에스티아이씨앤디가 대한민국 최대 생산제조기술 전회(SIMTOS 2024)에 참여합니다.

FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2023R2 의 새로운 기능

2023R2 FLOW-3D 릴리스

FLOW-3D 2023R2 의 새로운 기능

새로운 결과 파일 형식

FLOW-3D POST 2023R2 는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.

FLOW-3D POST 2023R2 에서 사용자는 이제 selected data를 flsgrf , EXODUS II 둘중 하나 또는 flsgrf 와 EXODUS II 둘다 파일 형식으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용하여 FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 위치에서의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 추가 정보를 추출할 수 있습니다. 

레이 트레이싱을 이용한 화장품 크림 충전
FLOW-3D POST 의 새로운 EXODUS II 파일 형식으로 채워진 화장품 크림 모델의 향상된 광선 추적 기능의 예

새로운 결과 파일 형식은 솔버 엔진의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다. 이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다. 

FLOW-3D POST 의 새로운 시각화 기능 에 대해 자세히 알아보세요 .

난류 모델 개선

FLOW-3D 2023R2는 two-equation(RANS) 난류 모델에 대한 dynamic mixing length 계산을 크게 개선했습니다. 거의 층류 흐름 체계와 같은 특정 제한 사례에서는 이전 버전의 코드 계산 한계가 때때로 과도하게 예측되어 사용자가 특정 mixing length를 수동으로 입력해야 할 수 있습니다. 

새로운 dynamic mixing length 계산은 이러한 상황에서 난류 길이와 시간 척도를 더 잘 설명합니다. 이제 사용자는 고정된(물리 기반) mixing length를 설정하는 대신 더 넓은 범위의 흐름에 동적 모델을 적용할 수 있습니다.

접촉식 탱크 혼합 시뮬레이션
적절한 고정 mixing length와 비교하여 접촉 탱크의 혼합 시뮬레이션을 위한 기존 동적 mixing length 모델과 새로운 동적 mixing length 모델 간의 비교

정수압 초기화

사용자가 미리 정의된 유체 영역에서 정수압을 초기화해야 하는 경우가 많습니다. 이전에는 대규모의 복잡한 시뮬레이션에서 정수압 솔버의 수렴 속도가 느려지는 경우가 있었습니다. FLOW-3D 2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.

압축성 흐름 솔버 성능

FLOW-3D 2023R2는 최적화된 압력 솔버를 도입하여 압축성 흐름 문제에 대해 상당한 성능 향상을 제공합니다. 압축성 제트 흐름의 예에서 2023R2 솔버는 2023R1 버전보다 최대 4배 빠릅니다.

압축성 제트 시뮬레이션
FLOW-3D 의 압축성 제트 시뮬레이션의 예

FLOW-3D 2023R2 의 새로운 기능

FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R2에서 IT 관련 개선 사항을 받았습니다.  FLOW-3D 2023R2은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로우를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로우가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

확장된 PQ 2 분석

제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량 운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리하도록 단순화하는 경우가 많습니다. 우리는 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 현실적인 결과를 제공했습니다. 이로써 시뮬레이션 시간을 줄이고 모델 복잡성의 감소시킬 수 있습니다.

FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2022R2 제품군 출시로 Flow Science는 FLOW-3D 의 워크스테이션과 HPC 버전을 통합하여 노드 병렬 고성능 컴퓨팅 실행할 수 있도록 단일 노드 CPU 구성에서 다중 노드에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 형태 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성요소 제어, entrained air 기능이 개선되었습니다.

통합 솔버

FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행할 수 있습니다.

많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 Open MP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.

성능 확장의 예
CPU 코어 수 증가에 따른 성능 확장의 예
메쉬 분해의 예
Open MP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

솔버 성능 개선

멀티 소켓 워크스테이션

다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.

낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스

대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.

정제된 체적 대류 안정성 한계

Time step 안정성 한계는 모델 런타임의 주요 요인이며, 2022R2에서는 새로운 time step 안정성 한계인 3D 대류 안정성 한계를 Numerics 탭에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.

압력 솔버 프리컨디셔너

경우에 따라 까다로운 유동 해석의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 프리컨디셔너 기능을 활성화하여 압력 수렴을 돕습니다. 런타임이 1.9~335배 더 빨라졌습니다!

점탄성 유체에 대한 로그 형태 텐서 방법

점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수에 효과적입니다.

점탄성 흐름을 위한 개선된 솔루션
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수의 개선된 솔루션의 예입니다. 제공: MF Tome 외, J. Non-Newton. Fluid. Mech. 175-176 (2012) 44–54

활성 시뮬레이션 제어 확장

Active simulation 제어 기능이 확장되어 연속 주조 및 적층 제조 응용 분야에 일반적으로 사용되는 팬텀 개체는 물론 주조 및 기타 여러 열 관리 응용 분야에 사용되는 냉각 채널에도 사용됩니다.

팬텀 물체 속도 제어의 예
연속 주조 응용 분야에 대한 가상 물체 속도 제어의 예
동적 열 제어의 예
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예
동적 냉각 채널 제어의 예
산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예

향상된 공기 동반 기능

디퓨저 및 이와 유사한 산업용 기포 흐름 응용 분야의 경우 이제 질량 공급원을 사용하여 물기둥에 공기를 유입할 수 있습니다. 또한, 동반된 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.

디퓨저 모델의 예
디퓨저 모델의 예: 이제 질량 소스를 사용하여 물기둥에 공기를 유입할 수 있습니다.

FLOW-3D 아카이브 의 새로운 기능

FLOW-3D 2022R1 의 새로운 기능

FLOW-3D v12.0 의 새로운 기능

그림 2.1 가공 후 부품 보기

1 m/s보다 빠른 속도에서 액체 금속의 움직임 연구

ESTUDIO MOVIMIENTO DE METAL LIQUIDO A VELOCIDADES MAYORES DE 1 M/S

Author: Primitivo Carranza Torme
Supervised by :
Dr. Jesus Mª Blanco Ilzarbe
Energy Engineering Department
Faculty of Engineering – Bilbao, Vizcaya
University of Basque Country UPV / EHU

INTRODUCTION

주조 금속 부품은 모든 산업 분야에서 매우 중요합니다. 그러나 이들을 제조함에 있어서 액상재료에서 최종 형태에 이르기까지 용융온도, 합금, 성형, 주입, 응고 등 여러 변수를 동시에 제어해야 한다.

이러한 모든 측면은 올바르게 수행되어야 합니다. 단 하나의 오류로 인해 주조가 고객의 사양을 충족하지 못하기 때문입니다. 금속 주조는 고대(5,000년 이상)에서 현대 엔지니어링 과학으로 발전한 인간 활동으로, 새로운 개념과 솔루션의 지속적인 흐름으로 모든 복잡성을 포괄합니다.

본 논문에서 주조 기술 연구는 금속 특성, 합금 효과, 작업 및 열처리, 유체 흐름 또는 응고에 대한 별도의 연구보다 훨씬 더 광범위한 분석입니다. 주조 공정에서 강력한 재순환 영역은 공기, 가스, 주형 모래 입자 및 주물의 품질에 심각한 영향을 미치는 기타 결함을 가둘 수 있습니다.

특히 이러한 결함이 상당한 경제적 손실을 초래하는 넓은 표면을 채우는 동안. (HURST, 1996) 우리는 주물용 충진 및 공급 시스템 설계의 이론과 실제 지식을 바탕으로 이 연구를 시작했습니다(Sigworth, 2018).

이러한 기술은 문제 해결, 프로세스 개선 및 최적화와 같은 진단 목적과 새로운 기술 개발 모두에 효과적인 것으로 입증되었습니다. 금속 가공의 특정 문제에 대한 이러한 시뮬레이션 기술의 적용은 액체 금속의 속도가 1m/s보다 큰 경우 따라야 할 단계를 명확하게 정의하는 균일한 처리를 사용하지 않습니다.

이것이 우리 연구의 대상이 되는 조각들입니다. 1980년대 이래로 강력한 경쟁 압력(국가 경제 간의 경쟁 및 강철 대 알루미늄 또는 알루미늄 대 플라스틱 또는 복합 재료와 같은 다른 재료 간의 경쟁)으로 인해 금속 및 재료 분야에서 심오한 기술 변화가 있었습니다.

(Steel statistic year book, 2019) 어쨌든 수익성을 보장하기 위해서는 기존 금속 가공 작업을 지속적으로 업그레이드하고 최적화하는 것이 필수적이며, 아마도 가장 중요한 것은 지속적으로 새로운 제품과 프로세스를 개발하는 것입니다.

제조 및 시뮬레이션. 국가 경제의 경우 이는 현재 기술을 사용하여 대부분의 서방 국가에서 새로운 금속 생산 공장을 건설하는 것이 정당화될 수 없으므로 연구 개발 노력이 기존 작업을 개선할 수 있음을 의미합니다.

그리고 가장 중요한 것은 새로운 제품 및 프로세스 개념을 개발하는 것이 이러한 산업과 사회 전체의 지속적인 복지에 매우 중요하다는 것입니다. 높은 비생산율, 자동화 및 로봇화가 그러한 노력의 핵심 요소가 되어야 합니다.

분명히, 이러한 개발의 구현 시간은 상당히 짧아야 하므로 전통적인 기술이 대안적이고 더 빠르고 비용 효율적인 접근 방식에 자리를 내주어야 합니다. 수학적 모델링과 더 큰 범위의 전산 모델링 접근 방식은 절실히 필요한 기술 변화를 실현하는 데 도움이 되는 큰 잠재력을 가지고 있다고 믿어집니다. (European Steel Sector Copetitiveness of the European Steel Sector, 2008)

기술 변화의 필요성에 대한 추진력은 하드웨어뿐만 아니라 다양한 물리적 시뮬레이션 및 소프트웨어 패키지를 포함하는 컴퓨팅 도구의 보다 비용 효율적인 가용성에 대한 강력한 추진력도 필요합니다.

