Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Scientific Reports volume 9, Article number: 7265 (2019) Cite this article

Abstract

이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 위해 연속 흐름 마이크로 채널 내부의 비드 자기 영동에 대한 수치 흐름 중심 연구를 보고합니다.

수치 모델은 Lagrangian 접근 방식을 포함하며 영구 자석에 의해 생성 된 자기장의 적용에 의해 혈액에서 비드 분리 및 유동 버퍼로의 수집을 예측합니다.

다음 시나리오가 모델링됩니다. (i) 운동량이 유체에서 점 입자로 처리되는 비드로 전달되는 단방향 커플 링, (ii) 비드가 점 입자로 처리되고 운동량이 다음으로부터 전달되는 양방향 결합 비드를 유체로 또는 그 반대로, (iii) 유체 변위에서 비드 체적의 영향을 고려한 양방향 커플 링.

결과는 세 가지 시나리오에서 비드 궤적에 약간의 차이가 있지만 특히 높은 자기력이 비드에 적용될 때 유동장에 상당한 변화가 있음을 나타냅니다.

따라서 높은 자기력을 사용할 때 비드 운동과 유동장의 체적 효과를 고려한 정확한 전체 유동 중심 모델을 해결해야 합니다. 그럼에도 불구하고 비드가 중간 또는 낮은 자기력을 받을 때 계산적으로 저렴한 모델을 안전하게 사용하여 자기 영동을 모델링 할 수 있습니다.

Sketch of the magnetophoresis process in the continuous-flow microdevice.
Sketch of the magnetophoresis process in the continuous-flow microdevice.
Schematic view of the microdevice showing the working conditions set in the simulations.
Schematic view of the microdevice showing the working conditions set in the simulations.
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.

