Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon Spangenberg
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

이 논문은 재료 압출 적층 제조에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션을 제공합니다. 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료를 인쇄하는 동안 레이어 변형을 캡처합니다.

물리학은 일반화된 뉴턴 유체로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다.

시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도가 높을수록 증착된 레이어에서 변형이 커집니다. 또한 인쇄 속도, 압출 속도, 층 높이 및 노즐 직경이 인쇄된 층의 변형에 미치는 영향을 조사했습니다.

마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

Stability and deformations of deposited layers in material extrusion additive manufacturing
Stability and deformations of deposited layers in material extrusion additive manufacturing

Keywords

Viscoplastic MaterialsMaterial Extrusion Additive Manufacturing (MEX-AM)Multiple-Layers DepositionComputational Fluid Dynamics (CFD)Deformation Control

Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

Abstract

This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD software) is an effective tool for studying droplet dynamics and mixing in microfluidic devices. The first example studied is a T-junction where flow patterns for both droplet generation and passive mixing are analyzed. The second example studied is a co-flowing device where the formation and breakup of bubbles is simulated. The effect of viscosity on bubble formation is also analyzed. For a T-junction the bubble size is corroborated with experimental data. Both the bubble size and frequency are studied and corroborated with experimental data for a co-flowing device. The third example studied is the electrowetting phenomenon observed in a small water droplet resting on a dielectric material. The steady-state contact angle is plotted against the voltage applied. The results are compared with both the Young-Lippmann curve and experimental results. 

이 논문은 FLOW-3D (범용 CFD 소프트웨어)의 유체 부피 (TruVOF) 방법이 미세 유체 장치에서 액적 역학 및 혼합을 연구하는데 효과적인 도구임을 보여줍니다.

연구된 첫 번째 예는 액적 생성 및 수동 혼합에 대한 흐름 패턴이 분석되는 T- 접합입니다. 연구된 두 번째 예는 기포의 형성 및 분해가 시뮬레이션 되는 동시 유동 장치입니다.

기포 형성에 대한 점도의 영향도 분석됩니다. T 접합의 경우 기포 크기는 실험 데이터로 확증됩니다. 기포 크기와 빈도 모두 공동 유동 장치에 대한 실험 데이터로 연구되고 확증됩니다.

연구된 세 번째 예는 유전 물질 위에 놓인 작은 물방울에서 관찰 된 전기 습윤 현상입니다. 정상 상태 접촉각은 적용된 전압에 대해 플롯됩니다. 결과는 Young-Lippmann 곡선 및 실험 결과와 비교됩니다.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2

References

Formation of bubbles in a simple co-flowing micro-channel

SaveAlertResearch FeedFormation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

SaveAlertResearch FeedCreating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,

SaveAlertResearch FeedFLOW DEVELOPMENT OF CO-FLOWING STREAMS IN RECTANGULAR MICRO-CHANNELS

SaveAlertResearch FeedA microfluidic system for controlling reaction networks in time.

SaveAlertResearch FeedElectrowetting: from basics to applications

SaveAlertResearch FeedVolume of fluid (VOF) method for the dynamics of free boundaries

Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링

Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such systems usually involves fluid being transported by capillary forces. Capillarity can enhance fluid transport for small volumes of fluid and can provide a reliable alternative to micro-scale pumping mechanisms. Advantages of capillary systems include:

  • Low cost due to easy and fast fabrication
  • User friendliness due to the simplicity of their design
  • Increased portability ensured by the capillary actuation of fluids
  • Enhanced accessibility caused by the open-surface nature of their design
  • Complete elimination of air bubbles guaranteed by the uniformly moving fluid front

For these reasons, open capillary systems are the preferred design option for various POC systems.

개방형 표면 미세 유체 시스템은 생물학, 생명 공학, 의학, POC (Point-of-Care) 및 홈 케어 시스템 분야에서 점점 인기를 얻고 있습니다. 이러한 시스템의 설계에는 일반적으로 모세관 힘에 의해 유체가 운반됩니다. 모세관은 소량의 유체에 대한 유체 수송을 향상시킬 수 있으며 마이크로 규모 펌핑 메커니즘에 대한 신뢰할 수있는 대안을 제공 할 수 있습니다. 모세관 시스템의 장점은 다음과 같습니다.

  • 쉽고 빠른 제작으로 인한 저렴한 비용
  • 디자인의 단순성으로 인한 사용자 편의성
  • 유체의 모세관 작동으로 인한 휴대 성 향상
  • 디자인의 개방형 특성으로 인한 접근성 향상
  • 균일하게 움직이는 유체 전면으로 보장되는 기포의 완전한 제거

이러한 이유로 개방형 모세관 시스템은 다양한 POC 시스템에서 선호되는 설계 옵션입니다.

모세관 흐름의 시작 조건

V 홈 치수
그림 1. V 홈 채널의 단면 치수 : W = 150 μm, h1 = 300 μm, h2 = 1200 μm, α = 14.5ο.

University at Buffalo와 University of Grenoble의 연구원들의 최근 논문에서 마이크로 그루브가 잠재적으로 모세관 효과를 향상시킬 수있는 방법을 보여주었습니다 [1]. 이 논문의 결과를 바탕으로, FLOW-3D를 사용하여 평행 한 플레이트로 대체 된 좁은 V- 홈 마이크로 채널 내부 유체의 자발적 모세관 흐름 (SCF)에 대한 사례 연구를 논의 할 것  입니다. 모세관 흐름의 시작에 대한 특정 조건이 충족되면 혈류를 모니터링하기위한 POC 시스템의 설계를 위해 전혈과 같은 점성 유체를 사용해도 큰 유체 속도를 얻을 수 있습니다.

모세관 흐름의 조건은 Gibbs 자유 에너지의 최소화를 기반으로 한 정적 접근 방식을 사용하여 이론적으로 설정할 수 있습니다. 보다 구체적으로, 입구 압력이 0 일 때 모세관 흐름이 시작되는 조건은 다음과 같습니다.

(수식 1)           pF/pW < cos⁡ θ

여기서  θ  는 영 접촉각이고  F  및  W  는 각각 유동의 임의 단면에서 자유 및 습식 둘레입니다. 그림 1에 표시된 것과 같은 반각 α 를 갖는 V- 홈 마이크로 채널의  경우 몇 가지 수학적 조작 후 eq. 1은 다음과 같이 다시 작성할 수 있습니다.

(수식 2)         sin α = cos⁡ θ

우리의 경우  α  ≈ 14.5 ο 가 있으므로 모세관 흐름의 조건은  θ  <75.5 o 입니다.

FLOW-3D 에서 시뮬레이션

정적 접근 방식이 SCF의 시작에 관한 중요한 정보를 제공하지만 수치 접근 방식은 현장 진료 장치에서 유동 역학을 연구하는 데 더 적합합니다. 접촉각이 37 °  이고 전혈의 유체 특성 을 갖는 V- 홈 마이크로 채널에 대해 CFD 분석을 수행했습니다 . 혈액의 점도는 거의 일정하기 때문에 흐름 체제는 뉴턴으로 간주됩니다 [1]. 유체 운동이 모세관 효과에 의해서만 발생하도록 모든 경계와 계산 영역 전체에 균일 한 주변 압력이 적용되었습니다. 시뮬레이션은 처음 4mm의 유체 이동을 포함하는 초기 시뮬레이션과 4mm에서 8mm의 유체 이동을 예측하는 재시작 시뮬레이션의 두 부분으로 나뉩니다.

결과 및 검증

처음 8mm 이동에 대한 유동 역학은 그림 2에 나와 있습니다.이 그림은 세 가지 다른 시간에 슬롯에서 전진 인터페이스의 모양을 보여줍니다. 필라멘트 (Concus-Finn 필라멘트)의 점진적인 확장은 주 흐름보다 앞서 볼 수 있습니다.

모세관 흐름 시뮬레이션
그림 2. 세 가지 다른 시간에서 FLOW-3D를 사용하여 진행하는 모세관 흐름의 동적 계산 : (a) 0.04, (b) 0.07 및 (c) 0.11 초와 삽입물 (i1), (i2) 및 (i3) Concus-Finn 필라멘트의 진화 [1].

분석, 수치 및 실험 결과 간의 비교는 그림 3에 나와 있습니다. 수치 예측과 실험 간에는 탁월한 일치가 있습니다. 분석 솔루션도 플롯되었지만 채널 하단에있는 Concus – Finn 필라멘트의 효과가 고려되지 않았기 때문에 수치 및 실험 결과에 대한 유효한 비교를 나타내지 않을 수 있습니다.

모세관 흐름 검증
그림 3. (A) 시간의 함수로서 채널의 속도. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도. (B) 시간의 함수로서 액체 전면의 원점으로부터의 거리. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도 [1].

전혈 이외에도 식용 색소로 착색 한 물과 점성이 높은 알기 네이트 용액을 포함하여 장치가 고점도 유체를 이동시킬 수있는 가능성을 테스트하는 등 다양한 유체를 연구했습니다. 혈액과 같은 고점도 액체는 1 초 이내에 이동할 수 있습니다 (아래 애니메이션 참조).https://www.youtube.com/embed/v4OYoHStJ1w?controls=1&rel=0&playsinline=0&modestbranding=0&autoplay=0&enablejsapi=1&origin=https%3A%2F%2Fwww.flow3d.com&widgetid=1

사례 연구는 상대적으로 큰 점도 (물의 4 배)를 갖는 전혈의 경우 최대 7.5cm / s의 속도를 달성했음을 보여줍니다. 실험 결과 및  FLOW-3D  예측에 따라 전체 채널은 0.2 초 이내에 혈액으로 채워졌습니다. FLOW-3D  시뮬레이션 결과는 실험 관찰 결과와 매우 일치하며, V-groove 내부의 거리에 따라 속도가 감소하지만 장치의 전체 길이에 걸쳐 중요 함을 나타냅니다.

참고 문헌

  1. Berthier, J., K. Brakke, E. P. Furlani, I. H. Karampelas, and G. Delapierre. “Open-surface microfluidics.” In Proceedings of the Nanotech International Conference, pp. 15-19. 2014.
  2. Hirt, Cyril W., and Billy D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of computational physics 39, no. 1 (1981): 201-225.
  3. Rajaratnam, N., and M. R. Chamani. “Energy loss at drops.” Journal of Hydraulic Research 33, no. 3 (1995): 373-384.
Fig.4 Schematic of a package structure

Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling

Junichi Saeki and Tsutomu Kono
Production Engineering Research Laboratory, Hitachi Ltd.
292, Y shida-cho, Totsuka-ku, Yokohama, 244-0817 Japan

Abstract

Thermosetting molding compounds are widely used for encapsulating semiconductor devices and electronic modules. In recent years, the number of electronic parts encapsulated in an electronic module has increased, in order to meet the requirements for high performance. As a result, the configuration of inserted parts during molding has become very complicated. Meanwhile, package thickness has been reduced in response to consumer demands for miniaturization. These trends have led to complicated flow patterns of molten compounds in a mold cavity, increasing the difficulty of predicting the occurrence of void formation or gold-wire deformation.

A method of three-dimensional (3-D) flow analysis of thermosetting compounds has been developed with the objective of minimizing the trial term before mass production and of enhancing the quality of molded products. A constitutive equation model was developed to describe isothermal viscosity changes as a function of time and temperature. This isothermal model was used for predicting non-isothermal viscosity changes. In addition, an empirical model was developed for calculating the amount of wire deformation as a function of viscosity, wire configuration, and other parameters. These models were integrated with FLOW-3D® software, which is used for multipurpose 3-D flow analysis.

The mold-filling dynamics of an epoxy compound were analyzed using the newly developed modeling software during transfer molding of an actual high performance electronic module. The changes in the 3-D distributions of parameters such as temperature, viscosity, velocity, and pressure were compared with the flow front patterns. The predicted results of cavity filling behavior corresponded well with actual short shot data. As well, the predicted amount of gold-wire deformation at each LSI chip with a substrate connection also corresponded well with observed data obtained by X-ray inspection of the molded product.

Korea Abstract

열경화성 몰딩 컴파운드는 반도체 장치 및 전자 모듈을 캡슐화하는 데 널리 사용됩니다. 최근에는 고성능에 대한 요구 사항을 충족시키기 위해 전자 모듈에 캡슐화되는 전자 부품의 수가 증가하고 있습니다.

그 결과 성형시 삽입 부품의 구성이 매우 복잡해졌습니다. 한편, 소비자의 소형화 요구에 부응하여 패키지 두께를 줄였다. 이러한 경향은 몰드 캐비티에서 용융된 화합물의 복잡한 흐름 패턴을 야기하여 보이드 형성 또는 금선 변형의 발생을 예측하기 어렵게합니다.

열경화성 화합물의 3 차원 (3-D) 유동 분석 방법은 대량 생산 전에 시험 기간을 최소화하고 성형 제품의 품질을 향상시킬 목적으로 개발되었습니다. 시간과 온도의 함수로서 등온 점도 변화를 설명하기 위해 구성 방정식 모델이 개발되었습니다. 이 등온 모델은 비등 온 점도 변화를 예측하는 데 사용되었습니다.

또한 점도, 와이어 구성 및 기타 매개 변수의 함수로 와이어 변형량을 계산하기위한 경험적 모델이 개발되었습니다. 이 모델은 다목적 3D 흐름 분석에 사용되는 FLOW-3D® 소프트웨어와 통합되었습니다.

실제 고성능 전자 모듈의 트랜스퍼 몰딩 과정에서 새로 개발 된 모델링 소프트웨어를 사용하여 에폭시 화합물의 몰드 충전 역학을 분석했습니다. 온도, 점도, 속도 및 압력과 같은 매개 변수의 3D 분포 변화를 유동 선단 패턴과 비교했습니다.

캐비티 충전 거동의 예측 결과는 실제 미 성형 데이터와 잘 일치했습니다. 또한, 기판 연결이 있는 각 LSI 칩에서 예상되는 금선 변형량은 성형품의 X-ray 검사에서 얻은 관찰 데이터와도 잘 일치했습니다.

Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
Fig.2 Procedure for determining viscosity changes of thermosetting compounds
Fig.2 Procedure for determining viscosity changes of thermosetting compounds
Fig.4 Schematic of a package structure
Fig.4 Schematic of a package structure
Fig.6 Calculated results of filling behavior and temperature  distribution in the runner
Fig.6 Calculated results of filling behavior and temperature distribution in the runner
Fig.8 Comparison of cavity filling
Fig.8 Comparison of cavity filling

References

1)J.Saeki et al. ,6th annual meeting of PPS, 12KN1(1990)
2)J.Saeki et al. , JSME International Journal Series Ⅱ, 33,486(1990)
3)J.Saeki et al.,SEIKEI KAKOU,12,67(2000)
4) J.Saeki et al.,SEIKEI KAKOU,12,788(2000)
5) J.Saeki et al.,SEIKEI KAKOU,13,49(2001)

Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Figure 3. Flow velocity on seawall in A2-3 modeling.

Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3D Software

Open Journal of Marine Science
Vol.06 No.02(2016), Article ID:65874,6 pages
10.4236/ojms.2016.62026

FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링

Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4
1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2Department of Marine Structures, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3Iran National Center for Oceanography and Atmospheric Sciences, Tehran, Iran
4Department of Civil Engineering, Excellence in Education Center of Jihad University of Khuzestan, Ahvaz, Iran
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.

Keywords: 플로우 속도, 방파제 크라운, 모델링, Flow Velocity, Seawall Crown, Modeling, FLOW-3D

1. 소개

방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].

2. 연구 역사

여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .

3. 재료 및 방법

이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.

표 1. 변수지정.

4. 숫자 모델

FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.

이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.

물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].

그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.

다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.

5. 결과

다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.

언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.

그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가

그림 1. A1 모델링의 방파제의 흐름 속도.

그림 2. A2-1 모델링의 방파제의 흐름 속도.

Figure 3. Flow velocity on seawall in A2-3 modeling.

그림 4. A3-1 모델링의 방파제의 흐름 속도.

그림 5. 방파제 유형 A(61° 경사)의 흐름 속도 의 변화.

그림 6. 방파제 형 B (56 ° 경사)의 흐름 속도의 변화.

그림 7. 방파제 유형 C(51° 경사)의 흐름 속도 의 변화.

그림 8. 방파제 유형 D(45° 경사)의 흐름 속도 변경입니다.

해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.

6. 결론

Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10
cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20
cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.

또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.

이 논문 인용

메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026

참조

  1. 1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  2. 2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York.   [Citation Time(s):1]
  3. 3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam.   [Citation Time(s):1]
  4. 4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual.
    http://www.overtopping-manual.com/manual.html?   [Citation Time(s):1]
  5. 5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771.   [Citation Time(s):1]
  6. 6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London.   [Citation Time(s):1]
  7. 7. Fenton, J.D. (1988) The Numerical Solution of Steady Water Wave Problems. Computers & Geosciences, 14.
    http://dx.doi.org/10.1016/0098-3004(88)90066-0   [Citation Time(s):1]
  8. 8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  9. 9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall.   [Citation Time(s):1]
  10. 10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague.   [Citation Time(s):1]
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-chip fabrication and in-flow 3D-printing of cellladen microgel constructs: From chip to scaffold materials in one integral process

cellladen 마이크로 겔 구조의 온칩 제작 및 인플 로우 3D 프린팅 : 하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지

Benjamin Reineke 1,2, Ilona Paulus 3, Jonas Hazur 6, Madita Vollmer 4, Gültekin Tamgüney 4,5, Stephan Hauschild1
, Aldo R. Boccacini 6, Jürgen Groll 3, Stephan Förster *1,2
1 Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
2 Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
3 Department of Functional Materials in Medicine and Dentistry (FMZ) and Bavarian Polymer Institute (BPI),
University of Würzburg, 97070 Würzburg, Germany
4 Forschungszentrum Jülich GmbH, Institute of Biological Information Processing – Structural Biochemistry (IBI7), Jülich, Germany
5 Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany
6 Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany

Summary

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication.

Bioprinting은 세포가있는 스캐 폴드 제작을 위한 번성하는 기술로 진화했습니다. 바이오 잉크는 바이오 프린팅에 가장 중요한 구성 요소입니다. 최근 마이크로 젤은 세포 보호 및 세포 미세 환경 제어를 가능하게 하는 매우 유망한 바이오 잉크로 도입되었습니다.

그러나 이들의 미세 유체 제작은 본질적으로 한계로 보였습니다. 여기에서 우리는 안정적인 스캐 폴드에 직접 유입 바이오 프린팅을 사용하여 세포가 실린 마이크로 겔의 미세 유체 생산을 위한 미세 유체 및 3D 프린팅의 직접 결합을 소개합니다.

이 방법론은 세포를 단 분산 미세 방울로 연속 온칩 캡슐화하고 후속 유입 교차 연결을 통해 세포가 가득한 마이크로 겔을 생성 할 수 있으며, 이는 마이크로 튜브를 종료 한 후 얇은 연속 마이크로 겔 필라멘트에 자동으로 걸린다. 3D 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원 스캐 폴드로 직접 유입 인쇄 할 수 있습니다.

이 방법은 다양한 가교 방법 및 세포주에 대해 설명됩니다. 이러한 발전으로 미세 유체 학은 더 이상 바이오 패브리 케이션의 병목 현상이 아닙니다.

Bioprinting은 신체 조직을 모방하거나 대체하기위한 3 차원 세포 실장 구조를 제작하는 새로운 기술입니다.

(1) 조직 공학 및 약물 전달뿐만 아니라 질병 연구 및 치료 개발에 중요한 역할을합니다. 바이오 프린팅에서 세포와 물질은 바이오 잉크 (2,3)로 공식화되어 계층 적으로 구조화 된 3D 스캐 폴드로 직접 인쇄됩니다. 바이오 프린팅의 궁극적 인 목표는 3 차원 적으로 제작 된 구조적 배열이 생물학적 성숙을 촉진하고 가속화한다는 근거를 바탕으로 표적 조직 또는 기관의 전체 또는 부분 기능을 나타내는 세포가있는 스캐 폴드를 생산하는 것입니다.

(4) 따라서 바이오 잉크는 바이오 프린팅 기술의 중요한 구성 요소입니다. 그들은 주로 세포와 생물 활성 분자를 캡슐화 할 수있는 물질, 즉 하이드로 겔에 의존하며 압출 인쇄와 같은 적합한 인쇄 기술에 사용하여 원하는 3 차원 스캐 폴드 또는 구조물을 제작할 수 있습니다. 바이오 잉크의 설계는 유동성 및 탄성 특성을 미세 조정하여 압출 중에 충분히 전단 얇게 만들고,이어서 응고 후 원하는 기계적 안정성과 탄성을 빠르게 개발하여 안정적인 스캐 폴드를 형성해야하기 때문에 까다롭습니다.

또한, 바이오 잉크는 생체 적합성이어야하며 세포 생존력과 적절한 제조 후 행동을 촉진 할 수있을만큼 충분히 생체 기능적이어야하며 충분한 영양분과 산소를 ​​공급할 수 있어야합니다. 바이오 잉크로 가장 두드러진 하이드로 겔 전구체 용액이 사용되며, 때로는 약간 사전 가교된 형태로 사용되며, 프린팅 후 가교되어 구조를 안정화합니다.

종종 발생하는 문제는 세포 침강, 불균일 혼합 및 생체 적합성 제형과 인쇄 사이의 상충 관계이며, 세포가 유동 제형에서 전단력을 직접 경험하기 때문에 결과적인 모양 충실도입니다. 이러한 한계를 극복하기 위해 Highley et al.

(5) 최근 microgel bioinks의 사용을 제안했습니다. 콜로이드 특성으로 인해 마이크로 겔 바이오 잉크는 전단 얇아지고 정지 상태에서 빠르게 응고되는 반면 부드러운 콜로이드에로드 된 세포는 전단 보호됩니다. 인쇄 된 마이크로 겔 스캐 폴드는 계면 중합체 얽힘이 충분하지 않은 경우 2 차 가교에 의해 추가로 안정화 될 수 있습니다.

Microgels는 세포 미세 환경을 조정하는 이점을 더 제공합니다. 따라서, 세포가 가득 찬 마이크로 겔을 제조하는 방법은 이미 개발되었으며, 특히 매우 균일 한 크기의 마이크로 겔을 연속 공정으로 제작할 수있는 마이크로 유체 학 분야에서 이미 개발되었습니다. (6-8) 마이크로 겔은 EDTA- 복합체 (11,12) 또는 열 유도에 의해 조절 될 수있는 알기 네이트 / Ca2 + 이온 복합체 형성 (9,10)과 같은 물리적 가교에 의해 형성 될 수 있음이 입증되었습니다. 젤라틴 용액을 20 ° C 이하로 냉각하는 것과 같은 겔화. (9,13) 화학적 가교 반응은 마이크로 겔의 더 큰 안정성과 더 나은 기계적 특성을 제공합니다.

예를 들면 기능화 된 젤라틴, 히알루 노 레이트, 폴리에틸렌 글리콜 또는 폴리 글리세롤 (12, 14-16)에 대한 마이클 유형 반응, 폴리 글리세롤 (17) 및 광 가교 (18)에 대한 아 지드-알킨 클릭 반응은 다음과 같은 광개시제 및 가교기를 필요로 합니다. 폴리에틸렌 글리콜에 대해 나타났습니다.

캡슐화된 세포에는 줄기 세포 (9,12,14,15), 크립트 및 페 이어 세포 (10), 간 세포 (HepG2) 및 내피 세포 (HUVEC) (18), NIH 3T3 섬유 아세포 (6)가 포함됩니다. 지금까지 Fan et al.에 의해 세포가 실린 마이크로 겔을 기반으로하는 기능성 스캐 폴드의 제작이 보여졌습니다.

(19) 겔 -MA 마이크로 겔의 에멀젼 기반 제조 및 Compaan et al. (20) 젤라틴 마이크로 겔 충전제 입자. 미세 유체 생성 마이크로 겔의 경우 이것은 최근 Highley et al.에 의해 처음으로 입증되었습니다. (5). 마이크로 겔 기반 바이오 잉크 및 스캐 폴드에 대한 바이오 프린팅에 대한 지금까지 제한된 수의 연구에 대한 이유는 소량의 마이크로 겔을 생성하는 마이크로 유체의 필수 조합과 교차 결합, 준비를 포함하는 여러 포스트 칩 배치 공정 단계가 뒤 따르기 때문입니다. bioink의, 그리고 원하는 스캐 폴드에 후속 bioprinting.

이것은 현재 microgel biofabrication을 시간 소모적이고 생산성이 낮은 다단계 공정으로 만듭니다. 따라서 원하는 스캐 폴드의 제조를위한 마이크로 겔 및 바이오 프린팅을위한 미세 유체가 하나의 연속적이고 자동화 가능한 프로세스에 통합 될 수 있다면 매우 바람직 할 것입니다.

여기에서 우리는 미세 유체 칩이 세포를 방울로 온칩 캡슐화하도록 설계 될 수 있음을 보여줍니다. 이는 마이크로 겔을 생성하기 위해 흐름에서 광 가교 결합 된 다음 다운 스트림 마이크로 튜브에서 자동으로 잼되어 얇은 마이크로 겔 필라멘트를 지속적으로 형성합니다. 마이크로 튜브는 3D 프린터의 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원으로 직접 유입 인쇄합니다.

Results and discussion

Microfluidic device and controlled droplet production

우리의 목표는 (i) 낮은 전단 응력 세포 캡슐화, (ii) 물리적 또는 화학적 가교에 대한 가변성, (iii) 미세 액적 직경의 큰 변화, (iv)이를 결합 할 수 있는 기능을 위한 미세 유체 칩을 3D 프린터로 설계하는 것이었습니다.

따라서 디자인은 높은 세포 생존력을 위해 좁은 채널 섹션 내의 세포에 대한 전단력을 최소화해야 합니다. 다양한 물리적 및 화학적 가교 반응을 수행 할 수 있도록 입구 채널 설계는 세포, 폴리머, 가교 및 추가 제제를 포함하는 용액의 순차적 혼합을 허용해야 합니다. 단일 세포 캡슐화가 필요한 경우 미세 방울은 300 µm에서 50 µm까지 제어 가능한 직경을 가져야 106 / ml의 세포 밀도에 도달 할 수 있습니다.

Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.
Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.

따라서 우리는 두 개의 후속 혼합 교차로 3 차원 흐름 초점을 허용 한 다음 제어 된 액적 형성을위한 하류 좁은 오리피스가 뒤 따르는 채널 설계를 사용했습니다. 디자인은 그림 1에 개략적으로 표시되어 있습니다. 여기에는 세포와 전구체 폴리머를 포함하는 중앙 스트림 용액을위한 입구 채널과 완충 용액, 배양 배지, 생리 활성 물질 또는 가교제를 포함 할 수있는 두 개의 측면 채널이 있습니다. 측면 채널 흐름은 입구 채널 흐름을 세포에 대한 전단력이 최소 인 채널의 중앙에 3 차원 적으로 집중시킵니다. 그 후, 수성 스트림은 액적 형성을 제어하는 ​​좁은 오리피스 섹션으로 들어가기 위해 오일 상으로 3 차원 적으로 집중됩니다. 좁은 섹션은 다양한 유체 역학 체제에 액세스하여 다양한 범위에 걸쳐 액적 크기를 변경할 수 있습니다. 다운 스트림 채널은 방울이 채널 중심 유선에서 안정적인 방울 트레인을 형성하도록 충분히 좁게 유지됩니다. 3D 이중 초점 칩은 다층 기술을 사용하는 소프트 리소그래피로 제작되었으며 지원 정보 (그림 S2-S4, S7)에 설명 된대로 흐름이 시뮬레이션되었습니다. 액적 분해는 외부 유체에 의해 가해지는 점성 전단력 𝐹𝑠ℎ𝑒ar 표면 장력에서 발생하는 고정 계면 력 𝐹𝐹𝛾𝛾을 초과 할 때 발생합니다. 두 힘은 직접 연속 유상 η 평균 유입 흐름 속도 (V)의 점도 환산 수 무차 모세관 수가 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ, 그리고 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ = 같은 표면 장력 γ가 관련 𝜂𝜂 𝛾. 캐 필러 리 수에 따라 액적 생성을위한 다양한 유체 역학 체제를 구별 할 수 있습니다. c) 분사 체제 (Ca> 1). (21-25) 그림 1에서 볼 수 있듯이 가변 3D 수축 설계를 사용하면 액적 생산을위한 세 가지 유체 역학 체제에 모두 액세스 할 수 있으며 모세관 수는 액적 생산을위한 주요 제어 매개 변수입니다. 체적 유량, 오일 점도 및 계면 장력을 조정하여 50 ~ 300 µm 범위의 목표 범위에서 액적 직경을 정밀하게 제어 할 수 있습니다. 각 점도 및 계면 장력은 지원 정보의 표 SI에 요약되어 있습니다.

Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.
Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.

  1. A. Atala, Chem. Rev. 2020, 120, 10545-10546.
  2. J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A
    Mironov, K. Nakayama, A. Ovisanikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield,
    Biofabrication 2019, 11, 013001.
  3. W. Sun, B. Starly, A. C. Daly, J. A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara,
    M. Nishikawa, J. Jang, D.-W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R. D. Kamm,
    V. Mironov, L. Moroni, I. T. Ozbolat, Biofabrication 2020, 12, 022002.
  4. R. Levato, T. Juengst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
  5. C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick, Adv. Sci. 2019, 6, 1801076.
  6. D. Velasco, E. Tumarkin, E. Kumacheva, Small 2012, 8, 1633-1642.
  7. W. Jiang, M. Li, Z. Chen, K. W. Leong, Lab Chip 2016, 16, 4482-4506.
  8. A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. 2020, 5, 20-43.
  9. A. S. Mao, B. Özkale, N. J. Shah, K. H. Vining, T. Descombes, L. Zhang, C. M. Tringides, S.-W.
    Wong, J.-W. Shin, D. T. Scadden, D. A. Weitz, D. J. Mooney, Proc. Natl. Acad. Sci. 2019, 116, 15392-
    15397.
  10. S. R. Pajoumshariati, M. Azizi, D. Wesner, P. G. Miller, M. L. Shuler, A. Abbaspourrad, ACS Appl.
    Mater. Interfaces 2018, 10, 9235-9246.
  11. A. S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun, W. Li, M. Cooper, Y. Hu, L. Zhang, D. A.
    Weitz, D. J. Mooney, Nat. Mater. 2017, 16, 236-243.
  12. P. S. Lienemann, T. Rossow, A. S. Mao, Q. Vallmajo-Martin, M. Ehrbar, D. J. Mooney, Lab Chip,
    2017, 17, 727.
  13. F. Chen, J. Xue, J. Zhang, M. Bai, X. Yu, X.; C. Fan, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 2889-
    2896.
  14. Q. Feng, Q. Li, H. Wen, J. Chen, M. Liang, H. Huang, D. Lan, H. Dong, X. Cao, Adv. Funct. Mater.,
    2019, 29, 1096690.
  15. L. P. B. Guerzoni, T. Yoshinari, D. B. Gehlen, D. Rommel, T. Haraszti, M. Akashi, L. De Laporte,
    Biomacromolecules 2019, 20, 3746-3754
  16. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J. Am.
    Chem. Soc. 2012, 134, 4983-4989.
  17. E. Kapourani, F. Neumann, K. Achazi, J. Dernedde, R. Haag, Macromol. Bioscience 2018, 18,
    1800116
  18. H. Wang, H. Liu, H. Liu, W. Su, W. Chen, J. Qin, Adv. Mater. Technol. 2019, 4, 1800632.
  19. C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng, X. Liu, P. Suna, D.-A. Wang, Mater. Sci.
    Eng. C 2019, 108, 110399.
  20. A. M. Compaan, K. Song, W. Chai, Y. Huang, ACS Appl. Mater. Interfaces 2020, 12, 7855-7868.
  21. S. L. Anna, H. C. Mayer, Phys. Fluids 2006, 18, 121512.
  22. T. Ward, M. Faivre, M. Abkarian, H. A. Stone, Electrophoresis 2005, 26, 3716-3724.
  23. F. Lapierre, N. Wu, Y. Zhu, Proc. SPIE 2011, 8204, 82040H-1.
  24. C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Anal. Chem. 2009, 81, 2399-2402.
  25. J. Tan, J. H. Xu, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 136, 306-311.
  26. R.-C. Luo, C.-H. Chen, Soft 2012, 1, 1-23.
  27. C. H. Choi, J. H. Jung, T. S. Hwang, C. S. Lee, Macromol. Res. 2009, 17, 163-167.
  28. A. J. D. Krüger, O. Bakirman, P. B. Guerzoni, A. Jans, D. B. Gehlen, D. Rommel, T. Haraszti, A. J.
    C. Kuehne, L. De Laporte, Adv. Mater. 2019, 31, 1903668.
  29. D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. 2016, 113,
    3179-3184
  30. A. K. Miri, I. Mirzaee, S. Hassan, S. M. Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, Lab Chip
    2019, 19, 2019.
  31. F. A. Plamper, W. Richtering Acc. Chem. Res. 2017, 50, 131-140.
  32. S. Sun, M. Li, A. Liu, Int. J. Adhesion Adhesives 2013, 41, 98-106.
Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).

Numerical Modelling of Semi-Solid Flow under Processing Conditions

처리조건에서의 반고체유동의 수치모델링

David H. Kirkwood and Philip J. Ward
Department of Engineering Materials, University of Sheffield, Sheffield I UK

Keywords: semi-solid alloys, thixotropy, flow modelling.

Abstract

During the industrial process of semi-solid forming (or thixoforming) of alloy slurries, typically the operation of die filling takes around 0.1s.
During this time period the alloy slug is transformed from a solid-like structure capable of maintaining its shape, into a liquid-like slurry able
to fill a complex die cavity: this involves a decrease in viscosity of some 6 orders of magnitUde. Many attempts to measure thixotropic breakdown experimentally in alloy slurries have relied on the use of concentric cylindrical viscometers in which viscosity changes have been followed after shear rate changes over times above 1s to in excess of 1000 s, which have little relevance to actual processing conditions and therefore to modelling of flow in industrial practice. The present paper is an attempt to abstract thixotropic breakdown rates from rapid compression tests between parallel plates moving together at velocities of around 1mis, similar to industrial conditions. From this analysis, a model of slurry flow has been developed in which rapid thixotropic breakdown of the slurry occurs at high shear rates.

합금 슬러리의 반고체 성형 (또는 틱소 성형)의 산업 공정 동안, 일반적으로 다이 충진 작업은 약 0.1 초가 걸립니다.
이 기간 동안 합금 슬러그는 모양을 유지할 수있는 고체와 같은 구조에서 액체와 같은 슬러리로 변형됩니다.
복잡한 다이 캐비티를 채우기 위해 : 이것은 약 6 차의 마그 니트 점도 감소를 포함합니다. 합금 슬러리에서 실험적으로 요 변성 파괴를 측정하려는 많은 시도는 전단 속도가 1 초 이상에서 1000 초 이상으로 변화 한 후 점도 변화가 뒤 따르는 동심원 원통형 점도계의 사용에 의존하여 실제 가공 조건과는 거의 관련이 없습니다. 따라서 산업 현장에서 흐름 모델링에. 본 논문은 산업 조건과 유사하게 약 1mis의 속도로 함께 이동하는 평행 판 사이의 빠른 압축 테스트에서 요 변성 파괴 율을 추상화하려는 시도입니다. 이 분석으로부터 슬러리의 급속한 요 변성 분해가 높은 전단 속도에서 발생하는 슬러리 흐름 모델이 개발되었습니다.

Introduction

기존의 다이캐스팅을 위한 다이 설계는 과거에 예비 테스트 및 조정과 함께 축적 된 실무 경험의 문제였으며, 단기 실행, 랩, 다공성 등과 같은 결함을 제거하기 위해 다이 캐스트 제품을 검사했습니다. 이것은 모두 비용이 많이 드는 절차입니다.

시간과 비용, 그리고 프로세스의 컴퓨터 모델링은 이를 줄이거 나 없애기 위해 많은 운영자에 의해 개발되었습니다. 반고체 가공 (thixoforming)에서는 반고체 합금 슬러리의 전단이 내부 구조를 파괴하여 충전 작업 중 시간이 지남에 따라 점도가 낮아짐으로 발생하는 비 뉴턴 점도로 인해 모델링 문제가 더욱 어려워집니다.

시스템 전체에서 균일하지 않습니다. 충전 중에 발생하는 추가 응고로 인해 문제가 더욱 복잡해집니다. 빠른 충전으로 인해 이 단계에서 매우 작은 것으로 간주되기 때문에 현재 분석에서는 무시되었습니다.

우리 모델의 또 다른 한계는 슬러리가 균질한 물질로 거동 한다는 가정이며, 이는 어느 지점에서나 단일 점도로 설명될 수 있습니다. 이것은 빠른 전단의 고려 사항과 정상적인 요 변형성 조건 내에서 0.6 미만의 고형분을 분별하는 것으로 제한합니다.

<중략>……

Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).
Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).
Figure 2. Equilibrium viscosity as a function of shear rate in Sn-Pb alloy, fraction solid:0.36, fitted to Cross Model.
Figure 2. Equilibrium viscosity as a function of shear rate in Sn-Pb alloy, fraction solid:0.36, fitted to Cross Model.
Figure 3. Cheng Diagram: shear stress vs. shear rate.
Figure 3. Cheng Diagram: shear stress vs. shear rate.
Figure 4. Reciprocal of experimental breakdown time vs. y 1.3 for Sn-Pb alloy
Figure 4. Reciprocal of experimental breakdown time vs. y 1.3 for Sn-Pb alloy
Figure 5. Relaxation time, T, as a function of shear rate; see also figure 4, Fs =0.36.
Figure 5. Relaxation time, T, as a function of shear rate; see also figure 4, Fs =0.36.
Figure 6. Experimental and modelled results for compression test on AI-A356 alloy at two temperatures.
Figure 6. Experimental and modelled results for compression test on AI-A356 alloy at two temperatures.
Table 1. Calculated parameters for the breakdown in compression tests [20].
Table 1. Calculated parameters for the breakdown in compression tests [20].
Figure 7. Drop-forge results from Yurko and Flemings [7].
Figure 7. Drop-forge results from Yurko and Flemings [7].
Figure 8. Prediction of FLOW-3D®.
Figure 8. Prediction of FLOW-3D®.

Conclusions

y에서 전단 된 반고체 슬러리의 틱소 트로픽 분해에 대한 속도 방정식은 다음과 같은 형식으로 제안됩니다. T = l / (a ​​+ uym), 여기서 T는 급속 분해 또는 유사 정상 상태 구조에 대한 특성 시간이며, 밴드 m은 상수입니다. 이 관계는 제한된 범위의 전단 속도에서 Sn-Pb 합금의 전단 속도 점프에 의해 실험적으로 확인되었습니다.

이 파괴율 방정식은 AI-Si 합금의 반고체 슬러그에 대한 빠른 압축 테스트에서 실험적으로 얻은 힘-변위 곡선을 시뮬레이션하기 위해 FLOW-3D® (버전 8.2 : FlowScience Inc.)에 도입되었습니다. 담금 시간과 다른 압축 속도에서. 이 분석의 결과는 모든 경우에 요 변성 거동이 관련되어 있음을 나타내지만, 5 분 동안 담근 후 (산업 관행에서와 같이) 구조가 크게 분해되었으며 초기에는 낮은 전단 속도 영역에서 흐름이 뉴턴에 가깝습니다.

파괴율은 100 S-I 이상의 전단율에서 극적으로 증가하는 것으로 가정 됩니다. 이 예측은 높은 전단 속도에서 더 세심한 작업에 의해 테스트되어야 하지만 평균 전단 속도가 1300 sol까지 생성된 드롭 단조 실험에 의해 뒷받침되는 것으로 보입니다 [7].

References

[I] T.Y Liu, H.Y. Atkinson, PJ. Ward, D.H. Kirkwood: Metall.Mater.TransA, 34A (2003), 409/17.
[2] A. Zavaliangos and A. Lawley: J. Mater. Eng. Perfonn., 4 (1995),40/47.
[3] M.R. Barkhudarov, e.L. Bronisz, e.w. Hirt: ProcAth Int. Conf. onSemi-solid Processing of Alloys and Composites,1996, Sheffield,p.llO.
[4] W.R.Loue, M.Suery, J.L.Querbes: Proc.2ndInt.Conf.on Semi-solidProcessing of Alloys and Composites,1992, Cambridge MA , pp266-75.
[5] P.Kapranos, D.H.Kirkwood, M.R. Barkhudarov: Proc.5th Int. Conf.on Semi-solid Processing of Alloys and Composites, Golden, Colorado,1998. pp.II-19.
[6] T.Y. Liu, H.Y. Atkinson, P. Kapranos, D.H. Kirkwood, S.G. Hogg:Metall. Mater. Trans A, 34A (2003), 1545/54.
[7] J.A. Yurko and M.e. Flemings: Metall. Mater. Trans A, 33A (2002),2737/46.
[8] M. Modigell and J. Koke: Mechanics of Time Dependent Materials, 3(1999), 15/30.
[9] Y. Laxmanan and M.e. Flemings: Metall. Trans. A, IIA( 1980),1927/36.
[IO]A.R.A Mclelland, N.G. Henderson, H.Y. Atkinson, D.H. Kirkwood:Mater. Sci. Eng., A232 (1997), 110/18.
[II] H.A. Barnes: 1. Non-Newtonian Fluid Mech., 81 (1999),133n8.
[12]A.N. Alexandrou, E. Due , Y. Entov: 1. Non-Newtonian Fluid Mech.,96 (2001), 383/403.
[13]C.L. Martin, P. Kumar and S. Brown: Acta Mat. Mater., 42 (1994),3603/14.
[14]C. Quaak, L. Katgennan and W.H. Kool: Proc. 4th Conf. on Semi-solid Processing of Alloys and Composites, 1996, Sheffield, pp.35/39.
[15]D.C-H. Cheng: Int. Journal Cosmetic Science, 9 (1987), pp.151/91.
[16]An Introduction to Rheology: H.A. Barnes, J.F. Hutton and K Walters,Elsevier, Amsterdam, 1989.
[17]A.M. de Figueredo, A. Kato and M.e. Flemings: Proc.6th Int. Conf.on Semi-solid Processing of Alloys and Composites, 2000, Turin,477/82.
[18]1.y’ Chen and Z. Fan: Mater. Sci. Tech., 18 (2002), 237/42.
[19]Z. Fan: Int. Mater. Rev., 47 (2002), No.2, 49/85.
[20]D.H. Kirkwood and P.J. Ward: Proc. 8th Int. Conf. on Semi-solid Processing of Alloys and Composites, 2004, Cyprus. To be published.

Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.

Numerical simulation of flow and compression of green sand

Abstract

산업 박사 프로젝트의 초점은 주조 부품에 최종 기하학적 모양을 제공하는 모래 주형 (녹색 모래)의 생산에 집중되었습니다. 주조 부품의 고품질을 보장하기 위해서는 금형 자체의 제조 공정을 균일하고 안정적으로 제어하는 ​​것이 중요합니다.

따라서 녹사(주물사)의 흐름과 퇴적을 특성화하고 모델링하는 방법에 대한 기본적인 이해를 얻는 것이 중요했기 때문에 모래 주형의 제조 공정 시뮬레이션에 사용할 수 있었습니다. 녹색 모래의 유동성은 모래 샷 중에 모래로 챔버를 채우는 호퍼를 통해 모래가 아래로 흐를 때 중요합니다.

녹색 모래의 유동성은 주로 물과 벤토나이트의 양에 의해 좌우되며 둘 다 감소 시킵니다. 따라서 유동성과 내부 힘은 리브 및 기타 기하학적 장애물로 인한 그림자가 있을 수 있는 복잡한 금형 형상을 얼마나 잘 채울 수 있는지 제어합니다.

흐름이 조기에 중단되면 금형이 완전히 채워지지 않거나 재료 밀도의 변동이 너무 높아 주조 부품의 최종 표면에 영향을 미칠 수 있습니다. 벤토나이트에 의해 생성된 습식 다리는 벤토나이트와 물이 녹색 모래를 매우 응집력 있게 만드는 모래 알갱이를 서로 달라붙게 하고 혼합물을 짜 냄으로써 주조 공정을 위한 강력한 금형을 얻기 위해 금형을 안정시키는 기계적 특성을 얻습니다.

따라서 생사 유동성은 챔버의 적절한 충진을 위해 샌드 샷 중에 중요하며, 후속적으로 압착 공정 동안의 견고한 기계적 특성은 금형의 최종 강도에 중요합니다. 이는 이러한 기계적 거동이 역 관계를 갖기 때문에 문제가 됩니다.

예를 들어 녹색 모래가 너무 건조하면 녹색 모래의 유동성이 매우 높고,특정 수분 함량 수준에 따라 곰팡이의 강도가 낮고 그 반대도 마찬가지입니다. 따라서 정확한 생사 상태를 확보하고 샌드 샷 중에 금형 충진을 개선하는 것이 매우 중요합니다.

이산 요소 방법 (DEM)은 방법의 이산적인 특성이 녹색 모래의 입상 구조를 잘 모의하기 때문에 수치 모델로 선택되었습니다. DEM 모델은 롤링 저항 모델을 사용하여 비 구형 석영 모래 입자의 롤링 저항을 에뮬레이션하고 응집성 모델을 사용하여 벤토나이트에서 석영 모래 입자의 결합을 에뮬레이트합니다.

그린 샌드는 항복 궤적이 발견된 링 전단 테스터로 특성화되었으며 유동성을 정의하는 새로운 방법이 제안 되었습니다. 링 전단 시험기는 DEM 모델의 정적 마찰 계수를 얻기 위해 사용되었습니다.

측정된 높이에서 녹색 모래의 단순한 기계적 거동을 조사하기 위해 모래 더미 실험이 사용되었습니다. 이 높이에서 DEM 모델은 구름 저항 값을 얻고 응집 모델에서 매개 변수를 얻는 것과 관련하여 보정 되었습니다.

이 프로젝트는 DISAMATIC 공정에서 샌드 샷을 사용하여 모래 주형을 생산하는 동안 모래 입자의 흐름과 모래 퇴적을 처리했습니다. 챔버의 녹색 모래 퇴적은 캐비티 내부에 통풍구가 배치된 특수 캐비티 설계로 조사되었습니다.

에어 벤트는 샌드 샷 중에 공기 흐름과 함께 녹색 모래를 운반하는 데 사용됩니다. 챔버와 캐비티의 에어 벤트 설정을 변경함으로써 캐비티 설계에서 좁은 통로의 충진을 개선하여 최종 샌드 몰드도 개선 할 수 있었습니다.

캐비티 디자인을 사용한 샌드 샷은 챔버의 공기 흐름과 통풍구를 통한 공기 흐름을 모델링하기 위해 고전적인 전산 유체 역학 (CFD)과 결합 된 녹색 모래의 흐름을 모델링하는 이산 요소 방법 (DEM)으로 시뮬레이션되었습니다.

이러한 실험과 시뮬레이션은 DISAMATIC 프로세스와이를 개선하는 방법에 대한 유익한 통찰력을 제공했습니다. 또한 유동층을 사용하여 생사의 유동화 특성을 조사하고 새로 개발 된 Anton Paar Powder Cell을 사용하여 유동 점도를 얻었습니다.

상업적 측면 특수 설계된 캐비티 지오메트리에서 그린 샌드로 몰드 챔버를 채우는 것에 대한 지식을 얻었습니다. 에어 탱크에 초기에 적용된 공기 압력과 함께 에어 벤트의 설정은 캐비티의 충진을 개선하여 최종 금형을 개선하는 데 유용한 아이디어를 제공했습니다.

또한, 결합 된CFD-DEM 모델을 사용하여 STAR-CCM +의 상용 소프트웨어를 적용하여 형상의 3D 슬라이스 표현으로 프로세스를 성공적으로 시뮬레이션 할 수있었습니다. 따라서 향후 DISAMATIC 프로세스를 시뮬레이션하기 위한 독립형 코드를 개발하는 것이 더 가능해집니다. DISAMATIC 프로세스의 샌드 샷은 링 전단 테스터가 다음의 견고한 기계적 거동을 나타낼 수 있는 연속체 모델로 모델링 될 수도 있습니다.

Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3. Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5. Stripping off the PP where the PP is stripped from the mold and returns to its starting position in the molding chamber. 6. Closing the molding chamber and repeating a new cycle. The edited figure and text are from [8]
Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3. Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5. Stripping off the PP where the PP is stripped from the mold and returns to its starting position in the molding chamber. 6. Closing the molding chamber and repeating a new cycle. The edited figure and text are from [8]
Figure 2.1: The green sand mixture. The figure is from [8]
Figure 2.1: The green sand mixture. The figure is from [8]
Figure 2.2: The size distribution of the green sand applied in the project. The figure is from [9]
Figure 2.2: The size distribution of the green sand applied in the project. The figure is from [9]
Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite
cohesive and thereby the sand grains will stick together. The pictures are from the slides
in [10](http://www.sut.ac.th/engineering/Metal/ru/GREEN20%SAND.pdf).
Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite cohesive and thereby the sand grains will stick together
Figure 2.11: The density as a function of compactability with respect to the number of rammings 1-10. The first ramming starts from the left indicated by the number. The cross placed in the middle shows the average value of the batches with an individual color. The dotted lines are the standard deviations of compactability % as a horizontal line and the standard deviations of density [ kg m3 ] as a vertical line.
Figure 2.11: The density as a function of compactability with respect to the number of rammings 1-10. The first ramming starts from the left indicated by the number. The cross placed in the middle shows the average value of the batches with an individual color. The dotted lines are the standard deviations of compactability % as a horizontal line and the standard deviations of density [ kg m3 ] as a vertical line.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.
Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed on the Mohr circle
Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed on the Mohr circle
Figure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The performed experiments placed on the Mohr circle.
Figure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The performed experiments placed on the Mohr circle.

Conclusion

이 논문에서는 시멘트와 충전제의 비 중복 입자 분포를 사용하여 유변학에 대한 분쇄 모래 충전제의 형상 효과를 분리했습니다. 실험 결과는 필러의 종횡비가 증가함에 따라 매트릭스의 유동성이 감소하고 두 종류의 필러에 따라 최대 부피 분율 임계 값이 다양 함을 보여주었습니다. DEM 모델을 사용하여 슬럼프 흐름 테스트를 시뮬레이션하고 실험 결과의 10 % 이내 인 수치 예측을 얻었습니다. 불일치로 인해 모델에 의해 부피 분율 임계 값이 약간 검증되었습니다. 그럼에도 불구하고 수치 결과는 유망 해 보이며 우리는 이산화를 개선하고 다른 상호 작용 모델을 탐색하여 DEM 모델을 추가로 개발할 계획입니다.

Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

분석 모델 (위)과 실측 결과 (아래)

납땜(Soldering) 영역 제어

납땜 후 납땜 형상은 기본적으로 용융 상태에서 형성된 형상이 유지됩니다.특히 납땜의 미세화에 따라 용융 상태의 납땜 형상을 결정하는 요인으로서 표면 장력이 탁월하므로 납땜의 표면 형상은 표면에너지를 최소화하는 형상을 형성하게 됩니다.

 따라서 납땜 영역을 적절한 곳으로 제어하기 위해서는 벽면상의 핀닝 효과를 이용할 수 있습니다.용 융 납땜을 위한 효과적인 수단의 하나로 압인 가공(요철을 붙이는 압인 가공)을 들 수 있습니다.

여기에서는 압인 가공 (예 / 아니요)의 경우에있어서 솔더의 젖음 확산 상태를 시뮬레이션하여 실제 현상과 비교 검증 한 예 (자료 제공 : 알프스 전기 주식회사)를 소개합니다.

그림에 해석 모델을 나타내고 있습니다만, 이 모델에서 초기 배치한 납땜 형상은 설정을 간편화하기 위해 볼륨만을 합친 단순한 직방체 형상으로 되어 있습니다(납땜은 완전 용융 상태에서 해석하므로 표면장력에 의해 즉시 형상 변화합니다).

또 실험에서는 좌우 2곳에 납땜을 했지만 해석에서는 대칭성을 고려하여 왼쪽 절반만을 모델화하고 있습니다.

압인 가공에 의한 함몰은 아주 작은 것이지만, 시뮬레이션 실험 결과와 잘 일치하고 있으며, 압인 가공의 유무에 젖어 퍼지는 방법이 다른 모습을 재현하고 있습니다.

분석에 사용된 메쉬 수와 납땜 물성

  • 메쉬 수 : x × y × z = 80 × 50 × 46 = 184,000 메쉬
  • 납땜 물성 : 밀도 : 7.4 [g / cm3] 점도 : 0.0165 [Poise, 표면 장력 : 440 [dyne / cm]
그림 1 해석 모델 형상과 메쉬 분할
그림 1 해석 모델 형상과 메쉬 분할

솔더의 젖음 확산 (압인 가공 없음)

그림 2 솔더의 젖음 확산 (압인 가공없이)의 계산 결과 (시계열) 실험 결과 (t3)
그림 2 솔더의 젖음 확산 (압인 가공없이)의 계산 결과 (시계열) 실험 결과 (t3)

솔더의 젖음 확산 (압인 가공 있음)

그림 3 솔더의 젖음 확산 (압인 가공 있음)의 계산 결과 (시계열) 실험 결과 (t3)
그림 3 솔더의 젖음 확산 (압인 가공 있음)의 계산 결과 (시계열) 실험 결과 (t3)

솔더 브리지 분석

솔더 브리지 분석 절차

솔더 브리지 분석 대상의 전자 부품
솔더 브리지 분석 대상의 전자 부품

미리 배치하는 솔더 페이스트 양과 리드 간 피치의 관계가 부적절한 경우, 솔더 브리지와 미 납땜 등의 접합 불량이 일어납니다. 또한 이들이 적절한 관계에 있어서도 접합 불량을 일으키는 경우가 있습니다. 여기에서는 그 원인으로 표면 상태의 변화를 가정 한 경우의 해석을 실시합니다.

[순서]

  • 납땜 제품 제조 공정 : 전자 부품과 기판을 납땜으로 접합
  • 땜납 접합 분석 : 솔더의 가열 용융에서 냉각 응고의 과정을 분석
  • 인쇄 회로 기판의 납땜
  • 솔더 브리지 분석 : 솔더 접합 불량(브리지) 재현
  • 솔더의 젖음 확산 형상 (2 차원 모델)을 실측 필렛 형상과 비교 검증
  • 솔더의 젖음 확산 형상 (3D 모델)을 실측 필렛 형상과 비교 검증
  • 자기 정렬 효과
  • 플로우 납땜 : (분사 방식)
  • 플로우 납땜 : (딥 방식)
  • 솔더의 젖음 상승 (압인 가공 있음 없음)
  • 리드선과 전극 판의 솔더 조인트
  • 리플 로우 타입의 칩 / 솔더의 변형 응력 해석 사례

2 차원 모델의 비교 검증

실제 현상

땜납 용융시에 전자 부품은 중력에 의한 자중으로 기판 방향으로 가라 앉는 때문에이를 미리 계산 조건으로 고려하여 둡니다.

2 차원 모델
2 차원 모델
실측 결과 (위)와 해석 결과 (아래)
실측 결과 (위)와 해석 결과 (아래)

3 차원 모델의 비교 검증 (1)

전자 부품의 대칭성을 고려한 부분 영역의 3 차원 모델 분석하고 실제 솔더 필렛 형상과 비교 확인합니다. 처음에는 정상적인 접합의 경우를 분석합니다.

분석 모델 (위)과 실측 결과 (아래)
분석 모델 (위)과 실측 결과 (아래)
분석 결과 : 용융시 (위)과 응고 후 (아래)
분석 결과 : 용융시 (위)과 응고 후 (아래)

3 차원 모델의 비교 검증 (2)

다음 솔더 브리지가 일어날 경우를 분석합니다. 여기에서는 어떠한 요인에 의해 솔더가 젖어 확산 영역의 표면 상태가 변화 한 것을 가정하여 분석을 실시 하였다.