그림 2.1 가공 후 부품 보기
그림 2.1 가공 후 부품 보기
그림 3.33 속도가 1m/s를 초과하는 구역의 세부 정보
그림 3.33 속도가 1m/s를 초과하는 구역의 세부 정보

What’s New – FLOW-3D 2023R2

FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. 누락된 종속성을 보고하도록 Linux 설치 프로그램이 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 또한 워크플로를 자동화한 사용자를 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

확장된 PQ 2 분석

제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량-운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리한 단순화인 경우가 많습니다. 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 여전히 현실적인 결과를 제공합니다. 이것은 시뮬레이션 시간과 모델 복잡성의 감소로 해석됩니다.

FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2022R2 제품군 의 출시와 함께 Flow Science는 워크스테이션과 FLOW-3D 의 HPC 버전 을 통합하여 단일 노드 CPU 구성에서 다중 구성에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 구조 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성 요소 제어, 향상된 연행 공기 기능이 포함됩니다.

통합 솔버

FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여  로컬 워크스테이션 또는 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.

많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션에서 OpenMP/MPI 하이브리드 병렬화의 동일한 이점을 활용하여 워크스테이션 및 노트북에서 실행할 수 있습니다.

성능 확장의 예
점점 더 많은 수의 CPU 코어를 사용하는 성능 확장의 예
메쉬 분해의 예
OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

솔버 성능 개선

멀티 소켓 워크스테이션

멀티 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 통해 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있는 성능 이점을 볼 수 있습니다.

낮은 수준의 루틴으로 벡터화 및 메모리 액세스 개선

대부분의 테스트 사례에서 10%에서 20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 있었습니다.

정제된 체적 대류 안정성 한계

시간 단계 안정성 한계는 모델 런타임의 주요 동인입니다. 2022R2에서는 새로운 시간 단계 안정성 한계인 3D 대류 안정성 한계를 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 30% 정도의 일반적인 속도 향상을 보여주었습니다.

압력 솔버 프리 컨디셔너

경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 어려운 경우 2022R2에서는 모델이 너무 많이 반복될 때 FLOW-3D가 자동으로 새로운 프리 컨디셔너를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임이 1.9배에서 335배까지 빨라졌습니다!

점탄성 유체에 대한 로그 형태 텐서 방법

점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수치에 효과적입니다.

점탄성 흐름을 위한 개선된 솔루션
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수에서 개선된 솔루션의 예. Courtesy MF Tome, et al., J. Non-Newton. 체액. 기계 175-176 (2012) 44–54

활성 시뮬레이션 제어 확장

능동 시뮬레이션 제어 기능은 연속 주조 및 적층 제조 응용 프로그램과 주조 및 기타 여러 열 관리 응용 프로그램에 사용되는 냉각 채널에 일반적으로 사용되는 팬텀 개체를 포함하도록 확장되었습니다.

동적 열 제어의 예
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예
가상 물체 속도 제어의 예
산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예
동적 열 제어의 예
연속 주조 애플리케이션을 위한 팬텀 물체 속도 제어의 예

연행 공기 기능 개선

디퓨저 및 유사한 산업용 기포 흐름 응용 분야의 경우 이제 대량 공급원을 사용하여 물 기둥에 공기를 도입할 수 있습니다. 또한 혼입 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.

디퓨저 모델의 예
디퓨저 모델의 예: 질량원을 사용하여 물기둥에 공기를 도입할 수 있습니다.
Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling

Optimization of filling systems for low pressure by Flow-3D

Dissertação de Mestrado
Ciclo de Estudos Integrados Conducentes ao
Grau de Mestre em Engenharia Mecânica
Trabalho efectuado sob a orientação do
Doutor Hélder de Jesus Fernades Puga
Professor Doutor José Joaquim Carneiro Barbosa

ABSTRACT

논문의 일부로 튜터 선택 가능성과 해결해야 할 주제가 설정되는 매개변수를 염두에 두고 개발 주제 ‘Flow- 3D ®에 의한 저압 충전 시스템 최적화’가 선택되었습니다. 이를 위해서는 달성해야 할 목표와 이를 달성하기 위한 방법을 정의하는 것이 필요했습니다.

충전 시스템을 시뮬레이션하고 검증할 수 있는 광범위한 소프트웨어에도 불구하고 Flow-3D®는 시장에서 최고의 도구 중 하나로 표시되어 전체 충전 프로세스 및 행동 표현과 관련하여 탁월한 정확도로 시뮬레이션하는 능력을 입증했습니다.

이를 위해 관련 프로세스를 더 잘 이해하고 충진 시스템 시뮬레이션을 위한 탐색적 기반 역할을 하기 위해 이 도구를 탐색하는 것이 중요합니다. 지연 및 재료 낭비에 반영되는 실제적인 측면에서 충전 장치의 치수를 완벽하게 만드는 비용 및 시간 낭비. 이러한 방식으로 저압 주조 공정에서 충진 시스템을 설계하고 물리적 모델을 탐색하여 특성화하는 방법론을 검증하기 위한 것입니다.

이를 위해 다음 주요 단계를 고려하십시오.

시뮬레이션 소프트웨어 Flow 3D® 탐색;
충전 시스템 모델링;
모델의 매개변수를 탐색하여 모델링된 시스템의 시뮬레이션, 검증 및 최적화.

따라서 연구 중인 압력 곡선과 주조 분석에서 가장 관련성이 높은 정보의 최종 마이닝을 검증하기 위한 것입니다.

사용된 압력 곡선은 수집된 문헌과 이전에 수행된 실제 작업을 통해 얻었습니다. 결과를 통해 3단계 압력 곡선이 층류 충진 체계의 의도된 목적과 관련 속도가 0.5 𝑚/𝑠를 초과하지 않는다는 결론을 내릴 수 있었습니다.

충전 수준이 2인 압력 곡선은 0.5 𝑚/𝑠 이상의 속도로 영역을 채우는 더 난류 시스템을 갖습니다. 열전달 매개변수는 이전에 얻은 값이 주물에 대한 소산 거동을 확증하지 않았기 때문에 연구되었습니다.

이러한 방식으로 주조 공정에 더 부합하는 새로운 가치를 얻었습니다. 달성된 결과는 유사한 것으로 나타난 NovaFlow & Solid®에 의해 생성된 결과와 비교되어 시뮬레이션에서 설정된 매개변수를 검증했습니다. Flow 3D®는 주조 부품 시뮬레이션을 위한 강력한 도구로 입증되었습니다.

As part of the dissertation and bearing in mind the parameters in which the possibility of a choice of tutor and the subject to be addressed is established, the subject for development ’Optimization of filling systems for low pressure by Flow 3D ®’ was chosen. For this it was necessary to define the objectives to achieve and the methods to attain them. Despite the wide range of software able to simulate and validate filling systems, Flow 3D® has been shown as one of the best tools in the market, demonstrating its ability to simulate with distinctive accuracy with respect to the entire process of filling and the behavioral representation of the fluid obtained. To this end, it is important to explore this tool for a better understanding of the processes involved and to serve as an exploratory basis for the simulation of filling systems, simulation being one of the great strengths of the current industry due to the need to reduce costs and time waste, in practical terms, that lead to the perfecting of the dimensioning of filling devices, which are reflected in delays and wasted material. In this way it is intended to validate the methodology to design a filling system in lowpressure casting process, exploring their physical models and thus allowing for its characterization. For this, consider the following main phases: The exploration of the simulation software Flow 3D®; modeling of filling systems; simulation, validation and optimization of systems modeled by exploring the parameters of the models. Therefore, it is intended to validate the pressure curves under study and the eventual mining of the most relevant information in a casting analysis. The pressure curves that were used were obtained through the gathered literature and the practical work previously performed. Through the results it was possible to conclude that the pressure curve with 3 levels meets the intended purpose of a laminar filling regime and associated speeds never exceeding 0.5 𝑚/𝑠. The pressure curve with 2 filling levels has a more turbulent system, having filling areas with velocities above 0.5 𝑚/𝑠. The heat transfer parameter was studied due to the values previously obtained didn’t corroborate the behavior of dissipation regarding to the casting. In this way, new values, more in tune with the casting process, were obtained. The achieved results were compared with those generated by NovaFlow & Solid®, which were shown to be similar, validating the parameters established in the simulations. Flow 3D® was proven a powerful tool for the simulation of casting parts.