References

  1. 1.Keshipour, S. & Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organometal. Chem. 30, 653–656 (2016).CAS Article Google Scholar 
  2. 2.Neamtu, M. et al. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 8(1), 6278 (2018).ADS MathSciNet Article Google Scholar 
  3. 3.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014).Article Google Scholar 
  4. 4.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 47, 241–246 (2016).Google Scholar 
  5. 5.Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-Cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7(1), 7672 (2017).ADS Article Google Scholar 
  6. 6.Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017).Article Google Scholar 
  7. 7.Lee, H. Y. et al. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew. Chem. Int. Ed. 48, 1239–1243 (2009).CAS Article Google Scholar 
  8. 8.Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).Article Google Scholar 
  9. 9.Roux, S. et al. Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010).ADS CAS Article Google Scholar 
  10. 10.Gómez-Pastora, J., Bringas, E., Lázaro-Díez, M., Ramos-Vivas, J. & Ortiz, I. In Drug Delivery Systems (Stroeve, P. & Mahmoudi, M. ed) 207–244 (World Scientific, 2017).
  11. 11.Selmi, M., Gazzah, M. H. & Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 7(1), 5721 (2017).ADS Article Google Scholar 
  12. 12.Gómez-Pastora, J., González-Fernández, C., Fallanza, M., Bringas, E. & Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 344, 487–497 (2018).Article Google Scholar 
  13. 13.Pamme, N. Magnetism and microfluidics. Lab Chip 6, 24–38 (2006).CAS Article Google Scholar 
  14. 14.Alorabi, A. Q. et al. On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab Chip 17, 3785–3795 (2017).CAS Article Google Scholar 
  15. 15.Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep. Purif. Technol. 172, 16–31 (2017).Article Google Scholar 
  16. 16.Tarn, M. D. & Pamme, N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnosis. Methods Mol. Biol. 1547, 69–83 (2017).CAS Article Google Scholar 
  17. 17.Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci. Rep. 6, 19801 (2016).ADS CAS Article Google Scholar 
  18. 18.Gómez-Pastora, J. et al. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 121, 7466–7477 (2017).Article Google Scholar 
  19. 19.Furlani, E. P. Magnetic biotransport: analysis and applications. Materials 3, 2412–2446 (2010).ADS CAS Article Google Scholar 
  20. 20.Khashan, S. A. & Furlani, E. P. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 12, 565–580 (2012).Article Google Scholar 
  21. 21.Modak, N., Datta, A. & Ganguly, R. Cell separation in a microfluidic channel using magnetic microspheres. Microfluid. Nanofluid. 6, 647–660 (2009).CAS Article Google Scholar 
  22. 22.Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. & Monk, T. E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 9, 451–463 (2007).CAS Article Google Scholar 
  23. 23.Furlani, E. P. & Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D: Appl. Phys. 39, 1724–1732 (2006).ADS CAS Article Google Scholar 
  24. 24.Tarn, M. D. et al. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 321, 4115–4122 (2009).ADS CAS Article Google Scholar 
  25. 25.Fonnum, G., Johansson, C., Molteberg, A., Morup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).ADS CAS Article Google Scholar 
  26. 26.Xue, W., Moore, L. R., Nakano, N., Chalmers, J. J. & Zborowski, M. Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS – A comparison. J. Magn. Magn. Mater. 474, 152–160 (2019).ADS CAS Article Google Scholar 
  27. 27.Moore, L. R. et al. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol. Bioeng. 115, 1521–1530 (2018).CAS Article Google Scholar 
  28. 28.Furlani, E. P. & Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid. 13, 589–602 (2012).CAS Article Google Scholar 
  29. 29.Furlani, E. P. & Xue, X. A model for predicting field-directed particle transport in the magnetofection process. Pharm. Res. 29, 1366–1379 (2012).CAS Article Google Scholar 
  30. 30.Furlani, E. P. Permanent Magnet and Electromechanical Devices; MaterialsAnalysis and Applications, (Academic Press, 2001).
  31. 31.Balachandar, S. & Eaton, J. K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010).ADS Article Google Scholar 
  32. 32.Wakaba, L. & Balachandar, S. On the added mass force at finite Reynolds and acceleration number. Theor. Comput. Fluid. Dyn. 21, 147–153 (2007).Article Google Scholar 
  33. 33.White, F. M. Viscous Fluid Flow, (McGraw-Hill, 1974).
  34. 34.Rietema, K. & Van Den Akker, H. E. A. On the momentum equations in dispersed two-phase systems. Int. J. Multiphase Flow 9, 21–36 (1983).Article Google Scholar 
  35. 35.Furlani, E. P. & Ng, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 73, 1–10 (2006).Article Google Scholar 
  36. 36.Eibl, R., Eibl, D., Pörtner, R., Catapano, G. & Czermak, P. Cell and Tissue Reaction Engineering, (Springer, 2009).
  37. 37.Gómez-Pastora, J. et al. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 18, 1593–1606 (2018).Article Google Scholar 
  38. 38.Khashan, S. A. & Furlani, E. P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 125, 311–318 (2014).CAS Article Google Scholar 
  39. 39.Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. ProcFourth International ConfShip Hydro., National Academic of Science, Washington, DC., (1985).
  40. 40.Crank, J. Free and Moving Boundary Problems, (Oxford University Press, 1984).
  41. 41.Bruus, H. Theoretical Microfluidics, (Oxford University Press, 2008).
  42. 42.Liang, L. & Xuan, X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid. Nanofluid. 13, 637–643 (2012).

Author information

  1. Edward P. Furlani is deceased.

Affiliations

  1. Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, SpainJenifer Gómez-Pastora, Eugenio Bringas & Inmaculada Ortiz
  2. Flow Science, Inc, Santa Fe, New Mexico, 87505, USAIoannis H. Karampelas
  3. Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
  4. Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
customcode_sample

Users customize the solver

FLOW-3D Solver Custom 개발

<주의 사항>
Flow Science, Inc.는 사용자가 추가한 사용자 정의 Code에 대해 어떠한 책임도 지지 않습니다. FLOW-3D 유지보수 지원에는 사용자 커스터마이징 문제 해결이 포함되지 않습니다.