분석 모델 (위)과 실측 결과 (아래)
분석 모델 (위)과 실측 결과 (아래)
분석 결과 : 용융시 (위)과 응고 후 (아래)
분석 결과 : 용융시 (위)과 응고 후 (아래)
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments

International Thermal Spray Conference – ITSC-2006
Seattle, Washington, U.S.A., May 2006

M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, R. Knight,
Drexel University, Philadelphia, Pennsylvania, USA
J. A. Baldoni
Duke University, North Carolina, USA

Abstract

거친 표면에 대한 입자 충격 및 변형의 3 차원 모델이 HVOF 스프레이 폴리머 입자에 대해 개발되었습니다. 유체 흐름 및 입자 변형은 FLOW-3D® 소프트웨어를 사용하는 유체 부피 (VoF) 방법으로 예측되었습니다. 스플래팅(splatting) 및 최종 스플랫 모양(splat shapes)의 역학에 대한 거칠기의 영향은 몇 가지 프로토타입 거친 표면을 사용하여 탐색 되었습니다 (예: 단계와 그루브)

또한 실제 그릿 블라스팅(grit blasted)된 강철 표면의 광학 간섭 측정에 의해 생성된 보다 사실적인 거친 표면의 수치 표현도 모델에 통합되었습니다. 예측된 스플랫 모양을 그릿 블라스팅 된 강철 기판에 증착된 나일론 11 스플랫의 SEM 이미지와 비교했습니다. 거친 기판은 부드러운 기판의 스플래팅 시뮬레이션에서 거의 관찰되지 않는 손가락 및 기타 비대칭 3 차원 불안정성을 생성했습니다.

Introduction

기판 거칠기가 용사 코팅의 접착력과 접착력을 향상 시킨다는 사실은 잘 알려져 있으며 일반적으로 받아 들여지고 있습니다 [1]. 스프레이하기 전에 기판 표면은 일반적으로 알루미나 또는 SiC와 같은 50 – 300 µm 각 세라믹 입자로 그릿 블라스팅으로 거칠게 처리됩니다.

기판 표면에 증착된 초기 스플랫의 형태는 코팅 / 기판 인터페이스의 무결성과 결과 코팅의 접착 강도에 중요한 역할을합니다. 단단하고 불규칙한 표면에 대한 열 스프레이 액적의 충격 및 변형은 액적 표면의 복잡한 대규모 3 차원 변형이 특징입니다.

충돌하는 물방울의 “스플래싱”이 발생하는 경우, 운지법 또는 위성 입자 생성 및 분리 중 새로운 표면 생성은 일반적으로 축 대칭이 아니므로 사실적인 splat 예측을 위해 3 차원 모델이 필요합니다. 이것은 정확한 3 차원 스플래팅 모델의 개발에 많은 수치적 도전을 야기합니다.

Fauchais et al. [2]는 스플랫 형성 과정과 관련하여 발표 된 논문의 대부분 (~ 98 %)이 매끄러운 표면에 대한 정상적인 액적 충격을 설명한다고보고했습니다. 게시된 작업의 2 % 미만은 매끄러운 표면에 대한 비정상적인 입자 영향과 관련이 있으며 ~ 0.1 %만이 거친 기판과 관련됩니다.

여러 저자 [3, 4]는 2 차원 모델을 사용하여 비평면 표면과 물방울의 상호 작용을 연구했거나 평행 그루브가 있는 표면에 대한 3 차원 충격 [5]을 연구했습니다. 그러나 이 접근법의 주요 단점은 거친 표면에 스플래팅의 비축 대칭 측면을 연구합니다.

최근 Raessi et al. [6] 이전에 개발된 VoF 모델 [7]을 확장하여 평평한 기판에 액적 스플래팅을 프로토 타입 거친 표면과 액적 상호 작용으로 확장했습니다. 표면 거칠기는 규칙적으로 정렬 된 정사각형 블록으로 근사화 되었습니다. Feng et al. [8]은 평평한 표면의 마찰 조건에 의해 표면 거칠기가 근사된 3 차원 Lagrangian 유한 요소 모델을 사용했습니다.

이 접근 방식은 소규모 점성 및 축 대칭 자유 표면 흐름과 관련하여 매우 정확할 수 있지만 fingering 생성 또는 satellites 생성 및 breakups 중 새로운 표면 생성과 관련된 물방울이 튀기는 경계 맞춤 기술에 적합하지 않습니다.

또한, 열 분무에 사용되는 그릿 블라스팅 표면의 평균 표면 거칠기 (Ra)는 일반적으로 50μm의 평균 액적 크기에 비해 ~ 5 ~ 30 % (~ 2 ~ 15μm)입니다. 평평한 표면에 간단한 마찰 흐름.

본 연구의 목표는 임의의 거친 기질에 영향을 미치는 HVOF 분무 중합체 입자의 모델을 개발하는 것이다. 매끄럽지 않은 표면에 대한 입자 분할 모델은 표면의 기하학적 불규칙성이 분할 거동과 최종 분할 형태에 어떻게 영향을 미치는지 더 잘 이해할 수 있게 해줄 것입니다.

HVOF 제트에서 미크론 크기의 공급 원료 입자로의 강제 대류는 높은 대류 열 전달 계수 (h ~ 5000 – 17,000 W / (m2 K))를 특징으로 합니다. 이로 인해 입자 표면 온도가 급격히 증가하지만 폴리머 입자의 높은 내부 열 저항 (높은 Bi 수)은 입자 내부가 동일한 속도로 가열되는 것을 방지합니다. 결과적으로 더 큰 (예 : 90 µm 직경) 나일론 11 입자는 기판에 충격을 주기 전에 코어와 표면 사이에 급격한 온도 구배를 나타냅니다 (그림 1) [9, 10, 11].

Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.

또한 가파른 내부 온도 구배를 가진 HVOF 스프레이 폴리머 입자가 얇은 디스크 중앙에 크고 거의 반구형 인 코어가있는 특징적인 “튀김 달걀”모양으로 퍼졌다고 보고되었습니다 [10]. 이 모양은 저온, 고점도 코어와 고온, 저점도 표면의 유동 특성 간에 큰 방사형 차이가 있음을 나타냅니다.

변형된 입자의 예측 된 모양 (그림 2a)은 유리 슬라이드에 증착된 실험적으로 관찰 된 스플랫과 좋은 질적 일치를 나타 냈습니다 (그림 2b). 액적의 오른쪽에 표시된 속도 장 벡터 (그림 2a)는 저점도 “피부”가 고점도 코어 주위를 흐르면서 특징적인 “튀김 달걀” splat 모양이 형성되었음을 나타냅니다.

이 작업에서 보고된 실험 중에 사용된 HVOF 스프레이 매개 변수는 나일론 11을 증착하는데 사용할 수 있는 일반적인 HVOF 스프레이 매개 변수를 나타냅니다. 그러나 실험 기준 매개 변수를 중심으로 개발된 수치 모델은 개별 스플랫의 흐름 거동을 더 잘 이해하는 데 사용할 수 있습니다. 증착 효율 향상을 위한 공정 최적화를 지원합니다.

Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

중략…….

References

  1. Davis, J. R., (Ed.) et al, Handbook of Thermal Spray Technology, ASM International®, 1st Ed., Materials Park,
    OH, (2004).
  2. Fauchais, P., Fukomoto, M., Vardelle, A. and Vardelle, M., Knowledge Concerning Splat Formation: An Invited
    Review, Journal of Thermal Spray Technology, 13 (3), pp. 337 – 360, (2004).
  3. Liu, H., Lavernia, E. J. and Rangel, R. H., Modeling of Molten Droplet Impingement on a Non-flat Surface, Acta
    Metall. Mater, 43(5), pp. 2053 – 2072, (1995).
  4. Sobolev, V. V., Guilemany, J. M. and Martin, A. J., Influence of Surface Roughness on the Flattening of
    Powder Particles during Thermal Spraying, Journal of Thermal Spray Technology 5(2), pp. 207 – 214, (1996).
    5 Patanker, N. A. and Chen, Y., Numerical Simulation of Droplet Shapes on Rough Surfaces, Proc. Int. Conference
    on Modeling and Simulations of Microsystems – MSM 2002, pp. 116 – 119, (2002)
    6 Raessi, M., Mostaghimi, J. and Bussmann, M., “Droplet Impact during the Plasma Spray Coating Process-Effect of
    Surface Roughness on Splat Shapes,” Proc. 17th Int. Symposium on Plasma Chemistry – ISPC 17, Toronto,
    Canada, (2005)
    7 Pasandideh-Fard, M., Chandra, S. and Mostaghimi, J., A Three-dimensional Model of Droplet Impact and
    Solidification, Int. J. Heat and Mass Transfer, 45, pp. 2229 – 2242, (2002).
    8 Feng, Z. G., Domaszewski, M., Montavon, G. and Coddet, C., Finite Element Analysis of Effect of Substrate Surface
    Roughness on Liquid Droplet Impact and Flattening Process, J. of Thermal Spray Technology, 11(1), pp. 62-68,
    (2002).
    9 Petrovicova, E., “Structure and Properties of Polymer Nanocomposite Coatings Applied by the HVOF Process,”
    Ph.D. Dissertation, Drexel University, (1999).
    10 Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc.
    ITSC-2005 International Thermal Spray Conference, DVS/IIW/ASM-TSS, Basel, Switzerland, (2005).
    11 Bao, Y., Gawne, D. T. and Zhang, T., The Effect of Feedstock Particle Size on the Heat transfer Rates and
    Properties of Thermally Sprayed Polymer Coatings, Trans. I. M. F., 73(4), pp 119 – 124, (1998).
    12 Ivosevic, M., Cairncross, R. A. and Knight, R., “Heating and Impact Modeling of HVOF Sprayed Polymer
    Particles,” Proc. 2004 International Thermal Spray Conference (ITSC-2004), DVS/IIW/ASM-TSS, Osaka,
    Japan, (2004).
    13 Hirt, C. W. and Nichols, B. D., Volume of Fluid (VoF) Method for the Dynamics of Free Boundaries, Journal of
    Computational Physics, 39, pp. 201 – 225, (1981).
Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.

Lattice Boltzmann method for contact line dynamics

접촉선 역학을 위한 Lattice Boltzmann 방법

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op woensdag 7 mei 2014 om 16:00 uur

Introduction

움직이는 접촉선은 본질적으로 어디에나 존재하며, 표면에 미끄러지는 물방울은 우리가 일상에서 만나는 일반적인 예입니다. 유체 역학의 접촉선은 일반적으로 액체, 고체 및 주변 공기/증기 사이의 공통 경계라고합니다.

최근 미세 유체 공학의 발전으로 인해 접촉 라인의 역학을 제어하는 힘과 흐름 조건에 대한 근본적인 이해와 기술에 대한 많은 요구가 제기되었습니다. 이 논문은 접촉선의 물리학, 분석 및 수치 모델링 및 고무적인 산업 기하학과 관련된 측면을 포함합니다.

동기를 부여하는 산업 응용 분야는 이머전 리소그래피 (ASML)와 잉크젯 노즐 (Océ)의 프린트 헤드입니다. 이 두 가지 문제는 몇 가지 특징적인 길이 및 시간 척도, 고도로 구부러진 유체 인터페이스, 다상 흐름 및 복잡한 경계 조건을 포함하므로 분석 및 수치 연구가 어렵습니다.

포토 리소그래피는 서브 마이크론 정확도로 마스크에서 실리콘 웨이퍼로 패턴을 전송할 수 있는 복잡한 절차입니다 [1]. 포토 리소그래피 공정의 핵심 단계 중 하나는 고해상도 광학 시스템을 사용하여 실리콘 웨이퍼에 코팅 된 포토 레지스트를 DUV (심 자외선) 빛으로 노출시키는 것입니다. 광학 시스템을 사용하여 웨이퍼에 마스킹 할 수 있는 가장 작은 특징 또는 임계 치수 CD는 Rayleigh 기준으로 결정됩니다.

여기서 NA는 광학 시스템의 개구 수를 나타내고, λ는 사용 된 빛의 파장이고 k는 공정 종속 상수입니다. 광학 분야에서 광학 시스템의 개구 수 NA = n sin α는 시스템이 빛을 받아들이거나 방출 할 수 있는 각도 범위를 특성화하는 무차원 숫자입니다.

여기서 α는 렌즈의 수용 각도입니다 (0 < α <π / 2) 및 n은 렌즈와 포토 레지스트 사이의 매질의 굴절률입니다. CD의 가치가 감소하면 전자 장치가 더 작고 빨라집니다. 식에 의해 주어진 레일리 기준에 따르면. (1.1), 더 작은 CD 값은 k 또는 λ를 줄이거 나 NA를 늘림으로써 얻을 수 있습니다. 현재 KrF 및 ArF 엑시머 레이저의 경우 빛의 파장은 각각 최대 280nm 및 193nm까지 감소 될 수 있습니다 [1]. k는 분해능 향상 기술을 사용하여 0.4까지 감소 된 공정 의존 상수입니다 [2 ]. 개구 수는 sin α 또는 n을 증가시켜 증가시킬 수 있습니다.

sin α에 대한 실제 한계는 0.93으로, 이론적 한계 | sin α |에 매우 가깝습니다. ≤ 1. n을 늘리는 것이 이머전 리소그래피 사용의 기본 아이디어입니다. Immersion lithography는 렌즈와 포토 레지스트 사이의 에어 갭이 물로 대체되는 포토 리소그래피 기법입니다 (그림 1.1 (왼쪽 패널) 참조). 침지 리소그래피에 사용되는 물은 193nm 파장에 대해 1.44의 굴절률을 가진 고도로 정제 된 탈 이온수입니다 [3]. 이 굴절률 값은 분해 가능한 피처 크기의 해상도를 약 30 % 정도 증가시킵니다 [3].

이 방법은 훨씬 더 비싼 리소그래피 기술 [4]로 큰 변화를 가져 오지 않아도 된다는 장점을 가지고 더 작은 피처 크기를 달성하는 저렴한 방법입니다. 물이 웨이퍼의 포토 레지스트와 직접 접촉하기 때문에 이머전 리소그래피 기술은 주로 렌즈와 포토 레지스트의 오염 가능성과 관련된 몇 가지 문제를 야기합니다.

특히 웨이퍼 플레이트가 렌즈에 비해 Up 속도로 움직일 때 액체-공기-고체 접촉 라인도 움직입니다 (그림 1.1 (오른쪽 패널) 참조). 특정 최소 속도를 넘어 서면 전진 및 후퇴 접촉 선 (그림 1.1, 오른쪽 패널 참조)이 불안정 해지고 각각 공기를 동반하거나 액체 필름을 웨이퍼로 끌 수 있습니다 [5].

공기와 액체 필름은 결국 기포 나 액체 방울로 부서져서 리소그래피 공정에 부정적인 영향을 미칩니다. 이 논문에서 우리는 플레이트의 속도, 웨이퍼의 습윤 특성 및 주변 공기의 점도에 따라 전진 및 후퇴하는 접촉 라인의 안정성 연구에 기여했습니다.

1.1.2 Drop-on-demand inkjet printer

최신 잉크젯 인쇄 기술은 CIJ (연속 잉크젯) 및 DOD (주문형 드롭) 잉크젯의 두 가지 주요 유형으로 나눌 수 있습니다. CIJ 프린터에서 미세 노즐에서 나오는 액체 분사는 RP (Rayleigh-Plateau) 불안정성으로 인해 물방울로 분해됩니다. 이 RP 불안정성은 액체의 흐름을 정확하게 제어 할 수있는 음향 변동을 생성하는 압전 결정에 의해 유발되어 일정한 간격으로 물방울로 분해됩니다 [7].

DOD 잉크젯 프린터는 작동 원리에 따라 두 가지 범주로 더 나눌 수 있습니다 [8]. 여기서는 압전 잉크젯 (PIJ) 프린터에만 중점을 둡니다. PIJ 프린터에서 낙하 형성은 압전 소자에 의해 생성 된 압력 파에 의해 발생합니다. PIJ 프린터의 프린트 헤드 개략도가 그림 1.2에 나와 있습니다.

PIJ 프린터는 CIJ 프린터에 비해 상대적으로 느리지 만 인쇄 품질이 훨씬 더 높습니다 [7]. 프린터의 품질은 일반적으로 평방 인치당 도트 수 (dpi)로 측정되며 최신 응용 프로그램에는 더 작은 물방울 (높은 dpi)과 더 나은 정확도가 필요합니다. 방울의 정확도와 크기에 영향을 미치는 여러 요인 중에서 노즐, 노즐 플레이트의 젖음성 및 방울 형성 ​​빈도 fDOD가 중요한 역할을합니다 [8].

좋은 방울 형성을 위해 접촉 라인의 위치는 노즐 내에서 정밀하게 제어되어야 합니다. 이 논문에서는 PIJ 프린터에서 드롭 형성의 일부 측면에만 중점을 둡니다. 우리의 연구는 노즐 습윤성과 DOD 주파수가 방울 형성 ​​과정에 미치는 영향을 연구 할 수 있는 수치 도구의 개발을 목표로 합니다.

Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.
Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.
Figure 2.2: The liquid-vapor interface at the microscopic length scale obtained from a molecular dynamics (MD) simulation using Lennard-Jones potential
Figure 2.2: The liquid-vapor interface at the microscopic length scale obtained from a molecular dynamics (MD) simulation using Lennard-Jones potential. The vertical axis is in units of the molecular diameter σ and the stress shown in panel (c) is measured in /σ3 . Here,  is the energy scale corresponding to the intermolecular forces. (a) Snapshot of the liquid-vapor interface in the MD simulation. The red dotted line divides the system in two parts: Left and right. (b) Time-averaged normalized density profile ρ ∗ (z) across the interface. (c) Tangential force per unit area exerted by the left part on the right part of the system. The plot shows the difference between the normal and the tangential components of stress tensor: Π(z) = σ n − σ t . Images reproduced from [16].
Figure 2.3: Left panel: Water drops on a glass substrate
Figure 2.3: Left panel: Water drops on a glass substrate (Image source: http: // way2science. com/ molecular-theory-of-surface-tension).The red dotted line in the figure shows the position of the contact line. The shape of the big drops is affected by the force due to gravity. Right panel: Schematics of a liquid drop on a smooth non-deformable solid surface. The figure shows the contact angle, θe, in thermodynamic equilibrium.
Figure 6.1: Left panel: schematic of a single nozzle unit in the printhead
Figure 6.1: Left panel: schematic of a single nozzle unit in the printhead. Right panel: schematic of the channel-nozzle section of the printhead. The axisymmetric channel-nozzle section (right panel) is the simulation domain for our LB simulation (R = Rc).
Fig. 3. Nylon 11 impact sequence onto a preheated substrate

Impact Modeling of Thermally Sprayed Polymer Particles

Ivosevic, M., Cairncross, R. A., Knight, R., Philadelphia / USA

열 스프레이는 전통적으로 금속, 카바이드 및 세라믹 코팅을 증착하는 데 사용되어 왔지만 최근에는 HVOF (High Velocity Oxy-Fuel) 열 스프레이 공정의 높은 운동 에너지로 인해 용융 점도가 높은 폴리머의 무용제 처리도 가능하다는 사실이 밝혀졌습니다. , 유해한 휘발성 유기 용매가 필요하지 않습니다. 이 작업의 주된 목표는 지식 기반을 개발하고 HVOF 연소 스프레이 공정에 의해 분사되는 폴리머 입자의 충격 거동에 대한 질적 이해를 개선하는 것이 었습니다. 고분자 입자의 HVOF 분사 중 입자 가속, 가열 및 충격 변형의 수치 모델이 개발되었습니다. Volume-of-Fluid (VoF) 전산 유체 역학 패키지 인 Flow3D®는 입자가 강철 기판과 충돌하는 동안 유체 역학 및 열 전달을 모델링하는 데 사용되었습니다. 입자 가속 및 열 전달 모델을 사용하여 예측 된 방사형 온도 프로파일은 저온, 고점도 코어 및 고온, 저점도 표면을 가진 폴리머 입자를 시뮬레이션하기 위해 온도 의존 점도 모델과 함께 Flow3D®의 초기 조건으로 사용되었습니다. 이 접근법은 얇은 디스크 내에서 크고 거의 반구형 인 코어를 나타내는 변형 된 입자를 예측했으며 광학 현미경을 사용하여 만든 열 스프레이 스 플랫의 실험 관찰과 일치했습니다.

폴리머 증착에 열 분무 공정을 사용하는 주요 이점은 다음과 같습니다. (i) 휘발성 유기 화합물 (VOCs)을 사용하지 않는 무용제 코팅; (ii) 거의 모든 환경 조건에서 큰 물체를 코팅 할 수있는 능력; (iii) 용융 점도가 높은 폴리머 코팅을 적용하는 능력; 및 (iv) 일반적으로 정전기 분말 코팅 및 용제 기반 페인트에 필요한 오븐 건조 또는 경화와 같은 증착 후 처리없이 “즉시 사용 가능한”코팅을 생산할 수있는 능력. 이러한 공정에 비해 주요 단점은 다음과 같습니다. (i) 낮은 증착 효율, (ii) 낮은 품질의 표면 마감 및 (iii) 높은 공정 복잡성 (종종 폴리머 용융 및 분해 온도에 의해 정의되는 좁은 공정 창). 폴리머 증착에 세 가지 열 스프레이 공정이 사용 된 것으로 알려졌습니다 [1].

  • 기존의 화염 분사.
  • HVOF 연소 스프레이.
  • 플라즈마 스프레이.

HVOF 및 플라즈마 스프레이 공정에 의해 분사되는 폴리머의 수는 제한되어 있으며 HVOF 및 플라즈마 스프레이 폴리머 코팅의 상업적 응용은 아직 개발 단계에 있습니다 [1]. 폴리머의 HVOF 스프레이는 화염 스프레이 [최대 ~ 100m / s]에 비해 상당히 높은 입자 속도 [최대 1,000m / s]로 인해 주로 주목을 받았습니다. 이는 특히 고 분자량 폴리머 및 높은 (> 5 vol. %) 세라믹 강화 함량을 갖는 폴리머 / 세라믹 복합재를 포함하여 용융 점도가 높은 코팅의 증착에있어 중요한 이점입니다.

Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 3. Nylon 11 impact sequence onto a preheated substrate
Fig. 3. Nylon 11 impact sequence onto a preheated substrate, (I) partially melted particle before impact, (II) “fried-egg” shaped splat, (III) post-deposition flow of a fully molten droplet, (IV) droplet shrinkage during cooling.
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.

Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.

Coupled CFD-Response Surface Method (RSM) Methodology for Optimizing Jettability Operating Conditions

분사성 작동 조건을 최적화하기 위한 결합된 CFD-Response Surface Method(RSM)

Nuno Couto 1, Valter Silva 1,2,* , João Cardoso 2, Leo M. González-Gutiérrez 3 and Antonio Souto-Iglesias 41
INEGI-FEUP, Faculty of Engineering, Porto University, 4200-465 Porto, Portugal;
nunodiniscouto@hotmail.com
2 VALORIZA, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal; jps.cardoso@ipportalegre.pt
3 CEHINAV, DMFPA, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain; leo.gonzalez@upm.es
4 CEHINAV, DACSON, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
antonio.souto@upm.es

  • Correspondence: valter.silva@ipportalegre.pt; Tel.: +351-245-301-592

소개

물방울 생성에 대한 이해는 여러 산업 응용 분야에서 매우 중요합니다 [ 1 ]. 잉크젯 프린팅 프로세스는 일반적으로 10 ~ 100 μm [ 1 ] 범위의 독특하고 작은 액적 크기를 특징으로 하며 연속적 또는 충동적 흐름을 사용하여 얻을 수 있습니다 (마지막 방식은 주문형 드롭 (DoD)이라고도 함). 잉크젯).

여러 장점 덕분에 DoD 방법은 산업 환경에서 상당한 수용을 얻고 있습니다 [ 2 ].DoD는 복잡한 프로세스이며 유체 속성, 노즐 형상 및 구동 파형 [ 1 , 3 ]의 세 가지 주요 범주로 분류되는 여러 매개 변수에 따라 달라집니다 .그러나 길이와 시간 척도가 모두 마이크로 오더 [ 4 ] 이기 때문에 실험을하기가 어렵습니다 .

결과적으로 실험 설정은 항상 비용이 많이 들고 복잡하며 CFD (전산 유체 역학)와 같은 고급 수치 접근 방식이 엄격한 요구 사항입니다 [ 5 , 6 ]. VOF (volume-of-fluid) 접근 방식은 액체 분해 및 액적 생성에 대한 다상 공정을 시뮬레이션하기위한 적절한 대안으로 밝혀졌으며 과거 연구에서 그대로 사용되었습니다 [ 7 , 8], 인쇄 프로세스의 맥락에서 전자는 여전히 현재 연구의 주제입니다. 

또한 VOF 체계를 사용하면 단일 운동량 방정식 세트를 해결하고 도메인 전체에 걸쳐 각 유체의 체적 분율을 추적하여 명확하게 정의된 인터페이스로 둘 이상의 혼합 불가능한 유체를 효과적으로 시뮬레이션 할 수 있습니다. Feng [ 9 ]는 VOF 접근 방식을 사용하여 일시적인 유체 인터페이스 변형 및 중단을 효과적으로 추적하는 패키지 FLOW-3D를 사용하여 낙하 배출 중 복잡한 유체 역학 프로세스를 시뮬레이션하는 선구자 작업 중 하나를 수행했습니다.

주요 목표는 볼륨 및 속도와 같은 민감한 변수를 더 잘 이해하면서 장치 개발에서 일반적인 설계 규칙을 구현하는 것이 었습니다. 이러한 종류의 공정과 관련된 주요 질문 중 하나는 안정적인 액적 형성을 위한 작동 범위의 정의입니다.

Fromm [ 10 ]은 Reynolds 수와 Weber 수의 제곱근 비율이 2보다 작으면 안정적인 방울을 생성 할 수 없다는 것을 확인했습니다. 이 무차원 값은 나중에 Z 번호로 알려졌으며 분사 가능성 범위 [ 11 ]를 정의합니다 . 문헌에서 분사 가능성을 위한 Z 간격은 1 ~ 10 [ 12 ], 4 ~ 14 [ 13 ] 또는 0.67 ~ 50 [ 14]을 찾을 수 있습니다. 

이것은 Z 값 만으로는 분사 가능성 조건을 나타낼 수 없음을 분명히 의미합니다. 실제로, 다른 속성을 가진 유체는 다른 인쇄 품질을 나타내면서 동일한 Z 값을 나타낼 수 있습니다. 액적 생성 공정과 해당 분사 성은 주로 전체 공정 품질에 큰 영향을 미치는 매개 변수 세트에 의해 결정됩니다. 

토대 메커니즘을 더 잘 이해하려면 확장 된 작동 조건 및 매개 변수 세트를 고려하여 여러 실험 또는 수치 실행을 수행해야 합니다. DoE (design-of-experiment) 접근 방식과 같은 체계적인 접근 방식이 없으면 이것은 달성하기 매우 어려운 작업이 될 수 있습니다. 최적화 문제를 해결하기 위해 반응 표면 방법을 사용하여 처음으로 체계화된 접근 방식이 개발된 Box and Wilson [ 15 ] 의 선구자 기사 이후 ,이 입증된 방법론은 많은 화학 및 산업 공정[ 16 ] 및 기타 관련 학계에 성공적으로 적용되었습니다.

예를 들어 Silva와 Rouboa [ 17 ]는 직접 메탄올 연료 전지의 출력 밀도에 영향을 미치는 관련 매개 변수를 식별하기 위해 반응 표면 방법론 (RSM)을 사용했습니다. 많은 실제 산업 응용 분야에서 실험 연구는 작동 매개 변수를 조절하기 어렵 기 때문에 제한적이지만 주로 설정을 개발하거나 실험을 실행하는 데 드는 비용이 높기 때문입니다. 

따라서 솔루션은 주요 시스템 응답을 시뮬레이션하고 예측할 수 있는 효과적인 수학적 모델의 개발에 의존합니다. DoE와 같은 최적화 방법론을 수치 모델과 결합하면 비용이 많이 들고 시간이 많이 걸리는 실험을 피하고 다양한 입력 조합을 사용하여 최적의 조건을 얻을 수 있습니다 [ 16 ]. 

실바와 루 보아 [ 18] CFD 프레임 워크 하에서 개발 된 2D Eulerian-Eulerian 바이오 매스 가스화 모델에서 얻은 결과를 RSM과 결합하여 다양한 응용 분야에서 합성 가스를 생성하기 위한 최적의 작동 조건을 찾습니다. 

