공간이 필요한 경우, 128GB 나 256GB의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드 드라이브를 PC의 보조 저장 장치로 사용하면 최선의 선택이 된다.

하드 드라이브는 가격 대비 용량 측면에서 여전히 큰 이점을 제공하며, 자주 사용되지 않는 데이터를 저장하는 용도로 적합하다. 그러나 운영체제, 프로그램, 자주 사용하는 데이터에는 보유하고 있는 시스템이 지원한다면 NVMe SSD, 지원하지 않는다면 SATA SSD를 사용하는 것이 좋다.

아래 그래프를 보면 SSD를 왜 사용해야 하는지 명확해진다.

SSD Speed compare
SSD Speed compare

SATA SSD vs. NVMe SSD

시장에 SATA SSD와 NVMe SSD가 아직 공존하는 데는 이유가 있다. 메모리 기반 SSD의 잠재력을 감안할 때 결국 새로운 버스와 프로토콜이 필요할 수밖에 없으리란 점은 초기부터 명확했다. 그러나 초창기 SSD는 비교적 속도가 느렸으므로 기존 SATA 스토리지 인프라를 사용하는 편이 훨씬 더 편리했다.

SATA 버스는 버전 3.3에 이르러 16Gbps까지 발전했지만 거의 모든 상용 제품은 여전히 6Gbps에 머물러 있다(오버헤드를 더해 대략 550MBps). 버전 3.3이라 해도 현재 SSD 기술, 특히 RAID 구성으로 낼 수 있는 속도에 비하면 한참 느리다.

그 다음으로 등장한 방법은 역시 기존 기술이지만 대역폭이 훨씬 더 높은 버스 기술인 PCI 익스프레스, 즉 PCIe 활용이다. PCIe는 그래픽 및 기타 애드온 카드를 위한 기본 데이터 전송 계층이다. 3.x 세대 PCIe는 복수의 레인(대부분의 PC에서 최대 16개)을 제공하며, 각 레인은 1GBps(985MBps)에 가까운 속도로 작동한다.

PCIe는 썬더볼트 인터페이스의 기반이기도 하다. 썬더볼트는 게임용 외장 그래픽 카드, 그리고 내장 NVMe와 거의 대등한 속도를 내는 외장형 NVMe 스토리지에서 진가를 발휘하기 시작했다. 많은 사용자들이 이제 느끼고 있지만, 인텔이 썬더볼트를 버리지 않은 것은 현명한 판단이었다.

물론 PCIe 스토리지는 NVMe보다 몇 년 전에 나왔다. 그러나 이전 솔루션은 SATA, SCSI, AHCI와 같은 하드 드라이브가 스토리지 기술의 정점이었던 시절에 개발된 오래된 데이터 전송 프로토콜에 발목을 잡혔다. NVMe는 저지연 명령과 다수의 큐(최대 6만 4,000개)를 제공함으로써 스토리지의 발목을 잡았던 제약을 없앤다. 지속적인 원을 그리며 데이터가 기록되는 하드 드라이브와 달리 SSD에서는 마치 산탄처럼 데이터가 흩어져 저장되므로 특히 후자, 즉 다수의 큐가 큰 효과를 발휘한다.

SSD 선택 시 유의해서 봐야할 것

물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.

가장 유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.

  • SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
  • PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, “검정” M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
  • NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브를 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
  • M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
  • U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.  

물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA III 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.

구입전 사용자가 알아야 할 NVMe SSD

NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브가 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.  

ⓒ Brad Chacos

NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만이 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려하라. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다. 

NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하기 때문에 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년 전에 구입한 PC는 NVMe 드라이브에서 부팅하는데 아무런 문제가 없지만, 좀 더 오래된 메인보드는 지원하지 않을 수 있다. 구글에서 자신의 메인보드를 검색하고 NVMe 부팅을 지원하는지 확인하라. 보드의 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 보조 드라이브로 사용할 수 있어야 한다.  

아래 itworld에 기고된 최신 SSD에 대한 기사를 인용 제공합니다.

리뷰 | 삼성 870 EVO SATA, 원하는 속도와 합리적인 가격 ‘다 갖췄다’

일자 : 2021-01-20, 출처 : https://www.itworld.co.kr/print/179874

삼성은 SSD 시장에 진출한 이래로 줄곧 이 시장의 선두를 지키고 있으며, 870 EVO는 그 전통을 이어갔다. 870 EVO는 본지가 테스트한 제품 가운데 가장 빠른 SATA SSD이며, 최대 4TB 용량과 속도를 감안할 때 매우 저렴하다. 

ⓒ Samsung


다양한 사양과 적당한 가격, 그리고 5년 보증 

삼성 870 EVO는 삼성 자체 TLC(Triple-Level Cell / 3비트) V낸드(V-NAND)를 사용하는 2.5인치 SATA 6Gbps SSD다. 삼성은 일반적으로 실제 컨트롤러 기술이나 레이어 수에 관해서는 밝히지 않지만, 용량으로 봤을 때, 92 또는 96 레이어를 갖춘 삼성이 자체 설계한 컨트롤러일 가능성이 높다.

삼성은 이 드라이브를 250GB/50달러, 500GB/80달러, 1TB/140달러, 2TB/270달러, 4TB/520달러 버전으로 제공한다. 250GB 용량마다 512MB의 기본 DRAM 캐시가 있으며, 드라이브는 150TBW(쓰기 가능한 용량) 또는 5년 서비스를 보장한다. 150TBW가 먼저 도래하면 5년 보증이 무효화된다는 의미다. 대부분의 사용자는 이렇게 많은 데이터를 작성하지 못하므로 사실상 5년 보증이라고 생각하면 된다. 

ⓒ Samsung

870 EVO는 삼성의 터보라이트(TurboWrite) 가변 보조 캐시 알고리즘을 사용한다. 메인 낸드는 전압 레벨당 단일 비트만 기록해 SLC로 처리된다. 따라서 드라이브의 최대 용량에 근접할 때까지 최고의 쓰기 성능을 유지할 수 있다. 다만 SSD 성능 저하의 경험을 겪지 않으려면, 저장 용량의 75%를 넘지 않는 것이 좋다. 


테스트한 SATA SSD 제품 가운데 최고  

삼성 870 EVO는 지금까지 테스트한 전체 SATA SSD 가운데 가장 빠른 것으로 검증됐다. 특히 작은 파일에서 뛰어난 성능을 발휘했다. 그렇다고 훨씬 빠른 NVMe 기술에서의 성능과 비교하는 것은 아니다. 6Gbps SATA 자체가 제한적인 기술이다. 테스트 수치는 모든 최상위 SATA 드라이브에서 매우 유사하다. 하지만 870 EVO는 많은 작업에서 1~2초 정도 줄일 수 있으며, 장기적으로 보면 성능의 차이로 나타날 것이다. 

이번 테스트에서는 2019년형 씨게이트 아이언울프(Seagate IronWolf) 110와 비교했는데, 아이언울프 110은 모든 단계에서 870 EVO를 따라잡을 수 있는 몇 안 되는 제품이기 때문이다. 그러나 훨씬 더 비싸고 기업용으로 설계된 제품이다. 

ⓒ IDG

(그림)에서 볼 수 있듯이 지속적인 쓰기 또는 읽기 성능과 관련해 경쟁업체 간에는 거의 차이가 없다. 그러나 설계 능력과 구성요소는 랜덤/작은 파일 성능에 차이를 만들 수 있으며, 실제로 다음 (그림)과 같은 수치를 기록했다. 

크리스탈디스크마크(CrystalDiskMark) 6의 지속적인 처리량 테스트와 마찬가지로 48GB 전송에서 드라이브 간의 차이는 미미했다. 870 EVO는 여전히 12초(약 2%) 차이로 승리를 차지했다. 

ⓒ IDG

다음 (그림)에서 870 EVO가 870 QVO보다 약간 비싼 이유를 확인할 수 있었다. QVO는 보조 낸드 캐시가 부족할 때, 150Mbps로 속도가 느려진다. 870 QVO는 870 EVO처럼 낸드를 보조 캐시로 동적으로 할당하지 않는다.  

ⓒ IDG

450GB 쓰기는 1TB와 4TB 모델 모두에서 수행했으며, 예상 변동 범위 내에서 5초 차이가 난다. 이는 터보라이트가 더 큰 용량에서 제 역할을 수행하고 있음을 의미한다. 500GB 모델은 870 QVO의 QLC와 달리 TLC 기반 EVO에서는 속도가 느려질 수 있다. 


870 EVO, 가격대 최고 제품 

삼성 870 EVO는 동급 최고의 성능을 자랑하며, 모든 사용 시나리오에서 최고의 성능을 자랑한다. 대용량 파일을 작성하지 않는다면 더 저렴한 870 QVO를 선택할 수 있다. 다만 필요하다고 생각하는 용량보다 훨씬 더 많은 용량을 선택해야 한다. 비용이 문제가 되지 않을 경우, 870 EVO는 완벽한 드라이브이며, 미래형 드라이브로 권장할 수 있다. editor@itworld.co.kr

ITWORLD : 6월 업데이트 | 2020년 최고의 SSD 선택 가이드

스토리지 PCWorld SSD(Solid-State Drive)로 전환하는 것은 PC에 가장 적합한 업그레이드다. SSD을 통해 PC는 부팅 시간이 짧아지고, 프로그램 및 게임 로드 속도가 빨라지는 등, 일반적으로 컴퓨터 속도가 빨라진다. 



그러나 모든 SSD가 동일한 것은 아니다. 최고의 SSD는 저렴한 가격으로 견고한 성능을 제공한다. 가격이 문제가 되지 않을 경우, 엄청난 속도의 빠른 읽기 및 쓰기 속도를 제공한다. 

많은 SSD가 2.5인치 폼 팩터로 제공되며 기존 하드 드라이브에서 사용하는 것과 동일한 SATA 포트를 통해 PC와 통신한다. 그러나 최첨단 NVMe(Non-Volatile Memory Express) 드라이브는 메인보드의 M.2에 직접 연결하는 작은 스틱 형태의 SSD다. PCIe 어댑터에 장착되는 이 드라이브는 구입하기 전에 메인보드에 슬롯이 있는지 확인해야 한다. 그래픽 카드나 사운드 카드처럼 메인보드에 꽂을 수 있는 SSD와 미래형 3D 크로스포인트(3D XPoint) 드라이브 등이 등장함에 따라 완벽한 SSD를 선택하는 것은 예전처럼 간단하지 않다. 

그래서 이 가이드가 필요하다. 본지는 사용자 상황에 적합한 SSD를 찾기 위해 수많은 SSD를 테스트했다. 본지가 선정한 최고 인기 제품과, SSD 선택 시 무엇을 봐야 하는지 알아보도록 하자. 


최신 SSD 소식 

  • 지난해 가을, AMD의 라이젠(Ryzen) 3000 CPU가 최첨단 PCIe 4.0 스토리지 지원을 받아 출시됐지만, 그 지원은 고가의 X570 메인보드에만 국한됐다. 이제 곧, B550 메인보드는 동일한 기능을 일반인에게도 제공할 것이며, 오래된 라이젠 칩과도 호환될 것이다. 6월 16일에 발표할 것이다.   
  • X박스 시리즈 X의 초고속 스토리지 기술의 중추인 다이렉트스토리지(DirectStorage)가 윈도우에 등장한다. 마이크로소프트는 다이렉트스토리지 자체에 대해 자세히 다루지 않았지만, X박스 시리즈 X의 ‘벨로시티 스토리지(Velocity Storage)’는 정말 인상적이다. 


대부분 사용자를 위한 최고의 SSD 

SK 하이닉스 골드(SK Hynix Gold) S31 SATA SSD 

ⓒ SK Hynix

실제 시장에서 등장한 SK 하이닉스의 첫 번째 SSD는 본지가 테스트한 것 가운데 가장 빠른 SATA 드라이브임을 입증했다. 사실 SK 하이닉스는 세계에서 가장 큰 반도체 공급업체 가운데 하나로, 모든 기술을 갖고 있다. 골드 S31 가격은 적당하며 아주 좋은 드라이브다.  

삼성의 주력인 EVO SSD 제품군은 2014년 이래로 줄곧 본지의 권장 목록에서 1위를 차지했으며, 현재 삼성 860 EVO는 여전히 속도, 가격, 호환성 및 5년 보증 및 뛰어난 마법사 관리 소프트웨어의 안정성 등 조화를 원하는 사람들에게 좋은 옵션이다. 하지만 최근 새롭게 출시되는 신제품에 의해 왕좌에서 내려왔는데, 이 신인은 사실 전혀 새로운 존재는 아니었다.   

대부분의 사람은 SK 하이닉스 골드 S31을 구입하는 것이 좋다. 본지가 테스트한 가장 빠른 SATA SSD 가운데 하나일뿐만 아니라 가격도 적절하다. 

250GB 드라이브의 경우 46달러, 500GB 드라이브의 경우 64달러, 대규모 1TB 드라이브의 경우 125달러인 골드 S31은 삼성의 제품군(500GB 90달러, 1TB 모델 140달러)보다 훨씬 저렴하다. 골드 S31은 실제 48GB 복사 테스트에서 지속적인 읽기와 쓰기 작업을 위해 테스트한 드라이브 가운데 가장 빠른 드라이브임을 증명했다. 

SK 하이닉스는 정확히 제품 이름이 아니기 때문에 브랜드 자체에 대해 조금 딴지를 걸 수도 있다. 그럼에도 불구하고 SK 하이닉스는 지구상에서 가장 큰 반도체 제조업체 가운데 하나다. SK 하이닉스는 시작부터 NAND 및 컨트롤러 기술을 개발해왔으며, 수많은 대형 컴퓨터 업체의 SSD 제조업체였지만 판매선상에는 자리하지 못했다. 이제 그 선상에 섰고, 결과는 훌륭했다. 

좀 더 큰 저장 용량을 원하는 사용자라면 비싸긴 하지만 삼성 860 EVO가 1TB, 2TB, 4TB 모델을 제공하고 있다. SK 하이닉스도 골드 S31 1TB 버전을 약 110달러에 제공했지만 현재는 사용할 수 없다(이 제품은 미국에서만 출시됐으며 국내에서는 해외 직구로만 구입할 수 있다. 편집자 주). 

 
가성비 최고의 SSD 

애드링크(AddLink) S22 QLC SATA 2.5인치 SSD

ⓒ Addlink 

애드링크 S22 QLC는 장시간 쓰기 작업 중에도 속도가 느려지지 않는다. 또한 SSD 치고는 매우 싸다. 몇 가지 문제가 있음에도 불구하고 본지는 이 제품을 가성비 최고의 SSD로 선정했다. 

기존의 MLC(Multi-Level Cell) 및 TLC (Triple-Level Cell) SSD 가격이 급락하면서 제조업체는 SSD 가격을 더욱 낮추는 새로운 형태의 QLC(Quick-Level Cell) 드라이브를 출시했다. 이 새로운 기술을 통해 SSD 제조업체는 하드 드라이브와 같은 용량의 SSD를 출시함과 동시에 매우 빠른 SSD 속도에 근접하게 됐다. 

여전히 최고인 삼성 860 QVO를 포함한 QLC 드라이브의 1세대는 수십 기가바이트의 데이터를 한번에 전송하면, 쓰기 속도가 하드드라이브 수준으로 떨어졌다. 하지만 애드링크 S22 QLC SSD는 그렇지 않다. 기존 TLC SSD가 QLC 드라이브에 비해 속도 우위를 유지하지만 애드링크 S22의 경우, 이런 한계를 벗어난 데다가 가격은 512GB 63달러, 1TB 104달러에 불과하다. SK하이닉스 S31 또한 이제 거의 같은 속도라는 점은 주목할 필요가 있다. 