이 내용은 Solver에 대해 제공된 소스 코드를 수정하고 다시 컴파일(즉, 사용자 정의)하는 커스텀 코드 개발 사용자에게만 적용됩니다. 솔버를 사용자 정의하여 개발하지 않을 경우 어떠한 조치도 필요하지 않습니다. 이 컴파일러 업데이트에 대해 궁금한 점이 있으면 언제든지 flow3d@stikorea.co.kr 로 문의하십시오.

Custom Developer Tools 에 대한 정보

Flow Science가 표준 설치의 일부로 배포하는 서브 루틴을 사용자가 커스터마이즈하여 사용자가 원하는 수식을 반영 개발하고자 할 경우 버전에 따라 아래와 같은 버전의 컴파일러가 필요합니다.

FLOW-3D 제품군의 다가오는 2023R2 release는 현재 빌드 도구를 업데이트하고 있습니다. 이는 FLOW-3D, FLOW-3D HYDRO 및 FLOW-3D CAST에 영향을 미칩니다.

2023R2 제품의 소스 코드를 사용자 정의하고 재컴파일하려는 사용자에게는 다음이 포함된 Intel oneAPI 버전 2022.3.1이 필요합니다.

Windows: Intel® MPI 라이브러리 및 Fortran 컴파일러 버전 2021.7.1 빌드 20221019 및 Microsoft Visual Studio 2019 Professional

Linux: Intel® MPI 라이브러리 및 Fortran 컴파일러 버전 2021.7.1 빌드 20221019 이전 버전의 빌드 도구는 변경되지 않았습니다.

이전 버전에 대한 안내

  1. 다음 주요 릴리스 인  FLOW-3D  v12.1 및  FLOW-3D  CAST  v5.1은 인텔 ® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206 (Windows) 및 버전 19.0.3.199 빌드 20190206 (Linux)으로 빌드됩니다. 솔버를 사용자 지정하는 Windows 사용자는 Microsoft Visual Studio 2017 Professional도 필요합니다.
  2. FLOW-3D  v12.0 및  FLOW-3D  CAST  v5.0 및 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 사용하여 계속 빌드됩니다.
Custom Code Sample
Custom Code Sample

일반 사용자 정의 정보

FLOW-3D는 사용자가 솔버의 기능을 사용자 정의할 수 있도록 FORTRAN 소스 서브 루틴 파일을 제공하여 사용자에게 필요한 요구 사항을 충족합니다. 제공된 FORTRAN 서브 루틴을 통해 사용자는 경계 조건을 사용자 정의할 수 있고, 고유한 재료 특성의 상관 관계를 포함할 수도 있으며, 사용자가 정의한 유체 힘(예: 전자기력)을 지정하고, 물리적 모델을 추가하는 등의 작업을 수행할 수 있습니다.

사용자가 사용자 정의에 사용할 수 있는 여러 “더미”변수가 제공되었습니다. 사용자 정의를 위해 사용자 정의가 가능한 목록도 제공합니다.

 Linux 및 Windows 배포용 Makefile이 제공되고 Windows 배포용 Visual Studio 솔루션 파일이 제공되어 자신의 사용자 정의 코드를 포함시켜 사용자가 FLOW-3D를 다시 컴파일 할 수 있습니다.

  • FLOW-3D그래픽 인터페이스를 통해 Custom Double Precision 버전을 실행하려면 Model Setup‣General dock widget의 Version Options 영역에서 Queued When Prompt 옵션을 선택하십시오. 그런 다음 버전을 묻는 메시지가 나타나면 Custom double precision을 선택하십시오. 또는 로컬 및 원격 시스템의 기본 설정 ‣ 기본 버전 옵션에서 기본값으로 설정할 수 있습니다.
  • 배치 모드 또는 명령 프롬프트를 통해 사용자 정의 버전을 실행하려면사용자 정의 배정도를 위한 환경 변수 F3D_VERSION을 prehyd로 설정해야 합니다.