저자는 입력 요인으로 인한 최상의 응답과 최소한의 변동을 모두 보장하는 작동 조건을 찾을 수 있었습니다. Frawley et al. [ 19 ] CFD 및 DoE 기술 (특히 RSM)을 결합하여 파이프의 팔꿈치에서 고체 입자 침식에 대한 다양한 주요 요인의 영향을 조사하여 침식 예측 모델을 개발할 수 있습니다.우리가 아는 한, DoD 잉크젯 프로세스의 개선 및 더 나은 이해에 적용되는 DoE 접근법 (실험적으로 또는 모든 종류의 수치 모델과 결합)을 구현하는 연구는 없습니다. 선도 기업이 이러한 접근 방식을 적용 할 가능성이 있지만 관련 결과는 민감할 수 있으므로 더 넓은 커뮤니티에서 사용할 수 없습니다. 이 사실은 DoD 잉크젯 공정에서 액적 생성에 대한 여러 매개 변수의 영향을 평가하기 위한 이러한 종류의 연구로서 현재 논문의 영향을 증가 시킬 수 있습니다.

CFD 프레임 워크 내에서 VOF 접근 방식을 사용하여 여러 컴퓨터 실험의 설계를 개발하고 RSM을 분석 도구로 사용했습니다. 충분한 수치 정확도와 수용 가능한 시간 계산 시뮬레이션의 균형을 맞추기 위해 메쉬 수렴 연구가 수행되었습니다. 설계 목적을 위해 점도, 표면 장력, 입구 속도 및 노즐 직경이 입력 요인으로 선택되었습니다. 응답은 break-up 시간과 break-up 길이였습니다.

Figure 1. Schematic of the computational domain
Figure 1. Schematic of the computational domain
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).

References

  1. Hutchings, I.M.; Martin, G.D. Inkjet Technology for Digital Fabrication; John Wiley & Sons Ltd.: Hoboken, NJ,
    USA, 2013.
  2. Waasdorp, R.; Heuvel, O.; Versluis, F.; Hajee, B.; GhatKesar, M. Acessing individual 75-micron diameter
    nozzles of a desktop inkjet printer to dispense picoliter droplets on demand. RSC Adv. 2018, 8, 14765.
  3. Zhang, H.; Wang, J.; Lu, G. Numerical investigation of the influence of companion drops on drop-ondemand ink jetting. Appl. Phys. Eng. 2012, 13, 584–595.
  4. Dong, H.; Carr, W. An experimental study of drop-on-demand drop formation. Phys. Fluids 2006, 18,
    072102.
  5. Patel, M.; Pericleous, K.; Cross, M. Numerical Modelling of Circulating Fluidized beds. Int. J. Comput.
  6. Fluid Dyn. 1993, 1, 161–176. [CrossRef]
  7. Zhao, X.; Glenn, C.; Xiao, Z.; Zhang, S. CFD development for macro particle simulations. Int. J. Comput.
  8. Fluid Dyn. 2014, 28, 232–249. [CrossRef]
  9. Hasan, M.N.; Chandy, A.; Choi, J.W. Numerical analysis of post-impact droplet deformation for direct-print.
  10. Eng. Appl. Comput. Fluid Mech. 2015, 9, 543–555. [CrossRef]
  11. Ghafouri-Azar, R.; Mostaghimi, J.; Chandra, S. Numerical study of impact and solidification of a droplet
  12. over a deposited frozen splat. Int. J. Comput. Fluid Dyn. 2004, 18, 133–138. [CrossRef]
  13. Feng, J. A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices. J. Imaging
  14. Sci. Technol. 2002, 46, 398–408.
  15. Fromm, J. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM J. Res. Dev. 1984, 28,
  16. 322–333. [CrossRef]
  17. Nallan, H.; Sadie, J.; Kitsomboonloha, R.; Volkman, S.; Subramanian, V. Systematic Design of Jettable
  18. Nanoparticle-Based Inkjet Inks: Rheology, Acoustics and Jettability. Langmuir 2014, 30, 13470–13477.
  19. [CrossRef] [PubMed]
  20. Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modelling and Experiments of Droplet Formation;
  21. Chapter in MRS Online Proceeding Library Archive; Cambridge University Press: Cambridge, UK, 2000;
  22. Volume 624, pp. 117–122.
  23. Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25,
  24. 2629–2635. [CrossRef] [PubMed]
  25. Tai, J.; Gan, H.Y.; Liang, Y.N.; Lok, B.K. Control of Droplet Formation in Inkjet Printing Using Ohnesorge
  26. Number Category: Materials and Processes. In Proceedings of the 10th Electronics Packaging Technology
  27. Conference, EPTC, Singapore, 9–12 December 2008; pp. 761–766.
  28. Box, G.; Wilson, K. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13,
  29. 1–45.
  30. Silva, V.; Rouboa, A. Optimizing the gasification operating conditions of forest residues by coupling a
  31. two-stage equilibrium model with a response surface methodology. Fuel Process. Technol. 2014, 122, 163–169.
  32. [CrossRef]
  33. Silva, V.; Rouboa, A. Optimizing the DMFC Operating Conditions using a Response Surface Method.
  34. Appl. Math. Comput. 2012, 218, 6733–6743. [CrossRef]
  35. Silva, V.; Rouboa, A. Combining a 2-D multiphase CFD model with a Response Surface Methodology to
  36. optimize the gasification of Portuguese biomasses. Energy Convers. Manag. 2015, 99, 28–40. [CrossRef]
  37. Frawley, P.; Corish, J.; Niven, A.; Geron, M. Combination of CFD and DOE to analyse solid particle erosion
  38. in elbows. Int. J. Comput. Fluid Dyn. 2009, 23, 411–426. [CrossRef]
  39. Morrison, N.F.; Harlen, O.G. Viscoelasticity in inkjet printing. Rheol. Acta 2010, 49, 619–632. [CrossRef]
  40. ANSYS Inc. ANSYS Fluent Tutorial Guide; Release 15.0; ANSYS Inc.: Canonsburg, PA, USA, November 2013.
  41. ANSYS Inc. ANSYS Fluent Theory Guide; Release 17.0; ANSYS Inc.: Canonsburg, PA, USA, January 2016.
  42. Dinsenmeyer, R.; Fourmigué, J.F.; Caney, N.; Marty, P. Volume of fluid approach of boiling flows in
  43. concentrated solar plants. Int. J. Heat Fluid Flow 2017, 65, 177–191. [CrossRef]
  44. Das, S.; Weerasiri, L.D.; Yang, W. Influence of surface tension on bubble nucleation, formation and onset of
  45. sliding. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 23–31. [CrossRef]
  46. Du, W.; Zhang, J.; Lu, P.; Xu, J.; Wei, W.; He, G.; Zhang, L. Advanced understanding of local wetting
  47. behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method. Chem. Eng. Sci.
  48. 2017, 170, 378–392. [CrossRef]
  49. Shrestha, S.; Chou, K. A build surface study of Powder-Bed electron beam additive manufacturing by
  50. 3D thermo-fluid simulation and white-light interferometry. Int. J. Mach. Tools Manuf. 2017, 121, 37–49.
  51. [CrossRef]
  52. Zhong, Y.; Fang, H.; Ma, Q.; Dong, X. Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid
  53. Mech. 2018, 845, 378–391. [CrossRef]
  54. Zhang, X. Dynamics of drop formation in viscous flows. Chem. Eng. Sci. 1999, 54, 1759–1774. [CrossRef]
  55. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [CrossRef]
  56. Kim, C.S.; Park, S.; Sim, W.; Kim, Y.; Yoo, Y. Modelling and characterization of an industrial inkjet head for
  57. micro-patterning on printed circuit boards. Comput. Fluids 2009, 38, 602–612. [CrossRef]
  58. ChemEngineering 2018, 2, 51 19 of 19
  59. Wang, P. Numerical Analysis of Droplet Formation and Transport of a Highly Viscous Liquid. Master’s Thesis,
  60. University of Kentucky, Lexington, KY, USA, 2014.
  61. Zhang, Z.; Xiong, R.; Corr, D.; Huang, Y. Study of Impingement Types and Printing Quality during Laser
  62. Printing of Viscoelastic Alginate Solutions. Langmuir 2016, 32, 3004–3014. [CrossRef] [PubMed]
  63. Derby, B. Inkjet Printing Ceramics: From Drops to Solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [CrossRef]
  64. Kim, E.; Baek, J. Numerical Study on the Effects of Non Dimensional Parameters on Drop-on-Demand
  65. Droplet Formation Dynamics and Printability Range in the up-Scaled Model. Phys. Fluids 2012, 24, 082103.
  66. [CrossRef]
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.

Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces

평면 및 구형 표면의 액적 충돌을위한 고밀도 비율 격자-볼츠만 모델 적용

Duo Zhang1,2, K. Papadikis1∗, Sai Gu1
1Xi’an Jiaotong-Liverpool University, No. 111 Ren’ai Road, Suzhou Dushu Lake Higher Education
Town, Suzhou, China 215123.
2The University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom.
Tel: 0086-512-88161752
Email: Konstantinos.Papadikis@xjtlu.edu.cn
∗Corresponding author

현재 연구에서는 고밀도 비율을 견딜 수있는 3 차원 격자 Boltzmann 모델을 사용하여 액체 방울이 평면 및 구형 타겟에 충돌하는 것을 시뮬레이션합니다. Weber 및 Reynolds 수의 범위에 대해 운동 학적, 확산, 이완 및 평형 단계와 같이 평평한 표면에 대한 액적 충돌의 4 단계를 얻었습니다. 예측 된 최대 확산 계수는 문헌에 발표 된 실험 데이터와 잘 일치합니다. 액체 방울이 구형 타겟에 미치는 영향에 대해 타겟 표면에서 필름 두께의 시간적 변화를 조사합니다. 필름 역학의 세 가지 다른 시간적 위상, 즉 초기 낙하 변형 위상, 관성 지배 위상 및 점도 지배 위상이 재현되고 연구됩니다. 액적 레이놀즈 수와 목표 대 드롭 크기 비율이 필름 흐름 역학에 미치는 영향을 조사합니다.

고체 표면의 물방울 충돌은 땅에 떨어지는 빗방울, 잉크젯 인쇄, 뜨거운 표면의 스프레이 냉각, 스프레이 페인팅 및 코팅, 플라즈마 스프레이, 연소실의 연료 스프레이, 고정식 촉매 처리와 같은 일반적인 현상입니다. 베드 반응기 및 최근에는 미세 가공 및 미세 채널 [1]. 따라서 고체 표면에 영향을 미치는 물방울에 대한 연구는 연구원들의 큰 관심을 끌고 있습니다. Rein [2]은이 현상에 대한 포괄적 인 리뷰를 발표했습니다. Rioboo 등 [3]에 의해 체계적인 연구가 수행되었으며, 여기서 건식 벽에 대한 낙하 충격의 6 가지 가능한 결과, 즉 퇴적, 신속한 스플래시, 코로나 스플래시, 후퇴 이탈, 부분 반동 및 완전 반동이 밝혀졌습니다.

Keywords: Multiphase flow, Lattice Boltzmann, high-density-ratio, droplet impact, spread
factor, film thickness

Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.

References

References
[1] A.L.Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing. . . , Annu. Rev. Fluid Mech. 38(2006) 159-192.
[2] M.Rein, Phenomena of liquid drop impact on solid and liquid surface, Fluid. Dyn.
Res. 12(1993) 61-93.
[3] R.Rioboo, M.Marengo, C.Tropea, Time evolution of liquid drop impact onto solid,
dry surfaces, Exp. Fluids. 33(2002) 112-124.
[4] A.Asai, M.Shioya, S.Hirasawa, T.Okazaki, Impact of an ink drop on paper, J Imaging
Sci Techn. 37(1993) 205-207.
[5] B.L.Scheller, D.W.Bousfield, Newtonian drop impact with a solid surface, AIChE J.
41(1995) 1357-1367.
[6] S. Chandra and C. T. Avedesian, On the collision of a droplet with a solid surface,
Proc. R. Soc. London, Ser. A 432(1991) 13.
[7] M.Pasandideh-Fard, Y.M.Qiao, S.Chandra, J.Mostaghimi, Capillary effects during
droplet impact on a solid surface, Phys Fluids. 8(1996) 650-660.
[8] T.Mao, D.C.S.Kuhn, H.Tran, Spread and rebound of liquid droplets upon impact on
flat surfaces, AIChE J. 43(1997) 2169-2179.
[9] I.V.Roisman, R.Rioboo, C.Tropea, Normal impact of a liquid drop on a dry surface:
Model for spreading and receding, Proc. R. Soc. London, Ser. A 458(2002) 1411-1430.
[10] H.Dong, W.W.Carr, D.G.Bucknall, J.F.Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53(2007), 2606-2617.
[11] L.S.Hung, S.C.Yao, Experimental investigation of the impaction of water droplets
on cylindrical objects, Int. J. Multiphase Flow 25(1999) 1545-1559.

[12] Y.Hardalupas, A.M.K.P.Taylor, J.H.Wilkins, Experimental investigation of submillimeter droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow 20 (1999)
477-485.
[13] S.Bakshi, L.V.Roisman, C.Tropea, Investigations on the impact of a drop onto a
small spherical target, Phys Fluids. 19(2007) 032102.
[14] S.Mukherjee, Numerical simulation of wall impinging drops, Ph.D.thesis, School of
Mechanical Engineering, Purdue University 2006.
[15] G.Trapaga, J.Szekely, Mathematical Modeling of the Isothermal Impingement of
Liquid Droplets in Spraying Processes, Metall. Trans. B. 22(1991) 901-914.
[16] M.Bussmann, S.Afkhami, Drop impact simulation with a velocity-dependent contact
angle, Chem. Eng. Sci. 62(2007) 7214-7224.
[17] A.Gupta, R.Kumar, Droplet impingement and breakup on a dry surface, Comput.
Fluids. 39(2010) 1696-1703.
[18] A.Gupta, R.Kumar, Two-dimensional lattice Boltzmann model for droplet impingement and breakup in ow density ratio liquids, Comm. Comp. Phys. 10(2011) 767-784.
[19] Y.Y.Yan, Y.Q.Zu, A lattice Boltzmann method for incompressible two-phase flows
on partial wetting surface with large density ratio, J. Comput. Phys. 227(2007) 763-
775.
[20] T.Inamuro, T.Ogata, S.Tajima, N.Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198(2004)
628-644.
[21] A.J.Briant, P.Papatzacos, J.M.Yeomans, Lattice Boltzmann simulations of contact
line motion in a liquid-gas system, Philos. Trans. Roy. Soc. Lond. A. 360(2002) 485-
495.

[22] A.Fakhari, M.H.Rahimian, Phase-field modeling by the method of lattice Boltzmann
equations, Phys. Rev. E. 81(2010) 036707.
[23] M.R.Swift, E.Orlandini, W.R.Osborn, J.M.Yeomans, Lattice Boltzmann simulations
of liquid-gas and binary fluid systems, Phys. Rev. E. 54(1996) 5041-5052.
[24] S.Q.Shen, F.F.Bi, Y.L.Guo, Simulation of droplets impact on curved surfaces with
lattice Boltzmann method, Int. J. Heat Mass Tranf. 55(2012) 6938-6943.
[25] X.Shan, H.Chen, Simulation of nonideal gases and liquid-gas phase transitions by
the lattice Boltzmann equation, Phys. Rev. E. 49(1994) 2941-2948.
[26] P.Yuan, L.Schaefer, Equations of state in a lattice Boltzmann model, Phys Fluids.
18(2006) 042101.
[27] D.H.Rothman, J.M.Keller, Immiscible cellular-automation fluids, J. Statist. Phys.
52(1988) 1119-1129.
[28] X.He, S.Chen, R.Zhang, A lattice Boltzmann scheme for incompressible multiphase
flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys.
152(1999) 642-663.
[29] T.Reis, T.N.Phillips, Lattice Boltzmann model for simulating immiscible two-phase
flows, J. Phys. A: Math. Theor. 40(2007) 4033-4053.
[30] S.Leclaire, M.Reggio, J.-Y.Trepanier, Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. 36(2012) 2237-2252.
[31] S.Leclaire, P.Nicolas, M.Reggio, J.-Y.Trepanier, Enhanced equilibrium distribution
functions for simulationg immiscible multiphase flows with variable density ratios in
a class of lattice Boltzmann models. 57(2013) 159-168.
[32] H.B.Huang, H.W.Zheng, X.Y.Lu, C.Shu, An evaluation of a 3D free-energy-based
lattice Boltzmann model for multiphase flows with large density ratio, Int. J. Numer.
Meth. Fluids. 63(2009) 1193-1207.

[33] T.Lee, C.L.Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys.
206(2005) 16-47.
[34] H.W.Zheng, C.Shu, Y.T.Chew, A lattice Boltzmann model for multiphase flows with
large density ratio, J. Comput. Phys. 218(2006) 353-371.
[35] D.A.Perumal, A.K.Dass,Application of lattice Boltzmann method for incompressibe
viscous flows, Applied Mathematical Modelling. 37(2013) 4075-4092.

Granular Media

Granular 미디어

가공 및 제조 업계에서는 다양한 유형의 The granular media model를 접할 수 있습니다. 특이한 특성으로 인해 입상 재료는 유용한 목적을 위해 전달, 혼합 또는 조작하려는 엔지니어에게 어려운 문제를 제기 할 수 있습니다. 입상 매체 모델은 고체 입자와 기체 또는 액체 (예 : 모래와 공기 또는 모래와 물) 일 수있는 유체의 혼합물의 거동을 예측하는 데 사용됩니다. 입상 고체와 유체의 혼합물은 수수료 표면에 의해 제한 될 수있는 비압축성 유체로 취급됩니다. 입상 매체 모델은 고농축 입상 재료의 흐름을 위해 개발되었습니다. 이 모델은 “연속”접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현을 기반으로 하여 개별 모래 입자를 처리하려고 하지 않습니다.

Sand flowing under gravity in two-dimensional hour glass
2 차원 모래 시계에서 중력에 의해 흐르는 모래. 작은 검은 색 선은 속도 벡터입니다. 빨간색은 대부분 완전히 채워진 모래 밀도를 나타냅니다.

Granular미디어 모델링

모래와 공기의 혼합물은 공기와 모래 재료가 개별 속도로 흐르지만 압력 및 점성 응력으로 인한 운동량 교환을 통해 결합되는 2 상 흐름입니다. 전형적인 코어 모래에서 모래 입자의 직경은 약 10 분의 1 밀리미터이며 공동으로 날려지는 모래의 부피 분율은 일반적으로 50 % 이상입니다. 이 범위에서는 모래와 공기 사이에 강력한 결합이 존재하므로 그 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2 상 효과는 Drift-Flux라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.

상대 속도 접근 방식을 사용하는 이 복합 흐름은 입상 매체 모델의 기반으로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현 될 수 있다고 가정합니다. 그러나 복합 유체는 모래 다짐 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 입자-입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 농축 물질의 특성을 갖습니다.

캐비티의 순수한 공기 영역을 배출하기 위해 단열 기포로 처리됩니다. 단열 기포는 유체 또는 단단한 벽으로 둘러싸인 공기 영역입니다. 기포의 압력은 기포 부피의 함수이며 기포가 차지하는 영역에서 균일 한 값을 갖습니다. 통풍구는 기포 내의 공기가 공동 외부로 배출되도록 합니다.

Sand Core Blowing Applications

유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.

Granular media model
 
Figures 1-4 (From left to right): Initial 2D hopper configuration; Time 1.75s — Vectors are black; Time 3.0s; Time 5.0s

모래는 0.63 부피 분율의 가까운 포장 한계에서 초기화되었습니다. 배출관 입구의 바닥에있는 모래는 중력의 작용으로 떨어지기 시작하지만 위의 거의 모든 모래는 고정되어 있습니다. 1-4, 여기서 색상은 패킹으로 인한 흐름 저항입니다 (빨간색은 완벽하게 단단함). 짧은 시간에 거품과 같은 영역이 형성되고 모래의 윗면을 향해 올라갑니다. 기포가 상단에 도달 할 때까지 기포 표면 주위의 흐름 만 보이며 표면이 붕괴됩니다. 상단 표면의 움푹 들어간 부분은 측면을 34 °의 지정된 안식각으로 줄이는 국부적 흐름을 가지고 있습니다. 한편이 패턴을 반복하기 위해 바닥에 또 다른 거품이 형성됩니다.

이 새로운 모델의 적용을 설명하기 위해 D. Lefebvre, A. Mackenbrock, V. Vidal, V에 의해 “날린 코어 및 금형 설계에서 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다. Pavan and PM Haigh., Hommes & Fonderie, 2004 년 12 월. 데이터는 하나의 충전 포트가있는 2 차원 다이 형상에 대한 것입니다. 다이의 벤팅은 비대칭 적이 어서 벤트가 충전 패턴에 미치는 영향을 연구 할 수 있었습니다.

시뮬레이션 영역의 크기는 폭 30cm, 높이 15cm, 두께 1cm입니다. 밀도 1.508 gm/cc의 모래 / 공기 혼합물을 상자 입구에서 절대 2 기압의 압력으로 상자에 넣었습니다. 상자의 오른쪽에는 5 개의 열린 통풍구가 있고 상자의 아래쪽과 왼쪽에는 6 개의 통풍구가 더 있습니다. 이 배열은 상자의 비대칭 채우기로 이어집니다.

Sand core blowing continuum model simulation
 
Figure 5:  연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.

계산 그리드는 수평으로 80 개의 메쉬 셀과 수직으로 40 개의 메쉬로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 박스에 도달하는 데 걸리는 시간은 0.07 초 였고 3.2GHz Pentium 4 PC 컴퓨터에서 직렬 모드로 실행되는 CPU 시간이 약 8.9 초가 필요했습니다 (만족할 정도로 작지만 물론 이것은 2D 케이스였습니다. 계산 영역에 3200 개의 셀이 있음).

연속체 모델 시뮬레이션의 결과와 Lefebvre 등 논문의 사진을 비교 한 결과가 그림 5에 나와 있습니다. 시각적 일치는 많은 세부 사항에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혀있는 비대칭 영향을 포착합니다.

FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids

Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method

낙하 형성 및 분리는 표면 장력 구동 흐름으로 인해 가늘어지는 유체 목의 형성을 포함하여 큰 위상 변화를 수반하며, 목의 pinch-off에서 Laplace pressure와 같은 속성은 유한한 시간 특이성을 나타냅니다. 드롭 형성 중에 발생하는 큰 위상 변형과 비선형성을 정확하게 시뮬레이션하는 것은 일반적으로 pinch-off 순간에 가까운 작은 특징을 해결하기 위해서는 고해상도 및 정확도가 필요하기 때문에 수치 시뮬레이션이 계산적으로 요구됩니다.

필요한 질량 및 계산 시간을 보존하고 인터페이스를 추적하는 데 내재된 이점에도 불구하고, 초기 실무자들이 물 점도가 10배 이상인 유체에 대한 수렴 문제를 보고했기 때문에 낙하 형성 연구에 VOF(Volume-of-fluid) 방법을 활용하는 연구는 거의 없습니다.

이 기여에서, 우리는 FLOW-3D에 구현된 VOF 방법을 사용하여 물 점도보다 4배 더 높은 점도 값을 포함하여 뉴턴 유체에 대한 드리프트의 원형 자유 표면 흐름을 시뮬레이션합니다. 우리는 이 연구의 일부로 수행된 실험에 대해 시뮬레이션된 목 모양, 목 진화 속도 및 헤어짐 길이를 벤치마킹합니다.

핀치오프 역학은 관성, 점성 및 모세관 응력의 복잡한 상호 작용에 의해 결정되며, 여기서 실험과 시뮬레이션 모두에서 대조되는 자기 유사 스케일링 법칙은 종종 역학에 대해 설명합니다. 우리는 시뮬레이션된 반지름 진화 프로파일이 축 대칭 흐름에 대한 뉴턴 유체에 대해 실험적으로 관찰되고 이론적으로 예측되는 핀치오프 역학과 일치함을 보여준다. 또한, 우리는 가는 목 안에서 법칙, 속도 및 변형 필드의 스케일링에 대한 사전 요인을 결정하고, 우리는 실험과 비교할 수 있는 중단 시간과 길이뿐만 아니라 사전 요인을 VOF 방법을 사용하여 시뮬레이션할 수 있음을 보여줍니다.

experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
 A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids. (a) A sequence of simulated images of water (0 wt. % glycerol) shows neck formation and subsequent thinning and pinch-off dynamics including the formation of the satellite drop. (b) A sequence of images shows neck radius evolution and drop detachment for the low viscosity fluid composed of 50 wt. % glycerol in water. The time step between images is 500 µs, and the scale bar represents a length of 1 mm for the two cases shown. The color bar shows the velocity field in units of cm/s. The addition of glycerol seems to exercise a relatively minor influence on pinch-off dynamics despite a five-fold increase in viscosity.
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process. The instantaneous neck radius of water and the inertio-capillary fit are shown. The inset shows a self-similar nature of neck thinning dynamics close to a pinch-off moment. The characteristic cone angle of 18.1◦ as predicted by Day et al.50 and visualized in experiments52 is captured well using the VOF method.
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases. (a) Glycerol thinning is shown through a sequence of snapshots with a time step ∆t = 5 ms and reveals quite different dynamics compared to previously seen for low viscosity fluids. The length of a filament changes significantly when the glycerol content increases above 70 wt. %. (b) Final lengths of the simulated liquid filaments before pinch-off for three cases of glycerol + water mixtures (0 wt. %, 70 wt. %, and 100 wt. %).
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture. (a) A set of images obtained from experiments (upper row) and simulations (bottom row) with a time step of 1 ms show good agreement. The simulated drop profiles shown in the bottom row are colored by the velocity magnitude [ranging from 0 (dark blue) to 100 cm/s (red) and colored online], and velocity vectors are shown in the images. (b) Radius evolution with time of liquid filament formed during the drop formation process is shown on a log-log plot for the two cases.
collapsed-raised-fluid-column-figure-1-1

Steady-State Accelerator for Free-Surface Flows

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 다가오는 FLOW-3D  v12.0 릴리스에서 사용할 수있는 새로운 Steady-State Accelerator에 대해 설명합니다  .

일시적인 흐름의 점근 적 상태를 계산하는 것보다 안정된 자유 표면 흐름을 생성하는 더 빠른 방법이 자주 필요합니다. 상황은 압축성 흐름 솔버를 사용하여 비압축성 흐름을 해결하는 것과 유사합니다. 후자의 경우 압축 파는 붕괴하는 데 오랜 시간이 걸리고 결과적으로 비압축성 흐름을 남길 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 비압축성이지만 표면 파동은 안정된 자유 표면 구성을 생성하는 데 오랜 시간이 걸릴 수 있습니다.

비압축성 흐름의 경우, 압축 파를 심각하게 감쇠시키는 반복적 인 프로세스 (즉, 압력-속도 반복)를 사용합니다. 물리적으로 반복은 압력과 같은 파동이 국부적 인 영역에 영향을 미치는 짧은 거리를 이동하도록 허용하지만 압력 장에 상당한 노이즈를 유발할 수있는 장거리 전파 및 반사를 피할 수있을만큼 빠르게 감쇠됩니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 교란에 대한 감쇠력으로 작용합니다. 이 댐핑은 안정적인 자유 표면 구성에 대한 접근을 가속화합니다.

Steady-State Accelerator Idea

유체 인터페이스 또는 자유 표면은  VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D 에서 추적됩니다 . 유체 변수 F의 비율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 된 자유 표면이있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직 인 유체 속도가 0이어야합니다. 물론 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름에 대한 정상 상태 솔버를 사용하려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 유도하는 방법을 찾아야합니다.

이를 수행하는 한 가지 방법은 정상 속도를 0으로 유도하는 방식으로 표면 압력을 조정하는 것입니다. 특히 정상 속도에 비례하는 총 표면 압력에 “댐핑”압력 기여를 추가하는 것입니다. 속도는 표면 밖으로 향하고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 수정 압력도 0이되어야 표면이 고정 위치를 초과하지 않게됩니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 따라서 안정적인 보정 적용을 위해서는 몇 가지 제한 요소가 있어야합니다.

계수 약어 ssacc 을 나타내며, S는 teady- S 테이트 액세서리 elerator이 새로운 옵션을 활성화하는 프로그램 입력에 추가되었다. ssacc 의 값 은 편리한 상한 인 1.0보다 작거나 같아야합니다. 프로그램 내에서 댐핑 압력에 자동으로 적용되는 여러 제한 기가 불안정 해 지거나 일시적인 현상에 악영향을 미치는 것을 방지합니다.