대량의 데이터를 한번에 이동할 계획이 없고, 더 많은 공간이 필요하다면, 삼성 860 QVO는 여전히 훌륭한 옵션이다. 실제로 애드링크의 SSD보다 조금 더 빠르다. 그러나 아마존에서 1TB는 128달러, 2TB는 250달러, 5TB는 480달러로 더 비싸다. 더 낮은 용량은 판매되지 않는다. 

그러나 더 빠르고 새로운 NVMe M.2 드라이브를 지원하는 새로운 메인 보드가 있다면 무엇을 선택해야 할까? 


최고의 NVMe SSD 

WD 블루 SN550 NVMe M.2 SSD 

ⓒ WD

100달러짜리 1TB 드라이브는 마음에 들기 쉽다. 특히 블루 SN550은 SN500보다 눈에 띄게 향상되어 거의 모든 사람에게 만족을 준다. 약간의 빈약한 SLC 캐시가 약점이긴 하지만 250GB 용량은 950MBps 쓰기 속도를 갖고 있다는 점이다. 본지는 1TB 버전을 클럭킹해 1.75GBps를 기록한 바 있다. 

성능이 가장 중요한 경우, 삼성 970 프로 또는 시게이트 파이어쿠다(Seagate FireCuda) 510이 가장 빠른 NVMe SSD이긴 하지만, 대부분의 사람은 웨스턴디지털 블루 SN550 NVMe SSD를 구입하는 것이 좋다.  

WD SSD는 NVMe 드라이브 가운데 가장 화려하지도, 앞서 언급한 대안만큼 빠르지도 않다. 하지만 비용이 훨씬 저렴하다. WD 블루 SN550은 보급형 가격(250GB 55달러, 500GB 70달러, 1TB 110달러)에도 불구하고 다른 할인된 NVMe 드라이브와는 성능에서는 조금의 차이가 있다. 신뢰성이 뛰어나고 잘 알려진 유명 브랜드의 제품으로 평균 5년 이상의 보증 기간을 제공한다. 

조금 더 뛰어난 성능을 원한다면, 애드링크 S70 NVMe SSD가 또 다른 훌륭한 옵션이다. 본지는 WD 드라이브보다 성능을 약간 선호하지만, 애드링크 SSD는 가격 인상 이후, 약 15달러가 더 비싸졌으며, WD 블루 SN550의 성능은 일상적인 컴퓨터 사용자에게 충분하다고 판단했다. 애드링크는 WD만큼 잘 알려져 있진 않지만 해당 제품에 대해 5년 보증을 제공한다. 


가장 빠른 SSD 

인텔 옵테인(Intel Optane) SSD 905P 

ⓒ Intel

인텔 SSD 905P는 본지가 테스트한 가장 빠른 NVMe 드라이브 가운데 하나였으며, 가장 비싼 드라이브이기도 하다. 그러나 내구성이 매우 우수하다는 평가를 받고 있다. 많은 양의 데이터를 작성하는 경우, 구입할만한 가치가 있다.  

성능이 가장 중요하고 가격을 생각하지 않는다면, 인텔의 옵테인 SSD 905P는 구매할 수 있는 최고의 SSD다. 이 드라이브는 다른 SSD와 같은 기존 NAND 기술을 사용하지 않고 마이크론과 인텔이 개발한 미래형 3D 크로스포인트(3D Xpoint) 기술을 기반으로 만들어졌다. 

하지만 실질적인 측면에서 옵테인 SSD 900P는 스토리지 벤치마크를 완벽하게 통과해 NAND SSD가 제공하는 약 200TBW에 비해 엄청나게 많은 8,750TBW을 자랑한다. 만약 이것이 사실이라면, 이 초고속 드라이브는 기본적으로 압도적이며, 엄청나게 좋아보인다. 

그러나 최고의 성능이 누리는 권리에 대한 대가를 지불해야 한다. 인텔 옵테인 SSD 905P는 280GB 390달러, 480GB의 경우 599달러, 1.5TB의 경우 1,130달러이며, U.2 및 PCIe 카드 형태로 제공되는 등 몇 가지 추가 옵션이 있다. 

또한 NVMe SSD보다 훨씬 비싸다. 이런 특성으로 인해 인텔 SSD는 대량의 데이터를 정기적으로 이동하는 곳에는 가장 효과적이다. 또한 옵테인 SSD 900P는 실제로 NVMe 프로토콜을 사용해 PC와 통신하기 때문에 몇 가지 추가 기준을 충족시켜야 부팅이 가능하다.    

이 제품보다 한 단계 떨어진 인텔 옵테인 SSD 900P는 905P의 미디어처 버전과 유사하지만 더 낮은 용량과 가격에서도 기존 SSD를 능가한다(280GB 버전 390달러, 480GB 모델 599달러로 대부분의 NVMe 드라이브보다 훨씬 비싸다). 

AMD의 뛰어난 라이젠 3000 시리즈 프로세서가 최첨단 기술을 지원함에 따라 초고속 PCIe 4.0 SSD가 출시되기 시작했다. 이에는 고급 AMD X570 메인보드가 필요하다. 초기 평가를 통해 실제 환경에서 대용량 파일을 이동할 때 실질적인 이점만 얻을 수 있다는 것을 알 수 있지만, 여기서 언급된 기존 PCIe 4.0 SSD보다 훨씬 빠른 속도를 약속한다. 

커세어(Corsair), 기가바이트(Gigabyte), 세이브런트(Sabrent)는 사용 가능한 첫 번째 PCIe 4.0 SSD를 출시했으며, 1TB 모델과 비슷한 성능을 약 200달러에 제공했다. 그러나 본지는 아직 이 제품들에 대해 테스트하지 않았다. 

editor@itworld.co.kr

FLOW-3D 수치해석 프로그램 Supported Platforms 보기

Simulation of Joule heating-based Core Drying

This article was contributed by Eric Riedel 1,2

1Otto-von-Guericke-University Magdeburg, Institute of Manufacturing Technology and Quality Management, Germany

2Soplain GmbH, Germany

현대의 주조 생산에는 샌드 코어를 사용해야 합니다. 환경 인식의 확대는 물론 규제 강화로 인해 코어가 열로 건조되고 치유되는 무기, 무배출 바인더 시스템 개발이 뒷받침되고 있습니다. 핫박스 공정이라고 하는 것에서는 코어 박스에서 열이 발생하여 샌드바인더 혼합물로 전달됩니다. 그러나 핫박스 공정은 크게 두 가지 기술적 단점을 보입니다.

첫 번째 단점은 약 1 W/(m·K)의 석영 모래의 열전도율이 매우 낮다는 것입니다. 외부 열 전달로 인해 공정에 시간이 많이 소요되고 쉘 형성과 그에 따른 품질 문제가 발생할 수 있습니다. 이 때문에 최대 523.15K 이상의 매우 높은 코어 박스 온도가 적용되어 열 전달을 가속합니다. 열상자 공정의 두 번째 단점은 코어 건조 자체를 실시간으로 직접 측정하고 디지털화할 수 없다는 점입니다. 대신 코어 박스에서와 같은 주변 파라미터를 기록해야만 수동적으로 측정할 수 있습니다.

ACS 프로세스

특허받은 새로운 ACS(Advanced Core Solution) 프로세스는 시간과 에너지 효율이 높은 코어 건조 및 양생을 목표로 합니다. ACS 프로세스는 모든 무기 바인더 시스템에 공통적인 특성을 사용합니다.

물 기반이기 때문에 전기적으로 전도성이 있습니다. 주요 요인은 전기 전도성 코어 박스 재료의 개발로, 모래-바인더 혼합물에 대한 전도도를 조정할 수 있습니다. 전압이 인가되면 그림 1에서와 같이 코어 박스와 모래-바인더 혼합물을 통해 전류가 균일하게 흐릅니다. 좀 더 정확히 말하면, 전류가 모래 알갱이 사이에 있는 전기 전도성 바인더 브리지를 통해 흐릅니다. 

고유의 전기 저항으로 인해 모래 중심부는 셸 형성 없이 균일하게 가열됩니다. Joule heating이라 불리는 그 이면의 과학적 원리는 Joule 의 제1법칙에 근거하고 있습니다. 직렬 공정에서 전기 전도성 코어 박스는 Joule heating을 통해 가열되어 건조 공정이 추가로 가속화됩니다. 이는 ACS 공정의 경우 코어 박스 내부의 복잡한 가열 장치가 더 이상 필요하지 않으므로 코어 박스 구조가 단순화되기 때문에 더욱 중요한 장점입니다.

이 새로운 프로세스를 통해 처음으로 열이 필요한 곳, 즉 코어 내에서 직접 생성됩니다. 필요한 열은 균질하게 분포된 바인더를 통해 생성되어 인접 모래로 전달되기 때문에, 석영 모래의 낮은 열전도율은 더 이상 제한 공정 인자가 아닙니다. 또한 최초로 건조별 전기 파라미터를 기록함으로써 건조 프로세스 자체를 포괄적으로 실시간 모니터링할 수 있습니다. FLOW-3D를 사용하여 ACS 프로세스를 시뮬레이션할 수 있으며, 프로세스 편익의 정량화를 포함한 산업적 적용에 대한 중요한 기준을 충족합니다.

그림 1: 전류 흐름의 기본 비교: a) 미포함, b) 코어 박스의 전기 전도도를 모래-바인더 혼합물에 대한 조정

모델 설명

모델링은 Starobin 등의 작업을 기반으로 합니다. [1], 그러나 FLOW-3D의 전기-기계 모델로 확장합니다. 전기 전위(즉, 냄비 = 1)를 활성화하면 전기-열 효과, 즉 줄 가열(에테르모 = 1)을 고려해야 합니다. 

모델 세부 정보는 [2]에서 확인할 수 있습니다. 구성 요소의 전기적 특성을 통해 코어 박스는 전기 전도도(초)와 유전 전위(오디엘)를 가진 동적 전위(오이포템 = 1)를 할당받으며, 전체 모래-바인더 혼합물의 전기 전도도를 설명하기 위해 모래 코어에도 동일하게 적용됩니다. 

전극에는 한 전극에 대해 고정 전위(외전 = 0), 전기 전도도, 음전위(외전)가 할당되고 다른 전극에 대해서는 양의 전위(외전)가 할당됩니다. 전기 전도도에 대한 온도에 의존하는 정의는 아직 가능하지 않기 때문에, 우리는 재시동 시뮬레이션과 능동 시뮬레이션 제어로 작업했습니다. 

이렇게 하면 각 온도 범위의 평균 전기 전도도, 즉 293.15 ~ 303.15 K, 303.15 ~ 313.15 K 등을 고려할 수 있다. 다음의 조사는 1유체 시뮬레이션에 초점을 맞춘 조사, 즉 purging 은 고려하지 않았습니다.

예제

첫 번째 단계에서는 상업적으로 이용 가능한 무기 모래-바인더 혼합물이 가열 및 온도에 의존하는 전기 전도성을 조사하기 위해 시뮬레이션 모델의 실험 조사 및 유효성 검사를 위해 사용되었습니다. 

373.15 K에 도달하는 데 필요한 시간뿐만 아니라 모래 코어에 입력되는 전력 및 에너지를 측정하였다. 실험 분석과 결과를 바탕으로 기초적인 시뮬레이션 모델을 만들었습니다. 재량권을 이유로, 기초 결과 중 일부는 질적으로만 제시된다. 결과는 그림 2에 제시되어 있으며, 측정값과 시뮬레이션 사이의 높은 수준을 보여줍니다.

Comparison of experimental and simulation results
그림 2: 실험 결과와 시뮬레이션 결과의 비교.
 측정 지점은 293.15 K: a) 온도 상승 전력 입력- 측정값으로부터의 평균 편차: 0,95 %, b) 에너지 입력 – 측정값으로부터의 평균 편차: 4.8 %에서 시작하여 10 단계로 지정된 목표 온도의 도달도를 나타냅니다.

검증된 결과를 바탕으로 단순하지만 부피가 큰 기하학을 이용해 ACS 프로세스와 시뮬레이션을 보여주는데, 고전적인 핫박스 프로세스에 비해 진보된 ACS 개발의 기초와 높은 잠재력을 잘 보여줍니다. 

기하학적 정렬은 그림 3에서 확인할 수 있습니다. (1) 고전적인 핫박스 프로세스, (2) 콜드 툴을 사용하는 ACS 콜드 스타트 프로세스(293.15 K), (3) 줄 효과로 인한 공구 난방에 대한 ACS 시리즈 프로세스 등 세 가지 경우를 시뮬레이션했습니다. 모든 3차원 모델은 1mm 크기의 셀로 분쇄되었습니다. 표 1은 계산된 시나리오의 가장 중요한 세부 사항을 요약합니다.

Geometric alignment of simulation setup
그림 3: 전도성 코어 가열 및 건조를 위한 시뮬레이션 설정의 기하학적 정렬
Overview of calculated core drying cases
표 1: 계산된 코어 건조 사례 개요.
 값은 실제 실험에서 파생됩니다.

결과 및 토론

그림 4는 고전적인 핫박스 공정을 위한 온도와 수분 발달을 보여주며, 외부 열 전달 및 그에 상응하는 수분 감소를 명확히 보여주고 있습니다. 

시뮬레이션은 시뮬레이션의 마지막에 모래 코어 센터에 수분이 남아 있는 상태에서 120초 동안 수행되었습니다. 실제로 사이클 타임 대상은 코어 센터에 쉘 형성과 잔류 수분이 있는 건조 프로세스의 조기 종료를 강요합니다. 단, 그림 5에 나타낸 ACS 콜드 스타트 시뮬레이션(코어 슈팅 머신을 가동했을 때의 첫 번째 샷에 대응)에서는 새로운 프로세스의 기본 원리인 코어의 균일한 heating이 내부 아웃 수분 수송으로 이어집니다.

 게다가, 모래 코어는 코어 박스보다 더 빨리 가열됩니다. 직렬 공정에서 코어 박스는 Joule heating을 통해 373.15 K 이상의 온도에 도달하여 고온 박스와 ACS 공정이 혼합되어 건조 공정이 더욱 가속화됩니다. 

ACS 영상 시리즈 시뮬레이션의 결과는 그림 6에 요약되어 있습니다. 핫박스 공정에서 120초가 지나도 모래심이 완전히 낫지 않지만, ACS 공정에서는 72초나 45초 후에 코어가 완전히 건조될 수 있습니다. 코어 박스 온도가 상당히 낮음에도 불구하고, 새로운 프로세스는 코어 건조에서 상당한 가속도와 새로운 접근방식의 큰 잠재력을 보여줍니다. 

한 가지 주요 이점은 관련 에너지 요건과 그에 상응하는 CO2 배출량을 포함하여 사이클 타임의 대폭적인 감소입니다. 모래심에 유입된 에너지는 시뮬레이션을 이용해 미리 예측은 물론 실제 공정 중에도 측정할 수 있어 공정 설계와 투명성 측면에서 또 다른 큰 장점입니다. 

또한, 시뮬레이션은 시험 표본의 기하학적 독립적 동질 난방을 명확히 보여주는데, 이는 습기가 코어 중심에 갇히지 않고 셸 형성을 방지함을 의미합니다. 전체적으로, 새로운 공정은 공정의 효율성과 무기적으로 결합된 모래 코어의 품질에서도 상당한 증가를 가능하게 합니다. 세 가지 사례의 프로세스 도표는 모두 그림 7에 요약되어 있습니다.