Windows에서FLOW-3D 사용자 정의

Windows에서  FLOW-3D 솔버 사용자 정의에 대해 안내합니다.

이전 버전을 기준으로 설명을 드립니다.

명령행 빌드 환경을 선호하는 경우 Intel  FORTRAN 16.0.1 및 Windows Platform SDK 설치를 고려하십시오. 인텔  FORTRAN 16.0.1의 시스템 요구 사항에 대한 자세한 내용은 컴파일러와 함께 제공된 설명서를 참조하십시오.

Visual Studio 2010/2013 Professional Edition 용 Visual Studio 솔루션 파일custom_double_vs2010/2013.sln은 prehyd디렉토리에 있습니다. 솔루션 파일 이름은 *.sln 으로 지정됩니다.

솔루션 파일은 Visual Studio 내에서 솔버 실행 파일을 빌드하는 데 사용됩니다. FORTRAN 소스 파일의 확장자 .F90는 C:\flow3d\v12.0\prehyd디렉토리에 있습니다. 오브젝트 파일은 편집할 수 없는 파일로 확장자가 .OBJ인 파일로 있으며 소스 파일의 컴파일 된 버전입니다.

Intel Fortran 컴파일러 문법 설명서
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-a-to-z-reference

Visual Studio 솔루션 파일: 컴파일 및 링크

Visual Studio솔루션 파일은 Visual Studio에서 실행 파일을 빌드하는데 필요한 파일을 추적하는 데 사용됩니다. 여기에는 프로젝트의 모든 파일 목록과 종속성 목록이 포함됩니다. 종속성은 특정 파일의 변경으로 인해 영향을 받는 파일을 추적하는데 사용됩니다. 

솔루션 탐색기에는 Visual Studio에서 소스 파일, 오브젝트 파일, 모듈 및 라이브러리, 실행 파일을 빌드하는 데 필요한 모든 파일의 목록이 포함되어 있습니다. 파일은 알파벳 순서로 정렬됩니다. 소스 파일을 편집하려면 솔루션 탐색기*.F90에서 해당 파일을 두 번 클릭하면 상황에 맞는 편집 창에서 열립니다.

소스 파일을 변경한 후에는 파일을 저장하고 빌드 메뉴에서 솔루션 빌드를 선택하여 실행 파일을 다시 빌드하십시오. Visual Studio 구성 관리자를 사용하여 프로젝트를 릴리스 모드 및 x64 모드로 설정하십시오. 

수정한 파일을 컴파일하고 새 실행 파일을 만듭니다. 새로운 hydr3d.exe실행 파일이 생성되어 C:\flow3d\v12.0\prehyd하위 디렉토리에 배치됩니다.

Build 방법

컴파일 및 링크하려면 /prehyd 에서 솔루션 파일 custom_double_vs2010.sln을 여십시오. Visual Studio 구성 관리자를 사용하여 프로젝트를 릴리스 모드 및 x64 모드 로 설정하십시오. 소스 코드를 필요한대로 변경하고 저장한 다음 빌드 메뉴에서 솔루션 빌드를 선택하십시오.

사용자에게 제공되는 소스 디렉토리 구조

FLOW-3D customization이 가능한 서브 루틴 및 표준 배포 실행 파일의 디렉토리 구조는 다음과 같습니다.– double — hydr3d — prehyd — comdeck              prep3d              hydr3d              utility — source–  comdeck              prep3d              hydr3d              utility

디렉토리 /opt/flow3d/v12.0/double에는 (customization 할 수 없는) 솔버의 공식 릴리스가 hydr3d 포함되어 있습니다. customization 가능한 소스 코드는 /opt/flow3d/v12.0/prehyd 디렉토리에 있습니다.

customizable디렉토리 아래 source에는 4 개의 하위 디렉토리가 있습니다. 전처리기와 솔버가 공유하는 서브 루틴은 utility 라는 디렉토리에 있습니다. 전처리기만 사용하는 서브 루틴은 제목이 지정된 디렉토리 prep3d에 있으며 솔버만 사용하는 서브 루틴은 hydr3d에 있습니다.