안정성 및 댐핑 리미터에 대한 이전 문제는 강조되어야합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도 현상이 더 이상 완전히 사실적인 것으로 볼 수 없습니다. 댐핑 압력은 물리적 인 힘이 아니라 파동 전파와 반사를 줄이는 메커니즘입니다. 댐퍼는 큰 과도 현상의 발생을 방해하지 않도록 고안되었으며 흐름이 안정됨에 따라 안정된 결과를보다 빠르게 얻는 데에만 기여해야합니다. 그러나 사용자는 리미터가 예상하지 못한 초과 댐핑에 대해 주의를 기울여야 합니다. 이는 댐핑 계수 ssacc 의 입력 값을 줄임으로써 제거 할 수 있습니다 .

두 가지 예는 정상 상태 가속기의 댐핑 메커니즘이 어떻게 작동하는지 보여줍니다.

Steady-State Accelerator Examples

Collapse of Raised Fluid Column

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 물 웅덩이로 구성됩니다. 물을 담은 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 폭 10cm, 높이 3cm의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 떨어지고 충돌 지점에서 멀리 이동 한 다음 탱크 끝에서 반사되는 파도를 생성합니다. 100 초 후에도 반복되는 반사 때문에 여전히 상당한 파동 작용이 있습니다 (그림 1).

새로운 정상 상태 가속기를 계수 ssacc = 1.0 과 함께 사용하면 모든 파동이 빠르게 감쇠되어 거의 평평한 표면이됩니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점도의 작용으로 서서히 감쇠됩니다 (그림 2). 이 예에서 추가 된 댐핑은 특히 인상적입니다.

Figure 1. Column collapse without damping. Times of flow plots are 0.0, 10.0, and 100.0s. Bottom figure is the mean kinetic energy vs. time.
Figure 2. Column collapse with damping coefficient ssacc=1.0 at times of 0.0, 10.0 and 100.0s. Bottom figure is the mean kinetic energy vs. time.

 

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

Figure 3a. Capillary rise in square channel without damping pressures.
Figure 3b. Histories of fluid volume in the two simulations (blue is with damping).

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴된 솔루션을 만듭니다.

뒤쪽 벽에있는 작은 유체 조각은 평형 위치를 초과하는 유체의 오버 슈트에서 발생하며, 이는 점성력으로 인해 정착하는 데 오랜 시간이 필요한 소량의 유체를 벽에 남기고 뒤로 떨어집니다. 이 오버 슈트는 ssacc 가 0이 아닐 때 제거됩니다 .

레이놀즈 수

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Reynolds Number

레이놀즈 수

주어진 수치 방법에 의해 정확하게 계산 될 수 있는 유동에 대해서 가장 높고, 가장 낮은 레이놀즈 수 무엇입니까? 이 질문은 다양한 답과 그리고 가장 기술적인 문제들로서 주어진 답을 포함하는 가정들로부터 다양한 답을 가지고 있습니다.

본 목적을 위해, 레이놀즈 수는 R = R LU / ν로 정의되며, 여기서 L과 U는 유동 특성 길이 및 스케일이고, ν는 유체의 동점도(kinematic viscosity )입니다. 즉 물체의 관성이 점성에 비해서 얼마나 큰가를 나타내는 척도로 이 레이놀즈 수가 작을수록 층류(유체의 유선이 유지되면서 흐르는 유동)가, 클수록 난류가 형성된다. 무 차원 레이놀즈 수가 점성의 관성 효과의 측정을 중요성을 상기시킵니다. 높은 레이놀즈 수에서의 흐름은 정성적으로 다른 행동을 나타내고, 난류 될 수 있습니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류가 난류로의 분해 또는 경계층이 표면에서 분리되는 위치에 따라 달라지는 몸체의 양력 및 항력을 예측하는 데 계산이 사용될 수 있는 한계입니다. 유동에 대한 점성 응력의 상대적 효과를 정확하게 시뮬레이션 하는 것이 중요한 이러한 또는 다른 유형의 유동 프로세스에서는 계산에서 어떤 수준의 정확도를 기대할 수 있는지에 대한 아이디어를 갖는 것이 유용합니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류에서 난류로 붕괴되는 것을 예측하곤 하는 계산의 한계치이며, 유동의 경계층이 그 표면에서부터 박리되는 곳에서의 물체의 양력과 항력을 예측하는 한계치이기도 합니다. 유동의 다양한 유형에서 유동의 점성 응력의 상대적 효과를 정확하게 시뮬레이션하는 것은 중요하며, 계산상 예측되는 정확도의 수준에 대한 어떤 아이디어를 확보하는 것 또한 매우 유용할 것입니다.

높은 레이놀즈 수 제한 – 물리적 인수

흐름을 정확하게 표현하는데 필요한 계산 요구 사항 (즉, 해상도)을 추정하기 위해 간단한 물리적 인수를 사용할 수 있습니다. 이 주장은 흐름 영역이 작은 요소로 세분화 될 때 요소 내의 모든 흐름량이 천천히 변한다는 가정을 기반으로 합니다. 이 가정은 각 요소의 평균 수량 값이 요소 내의 실제 값에 대한 좋은 근사치라는 의미를 전달합니다.

요소 내에서 느리게 변하는 속도를 가지려면 요소 크기의 척도에서 흐름의 레이놀즈 수가 작아야 합니다 (예 : 1 차 Rd = dx · du / ν ≤ 1.0). 이 표현에서 dx와 du는 요소의 길이와 속도 스케일입니다. 이 물리적 요구 사항, 요소의 흐름의 부드러움 (즉, 낮은 레이놀즈 수, 이 척도의 층류 흐름)은 정확한 수치 분해능에 필요한 요소의 크기를 정의하는데 사용될 수 있습니다.

위의 부등식은 L = Ndx 및 U = Ndu 관계에 의해 거시적 레이놀즈 수로 변환 될 수 있으며, 이는 R ≤ N 2로 이어집니다 . 즉, 개별 요소의 규모에 대한 부드러운 흐름의 물리적 정확도 요구 사항은 정확도로 계산할 수 있는 최대 레이놀즈 넘버원이 NN 2 정도라는 것을 의미합니다. 여기서 N은 특성을 해결하는 데 사용되는 요소의 수입니다. 길이 L.

대표적인 응용에서 N은 종종10 내지 20의 범위에 있는 수로서 매우 큰 수 아닙니다. 그리고 이는 단지 약400 의 정확한 계산을 위해 최대 레이놀즈 수로 변환합니다. 이 결과에 대해 해석을 달기 전에 정확한 레이놀즈 수 계산을 위한 추정을 위해서 다른 접근 방법을 시도하는 유익합니다.

High Reynolds Number Limit – A Numerical Argument

수치 근사에 의해서 계산 도입된 viscous-like smoothing의 양은 truncation error로부터 평가 될 수 있습니다. 알다시피 아이디어는 요소 크기 (그리고 적정한 시간 간격 크기) 멱함수을 미분 근사하는 테일러 급수 전개를 하는 것입니다. 물론, 일관성 있는 근사는 원래 근사환 된 편미분 방정식의 가장 낮은 차수를 이용하는 것입니다.

다음으로 높은 차수는 보통 확산 (즉, 2차 차수 공간 미분형태) 항입니다. 점성 계수와 더불어 이러한 항의 계수 비교는 점성 효과를 더 정확하게 계산 할 수 없을 때의 추정치를 제공합니다.

1차 수치 근사 (예를 들어 대류에 대한donor cell 또는upwind technique )에 대해서 정확도를 위해서 1보다 적어야만 하는 항들의 비는 다음의 판별식을 유도하게 됩니다( R ≤ 2N.) 그리고 2차 수치 근사의 결과, R ≤ N얻어지고 물리적인 인자(Physical Argument)로부터 같은 결과가 얻어 집니다.

이러한 관계의 우변을 곱하는 작은 숫자 요소가 사용되며, 이는 사용 된 특정 수치 근사에 따라 달라 지지만 N에 대한 기본 종속성은 변경되지 않습니다. 모든 2 차 방법이 1 차 방법보다 분명히 훨씬 낫지 만 결과는 고무적이지 않습니다. 정확하게 계산할 수 있는 최대 레이놀즈 수는 N을 늘리지 않는 한 매우 제한적인 것으로 보입니다. 이는 매우 큰 그리드를 처리한다는 의미입니다.

하이 레이놀즈 수에 대한 일반적인 의견

이러한 평가들은 첫 발생 시에는 실망스런 부분도 있으나 종종 완화되는 상황으로 전개됩니다. 무엇보다도 중용한 것은 대부분의 문제들은 점성 응력에 대한 정확한 처리를 요구하지 않습니다. 이러한 문제에 대해서 높은 레이놀즈 수의 상한은 점성 효과가 중요하지 않다는 것을 의도한 의미를 갖습니다.

어떤 유동이 난류에 의해 운동량 혼합이 이루워진 fully turbulent 되기 위해 충분히 높은 레이놀즈 수를 가질 때, 종종 잘 분류될 수 있는 scale을 가진 영역 내에서 100 미만의 유효한 레이놀즈 수의 평균 유동으로 진행되곤 합니다. 물론, 이것은 난류를 기술할 수 있는 적당한 난류 모델이 사용되고 있다는 것을 가정합니다.

마지막으로 점성 효과의 정확한 정보에 따라 일부 유동 특성을 가질 필요가 있을 때 인위적인 의미의 효과를 유도하는 것이 가능 할 수 있습니다. 예를 들어, 풍동 trip wire는 종종 레이놀즈 수 상사성( similarity )의 부족을 고려하여 trigger 유동의 박리에 사용되곤 합니다. 비슷한 처리가 풍동의 수치 시뮬레이션에 추가 될 수 있습니다.

결론은 CFD 방법을 사용하여 높은 레이놀즈 수 흐름을 계산하는 데 사용할 수 있지만 수치해석상의 전산 오차가 물리적인 효과를 압도 할 수 있는 상황에 대한 경고는 해당 난류 모델에 달려있다고 말할 수 있습니다.

낮은 레이놀즈 수 제한

낮은 레이놀즈 수에서 한계는 정밀도의 한계가 아니라 계산을 완료하는데 필요한 계산 시간을 기준으로 한계입니다.  점성 응력 항에 explicit 수치 근사를 사용하면 숫자의 안정성을 유지하기 위해 시간 단계의 크기에 한계가 있습니다.  이 한계는 본질적으로 점성으로 인한 운동량의 변화는 하나의 시간 단계에서 대략 1 개의 요소를 넘어 전파하는 것은 아니라는 것을 보여줍니다.  단순한 2 차원의 경우에는 이 한계는 νdt ≤ dx2/4입니다.

이것은 T = Mdt 및 TU = L이라는 대응을 작성하여 레이놀즈 수를 포함하는 식으로 변형 할 수 있습니다.  즉, 흐름의 특성 시간은 속도 U의 유체가 거리 L을 이동하는 시간이며, 시간 T를 분해 시간 단계의 수는 M입니다.  이러한 관계식에 의해 안정된 조건은 M = 4N2/R 입니다.

이 결과에서 중요한 것은 M이 R에 반비례하여 증가하는 것입니다.  레이놀즈 수가 매우 작은 흐름의 경우 explicit 수치 법에는 매우 많은 시간 단계가 필요할 수 있으며,이 숫자는 해상도의 상승에 따라 급속히 증가하고 있습니다.  낮은 레이놀즈 수의 한계를 가장 효과적으로 제거하는 방법은 implicit 수치 법을 사용하여 점성 응력을 평가하는 것입니다.


Reynolds Number

What are the highest and lowest Reynolds number flows that can be accurately computed by a given numerical method? This question has a variety of answers, and, as with most technical issues, the variety of answers arises from the assumptions involved in giving the answer.

For present purposes, the Reynolds number R is defined as R=LU/ν, where L and U are characteristic length and velocity scales for a flow, and ν is the kinematic viscosity of the fluid. It will be recalled that the non dimensional Reynolds number is a measure of the importance of inertia to viscosity effects. At high Reynolds numbers a flow may become turbulent, exhibiting qualitatively different behavior.

Generally, the most important limit to consider is that of high Reynolds numbers. This is the limit where computations might be used to predict the breakdown of a laminar flow into turbulence, or the lift and drag of a body that is dependent on where boundary layers separate from its surface. In these or other types of flow processes in which it is critical to correctly simulate the relative effect of viscous stresses on the flow, it is useful to have some idea of what level of accuracy can be expected in a computation.

The reason that a Reynolds number limitation exists in computational fluid dynamics CFD) is that the computational stability of most CFD methods relies on some type of numerical smoothing or homogenizing within the computational elements. Since viscosity is a physical mechanism for smoothing flow variations, there can be a problem differentiating between numerical and physical smoothing. This is especially important when critical Reynolds number situations are encountered, because they require an especially accurate estimate of viscous stresses.

High Reynolds Number Limit – A Physical Argument

A simple physical argument can be used to estimate the computational requirements (i.e., resolution) needed to achieve an accurate representation of a flow. The argument is based on the assumption that when a flow region is subdivided into small elements all flow quantities within an element are slowly varying. This assumption carries the implication that the average values of quantities in each element are good approximations for the actual values within the element.

To have a slowly varying velocity within an element, the Reynolds number of the flow on scales of the element size must be small, say of order one, Rd=dx·du/ν ≤ 1.0. In this expression dx and du are length and velocity scales characteristic of the element. This physical requirement, the smoothness of the flow in elements (i.e., a low Reynolds number, laminar flow on this scale), may be used to define the size of elements needed for an accurate numerical resolution.

The above inequality can be converted to a macroscopic Reynolds number by the relations, L=Ndx and U=Ndu, which leads to R ≤ N2. In other words, the physical accuracy requirement of a smooth flow on the scale of individual elements implies that the maximum Reynolds number one can expect to compute with accuracy is on the order of NN2 where N is the number of elements used to resolve a characteristic length L.

In typical applications, N is often in the range of 10 to 20, which translates to a maximum Reynolds number for accurate computations of only about 400, not a very large number! Before commenting on this result it is instructive to try a different approach for estimating the limit for accurate Reynolds number computations.

High Reynolds Number Limit – A Numerical Argument

The amount of viscous-like smoothing introduced into a computation by numerical approximations can be estimated from truncation errors. The idea is to do a Taylor Series expansion on the difference approximations in powers of the element size (and time-step size if that is appropriate). Of course, a consistent approximation should have as its lowest order terms the partial differential equation that was originally being approximated.

At the next higher order there are usually terms that have the character of a diffusion (i.e., second-order space derivatives). A comparison of the coefficients of these terms with the coefficient of viscosity gives an estimate of when viscous effects would no longer be computed accurately.

For a first-order numerical approximation (e.g., a donor cell or upwind technique for advection) the ratio of terms, which must be less than one for accuracy, leads to the criteria R ≤ 2N. With a second-order approximation the result is R ≤ N2, the same result obtained from the “Physical Argument.”

There are small numerical factors multiplying the right-hand sides of these relations, which depend on the specific numerical approximations used, but the basic dependencies on N remain unchanged. Any second-order method is clearly much better than a first-order method, but the results are not encouraging. The maximum Reynolds number that can be computed accurately appears to be quite limited, unless one is willing to increase N, which means dealing with extremely large grids.

General Comments on High Reynolds Numbers

These estimates are discouraging when first encountered, but there are frequently mitigating circumstances. Foremost is the realization that most problems do not require an accurate treatment of viscous stresses. For these problems the high Reynolds number limit has the intended meaning that viscous effects are not important.

When flows have a high enough Reynolds number to be fully turbulent the momentum mixing induced by the turbulence often leads to a mean flow with an effective Reynolds number that is less than 100, well within the range of resolvable scales. Of course, this assumes that a suitable turbulence model is available to describe the turbulence.

Finally, when it is necessary to have some flow property that depends on an accurate knowledge of viscous effects, it may be possible to induce that effect by artificial means. For example, in wind tunnels trip wires are sometimes used to trigger flow separations to account for a lack of Reynolds number similarity. A similar treatment can be added to a numerical simulation of a wind tunnel.

The bottom line is, CFD methods can be used to compute high Reynolds number flows, but it is up to the modeler to be alert for situations where numerical errors could overshadow physical effects.

Low Reynolds Number Limit

At low Reynolds numbers the limit is not one of accuracy but a limit based on the computational time necessary to complete a computation. When explicit numerical approximations are used for viscous stress terms there is a limit on the size of the time step to maintain numerical stability. That limit is essentially a statement that momentum changes caused by viscosity do not propagate more than about one element in one time step. In a simple two-dimensional case this limit is νdt ≤ dx2/4.

This can be transformed into an expression involving the Reynolds number by making the correspondences: T=Mdt and TU=L. That is, the characteristic time for a flow is the time for fluid at velocity U to move a distance L, and the number of time steps resolving time T is M. With these relations the stability condition is then, M = 4N2/R.

The importance of this result is that M increases inversely with R. For very low Reynolds number flows, explicit numerical methods may require a very large number of time steps, and this number increases rapidly with an increase in resolution. The low Reynolds number limit is best eliminated by employing an implicit numerical method for evaluating viscous stresses.

FLOW-3D HYDRO

FLOW-3D HYDRO

제품 개요

최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 사용하시는 것에 관심이 있는 경우, 언제든지 아래 연락처로 연락주세요.
연락처 : 02-2026-0442
이메일 : flow3d@stikorea.co.kr

FLOW-3D HYDRO 는 더 높은 수준의 정확도와 모델 해상도를 제공하기 위해 3D 비 유압 모델링 기능이 필요한 경우 고급 모델링 도구로 사용할 수 있습니다. 일반적인 모델링 응용 분야는 소형 댐 / 인프라, 운송 수력학, 복잡한 3D 하천 수력학, 열 부력 연기, 배수구 및 오염 물질 수송과 관련됩니다. 

FLOW-3D HYDRO의 핵심 기능은 전체 3D 모델과 동적으로 연결될 수있는 얕은 물 모델입니다. 

이 기능을 통해 사용자는 멀티 스케일 모델링 애플리케이션을위한 모델 도메인을 확장하여 필요한 모델 해상도로 계산 효율성을 극대화 할 수 있습니다. FLOW-3D HYDRO  또한 강 및 환경 응용 분야에 특화된 추가 기능과 고급 물리학을 포함합니다.

시뮬레이션 템플릿

FLOW-3D HYDRO 의 작업 공간 템플릿으로 시간을 절약하고 실수를 방지하며 일관된 모델을 실행하십시오 . 작업 공간 템플릿은 일반적인 응용 분야에 대한 유체 속성, 물리적 모델, 수치 설정 및 시뮬레이션 출력을 미리로드합니다.

작업 공간 템플릿은 7 가지 모델 클래스에 사용할 수 있습니다.

  • 자유 표면 – TruVOF (기본값)
  • 공기 유입
  • 열 기둥
  • 퇴적물 수송
  • 얕은 물
  • 자유 표면 – 2 유체 VOF
  • 자유 표면 없음

사전로드 된 예제 시뮬레이션

FLOW-3D HYDRO 의 40 개 이상의 사전로드 된 물 중심 예제 시뮬레이션 라이브러리는 애플리케이션 모델링을위한 훌륭한 시작점을 제공합니다. 사전로드 된 예제 시뮬레이션은 모델러에게 모델 설정 및 모범 사례의 로드맵뿐만 아니라 대부분의 애플리케이션에 대한 자세한 시작점을 제공합니다.이전다음

비디오 튜토리얼

비디오 자습서는 새로운 사용자가 다양한 응용 프로그램을 모델링하는 방법을 빠르게 배울 수있는 훌륭한 경로를 제공합니다. FLOW-3D HYDRO 비디오 튜토리얼 기능 :

  • 광범위한 응용 및 물리학을위한 AZ 단계별 기록
  • “사용 방법”정보
  • 모범 사례를위한 팁
  • CAD / GIS 데이터, 시뮬레이션 파일 및 후 처리 파일

고급 솔버 개발

Tailings Model

새로운 Tailings Model은 tailings dam failure로 인한 tailings runout을 시뮬레이션하기위한 고급 기능을 제공합니다. tailings정의에 대한 다층 접근 방식과 함께 미세하고 거친 입자 구성을 나타내는 이중 모드 점도 모델은 모든 방법으로 건설 된 tailings 댐의 모델링을 허용합니다. 

얕은 물, 3D 및 하이브리드 3D / 얕은 물 메싱을 포함한 유연한 메싱을 통해 얕은 지역에서 빠른 솔루션을 제공하면서 다층 tailings의 복잡성을 정확하게 모델링 할 수 있습니다. 점성 경계층의 정확한 표현을 위해 얕은 물 메시에 2 층 Herschel-Bulkley 점도 모델을 사용할 수 있습니다.

모델 하이라이트

  • 미세 입자 및 거친 입자 광미 조성물을위한 이중 모드 점도 모델
  • 침전, 패킹 및 입자 종의 난류 확산을 포함한 Tailings  수송
  • 얕은 물 메시를위한 2 층 Herschel-Bulkley 점도 모델
  • 3D, 얕은 물, 3D / 얕은 물 하이브리드 메시를 포함한 유연한 메시 접근 방식
  • Multi-layer, variable composition tailings for general definition of tailings dam construction

Shallow Water

FLOW-3D HYDRO 의 얕은 물 모델링 기능은 3D 메시를 얕은 물 메시와 결합하여 탁월한 모델링 다양성을 제공하는 고유 한 하이브리드 메시를 사용합니다. 압력 솔버의 수치 개선으로 더 안정적이고 빠른 시뮬레이션이 가능합니다. 하이브리드 메쉬의 하단 전단 응력 계산이 크게 향상되어 정확도가 더욱 향상되었습니다. 지형에 거칠기를 적용하는 새로운 방법에는 Strickler, Chezy, Nikuradse, Colebrook-White, Haaland 및 Ramette 방정식이 포함됩니다.

Two-Fluid VOF Model

sharp 인터페이스가 있거나 없는 압축 가능 또는 비압축성 2 유체 모델은 항상 1 유체 자유 표면 모델과 함께 FLOW-3D 에서 사용할 수 있습니다 . 사실, sharp 인터페이스 처리는 TruVOF 기술을 자유 표면 모델과 공유하며 상용 CFD 소프트웨어에서 고유합니다. 최근 개발에는 2- 필드 온도 및 인터페이스 슬립 모델이 포함되었습니다. 이 모델은 오일 / 물, 액체 / 증기, 물 / 공기 및 기타 2 상 시스템에 성공적으로 적용되었습니다.

FLOW-3D HYDRO 는 2- 유체 솔루션의 정확성과 안정성에서 두 가지 중요한 발전을보고 있습니다. 운동량과 질량 보존 방정식의 강화 된 결합은 특히 액체 / 기체 흐름에서 계면에서 운동량 보존을 향상시킵니다. 연속성 방정식에서 제한된 압축성 항의 확장 된 근사값은 더 빠르고 안정적인 2 유체 압력 솔버를 만듭니다.

예를 들어, 터널 및 드롭 샤프트 설계와 같은 유압 응용 분야에서 공기가 종종 중요한 역할을 하기 때문에 두 개발 모두 FLOW-3D HYDRO 릴리스에 적시에 적용됩니다. 일반적으로 낮은 마하 수로 인해 이러한 경우 물과 공기에 제한된 압축성이 사용됩니다.

고성능 컴퓨팅 및 클라우드

고성능 컴퓨팅 FLOW-3D HYDRO

일반 워크스테이션 또는 랩톱으로 많은 작업을 수행 할 수 있지만, 대형 시뮬레이션과 고화질 시뮬레이션은 더 많은 CPU 코어를 활용함으로써 엄청난 이점을 얻을 수 있습니다. FLOW-3D CLOUD 및 고성능 컴퓨팅은 더 빠르고 정확한 모델을 실행할 수있는 더 빠른 런타임과 더 많은 선택권을 제공합니다.

하천 및 환경 중심 애플리케이션

TRANSPORTATION HYDRAULICS
SMALL DAMS AND DIVERSIONS
RIVER HYDRAULICS
SEDIMENT TRANSPORT AND DEPOSITION
OUTFALLS EFFLUENTS
THERMAL PLUMES BUOYANT FLOWS

Case Studies

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity

미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 바탕으로 중력을 사용하여 미세 입자를 분류하는 또 다른 방법에 대해 논의하겠습니다. 아래 애니메이션에서 볼 수 있습니다.

유비쿼터스 중력(Ubiquitous gravity)은 미세 유체 장치에서 미세 입자를 분류하는 데 사용할 수 있습니다. 중력이 입자의 움직임에 수직으로 작용할 때 입자는 반경에 따른 속도로 안정됩니다. 또한 입자의 운동은 입자의 밀도, 유체의 밀도 및 유체의 점도 사이의 차이에서 비롯된 유체 역학적 효과의 영향을받습니다. 아래 이미지는 중력 분류 기술 회로도를 보여줍니다.

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

부력 대 항력

앞서 언급했듯이 중력은 서로 다른 입자가 서로 다른 속도로 침전되도록합니다. 모든 입자의 밀도가 같고 입자 밀도가 주변 유체의 밀도보다 낮 으면 부력 우세와 항력 우세라는 두 가지 유형의 분류를 사용할 수 있습니다. 반경이 더 큰 입자는 더 많은 부력을 경험하고 작은 입자 위의 경로를 따르는 경향이 있습니다. 그러나 외장 액체 (입자를 운반하는 용액)의 유입 속도가 충분히 높으면 항력 효과가 우세하기 시작하고 더 큰 입자가 더 작은 입자의 경로 아래로 이동하는 경향이 있습니다.

FLOW-3D 시뮬레이션 결과

경쟁하는 부력과 항력은 아래 FLOW-3D 에서 얻은 시뮬레이션 결과에서 명확하게 볼 수 있습니다 . 그림 1은 부력 지배적 인 입자 분류의 경우를 보여줍니다. 더 큰 (빨간색) 입자는 수평 채널의 상단을 향해 정렬됩니다. Fig. 2에 나타난 결과는 부력이 우세한 경우의 유입 초 속도를 20 배로 설정 한 후 얻은 것이다. 더 높은 입구 속도에서 더 큰 입자는 더 많은 운동량을 전달하므로 그 위치는 수직 부력의 영향을받지 않습니다. 따라서 입자는 수평 채널의 상단으로 올라가지 않습니다. 대신 그들은 계속해서 바닥으로 이동합니다.

부력

Buoyancy dominant sorting
Buoyancy dominant sorting

Drag

Figure 2. Drag dominant sorting
Figure 2. Drag dominant sorting

LOW-3D 의 입자 모델은입자 분류 또는 기타 입자 역학과 관련된 미세 유체 시뮬레이션에 성공적이고 쉽게 사용할 수 있습니다. 지금까지 우리는 FLOW-3D 의 입자 모델을사용하여 두 가지 입자 분류 기술을 보았습니다. 하나는 유체 역학을 사용하고 다른 하나는 중력을 사용합니다.

Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

Non-Newtonian Fluids

Non-Newtonian Fluids

혈액, 케첩, 치약, 샴푸, 페인트 및 로션과 같은 비 뉴턴 유체는 점도가 다양한 복잡한 유변학을 가지고 있습니다. FLOW-3D는 변형 및 온도에 따라 달라지는 비 뉴턴 점도를 가진 유체를 모델링합니다. 전단 및 온도 의존 점도는 Carreau, 거듭 제곱 법칙 함수 또는 단순히 표 형식 입력을 통해 설명됩니다. 일부 폴리머, 세라믹 및 반고체 금속의 특성인 시간 의존적 또는 요 변성 거동(thixotropic behavior)도 시뮬레이션 할 수 있습니다.

Hand Lotion Pump

핸드 로션 펌프는 종종 몇 가지 설계 문제와 관련이 있습니다. 펌프가 공극을 막지 않고 효과적으로 작동하고 로션을 연속적으로 생성하는 것이 중요합니다. 좋은 디자인은 노력을 덜 필요로하며 이상적으로는 로션을 원하는 위치로 향하게합니다. FLOW-3D의 움직이는 물체 모델은 노즐이 아래로 밀리는 것을 시뮬레이션하여 저장소의 로션을 가압하는 데 사용됩니다. 로션의 압력과 로션을 추출하는 데 필요한 힘을 연구 할 수 있습니다. 동일한 고정 구조화 된 메시 내에서 여러 설계 변수를 쉽게 분석 할 수 있습니다.

FLOW-3D’s TruVOF method accurately captures the pulsating lotion as the ball regulates the frequency of dispensing lotion.