키워드

저압, Flow 3D®, 시뮬레이션, 파운드리, 압력-시간 관계,Low Pressure, Flow 3D®, Simulation, Foundry, Pressure-time relation

Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling
Figure 4.24 – Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling
Figure 4.39 - Values of temperature contours using full energy heat transfer parameter for simula
Figure 4.39 – Values of temperature contours using full energy heat transfer parameter for simula
Figure 4.40 – Comparison between software simulations (a) Flow 3D® simulation,
(b) NovaFlow & Solid® simulation
Figure 4.40 – Comparison between software simulations (a) Flow 3D® simulation, (b) NovaFlow & Solid® simulation

BIBLIOGRAPHY

[1] E. Stanley and D. B. Sc, “Fluid Flow Aspects of Solidification Modelling : Simulation
of Low Pressure Die Casting .”
[2] Y. Sahin, “Computer aided foundry die-design,” Metallography, vol. 24, no. 8, pp.
671–679, 2003.
[3] F. Bonollo, J. Urban, B. Bonatto, and M. Botter, “Gravity and low pressure die casting
of aluminium alloys : a technical and economical benchmark,” La Metall. Ital., vol. 97,
no. 6, pp. 23–32, 2005.
[4] P. a and R. R, “Study of the effect of process parameters on the production of a nonsimmetric low pressure die casting part,” La Metall. Ital., pp. 57–63, 2009.
[5] “Fundição em baixa pressão | Aluinfo.” [Online]. Available:
http://www.aluinfo.com.br/novo/materiais/fundicao-em-baixa-pressao. [Accessed: 18-
Sep-2015].
[6] “Low Pressure Sand Casting by Wolverine Bronze.” [Online]. Available:
http://www.wolverinebronze.com/low-pressure-sand-casting.php. [Accessed: 18-Sep2015].
[7] A. Reikher, “Numerical Analysis of Die-Casting Process in Thin Cavities Using
Lubrication Approximation,” no. December, 2012.
[8] P. Fu, A. a. Luo, H. Jiang, L. Peng, Y. Yu, C. Zhai, and A. K. Sachdev, “Low-pressure
die casting of magnesium alloy AM50: Response to process parameters,” J. Mater.
Process. Technol., vol. 205, no. 1–3, pp. 224–234, 2008.
[9] X. Li, Q. Hao, W. Jie, and Y. Zhou, “Development of pressure control system in
counter gravity casting for large thin-walled A357 aluminum alloy components,”
Trans. Nonferrous Met. Soc. China, vol. 18, no. 4, pp. 847–851, 2008.
[10] J. a. Hines, “Determination of interfacial heat-transfer boundary conditions in an
aluminum low-pressure permanent mold test casting,” Metall. Mater. Trans. B, vol. 35,
no. 2, pp. 299–311, 2004.
[11] A. Lima, A. Freitas, and P. Magalhães, “Processos de vazamento em moldações
permanentes,” pp. 40–49, 2003.
[12] Y. B. Choi, K. Matsugi, G. Sasaki, K. Arita, and O. Yanagisawa, “Analysis of
Manufacturing Processes for Metal Fiber Reinforced Aluminum Alloy Composite
Fabricated by Low-Pressure Casting,” Mater. Trans., vol. 47, no. 4, pp. 1227–1231,
68
2006.
[13] G. Mi, X. Liu, K. Wang, and H. Fu, “Numerical simulation of low pressure die-casting
aluminum wheel,” China Foundry, vol. 6, no. 1, pp. 48–52, 2009.
[14] J. Kuo, F. Hsu, and W. Hwang, “ADVANCED Development of an interactive
simulation system for the determination of the pressure ± time relationship during the
® lling in a low pressure casting process,” vol. 2, pp. 131–145, 2001.
[15] S.-G. Liu, F.-Y. Cao, X.-Y. Zhao, Y.-D. Jia, Z.-L. Ning, and J.-F. Sun, “Characteristics
of mold filling and entrainment of oxide film in low pressure casting of A356 alloy,”
Mater. Sci. Eng. A, vol. 626, pp. 159–164, 2015.
[16] “Casting Training Class – Lecture 10 – Solidification and Shrinkage-Casting.” FLOW3D®.
[17] “UAB Casting Engineering Laboratory.” [Online]. Available:
file:///C:/Users/Jos%C3%A9 Belo/Desktop/Artigo_Software/UAB Casting
Engineering Laboratory.htm. [Accessed: 09-Nov-2015].
[18] A. Louvo, “Casting Simulation as a Tool in Concurrent Engineering,” pp. 1–12, 1997.
[19] T. R. Vijayaram and P. Piccardo, “Computers in Foundries,” vol. 30, 2012.
[20] M. Sadaiah, D. R. Yadav, P. V. Mohanram, and P. Radhakrishnan, “A generative
computer-aided process planning system for prismatic components,” Int. J. Adv.
Manuf. Technol., vol. 20, no. 10, pp. 709–719, 2002.
[21] Ministry_of_Planning, “Digital Data,” vol. 67, pp. 1–6, 2004.
[22] S. Shamasundar, D. Ramachandran, and N. S. Shrinivasan, “COMPUTER
SIMULATION AND ANALYSIS OF INVESTMENTCASTING PROCESS.”
[23] J. M. Siqueira and G. Motors, “Simulation applied to Aluminum High Pressure Die
Casting,” pp. 1–5, 1998.
[24] C. Fluid, COMPUTATIONAL FLUID DYNAMICS. Abdulnaser Sayma & Ventus
Publishing ApS, 2009.
[25] C. a. Felippa, “1 – Overview,” Adv. Finite Elem. Methods, pp. 1–9.
[26] a. Meena and M. El Mansori, “Correlative thermal methodology for castability
simulation of ductile iron in ADI production,” J. Mater. Process. Technol., vol. 212,
no. 11, pp. 2484–2495, 2012.
[27] T. R. Vijayaram, S. Sulaiman, a. M. S. Hamouda, and M. H. M. Ahmad, “Numerical
simulation of casting solidification in permanent metallic molds,” J. Mater. Process.
69
Technol., vol. 178, pp. 29–33, 2006.
[28] “General CFD FAQ — CFD-Wiki, the free CFD reference.” [Online]. Available:
http://www.cfd-online.com/Wiki/General_CFD_FAQ. [Accessed: 10-Nov-2015].
[29] “FEM | FEA | CFD.” [Online]. Available: http://fem4analyze.blogspot.pt/. [Accessed:
09-Nov-2015].
[30] “Fundição; revista da Associação portuguesa de fundição,” Fundição, vol. N
o
227.
[31] “Casting Training Class – Lecture 1 – Introduction_to_FLOW-3D – Casting.” FLOW3D®.
[32] F. Science, “FLOW-3D Cast Documentation,” no. 3.5, p. 80, 2012.
[33] “Casting Training Class – Lecture 4 – Geometry Building – General.” FLOW-3D®.
[34] F. Science, “FLOW-3D v11.0.3 User Manual,” pp. 1–132, 2015.
[35] “Casting Training Class – Lecture 5 Meshing Concept – General.” FLOW-3D®.
[36] “Casting Training Class – Lecture 6 – Boundary_Conditions – Casting.” FLOW-3D®.
[37] “Casting Training Class – Lecture 9 – Physical Models-castings.” FLOW-3D®.
[38] P. A. D. Jácome, M. C. Landim, A. Garcia, A. F. Furtado, and I. L. Ferreira, “The
application of computational thermodynamics and a numerical model for the
determination of surface tension and Gibbs–Thomson coefficient of aluminum based
alloys,” Thermochim. Acta, vol. 523, no. 1–2, pp. 142–149, 2011.
[39] J. P. Anson, R. A. L. Drew, and J. E. Gruzleski, “The surface tension of molten
aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres,” Metall.
Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 30, no. 6, pp. XVI–1032,
1999.

Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

Computer Simulation of Centrifugal Casting Process using FLOW-3D

Aneesh Kumar J1, a, K. Krishnakumar1, b and S. Savithri2, c 1 Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, Kerala, 2 Computational Modelling& Simulation Division, Process Engineering & Environmental Technology Division CSIR-National Institute for Interdisciplinary Science & Technology
Thiruvananthapuram, Kerala, India.
a aneesh82kj@gmail.com, b kkk@cet.ac.in, c sivakumarsavi@gmail.com, ssavithri@niist.res.in Key words: Mold filling, centrifugal casting process, computer simulation, FLOW- 3D™

Abstract

원심 주조 공정은 기능적으로 등급이 지정된 재료, 즉 구성 요소 간에 밀도 차이가 큰 복합 재료 또는 금속 재료를 생산하는 데 사용되는 잠재적인 제조 기술 중 하나입니다. 이 공정에서 유체 흐름이 중요한 역할을 하며 복잡한 흐름 공정을 이해하는 것은 결함 없는 주물을 생산하는 데 필수입니다. 금형이 고속으로 회전하고 금형 벽이 불투명하기 때문에 흐름 패턴을 실시간으로 시각화하는 것은 불가능합니다. 따라서 현재 연구에서는 상용 CFD 코드 FLOW-3D™를 사용하여 수직 원심 주조 공정 중 단순 중공 원통형 주조에 대한 금형 충전 시퀀스를 시뮬레이션했습니다. 수직 원심주조 공정 중 다양한 방사 속도가 충전 패턴에 미치는 영향을 조사하고 있습니다.

Centrifugal casting process is one of the potential manufacturing techniques used for producing functionally graded materials viz., composite materials or metallic materials which have high differences of density among constituents. In this process, the fluid flow plays a major role and understanding the complex flow process is a must for the production of defect-free castings. Since the mold spins at a high velocity and the mold wall being opaque, it is impossible to visualise the flow patterns in real time. Hence, in the present work, the commercial CFD code FLOW-3D™, has been used to simulate the mold filling sequence for a simple hollow cylindrical casting during vertical centrifugal casting process. Effect of various spinning velocities on the fill pattern during vertical centrifugal casting process is being investigated.

Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 2: Experimental data on height of
vertex formed [8]  / Figure 3: Vertex height as a function of time
Figure 2: Experimental data on height of vertex formed [8]/Figure 3: Vertex height as a function of time
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

References

[1] W. Shi-Ping, L. Chang-yun, G. Jing-jie, S. Yan-qing, L. Xiu-qiao, F. Heng-zhi, Numerical simulation and
experimental investigation of two filling methods in vertical centrifugal casting, Trans. Nonferrous Met. Soc.
China 16 (2006) 1035-1040.
10.1016/s1003-6326(06)60373-7
[2] G. Chirita, D. Soares, F.S. Silva, Advantages of the centrifugal casting technique for the production of
structural components with Al-Si alloys, Mater. Des. 29 (2008) 20-27.
10.1016/j.matdes.2006.12.011
[3] A. Kermanpur, Sh. Mahmoudi, A. Hajipour, Numerical simulation of metal flow and solidification in the
multi-cavity casting moulds of automotive components, J. Mater. Proc. Tech. 206 (208) 62-68.
10.1016/j.jmatprotec.2007.12.004
[4] D. McBride et. al. Complex free surface flows in centrifugal casting: Computational modelling and
validation experiments, Computers & Fluids 82 (2013) 63-72.
10.1016/j.compfluid.2013.04.021

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

반고체 레오 다이 캐스팅 공정으로 제작된 알루미늄 합금 브래킷의 수치 시뮬레이션 및 생산 실험 검증을 기반으로 한 게이팅 시스템 설계

International Journal of Metalcasting volume 16, pages878–893 (2022)Cite this article

Abstract

In this study a gating system including sprue, runner and overflows for semi-solid rheocasting of aluminum alloy was designed by means of numerical simulations with a commercial software. The effects of pouring temperature, mold temperature and injection speed on the filling process performance of semi-solid die casting were studied. Based on orthogonal test analysis, the optimal die casting process parameters were selected, which were metal pouring temperature 590 °C, mold temperature 260 °C and injection velocity 0.5 m/s. Semi-solid slurry preparation process of Swirled Enthalpy Equilibration Device (SEED) was used for die casting production experiment. Aluminum alloy semi-solid bracket components were successfully produced with the key die casting process parameters selected, which was consistent with the simulation result. The design of semi-solid gating system was further verified by observing and analyzing the microstructure of different zones of the casting. The characteristic parameters, particle size and shape factor of microstructure of the produced semi-solid casting showed that the semi-solid aluminum alloy components are of good quality.

이 연구에서 알루미늄 합금의 반고체 레오캐스팅을 위한 스프루, 러너 및 오버플로를 포함하는 게이팅 시스템은 상용 소프트웨어를 사용한 수치 시뮬레이션을 통해 설계되었습니다. 주입 온도, 금형 온도 및 사출 속도가 반고체 다이캐스팅의 충전 공정 성능에 미치는 영향을 연구했습니다. 직교 테스트 분석을 기반으로 금속 주입 온도 590°C, 금형 온도 260°C 및 사출 속도 0.5m/s인 최적의 다이 캐스팅 공정 매개변수가 선택되었습니다. Swirled Enthalpy Equilibration Device(SEED)의 반고체 슬러리 제조 공정을 다이캐스팅 생산 실험에 사용하였다. 알루미늄 합금 반고체 브래킷 구성 요소는 시뮬레이션 결과와 일치하는 주요 다이 캐스팅 공정 매개변수를 선택하여 성공적으로 생산되었습니다. 반고체 게이팅 시스템의 설계는 주조의 다른 영역의 미세 구조를 관찰하고 분석하여 추가로 검증되었습니다. 생산된 반고체 주조물의 특성 매개변수, 입자 크기 및 미세 구조의 형상 계수는 반고체 알루미늄 합금 부품의 품질이 양호함을 보여주었습니다.

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process
Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

References

  1. G. Li, H. Lu, X. Hu et al., Current progress in rheoforming of wrought aluminum alloys: a review. Met. Open Access Metall. J. 10(2), 238 (2020)CAS Google Scholar 
  2. G. Eisaabadi, A. Nouri, Effect of Sr on the microstructure of electromagnetically stirred semi-solid hypoeutectic Al–Si alloys. Int. J. Metalcast. 12, 292–297 (2018). https://doi.org/10.1007/s40962-017-0161-8CAS Article Google Scholar 
  3. C. Xghab, D. Qza, E. Spma et al., Blistering in semi-solid die casting of aluminium alloys and its avoidance. Acta Mater. 124, 446–455 (2017)Article Google Scholar 
  4. M. Modigell, J. Koke, Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes. J. Mater. Process. Technol. 111(1–3), 53–58 (2001)CAS Article Google Scholar 
  5. A. Pola, M. Tocci, P. Kapranos, Microstructure and properties of semi-solid aluminum alloys: a literature review. Met. Open Access Metall. J. 8(3), 181 (2018)Google Scholar 
  6. M.C. Flemings, Behavior of metal alloys in the semisolid state. Metall. Trans. B 22, 269–293 (1991). https://doi.org/10.1007/BF02651227Article Google Scholar 
  7. Q. Zhu, Semi-solid moulding: competition to cast and machine from forging in making automotive complex components. Trans. Nonferrous Met. Soc. China 20, 1042–1047 (2010)Article Google Scholar 
  8. K. Prapasajchavet, Y. Harada, S. Kumai, Microstructure analysis of Al–5.5 at.%Mg alloy semi-solid slurry by Weck’s reagent. Int. J. Metalcast. 11(1), 123 (2017). https://doi.org/10.1007/s40962-016-0084-9Article Google Scholar 
  9. P. Das, S.K. Samanta, S. Tiwari, P. Dutta, Die filling behaviour of semi solid A356 Al alloy slurry during rheo pressure die casting. Trans. Indian Inst. Met. 68(6), 1215–1220 (2015). https://doi.org/10.1007/s12666-015-0706-6CAS Article Google Scholar 
  10. B. Zhou, S. Lu, K. Xu et al., Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Int. J. Metalcast. 14(2), 396–408 (2019). https://doi.org/10.1007/s40962-019-00357-6CAS Article Google Scholar 
  11. S. Ji, Z. Fan, Solidification behavior of Sn–15 wt Pct Pb alloy under a high shear rate and high intensity of turbulence during semisolid processing. Metall. Mater. Trans. A. 33(11), 3511–3520 (2002). https://doi.org/10.1007/s11661-002-0338-4Article Google Scholar 
  12. P. Kapranos, P.J. Ward, H.V. Atkinson, D.H. Kirkwood, Near net shaping by semi-solid metal processing. Mater. Des. 21, 387–394 (2000). https://doi.org/10.1016/S0261-3069(99)00077-1Article Google Scholar 
  13. H.V. Atkinson, Alloys for semi-solid processing. Solid State Phenom. 192–193, 16–27 (2013)Google Scholar 
  14. L. Rogal, Critical assessment: opportunities in developing semi-solid processing: aluminium, magnesium, and high-temperature alloys. Mater. Sci. Technol. Mst A Publ. Inst. Met. 33, 759–764 (2017)CAS Article Google Scholar 
  15. H. Guo, Rheo-diecasting process for semi-solid aluminum alloys. J. Wuhan Univ. Technol. Mater. Sci. Ed. 22(004), 590–595 (2007)CAS Article Google Scholar 
  16. T. Chucheep, J. Wannasin, R. Canyook, T. Rattanochaikul, S. Janudom, S. Wisutmethangoon, M.C. Flemings, Characterization of flow behavior of semi-solid slurries with low solid fractions. Metall. Mater. Trans. A 44(10), 4754–4763 (2013)CAS Article Google Scholar 
  17. M. Li, Y.D. Li, W.L. Yang et al., Effects of forming processes on microstructures and mechanical properties of A356 aluminum alloy prepared by self-inoculation method. Mater. Res. 22(3) (2019)
  18. P. Côté, M.E. Larouche, X.G. Chen et al., New developments with the SEED technology. Solid State Phenom. 192(3), 373–378 (2012)Article Google Scholar 
  19. I. Dumanić, S. Jozić, D. Bajić et al., Optimization of semi-solid high-pressure die casting process by computer simulation, Taguchi method and grey relational analysis. Inter Metalcast. 15, 108–118 (2021). https://doi.org/10.1007/s40962-020-00422-5Article Google Scholar 
  20. Y. Bai et al., Numerical simulation on the rheo-diecasting of the semi-solid A356 aluminum alloy. Int. J. Miner. Metall. Mater. 16, 422 (2009). https://doi.org/10.1016/S1674-4799(09)60074-1CAS Article Google Scholar 
  21. B.C. Bhunia, Studies on die filling of A356 Al alloy and development of a steering knuckle component using rheo pressure die casting system. J. Mater. Process. Technol. 271, 293–311 (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.014CAS Article Google Scholar 
  22. A. Guo, J. Zhao, C. Xu et al., Effects of pouring temperature and electromagnetic stirring on porosity and mechanical properties of A357 aluminum alloy rheo-diecasting. J. Mater. Eng. Perform. (2018). https://doi.org/10.1007/s11665-018-3310-1Article Google Scholar 
  23. C.G. Kang, S.M. Lee, B.M. Kim, A study of die design of semi-solid die casting according to gate shape and solid fraction. J. Mater. Process. Technol. 204(1–3), 8–21 (2008)CAS Article Google Scholar 
  24. Z. Liu, W. Mao, T. Wan et al., Study on semi-solid A380 aluminum alloy slurry prepared by water-cooling serpentine channel and its rheo-diecasting. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00672-2Article Google Scholar 
  25. Z.Y. Liu, W.M. Mao, W.P. Wang et al., Investigation of rheo-diecasting mold filling of semi-solid A380 aluminum alloy slurry. Int. J. Miner. Metall. Mater. 24(006), 691–700 (2017)CAS Article Google Scholar 
  26. M. Arif, M.Z. Omar, N. Muhamad et al., Microstructural evolution of solid-solution-treated Zn–22Al in the semisolid state. J. Mater. Sci. Technol. 29(008), 765–774 (2013)CAS Article Google Scholar 

Keywords

  • semi-solid rheo-die casting
  • gating system
  • process parameters
  • numerical simulation
  • microstructure
Figure 6. Circular section of the viscosity and shear-rate clouds.