요약 및 전망

시연된 모델링은 새로운 코어 건조 프로세스를 정확하게 시뮬레이션하는 FLOW-3D의 기능과 기존의 핫 박스 프로세스와 비교하여 보다 효율적인 코어 건조 및 양생에 대한 새로운 프로세스의 가능성을 보여줍니다. 새로운 시뮬레이션 설정이 아직 개발 단계에 있고 더 많은 실제 사례 실험이 필요한 경우에도 건조 동작에 대한 뛰어난 통찰력을 얻을 수 있으며, 지금까지의 실험 측정과 매우 잘 일치합니다.

현재 시뮬레이션 내에서 모래-바인더 혼합물의 전기 전도성은 석영모래를 통해 생성되며, 실제로는 전기 전도성이 아니라 실제 측정된 모래-바인더 혼합물의 전기 전도성에 해당된다. 이렇게 하면 전체 모래-바인더 혼합물의 전기 전도성이 시뮬레이션에서 설명되며 실험 결과에 적합한 것으로 보입니다. 좀 더 정밀한 시뮬레이션을 위해, 실제 전도성 곡선을 고려하기 위해 고체 코어의 온도에 의존하는 전기 전도성(예: 모래-바인더 혼합물)을 절약할 수 있는 가능성이 도움이 될 것입니다. 추가 단계는 2유체 시뮬레이션 모델에 집중됩니다. 초기 실험은 좋은 결과로 기본적인 타당성을 보여줍니다.

아직 취해야 할 조치에도 불구하고, FLOW-3D로 ACS 공정을 시뮬레이션할 수 있는 능력은 줄 가열 기반 코어 건조 공정을 전체적으로 수립하는 데 중요한 이정표를 세우고 무기 모래 코어 제조에 이 공정의 이점을 보여준다고 할 수 있습니다.

References

  • Starobin, C.W. Hirt, H. Lang, M. Todte, Core Drying Simulation and Validation, AFS Proceedings, Schaumburg, IL USA, 2011
  • FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA
벨기에 Zele에서 나온 WWTP의 개략도

활성화 된 슬러지 모델링

Activated Sludge Model

폐수 처리 플랜트 (WWTP) 내부의 생화학 적 반응 및 유체 역학에 대한 자세한 이해는 설계자와 엔지니어가 새로운 플랜트 설계를 평가하고, 관리 결정을 정량화하고, 새로운 제어 계획을 개발하고, 안전한 작업자 교육을 제공하는 데 도움이 될 수 있습니다. 이 블로그에서는 독자들에게 대규모 생화학 반응 시스템을 동적으로 해결 하는 FLOW-3D 의 새로운 ASM (Activated Sludge Model)을 소개합니다.

폭기조

폭기조는 대부분의 생화학 반응이 WWTP의 2 차 처리 부분에서 발생하는 곳입니다. 일반적으로 폭기 탱크는 대부분의 생화학 반응이 완료되는 데 걸리는 시간을 허용하는 긴 경로를 가지고 있습니다. 종이 폭기조의 전체 길이를 횡단하는 데 걸리는 시간을 잔류 시간이라고합니다. 폭기조에 산소가 주입되어 폐수에서 박테리아가 증식합니다. 박테리아는 산소를 사용하여 물에있는 폐기물을 분해하고 그렇게하면서 플록 또는 슬러지 블랭킷이라고하는 응집체를 형성합니다. 활성화 된 슬러지의 일부는 폐수의 생화학 적 처리를 더욱 촉진하기 위해 폭기조로 다시 재활용됩니다.

벨기에 Zele에서 나온 WWTP의 개략도
벨기에 Zele에서 나온 WWTP의 개략도

생화학 반응의 표준 시스템

국제 물 협회 (IWA)는 지난 40 년간 생화학 적 반응을 설명하는 세 가지 주요 수학적 시스템을 제안했다. 이러한 각 시스템 인 ASM-1, ASM-2 및 ASM-3은 폭기조 내부의 다양한 종의 성장 및 붕괴 역학을 다양한 세부 수준으로 포착합니다. ASM-3이 가장 포괄적입니다. 첫 번째 시스템 인 ASM-1은 아래 표 형식과 확장 형식으로 표시됩니다.

결합 편미분 방정식의 확장 시스템으로서의 생화학 반응의 ASM-1 시스템
결합 편미분 방정식의 확장 시스템으로서의 생화학 반응의 ASM-1 시스템

ASM 솔버 기능

대부분의 생화학 반응은 Monod 모델 또는 유사한 모델을 기반으로합니다. Monod 모델은 미생물의 성장 및 붕괴 속도를 예측하는 수학적 모델이며 간단한 방정식으로 설명됩니다.

여기서 a 와 k 는 최대 비 성장률 상수이고 기질 농도는 최대 비 성장률의 절반에 해당합니다. C 는 시간에 따라 변화하는 미생물 종의 농도 t 입니다. Monod 모델은 종의 농도에 따라 반응의 순서를 동적으로 변경하는 특성이 있습니다.

For C   >> A는 , 변화율 C는  0 차에 접근한다.

For C   << a는 , 변화율 C는 일차 접근한다.

이 모든 것은 미생물 종의 농도가 높으면 썩고 자라는 속도가 빨라지고, 종의 양이 적으면 썩거나 자라는 속도가 느리다는 것입니다. Monod 방정식의 해는 다음과 같이 Lambert 함수에 의해 제공됩니다.

간단한 Monod 방정식에 대한 분석 솔루션과 FLOW-3D 솔루션의 비교
간단한 Monod 방정식에 대한 분석 솔루션과 FLOW-3D 솔루션의 비교

생화학 반응을 설명하는 표준 시스템에는 Monod 용어의 긴 사슬이 포함되어 있습니다. FLOW-3D 의 ASM 모델은 WWTP에서 박테리아 종의 Monod 기반 성장 및 붕괴를 완벽하게 추적 할 수 있습니다. ASM 모델은 FLOW-3D 의 유체 역학 솔버 와 통합되어 속도 및 압력 장을 기반으로 한 박테리아의 움직임이 성장 및 붕괴 속도와 결합 될 수 있습니다.

FLOW-3D 의 ASM 솔버 결과가 벨기에 Zele의 폐수 처리장 (WWTP)에서 배출 될 때 다양한 유입수 종 농도의 붕괴 및 성장에 대해 보여줄 것 입니다. 종 및 유체 역학 계산을 정확하게 추적하면 폐수 처리 전문가가 정량적으로 뒷받침되는 설계 및 운영 결정을 내릴 수 있습니다.

Zele WWTP

Zele WWTP는 1983 년 50,000 명의 주민을 위해 벨기에에서 건설되었습니다. 일반적으로이 WWTP의 유입수는 가정용 폐수 40 %와 산업 폐수 60 %로 구성됩니다. 1 차 처리 공정 후 유입수는 생물학적 활성 슬러지 처리장으로 흘러 재활용 활성 슬러지와 혼합됩니다.

벨기에 Zele에서 나온 WWTP의 개략도 [2]. 녹색 상자는 2 차 처리 과정을 나타냅니다.
벨기에 Zele에서 나온 WWTP의 개략도 [2]. 녹색 상자는 2 차 처리 과정을 나타냅니다.

활성 오니 조 또는 폭기조는 약 400 m의 레인 6으로 분할되어 하나의 플러그 유동 폭기조 구성 3 각. 폭기조에서 나오는 유출 물은 각각 2050 m 3 용적의 2 개의 2 차 정화기 (SC1 및 SC2)로 이동합니다 . 최종 폐수는 인근 하천으로 배출됩니다. 2 차 정화기 아래에서 활성 슬러지의 일부는 폭기조로 다시 재활용되어 2 차 처리의 효율성을 높입니다.

우리는 2 차 처리 구성 요소의 기하학적 구조와 다양한 종의 유입 농도에 대한 자세한 정보를 이용할 수 있기 때문에 사례 연구를 위해이 WWTP를 선택했습니다. 정보는 상세하지만 완전하지는 않으며이 불완전한 정보는 폐수 농도에 중대한 영향을 미칠 것이며 나중에 논의 할 것입니다.

기하학, 메싱 및 물리학

지오메트리 생성 및 메싱은 간단했습니다. FLOW-3D 에는 완전한 WWTP를 완전히 정의하는 데 사용 된 기본 지오메트리 모양 모음이 있습니다. 이러한 모양은 생성하기 쉽고 외부 CAD 소프트웨어를 사용하여 생성 된 일부 지오메트리와 달리 오류가 없습니다. 마찬가지로, 구조화 된 그리드를 사용하면 구조화되지 않은 그리드 생성과 관련된 일반적인 오류를 처리하는 시간이 절약되었습니다.

폭기조 내부의 물리학은 복잡하며 질량 및 운동량 보존 방정식 (Navier-Stokes 방정식), 종 수송, 반응 역학, 산소 용해 및 연속 밀도 평가의 완전한 시스템을 해결해야합니다. FLOW-3D 는 가장 정확한 계산을 위해 완전히 결합 된 방식으로 이러한 모든 물리학을 설명합니다.

FLOW-3D의 Zele WWTP 설정. 화살표는 흐름 방향을 나타내며 유입수는 녹색 화살표의 시작 부분에서 도메인으로 들어갑니다.
FLOW-3D의 Zele WWTP 설정. 화살표는 흐름 방향을 나타내며 유입수는 녹색 화살표의 시작 부분에서 도메인으로 들어갑니다.

세 가지 표준 수학적 모델 인 ASM-1, ASM-2 및 ASM-3 중에서 연구자들은이 WWTP에서 ASM-1 수학적 모델을 사용합니다. 이는 간단하면서도 많은 중요한 생화학 과정을 다루기 때문입니다. ASM-1 모델은 일반적으로 폐수에서 발견되거나 처리 과정에서 생성되는 13 종의 진화를 고려합니다 [표 1].

종 IDZele의 초기 유입 농도 (mg / l)
가용성 불활성 유기물SI7.5
쉽게 생분해되는 기질SS400.0
미립자 불활성 유기물XI40.0
천천히 생분해되는 기질XS40.0
활성 종속 영양 바이오 매스XB, H120.0
활성 독립 영양 바이오 매스XB, A5.0
바이오 매스 붕괴로 인한 미립자 제품XP0.0
산소SO0.0
질산염 및 아질산염 질소SNO0.0
암모늄 질소SNH15.0
용해성 생분해 성 유기 질소SND8.2
미립자 생분해 성 유기 질소XND11.3
알칼리도SALKNot included

표 1. 표준 ASM-1 수학 시스템의 종 목록과 Zele WWTP에서 측정 된 초기 유입수 농도. 이러한 초기 농도 중 일부는 추론되며 큰 불확실성이 관련 될 수 있습니다. S와 X는 각각 용해성 물질과 미립자 물질을 나타냅니다.

이들 종 각각은 반응하지 않는 불활성 종 (SI 및 XI)을 제외하고 하나 이상의 생화학 적 과정에 의존합니다. 불활성 종의 유입 및 유출 농도는 XI의 경우와 같이 침전으로 인해 달라질 수 있습니다. SALK는 WWTP에서 측정되지 않았기 때문에이 사례 연구에서 무시되었습니다.

관심 유출량

폐수 엔지니어가 관심을 갖는 주요 유출량은 총 화학적 산소 요구량 (COD tot ), 암모늄 질소 (SNH) 농도, 아질산염 및 질산염 질소 (SNO) 및 총 킬달 질소 (TKN)입니다.

  • COD tot = SI + SS + XI + XS
  • TKN ~ XND + SND + SNH

이 양은 처리 된 물의 전반적인 품질을 나타냅니다.

유출량측정 된 유입 농도 (mg / l)FLOW-3D 유출 농도 (mg / l)
CODtot600264.04
SNH1530.34
SNO01.86
TKN3537.28

총 COD, SNH 및 TKN의 농도는 폐수가 폭기조를 통과하여 WWTP를 빠져 나 가면서 감소해야합니다. 이 동작은 총 COD [표 2]에 대해 올바르게 예측되지만 SNH 및 TKN에 대해서는 그렇지 않습니다. SNO의 농도는 증가 할 것으로 예상되며 이는 ASM 솔버에 의해 정확하게 예측됩니다. 모든 폐수 종의 농도는 아래 애니메이션에 표시됩니다.

Zele WWTP에 있는 모든 종의 진화에 대한 시뮬레이션 결과

애니메이션은 Zele WWTP에있는 모든 종의 진화에 대한 시뮬레이션 결과를 보여줍니다.

WWTP 데이터에 대한 결과의 민감도

나는 폐수에서 일부 종의 잘못된 진화를 모델링의 가정과 누락된 WWTP 데이터에 기인합니다. 유입수에서 측정 된 종 농도의 불확실성; 초기 농도에 대한 정보 누락; 그리고 입자상 물질의 침강 특성에 대한 누락 된 데이터는 폐수의 종 농도에 영향을 미쳤을 가능성이 있습니다.

마찬가지로 불완전한 지오메트리 사양은 WWTP 내부의 유체 역학 계산의 정확성에 부정적인 영향을 미칠 수 있습니다. 또한 폭기조에 산소를 살포하는 것에 대한 정보는 부분적으로 만있었습니다. 산소는 다른 종의 부패와 성장에 큰 영향을 미치는 중요한 구성 요소입니다.

WWTP의 모든 데이터를 항상 측정 할 수있는 것은 아닙니다. 이러한 경우 보정 된 수치 모델을 가상 실험실로 효과적으로 사용하여 다양한 WWTP 설계를 테스트 할 수 있습니다. 이 사례 연구는 특히 폭기조에서 WWTP의 2 차 처리 부분에서 종의 농도를 추적 할 수 있음을 보여줍니다. 그리고 이것은 유체 역학 효과를 고려하면서 할 수 있습니다. 완전한 WWTP 데이터와 문제 사양이 존재하는 경우 엔지니어와 설계자는 WWTP 플랜트 운영 및 설계 최적화에 대해 더 나은 정보를 바탕으로 결정을 내릴 수 있습니다.

우리는 활성 슬러지 모델을 추가로 개발하고 보정하기 위해 폐수 처리 산업의 연구원 및 전문가와 협력 할 수 있습니다. 귀하의 WWTP 프로젝트 및 연구에 대해 논의하려면 adwaith@flow3d.com 으로 이메일을 보내 주십시오 .

참고 문헌

[1] Henze M., Lossdrecht M.C.M., Ekama G.A., Brdjanovic D., Biological Wastewater Treatment, Principles, Modelling and Design, IWA publishing 2008.

[2] Peterson B., Vanrollenghem P.A., Gernaey K., Henze M. (2002) Evaluation of an ASM-1 model calibration procedure on a municipal–industrial wastewater treatment plant, Journal of Hydroinformatics, 4(1): 15-38.

[3] Henze, M., Grady, C. P. L. Jr., Gujer, W., Marais, G. v. R. & Matsuo, T. (1987) Activated Sludge Model No. 1. IAWPRC Scientific and Technical Reports No. 1. London, UK.

레이저 용접에서의 키홀 동력학과 유도를 통한 Porosity 형성

레이저 용접에서의 Key Hole 동력학과 유도를 통한 Porosity 형성

자료 제공: General Motors Company, Shanghai Jiao Tong University
자료 제공: FLOW Science Japan

이 사례를 통해 FLOW-3D@ WELD를 이용하여 레이저 용접 프로세스의 키홀 형성 유도를 통한 porosity 형성에 대하여 검토가 가능한 것을 알 수 있습니다.

  • porosity 형성을 유도하는 키홀의 메커니즘
  • 레이저 출력과 용접 속도의 영향
  • 레이저 빔의 경사각의 영향으로 porosity 형성을 유도하는 키홀의 메커니즘
Porosity 형성을 유도하는 Key Hole 해석모델
Porosity 형성을 유도하는 Key Hole 해석모델

위 그림과 같이 온도에 따른 표면장력 값과 강한 우회전 소용돌이에 의해 후방으로의 유동은 거의 억제되는 것을 확인할 수 있습니다. 강한 용융 유동에 의한 Key Hole 붕괴는 초기 porosity 형성의 원인이 되지만, Key Hole 재개나 기포가 자유표면으로 빠져 나가도록 반드시 porosity를 이끌지는 않습니다.