접촉선의 이해(Contact Line Insights)

접촉선의 이해(Contact Line Insights)

FLOW-3D는 코팅 성능 향상에 관심이있는 엔지니어에게 이상적인 수치 모델링 기능을 많이 갖추고 있습니다. 전산 시뮬레이션은 코팅 흐름에 영향을 미치는 여러 물리적 과정의 상대적 중요성과 효과를 연구 할 수있는 훌륭한 방법입니다. 물리적인 테스트에서 항상 프로세스를 분리하거나 해당 프로세스의 크기를 임의로 조정할 수있는 것은 아닙니다. 여기에서는 리 볼렛 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면에서의 접촉선 이동 및 유체 흡수와  관련하여 정적 및 동적 접촉각에 대하여 FLOW-3D의 처리에 대해 설명합니다.

 

정적 및 동적 접촉각(Static and Dynamic Contact Angles)

FLOW-3D는 정적 접촉각의 함수로 동적 접촉각을 정확하게 계산하고 입력으로 설정하며 자유 표면 인터페이스에서 작용하는 관련된 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사를 따라 내려갈 때 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

 

흡수(Absorption)

종이 기판에 액 적의 충격 및 흡수는 전산 유체 역학 소프트웨어를 사용하여 연구 할 수 있습니다. 여기서 FLOW-3D는 섬유층에서 물방울 충돌을 시뮬레이션하는데 사용되며 표면 장력, 접촉각 및 점도와 관련된 유체 전면의 전파를 살펴 봅니다.

 

 

아래의 FLOW-3D 시뮬레이션에서, 낙하는 직경이 40 미크론이며 초기 하향 속도는 300 cm / s입니다. 기재는 종이이고, 기공률이 30 % 인 20 미크론 두께입니다.

 

 

액체 필름의 핑거링(Fingering in Liquid Films)

FLOW-3D에서 동적 접촉선은 동적 접촉각이나 접촉선의 위치를 ​​지정할 필요없이 직접 모델링됩니다. 이는 소량의 유체에서 유체에 영향을 미치는 모든 동적 힘을 포함하는 수치 모델을 사용하여 수행됩니다. 정적 접촉각은 액체-고체 접착력을 특성화 하는데 사용됩니다.

액체 시트의 핑거링. 왼쪽은 0 °, 오른쪽은 70 °

여기서, 이러한 접근법의 힘의 적용은 경사 표면 아래로 흐르는 액체 필름에서 관찰 된 핑거링에 의해 제공됩니다. 실험적 관찰에 따르면 두 가지 뚜렷한 핑거링 패턴이 발생합니다. 첫 번째 패턴은 작은 정적 접촉각(즉, 습윤 조건)이며 상하한이 모두 하향으로 움직이는 쐐기형 핑거를 나타냅니다. 두 번째 패턴은 큰 정적 접촉각(즉, 습윤 조건이 열악함)이며 가장 균일한 폭을 가진 긴 핑거이고 가장 큰 한계점은 하향으로 움직이지 않는 것이 특징입니다.

 

 

증발 효과(Evaporative Effects)

퇴적(Deposit)

분산 된 고체 물질을 함유하는 액 적은 고체 표면에서 건조 될 때, 함유하고 있는 고체 물질을 침전물로서 남깁니다. 이 침전물의 형상이 많은 인쇄 공정, 청소 및 코팅 공정에 중요한 영향을 미칩니다. 한 종류의 퇴적물의 전형적인 예는 위의 이미지와 같이 엎질러 진 커피 패치의 둘레를 따라 링 얼룩이 형성되는 “커피 링” 문제입니다. 이 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로, 특히 낙하 둘레에서 발생합니다.

 

건조(Drying)

FLOW-3D의 증발 잔류 액체 모델은 건조 후 톨루엔으로 형성된 잔류된 물의 3D형상을 시뮬레이션합니다. (30 배 확대)

건조는 코팅 공정의 중요한 부분입니다. 하지만 건조의 결함으로 잘 도포 된 코팅을 완전히 취소 할 수도 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 유동을 유도 할 수 있으며, 이는 코팅 품질을 잠재적으로 파괴 할 수 있습니다. FLOW-3D의 증발 잔류 물 모델을 사용하면 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

 

모델링 링 형성(Modeling Ring Formation)

증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션

윗쪽 그림에서 FLOW-3D는 증발이 가장 큰 접촉선에서의 증착으로 인해 에지 피닝(edge pinning)이 발생함을 보여줍니다. 증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 접촉선 주변에서 증발이 가장 커서, 액체가 접촉선을 향해 흘러 정적 조건을 재설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 현탁 된 고체의 증착입니다.

 

 

참고
[1] Deegan, R., Bakajin, O., Dupont, T. et al. Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827–829 (1997).

 

Capillary Flows

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서 긴 마이크로 채널은 종종 액체 용액을 한 장소에서 다른 장소로 전달하는 데 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력이 액체를 마이크로 채널로 당깁니다(액체가 칩 표면에 “습기”되는 경우). 이 페이지에서는 충전, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D에 대한 몇 가지 특정 용도에 대해 다룹니다.

Marangoni Flows

마랑고니는 그 중심에 가열된 물 접시에 흐릅니다. 균일하지 않은 표면 장력에 의해 발생하는 흐름은 20ºC의 초기 온도에서 깊이 0.75cm의 얕은 8.0cm의 물 접시에 의해 입증됩니다. 원형 접시 중앙에 놓인 원통형 막대는 직경 0.5cm로 80Cº의 온도로 가열되고 0.05cm의 깊이까지 수면에 잠깁니다. 핫 로드 주변의 물이 가열되면 표면 장력이 0.1678dyne/cm/ºC만큼 감소하여 표면이 접시의 바깥쪽 림 쪽으로 수축됩니다. 수축은 처음에 표면에 뿌려진 질량이 없는 마커 입자에 의해 나타납니다.

Capillary Filling

모세관 충전 공정을 이해하는 것은 칩 설계에 중요합니다. 액체 흐름 경로의 기하학적 구조가 다르면 기포를 고정할 수 있는 등의 모세관 충진 동작이 달라질 수 있습니다. 충전 프로세스에 대한 지식은 설계자가 챔버, 결합 기둥, 분할 및 밸브와 같은 칩의 내부 구조를 정렬하는 데 도움이 됩니다. 오른쪽의 시뮬레이션은 모세관 작용의 분석적 예측을 검증합니다. 모세관 충전은 표면 장력과 중력에 의해 균형을 이루며, 이는 FLOW-3D로 정확하게 예측되는 기본 공정입니다.

Thermocapillary Switch

910/5000광선의 경로 안팎으로 이동하는 소량의 액체는 굴절이나 반사를 통해 다른 경로로 방향을 바꿀 수 있습니다. 이 개념은 광선이 광섬유에 들어가면 내부 반사에 의해 포착되는 광섬유와 관련하여 특히 매력적입니다. 복잡한 광학 회로를 만들려면 한 광섬유에서 다른 광섬유로 빛을 리디렉션 할 수있는 “스위치”가 필요합니다.

제안 된 한 가지 개념은 열 모세관을 기반으로합니다. 광섬유 광선을 교차하는 마이크로 채널에 액체의 작은 방울을 놓습니다. 방울이 채널을 따라 빔이 통과해야하는 곳으로 이동하면 빔이 다른 섬유로 반사됩니다. 방울은 양면을 다르게 가열하여 이동합니다. 이것은 방울이 채널의 더 차가운 끝쪽으로 당겨 지도록 방울의 양쪽에있는 반월판의 표면 장력의 변화를 일으 킵니다.

Whole Blood Spontaneous Capillary Flow

Sketch of the cross section of the device (w=150 µm, h1=300 µm, h2=1200 µm, α=14.5o)

모세관 기반 마이크로 시스템은 추가 작동 메커니즘이 필요하지 않기 때문에 저렴하고 제작하기 쉽습니다. 마이크로펌프나 주사기와 같은 일반적인 마이크로 시스템은 부피가 크고 휴대할 수 없는 흐름 작동을 필요로 합니다.

버팔로 대학의 최근 연구는 모세관 유동 작용을 사용하여 미세 기기에서 액체를 이동시키는 간단한 해결책을 연구했습니다. 이 작업은 FLOW-3D를 사용하여 수정된 V-그루브 채널에서 자발적 모세관 흐름을 시뮬레이션합니다. 좁은 V-그루브 기하학(왼쪽)은 전혈과 같은 높은 점도의 유체도 이 유체를 통해 이동할 수 있기 때문에 좋은 솔루션을 제공합니다. 홈의 끝부분은 자발적인 모세관 흐름을 촉진하고 평행판은 충분한 혈액수송을 보장합니다.

본 연구에서는 FLOW-3D를 사용하여 채널 내 유체 헤드의 유속과 액체 전방의 진행을 추정합니다.

결과는 실험 및 분석(간단한) 결과와 비교됩니다. 아래 그림은 수치, 실험 및 분석 결과의 비교를 보여줍니다. FLOW-3D 결과는 실험 결과와 매우 일치합니다.

FLOW-3D Results

Analysis A: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes
Analysis B: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes

Animation of the results post-processed in FlowSight.

References

J. Berthiera, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Pohera, D. Gosselin, M. Cubizolles, P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 2014

화학기반 응고모델 / chemistry-based solidification

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 응고 모델은 업계를 주조 시뮬레이션의 다음 개척지로 발전시켜 사용자에게 캐스트 부품의 강도와 무결성을 예측하는 동시에 스크랩을 줄이고 제품 안전 및 성능 요구 사항을 충족합니다.

응고 모델 기능

새로운 응고 모델은 핵 생성, 분리 및 냉각 조건을 고려한 온도 및 화학의 진화로부터 잠열, 열전도율, 열용량, 밀도, 점도 등 응고 경로 및 재료 특성을 계산합니다.

응고 모델은 SDAS (secondary dendrite arm sapcing) 및 입자 크기와 같은 구성 및 냉각 조건을 기반으로 미세 구조 진화를 예측합니다. 또한 확산 및 이류로 인한 거시적 분리를 예측합니다. 기계적 특성과 미세 구조 간의 경험적 관계는 실험 측정을 기반으로합니다. 독특하고 강력한 미세 구조 및 기계적 특성 예측 기능을 갖춘 새로운 응고 모델은 미세 다공성 예측을위한 무 차원 Niyama 기준과 같은 다른 모델의 기반을 마련합니다.

응고 미세 구조 및 다공성 결함은 주조의 기계적 특성에 영향을 미치는 주요 요인입니다. 차례로 국부적 인 미세 구조는 합금의 화학적 조성, 응고 속도 및 합금 원소의 분리로 인한 화학적 비균질성에 의해 결정됩니다. 새로운 응고 모델을 사용하여 공정 설계자는 다양한 공정 매개 변수 및 합금 구성이 기계적 특성에 미치는 영향을 결정하여 가능한 최고 품질의 안전한 제품을 생산하기 위해 주조 성능을 최적화 할 수 있습니다.

Solidification of AlSi9Cu3

Aluminium A356

응고 모델에는 전체 모델과 단순화 된 모델이 모두 포함되어있어 사용자가 시뮬레이션 워크 플로를 더 잘 제어 할 수 있습니다. 전체 모델은 용융물이 응고됨에 따라 화학적 조성과 상 변화를 고려하는 반면, 단순화 된 모델은 더 빠른 런타임을 제공하고 전체 모델만큼 많은 메모리를 필요로하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화 된 모델에서 시작할 수 있으며 그 반대의 경우도 마찬가지입니다. 이는 시뮬레이션의 여러 단계뿐만 아니라 다양한 유형의 시뮬레이션에 적합한 모델을 사용할 수있는 완벽한 유연성을 제공합니다.

리소스를 적게 사용한다는 분명한 이점이 있으므로 사용자는 가능한 한 단순화 된 모델을 사용하는 것이 좋습니다. 사용자는 매크로 분리가 중요한 경우 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클링 시뮬레이션의 경우 이러한 모델링 시나리오에서는 전체 분석이 필요하지 않기 때문에 소프트웨어에 의해 단순화 된 모델이 적용됩니다.

벽이 얇은 일부 주조의 경우 확산 및 이류에 기반한 매크로 분리는 중요하지 않습니다. 이러한 주물에서 응고 경로는 전체적으로 거의 동일하며 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 진화를 추적 할 필요가 없습니다. 이러한 유형의 시나리오의 경우 사용자가 단순화 된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

Coating field – Coating with Non-Newtonian fluids (비뉴턴 유체를 이용한 코팅)

Coating with Non-Newtonian fluids (비뉴튼 유체를 이용한 코팅)

  • 비뉴턴 유체는 뉴턴의 점성 법칙, 응력과 무관하여 일정한 점도를 가지지 않는 유체를 나타냄
  • FLOW-3D의 점성 모델
    – Carreau function
    – Power-law (멱법칙)
    – Herschel-Bulkley
    – 변형률에 의존
    – 온도에 의존

Carreau Function ?


FLOW-3D를 이용한 비뉴턴 유체의 코팅 해석


Sediment Transport Model

Sediment Transport Model

Sediment Transport Model

FLOW-3D의 침전물 이송 모델을 사용하여 세굴 및 침전물을 평가할 수 있으며, 여기서 3차원 유량 구성 요소가 세굴 프로세스를 주도하고 있습니다. Flow-3D의 유체역학 모델은 유체물리학을 설명하는 정전기적이지 않은 레이놀즈-평균화된 Navier-Stokes 방정식을 완벽하게 해결합니다. 유체역학적 솔버는 침전물 운반 모듈과 완전히 결합되어 있어 침전물 운반 및 비접착 토양의 부유식 침식, 인포테인먼트 및 침식을 시뮬레이션합니다(Wei et al., 2014). 베드로드, 인포테인먼트 및 정착 프로세스에 사용되는 모든 경험적 관계는 완전히 사용자 정의 가능하며, 최대 10개의 침전물 종(곡물 크기, 질량 밀도, 임계 전단 응력 등 서로 다른 특성을 가진)을 정의할 수 있습니다. FLOW-3D는 짧은 경과 시간 척도에 대한 국부적 스쿠어를 시뮬레이션하는 데 이상적입니다.

FLOW-3D‘s Sediment Transport model can be used to evaluate scour and deposition, where three-dimensional flow components are driving the scouring process. FLOW-3D’s hydrodynamic model solves the full unsteady non-hydrostatic Reynolds-averaged Navier-Stokes equations that describe the flow physics. The hydrodynamic solver is fully coupled with a sediment transport module that simulates bedload and suspended sediment transport, entrainment and erosion for non-cohesive soils (Wei et al., 2014). All empirical relationships used in bedload, entrainment and settling processes are fully customizable, and up to 10 different sediment species (with different properties such as grain size, mass density and critical shear stress) can be defined. FLOW-3D is ideal for simulating local scour over short episodic time scales.

Modeling Capabilities
– Unsteady 3D mobile bed modeling
– Bedload and suspended sediment transport
– Non-cohesive sediment
– 10 individual grain size fractions
– Suspended sediment settling and entrainment
– Critical angle of repose
Applications
– River and coastal morphodynamics
– Bridge pier and abutment scour
– Local scour at hydraulic structures
– Sedimentation basins
– Reservoir flushing

Sediment Transport Model

Sentral Transport 모델은 8.0 버전(Brethour, 2009년)에서 처음 도입되었으며, 11.1 버전(Wei et al., 2014년), 가장 최근에는 12.0 버전(Flow Science, 2019년)에서 광범위한 개정을 거쳤습니다. 숫자 모델에서 시뮬레이션된 물리적 프로세스의 개략도가 아래에 나와 있습니다.

The Sediment Transport model was first introduced in version 8.0 (Brethour, 2009), and has gone through extensive revisions in version 11.1 (Wei et al., 2014), and most recently in version 12.0 (Flow Science, 2019). A schematic of the physical processes simulated in the numerical model is illustrated below.

The different processes modeled by the Sediment Transport Model.

수치 모델에서 침전물은 포장된 Bed로서 일시 중단된 상태로 존재할 수 있습니다. 포장된 Bed는 PRIPT™ 기법을 사용하여 복잡한 솔리드 경계(Hirt 및 Sicilian, 1985)에 표현된 지울 수 없는 솔리드 객체입니다. 이것은 유체역학 용해기의 고체 물체를 나타내는 데 사용되는 방법과 동일합니다. 포장된 Bed의 형태학적 변화는 침전물 질량의 보존에 의해 좌우됩니다.

In the numerical model, sediment can exist as packed bed and in a suspended state. A packed bed is an erodible solid object that is represented using the FAVOR™ technique for complex solid boundaries (Hirt and Sicilian, 1985). This is the same method used to represent solid objects in the hydrodynamic solver. The morphological change in the packed bed is governed by the conservation of sediment mass.

형태학적 변경은 모형에 숫자로 표시되는 여러 가지 물리적 프로세스에 의해 제어됩니다. 이러한 프로세스에는 베드로드 운송, 인포테인먼트 및 증착이 포함됩니다. 베드로드 이송은 침전물이 서스펜션에 전달되지 않고 채널을 따라 횡방향으로 이동하는 물리적 과정입니다. 인포테인먼트란 난류 에디가 패킹 베드 상단의 곡물을 제거하고 일시 중단된 상태로 전환하는 과정입니다. 포장이란 곡물이 현수막에서 안착되어 포장된 침대에 퇴적하는 과정입니다. 수치 모델에서 이것은 일시 중단된 상태에서 포장된 베드 상태로의 전환입니다.

The morphological changes are governed by several different physical processes that are represented numerically in the model. These processes include bedload transport, entrainment and deposition. Bedload transport is the physical process of sediment moving laterally along the channel without being carried into suspension. Entrainment is the process by which turbulent eddies remove the grains from the top of the packed bed and transition to the suspended state. Packing is the process of grains settling out of suspension and depositing onto the packed bed. In the numerical model, this is the transition from the suspended to the packed bed state.

인포테인먼트 및 패킹의 상대적 비율은 포장된 베드와 부유 상태 사이의 침전물 질량 교환을 제어합니다. 이 모델은 Meyer-Peter Müler(1948), Nielsen(1992) 또는 Van Rijn(1984)의 방정식을 사용하여 베드 인터페이스가 포함된 각 메시 셀에서 베드로드 전송을 계산합니다. 메쉬 셀에서 이웃의 각 메쉬 셀로 이동하는 곡물의 양을 결정하기 위해 하위 메쉬 방법이 사용됩니다. 인포테인먼트에서 곡물의 리프팅 속도는 Winterwerp 등(1992)의 방정식을 사용하여 계산됩니다. 안착 속도는 Soulsby(1997년)를 사용하여 계산됩니다. 베드 인터페이스가 포함된 메시 셀에서 인터페이스의 위치, 방향 및 면적을 계산하여 베드 전단 응력, 무차원 전단 응력, 베드로드 전송 속도 및 인포테인먼트 속도를 결정합니다. 3D 난류 흐름의 베드 전단 응력은 표준 벽 함수를 사용하여 중간 곡물 크기에 비례하는 베드 표면 거칠기를 고려하여 평가됩니다.

The relative rates of entrainment and packing control the exchange of sediment mass between the packed bed and suspended states. The model calculates bedload transport in each mesh cell containing the bed interface using the equation of Meyer-Peter Müller (1948), Nielsen (1992) or Van Rijn (1984). A sub-mesh method is employed to determine the amount of grains moving from the mesh cell into each mesh cell in its neighbor. The lifting velocity of grains in entrainment is calculated using the equation of Winterwerp et al. (1992). The settling velocity is calculated using Soulsby (1997). In the mesh cells containing the bed interface, location, orientation and area of the interface are calculated to determine the bed shear stress, dimensionless shear stress, bedload transport rates and entrainment rates. Bed shear stress in 3D turbulent flows is evaluated using the standard wall function with consideration of bed surface roughness that is proportional to the median grain size.

부유된 침전물은 유체의 스칼라 질량 농도로 표시됩니다. 농도는 주어진 셀에서 균일한 것으로 가정되며 유체 셀 밀도 및 점도와 결합됩니다. 각 종에 대해, 부유 침전물 농도는 수송 방정식을 풀어서 계산됩니다.

The suspended sediment is represented as a scalar mass concentration in the fluid. The concentration is assumed to be uniform in a given cell and is coupled with the fluid cell density and viscosity. For each species, the suspended sediment concentration is calculated by solving a transport equation.

Validations

다음 5가지 검증 사례는 실험 데이터와 FLOW-3D의 침전물 이송 모델의 시뮬레이션 결과를 비교합니다.

마오(1986년)
Mao는 수중 수평 파이프라인 아래 침대의 무서운 프로파일을 얻기 위해 실험 작업을 수행했습니다. 아래 그림은 FLOW-3D를 사용하여 얻은 결과와 실험 결과를 비교합니다.

그림 A는 파이프라인 아래의 최대 scour깊이를 시간 경과에 따라 비교하는 반면, 그림 B ~ F는 스터디의 scour프로필(빨간색 점으로 표시됨)과 FLOW-3D 프로필을 오버레이합니다.
Chatterjee et al. (1994)

수평 제트 침수로 인해 국부적인 스쿠어 프로파일을 얻기 위한 실험 작업이 수행되었습니다. 아래 그림은 scour구멍 깊이와 둔부 높이에 대한 실험 대 FLOW-3D의 숫자 결과를 시간의 함수로 비교합니다. 이 애니메이션은 scour구멍과 둔부 높이가 최대 1시간 내에 안정된 상태에 도달한다는 것을 보여줍니다.

Gladstone et al. (1998)

In these experiments the propagation and deposition patterns of particle-laden flows were studied. The plot below compares experimental versus FLOW-3D simulation results from three different setups, labeled case A (100% 0.025mm size particles), case D (50% 0.069mm and 50% 0.025mm size particles), and case G (100% 0.069mm size particles).

Faruque et al. (2006)

이 논문에서, 저자들은 실험을 통해 3차원 벽면 제트기를 물에 잠기게 함으로써 국부적인 악취를 연구했습니다. 아래 표는 세 가지 서로 다른 테일워터 비율에 대한 scour 구멍의 3D 형태학적 변화에 대한 실험과 FLOW-3D 수치 결과를 비교합니다.

Equilibrium bed elevation changes predicted by the numerical model for a cylindrical pier. (A) Isometric view of scour and deposition adjacent to the pier. (B) Comparison between numerical results (top) and physical model measurements (bottom).
Equilibrium bed elevation changes predicted by the numerical model for the diamond pier. (A) Isometric view of scour and deposition adjacent to the pier. (B) Comparison between numerical results (top) and physical model measurements (bottom).

In this paper, the authors studied local scour by submerged three-dimensional wall jets via experiments. The table below compares the experimental versus FLOW-3D numerical results for 3D morphological changes in the scour hole for three different tailwater ratios.

References

Brethour, J.M., Hirt, C.W., 2009, Drift Model for Two-Component Flows,  FSI-14-TN-83, Flow Science, Inc.

Chatterjee, S.S., Ghosh, S.N., and Chatterjee M., 1994, Local scour due to submerged horizontal jet, Journal of Hydraulic Engineering, 120(8), pp. 973-992.

Faruque, M.A.A., Sarathi, P., and Balachandar R., 2006, Clear Water Local Scour by Submerged Three-Dimensional Wall Jets : Effect of Tailwater Depth, Journal of Hydraulic Engineering, 132(6), pp. 575-580.

Flow Science, 2019, FLOW-3D Version 12.0 User Manual, Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com

Fox, B. and Feurich, R., 2019, CFD Analysis of Local Scour at Bridge PiersFederal Interagency Sedimentation and Hydrologic Modeling Conference (SEDHYD), Reno, NV.

Gladstone, C., Phillips, J.C., and Sparks R.S.J., 1998, Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition, Sedimentology 45, pp. 833-843.

Hirt, C.W. and Sicilian, J.M., 1985, A porosity technique for the definition of obstacles in rectangular cell meshes, 4th International Conference on Numerical Ship Hydrodynamics, Washington, D.C.

Khosronejad, A., Kang, S., & Sotiropoulos, F., 2012. Experimental and computational investigation of local scour around bridge piers, Advances in Water Resources, 37, pp. 73-85.

Mao, Y., 1986. The interaction between a pipeline and an erodible bed, PhD thesis, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark.

Meyer-Peter, E. and Müller, R., 1948, Formulas for bed-load transport, Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. pp. 39–64.

Nielsen, P., 1992, Coastal bottom boundary layers and sediment transport (Vol. 4). World scientific.

Soulsby, R., 1997, Dynamics of Marine Sands, Thomas Telford Publications, London.

Van Rijn, L. C., 1984, Sediment Transport, Part I: Bed load transport, Journal of Hydraulic Engineering 110(10), pp. 1431-1456.

Wei, G., Brethour, J.M., Grüenzner M., and Burnham, J., 2014, The Sediment Scour Model in FLOW-3D, Technical Note FSI-14-TN-99, Flow Science, Inc.

Winterwerp, J.C., Bakker, W.T., Mastbergen, D.R. and Van Rossum, H., 1992, Hyperconcentrated sand-water mixture flows over erodible bed, Journal of Hydraulic Engineering, 118(11), pp. 1508–1525.

Micro/Biofluidics with FLOW-3D (미세/생명 유체공학)

미세/생명유체공학에 관한 모델링

  • In-Vitro Diagnostics(IVD) : 체외 진단
  • Drug Delivery : 약물 전달
  • Point of Care Devices : 현장 진료 장비
  • Microarrays : 마이크로어레이
  • Lab-on-a-chip : 랩온어칩
  • MEMS(MicroElectroMechanical Systems) : 미세전자기계시스템

미세/생명유체공학에 관한 개념

  • 대류/확산 효과
  • 표면 장력
  • 자유 표면 역학
  • 점도 효과
  • 관성 효과
  • 다공성 매체
  • 전기 역학
  • 미립자 역학
  • 반응 속도론

Coating Application/코팅분야 응용

해석 조건

  • Viscosity(점도) = 0.204 Pa-s
  • Density(밀도) = 965 kg/m^3
  • Surface tension(표면 장력) = 0.035N/m
  • Roll coating

물리 모델

  • Surface tension(표면 장력) 모델
  • Viscosity(점도)
  • Moving Objects(운동)

Classic Inlet Flooded Regime

Revers Operating Regime

Inlet Starved Operating Regime

  • 2D 시뮬레이션은 작동 코팅 윈도우의 빠른 평가를 제공
  • 계단식, 공기 유입, 기아 및 런백을 식별
  • 리빙(Ribbing)은 3D 분석이 필요

해석 결과

Validation of a 3D Dam Breaking Problem

3D 댐 붕괴 문제 검증

이 기사는영국에서 Peter Arnold, Minerva Dynamics, The Guildhall, High Street Bath에 의해 기고되었다.

자유 표면 흐름 시뮬레이션을 위한 FLOW-3D 성능을 평가하기 위해, 장애물 구성이 포함된 3D댐을 검증 사례 중 하나로 선정했습니다. 이 문제는 문서화되어 있으며 ERCOFTAC데이터베이스에서 다운로드할 수 있도록 생성된 모든 실험 데이터를 사용하여 쉽게 설정할 수 있습니다[1]. 장애물은 선박 갑판의 녹색 물에 노출된 컨테이너를 대표하는 것으로 선택됩니다. 실험은 0.55 m의 물을 고정하는 슬라이딩 도어를 가진 대형 탱크 그림 1로 구성됩니다. 도어는 중량 감소에 의해 수직으로 위쪽으로 열리고 물이 방출되어 장애물을 침해한 후 탱크 벽으로부터 3회 반사됩니다. 자유 표면 고도는 탱크 중심선을 따라 4개 위치에서 측정되며 8개의 압력 센서가 장애물의 선행 수직 및 수평 표면에 내장되어 있습니다(그림2). FLOW-3D를 사용한 CFD시뮬레이션은 연속적으로 미세한 메쉬를 사용하여 6초간 실시간으로 수행되었으며 다른 주문 번호 체계와 난류 모델을 사용했습니다.

Figure 1. Snapshot of SPH simulation and experiment at 0.56 secs

시뮬레이션 방법론

시뮬레이션은 3.22mx1mx1.5m 크기의 도메인에 대해 설정되었습니다. 즉, 탱크 지붕에 대한 수직 분사를 허용하기 위해 z방향에서 0.5m 더 큰 도메인이 설정되었습니다. 기본 메쉬는 x-방향의 간격 161개, y-방향 50개, z-방향의 경우 75개가 균일하게 수용되는 육각 셀을 가지고 있었습니다. 장애물 및 센서 위치를 방해하므로 총 약 603,750개의 셀이 사용됩니다. 장애물은 그 영역에 들어갔고 모든 벽은 미끄러짐이 없는 것으로 간주되었습니다. 물의 초기 위치와 점도를 규정한 후, 층류 시간에 의존하는 시뮬레이션을 실시간으로 총 6초 동안 점진적으로 미세화하였습니다. 기본 60cm 셀 메시에서 시작하는 메쉬. 단순히 각 방향의 셀의 수를 2개의 큐브 루트에 의해 증가시킴으로써 각 점진적 메쉬에 대해 총 셀 카운트를 2배 증가시키는 것이었습니다. 이렇게 총 네개의 메쉬가 생겼습니다. 그런 다음 네개의 위치에서 자유 표면 고도의 시간 이력과 여덟개의 압력 센서로부터의 압력을 실험 데이터에 대해 도표로 작성했습니다. CPU와 시뮬레이션의 경과 시간또한 기록되었습니다.