Simulation and Visual Tester Verification of Solid Propellant Slurry Vacuum Plate Casting

Wu Yue,Li Zhuo,Lu RongFirst published: 26 February 2020 https://doi.org/10.1002/prep.201900411Citations: 3

Abstract

Using an improved Carreau constitutive model, a numerical simulation of the casting process of a type of solid propellant slurry vacuum plate casting was carried out using the Flow3D software. Through the flow process in the orifice flow channel and the combustion chamber, the flow velocity of the slurry passing through the plate flow channel was quantitatively analyzed, and the viscosity, shear rate, and leveling characteristics of the slurry in the combustion chamber were qualitatively analyzed and predicted. The pouring time, pouring quality, and flow state predicted by the numerical simulation were verified using a visual tester consisting of a vacuum plate casting system in which a pouring experiment was carried out. Studies have shown that HTPB three-component propellant slurry is a typical yielding pseudoplastic fluid. When the slurry flows through the flower plate and the airfoil, the fluid shear rate reaches its maximum value and the viscosity of the slurry decreases. The visual pouring platform was built and the experiment was controlled according to the numerically-calculated parameters, ensuring the same casting speed. The comparison between the predicted casting quality and the one obtained in the verification test resulted in an error less than 10 %. Moreover, the error between the simulated casting completion time and the process verification test result was also no more than 10 %. Last, the flow state of the slurry during the simulation was consistent with the one during the experimental test. The overall leveling of the slurry in the combustion chamber was adequate and no relatively large holes and flaws developed during the pouring process.

개선된 Carreau 구성 모델을 사용하여 FLOW-3D 소프트웨어를 사용하여 고체 추진제 슬러리 진공판 유형의 Casting Process에 대한 수치 시뮬레이션을 수행했습니다. 오리피스 유로와 연소실에서의 유동과정을 통해 판 유로를 통과하는 슬러리의 유속을 정량적으로 분석하고, 연소실에서 슬러리의 점도, 전단율, 레벨링 특성을 정성적으로 분석하하고, 예측하였습니다.

타설시간, 타설품질, 수치해석으로 예측된 ​​유동상태는 타설실험을 수행한 진공판주조시스템으로 구성된 비주얼 테스터를 이용하여 검증하였습니다.

연구에 따르면 HTPB 3성분 추진제 슬러리는 전형적인 생성 가소성 유체입니다. 슬러리가 플라워 플레이트와 에어포일을 통과할 때 유체 전단율이 최대값에 도달하고 슬러리의 점도가 감소합니다.

시각적 주입 플랫폼이 구축되었고 동일한 주조 속도를 보장하기 위해 수치적으로 계산된 매개변수에 따라 실험이 제어되었습니다. 예측된 casting 품질과 검증 테스트에서 얻은 품질을 비교한 결과 10 % 미만의 오류가 발생했습니다.

또한 모의 casting 완료시간과 공정검증시험 결과의 오차도 10 % 이하로 나타났습니다.

마지막으로 시뮬레이션 중 슬러리의 흐름 상태는 실험 테스트 시와 일치하였다. 연소실에서 슬러리의 전체 레벨링은 적절했으며 주입 과정에서 상대적으로 큰 구멍과 결함이 발생하지 않았습니다.

Figure 1. The equipment used in the vacuum flower-plate pouring process.
Figure 1. The equipment used in the vacuum flower-plate pouring process.
Figure 2. Calculation model.
Figure 2. Calculation model.
Figure 3. Grid block division unit.
Figure 3. Grid block division unit.
Figure 4. Circular section of the speed cloud.
Figure 4. Circular section of the speed cloud.
Figure 5. Viscosity and shear rate distribution cloud pattern flowing through the plate holes.
Figure 5. Viscosity and shear rate distribution cloud pattern flowing through the plate holes.
Figure 6. Circular section of the viscosity and shear-rate clouds.
Figure 6. Circular section of the viscosity and shear-rate clouds.
Figure 7. Volume fraction cloud chart at different time.
Figure 7. Volume fraction cloud chart at different time.
Figure 8. Experimental program.
Figure 8. Experimental program.
Figure 9. Emulation experimental device.
Figure 9. Emulation experimental device.
Figure 10. Visualization of the flow state of the pulp inside the tester.
Figure 10. Visualization of the flow state of the pulp inside the tester.

References

[1] B. M. Bandgar, V. N. Krishnamurthy, T. Mukundan, K. C. Sharma,
Mathematical Modeling of Rheological Properties of HydroxylTerminated Polybutadiene Binder and Dioctyl Adipate Plasticizer, J. Appl. Polym. Sci. 2002, 85, 1002–1007.
[2] B. Thiyyarkandy, M. Jain, G. S. Dombe, M. Mehilal, P. P. Singh, B.
Bhattacharya, Numerical Studies on Flow Behavior of Composite Propellant Slurry during Vacuum Casting, J.Aerosp.Technol.
Manage. 2012, 4, 197–203.
[3] T. Shimada, H. Habu, Y. Seike, S. Ooya, H. Miyachi, M. Ishikawa,
X-Ray Visualization Measurement of Slurry Flow in Solid Propellant Casting, Flow Meas. Instrum. 2007, 18, 235–240.
[4] Y. Damianou, G. C. Georgiou, On Poiseuille Flows of a Bingham
Plastic with Pressure-Dependent Rheological Parameters, J.
Non-Newtonian Fluid Mech. 2017, 250, 1–7.
[5] S. Sadasivan, S. K. Arumugam, M. Aggarwal, Numerical Simulation of Diffuser of a Gas Turbine using the Actuator Disc
Model, J.Appl. Fluid Mech. 2019, 12, 77–84.
[6] M. Acosta, V. L. Wiesner, C. J. Martinez, R. W. Trice, J. P. Youngblood, Effect of Polyvinylpyrrolidone Additions on the Rheology of Aqueous, Highly Loaded Alumina Suspensions, J. Am.
Ceram. Soc. 2013, 96, 1372–1382.
[7] Y. Wu, Numerical Simulation and Experiment Study of Flower
Plate Pouring System for Solid Propellant, Chin. J. Expl. Propell.
2017, 41, 506–511.
[8] T. M. G. Chu, J. W. Halloran, High-Temperature Flow Behavior
of Ceramic Suspensions, J. Am. Ceram. Soc. 2004, 83, 2189–
2195.
[9] T. Kaully, A. Siegmann, D. Shacham, Rheology of Highly Filled
Natural CaCO3 Composites. I. Effects of Solid Loading and Particle Size Distribution on Capillary Rheometry, Polym. Compos.
2007, 28, 512–523.
[10] M. M. Rueda, M.-C. Auscher, R. Fulchiron, T. Périé, G. Martin, P.
Sonntag, P. Cassagnau, Rheology and Applications of Highly
Filled Polymers: A Review of Current Understanding, Prog. Polym. Sci. 2017, 66, 22–53.
[11] F. Soltani, Ü. Yilmazer, Slip Velocity and Slip Layer Thickness in
Flow of Concentrated Suspensions, J. Appl. Polym. Sci. 1998,
70, 515–522.

[12] E. Landsem, T. L. Jensen, F. K. Hansen. E. Unneberg, T. E. Kristensen, Neutral Polymeric Bonding Agents (NPBA) and Their
Use in Smokeless Composite Rocket Propellants Based on
HMX-GAP-BuNENA. Propellants, Explos., Pyrotech.. 2012, 37,
581–589.
[13] J. Mewis, N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, 2011.
[14] D. M. Kalyon, An Overview of the Rheological Behavior and
Characterization of Energetic Formulations: Ramifications on
Safety and Product Quality, J. Energ. Mater. 2006, 24, 213–245.
[15] H. Ohshima, Effective Viscosity of a Concentrated Suspension
of Uncharged Spherical Soft Particles, Langmuir 2010, 26,
6287–6294.

Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

Effect of carrier gases on the entrainment defects within AZ91 alloy castings

Tian Liab J.M.T.Daviesa Xiangzhen Zhuc
aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom
cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom

Abstract

An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.

Keywords

Magnesium alloyCastingOxide film, Bifilm, Entrainment defect, Reproducibility

연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.

키워드

마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성

1 . 소개

지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 56] .

Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.

연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.

Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.

Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.

SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)

단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)

이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)

트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)

산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.

Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.

그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.

또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.

여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.

2 . 실험

2.1 . 용융 및 주조

3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.

표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).

아연미네소타마그네슘
9.40.610.150.020.0050.0017잔여

그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).

그림 1

수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.

모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.

2.2 . 산화 세포

전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.

도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 ​​접촉하지 않았습니다).

그림 2

실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.

3 . 결과

3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성

0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.

그림 3

그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.

그림 4

도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.

그림 5

무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.

Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .

그림 6

표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).

영형마그네슘NS아연NSNS
그림 6 (b)의 어두운 영역3.481.3279.130.4713.630.570.080.73
그림 6 (b)의 밝은 영역3.5884.4811.250.68

도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .

3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성

SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).

그림 7

Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰(  8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.

그림 8

산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 5 및 7 .

그림 9

연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.

표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).

영형마그네슘NS아연NSNS
그림 8 (a)의 어두운 영역7.253.6469.823.827.030.86
그림 8 (a)의 밝은 영역2.100.4482.8313.261.36

테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.

3.3 . 산화 전지에서 산화막의 진화

섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47][48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.

.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .

그림 10

10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .

도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.

이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .

SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).

그림 11

4 . 논의

4.1 . SF 6 /air 에서 형성된 연행 결함의 진화

Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.

실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7  약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6  0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8  kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .

그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15  kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10  kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.

그림 12

이 반응 과정은 3단계로 나눌 수 있다.

1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지  않았을 수 있습니다(  MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .

2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12  kmol의 ZnO, 1.38 × 10 -14  kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10  kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9  kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.

단계 1-2는 도 10 에 도시 된 다층 구조의 형성 과정을 이론적으로 검증하였다 .

산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)

Al 2 O 3  + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)

Mg + MgAl 2 O 4  = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.

3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)

Mg 3 N 2  + 6H 2 O = 3Mg(OH) 2  + 2NH 3 ↑(4)

AlN+ 3H 2 O = Al(OH) 3  + NH 3 ↑

또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.