FORTRAN 포함 문

FLOW-3D 서브 루틴, 글로벌 변수에 대한 일반적인 블록 선언문은 디렉토리 comdeck에 있는 파일에 있습니다. 이러한 comdeck파일은 “Header File”이며 “include”문을 사용하여 서브 루틴에 통합됩니다. 일반적인 “include”문은 다음과 같습니다.

 include ‘../comdeck/params.f90’

컴파일시 comdeck파일의 FORTRAN 소스는 “include”문을 포함하는 서브 루틴에 인라인 됩니다. 공통 블록 및 설명을 일관되게 정의할 수 있습니다. 예를 들어 특정 셀의 인접 항목에 대한 색인 계산과 같이 자주 사용되는 FORTRAN 소스 코드가 포함된 comdeck 파일도 있습니다. 이 경우 comdeck 파일은 일반적으로 사용되는 소스 코드를 인라인 하는 간단한 방법입니다.

comdeck파일의 공통 블록, 모듈 또는 매개 변수는 제공된 루틴으로 오브젝트 파일로 이미 컴파일 되었으므로 변경하지 마십시오. 이러한 정의를 변경하면 불일치가 발생하여 FLOW-3D 가 예측할 수 없는 방식으로 작동합니다. 

Customization 가능 이름 목록 USRDAT 그리고 공통 블록 cbusr이 파일을 참조하는 모든 서브 루틴이 다시 컴파일 되면 변경될 수 있습니다 (이를 참조하는 모든 루틴이 소스 파일로 제공됨). 추가 공통 블록은 새 comdeck파일에 정의될 수 있으며, 필요에 따라 소스 파일에 포함될 수 있습니다.

<주의>

comdeck파일의 공통 블록, 모듈 또는 매개 변수는 제공된 루틴으로 오브젝트 파일로 이미 컴파일 되었으므로 변경하지 마십시오. 이러한 정의를 변경하면 불일치가 발생하여 FLOW-3D 가 예측할 수 없는 방식으로 작동합니다.

FLOW-3D 솔버의 서브 루틴 및 기능에서 일반적으로 사용되는 일부 include 파일에 대한 자세한 설명은 FLOW-3D 설치 파일에 포함되어 있는 Help 파일을 참고하시기 바랍니다.

Lab-on-a-chip – Joule heating and circulation in conducting fluid (전도성 유체의 줄 가열 및 순환)

Joule heating and circulation in conducting fluid (전도성 유체의 줄 가열 및 순환)

  • 줄 가열은 전류가 전도성 유체를 통과 할 때 발생함
    – 유체가 유전체인 경우에 전기장이 있을 경우 분극이 발생하여 유동이 발생
  • 많은 미세 유체의 공정은 마이크로 채널 내부의 유체를 조작하기 위해 외부의 자기력 및 전기력을 필요로 함
    – 유체에 대하여 이러한 외력이 미치는 영향을 이해하는 것이 중요함

FLOW-3D에서의 줄 가열 및 유동 시뮬레이션

  • 시뮬레이션 파라미터
    – 파란색 전극은 +9V, 분홍색 전극은 -9V
    – 전극 위의 유전체 유체 전도
  • 줄 가열은 유체의 온도를 500도로 상승시킴
  • 분극 유체는 전기장 윤곽을 따라 유체의 속도를 유도함

자기 혈액 정화 마이크로 장치의 최적화

Optimization of Magnetic Blood Cleansing Microdevices

자기 혈액 정화 마이크로 장치의 최적화

이 기사는 스페인 칸타 브리아 대학 (University of Cantabria) 화학과 및 버팔로 (뉴욕), 미국 뉴욕 주립 대학 생화학공학과의 enifer Gómez-Pastora, Eugenio Bringas, Inmaculada Ortiza 및 Edward P. Furlanib에 의해 기고되었습니다.