Figure 2. Locations of water height and pressure measurements

기본 메쉬만 사용하여, 추진력 유도에 사용된 수치 구별 계획의 효과를 조사하였습니다. 디폴트가 1st order, 2nd order monotonicity preserving 그리고 3rd order schem이 모두 사용되었으며 결과를 비교했습니다. 또한 single 과 double precision의 효과를 비교하였습니다.

난류 변동은 주로 직접 시뮬레이션을 통해 모델링되었지만 FLOW-3D에서 사용할 수있는 두 가지 난류 모델, 즉 RNG (Renormalization Group) 모델과 LES (Large Eddy Simulations) 모델의 결과도 비교했습니다. 모든 모델은 가장 거칠고 기본 메쉬에서만 실행되었습니다. 메쉬 해상도에 대한 과도한 요구로 인해 탱크 벽에서 가장 가까운 노드의 거리에 대한 일반적인 난기류 모델 관련 제약 조건을 충족시키지 못했습니다.

또한 흐름이 크게 혼란스럽고 장애물이 날카로울 때 흐름 분리 효과의 예측은 점진적인 구분에 의해서가 아닌 기하학적 변화에 의해서 주도될 것입니다. 질서 정연한 경계 층의 변형 따라서, 우리는 경계 층의 분해능이 주 흐름 특성을 예측하는 관점에서 도메인 내부의 흐름을 해결하는 것보다 덜 관련된다고 가정했습니다.

자유 표면 결과

그림 3과 4는 장애물의 상류 위치 H2와 하류 위치 H1에서 시간에 대해 플롯 된 실험 및 계산 된 자유 표면 고도를 보여줍니다. 크기와 타이밍에 약간의 차이가 있지만 주요 기능이 잘 표현되어 있는지 확인하는 것이 좋습니다. 그러나 실험 데이터에는 오류 막대가 제공되지 않으며 혼란스럽고 분리 된 유동장에서 프로브를 사용하여 자유 표면 고도를 측정하는 것은 자유 표면 고도가 문제가 될 수 있다고 말해야합니다. 단일 한 시간 함수가 될 수 없습니다. 이것은 아마도 약 1 초의 초기 가파른 상승 단계에서 H1 높이의 불일치를 설명합니다. 나머지 H1 레코드는 실험과 잘 일치합니다. H2 플롯은 특히 초기 물 상승 단계에서 더 나은 일치를 보여주고 궁극적으로 물의 최대 높이를 잘 예측합니다.

모든 그림에는 실험 뒤에 있는 시뮬레이션의 시간 지연 특징이 있습니다. 차이의 원인은 불분명하지만 시뮬레이션을 통해 점진적으로 도입되는 것으로 보입니다.

압력 센서 결과

그림 5는 시간에 대해 플롯 된 바닥에서 가장 가까운 전면 압력 센서 P1을 보여 주며, 일반적으로 실험과 시뮬레이션 간의 양호한 일치를 나타냅니다. 이 센서는 압력 피크의 도달 거리와 크기를 가장 정확하게 추정합니다. 장애물과 왼쪽 벽에서 물이 튀어 나오면서 신호가 안정되면서 약 2초간 도달할 때까지 압력 신호에 상당한 변동이 있습니다. 그리고 시뮬레이션 값은 실험 값과 잘 일치합니다.

그림 6은 상부 수평 얼굴 압력 센서 P7을 보여 줍니다. 1초에서 2초 사이에 압력 변동이 크므로 시뮬레이션과 실험 데이터가 안정되고 합의가 개선됩니다.

메쉬 수리, 수치 구성 순서 및 난류 모델

메쉬 정밀도의 효과 측면에서 볼 때, 수치 솔루션이 고유한 솔루션으로 수렴되고 있다는 증거는 거의 없는 것으로 보입니다. 난류 모델을 사용하는 대신 직접 시뮬레이션을 통해 유동장의 난류를 모델링 하려고 시도해 왔기 때문에 이는 놀라운 일이 아닐 수 있습니다. 이 접근 방식을 사용하면 메쉬가 미세하게 정제되고 초기 조건에서 섭동에 더 민감해 지기 때문에 흐름 필드에서 보다 상세한 정보를 파악할 수 있을 것으로 예상됩니다. 또한 약간 다른 초기 조건을 가진 많은 시뮬레이션의 평균이 메시 정교함으로 평균화된 솔루션으로 수렴될 것으로 예상합니다. 그러나, 실험에 대한 합의의 수준에 있어서는 35배나 더 오래 걸리는 가장 적은 비용과 가장 비싼 해결책 사이에는 차이가 거의 없습니다. 공학적 관점에서 볼 때, 가장 불리한 메쉬 솔루션은 기본 값이 충분히 정확하고 경과된 시뮬레이션이 단지 15분 이상인 것을 고려할 때 매우 좋은 가치를 나타냅니다.

가속도계 숫자 체계 순서의 효과와 단일 또는 이중 정밀도 산술 실행의 효과는 다음과 같이 요약됩니다. 2차 주문과 3차 주문 계획은 매우 유사한 결과를 보여 주는데, 두가지 모두 실험 곡선을 따르는 것이 더 다양한 1차 주문 계획보다 더 가깝습니다. 또한 상위 순서 방식은 보다 정교한 메쉬의 첫번째 순서 방식보다 코어저 기본 메쉬의 실험 곡선을 따르는 것으로 보입니다. 이중 정밀도 곡선은 단일 정밀도 1차 주문 곡선에서 약간 벗어납니다. 높은 순서도와 이중 정밀도 산술을 사용하는 데 드는 상대적으로 적은 비용을 감안할 때 안정성이 훼손되지 않는다면 향후 계산에서 그렇게 하는 것이 합리적일 것입니다.

난류 변동을 모델링 하는 데 사용되는 방법에 대해서는 각 모델의 실험 시간 이력을 보다 정확하게 예측할 수 있는 능력 면에서 확실한 승자가 없습니다. LES모델의 CPU시간을 더 전통적인 RNG제제와 비교할 때 거의 두 배만큼 층류 모델로써 경제적입니다.

결론

FLOW-3D는 매우 까다로운 자유 표면 유동 문제를 시뮬레이션하는 데 사용되었으며 실험 데이터와 정 성적, 양적 계약을 맺었습니다. 주요 불일치는 종종 고유하지 않은 매개 변수의 자유 표면 높이를 측정하는 데 문제가 있기 때문에 쉽게 발생할 수 있습니다. 흐름이 충돌하는 장애물 표면의 압력 예측은 일반적으로 실험 측정과 잘 일치하며, 주 편차는 실험 측정에서 상당한 양의 변동이있는 곳에서 다시 나타납니다. 실험 측정의 반복성은 문헌에서 논의되지 않았지만 적어도 CFD 시뮬레이션의 차이만큼 클 수있다. 또한 4 개의 프로세서를 통한 공유 메모리 구성에서 약 15 분 내에 난류 모델없이 1 차 차분을 사용하여 비교적 거친 메시에서 솔루션을 적절하게 얻을 수 있음을 확인했습니다. 난류 모델이 필요하지 않다는 것은 결과 흐름을 지배하는 난류 구조가이 수준의 메쉬 미세 조정에서 해석 될 수 있음을 시사합니다.

Download a full-length validation study of this work: FLOW-3D Dam Breaking Validation

References

  1. SPH European Research Interest Community SIG, R. Issa and D. Violeau, Test-Case 2 3D dam breaking, http://wimanchester.ac.uk/spheric/index.php/Test2
  2. M.T Kleefsman, Fekken, A.E P Veldman, B. Iwanowski, and B. Buchner, A volume of fluid based simulation method for wave impact problems,J Comp Phs, 206: 363-393, 2005.

Laser Metal Deposition and Fluid Particles

FLOW-3D의 신규 모듈 개발을 하면서, 입자 모델의 새로운 입자 부류 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도의 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고 된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 부여 받을 수도 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일 한 파티클 생성을 선택하고 파티클이 소스에서 추출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 함께 미세한 금속 분말을 융합하여 입체 금속 부품을 제작하는 3D printing 공정이다. 레이저 금속 증착는 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 프로그램을 찾습니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 밀도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융 / 응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 첨가제 제조 공정으로 만듭니다.

 

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반의 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 점을 계속 알고 있을 것입니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계는 직접적이고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고 된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다. 이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 매 5 초마다 기판이 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고 된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착 된 층의 형태에 큰 영향을주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 부가한다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발 한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착 된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 바꿀 때마다 입자 빔 동작의 일시적인 정지를 확인하십시오. 또한, 층이 증착됨에 따라, 새로운 층의 형상은 다공성 열원으로부터 각 층에 열의 불균등 한 첨가로 인해 변화됩니다. 각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수 인 분말 강도 분포를 정확하게 재현합니다. 입자 모델과 같은 수준의 제어와 정교함은 첨가제 제조 분야의 사용자와 공급자 모두가 제조 프로세스를 미세 조정하는 데 도움이 될 것으로 기대합니다.

[FLOW-3D 물리모델] Viscosity and Turbulence / 점도와 난류

Viscosity and Turbulence

 

Wall Effects: Slip, Shear, and Component Roughness

유체가 고체 주위에서 움직일 때 유동은 유동속도, 난류, 그리고 경계면의 조도에 따른 저항을 만난다. 이런 경계 유동의 효과는 추가의 전단응력, 항력 그리고 (퇴적기반인 경우)부식을 초래한다. 이런 벽(또는 경계)효과를 모델링하는 것은 표면의 미끄러짐의 조건, 표면조도 그리고 벽 효과 속도분포를 적절히 규명할 수 있는 격자크기에 대한 주의를 요한다. 이런 변수 각각을 모델링하는 접근법을 밑에서 기술한다.

Wall Slip 

Slip 은 유동경계에서 상대 유동속도의 존재를 기술한다. 일반적으로 표면조건은 no-slip, partial-slip 그리고 free-slip 으로 기술된다.

Free-slip 표면은 표면에 수직한 속도 분포에 변화가 없는 표면이며 가끔 밀도의 자리 수가 차이가 나는 두 유체(물과 공기같이)간의 경계면을 기술하는데 이용된다. Partial-slip 경계는 경계에서의 유체속도가 부분적으로 감소되는 것을 기술하며, 예를 들면, 파이프 내 유화 처리된 파이프 내의 기름유동을 기술하는데 이용된다. 단연코 가장 흔한 경계조건 형태는 no-slip boundaries 경계이며 거의 모든 유체/고체 경계를 기술한다.

형상요소와 격자 벽에서의 점성경계조건은 벽 전단응력(상세내용은 이론 매뉴얼의 Wall-Shear Stress 참조)에 선형으로 비례하는 slip 속도를 포함한다. 비례계수는 마찰계수이며 지정되지 않은 마찰계수나 벽 형태의 영역 경계를 가지는 고체요소에 전반적으로 적용된다. 이 전반적 계수는 Model Setup → Physics tab → Viscosity and Turbulence dialog → Wall Shear Boundary Conditions → Friction Coefficient 에서 지정될 수 있다. 전반적 마찰계수는 모든 벽 형태의 경계에 적용되고 모든 고체요소에 대한 디폴트 값을 정의한다.

일반적 값 보다 우선하는 요소 특정 마찰계수가 정의될 수 있다: Model Setup → Meshing & Geometry → Component → Surface Properties → Static Friction Coefficient.

 

마찰계수가 무한대에 이를 때, 벽 slip 속도는 0(no-slip)에 근접한다. 임의의 큰 값을 지정하는 것을 피하기 위해 no-slip 선정이 마찰계수에 음의 값을 정의함으로써 활성화된다. 유한한 양의 값은 partial-slip 경계를 뜻한다. 0은 free-slip 경계조건을 지정한다. 유한한 양의 마찰계수는 부분-slip 경계가 된다. 디폴트로 Static friction coefficient = -1.0이며 모든 지정되지 않은 요소는 no-slip 표면을 갖는다.

각주: 부분 slip 이 난류모델 사용 시 기존요소에 대해 정의되면 경고가 나타날 것이다.

No-slip 과 partial-slip 표면은 Model Setup Fluids Properties Fluid # Viscosity 하에서 정의된 동적 점성을 필요로 한다.

 

Wall Shear 

벽 전단응력은 유동이 없는 면적부분에서 접선속도를 0으로 가정함으로써 모델링 된다. 0인 접선속도는 접선속도를 가지는 격자경계에서 그리고 이동체의 표면에 대해 수정될 수 있다.

벽 전단응력은 Viscous Flow Model Setup Physics Viscosity and Turbulence 보조 창에서 활성화되고 양의 유체 ViscosityModel Setup Fluids 탭에서 지정될 때 계산된다.

전단응력은 요소 Surface Roughness 계수(Model Setup Meshing & Geometry Component Surface Properties) 가 음수가 아닌 한(즉, 0이아닌 마찰계수에 대해) 자동적으로(하지만 자동적으로 출력되지는 않는다)요소 no-slip 과 partial-slip 요소에 대해 계산된다. 전단응력은 Model Setup Output Activate Shear Stress 에서 Activate Shear Stress 를 선택하고 General Critical Shear Stress = 0으로 지정함으로써 출력될 수 있다.

요소 특정 전단응력은 관심요소에 대해 Output 탭 하단에서 Pressure and Shear Force Output 를 선택함으로 출력될 수 있다.

전단응력과 밀접하게 연결되어 있는 변형률은 Model Setup Output Additional Output Strain Rate 를 선택함으로써 Restart Selected Data 출력에 추가될 수 있다.

전단응력, 변형률, 그리고 벽 근처 속도 분포를 정확히 모델링 하는 것은 격자가 적절히 해결되어야 한다는 것을 필요로 한다.  고체요소 또는 벽면에 인접한 첫 번째 셀은 로그 또는 층류의 벽 속도 분포가 적용되는 지역에 있어야 한다.  벽을 따라 셀들은 표면이 격자선상에 있으면 표면에 수직이거나 벽면을 포함한다.

유동이 Laminar(Viscosity and Turbulence physics 보조창에서 지정되는)이면 속도분포는 직접 미분에 의해 계산된다. 셀의 평균속도는 항상 정확하고 속도분포는 격자가 정련되면 더 잘 해석된다. 최적 셀 크기는 단지 필요한 분포 정확성과 허용되는 계산시간에 달려있으며 셀의 크기가 작아질수록 증가한다.

Turbulence 모델이 활성화되면 벽이나 고체요소 가까운 첫 번째 셀은 항상 밑에 보여진 로그법칙 구역에 상응하는 로그 분포에 따라 속도를 가지게 된다. 벽을 따르는 첫 번째 셀은 점성 sub-layer 를 포함하고 충분히 경계층의 로그법칙 구역 내에 있도록 크기가 정해져야 한다. 만약에 첫 번째 셀의 바깥쪽이 점성 sub-layer나 외부 또는 자유흐름 지역까지 포함한다면 그 때는 계산된 로그법칙 벽 근처 속도와 전단응력이  물리적 양으로부터 벗어나서 이들은 로그법칙관계와 일치하지 않는다.

 

적절한 범위의 셀 크기를 찾는 것은 고체 표면에 수직한 경계층의 높이(두께)를 추정하는 문제이다. 이에 대한 도움이 되는 값은 벽으로부터의 무차원 수직거리 y+, 가끔 viscous length 라고도 불리며 위의 무차원 속도 u+ 와 관련하여 보여진다. 아래 식에서 uτ 는 전단속도, τw 는 고체상의 전단응력, y 는 고체로부터의 수직거리, ρf 는 유체밀도 그리고 µf 는 유체의 동적(분자) 점도이다.

y+를 추정하기 위해 전단응력 τw 가 수동으로 추정되어야 하고 관심 있는 독자는 이를 위해 수리학 문헌을 참조한다. 일반적으로 y+(셀 크기의 함수로)는 30(이 값에서 내부 층이 로그법칙구역으로 부드럽게 변화하고) 보다 커야 하고 유동의 Reynolds 수와 경계층의 두께에 의존하는 값보다 작아야 한다(일반적으로 100 – 500 합당한 상한이다). τw의 수작업추정이 불가능하면 여러 번의 모사가 관찰값(전단응력 또는 속도)이 안정화되는”최적값”을 위해 반복되어야 한다. 고체표면에서 변수값을 계산하기 위해 이용된 근사값은 유체가 충분히 발달한 유동이라는 것을 가정하고 충분히 발달하지 못한 유동에 대한 결과를 해석할 때는 유의하여야 한다.

요소표면이 격자선 방향과 일치하면 고정점들이 표면에서 그리고 표면으로부터 적절한 거리에서 사용되어야 한다(막 설명된 바와 같이 첫 셀 거리 yy+ 기준을 맞추도록). 물체표면이 격자선과 평행하지 않으면 nested 격자블록을 적절한 곳에서 사용하여 표면에 가장 가까운 셀들이 적절한 간격을 가지도록 한다.

 

Component Roughness

요소표면에서의 벽 전단응력은 표면조도를 정의함으로써 수정할 수 있다. 조도는 길이의 단위를 가지며 분자점도에 fluid_density × roughness × relative velocity의 곱을 더함으로써 통상 전단응력 계산에 포함되고 있는데 여기서 relative velocity는 지역 유체속도와 벽 속도(정지된 벽이나 요소는 0)간의 차이이다. 이를 이행하면 laminar 유동모델의 벽 전단응력은 다음과 같다.

여기서

  • k 는 조도
  • ν 는 동점성계수
  • u 는 상대속도이며
  • δy 는 표면에 interest(관련된) 수직한 길이 규모이다.

조도가 충분히 클 때 응력은 다음에 비례한다.

Turbulent 유동모델에서 벽의 법칙 관계는 점도의 변화(즉 ν 에서 ν + ku로)가 ν/u 에 의해 정의된 특정길이 규모로부터 로그의존도를 k로 자동적으로 변환하는 것을 제외하고는 부드러운 벽에서와 마찬가지의 같은 형태를 지니며 k 는 두 특정 길이 중 큰 것이다.

수치해석에서 의미가 있기 위해 조도는 비록 큰 값이 사용될 수도 있지만 요소경계에서의 격자 셀 크기 보다 작아야 한다. 조도를 가지는 요소는 no-slip 표면(음의 static friction coefficient 를 통해)으로 주어져야 한다.

FLOW-3D 에서 조도변수 k 는 개별적으로 Meshing and Geometry Geometry Component Properties Surface Properties Surface Roughness 의 각 요소에서 지정될 수 있다.

Surface Roughness는 Moody diagrams 에서 기준된 조도처럼 균일하게 분포된 표면조도 요소의 평균 높이로 정의된다. 실제표면이 균일한 조도를 가지면 이 높이가 직접적으로 적용되나 균일하지 않으면 정확한 결과를 줄 equivalent 조도 값이 선정되어야 한다. 예를 들면 일반적인 평균속도, 수력반경, 그리고 수력 구배와 관련된 Manning 방정식은 Manning 계수와 관련된 수리반경이 알려질 때 FLOW-3DSurface Roughness 로 변환될 수 있는 등가의 조도변수(Manning의 n)를 사용한다.

여기서

  • V 는 채널 및 도관 내 평균유속
  • Rh 는 수력반경(윤변에 의해 나누어진 유체 단면적)
  • S 는 유동이 수력 구배, 특히(그리고 가끔 부정확하게) 도관이나 채널의 물리적 구배로 가정되며 1.49는 변화인자이고 모든 다른 단위는 미터/킬로그램/초(SI단위로)이며
  • n 은 Manning 조도이다.

균일하지 않은 표면에서 등가 균일조도는 밑에 보여진 것과 같이 Manning의 n 그리고 추정된 수력반경 또는 직경으로부터 계산될 수 있다. 여기서 Surface RoughnessFLOW-3D 에서 이용되는 조도변수이며 모든 변수들은SI 단위(미터) 이고 유동은 완전한 난류유동이며 수리학적으로 고르지 않다. 수력직경 DhRh 의 4배수로 정의된다(Dh = 4 Rh).

위에서 주어진 환원은 파이프와 등가 도관에 대한 Swamee-Jain 방정식으로부터 유도 된다.

여기서 다음 가정이 적용된다.

  • αmanning 는 feet 일 경우 1.486, meter 일 경우 1.0
  • 는Manning 방정식 가정이 옳을 때 1.0
  • ReD 는 5.74보다 훨씬 크다.이는 Manning의 n이 원래 측정된 유동단계에 상응하는 수리직경에 대해서만 기술적으로 유효하다. 이 변환은 다음과 같이 체크된다: mortar콘크리트에 대한 일반적 문헌 값은 0.013이다. n 이 수력반경 1.25ft(수력직경 5ft)인 채널에서 측정되었고 이때 는 0.0033ft또는 1mm인데 이는 mortar cement의 전형적인 문헌 값이다. 계산된 Surface Roughness 값은 대략 1과 10ft사이의 수력직경에 대한 값이다. 수력직경범위에 대한 제약은 항상 체크되어야 한다.각주: Surface Roughness > 0 는 상 변화 모델에서 요소표면 가까이의 액체에 의한 과열 발생 기능을 정지시킨다(Cavitation and Bubble Formation (Nucleation)를 참조한다).Surface Roughness의 값은 요소/유체 열 전달에 영향이 없다. 요소 – 유체로의 열 유속이 표면조도에 따라 증가되려면 요소에 대한 열 전달 면적의 승수가 되는 Surface Area Multiplier 변수를 사용한다. 디폴트로 Surface Area Multiplier = 1.0이다. Surface Area Multiplier = 0 은 유체와 요소 간 열교환 뿐만 아니라 요소 Mass source (사용되면)기능도 불가능하게 한다.
  • Temperature and Strain Rate Dependent Viscosity

    비뉴튼 유체는 점도가 변하는 유동조건에 따라 일정하지 않은 유체이다. 어떤 유체는 shear-thickening 즉 전단 하에서 농축되고 다른 유체는 shear-thinning(전단유동화), 즉 높은 전단 하에서 점도가 감소한다. 또한 온도가 변하는 모사에서 점도는 일반적으로 온도에 의존한다. 어떤 유체의 점도는 이력에 의존한다; 이런 유체는 thixotropic 이며 Thixotropic Fluids 모델을 필요로 한다.

    FLOW-3D 에서는 유체1만 비뉴튼일 수 있다. 2유체모사에서 비뉴튼 유체를 설정하기 위해 Viscous flow in Physics Viscosity and turbulence 를 활성화시킨다. 난류는 일반적으로 비뉴튼 유동에서 중요하지 않다; 그러나 난류선택은 할 수 있다. Turbulence Models은 비뉴튼 유체거동에 고려되지 않는 경험론에 의존한다. 그러므로 난류모델은 보통 비뉴튼 유동에는 유효하지 않으며 비뉴튼 유체에 대해서는 주의하여 사용되어야 한다.

    Fluids Properties Fluid 1 Viscosity 에서 펼쳐지는 메뉴로부터 점도 모델을 선택할 수 있다. 기본값은 상수이다. 비뉴튼 모델은 Temperature Dependent Table, Strain Rate Dependent Table, Strain Rate Dependent Function, Strain Rate and Temperature Dependent Function, Carreau Function, 그리고 Power Law를 포함한다:

Temperature Dependent Table이나 Strain Rate Dependent Table이 선택되면 온도나 변형률의 함수로 점도의 표 데이터를 입력하게 하는 Tabular 버튼을 클릭한다.

각주: 사용자 정의 표 데이터는 전처리에서 솔버가 최적으로 사용하게 내부데이터 구조로 전환된다. 전환은 입력표의 등 간격을 가지는 새 표로의 remapping(재사상)을 포함한다. 온도 또는 변형률 의존 점도를 위한 내부표의 처음과 마지막 점은 각 입력 표로부터 취해지며 그사이의 점들의 수는 10000으로 고정된다.  선형 보간이 전환 중 이용된다.

이 접근은 일반적으로 부드럽게 변하는 데이터에 대해서는 적합하다. 그러나 점도가 온도나 내부표의 간격에 비교될만하게 변형률의 범주에서 상당히 변하는 경우에 변환은 에러를 발생시킬 수도 있다. 이를 피하는 방법은 가능한 한 최대로 입력 표에서 온도와 변형률의 범위를 줄이는 것이다. 그래서 정확도를 높이기 위해 내부표의 간격을 줄이게 된다.

Strain Rate and Temperature Dependent Function 또는 Strain Rate Dependent Function이 선택되면 유체점도는 사용자지정 계수 λ00, λ0, λ1, λ2, n 그리고 µ를 가지는 변형률 및/또는 온도의 함수로 정의된다. 온도 의존도는 상수 a, b c 로 정의된다.

이 계수들은 다음 구성요소 관계를 가지는 점도를 정의한다.

Where 여기서

그리고 µ0 는 정상 상수 점도값(GUI 에서 Viscosity 옆의)으로 정의되는 전단이 없을 경우의 점도며 T* Fluids Properties Reference Temperature 로 정의된다. 적절한 계수의 선정은 사용자가 비뉴튼 유체거동에 대한 다양한 근사치를 사용하게 한다.

Carreau Function 선택을 택하면 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

 

여기서는 Carreau 모델에 연관된 변수들만 정의되어야 한다; 이들은 GUI에서 활성화 된 것으로 보여진다. 이들은 Carreau 형태 유체의 점도 정의를 단순화한다.

Power Law 모델이 선정되면 또 다른 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

여기서는 power-law 모델에 연관된 변수들만이 정의되어야 한다; 이 들은 GUI 에서 활성화 된 것으로 보여진다. 이들은 power-law 형태 유체의 점도정의를 단순화한다.

어떤 비뉴튼 유체모델이 사용될 때 전처리는 두 개의 추가 그림을 prpplt 파일에 그린다. 하나는 주어진 온도에서의 동적 점도 대 변형률이고 다른 하나는 주어진 변형률에서의 점도 대 온도이다. 전처리가 그림의 범위와 변형률 및 온도의 값을 선택하는 것이 어려우므로 사용자는 Input Variable Summary and Units 장의 User Defined Variables 절에서 기술된 바와 같이 4개의 소위 임시변수를 사용하는 환경을 정의할 수 있다.

  • DUM1은 점도 대 변형률이 그려지는 온도를 정의하며 이는 또한 점도 대 온도 그림을 위한 중앙 온도 값이다;
  • DUM2는 점도 대 온도 그림을 위한 DUM1-0.5*DUM2 로부터 DUM1 + 0.5*DUM2까지의 그림 범위를 정의한다.
  • DUM3는 은 점도 대 온도가 그려지는 변형률을 정의하며 또한 점도 대 변형률 그림을 위한 중앙 변형률 값이다;
  • DUM4는 점도 대 변형률 그림을 위한 DUM3-0.5*DUM4 부터 DUM3 + 0.5*DUM4까지의 그림 범위를 정의한다.

각주:

  • 변형률 의존점도에서 1차변수는 ‖eij‖ = 로 정의되는 변형률 크기이다. 같은 변수가 모사 중에 Strain rate magnitude로 출력된다.
  • 비뉴튼 유체유동은 낮은 Reynolds 수에서 가끔 발생한다. 결과적으로 시간간격 크기는 Explicit viscous stress solver가 사용되면 점성전단응력에 의해 조절된다. 모사속도를 상당히 낮추는 제약을 피하기 위해 Numerics Viscous stress solver options Successive under-relaxation또는Line implicit 를 지정함으로써 Implicit 점성응력 솔버가 대신 이용될 수 있다. 그러나 유동에 커다란 점성 구배가 존재하면 수렴은 늦어질 수도 있다.
  • 수치해석 문제점을 방지하기 위해 최대 점성을 약 1E + 15 로 제한하는 점도 계산 내에 추가  방편이 있다.