4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화

도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.

그림 13

1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지  않았습니다( 2.67 x 10 -10  kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.

2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.

커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .

3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .

요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.

4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향

SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2  에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).

동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).

연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.

앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.

(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.

(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).

따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.

도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.

그림 14

산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.

따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .

그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .

그림 15

또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.

그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.

또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .

따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.

7 . 결론

1.

AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.

실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.

산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .

감사의 말

저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.

참조
[1]
MK McNutt , SALAZAR K.
마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부
레 스톤 , 버지니아 ( 2013 )
Google 학술검색
[2]
마그네슘
화합물 및 금속, 미국 지질 조사국 및 미국 내무부
( 1996 )
Google 학술검색
[삼]
I. Ostrovsky , Y. Henn
ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5
8월 19-22일
Scopus에서 레코드 보기Google 학술검색
[4]
Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao
액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지
기사PDF 다운로드Scopus에서 레코드 보기
[5]
JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth
적용 에너지 , 283 ( 2021 ) , 제 116269 조
기사PDF 다운로드Scopus에서 레코드 보기
[6]
AM 루이스 , JC 켈리 , 조지아주 Keoleian
적용 에너지 , 126 ( 2014 ) , pp. 13 – 20
기사PDF 다운로드Scopus에서 레코드 보기
[7]
J. 캠벨
주물
버터워스-하이네만 , 옥스퍼드 ( 2004 )
Google 학술검색
[8]
M. Aryafar , R. Raiszadeh , A. Shalbafzadeh
J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051
교차 참조Scopus에서 레코드 보기
[9]
R. 라이자데 , WD 그리피스
메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지
교차 참조Scopus에서 레코드 보기
[10]
R. 라이자데 , WD 그리피스
J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[11]
L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay
JOM , 71 ( 2019 ) , pp. 2235 – 2244
교차 참조Scopus에서 레코드 보기
[12]
S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert
코로스. 과학. , 166 ( 2020 )
[13]
GE Bozchaloei , N. Varahram , P. Davami , SK 김
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지
Scopus에서 레코드 보기
[14]
S. 폭스 , J. 캠벨
Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886
기사PDF 다운로드Scopus에서 레코드 보기
[15]
M. 콕스 , RA 하딩 , J. 캠벨
메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지
Scopus에서 레코드 보기
[16]
C. Nyahumwa , NR Green , J. Campbell
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽
Scopus에서 레코드 보기
[17]
A. Ardekhani , R. Raiszadeh
J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362
교차 참조Scopus에서 레코드 보기
[18]
X. Dai , X. Yang , J. Campbell , J. Wood
메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽
Scopus에서 레코드 보기
[19]
EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘
필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359
교차 참조Scopus에서 레코드 보기
[20]
WD 그리피스 , NW 라이
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196
교차 참조Scopus에서 레코드 보기
[21]
AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨
국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220
교차 참조Scopus에서 레코드 보기
[22]
C. 칭기
주조공학 연구실
Helsinki University of Technology , Espoo, Finland ( 2006 )
Google 학술검색
[23]
Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao
J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조
기사PDF 다운로드Scopus에서 레코드 보기
[24]
S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie
메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조
기사PDF 다운로드Scopus에서 레코드 보기
[25]
에스엠. Xiong , X.-F. 왕
트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234
기사PDF 다운로드Scopus에서 레코드 보기
[26]
지브이리서치
그랜드뷰 리서치
( 2018 )
미국
Google 학술검색
[27]
T. 리 , J. 데이비스
메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400)
교차 참조Scopus에서 레코드 보기
[28]
JF Fruehling, 미시간 대학, 1970.
Google 학술검색
[29]
S. 쿨링
제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57
Scopus에서 레코드 보기Google 학술검색
[30]
S. Cashion , N. Ricketts , P. Hayes
J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지
기사PDF 다운로드Scopus에서 레코드 보기
[31]
S. Cashion , N. Ricketts , P. Hayes
J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42
기사PDF 다운로드Scopus에서 레코드 보기
[32]
K. Aarstad , G. Tranell , G. Pettersen , TA Engh
SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술
TMS ( 2003년 )
Google 학술검색
[33]
에스엠 Xiong , X.-L. 리우
메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434)
교차 참조Scopus에서 레코드 보기
[34]
T.-S. 시 , J.-B. Liu , P.-S. 웨이
메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지
기사PDF 다운로드Scopus에서 레코드 보기
[35]
G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland
메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294)
기사PDF 다운로드Scopus에서 레코드 보기
[36]
H. Bo , LB Liu , ZP Jin
J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[37]
A. 미락 , C. 데이비슨 , J. 테일러
코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000
기사PDF 다운로드Scopus에서 레코드 보기
[38]
BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한
메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지
Scopus에서 레코드 보기
[39]
WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao
China Foundry , 9 ( 2012 ) , pp. 226 – 230
교차 참조Scopus에서 레코드 보기
[40]
UI 골드슐레거 , EY 샤피로비치
연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지
Scopus에서 레코드 보기
[41]
A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry
트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지
Scopus에서 레코드 보기
[42]
E. Zhang , GJ Wang , ZC Hu
메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지
Scopus에서 레코드 보기
[43]
NR 그린 , J. 캠벨
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[44]
C 라일리 , MR 졸리 , NR 그린
MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 )
Google 학술검색
[45]
HE Friedrich, BL Mordike, Springer, 독일, 2006.
Google 학술검색
[46]
C. Zheng , BR Qin , XB Lou
기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388
2010년 미트
교차 참조Scopus에서 레코드 보기Google 학술검색
[47]
SM Xiong , XF 왕
트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234
기사PDF 다운로드Scopus에서 레코드 보기
[48]
SM Xiong , XL Liu
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434)
교차 참조Scopus에서 레코드 보기
[49]
TS Shih , JB Liu , PS Wei
메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지
기사PDF 다운로드Scopus에서 레코드 보기
[50]
K. Aarstad , G. Tranell , G. Pettersen , TA Engh
매그. 기술. ( 2003 ) , PP. (5) – (10)
Scopus에서 레코드 보기
[51]
G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지
기사PDF 다운로드Scopus에서 레코드 보기
[52]
XF 왕 , SM Xiong
코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307
기사PDF 다운로드Scopus에서 레코드 보기
[53]
SH Nie , SM Xiong , BC Liu
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지
기사PDF 다운로드Scopus에서 레코드 보기
[54]
C. Bauer , A. Mogessie , U. Galovsky
Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168)
교차 참조Scopus에서 레코드 보기
[55]
QG 왕 , D. Apelian , DA Lados
J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84
기사PDF 다운로드Scopus에서 레코드 보기
[56]
S. Wang , Y. Wang , Q. Ramasse , Z. Fan
메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974
교차 참조Scopus에서 레코드 보기
[57]
S. Hayashi , W. Minami , T. Oguchi , HJ Kim
카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지
교차 참조Scopus에서 레코드 보기
[58]
K. 아르스타드
노르웨이 과학 기술 대학교
( 2004년 )
Google 학술검색
[59]
RL 윌킨스
J. Chem. 물리. , 51 ( 1969 ) , p. 853
-&
Scopus에서 레코드 보기
[60]
O. Kubaschewski , K. Hesselemam
무기물의 열화학적 성질
Springer-Verlag , 벨린 ( 1991 )
Google 학술검색
[61]
R. Schmidt , M. Strobele , K. Eichele , HJ Meyer
유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735
교차 참조Scopus에서 레코드 보기
[62]
B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao
제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지
Scopus에서 레코드 보기
[63]
O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian
J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지
Scopus에서 레코드 보기
[64]
SSS Kumari , UTS Pillai , BC 빠이
J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509
기사PDF 다운로드Scopus에서 레코드 보기
[65]
H. Scholz , P. Greil
J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽
Scopus에서 레코드 보기
[66]
P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider
매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽
Scopus에서 레코드 보기
[67]
HV 앳킨슨 , S. 데이비스
메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000
교차 참조Scopus에서 레코드 보기
[68]
EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen
J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년
교차 참조Scopus에서 레코드 보기
[69]
T. Li , WD Griffiths , J. Chen
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528
교차 참조Scopus에서 레코드 보기
[70]
M. Tiryakioglu , D. Hudak는
J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179
교차 참조Scopus에서 레코드 보기
[71]
Y. Yue , WD Griffiths , JL Fife , NR Green
제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136
교차 참조Scopus에서 레코드 보기Google 학술검색
[72]
R. 라이자데 , WD 그리피스
메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871)
Scopus에서 레코드 보기
[73]
ZC Hu , EL Zhang , SY Zeng
메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지
교차 참조Scopus에서 레코드 보기

FLOW DEM

FLOW-3D DEM Module 개요

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

dem9

dem10
주요 기능 :고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7

응용 분야

1. Mechanical Engineering 분야

수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

2. Civil Engineering분야

3. Civil Engineering 분야

파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

dem11

3. Chemical Engineering, Pharmaceutics 분야

유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

dem12

4. MEMS, Electrical Engineering 분야

하전 입자를 포함한 전기장 해석 등

dem15

입자 그룹 가시화

그룹 가시화

DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

원래 입자수

입자 사이즈를 키운경우

그룹 가시화

  • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
  • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
  • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

주조 시뮬레이션에 DEM 적용

그룹 가시화 비교 예

그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds

FLOW-3D AM

flow3d AM-product
FLOW-3D AM-product

와이어 파우더 기반 DED | Wire Powder Based DED

일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.

와이어 기반 DED | Wire Based DED

와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.

FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

Melting | 파우더 베드 용해

DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

Multilayer | 다층 적층 제조

용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.