Separation of toxins with magnetic particles. Why is it so important?

자성 입자와 독소의 분리. 왜 그렇게 중요한가?

자성 입자의 사용은 최근 독성 물질의 혈류에서 다른 독소가 체외로 포획되는 해독 (disoxification) 과정으로 확대되었습니다. 생체 유체의 해독은 많은 수의 임상 상태에서 가장 생각할 수있는 치료법이며, 일부는 패혈증과 같은 높은 사망률과 관련이 있습니다. 이것은 혈류를 통해 퍼지면서 신체의 방어력을 압도하는 미생물 감염에 의한 치명적인 질병입니다. 이는 미국 내에서만 연간 1800 만 명의 사람들에게 고통을주고 매년 20 만 명이 넘는 사망을 초래하는 병원 중환자 실에서의 주요 사망 원인을 나타냅니다. 정확한 치료를 시행하기 전에 사망률이 매 시간마다 9 % 나 증가한다는 것을 볼수 있습니다. 따라서 최첨단 병원 중환자 실에서도 독소를 신속하게 제거하는 것이 가장 중요합니다.

우리는 현재 치료법의 한계가 독소 격리 제로서 자성 비드를 사용하는 것과 같은 새로운 전략의 개발을 필요로한다는 것을 발견했습니다. 입자의 자기 적 특성으로 인해 병원체의 포획이 완료되면 영구 자석에 의해 생성 된 외부 자기장을 사용하여 환자의 혈액과의 분리가 연속적으로 수행 될 수 있습니다. 지난 10 년 동안 개발 된 다중 자기 마이크로 세퍼레이터로부터 우리는 2 상 연속 흐름 시스템의 사용을 제안했습니다. 이러한 시스템은 흐름 제한 및 생체 유체의 임의의 분해 (즉, 포획 영역 내의 세포의 비특이적 포획)가 회피되어 시간 경과에 따른 시스템의 효능 및 용량을 유지하기 때문에 최선의 대안일 것입니다 [1]. 그러나 이러한 프로세스의 최적화는 덜 연구되었고 합리적 설계는 종종 수학적 설명과 관련된 복잡성으로 인해 부족합니다. 따라서 우리는 체외 해독 과정의 설계를 최적화하기 위해 FLOW-3D로 다중 위상 시스템 내부의 흐르는 혈류로부터 자기 구슬의 분리를 모델링했습니다. 그림1에 나타난 제안된 분리기 디자인에서, 비드는 상부 입구를 통해 연속적으로 주입되고, 자기 구배의 적용에 의해 편향되고 유동 버퍼 스트림으로 수집됩니다. 유체 위상의 혼합을 피하면서 효율적인 분리를 달성하기 위해, 자력 및 유체력을 신중하게 연구하고 최적화했습니다. 구슬이 편향 될 때 입자 – 유체 상호 작용에 대한 상세한 연구도 제공됩니다.

그림 1. 제안 된 microfluidic bioseparator의 도식 다이어그램 ([2]에서 채택).

Modeling approach with FLOW-3D

첫번째로 보여지는 생체 분리기 내부의 자기 영동 입자 수송을 예측하기위한 모델은 CFD 기반의 오일러 – 라그랑지안 (Eulerian-Lagrangian) 접근법으로 구성됩니다. Navier-Stokes 방정식을 풀어서 예측 한 유체 이동은 오일러 접근법을 사용하여 계산되지만, 우리는 비드 역학을 모델링하기 위해 라그랑지안 프레임 워크를 사용했습니다. 라그랑지안 (Lagrangian) 접근법에 따르면 입자는 개별 단위로 모델링되었으며 각각의 궤도는 고전적인 뉴턴 역학을 적용하여 추정되었습니다. 분리 동안 입자에 작용하는 힘은 다르지만 영구 자석에 의해 생성 된 자기 구배 하에서 비드 궤적을 예측하기위한 지배적 인 자력 및 유동력만 고려했습니다. 유체의 동일한 유입 속도를 유지하면서 채널의 하부 벽과 자석의 상단 사이의 거리를 변화시킴으로써 다른 입자 궤적 및 따라서 분리 효능을 얻었습니다 (버퍼에 대해 0.035mS-1, m • s-1). 우리가 개발 한 모델링 노력에 대한 자세한 내용은 출판 된 연구 [1, 2]에서 찾을 수 있습니다.