또한 다음을 참조한다

  • Outflow Boundary Conditions 에서 격자 경계조건의 논의
  • Thixotropic Fluids
  • Wall Slip. 벽 Slip

Thixotropic Fluids / 요변성 유체

요변성 유체의 겉보기 점도는 시간의 직접 함수이다. 겉보기 유체점도가 국부적 정상상태에 도달하는 속도를 조절하는 묽어짐 과 농축율의 관점에서 시간 의존도가 FLOW-3D에서 기술된다. 정상상태점도는 일반적으로 전단율과 온도의 함수일 것이다. 정상상태의 점도가 겉보기 점도보다 클 때 후자는 농축율에 따라 유동시점에서 증가할 것이다. 반대로 겉보기 점도가 정상상태 점도보다 클 때 묽어지는 율에 따라 겉보기점도는 감소할 것이다. 요변성 유체는 항상 비뉴튼성이고 또한 FLOW-3D 에서 정의되어야 한다 (Temperature and Strain Rate Dependent Viscosity참조).

요변성 점도 모델은 Physics Viscosity and Turbulence Thixotropic viscosity 를 선택함으로써 활성화된다.

묽어짐, Fluids Properties Viscosity Thixotropic Constant Thinning Rate, 그리고 농축, Constant Thickening Rate에 의한 이완율을 위한 두 개의 상수가 있다.

 

 

Strain Rate Sensitivity 계수가 정의되면 묽어지는 비율 α 또한 변형률에 의존할 수 있다.

where:여기서

  • µ0 Constant Thinning Rate 이고
  • µ1 Strain Rate Sensitivity 이다

Constant Thinning rate Constant Thickening rate 는 시간의 역수인 차원을 가지며 Strain Rate Sensitivity 는 무차원이다. 모든 율 계수는 기본값으로0이다. – 즉, 비요변성 효과.

정상상태에서 원하는 재료 거동을 근사하는 비뉴튼 점도모델(see Temperature and Strain Rate Dependent Viscosity참조)을 정의해야 한다. 물질을 정의하기 위해 Fluids Properties Viscosity 가지에서 변수들을 사용한다. 또 트리에서 Initial and boundary viscosity 값을 지정한다.

요변성 모사에서 점도는 매우 커질 수 있으므로 고점도 유동을 위한 외재적 알고리즘에 의해 요구되는 작은 시간단계 크기를 피하기 위해 Numerics Viscous stress solver options 로부터 Successive under-relaxation이나 Line implicit 를 선택할 수 있다.

각주: 입력 및 출력 변형률은 실제로는 변형률의 크기이다.

또한 Wall Slip Temperature and Strain Rate Dependent Viscosity 를 참조한다.

Turbulence

점성 평가(난류 종결)를 위한 6개의 옵션이 FLOW-3D 에 존재한다. 원하는 평가를 Physics > Viscosity and turbulence 에서 선정한다. 모든 모델에서 점성모델이 활성화되어야 하고 약의 동점성 값을 필요로 한다. 먼저 viscous flow 를 활성화한 후 유체 1 (그리고 있으면 유체 2 )의 점도를 Fluids Properties Viscosity 에서 입력한다.

이 모델 각각의 상세내용은 Theory 장의 Turbulence Models 절을 참조한다.

난류의 초기나 경계조건이 지정되지 않으면 초기나 경계에서의 난류운동에너지의 값은 프로그램에 의해 작은 값으로 지정되는데 이는 층류를 나타낸다. 유입유동이 난류이면 경험에 의해 상류유동의 난류 정도는 평균유동속도의 10%에 상응하는 잔잔한 유동에서의 난류유동변동이 가정된다. 예를 들면, 20m/s의 평균상류유동에서 난류속도변동의 크기가 2m/s이고, 난류운동에너지(단위 질량당)의 경계 값은 다음과 같다.

프로그램 기본값은 난류모델에서 나타나는 상수들을 지정하는 데 이용된다. 이 계수 값들은 일반적으로 권고되지 않지만 필요에 따라 변경될 수도 있다.

가장 작은 영역 차원(한 셀을 가지는 방향을 제외한)의 기본값0.07인 형상효과나 실제유동장의 규모를  반영하지 않으므로 Turbulent mixing length가 1방정식 난류에너지모델 사용자에 의해 지정되어야 한다. 이 변수는 유동에 존재하는 난류 와류의 특정규모를 기술하고 난류점도계수 최대 허용치를 정의하는데 이용된다.

Maximum turbulent mixing length는 계산된 난류의 점도가 너무 크지 않게 하도록 난류소산 ε 의 최소제한을 정하기 위해 Two-equation k ε model, the Renormalized group (RNG) model, 그리고 Two-equation k ω model에 의해 이용된다. 이 값은 Dynamically computed 선택이 Fluids Properties Viscosity window(상기 참조)로부터 자동적으로 모사 중에 시간과 위치의 함수로 계산된다. 다른 방법으로는 사용자가 Maximum turbulent mixing length 값을 Constant를 선택하여 옆의 편집상자에 값을 입력함으로써 기술할 수 있다.

Maximum turbulent mixing length가 클수록 모사 중 난류소산은 작아진다.  난류소산은 난류 점도 식의 분모에 나타나므로 난류점도는 특히 작은 전단율을 가지는 유동지역에서 커지게 된다. 역으로 작은 Maximum turbulent mixing length값은 작은 난류점도를 유발할 것이므로 난류를 과도하게 감쇠시킬 것이다.

예를 들면, 여수로 모사에서 Maximum turbulent mixing length 를 계산하는데 이용된 길이 규모가 여수로 상의 유동의 깊이일 수 있다; 고압 주조에서 길이규모는 러너의 가장 작은 폭일 수도 있다; 파이프 및 관 유동에서는 길이 규모는 유동채널의 수력직경일 수 있다. 일단 길이규모가 결정되면 Maximum turbulent mixing length는 길이 규모의 0.07, 또는 7%로 결정된다.

유입경계에서, 사용자는 난류 운동에너지와 소산을 직접 지정할 수 있다. 소산 없이 난류 운동에너지의 값이 주어지면 그 때의 소산 값은 자동적으로 편집상자 내에 정의된 Maximum turbulent mixing length 의 값에 의해 계산되거나 주어지지 않으면 기본값이다.

각주: 난류 평가를 위해 사용된 공식이 프로그램 시작 시 바뀔 수도 있다(General Restart Turbulence 참조). 난류이송방정식  (k ε, RNG, k ω 또는 One-equation) 을 포함하는 난류모델에서 이 방정식에서의 점성 확산 항은 항상 외재적으로 근사되므로 내재적 점성 알고리즘을 사용하는 것은 추천되지 않는다.

See also:

이론 매뉴얼 Turbulence Models 을 참조한다.

Viscous Heating

점성가열 모델은 Physics Viscosity and turbulence Activate viscous heating를 체크함으로써 활성화 된다. Viscous flow Turbulence options 아래서 선택되어야 함에 주의한다.

See also:

이 기능에 대한 상세정보를 위해 Theory 매뉴얼의 Thermal Diffusion and Sources를 참조한다.

Note:

  • 이 옵션은 Physics Heat transfer 가 활성화되어야 한다.
  • 0이아닌 유체 동점성이 Fluids 의 유체 입력에서 정의되는 경우만 사용된다.

Viscosity Output점성 출력

유체점도는 온도, 변형률 또는 난류 같은 다른 변수의 함수일 때 마다 자동적으로 후처리에서 저장된다. 반대로 점도가 상수이면 예를 들어 뉴튼 유체의 층류 유동에서는 일반적으로 후처리에서 이용 하지 못 한다. 사용자는 Output 탭의 Additional Output 절에서 Dynamic Viscosity 를 요청함으로써 디폴트 거동을 무효화할 수 있다. 이 기능은 특히 유체점도가 계산되는 FORTRAN routine mucal.F가 사용자에 의해 수정될 때 유용하다.

 

 

 

Computational Analysis of Drop Formation and Detachment

Computational Analysis of Drop Formation and Detachment

Introduction and Problem Statement

신속, 반복, 작은 물방울의 생성 및 증착, 작은 형상의 프린팅 또는 패터닝 (예 : l = 10-3-1 mm), 스프레이로  균일한 두께의 박막 형성은 다양한 산업에 매우 중요합니다(1-5). 액체 이동과 액적 형성 / 증착 공정은 복잡한 자유 표면 흐름, 자연적인 모세관운동 형성, thinning, pinch-off를 수반한다 (1-5). 단순한 뉴턴 및 비탄성 유체에 대해 액적 생성 및 액적 이동을 분석하기위한 실험적, 이론적 및 1 차원 시뮬레이션 연구가 진행되었지만 프린팅 또는 패터닝에 대한 기계론적인 이해는 여전히 과제로 남아 있습니다. 현재의 계산에 대한 주된 목표는 뉴턴 유체의 pinch-off에 대한 기계론적 이해를 얻기 위해 FLOW-3D에 내장된 VOF(volume-of-fluid) 접근법으로 시험하는 것입니다. 전산해석은 모세관, 관성, 점성 응력의 복잡한 상호 작용을 포착하여 자기유사 모세관의 thinning and pinch-off를 결정합니다. 뉴턴 유체의 물방울 형성 ​​및 분리현상은  전산해석으로부터 얻어진 자기유사 모세관현상 이론, 보편적인 축소화 기법인 1D 시뮬레이션 (1-7)과 실험 (1, 2, 8-12)을 이용하여 설명될 수 있음을 보여준다. 이러한 우리가 진행한 원형흐름 시뮬레이션은 유한한 시간의 비선형 역학, 위성 낙하현상, 복잡한 형상의 프린팅과 같이 어려운 전산해석의 기반이 될 것 입니다.

방울 형성의 전산 분석
그림 1 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭 형성 및 분리에 대한 전산해석 : (a) 5개의 저점도 유체에 대한 물방울의 necking에 대한 반경이 시간변화에 따라 표시됩니다. 물방울 necking의 반지름이 오른쪽에서 왼쪽으로 시간에 따른 전개를 보여줍니다. 마찬가지로 스냅 샷은 necking의 반경이 오른쪽에서 왼쪽으로 줄어듭니다. 속도의 크기 (단위 : cm/s) 와 화살표의 방향에 대한 컬러 맵을 사용하면 변형장을 결정할 수 있으며 Fluid 5 (표 1 참조)의 경우에는 순식간에 신장이됩니다. 이미지 II에 캡처 된 pinch-off 하기 전에 형성된 원추형 necking은 실험을 통해 얻은 necking 모양과 유사합니다.

Modeling Approach and Parameter Space

표면 장력 및 중력 모델을 적용한 FLOW-3D 에서 균일한 메쉬 크기를 사용하여 노즐에서 드롭 형성 및 분리에 대한 시뮬레이션을 수행하였습니다. 유한 체적의 유체를 떨어뜨리거나 분리하는 일은 물방울의 성장과 드롭, 노즐에 연결되는 모세관 현상, 관성, 점도 및 중력에 대한 상호 작용을 수반합니다. 시뮬레이션에서 스테인레스 강 노즐 ( {{D} _ {0}} = 2 {{R} _ {0}} = 1.7 \, \ text {mm}) 에서 유한 체적의 뉴턴 유체가 발생합니다. 표면 장력이 중력을 겪으면 새로 형성된 액적 분리가 발생합니다 (mg> 2 \ pi \ sigma {{R} _ {0}}). 시뮬레이션은 유체점도의 영향을 설명하기 위해 두 그룹으로 나누어져 있습니다: 저점도 유체 (글리세롤 함량이 40 % 미만인 물과 글리세롤/물 혼합물) 및 점도가 높은 유체 (예 : 글리세롤과 글리세롤/물 혼합물 점도 > 100x 물 점도). 두 그룹의 유체 특성은 각각 표 1과 2에 나와 있습니다.

계산 분석 드롭 형성 저점도

그림 2 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭형성 및 분리에 대한 전산 해석 : 반경 플롯에서 4개의 고점도 뉴톤유체에 대해 necking 반경을 시간변화에 따라 표시합니다. 낙하 분리 중 모세관 현상이 스냅 샷으로 표시됩니다. 컬러 맵은 Fluid 8의 속도 크기 (단위 : cm/s)의 변화를 포착합니다 (표2 참조). 화살표는 성장하는 물방울과 얇아지는 물방울내에서 흐름방향을 나타냅니다. FLOW-3D 시뮬레이션으로 얻은 necking 모양은 고점도의 뉴턴유체에 대한 특징인 원통형 유체요소로 이어집니다.

 

<표 1 : FLOW-3D를 사용하여 시뮬레이션 된 저점도 유체의 특성>
Fluid Property Fluid 1 Fluid 2 Fluid 3 Fluid 4 Fluid 5
Viscosity [Pa · s] 0.05 0.02 0.01 0.0075 0.005
Surface Tension  [mN / m] 68 68 68 68 68
Density [g / cm 3 ] 1 1 1 1 1
Ohnesorge Number 0.21 0.08 0.04 0.03 0.021
 저점도 유체 (표 1의 유체 2) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s)이며 속도벡터가 표시됩니다.

 

<표 2 : FLOW-3D를 사용하여 시뮬레이션 된 고점도 유체의 특성>
Fluid Property Fluid 6 Fluid 7 Fluid 8 Fluid 9
Viscosity [Pa · s] 1.5 0.8 0.5 0.25
Surface Tension  [mN / m ] 68 68 68 68
Density [g / cm 3 ] 1 1 1 1
Ohnesorge Number 6.24 3.33 2.08 1.04

고점도 유체 (표 2의 유체 8) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s) 이며 속도 벡터가 표시됩니다.

Discussion of the Simulation Results

드롭 형성 및 분리는 표1과 표2에 열거 된 유체에 대해 FLOW-3D 를 사용하여 시뮬레이션 하였고, 시간 경과에 따른 necking 모양, 반경을 분석하였습니다. 물방울의 necking 모양과 저점도에서의 necking에 대한 역학(그림 1 참조)은 실험, 흐름 이론, 1D 시뮬레이션, 자기유사 관성에 대한 모세현상의 특성을 나타냅니다 (1, 2, 6, 7, 13) :

(1)  \ displaystyle \ frac {{R (t)}} {{{{R} _ {0}}}} \ approx 0.8 R {{{{왼쪽} {R} {0} 3}}} 오른쪽}) ^ {{{{frac {1} {3}}} {{왼쪽 {{{{왼쪽}}} {2} {3}}}}

여기서 R (t)가  necking의 순간 반경이고, R0는 노즐의 외부반경이며,  \ displaystyle \ sigma 는 표면 장력,  \ displaystyle \ rho 는 유체의 밀도 tC 는 pinch-off 시간이다. 마찬가지로, 이러한 더 높은 점도의 뉴턴유체에 대한 반경 변화데이터는 시간에 따른 반경의 감소를 나타내는 것이며,  Papageorgiou’s visco-capillary scaling (8, 9)은 아래의 식으로 표현된다.

(2)  \ {0 \} {} {} {} {} {} {} {} {} {} {} {} {} { } ({{t} _ {p}} - t)

모세관 속도(표면 장력과 점도의 비)의 측정 값은 McKinley와 Tripathi (8)에 의해 Capillary Break-Up Extensional Rheometer (CaBER)라고 불리는 상업적으로 이용 가능한 장비를 사용하여 얻은 값과 모세관 속도는 공칭 표면 장력과 점도를 사용하여 계산됩니다.

FLOW-3D 는 물방울의 necking부분을 속도 벡터로 시각화하여 유체의 흐름을 나타낼 수 있습니다. 또한, 이는 그림 1과 같이 전단, 확장을 겪은 후 얇아지는 물방울이 흐르는 과정의 순간을 결정할 수 있는 가능성을 줍니다. 추가로, 낮은 점도의 뉴턴유체는 높은 점도의 뉴턴 유체에 비해 질적으로 다른 거동을 보여준다(그림 2참조). 낮은 점도의 뉴턴 유체에 대한 necking 프로파일은 이론(6,13)에 따라 자기 유사성이 됩니다.

Conclusions, Outlook and Ongoing work

우리의 예비결과는 FLOW-3D 기반의 전산해석이 액적 형성과 탈착의 기초가 되는 프로토타입의 자유 표면흐름을 시뮬레이션하는데 사용될 수 있음을 보여줍니다 . 시뮬레이션된 반경변화 프로파일이 실험적으로 관찰된 높은 유체 및 이론적으로 예측된 유체인 스케일링 법칙 및 pinch-off dynamics과 일치하는 것을 발견하였습니다.

자주 사용되는 1D 또는 2D 모델과 달리 FLOW-3D 는 기본 응력 및 확장 유동장 (균일도 및 크기)의 강도와 얇은 액체 필라멘트 내 흐름에 대한 시각화를 나타낼 수 있습니다(그림1과 2 참조). 확장 유동장과 연관된 흐름 방향 속도 구배는 모세관현상이 나타나는 물방울의 얇은 부분 내에서 발생합니다. 유동학적으로 복잡한 유체에서 non Newtonian shear 및 신장, 점도뿐만 아니라 그외의 탄성 응력이 nonlinear pinch-off dynamics을 급격하게 변화시킵니다(2, 10-12). 우리는 현재 점탄성과 non-Newtonian 유동학을 사용하여 FLow-3D에 복합 유체의 처리 성능평가를 위한 강력한 연산 프로토콜을 개발하고 있습니다.

References

  1. J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865-929 (1997).
  2. G. H. McKinley, Visco-elasto-capillary thinning and break-up of complex fluids. Rheology Reviews, 1-48 (2005).
  3. B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research 40, 395-414 (2010).
  4. O. A. Basaran, H. Gao, P. P. Bhat, Nonstandard Inkjets. Annual Review of Fluid Mechanics 45, 85-113 (2013).
  5. S. Kumar, Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annual Review of Fluid Mechanics 47, 67-94 (2014).
  6. R. F. Day, E. J. Hinch, J. R. Lister, Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704-707 (1998).
  7. J. Eggers, M. A. Fontelos, Singularities: Formation, Structure, and Propagation. (Cambridge University Press, Cambridge, UK, 2015), vol. 53.
  8. G. H. McKinley, A. Tripathi, How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653-670 (2000).
  9. D. T. Papageorgiou, On the breakup of viscous liquid threads. Phys. Fluids 7, 1529-1544 (1995).
  10. J. Dinic, L. N. Jimenez, V. Sharma, Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids. Lab on a Chip 17, 460-473 (2017).
  11. J. Dinic, Y. Zhang, L. N. Jimenez, V. Sharma, Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions. ACS Macro Letters 4, 804-808 (2015).
  12. V. Sharma et al., The rheology of aqueous solutions of Ethyl Hydroxy-Ethyl Cellulose (EHEC) and its hydrophobically modified Analogue (hmEHEC): Extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter 11, 3251-3270 (2015).
  13. J. R. Castrejón-Pita et al., Plethora of transitions during breakup of liquid filaments. Proc. Natl. Acad. Sci. U.S.A. 112, 4582-4587 (2015).

[FLOW-3D 물리모델] Solidification 응고

응고 모델은 열전달이 활성화되고(Physics Heat Transfer Fluid internal energy advection) 유체비열(Fluids Fluid 1 Thermal Properties Specific heat)과 전도도(Fluids Fluid 1 Thermal Properties Thermal Conductivity) 이 지정될 때 사용될 수 있다. 단지 유체 1만 상 변화를 겪을 수 있다.

Solidification - Activate solidification

응고모델을 활성화하기 위해 Fluids Fluid 1 Solidification Model 을 체크하고 물성 Fluids Fluid 1 Solidification Model 가지에서 Liquidus temperature, Solidus temperature, 그리고 Latent heat of fusion 를 지정한다. 가장 간단한 모델(Latent Heat Release Definition 에 펼쳐지는 메뉴에서 Linearly with constant 를 선택)에서, 잠열은 물체가 Liquidus 에서 Solidus 온도로 냉각될 때 선형적으로 방출된다. 고상에서의 상변화열을 포함하는, 잠열 방출의 더 자세한 모델을 위해 온도의 함수로 잠열방출을 정의하기 위해 Specific energy vs. temperature 또는 Solid fraction vs. temperature 선택을 사용한다. 이 지정에 대한 더 자세한 내용은 이론 매뉴얼의 Heat of Transformation 를 참조한다.

solidification-fluid-properties

응고는 유체의 강직성 및 유동저항을 뜻한다. 이 강직성은 두 가지로 모델링 된다. 낮은 고상율에 대해 즉 Fluids Fluid 1 Solidification Model Solidified Fluid 1 Properties Coherent Solid Fraction 의 coherency 점 밑에서는 점도는 고상율의 함수이다. 간섭 고상율보다 큰 고상율에 대해서는 고상율의 함수에 비례하는 항력계수를 갖는 Darcy 형태의 항력이 이용된다. 이 항력은 모멘텀 방정식에 (bx,by,bz) 로써 추가된다- Momentum Equations 를 보라. 이 항력의 계산은 Solidification Drag Model 에서 기술된다. 항력계수는 사용자가 유동저항에 양을 조절할 수 있는 Coefficient of Solidification Drag 인자를 포함한다. 항력계수는 FLOW-3D 출력에서 기록된 속도에 상응하는 지역 상 평균 속도에 의해 곱해진다.

Fluid 1 Properties)을 지나면 항력은 무한대가 되고 계산격자 관련하여 유동이 있을 수 없다(단 예외로 Moving Solid Phase를 참조).

Note

모든 유체가 완전히 응고하면 모사를 정지시키기 위해 General Finish condition Solidified fluid fraction 를 이용한다. General Finish condition Finish fraction 은 모사를 중지하기 위한 고상율 값을 정한다.

 

Drag in the Mushy Zone, Mushy영역 내 항력

 

주조 시 mushy zone 은 액상과 고상이 혼합물로 존재하는 지역이다. 이 지역 혼합점도는 동축의 수지상 조직(과냉각된 액체 안에서 방사상으로 자라는 결정으로 된 구조) 이 액체 안에서 자유롭게 부유할 때 영향을 미친다.

일단 수지상 조직의 간섭성이 발생하여 고정된 고상 망이 형성되면 액상이 고정된 다공 수지상 구조를 통과해야 하므로 추가의 유동손실이 발생한다. 다른 방법으로는 간섭점을 지난 액/고상 혼합물은 다공물질을 통한 유동 대신에 고점도의 유체로 간주될 수 있다. 점성유체로 간주하는 접근은 예를 들면 연속 이중 롤 주조 과정같이 고상이 계속 이동 및 변형할 때 유용하다.

 

Solidification Drag Models in FLOW-3D, FLOW-3D 내 응고 항력모델

응고에 의한 항력계수를 정의하기 위해 사용자는 우선 열전달 및 응고모델을 활성화 해야 한다. 이들은 Model Setup Physics 탭 에서 활성화될 수 있다. 수축모델 또한 응고모델 창에서 활성화될 수 있다.

Solidification model

일단 Solidification 모델이 활성화되면 항력의 공식이 지정될 필요가 있다. Solidification대화의 밑 좌측 모퉁이에서 Porous media drag-based Viscosity-based 의 항력공식 중의 선택을 한다.

    • Viscosity-based 공식은 점성 유체로 취급하며 Viscosity 영역 내Flow model for solidified metal 입력 밑에서 지정되는 순수 고상 점성을 갖는 고상화된 유체로 간주된다. 이 접근법은 경직성의 항력모델(즉, 응고 금속이 롤러 사이로 압착될 때)을 사용할 수 없는 경우의 모사에 이용된다. 이 점성은 고상율에 따라 선형으로 변한다.고상율이0일 때 점도는 유체1의 점도이다.고상율이1이면 점도는 Solidification 패널에서 지정된 값과 같다.
    • Porous media drag-based 공식은 응고상태를 결정하기 위해 고상율을 사용한다. 고상율이 Critical Solid Fraction 이거나 초과하면 이때 항력은 무한대가 된다-즉, 액상/고상 혼합물은 고체같이 거동한다. 고상율이 Coherent Solid Fraction 보다 작으면 항력은 0이다. 이 두 값 사이에서 유동은 mushy 지역에 있고 이를 통한 유동은 마치 다공질 내에서의 유동같이 처리된다. 또한 모델은 고상율이 Coherent Solid Fraction 보다 작을 때 자동적으로 용융 금속의 점도를 조절한다. 이 상태에서 고상결정은 점도를 올리지만 결합하지는 않는다(즉, 간섭 없음). 일단 유체가 Coherent Solid Fraction 에 도달하면 항력방정식이 고려되고 점도는 간섭성에 도달하기 전의 값으로 일정하게 된다. 임계 및 간섭 고상율은 사용자가 정의하며 논문이나 책 등에서 찾을 수 있다. 이 식에서는 Coefficient of Solidification Drag 가 정의되어야 한다. 이는 Solidification 창 또는 Fluid 1 Solidification ModelSolidified Fluid 1 Properties tree Other 트리를열어 Model Setup Fluids 탭에서 될 수 있다.

How to Calculate Permeability 투과성 계산법

밑에 주어진 Darcy법칙은 수지상 구조를 위한 다공매질내의 수학적 유동기술이다.[Poi87].

(19)\mathbf{u} = - \frac{K}{\mu} \nabla P

여기서 u 는 수지상 구조 내 유동의 속도이고 ∇P 는 지역 압력구배, 그리고 K 는 mushy 구역의 특정 투수성이다. 이 방정식은 단지 유동이 거의 정상 상태이고, 관성효과가 없으며 유체의 체적율이 일정하고 균일하며 액체-액체의 상호작용 힘이 없을 때 유효하다. 투수성을 정의하는데 이용될 수 있는 대 여섯 개의 모델이 있으나 FLOW-3D 는 밑에 보여주는 Blake-Kozeny 을 이용한다. 다른 모델들은 코드와 함께 제공되는 소스코드를 사용자 사양에 맞게 수정하여 추가할 수 있다.

(20)\mathbf{u} = -C_2 \left( \frac{\lambda_1^2 (1-f_s)^3}{\mu f_s^2} \right) \left( \nabla P - \rho \mathbf{g} \right)

여기서

C2 는 전형적으로 와 같은 비틀림

fs 는 고상율이고

λ1는 유동을 위한 특정 치수

이 응용에서 수지상 가지 간격(DAS)이 이용된다.

  • 식 (11.19) 을 식(11.20) 에 적용하면 투수성을 위한 다음 식을 얻는다.

(21)K = \lambda_1^2 \frac{(1-f_s)^3}{180f_s^2}

수지상 가지 간격(DAS)에 대한 일반적인 값들은 밑에 주어져 있다.

Range of Cooling Rates in Solidification Processes
COOLING RATE, K/s PRODUCTION PROCESSES DENDRITE ARM SPACING, \mu m
10^{-4} to 10^{-2} large castings 5000 to 200
10^{-2} to 10^3 small castings, continuous castings, die castings, strip castings, coarse powder atomization 200 to 5
10^3 to 10^9 fine powder atomization, melt spinning, spray deposition, electron beam or laser surface melting 5 to 0.05

Range of cooling rates in solidification processes [CF85]

 

How FLOW-3D Defines the Coefficient of Solidification Drag FLOW-3D 가 응고 항력계수를 결정하는법

FLOW-3D 는 액고상 변화를 모델링하기 위해 다공매질항력을 이용한다. 항력은 고상율의 함수이다. 사용자에게 두 수축모델이 이용 가능하다; 급속 수축 모델 과 완전 유동모델. 급속 수축 모델은 상변화와 연관된 체적변화를 고려하지 않으며 유체는 정지해 있다고 가정한다. 완전 유동모델은 상변화가 관련된 체적변화를 고려한다. 항력은 투수성에 역으로 비례하므로 다음과 같이 표현될 수 있다.

(22)K = \frac{\mu}{\rho F_d}

여기서, Fd FLOW-3D 에서 사용된 항력계수이다. 이 항력계수는 지역 속도에 의해 곱해지고 모멘텀 방정식의 오른쪽에서 차감된다 (Momentum Equations 참조). 식 (11.22) 를 재정리하고 식 (11.21) 로부터의 투수성에 치환하면 다음을 얻는다.

  • The Coefficient of Solidification Drag: \text{TSDRG}=\frac{180 \mu}{\lambda_1^2\rho },
  • The drag force: F_d = \mbox{TSDRG} \frac{ f_s^2}{(1-f_s)^3}.

 

Macro-Segregation during Alloy Solidification 합금응고시 거시적 편절

편절 모델은 대류와 확산에 의한 용질 이동에 따른 이원합금 요소에서의 변화를 모델링 하도록 되어 있다. 이 모델링은 Physics → Solidification 로 부터 될 수 있다.