해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

LPBF의 키홀 링 | Keyholing in LPBF

키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

Scan Strategy | 스캔 전략

스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.

Beam Shaping | 빔 형성

레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.

이 영역에서 수행 된 일부 작업에 대해 자세히 알아 보려면 “The Next Frontier of Metal AM”웨비나를 시청하십시오.

Multi-material Powder Bed Fusion | 다중 재료 분말 베드 융합

이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.

다중 재료 용접 사례 연구

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사

GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

The European Physical Journal Plus volume 136, Article number: 704 (2021) Cite this article

Abstract

Electromagnetic metal casting (EMC) is a casting technique that uses electromagnetic energy to heat metal powders. It is a faster, cleaner, and less time-consuming operation. Solid metals create issues in electromagnetics since they reflect the electromagnetic radiation rather than consume it—electromagnetic energy processing results in sounded pieces with higher-ranking material properties and a more excellent microstructure solution. For the physical production of the electromagnetic casting process, knowledge of electromagnetic material interaction is critical. Even where the heated material is an excellent electromagnetic absorber, the total heating quality is sometimes insufficient. Numerical modelling works on finding the proper coupled effects between properties to bring out the most effective operation. The main parameters influencing the quality of output of the EMC process are: power dissipated per unit volume into the material, penetration depth of electromagnetics, complex magnetic permeability and complex dielectric permittivity. The contact mechanism and interference pattern also, in turn, determines the quality of the process. Only a few parameters, such as the environment’s temperature, the interference pattern, and the rate of metal solidification, can be controlled by AI models. Neural networks are used to achieve exact outcomes by stimulating the neurons in the human brain. Additive manufacturing (AM) is used to design mold and cores for metal casting. The models outperformed the traditional DFA optimization approach, which is susceptible to local minima. The system works only offline, so real-time analysis and corrections are not yet possible.

Korea Abstract

전자기 금속 주조 (EMC)는 전자기 에너지를 사용하여 금속 분말을 가열하는 주조 기술입니다. 더 빠르고 깨끗하며 시간이 덜 소요되는 작업입니다.

고체 금속은 전자기 복사를 소비하는 대신 반사하기 때문에 전자기학에서 문제를 일으킵니다. 전자기 에너지 처리는 더 높은 등급의 재료 특성과 더 우수한 미세 구조 솔루션을 가진 사운드 조각을 만듭니다.

전자기 주조 공정의 물리적 생산을 위해서는 전자기 물질 상호 작용에 대한 지식이 중요합니다. 가열된 물질이 우수한 전자기 흡수재인 경우에도 전체 가열 품질이 때때로 불충분합니다. 수치 모델링은 가장 효과적인 작업을 이끌어 내기 위해 속성 간의 적절한 결합 효과를 찾는데 사용됩니다.

EMC 공정의 출력 품질에 영향을 미치는 주요 매개 변수는 단위 부피당 재료로 분산되는 전력, 전자기의 침투 깊이, 복합 자기 투과성 및 복합 유전율입니다. 접촉 메커니즘과 간섭 패턴 또한 공정의 품질을 결정합니다. 환경 온도, 간섭 패턴 및 금속 응고 속도와 같은 몇 가지 매개 변수 만 AI 모델로 제어 할 수 있습니다.

신경망은 인간 뇌의 뉴런을 자극하여 정확한 결과를 얻기 위해 사용됩니다. 적층 제조 (AM)는 금속 주조용 몰드 및 코어를 설계하는 데 사용됩니다. 모델은 로컬 최소값에 영향을 받기 쉬운 기존 DFA 최적화 접근 방식을 능가했습니다. 이 시스템은 오프라인에서만 작동하므로 실시간 분석 및 수정은 아직 불가능합니다.

electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig9
electromagnetic metal casting computation designs Fig9