그림 2. 자석과 마이크로 채널 사이의 거리 “d”를 변화시킴으로써 제공되는 서로 다른 자기장 하에서의 입자 궤적 (빨간색 선) ([2]에서 채택). 윤곽 플롯은 채널에서 예상되는 평균 유체 속도 크기를 나타냅니다.

Particle magnetophoresis results

입자 자기 영동 결과

자석의 위치를 ​​변화시킴으로써, 우리는 가변 자장 구배가 발생하고, 따라서 상이한 분리 효율이 얻어짐을 입증했습니다. 그림 2는 자석과 채널 사이의 거리 d가 다른 입자의 궤도를 보여줍니다. 0 ~ 1mm 사이의 거리에서 모든 입자는 입구에서 원래 위치와 별개로 분리됩니다. 더 큰 거리의 경우, 낮은 자기력으로 인해 분리가 불완전합니다. 완전한 입자 분리를 위해서는 중 ~ 고 자력이 필요합니다. 그러나, 우리는 높은 자력이 유체 패턴의 섭동과 유체 계면의 파손으로 이끄는 입자의 극도의 가속으로 인해 해독 목적에 바람직하지 않음을 입증했습니다 (그림 3 참조). 따라서 중간 자력이 나타나게됩니다. 완전한 비드 분리가 혈액의 완전성을 유지하면서 달성 될 수 있기 때문에 이러한 종류의 시스템에 가장 적합할 수 있습니다.

그림 3. 입자가 a) d = 0 mm 및 b) d = 1.15 mm에 대해 상간 경계면을 횡단 할 때의 속도 벡터. c) d = 0 mm 및 b) d = 1.15 mm ([2]에서 채택)에 대한 그 당시의 혈액 체적 분율.

Conclusions

본 연구에서는 다중 위상 연속 흐름 마이크로 디바이스에서 혈액으로부터 자기 비드 분리 과정을 예측하고 최적화 하기위한 새로운 FLOW-3D 모델을 소개했습니다. 이 모델은 입자에 작용하는 우세한 힘을 고려하고 개별 입자의 궤도, 분리에 필요한 시간 및 혈액 / 버퍼 동시 흐름의 섭동을 포함하여 분리 과정의 중요한 세부 사항을 연구하는데 사용될 수 있습니다 . 이 연구의 핵심 요소는 유체 장에서 입자 – 유체 상호 작용의 영향을 고려하면서 장치에서 동시에 흐르는 두 유체 간의 상호 작용을 연구 한 것입니다. 솔루션이 채널의 길이를 따라 독립적으로 흐르고 각각의 출구에서 분리되어 가능한 혈액 손실이나 용해를 피하기 때문에 이러한 문제는 매우 중요합니다. 여기에 이어지는 방법론은 핵심 작동 변수 및 매개 변수를 고려하여 입자 분리를 예측하는 데 사용할 수 있으므로 합리적인 설계 지침을 제공합니다. 일반적으로 혈액 해독 과정뿐만 아니라 미세 유체 장치 내부에 여러 개의 구속 된 액체 상을 포함하는 다른 연구를위한 파라 메트릭 분석 및 최적화에도 적용됩니다. 우리의 미래 연구는 새로운 혈액 해독 과정을 설계하기 위해 전혈을 사용하는 과정의 실험적 분석과 자성 분리 단계의 독소 제거와 통합에 초점을 맞출 것입니다.

References

[1] Gómez-Pastora et al., Separation and Purification Technology2017, 172, 16–31.

[2] Gómez-Pastora et al., Journal of Physical Chemistry C2017, 121, 7466−7477.