그러나 키홀 바닥부에서 강한 소용돌이에 의해 기포가 키홀 용융지 후방 저부로 운반될 때는 높은 열전도율로 응고면이 빠르게 이동하므로, 응고면에 의해 포획될 위험이 매우 높습니다.

또한 용융 시의 알루미늄은 소용돌이가 강하기 때문에, 기포를 용융지의 바닥 후방에 있는 상태에서 배출시키는 것은 거의 불가능합니다. 기포가 응고면에 의해 포획될 경우 porosity가 형성됩니다.

레이저 출력과 용접속도의 영향

일반적으로 용접속도를 크게 하면 결합부에서 Porosity가 감소합니다. 이는 용접 속도 상승으로 모재 내 용해 및 키홀 깊이가 감소하여 키홀이 안정되기 때문입니다.

레이저 출력과 용접 속도의 영향
레이저 출력과 용접 속도의 영향
저속과 고속의 2 케이스에서 예측된 용융지의 유속장과 온도 분포
저속과 고속의 2 케이스에서 예측된 용융지의 유속장과 온도 분포

실험에 의한 길이 방향 단면의 Porisity 분포와 FLOW-3D@ WELD에 의한 분석 결과를 보여줍니다. 3번 케이스도 실험과 비슷한 용해 깊이를 가지고 있으며, 분석 결과도 실험과 매우 잘 일치하고 있습니다.

용접 단면의 Porosity 분포
용접 단면의 Porosity 분포

용접 단면의 Porosity 분포를 보면, 레이저 조사 각도가 증가할 수록 Porosity가 뚜렷이 감소하고 있음을 알 수 있습니다. 위의 오른쪽 그림에 용융지 내의 유속장과 온도분포를 보면 레이저 빔의 경사각도는 키홀의 생성 방향을 결정하여 후방의 용융지와 용융유동에 영향을 미치고 있습니다.

또한, 레이저의 경사각도가 작을 경우 강력한 증발 반력이나 중력에 의해 용융금속이 다른 방향으로 이동합니다. 이는 강한 소용돌이 흐름의 원인이 되는 구동력으로 작용하여 키홀 붕괴로 이어지기 쉽다는 것을 확인할 수 있습니다.

Shiloh사의 용접설비

FLOW-3D WELD를 이용한 해석과 실험 결과의 비교

FLOW-3D@ WELD를 이용한 해석과 실험 결과의 비교

자료 제공: SHILOH INDUSTRIES, INC
자료 제공: FLOW Science Japan

미국 Shiloh사는 주조 및 용접, 프레스 가공 등을 다루는 부품업체로 경량화, 원재료 절약, 원가에서 경쟁력을 갖춘 머티리얼 전문회사입니다. 그 동안 Shiloh사는 FLOW-3D@ 주조 문제 해결에 사용해 왔으나, 최근 FLOW-3D@ WELD 용접 모듈에 주목하여 FLOW-3D@ WELD를 이용하여 해석을 실시하였으며, 그 결과를 Shiloh사의 레이저 용접 실험 결과와 비교한 내용입니다.

Shiloh사의 용접설비
Shiloh사의 용접설비

두 금속은 사용하는 플레이트의 두께가 다르며 CASE2에서는 금속간 갭이 있습니다.

해석 결과 (실험과 비교)

FLOW-3D@ WELD를 사용하여 CASE1, CASE2 분석을 실시했습니다. CASE1은 바닥 직전까지 용해 시키지만, CASE2는 완전히 관통하고 있습니다. 관통시에도 바닥이 빠지지 않는 것은 표면 장력과 대류의 영향에 의한 것으로 생각됩니다.

용융 영역(CASE1)
용융 영역(CASE1)
CASE1-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)
CASE1-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)
CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)
CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

Summary

CASE1, CASE2 모두 단면 형상에서 2개의 경사가 나타나고 있으며,그 특징은 분석 결과에서도 뚜렷하게 관찰됩니다.

CASE2는 용융 영역의 팽창도 잘 재현할 수 있었습니다. FLOW-3D@ WELD는 레이저 용접의 대략적인 형상, 용융폭 등 레이저 용접 경향을 잘 파악하는 것을 확인할 수 있습니다.

Advances in Magnetohydrodynamic Liquid Metal Jet Printing

Advances in Magnetohydrodynamic Liquid Metal Jet Printing

Scott Vader1, Zachary Vader1, Ioannis H. Karampelas2 and Edward P. Furlani2, 3
1Vader Systems, Buffalo, NY
2Dept. of Chemical and Biological Engineering, 3 Dept. of Electrical Engineering,
University at Buffalo SUNY, NY 14260, Office: (716) 645-1194, Fax: (716) 645-3822, efurlani@buffalo.edu

ABSTRACT

자기유체역학적 액체 금속 제트 프린팅

우리는 용해된 금속 방울을 3D 물체로 만드는 새로운 주문형 DOD(Drop-on-Demand) 인쇄 방법을 제안합니다. 이 접근 방식에서는 단단한 금속 와이어가 인쇄 헤드 내에서 용해된 다음 펄스 자기장에 노출됩니다.

적용된 필드가 챔버에 침투하여 액상 금속 내에 자기 유압(MHD) 기반 압력 펄스를 유도하여 금속 일부가 노즐 챔버를 통해 이동된 후 배출됩니다. 표면 장력은 분출된 금속 위에 작용하여 가해진 압력에 따라 초 당 수 미터 범위의 속도로 구형 방울을 형성합니다.

잠시 비행한 후 방울이 기질에 충돌하여 냉각되어 고체 덩어리를 형성합니다. 따라서 패턴이 있는 증착 및 드롭 방식의 고형화를 통해 3D 솔리드 구조를 인쇄할 수 있습니다.

현재 연구에서는 샘플 프린팅 구조와 함께 시제품 MHD 프린팅 시스템 개발에 대한 발전된 점을 제시합니다. 또한 드롭 생성을 관리하는 기본 물리학에 대해 논의하고 장치 성능을 예측하기 위한 새로운 컴퓨팅 모델을 소개합니다.

Computational model of magnetohydrodynamic-based drop generation
Computational model of magnetohydrodynamic-based drop generation (printhead reservoir and ejection chamber
not shown): (a) the magnetic field generated by a pulsed coil is shown

INTRODUCTION

주문형 드롭온 잉크젯 프린팅은 상업 및 소비자 이미지 재현을 위한 잘 확립된 방법입니다. 이 기술을 추진하는 원리와 동일한 원리가 기능 인쇄 및 적층 제조 분야에도 적용될 수 있습니다.

Early stage prototype of a single nozzle printhead
Early stage prototype of a single nozzle printhead

기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르는 다양한 재료를 증착하고 패터링하여 다양한 기능성 매체, 조직 및 장치를 프린팅하는 데 사용되어 왔습니다. 현재 진행 중인 작업을 통해 잉크젯 인쇄를 3D 금속 부품으로 확장하려고 시도하고 있습니다.

현재, 대부분의 3D 금속 인쇄 애플리케이션은 고체 물체를 형성하기 위해 레이저(예: 선택적 레이저 소거 [1] 및 직접 금속 소거[2]) 또는 전자 빔(예: 전자 빔 용해 [3])과 같은 외부 유도 에너지원에 의해 소거 또는 녹는 퇴적 금속 분말을 포함합니다.

그러나 이러한 방법은 비용과 복잡성, 즉 3D 프린팅 공정에 앞서 금속을 분쇄해야 한다는 점에서 일정한 단점이 있을 수 있습니다.

이 프레젠테이션에서는 자기 유압 역학 원리를 기반으로 하는 금속 적층 제조의 근본적으로 다른 접근 방식을 제안합니다. 이 방법은 스풀링된 고체 금속 와이어를 인쇄 헤드에 공급하고 노즐에서 업스트림을 예열하여 노즐 챔버에 공급되는 액체 금속 저장소를 형성하는 것입니다. 챔버가 채워지면 액체 금속 내에서 과도 전류를 유도하는 펄스 자기장이 인가됩니다. 유도 전류가 인가된 필드에 결합되어 로렌츠 힘 밀도를 생성하여, 인가된 압력에 따라 속도가 달라지는 용융 금속 방울을 배출하는 작용을 하는 챔버 내의 유사 압력을 제공합니다.

방울은 냉각된 기질에 투영되어 고체 덩어리를 형성합니다. 3D 솔리드 구조를 패터닝으로 인쇄할 수 있습니다. 방울의 침적과 방울의 현명한 응고입니다. 이 유망한 신기술은 낮은 재료 비용, 높은 제조율 및 매력적인 재료 특성 때문에 적층 제조 애플리케이션에 광범위한 영향을 미칠 수 있습니다.

현재 작업에서는 새로운 3D 인쇄 시스템을 도입하고 기기 개발의 진보를 설명하고 샘플 인쇄 구조를 시연합니다. 또한 드롭 생성-배출 메커니즘에 대해 설명하고 인쇄 성능을 예측하기 위한 일련의 새로운 컴퓨팅 모델을 제시합니다.

자세한 내용은 본문을 참고하시기 바랍니다.

[FLOW-3D 이론] 1. 개요

  1. 개요

FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 물리 흐름 문제에 대해 과도적 3차원 해결책을 얻습니다. 다양한 물리적 및 수치 옵션을 통해 사용자는 다양한 유체 흐름 및 열 전달 현상 분석을 위해 FLOW-3D를 적용할 수 있습니다.

유체 운동은 비선형, 과도, 2차 미분 방정식으로 설명됩니다. 이러한 방정식을 풀기 위해 유체 운동 방정식을 사용해야합니다. 이러한 방법을 개발하는 과학을 전산 유체 역학이라고 합니다. 이 방정식의 수치해는 대수적 표현으로 다양한 항을 근사화 합니다. 그런 다음 결과 방정식을 해결하여 원래 문제에 대한 대략적인 해결책을 제시합니다. 이 과정을 시뮬레이션이라고 합니다. FLOW-3D에서 사용할 수 있는 수치해석 알고리즘의 개요는 운동 방정식에 대한 섹션에 나옵니다.

일반적으로 수치 모델은 계산 Mesh 또는 그리드로 시작합니다. 이것은 여러 개의 서로 연결된 요소 또는 셀로 구성됩니다. 이러한 셀은 물리적 공간을 해당 볼륨과 관련된 여러 노드가 있는 작은 볼륨으로 세분화합니다. 노드는 압력, 온도 및 속도와 같은 미지수의 값을 저장하는데 사용됩니다. Mesh는 사실상 원래의 물리적 공간을 대체하는 숫자 공간입니다. 또한 별도의 위치에서 흐름 파라미터를 정의하고, 경계 조건을 설정하고, 유체 운동 방정식의 수치 근사치를 개발하는 방법을 제공합니다. FLOW-3D 접근 방식은 흐름 영역을 직사각형 셀의 격자로 세분하는 것입니다. 이 격자는 brick elements라고도 합니다.

계산 Mesh는 물리적 공간을 효과적으로 이산화 시킵니다. 각 유체 매개 변수는 불연속 지점에서 값 배열에 의해 Mesh로 표시됩니다. 실제 물리적 파라미터는 공간에서 연속적으로 변하기 때문에 노드 사이의 간격이 미세한 Mesh는 더 거친 Mesh보다 현실을 더욱 잘 표현해줍니다. 그런 다음 수치 근사치의 기본 속성에 도달합니다. 그리드 간격이 줄어들면 유효한 모든 유효한 수치 근사가 원래 방정식에 접근합니다. 근사치가 이 조건을 만족하지 않으면 올바르지 않은 것으로 간주해야 합니다.

동일한 물리적 공간에 대해 격자 간격을 줄이거나 Mesh를 조정하면 더 많은 요소와 노드가 생겨 수치 모델의 크기가 커집니다. 그러나 유체 흐름 및 열 전달의 실제 현실과는 별도로, 시뮬레이션 엔지니어들이 적절한 크기의 Mesh를 선택하도록 하는것과 밀접한 관계에 있는 설계 주기, 컴퓨터 하드웨어 및 마감일의 현실적인 문제도 있습니다. 이러한 제약 조건을 만족시키는 것과 사용자가 정확한 결과를 얻는 것 사이에서 타협점을 찾는 것은, CFD 모델 개발 못지않은 중요한 균형 잡힌 행위입니다.

직사각형 그리드는 규칙적이거나 구조적인 특성 때문에 생성 및 저장이 매우 쉽습니다. 균일하지 않은 그리드 간격은 복잡한 흐름 도메인을 매칭할 때 유연성을 더합니다. 연산 셀은 세 개의 지수를 사용하여 연속적으로 번호가 매겨집니다. 즉, x 방향은 i, y 방향은 j, z 방향은 k입니다. 이 방법으로 3차원 Mesh의 각 셀은 물리적 공간의 점의 좌표와 유사한 고유한 주소(i, j, k)로 식별할 수 있습니다.

구조화된 직사각형 그리드는 수치적 방법의 개발의 상대적 용이성, 원래의 물리적 문제와의 관계에 대한 후자의 투명성, 그리고 마지막으로 수치적 해결의 정확성과 안정성의 추가적인 이점을 가지고 있습니다. 유한 차분법과 유한 체적법에 기초한 가장 오래된 수치 알고리즘은 원래 이러한 Mesh에서 개발되었습니다. 이것은 FLOW-3D에서 수치적 접근방식의 핵심을 형성합니다. 유한차분법은 테일러 확장의 특성과 파생된 정의의 직접적인 적용에 기초합니다. 미분 방정식에 대한 수치적 해결책을 얻기 위해 적용된 방법 중 가장 오래된 방법이며, 첫 번째 적용은 1768년 오일러에 의해 개발된 것으로 간주됩니다. 유한체적법은 유체 운동을 위한 보존법의 일체형태에서 직접 파생되므로 자연적으로 보존 특성을 보유합니다.

FLOW-3D는 일반적인 유체 방정식의 다른 제한 사례에 해당하는 여러 모드에서 작동할 수 있습니다. 예를 들어, 하나의 모드는 압축 가능한 흐름을 위한 것이고 다른 하나는 압축할 수 없는 흐름 상황을 위한 것입니다. 후자의 경우 유체의 밀도와 에너지가 일정하다고 가정할 수 있으므로 계산할 필요가 없습니다. 또한 1유체 모드와 2유체 모드가 있습니다. 자유 표면은 단일 유체 비압축 모드에 포함될 수 있습니다. 이러한 작동 모드는 동작 방정식에 대한 다양한 선택에 해당합니다.

자유 표면은 FLOW-3D로 수행된 많은 시뮬레이션에서 존재합니다. 유량 매개변수와 재료 특성(밀도, 속도, 압력 등)이 불연속성을 경험하기 때문에 모든 계산 환경에서 자유 표면을 모델링하는 것은 어렵습니다. FLOW-3D에서는, 액체에 인접한 가스의 관성이 무시되고, 가스에 의해 점유되는 부피는 균일한 압력과 온도로만 표현되는 빈 공간, 질량의 공백으로 대체됩니다. 대부분의 경우 가스 모션의 세부 사항은 훨씬 무거운 액체의 움직임에 중요하지 않기 때문에 이 접근 방식은 계산 노력을 줄이는 이점이 있습니다. 자유 표면은 액체의 외부 경계 중 하나가 됩니다. 자유 표면의 경계 조건에 대한 적절한 정의는 자유 표면 역학을 정확하게 포착하기 위해 중요합니다.

VOF(Volume of Fluid) 방법은 이러한 목적으로 FLOW-3D에 사용됩니다. 유체 함수의 볼륨 정의, VOF 전송 방정식 해결 방법, 자유 표면의 경계 조건 설정 등 세 가지 주요 구성요소로 구성됩니다.

일부 물리 및 수치 모델은 Flow Science의 기술 노트: http://users.flow3d.com/technical-notes/ 에 자세히 설명되어 있으며, 여기에는 예제도 포함되어 있습니다.

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Modeling Methods

An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

자유 표면 모델링 방법

기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

  1. A scheme is needed to describe the shape and location of a surface,
  2. An algorithm is required to evolve the shape and location with time, and
  3. Free-surface boundary conditions must be applied at the surface.

다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

  1. 표면의 형상과 위치를 설명하는 방식
  2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
  3. 표면에 적용할 자유 표면 경계 조건

Lagrangian Grid Methods

Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

라그랑주 격자 법

개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

Surface Height Method

Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

표면 높이 법

낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

Marker-and-Cell (MAC) Method

The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

MAC 방법

시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

Surface Marker Method

One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

표면 마커 법

마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

Volume-of-Fluid (VOF) Method

The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

VOF (Volume-of-Fluid) 법

마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

Variable-Density Approximation to the VOF Method

One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

VOF 법의 가변 밀도 근사

VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

Summary

A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

References

1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오

2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.

작업 공간 열기

3.작업 공간을 로드 하려면 OK누르십시오.

작업 공간에서 시뮬레이션 작업

작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.

Example를 추가하십시오

작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는
방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.

1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오

2.File -> Add example 선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가선택할 수 있습니다.

3.예제 대화 상자에서 예제를 선택하고 열기를 누르십시오. 자연 대류(Natural Convection) 예제를 선택했습니다.

시뮬레이션 예제 추가

4.새 시뮬레이션 대화 상자가 열립니다.

5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.

6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.

7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.

작업 공간에서의 시뮬레이션

작업 공간에서 시뮬레이션 제거

작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를 선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.

2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.

모든 작업 공간 및 디스크에서 시뮬레이션 삭제

작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션
파일을 삭제하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션
삭제를
선택하십시오.

2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.

3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.

경고

이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.

작업 공간에 기존 시뮬레이션 추가

기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.

1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가 선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation 을 선택할 수도 있습니다.

2.prepin.*파일 위치로 이동하여 열기를 선택하십시오.

작업 공간에 기존 시뮬레이션 추가

3.시뮬레이션이 이제 작업 공간에 나타납니다.

작업 공간에 새로운 시뮬레이션 추가

대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가 선택하십시오.

2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example 불러오십시오.

3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금
각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기
충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.

4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI CGS 단위의 경우 Celsius
Kelvin, 엔지니어링 단위의 경우 Fahrenheit Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량
및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.

노트

새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.

5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우
찾아보기 아이콘 (
browse_icon_v12)을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.

6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( browse_icon_v12)을 사용하여 원하는 위치로 이동하십시오.

7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.

heat transfer example

새로운 시뮬레이션 추가

다른 옵션

우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.

일반적으로 사용되는 Add Simulation Copy… 그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을
작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.

추가 정보

재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.

전처리 및 시뮬레이션 실행

시뮬레이션 전처리

시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에
유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local 선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.

추가 정보

자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.

시뮬레이션 실행

시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히
정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의
아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다
.

추가 정보

시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

작업 공간에서 모든 시뮬레이션 실행

작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

대기열

사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장을 참조하십시오.

파일 시스템에서 파일 찾기

어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.

파일 링크

4.모델 설정

Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체,
기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.

이 섹션은 물에 잠긴 모래(; 파랑)의 바닥에서 가열된 구리 블록(; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.

예제 문제

이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에
대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.

시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.

탐색

모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여 Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.

시뮬레이션의 다양한 측면을 정의하기위한 탐색 아이콘

통제 수단

다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.

행동

버튼/

동작

기술

회전

왼쪽

길게 클릭

마우스 왼쪽 버튼을 클릭 한 채로 Meshing & Geometry 창에서
마우스를 움직입니다. 그에 따라 모델이 회전합니다.

중간 버튼/스크롤

스크롤/클릭 한
상태

마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭
한 상태로 유지하십시오.

우측

길게 클릭

마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.

객체에 초점 설정

해당 없음

객체 위에 커서를 놓기

커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를
통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry 탭에서 Tools->
Mouse Hover
Selection
환경 설정 이 활성화된 경우에만
수행됩니다.

선택

왼쪽

더블 클릭

객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가
조작을 위해 객체를 선택하고 활성화합니다. Meshing
& Geometry
탭에서 Tools
->Mouse Hover Selection 환경 설정 이
비활성화 된 경우에만 활성화됩니다.

액세스 객체 속성

우측

딸깍 하는 소리

강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체
식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.

커서 좌표 반환 (프로브)

왼쪽

Shift + 클릭

Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.

피벗 점 배치

왼쪽

cntrl + 클릭

Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가
피벗 점을 중심으로 회전합니다. 토글 사용자 정의 피벗 피벗 점을 끕니다.
보기 창 위의 버튼을 누릅니다.

도움이
되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.

메시 및 지오메트리 탭의 컨트롤

글로벌

이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면
시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.

글로벌 아이콘 f3d_global_icon을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.

글로벌 탭 예를 들어 문제

추가 정보

자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.

물리

물리 f3d_models_icon아이콘을 클릭하여 물리 위젯을 엽니다.

모델 선택을위한 물리 위젯

이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.

관련 물리 메커니즘(, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고활성화 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.

·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.

문제 평가를위한 밀도 평가 모델

·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.

예를 들어 중력 모델

·
Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.

열전달 모델 예 : 문제

·
Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.

예를 들어 문제의 점도 모델

추가 정보

자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.

유체

유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon f3d_fluids_icon아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼Matdatbas을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.

이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 207e-6을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.

유체 특성 (예 : 문제)

추가 정보

자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

Geometry(기하)

기하형상 f3d_geometry_icon아이콘을 클릭하여 물리 위젯을 엽니다.

이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.

구리 블록을 만들려면 먼저 지정된 상자 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.

예제 문제에 대한 구리 블록 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.

상자아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.

예를 들어 침대 문제 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.

예제 문제에 대한 형상 정의

새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.

노트

표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 즐겨 찾기옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.

추가 정보

자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.

구성 요소 속성

열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘f3d_geometry_icon을 클릭하여 구성 요소 속성 위젯에서 설정합니다.

구성 요소 특성 위젯

각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.

구리 블록 고체 특성

여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드 Matdatbas 아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz 선택하고 Load를 선택하십시오.

베드 솔리드 속성

추가 정보

l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.

Meshing(메싱)

Mesh Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. f3d_mesh_icon아이콘을 눌러 add_iconMesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.

메시 블록을 형상에 맞추기

Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton 탭을 선택하고 Mesh Plane 2 0.2를 입력합니다.

z 높이 조정

이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.

y 메쉬 평면 조정

최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.

또한 솔버가 Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면 즐겨 찾기아이콘을 클릭한 다음 생성을 선택하십시오.

호의

잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.

선호하는 결과

추가 정보

l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.

l FAVORTM FAVORize
옵션에 대한 자세한 내용은 모델 설정 즐겨 찾기장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.

경계 조건

FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다(f3d_bc_icon ).

이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.

·X Min :

o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.

XMIN 경계 조건

·다음으로, 유체 분율 사용에서 유체 표고 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

·마지막으로 온도를 298K로 설정하십시오.

XMIN 경계 조건

·
X Max :

o경계 조건 위젯의 경계 섹션 아래에 있는 X 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로, 유체 분율 사용에서 유체 높이 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

o마지막으로 온도를 298K로 맞춥니다.

oXMAX 경계 조건

·
Z 최대 :

o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로 유체 분율을 0.0으로 설정하십시오.

o마지막으로 온도를 298K로 맞춘다.

ZMAX 경계 조건

추가 정보

자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.

초기 조건

도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.

·
구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.

유체 초기 조건

유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.

f3d_initial_icon 아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.

유체 초기 조건

다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.

유체 초기 조건 계속

추가 정보

자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.

출력

FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력 f3d_output_icon 아이콘을 클릭합니다.

다른 데이터 유형은 다음과 같습니다.

·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.

·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.

·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.

일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.

출력 탭 설정

추가 정보

자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.

Numerics

기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.

이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.

추가 정보

자세한 내용은 모델 설정 장의 Numerics 옵션 섹션을 참조하십시오.

일반 시뮬레이션 설정 점검 목록

시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.

시작하기 전에

1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.

2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.

3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.

모델 설정 : 일반

1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.

2.사용할 솔버와 프로세서 수를 선택하십시오.

3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 ( : mm-gm-msec)사용하고 규모가 큰 문제는 큰 단위 ( : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.

4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 f> 0(유체 1을 나타내는) 또는 유체 분획 f \ geq 0(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스
추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는 f = 0두 유체 문제에서 처리되는 영역을 정의합니다.

5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.

6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.

모델 설정 : 물리

1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화

모델 설정 : 유체

1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.

2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.

3.인터페이스의 속성 정의: f = 1 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.

모델 설정 : Mesh 및 형상

1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상
정의와 관련된 문제를 파악하는 데 도움이 됩니다.

2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.

3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.

4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.

5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이 0 <f <1있는 셀과 셀이 f = 1다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다.f = 0 ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. f = 1 f = 0 .

6.지오메트리를 정의하는 모든 배플 정의

7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.

8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다.t = 0 .주석이
달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.

9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)

모델 설정 : 출력

1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.

2.재시작 데이터에 추가할 출력을 선택하십시오.

3.선택한 데이터에 기록할 정보를 선택하십시오.

4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.

모델 설정 : 숫자

1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.

5.FLOW-3D에서 후 처리

이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서 FlowSight에 대한 튜토리얼은 FlowSight 설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.

FlowSight 사용에 대한 기본 참조는 FlowSight Help->helpLocal Help 메뉴에서 액세스하는 FlowSight 사용자 설명서입니다.

추가 정보

기존 플롯

기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.

1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.

2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리 flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.

3. 확인을 선택 flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.

기존 결과 대화 상자

4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.

기존 플롯보기

커스텀 플롯

1.분석 탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를 선택하십시오.

2.전체 출력 파일을 보려면 사용자 정의 단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.

3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을 클릭하십시오.

FLOW-3D 결과 대화 상자

이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.

·Custom : 이 매뉴얼 의 FLSINP 파일을 사용하여 플롯합니다. 사용자 정의 섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.

·프로브 : 개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브 플롯 프로브 : 특정 시점의 데이터와 시간 을 참조하십시오.

·1-D : 셀 데이터는 X, Y 또는 Z 방향의 셀 라인을 따라 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 1-D 플롯 1-D : 라인을 따른 데이터 시간 을 참조하십시오.

·2-D : 셀 데이터는 XY, YZ 또는 XZ 평면에서 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 속도 벡터 및 입자를 추가할 수 있습니다. 자세한 내용은 2 차원 플롯 2 차원 : 평면의 데이터와 시간의 데이터 를 참조하십시오.

·3-D : 유체와 고체의 표면 플롯을 생성하고 셀 데이터로 채색 할 수 있습니다. 속도 벡터, 입자 (있는 경우) 및 유선과 같은 추가 정보를 추가할 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 3D 플롯 3D : 표면의 데이터 시간 을 참조하십시오.

·텍스트 출력 : cell-by-cell 재시작, 선택 및 응고 데이터를 텍스트 파일에 쓸 수 있습니다. 자세한 내용은 텍스트 출력 텍스트 : ASCII 형식의 공간 데이터 출력 시간 을 참조하십시오.

·중립 파일 : 재시작 및 선택된 데이터는 별도의 텍스트 파일에 정의 된 지정된 지점(보간 또는 셀 중심)에서 출력 될 수 있습니다. 자세한 내용은 중립 파일 : 사용자 정의 좌표에서의 공간 데이터 출력 시간 을 참조하십시오.

·FSI TSE : 유한 요소 유체 / 고체 상호 작용 및 열 응력 진화 물리학 패키지에서 출력됩니다. 자세한 내용은 FSI / TSE : 표면의 구조 데이터와 시간 을 참조하십시오.

3 차원 도표

1.Analyze -> 3-D 탭을 선택하십시오.

2.Iso-surface = Fraction of fluid 선택하십시오. 이것은 표면을 그리는 데 사용되는 변수입니다. 선택한 등면 변수에 대한 등고선 값 기준을 충족하는 모든 셀을 통해 표면이 그려집니다. 유체의 분율이 기본값이며 유체 표면이 표시됩니다.

등 면형

3.색상 변수 = 압력을 선택하십시오. 이 선택은 등위면의 색을 지정하는 데 사용되는 변수를 결정합니다 (이 경우 유체 표면은 압력에 의해 색이 그려집니다).

색상 변수 유형

4.Component iso-surface overlay = Solid volume 선택하십시오. 솔리드 볼륨 은 유체와 함께 솔리드 구성 요소를 표시합니다. 이전 단계에서는 체적 분수의 보완을 등위면으로 선택하여 이 작업을 수행했지만 이 옵션을 사용하면 유체와 고체 표면을 동시에 플롯 할 수 있습니다.

등표면 옵션

5.이동 시간 프레임의 최소 및 최대 위치들 (0 내지 1.25 )에 슬라이더 위치.

시간대 옵션

6.렌더 버튼을 클릭하여 디스플레이 탭으로 전환하고 t = 0.0에서 1.25 초 사이에 일련의 11 플롯을 생성하여 압력에 의해 채색된 유체 표면과 위어 구조를 보여줍니다. 데이터 다시 시작 이 선택되었으므로 11 개의 플롯이 있습니다.

7.사용 가능한 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 다음을 클릭하여 시간 프레임 사이를 이동하거나 시간 프레임을 두 번 클릭하여 표시하십시오. 첫 번째 및 마지막 시간 프레임은 다음과 같아야 합니다.

위어 구조 렌더링

8.Analyze -> 3-D 탭으로 돌아가서 Data Source 그룹에서 Selected data 라디오 버튼을 선택하십시오.

데이터 소스

9.시간 프레임 선택기의 두 슬라이더가 모두 오른쪽에 있으므로 마지막 시간 프레임 만 생성됩니다. 사용 가능한 시간 프레임이 많고 렌더링하는데 시간이 오래 걸리므로 선택한 데이터를 선택하면 인터페이스에서 자동으로 수행됩니다. 사용 가능한 모든 시간 프레임을 렌더링 하려면 왼쪽 슬라이더를 Time Frame Min = 0 으로 이동하십시오.

10. 렌더링 버튼을 클릭하십시오. 몇 초 안에 뷰가 디스플레이 창으로 전환되고 101 개의 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 시간 프레임 사이를 이동하려면 다음을 반복해서 클릭하십시오.

대칭 흐름 표시

위어 중심 아래로 대칭 평면을 사용하여 시뮬레이션을 설정했으므로 위어 구조의 절반만 시뮬레이션되고 표시됩니다. 프리젠테이션 목적으로 대칭 모델의 두 반쪽을 모두 표시할
수 있습니다.

1.아래와 같이 Analyze -> 3-D 탭으로 돌아가서 Open Symmetry Boundaries 확인란을 선택하십시오.

열린 대칭 경계

2.렌더링을 클릭하십시오. 유체 표면이 디스플레이 탭의 대칭 경계에서 열린 상태로 나타납니다.

3.화면 위의 도구 모음 메뉴에서 도구 -> 대칭을 선택하십시오.

4.대화 상자에서 Y 방향 확인란을 선택하여 Y = 0 평면에서 결과를 미러링합니다.

대조

5.적용 닫기를 선택하십시오.

6.마지막 시간 프레임을 두 번 클릭하십시오. 디스플레이는 아래와 같이 전체 위어 구조를 보여줍니다.

전체 위어 구조

3 차원 애니메이션 만들기

다음 단계는 3 차원 유체 표면의 애니메이션을 만드는 것입니다. 애니메이션은 사용 가능한 시간 프레임 목록의 프레임에서 만든 동영상입니다. 애니메이션의 시각적 효과를 향상시키려면 모든 프레임에 공통 색상 스케일을 적용하는 것이 좋습니다.

1.분석 -> 3-D 탭으로 돌아갑니다.

2.윤곽 제한 그룹 상자에서 전역 라디오 버튼을 모두 선택하십시오.

윤곽 제한

3.렌더 클릭 하여 다시 그리고 디스플레이 탭으로 돌아갑니다.

4.도구 -> 대칭 -> Y 방향 -> 적용 선택을 반복하여 Y = 0 평면에서 결과를 반영합니다.

5.선택 도구 -> 애니메이션 -> 러버 밴드 캡처를 다음과 같이 선택 확인 Mesh지가 나타납니다 그것을 읽은 후.

러버 밴드 캡처

6.마우스 왼쪽 버튼을 클릭 한 상태에서 드래그하여 애니메이션을 적용할 화면 부분을 선택하십시오. 선택한 영역 주위에 선택 상자가 나타납니다.

X, Y, 너비 및 높이 상자

7.디스플레이 창 위에서 빨간색 캡처 버튼을 선택하십시오. 애니메이션을 시작하는 대화 상자가 나타납니다.

8.애니메이션의 기본 이름은 out.avi입니다. 아래에 표시된 것처럼 보다 구체적인 이름이 권장됩니다.

9.기본 프레임 속도는 초당 10 프레임입니다. 이 시뮬레이션의 마감 시간은 1.25 초이고, 일정한 시간 간격으로 100 개의 플롯이 있으므로실제속도는 초당 80 프레임입니다. 너무 빠를 수 있으므로 대신 5 입력 하고 확인을 누르십시오.

AVI 캡처

10. 각 시간 프레임이 표시 창에 렌더링 되고 비트 맵 파일이 시뮬레이션 디렉토리에 작성됩니다. 이 프로세스가 완료되면 다음 대화 상자가 나타납니다.

생성 된 이미지 소스 파일

  1. 프로세스의 다음 단계를 시작하려면 확인 버튼을 클릭하십시오. 새로운 프로세스 (BMP2VAI.exe)가 시작되고 압축 방법을 선택할 수 있는 새로운 비디오 압축 창이 나타납니다. 다른 창 뒤에 숨겨져 있으면 앞으로 가져옵니다.
  2. 애니메이션의 기본 압축은 압축되지 않습니다. 파일 크기가 너무 커서 뷰어에 로드 할 수 없으므로 대부분의 애니메이션에는 권장되지 않습니다. Windows를 사용하는 경우 Microsoft Video 1, Linux를 사용하는 경우 Cinepak 선택하십시오. 여기에서 선택하는 것은 컴퓨터에서 사용할 수 있는 비디오 코덱과 비디오를 표시하는 데 사용하는 기계에서 사용할 수 있는 것입니다.
  3. 애니메이션 속도가 데이터 속도에 의해 제한되지 않도록 데이터 속도 확인란을 선택 취소하십시오.
비디오 압축

  1. 압축 프로세스를 시작하려면 확인을 클릭하십시오. 압축이 완료되면 다음 대화 상자가 나타납니다.
AVI 파일 생성

  1. 확인을 클릭하십시오. 애니메이션 프로세스가 완료되었습니다.
  2. Windows 탐색기에서 .avi 파일을 찾는 가장 빠른 방법 은 시뮬레이션 관리자 탭으로 이동하여 시뮬레이션 입력 파일 링크를 클릭하는 것 입니다.
  3. .avi파일 을 두 번 클릭하여 애니메이션을 재생 하십시오. 이전에 선택한 압축 형식을 읽을 수 있는 올바른 코덱이 설치되어 있지 않으면 오픈 소스 다중 코덱 비디오 플레이어 설치를 고려하십시오.

2 차원 도표

1.Analyze -> 2-D 탭을 선택하십시오. 이 시뮬레이션의 결과를 보는 데 가장 유용한 평면은 평면 Y = 0.0에있는 위어 중심선의 XZ 평면입니다.

2.XZ 평면 라디오 버튼을 선택하십시오.

3.Y 제한 슬라이더를 모두 Y = 0.25 (Y = 0.0에 가장 가까운 셀 중심 y 좌표)로 드래그 합니다. 또한 동일한 위치가 J = 2 로 식별되어 해당 셀이 도메인에서 두 번째임을 나타냅니다. 첫 번째 셀 (J = 1) Mesh 외부에 있으며 경계
조건 속성을 계산하는 데 사용됩니다. 기본
윤곽 변수는 압력이며 기본 속도 벡터는 기본적으로 선택됩니다. 솔리드 형상은 모든 2D 플롯과 함께 자동으로 표시되므로 3D 플롯과 같이 활성화 할 필요가 없습니다.

4.벡터 옵션을 클릭하고 X = 2 Z = 2 입력하십시오. 벡터는 이제 다른 모든 셀에 플롯 됩니다. 벡터 옵션을 적용하려면 확인을 선택하십시오.

벡터 옵션

5.Y = 0 평면에서 2 차원 압력 플롯의 시간 시퀀스를 생성하려면 렌더링을 클릭하십시오. T = 0.0 (왼쪽) 인 다음과 유사한 그래픽이 나타납니다. T = 0.125 (중간); 그리고 T = 1.25 (오른쪽).

2D 결과

6.디스플레이 화면의 오른쪽 상단에 있는 형식 버튼을 선택하십시오.

형식 옵션

7.선 색상, 벡터 길이 및 화살촉 크기 변경과 같은 다양한 옵션을 시험해보십시오. 변경 사항을 보려면 적용을 선택하십시오. 완료되면 재설정 확인을 선택하여
기본 설정으로 돌아가서 대화 상자를 닫습니다. 모든 플롯에 대해 선호하는 옵션 세트가 있는 경우
저장 버튼을 선택하여 저장할 수 있습니다.

1 차원 도표

  1. 분석 -> 1-D 탭을 선택하십시오. 이 탭에서는 하나 이상의 플롯 시간에서 셀 행을 따라 압력, 유체 깊이, 유체 상승 및 속도와 같은 셀별 출력 변수의 꺾은 선형
    차트 플롯을 사용할 수 있습니다.
  2. 데이터 소스 로 선택을 선택합니다. 사용 가능한 변수는 이제 더 빈번한 플로팅을 위해 선택된 변수 만 표시합니다.
  3. 자유 변수 표고데이터 변수 로 선택하십시오. 유압 데이터출력 탭에서 선택되었으므로 사용할 수 있습니다.
ID 그래픽을 위해 선택된 데이터

  1. 이 시뮬레이션의 흐름 방향은 주로 x 축과 평행하므로 X 방향을 선택하십시오.
  2. Y 방향 슬라이더를 0.25(J = 2)로 이동하여 Y 방향에서 흐름 중심선에 가장 가까운 셀이 표시됩니다.
  3. 기본적으로 전체 X 범위가 표시됩니다. 플롯의 범위를 제한하려는 경우 X 방향 슬라이더를 이동할 수 있습니다. Z 방향 슬라이더의 위치는 주어진 x, y 위치에서 z 셀의 각 열에 대해 하나의 자유 표면 높이만 기록되므로 중요하지 않습니다. 시간 프레임 슬라이더는 0초와 1.25초여야 합니다.
흘러가는 방향

  1. 렌더링을 클릭하십시오. t = 0.0에서 t = 1.25s까지의 시리즈 플롯이 디스플레이 탭의 플롯 목록에 나열됩니다. 이러한 플롯을 볼 수 있는 여러 가지 모드가
    있습니다. 기본 모드는
    단일 모드이며 형식 버튼 아래의 드롭 다운 상자에 표시됩니다.
기본 단일 모드

  1. 다양한 시간에 유체 표면 높이의 플롯을 비교하려면 드롭 다운 상자에서 오버레이 모드를 선택하십시오.
  2. 오른쪽 창에서 플롯 1, 13 101 선택하려면 클릭하십시오. 플롯 이름에는 또한 기록된 시간이 표시됩니다 (t = 0.0, 0.15s 1.25 ). 출력은 아래와 같이 나타납니다.
자유 표면 고도

  1. 이 플롯을 비트 맵 또는 포스트 스크립트 파일에 저장하려면 출력 버튼을 선택하십시오.
  2. 확인 화면에 플롯 오버레이 플롯을 캡처하는 확인란을 (그리고 단 하나의 출력 파일을).
  3. 쓰기 버튼을 선택하여 이미지 파일을 만듭니다.
  4. 결과 이미지 파일은 시뮬레이션 디렉토리에 있으며 (시뮬레이션 관리자 탭 에서이 파일을 찾는 방법을 기억하십시오) 이름이 지정한 plots_on_screen.bmp됩니다.
출력 사진

프로브 플롯

1.
분석 -> 프로브 탭을 선택하십시오. 시간 기록 플롯은이 탭에서 변수 대 시간의 라인 그래프 또는 텍스트 출력으로 생성됩니다. FLOW-3D 에는 데이터 소스 그룹에서 선택되는 세 가지 유형의 시간 종속 데이터가 있습니다.

·공간 데이터 : 재시작 선택된 데이터 소스. 단일 x, y, z 셀 중심 좌표의 시간 종속 값이 표시됩니다. 값은 시간과 관련하여 통합되거나 시간과 관련하여 차별화되거나 이동 평균 (시간)으로 통합될 수 있습니다.

·일반 history 데이터 :. 글로벌 수량은 시간에 따라 다릅니다. 일반적인 양은 평균 운동 에너지, 시간 단계 및 대류 볼륨 오류입니다. 또한 이 데이터 유형에는 모델 설정 -> 메싱 및 지오메트리 탭에서 이러한 옵션을 선택한 경우 지정된 측정 위치(배플, 샘플링 볼륨, 히스토리 프로브)의 모든 데이터와 이동 또는 정지 상태의 솔리드 및 스프링/로프를
위한 통합 출력이 포함됩니다.

·Mesh-dependent data : 메쉬 경계에서 시간에 따른 수량(계산 또는 사용자 지정)입니다. 일반적인 수량은 경계에서의 유량 및 경계에서의 지정된 유체 높이입니다.

2.데이터 원본에서 일반 기록 라디오 버튼을 선택합니다. X, Y Z 데이터 점 슬라이더가 회색으로 바뀝니다. 이는 일반 기록 데이터가 특정 셀과 연결되어 있지 않기 때문입니다.

3.목록에서 질량  평균 유체 평균 운동 에너지를 선택하십시오.

그래픽 데이터 출력

4. 단위를 선택하여 플로팅 단위 대화 상자를 엽니다.

5. 플롯에 단위 표시를 선택하십시오.

6. SI, CGS, slugs/feet/seconds 또는 pounds/inches/seconds를 선택하여 원하는 단위 시스템으로 결과를 변환하고 출력합니다. 장치를 표시하고 변환하려면 모델 설정 -> 일반 탭에서 장치 시스템을 선택해야 합니다. 이전 단계에서 이 항목을 확인했으며, 지오메트리 및 유체 특성은 centimeters/grams/seconds 시스템에서 지정되었습니다.

플로팅 단위

7.Plotting Units 대화 상자를 닫으려면 OK를 선택하십시오.

8.데이터의 그래픽 출력을 생성하려면 렌더를 선택하십시오. 출력은 시간에 따른 영역의 모든 유체에 대한 질량 평균 평균 운동 에너지를 보여줍니다. 이전 단계에서 선택한 사항에 따라 단위 레이블과 함께 그림이 나타납니다. 플롯은 총 운동 에너지가 일부 평균값 주위에서 진동하고 있음을 나타냅니다. 진동이 작아짐에 따라 시뮬레이션은 정상 상태 흐름에 접근합니다.

프로브 MKE 출력

9.분석 -> 프로브 탭으로 돌아갑니다.

10. 출력 양식 그룹에서 텍스트를 선택하여 그래프를 텍스트 데이터로 출력한 다음 렌더링을 다시 선택하십시오.

출력 형태

11. 나타나는 텍스트 대화 상자에서 다른 이름으로 저장 버튼을 선택하여 출력을 텍스트 파일로 저장할 수 있습니다.

12. 출력 창을 닫으려면 계속을 선택하십시오.

텍스트 출력

1.Analyze -> Text Output 탭을 선택하십시오.

2.텍스트 출력 은 셀별 데이터 ( 다시 시작 또는 선택됨 ) 만 출력 할 수 있고 (구성 요소, 측정 스테이션 또는 글로벌 데이터 없음) 둘 이상의 셀을 선택할 수 있다는 점을 제외하고 프로브 탭 과 동일한 방식으로 작동합니다. 각 플롯 시간에 대한 출력 데이터. 셀은 슬라이더를 사용하여 3D 블록에서 선택됩니다. 기본 공간 범위는 전체 도메인으로 설정됩니다.

3.직접 텍스트 데이터를 출력해보십시오.

 

FLOW-3D TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Solidification model

Solidification model

FLOW-3D CAST v5.1 solidification model

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 고체화 모델은 주조 시뮬레이션을 새로운 단계로 발전시킬것 입니다. 사용자는 주조 부품의 강도와 무결성을 예측하면서도 고철을 줄이고 제품 안전 및 성능 요구사항을 충족할 수 있습니다.

Solidification model capabilities

새로운 응고모델은 핵, 분리, 냉각 조건을 고려한 온도와 화학의 진화로 인한 잠열, 열전도도, 열 용량, 밀도, 점성 등을 포함한 고체화 경로와 재료 특성을 계산합니다.

응고모델은 이차 덴드라이트 암 사핑(SDAS) 및 입자 크기와 같은 구성 및 냉각 조건에 기반한 미세 구조 진화를 예측합니다. 또한 확산과 집착으로 인한 매크로 분리를 예측합니다. 기계적 특성과 미세구조 사이의 경험적 관계는 실험 측정을 기반으로 합니다. 독특하고 강력한 마이크로 구조와 기계적 특성 예측 기능을 갖춘 새로운 고체화 모델은 마이크로도 예측을 위한 차원 없는 니야마 기준과 같은 다른 모델의 기초를 제공합니다.

응고 미세 구조와 다공성 결함은 주물의 기계적 특성에 영향을 미치는 주요 요소입니다. 또한, 국소 미세 구조는 합금 원소의 분리에 따른 합금의 화학적 구성, 응고율 및 화학적 비동종성에 의해 결정됩니다. 공정 설계자는 새로운 응고 모델을 사용하여 다양한 공정 매개변수 및 합금 조합이 기계적 특성에 미치는 영향을 판단하여 주조물의 성능을 최적화하여 가능한 최고 품질의 안전한 제품을 생산할 수 있습니다.

Solidification of A356

 

Solidification of A206

MICROSTRUCTURE OUTPUT

  • Secondary dendrite arm spacing (SDAS)
  • Grain size

MECHANICAL PROPERTY OUTPUT

  • Ultimate tensile strength (UTS)
  • Elongation
  • Quality index
  • Yield strength for heat treated properties

DEFECT INDICATORS

  • Dimensionless Niyama criterion
  • Microporosity

완전하고 단순화된 화학 기반 응고 모델

유연성 모델

솔리드화 모델에는 전체 모델과 단순화된 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용융이 응고될 때 화응고 모델에는 전체 모델과 단순 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크 플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용해가 응고됨에 따라 화학적 구성과 위상 변화를 고려하는 반면, 단순화된 모델은 보다 빠른 런트를 제공하고 전체 모델만큼 많은 메모리를 필요로 하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화된 모델에서 시작하거나 그 반대로 시작할 수 있습니다. 이를 통해 다양한 시뮬레이션 유형과 시뮬레이션 단계에 적합한 모델을 사용할 수 있는 완전한 유연성을 제공합니다.

사용할 모델

자원을 적게 사용하는 것의 명백한 이점 때문에 사용자는 가능한 단순화된 모델을 많이 사용할 것을 권장한다. 매크로 분리가 중요한 경우에는 사용자가 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클 시뮬레이션의 경우, 이러한 모델링 시나리오에서는 완전한 분석이 필요하지 않기 때문에 소프트웨어가 단순화된 모델을 적용합니다.

일부 박막형 주조물의 경우 확산 및 홍보에 기반한 매크로 세그멘테이션은 중요하지 않습니다. 이러한 주조물에서 응고 경로는 전체적으로 거의 동일합니다. 따라서 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 변화를 추적할 필요가 없습니다. 이러한 유형의 시나리오에서는 사용자가 간소화된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

Sand Casting Workspace, 사형주조

Sand Casting Workspace Highlights, 사형주조

  • 모래 특성의 통합에는 투과성, 코어 가스 및 수분 함량이 포함됩니다.
  • 주입 컵 채우기 조건에 따라 동적 래들 주입 및 동적 래들 동작
  • 첨단 솔루션을 통해 정확한 가스 포집 및 다공성 제공

Workspace Overview

Sand Casting Workspace(사형주조)는 샌드 캐스터에 주입, 응고 및 냉각 분석을 시뮬레이션하는 데 필요한 모든 도구를 제공합니다. Sand Casting Workspace는 엔지니어의 언어를 사용하여, 사용이 간편한 인터페이스를 제공하도록 설계되어 있습니다.

사형주조의 결함은 흔히 충전 단계에서 추적할 수 있습니다. FLOW3D CAST는 뛰어난 금속 흐름 예측에 대해 뛰어난 정확도를 제공하여, 쉽게 결함을 파악할 수 있습니다. 산화물 형성 및 콜드샷을 정확하게 추적하여 최종 주물에서의 발생 위치를 확인합니다. 압탕의 크기를 조정하고 핫 스팟(최종응고부)에 배치하는 한편, 진보된 응고 및 수축 분석을 통해 가장 까다로운 제조 환경에서도 최종적으로 최적화된 설계를 달성할 수 있습니다.

프로세스 모델링

  • 충전재
  • 응고
  • 냉각

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 적합 메쉬

주형 모델링

  • 가스 및 수분 배출이 가능한 투과성 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 공기 통로

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마(Niyama ) 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

충전 정확도

  • 가스/버블 포획
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산
  • 난류 모델링

코어 모델링

  • 가스 생성을 포함한 모래 코어
  • 소금 코어

결함 예측

  • 혼입 공기
  • 산화물 형성 및 추적
  • 콜드 샷
  • 다공성 예측
  • 수축
  • 핫 스팟

라이저 공구

  • 발열체 조립체
  • 절연 및 발열 슬리브

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Die Casting Workspace, 저압주조

Workspace Highlights, 저압주조

  • 매우 정확한 충진을 위한 압력 제어 주입
  • 공극, 배기 및 역압 효과를 포함한 전체 프로세스 모델링
  • 다공성과 같은 정밀한 조기 동결 및 응고 결함을 해결하기 위한 향상된 응고 및 열 전달 제어

Workspace Overview

저압주조 Workspace 는 엔지니어가 FLOW-3D CAST를 통해 저압주조 제품을 성공적으로 모델링하도록 설계된 직관적인 모델링 환경입니다. 

유연한 압력 제어를 통해 엔지니어는 가압, 벤트 및 배압 조건을 정확하게 재현하여 주입, 공기 갇힘 및 미세수축결함에 대한 완전한 분석을 수행할 수 있습니다.

금형온도해석 및 최첨단 응고 모델은 작업 공간의 서브 프로세스 아키텍처를 통해 원활하게 충전 상태에 연결됩니다. 저압주조 Workspace은 단순하면서도 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

프로세스 모델링

  • 중력 저 압력 다이 캐스트 주조

유연한 메쉬

  • FAVOR™단순 메시 생성 도구
  • 멀티 블록 메쉬
  • 중첩된 메쉬

다이 열 관리

  • 열사이 사이클
  • 열 포화도
  • 풀 열 전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫 스폿 식별
  • 기계적 특성 예측
  • 마이크로 아키텍처 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

진공 및 환기

  • 대화형 프로브 배치
  • 면적 및 손실 계수 계산기

LADLE운동

  • 6도의 자유 동작 정의

주입 정확도

  • 가스 및 기포 걸림
  • 표면 산화물 계산
  • RNG및 LES난류 모델
  • 배경 압력

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

동적 시뮬레이션 컨트롤

  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 컨트롤

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Sand Casting (LPSC) Workspace, 저압사형주조

Workspace Highlights, 저압사형주조

  • 투과성, 코어 가스 및 수분 함량을 포함한 모래 특성 통합
  • 전체 프로세스 모델링에는 보이드, 환기 및 역압 영향이 포함됨
  • 고급 다이내믹스에는 채우기 후 고체화 틸트 동작이 포함됨

Workspace Overview

저압 사형 주조(LPSC) Workspace 는 주조 공장에서 일반적으로 사용되는 모든 공정을 시뮬레이션할 수 있는 간편한 도구를 제공합니다. 새로운 LPSC Workspace를 통해 사용자는 프로세스 파라미터를 모델링하고 최적화하는 데 필요한 도구를 사용할 수 있습니다.

필터는 하단 충진 스프로(sprues)에 삽입하여 충진 패턴을 추가로 제어하고, 용해 시 불순물을 제거할 수 있습니다. FLOW-3D CAST는 충전 중 흐름에 미치는 영향을 모델링하기 위한 세라믹 필터를 제공합니다. LPSC Workspace는 응고중의 수축 및 미세수축결함을 해결하기 위해 발열 압탕어셈블리 및 단열 슬리브를 제공합니다.

FLOW-3D CAST의 틸트 기능을 사용하면 응고 전에 몰드를 거꾸로 뒤집어 충전 스프루(sprues)가 라이저 역할을 할 수 있습니다. 이 접근 방식은 충진 스프루(sprues)가 적절하게 설계된 경우 추가 라이저가 필요하지 않습니다.

프로세스 모델링

  • 압력 또는 용량 제어 바닥 공급
  • 회전식 응고

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 구성 메쉬

주형 모델링

  • 가스 및 수분 배출이 포함된 허용 가능한 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 에어벤트

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

라이저 공구

  • 발열체 데이터베이스
  • 발열성 및 절연성 슬리브

주입 정확도

  • 가스/버스/자갈 끼임
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산

몰드 모션 컨트롤

  • 시간 제어 금형 회전

결함 예측

  • 다공성 예측
  • 수축
  • 핫 스팟

동적 시뮬레이션 컨트롤

  • 문제가 제어되는 주입 속도

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Continuous Casting Workspace, 연속주조

연속 주조 Workspace Highlights

  • 고급 모션 컨트롤에는 수직 빌릿, 수평 파이프 및 롤러 시트 캐스팅이 포함됨
  • 열 및 냉각 동적 제어는 타의 추종을 불허하는 열 관리 분석 제공
  • 유체의 완전한 시뮬레이션 – 고급 열 응력 해석을 통해 동작중의 고체 전환

Workspace Overview

Continuous Casting Workspace는 연속형 빌릿 주조 및 직접 냉간 연속 주조 등 일반적으로 사용되는 모든 주조 공장 공정을 시뮬레이션할 수 있는 사용하기 쉬운 도구를 지속적으로 주조 사용자에게 제공합니다. 새로운 Continuous Casting Workspace를 통해 사용자는 연속 주조 공정을 모델링하고 공정 파라미터를 최적화하는 데 필요한 도구를 찾을 수 있습니다.

멀티 블록 메쉬는 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 제공하는 효율적인 방법을 제공합니다. Mold 및 Billlet 냉각, 용해 유량, 과열 및 Mold 형상과 같은 공정 매개변수가 분석에 포함됩니다. 용탕 표면의 운동과 몰드의 온동은 후처리 중에 빠르게 시각화되며, 이 과정에서 충진 및 응고 패턴도 쉽게 평가되므로 공정 수정을 자신 있게 구현할 수 있습니다.

 

 

모델링된 프로세스

  • 연속 빌릿 및 시트 캐스팅
  • 직접 냉각 연속 주조

유연한 메시

  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

열 금형 모델링

  • 난방 및 냉각 요소와 지역화 된 다이 가열 제어
  • 용융 및 금형에서 대류 및 복사 열 전달

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

Centrifugal Casting Workspace, 원심주조

원심주조 워크 스페이스 하이라이트

  • 고급 모션 컨트롤을 통해 모든 스핀 조건의 정밀한 시뮬레이션
  • 수평 파이프 주조, 수직 보석 주조, 수직 대형 회전 등의 솔루션 제공
  • 응고 중 동적 스핀 속도 제어

작업 영역 개요

원심 주조 Workspace는 원심 주조 사용자에게 수평 및 수직 진정한 원심 주조, 부분 원심 주조 및 원심 주조 시뮬레이션을 위한 편리한 도구를 제공합니다. 새로운 원심 주조 Workspace를 사용하면 사용자가 프로세스를 모델링하고 설계 매개 변수를 최적화하는데 필요한 모든 도구를 찾을 수 있습니다. 금형을 고정시키고 회전하는 메쉬를 통해 사용자는 ladle 붓기를 포함하여 상상할 수 있는 모든 금형 모션을 모델링할 수 있는 유연성을 제공합니다.

원통형 메싱은 가능한 최고의 흐름 모델링 정확도를 제공하는 반면, 다중 블록 메싱은 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 위한 효율적인 방법을 제공합니다. 이 솔루션은 적합하지 않은 금형 회전 속도에 따라 비처럼 떨어지는 것과 같은 흐름 관련 문제, 공기 유입 또는 응고 부위의 재용해과 같은 결함을 예측합니다. 몰드 예열 온도, 냉각 구성 및 금형 회전률과 같은 프로세스 매개변수는 모두 모델 설정의 일부가 될 수 있습니다.

모델링된 프로세스

  • 수평 및 수직 진정한 원심 공정
  • 반원심 공정
  • 분리기

열 금형 모델링

  • 가열 요소와 지역화 다이 가열 제어
  • 대류 및 복사 열 전달

유연한 메시

  • 최고의 정확도를 위한 원통형 저술
  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

충전 정확도

  • 용융 픽업 및 강우 예측
  • 가스/버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델

금형 모션 제어

  • 수직 및 수평 회전
  • 가변 스핀 속도

국자 붓기

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

고성능 컴퓨터(HPC)에 대한 이해

본 자료는 수치해석을 업무로 수행하는 엔지니어들의 고성능 컴퓨터에 대한 이해를 돕기 위해 https://www.amd.com/ko/technologies/hpc-explained 를 인용한 자료입니다.
본 자료의 모든 저작권은 https://www.amd.com에 있습니다.

고성능 컴퓨팅 안내

신약 개발에 걸리는 기간이 수년에서 수일로 단축된다고 상상해 보십시오. 고성능 컴퓨팅(HPC)은 시뮬레이션, 모델 및 분석을 통해 이러한 유형은 물론 기타 첨단 과학 문제를 해결할 수 있습니다. 이러한 시스템은 세계의 여러 주요 문제에 대한 해결책을 제공하여 “4차 산업혁명”으로 가는 길을 제시합니다.1 HPC 시스템은 이미 다음과 같은 용도로 사용되고 있습니다.

  • 여러 유형의 암과 기타 질병 퇴치를 위한 신약 화합물 개발 및 시험2
  • 방탄복과 같은 신소재 개발을 위한 분자 역학 시뮬레이션3
  • 영향을 받는 지역사회가 더 효과적으로 대비하도록 돕기 위한 중요한 기상 변화 예측4

슈퍼컴퓨터는 최첨단 HPC 시스템을 대표합니다. 슈퍼컴퓨터의 고유한 역량은 기능의 발전에 따라 시간이 지나면서 변화하는 표준에 좌우됩니다. 단일 슈퍼컴퓨팅 클러스터에는 수만 개의 프로세서가 포함될 수 있으며 세계 최고 성능의 최고가 시스템의 가격은 1억 달러 이상에 달합니다.5

HPC의 작동 방식

HPC에서 정보를 처리하는 두 가지 주요 방법:

직렬 처리를 중앙 처리 장치(CPU)에서 수행합니다. 일반적으로 각 CPU 코어에서 한 번에 한 작업만 처리합니다. CPU는 운영체제 및 기본적인 애플리케이션(예: 워드 프로세싱, 사무 생산성)과 같은 기능에 있어 필수적입니다.serial processing chart

병렬 처리를 여러 CPU 또는 그래픽 처리 장치(GPU)를 통해 수행할 수 있습니다. 원래는 전용 그래픽 용으로 개발된 GPU는 데이터 매트릭스(예: 화면 픽셀)에 대해 동시에 여러 산술 연산을 수행할 수 있습니다. GPU는 수많은 데이터 계층에서 동시에 작업할 수 있기 때문에 동영상에서 객체를 인식하는 것과 같은 머신 러닝(ML) 애플리케이션 작업에서 병렬 처리를 수행하는 데 적합합니다.parallel processing chart

슈퍼컴퓨팅의 잠재력을 극대화하기 위해서는 다양한 시스템 아키텍처가 필요합니다. 대부분의 HPC 시스템은 초고대역폭 상호 연결을 통해 여러 프로세서 및 메모리 모듈을 취합하여 병렬 처리를 지원합니다. 일부 HPC 시스템은 CPU와 GPU를 결합하는 데 이를 이기종 컴퓨팅이라고 합니다.

컴퓨터의 컴퓨팅 성능은 “FLOPS”(초당 부동 소수점 연산)라는 단위로 측정됩니다. 2019년 초반 현재 최고 수준의 슈퍼 컴퓨터는 143.5페타FLOPS(143 × 1015)를 처리할 수 있습니다. 페타스케일라고 하는 이러한 수준의 슈퍼컴퓨터는 천조 이상의 FLOPS를 수행합니다. 그에 비해, 하이엔드 게이밍 데스크탑은 속도가 1/1,000배 미만으로 약 200기가FLOPS(1 × 109)를 처리하는 데 그칩니다. 프로세싱과 처리 성능 모두에서 슈퍼컴퓨팅 혁신이 이루어지면 머지않아 엑사스케일 수준의 슈퍼컴퓨팅으로 발전하여 페타스케일보다 약 1,000배 빠른 속도가 실현될 것입니다. 이는 엑사스케일 슈퍼컴퓨터가 초당 1018(또는 10억 x 10억)의 연산을 수행할 수 있음을 의미합니다.evolution processing power

“FLOPS”는 이론적 처리 속도를 나타냅니다 – 프로세서에 지속적으로 데이터를 전송하는 데 필요한 속도를 파악합니다. 그러므로, 데이터 처리율이 반드시 시스템 디자인에 반영되어야 합니다. 프로세싱 노드 간 상호 연결과 함께 시스템 메모리가 데이터의 프로세서 도달 속도에 영향을 줍니다.supercomputer representative power

차세대 슈퍼컴퓨터가 구현하는 1 exaFLOP의 처리 성능은 5,000,000대에 달하는 데스크탑 컴퓨터의 성능에 필적합니다.*

*각 데스크탑의 처리 성능을 200기가FLOPS로 가정

스마트한 용어

  • 고성능 컴퓨팅 (HPC): 단일 컴퓨터(예: 1개의 CPU + 8개의 GPU)부터 세계적 수준의 슈퍼컴퓨터를 아우르는 폭넓은 범위의 강력한 컴퓨팅 시스템
  • 슈퍼컴퓨터: 진화하는 성능 표준에 기반한 최고 수준의 HPC
  • 이기종 컴퓨팅: 직렬(CPU) 및 병렬(GPU) 처리 기능을 최적화하는 HPC 아키텍처
  • 메모리: 데이터에 신속하게 액세스하기 위해 HPC 시스템에서 데이터가 저장되는 위치
  • 인터커넥트: 프로세싱 노드 간 통신을 지원하는 시스템 계층, 여러 수준의 상호 연결이 슈퍼컴퓨터 내에 존재
  • 페타스케일: 초당 1,000조(1015)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터
  • 엑사스케일: 초당 100경(1018)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터

새로운 이용 사례

기술 수준이 향상되면서, HPC는 더욱 폭넓은 기능으로 확장되었습니다. 오늘날 처리 능력과 메모리가 그 어느 때보다 향상되어 보다 복잡한 문제를 해결할 수 있게 되었습니다.

  • 머신 러닝: 인공지능(AI), 머신 러닝(ML)의 하위집합으로서 수행 지침을 수동적으로 받아들이는 대신 스스로 학습할 수 있는 시스템을 말합니다. HPC 시스템은 사진에서 흑색 종을 감지하는 암 연구와 같이 방대한 양의 데이터를 분석하는 높은 수준의 ML에 사용할 수 있습니다.6
  • 빅 데이터 분석: 학술, 과학, 금융, 비즈니스, 의료, 사이버 보안 및 정부 애플리케이션 부문의 연구 및 문제 해결을 보완하기 위해 대량의 데이터 세트를 신속하게 비교하고 상관 관계를 분석합니다. 이 작업에는 대규모 처리 및 컴퓨팅 기능이 필요합니다. 매년 50페타바이트의 임무 데이터가 생성되는 NASA에서는 슈퍼컴퓨팅을 활용해 관측을 분석하고 방대한 정보를 바탕으로 시뮬레이션을 실행합니다.7
  • 고급 모델링 및 시뮬레이션: 기업은 초기 단계에서 물리적 구축을 수행하지 않고도, 고급 모델링 및 시뮬레이션을 통해 혁신적인 제품을 더 빨리 출시하고 시간, 재료 및 인건비를 절약할 수 있습니다. HPC 모델링 및 시뮬레이션은 신약 개발 및 시험, 자동차 및 항공 우주 설계, 기후 예측/기상 관측, 에너지 애플리케이션 부문에서 활용됩니다.8

AMD가 엑사스케일에 대한 드라이브를 실현하는 방식

미국에너지국(DOE)/버클리 연구소(Berkeley Lab), 로렌스 리버모어 국립 연구소(U.S. Lawrence Livermore National Laboratory), 슈투트가르트 대학(University of Stuttgart) 및 CSC(핀란드 IT 과학 센터)의 최신 시스템과 같은 세계 최고 성능의 슈퍼컴퓨터가 바로 AMD 기술에 기반합니다.9

가까운 미래에 엑사스케일 수준의 최적의 슈퍼컴퓨터 설계를 실현하기 위해서는 더욱 강력한 처리 성능 및 프로세싱 기능(CPU 및 GPU 모두에서)이 필요합니다. 고성능 컴퓨팅과 그래픽 기술 부문 모두에서 업계 리더인 AMD는 HPC 시스템을 최적화하는 데 있어 몇 가지 고유한 이점을 제시합니다. 미국에너지국(DOE)에서 추진하는 엑사스케일 컴퓨팅 프로젝트의 일환으로, AMD는 미국 최초로 엑사스케일 수준의 슈퍼컴퓨터를 개발하기 위한 기술을 발전시키기 위해 미국 정부와 파트너십을 맺었습니다.10 이 작업에는 CPU 및 GPU 마이크로아키텍처, 메모리 시스템, 구성 요소 통합 및 고속 인터커넥트에 중점을 둔 연구가 포함되었습니다.

exascale desktop icon데스크탑

지역 전력망에 대한 하나의 동적 시나리오를 실시간으로 시뮬레이션합니다.

petascale iconn페타스케일

국가 전력망에 대한 수만 개의 동적 시나리오를 실시간으로 시뮬레이션합니다.

exascale  icon엑사스케일

전 세계 전력망에 대한 수백만 개의 동적 시나리오를 생성 및 수요에 관한 정의되지 않은 변수를 적용해 실시간으로 시뮬레이션합니다.

미래로 나아가는 힘과 자유

엑사스케일 컴퓨팅은 맞춤형 의료, 탄소 포집, 천체 물리학, 시장 경제학 및 바이오 연료 분야의 발전에 기여할 잠재성이 있습니다. 전문가들이 날씨를 더 정확히 예측하고, 더 복잡한 수학적 문제를 해결하며, 우주의 더 먼 곳까지 탐험하고, 에너지 절감형 전력망을 구축하는 데 도움이 될 것입니다.11 차세대 슈퍼컴퓨팅을 위한 공동의 노력과 이러한 시스템이 사회에 기여할 수 있는 긍정적인 영향을 바탕으로, AMD는 미래의 컴퓨팅 시스템의 성능, 에너지 효율성, 신뢰성 및 프로그래밍의 향상을 위한 연구와 자원에 주력하고 있습니다.

자세히 알아보기: https://www.amd.com/hpc

customcode_sample

Users customize the solver

FLOW-3D Solver Custom 개발

<주의 사항>
Flow Science, Inc.는 사용자가 추가한 사용자 정의 Code에 대해 어떠한 책임도 지지 않습니다. FLOW-3D 유지보수 지원에는 사용자 커스터마이징 문제 해결이 포함되지 않습니다.

Custom Developer Tools 에 대한 정보

Flow Science가 표준 설치의 일부로 배포하는 서브 루틴을 사용자가 커스터마이즈하여 사용자가 원하는 수식을 반영 개발하고자 할 경우 버전에 따라 아래와 같은 버전의 컴파일러가 필요합니다.

  1. 다음 주요 릴리스 인  FLOW-3D  v12.1 및  FLOW-3D  CAST  v5.1은 인텔 ® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206 (Windows) 및 버전 19.0.3.199 빌드 20190206 (Linux)으로 빌드됩니다. 솔버를 사용자 지정하는 Windows 사용자는 Microsoft Visual Studio 2017 Professional도 필요합니다.
  2. 현재 버전 인  FLOW-3D  v12.0 및  FLOW-3D  CAST  v5.0 및 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 사용하여 계속 빌드됩니다.
customcode_sample

향후 업그레이드되는 버전의 경우 다음과 같이 변경됨을 참고하시기 바랍니다.

  1. 다음 주요 릴리스인 FLOW-3D v12.1 및 FLOW-3D CAST v5.1
    Intel® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206(윈도우즈) 및 버전 19.0.3.19 빌드 20190206(리눅스) 를 사용해야 합니다.
    사용자가 Solver의 Custom Code를 개발하여 사용하기를 원하는 Windows 사용자들은 Microsoft Visual Studio 2017 Professional이 필요합니다.
  2. 현재 버전인 FLOW-3D v12.0 및 FLOW-3D CAST v5.0과 그에 대한 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 계속 사용하는 것을 유의하십시오.

이 내용은 Solver에 대해 제공된 소스 코드를 수정하고 다시 컴파일(즉, 사용자 정의)하는 커스텀 코드 개발 사용자에게만 적용됩니다. 솔버를 사용자 정의하여 개발하지 않을 경우 어떠한 조치도 필요하지 않습니다. 이 컴파일러 업데이트에 대해 궁금한 점이 있으면 언제든지 flow3d@stikorea.co.kr 로 문의하십시오.

일반 사용자 정의 정보

FLOW-3D는 사용자가 솔버의 기능을 사용자 정의할 수 있도록 FORTRAN 소스 서브 루틴 파일을 제공하여 사용자에게 필요한 요구 사항을 충족합니다. 제공된 FORTRAN 서브 루틴을 통해 사용자는 경계 조건을 사용자 정의할 수 있고, 고유한 재료 특성의 상관 관계를 포함할 수도 있으며, 사용자가 정의한 유체 힘(예: 전자기력)을 지정하고, 물리적 모델을 추가하는 등의 작업을 수행할 수 있습니다.

사용자가 사용자 정의에 사용할 수 있는 여러 “더미”변수가 제공되었습니다. 사용자 정의를 위해 사용자 정의가 가능한 목록도 제공합니다.

 Linux 및 Windows 배포용 Makefile이 제공되고 Windows 배포용 Visual Studio 솔루션 파일이 제공되어 자신의 사용자 정의 코드를 포함시켜 사용자가 FLOW-3D를 다시 컴파일 할 수 있습니다.

  • FLOW-3D그래픽 인터페이스를 통해 Custom Double Precision 버전을 실행하려면 Model Setup‣General dock widget의 Version Options 영역에서 Queued When Prompt 옵션을 선택하십시오. 그런 다음 버전을 묻는 메시지가 나타나면 Custom double precision을 선택하십시오. 또는 로컬 및 원격 시스템의 기본 설정 ‣ 기본 버전 옵션에서 기본값으로 설정할 수 있습니다.
  • 배치 모드 또는 명령 프롬프트를 통해 사용자 정의 버전을 실행하려면사용자 정의 배정도를 위한 환경 변수 F3D_VERSION을 prehyd로 설정해야 합니다.

Windows에서FLOW-3D 사용자 정의

Windows에서 현재 버전의 FLOW-3D 솔버를 사용자 정의하려면 다음 소프트웨어가 필요합니다.

  • Microsoft Visual Studio 2010 Professional Edition 또는 Microsoft Visual Studio 2013 Professional Edition
  • Intel® FORTRAN 16.0.1

명령행 빌드 환경을 선호하는 경우 Intel  FORTRAN 16.0.1 및 Windows Platform SDK 설치를 고려하십시오. 인텔  FORTRAN 16.0.1의 시스템 요구 사항에 대한 자세한 내용은 컴파일러와 함께 제공된 설명서를 참조하십시오.

Visual Studio 2010 Professional Edition 용 Visual Studio 솔루션 파일custom_double_vs2010.sln은 prehyd디렉토리에 있습니다. 솔루션 파일 이름은 *.sln 으로 지정됩니다.

솔루션 파일은 Visual Studio 내에서 솔버 실행 파일을 빌드하는 데 사용됩니다. FORTRAN 소스 파일의 확장자 .F90는 C:\flow3d\v12.0\prehyd디렉토리에 있습니다. 오브젝트 파일은 편집할 수 없는 파일로 확장자가 .OBJ인 파일로 있으며 소스 파일의 컴파일 된 버전입니다.

Intel Fortran 컴파일러 문법 설명서
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-a-to-z-reference

Visual Studio 솔루션 파일: 컴파일 및 링크

Visual Studio솔루션 파일은 Visual Studio에서 실행 파일을 빌드하는데 필요한 파일을 추적하는 데 사용됩니다. 여기에는 프로젝트의 모든 파일 목록과 종속성 목록이 포함됩니다. 종속성은 특정 파일의 변경으로 인해 영향을 받는 파일을 추적하는데 사용됩니다. 

솔루션 탐색기에는 Visual Studio에서 소스 파일, 오브젝트 파일, 모듈 및 라이브러리, 실행 파일을 빌드하는 데 필요한 모든 파일의 목록이 포함되어 있습니다. 파일은 알파벳 순서로 정렬됩니다. 소스 파일을 편집하려면 솔루션 탐색기*.F90에서 해당 파일을 두 번 클릭하면 상황에 맞는 편집 창에서 열립니다.

소스 파일을 변경한 후에는 파일을 저장하고 빌드 메뉴에서 솔루션 빌드를 선택하여 실행 파일을 다시 빌드하십시오. Visual Studio 구성 관리자를 사용하여 프로젝트를 릴리스 모드 및 x64 모드로 설정하십시오. 

수정한 파일을 컴파일하고 새 실행 파일을 만듭니다. 새로운 hydr3d.exe실행 파일이 생성되어 C:\flow3d\v12.0\prehyd하위 디렉토리에 배치됩니다.

Build 방법

컴파일 및 링크하려면 /prehyd 에서 솔루션 파일 custom_double_vs2010.sln을 여십시오. Visual Studio 구성 관리자를 사용하여 프로젝트를 릴리스 모드 및 x64 모드 로 설정하십시오. 소스 코드를 필요한대로 변경하고 저장한 다음 빌드 메뉴에서 솔루션 빌드를 선택하십시오.

사용자에게 제공되는 소스 디렉토리 구조

FLOW-3D customization이 가능한 서브 루틴 및 표준 배포 실행 파일의 디렉토리 구조는 다음과 같습니다.

-- double -- hydr3d
-- prehyd -- comdeck
             prep3d
             hydr3d
             utility
-- source--  comdeck
             prep3d
             hydr3d
             utility

디렉토리 /opt/flow3d/v12.0/double에는 (customization 할 수 없는) 솔버의 공식 릴리스가 hydr3d 포함되어 있습니다. customization 가능한 소스 코드는 /opt/flow3d/v12.0/prehyd 디렉토리에 있습니다.

customizable디렉토리 아래 source에는 4 개의 하위 디렉토리가 있습니다. 전처리기와 솔버가 공유하는 서브 루틴은 utility 라는 디렉토리에 있습니다. 전처리기만 사용하는 서브 루틴은 제목이 지정된 디렉토리 prep3d에 있으며 솔버만 사용하는 서브 루틴은 hydr3d에 있습니다.

FORTRAN 포함 문

FLOW-3D 서브 루틴, 글로벌 변수에 대한 일반적인 블록 선언문은 디렉토리 comdeck에 있는 파일에 있습니다. 이러한 comdeck파일은 “Header File”이며 “include”문을 사용하여 서브 루틴에 통합됩니다. 일반적인 “include”문은 다음과 같습니다.

 include ‘../comdeck/params.f90’

컴파일시 comdeck파일의 FORTRAN 소스는 “include”문을 포함하는 서브 루틴에 인라인 됩니다. 공통 블록 및 설명을 일관되게 정의할 수 있습니다. 예를 들어 특정 셀의 인접 항목에 대한 색인 계산과 같이 자주 사용되는 FORTRAN 소스 코드가 포함된 comdeck 파일도 있습니다. 이 경우 comdeck 파일은 일반적으로 사용되는 소스 코드를 인라인 하는 간단한 방법입니다.

comdeck파일의 공통 블록, 모듈 또는 매개 변수는 제공된 루틴으로 오브젝트 파일로 이미 컴파일 되었으므로 변경하지 마십시오. 이러한 정의를 변경하면 불일치가 발생하여 FLOW-3D 가 예측할 수 없는 방식으로 작동합니다. 

Customization 가능 이름 목록 USRDAT 그리고 공통 블록 cbusr이 파일을 참조하는 모든 서브 루틴이 다시 컴파일 되면 변경될 수 있습니다 (이를 참조하는 모든 루틴이 소스 파일로 제공됨). 추가 공통 블록은 새 comdeck파일에 정의될 수 있으며, 필요에 따라 소스 파일에 포함될 수 있습니다.

<주의>

comdeck파일의 공통 블록, 모듈 또는 매개 변수는 제공된 루틴으로 오브젝트 파일로 이미 컴파일 되었으므로 변경하지 마십시오. 이러한 정의를 변경하면 불일치가 발생하여 FLOW-3D 가 예측할 수 없는 방식으로 작동합니다.

FLOW-3D 솔버의 서브 루틴 및 기능에서 일반적으로 사용되는 일부 include 파일에 대한 자세한 설명은 FLOW-3D 설치 파일에 포함되어 있는 Help 파일을 참고하시기 바랍니다.