References

  1. 1.J. Sun, W. Wang, Q. Yue, Review on electromagnetic-matter interaction fundamentals and efficient electromagnetic-associated heating strategies. Materials 9(4), 231 (2016). https://doi.org/10.3390/ma9040231ADS Article Google Scholar 
  2. 2.E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, electromagnetic and spark plasma sintering methods. Materials 10(11), 1255 (2017). https://doi.org/10.3390/ma10111255ADS Article Google Scholar 
  3. 3.D. Agrawal, Latest global developments in electromagnetic materials processing. Mater. Res. Innov. 14(1), 3–8 (2010). https://doi.org/10.1179/143307510×12599329342926Article Google Scholar 
  4. 4.S. Singh, P. Singh, D. Gupta, V. Jain, R. Kumar, S. Kaushal, Development and characterization of electromagnetic processed cast iron joint. Eng. Sci. Technol. Int. J. (2018). https://doi.org/10.1016/j.jestch.2018.10.012Article Google Scholar 
  5. 5.S. Singh, D. Gupta, V. Jain, Electromagnetic melting and processing of metal–ceramic composite castings. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1235–1243 (2016). https://doi.org/10.1177/0954405416666900Article Google Scholar 
  6. 6.S. Singh, D. Gupta, V. Jain, Novel electromagnetic composite casting process: theory, feasibility and characterization. Mater. Des. 111, 51–59 (2016). https://doi.org/10.1016/j.matdes.2016.08.071Article Google Scholar 
  7. 7.J. Lucas, J, What are electromagnetics? LiveScience. (2018). https://www.livescience.com/50259-Electromagnetics.html
  8. 8.R. Samyal, A.K. Bagha, R. Bedi, the casting of materials using electromagnetic energy: a review. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.255Article Google Scholar 
  9. 9.S. Singh, D. Gupta, V. Jain, Processing of Ni-WC-8Co MMC casting through electromagnetic melting. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1291954Article Google Scholar 
  10. 10.R. Singh, S. Singh, V. Mahajan, Investigations for dimensional accuracy of investment casting process after cycle time reduction by advancements in shell moulding. Procedia Mater. Sci. 6, 859–865 (2014). https://doi.org/10.1016/j.mspro.2014.07.103Article Google Scholar 
  11. 11.R.R. Mishra, A.K. Sharma, On melting characteristics of bulk Al-7039 alloy during in-situ electromagnetic casting. Appl. Therm. Eng. 111, 660–675 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.122Article Google Scholar 
  12. 12.S. Zhang, 10 Different types of casting process. (2021). MachineMfg.com, https://www.machinemfg.com/types-of-casting/
  13. 13.Envirocare, Foundry health risks. (2013). https://envirocare.org/foundry-health-risks/
  14. 14.S.S. Gajmal, D.N. Raut, A review of opportunities and challenges in electromagnetic assisted casting. Recent Trends Product. Eng. 2(1) (2019)
  15. 15.R.R. Mishra, A.K. Sharma, Electromagnetic-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos. Part A (2015). https://doi.org/10.1016/j.compositesa.2015.10.035Article Google Scholar 
  16. 16.S. Chandrasekaran, T. Basak, S. Ramanathan, Experimental and theoretical investigation on electromagnetic melting of metals. J. Mater. Process. Technol. 211(3), 482–487 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.001Article Google Scholar 
  17. 17.C.R. Bird, J.M. Mertz, U.S. Patent No. 4655276. (U.S. Patent and Trademark Office, Washington, DC, 1987)
  18. 18.R.R. Mishra, A.K. Sharma, Experimental investigation on in-situ electromagnetic casting of copper. IOP Conf. Ser. Mater. Sci. Eng. 346, 012052 (2018). https://doi.org/10.1088/1757-899x/346/1/012052Article Google Scholar 
  19. 19.V. Gangwar, S. Kumar, V. Singh, H. Singh, Effect of process parameters on hardness of AA-6063 in-situ electromagnetic casting by using taguchi method, in IOP Conference Series: Materials Science and Engineering, vol. 804(1) (IOP Publishing, 2020), p. 012019
  20. 20.X. Ye, S. Guo, L. Yang, J. Gao, J. Peng, T. Hu, L. Wang, M. Hou, Q. Luo, New utilization approach of electromagnetic thermal energy: preparation of metallic matrix diamond tool bit by electromagnetic hot-press sintering. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.183Article Google Scholar 
  21. 21.S. Das, A.K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Electromagnetic processing: an overview. Bull. Mater. Sci. 32(1), 1–13 (2009). https://doi.org/10.1007/s12034-009-0001-4Article Google Scholar 
  22. 22.K.L. Glass, D.M. Ashby, U.S. Patent No. 9050656. (U.S. Patent and Trademark Office, Washington, DC, 2015)
  23. 23.S. Verma, P. Gupta, S. Srivastava, S. Kumar, A. Anand, An overview: casting/melting of non ferrous metallic materials using domestic electromagnetic oven. J. Mater. Sci. Mech. Eng. 4(4), (2017). p-ISSN: 2393-9095; e-ISSN: 2393-9109
  24. 24.S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and electromagnetic furnaces. Scripta Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034Article Google Scholar 
  25. 25.Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.006Article Google Scholar 
  26. 26.D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for electromagnetic applications. J. Eur. Ceram. Soc. 33(1), 87–93 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.002Article Google Scholar 
  27. 27.M.H. Awida, N. Shah, B. Warren, E. Ripley, A.E. Fathy, Modeling of an industrial Electromagnetic furnace for metal casting applications. 2008 IEEE MTT-S Int. Electromagn. Symp. Digest. (2008). https://doi.org/10.1109/mwsym.2008.4633143Article Google Scholar 
  28. 28.P.K. Loharkar, A. Ingle, S. Jhavar, Parametric review of electromagnetic-based materials processing and its applications. J. Market. Res. 8(3), 3306–3326 (2019). https://doi.org/10.1016/j.jmrt.2019.04.004Article Google Scholar 
  29. 29.E.B. Ripley, J.A. Oberhaus, WWWeb search power page-melting and heat treating metals using electromagnetic heating-the potential of electromagnetic metal processing techniques for a wide variety of metals and alloys is. Ind. Heat. 72(5), 65–70 (2005)Google Scholar 
  30. 30.J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2015)Google Scholar 
  31. 31.B. Ravi, Metal Casting: Computer-Aided Design and Analysis, 1st edn. (PHI Learning Ltd, 2005)Google Scholar 
  32. 32.D.E. Clark, W.H. Sutton, Electromagnetic processing of materials. Annu. Rev. Mater. Sci. 26(1), 299–331 (1996)ADS Article Google Scholar 
  33. 33.A.D. Abdullin, New capabilities of software package ProCAST 2011 for modeling foundry operations. Metallurgist 56(5–6), 323–328 (2012). https://doi.org/10.1007/s11015-012-9578-8Article Google Scholar 
  34. 34.J. Ha, P. Cleary, V. Alguine, T. Nguyen, Simulation of die filling in gravity die casting using SPH and MAGMAsoft, in Proceedings of 2nd International Conference on CFD in Minerals & Process Industries (1999) pp. 423–428
  35. 35.M. Sirviö, M. Woś, Casting directly from a computer model by using advanced simulation software FLOW-3D Cast Ž. Arch. Foundry Eng. 9(1), 79–82 (2009)Google Scholar 
  36. 36.NOVACAST Systems, Nova-Solid/Flow Brochure, NOVACAST, Ronneby (2015)
  37. 37.AutoCAST-X1 Brochure, 3D Foundry Tech, Mumbai
  38. 38.EKK, Inc. Metal Casting Simulation Software and Consulting Services, CAPCAST Brochure
  39. 39.P. Muenprasertdee, Solidification modeling of iron castings using SOLIDCast (2007)
  40. 40.CasCAE, CT-CasTest Inc. Oy, Kerava
  41. 41.E. Dominguez-Tortajada, J. Monzo-Cabrera, A. Diaz-Morcillo, Uniform electric field distribution in electromagnetic heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans. Electromagn. Theory Tech. 55(1), 85–91 (2007). https://doi.org/10.1109/tmtt.2006.886913ADS Article Google Scholar 
  42. 42.B. Warren, M.H. Awida, A.E. Fathy, Electromagnetic heating of metals. IET Electromagn. Antennas Propag. 6(2), 196–205 (2012)Article Google Scholar 
  43. 43.S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J. Alloy. Compd. 466(1–2), 67–72 (2008). https://doi.org/10.1016/j.jallcom.2007.11.010Article Google Scholar 
  44. 44.Penn State, Metal Parts Made In The Electromagnetic Oven. ScienceDaily. (1999) Retrieved May 8, 2021, from www.sciencedaily.com/releases/1999/06/990622055733.htm
  45. 45.R.R. Mishra, A.K. Sharma, A review of research trends in electromagnetic processing of metal-based materials and opportunities in electromagnetic metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421ADS Article Google Scholar 
  46. 46.D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, Free-space measurement of complex permittivity and complex permeability of magnetic materials at Electromagnetic frequencies. IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). https://doi.org/10.1109/19.52520Article Google Scholar 
  47. 47.J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 38, 1096–1103 (1990)ADS Article Google Scholar 
  48. 48.M. Bologna, A. Petri, B. Tellini, C. Zappacosta, Effective magnetic permeability measurementin composite resonator structures. Instrum. Meas. IEEE Trans. 59, 1200–1206 (2010)Article Google Scholar 
  49. 49.B. Ravi, G.L. Datta, Metal casting–back to future, in 52nd Indian Foundry Congress, (2004)
  50. 50.D. El Khaled, N. Novas, J.A. Gazquez, F. Manzano-Agugliaro. Microwave dielectric heating: applications on metals processing. Renew. Sustain. Energy Rev. 82, 2880–2892 (2018). https://doi.org/10.1016/j.rser.2017.10.043Article Google Scholar 
  51. 51.H. Sekiguchi, Y. Mori, Steam plasma reforming using Electromagnetic discharge. Thin Solid Films 435, 44–48 (2003)ADS Article Google Scholar 
  52. 52.J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Study on the coupled effect of wave absorption and metal discharge generation under electromagnetic irradiation. Ind. Eng. Chem. Res. 53, 2042–2051 (2014)Article Google Scholar 
  53. 53.K.I. Rybakov, E.A. Olevsky, E.V. Krikun, Electromagnetic sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96(4), 1003–1020 (2013). https://doi.org/10.1111/jace.12278Article Google Scholar 
  54. 54.A.K. Shukla, A. Mondal, A. Upadhyaya, Numerical modeling of electromagnetic heating. Sci. Sinter. 42(1), 99–124 (2010)Article Google Scholar 
  55. 55.M. Chiumenti, C. Agelet de Saracibar, M. Cervera, On the numerical modeling of the thermomechanical contact for metal casting analysis. J. Heat Transf. 130(6), (2008). https://doi.org/10.1115/1.2897923Article MATH Google Scholar 
  56. 56.B. Ravi, Metal Casting: Computer-Aided Design and Analysis. (PHI Learning Pvt. Ltd., 2005)
  57. 57.J.H. Lee, S.D. Noh, H.-J. Kim, Y.-S. Kang, Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018). https://doi.org/10.3390/s18051428ADS Article Google Scholar 
  58. 58.B. Aksoy, M. Koru, Estimation of casting mold interfacial heat transfer coefficient in pressure die casting process by artificial intelligence methods. Arab. J. Sci. Eng. 45, 8969–8980 (2020). https://doi.org/10.1007/s13369-020-04648-7Article Google Scholar 
  59. 59.S.S. Miriyala, V.R. Subramanian, K. Mitra, TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur. J. Oper. Res. 264(1), 294–309 (2018). https://doi.org/10.1016/j.ejor.2017.05.026MathSciNet Article MATH Google Scholar 
  60. 60.J.K. Kittu, G.C.M. Patel, M. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. (2015). https://doi.org/10.1007/s40962-015-0001-7Article Google Scholar 
  61. 61.W. Chen, B. Gutmann, C.O. Kappe, Characterization of electromagnetic-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 1, 39–48 (2012)Article Google Scholar 
  62. 62.J. Walker, A. Prokop, C. Lynagh, B. Vuksanovich, B. Conner, K. Rogers, J. Thiel, E. MacDonald, Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.02.018Article Google Scholar 
  63. 63.G.C. Manjunath Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004Article Google Scholar 
  64. 64.G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86, 3051–3065 (2016). https://doi.org/10.1007/s00170-016-8416-8Article Google Scholar 
  65. 65.M. Ferguson, R. Ak, Y.T. Lee, K.H. Law, Automatic localization of casting defects with convolutional neural networks, in 2017 IEEE International Conference on Big Data (Big Data) (Boston, MA, USA, 2017), pp. 1726–1735. https://doi.org/10.1109/BigData.2017.8258115.
  66. 66.P.K.D.V. Yarlagadda, Prediction of die casting process parameters by using an artificial neural network model for zinc alloys. Int. J. Prod. Res. 38(1), 119–139 (2000). https://doi.org/10.1080/002075400189617Article MATH Google Scholar 
  67. 67.G.C. ManjunathPatel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018Article Google Scholar 
  68. 68.J. Zheng, Q. Wang, P. Zhao et al., Optimization of high-pressure die-casting process parameters using artificial neural network. Int. J. Adv. Manuf. Technol. 44, 667–674 (2009). https://doi.org/10.1007/s00170-008-1886-6Article Google Scholar 
  69. 69.E. Mares, J. Sokolowski, Artificial intelligence-based control system for the analysis of metal casting properties. J. Achiev. Mater. Manuf. Eng. 40, 149–154 (2010)Google Scholar 
  70. 70.K.S. Senthil, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters—a study. Exp. Tech. 37(6), 8–14 (2013)Article Google Scholar 
  71. 71.N.K. Bhoi, H. Singh, S. Pratap, P.K. Jain, Electromagnetic material processing: a clean, green, and sustainable approach. Sustain. Eng. Prod. Manuf. Technol. (2019). https://doi.org/10.1016/b978-0-12-816564-5.00001-3Article Google Scholar 
  72. 72.K.S. Senthil, D.A. Daniel, An investigation of boiler grade tube and tube plate without block by using friction welding process. Mater. Today Proc. 5(2), 8567–8576 (2018)Article Google Scholar 
  73. 73.E. Hetmaniok, D. Słota, A. Zielonka, Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms. Appl. Math. Modell. 39(16), 4797–4807 (2015). https://doi.org/10.1016/j.apm.2015.03.056Article MATH Google Scholar 
  74. 74.C.V. Kumar, S. Muthukumaran, A. Pradeep, S.S. Kumaran, Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int. J. Mech. Mater. Eng. 6(2), 300–306 (2011)Google Scholar 
  75. 75.T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 150, 1598 (2020). https://doi.org/10.1016/j.matpr.2019.10.051Article Google Scholar 
  76. 76.B.P. Pehrson, A.F. Moore (2014). U.S. Patent No. 8708031 (U.S. Patent and Trademark Office, Washington, DC, 2014)
  77. 77.Liu, J., & Rynerson, M. L. (2008). U.S. Patent No. 7,461,684. Washington, DC: U.S. Patent and Trademark Office.
  78. 78.K. Salonitis, B. Zeng, H.A. Mehrabi, M. Jolly, The challenges for energy efficient casting processes. Procedia CIRP 40, 24–29 (2016). https://doi.org/10.1016/j.procir.2016.01.043Article Google Scholar 
  79. 79.R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using electromagnetic heating. Int. J. Metal Cast. 10, 1–13 (2017). https://doi.org/10.1007/s40962-017-0176-1Article Google Scholar 
  80. 80.R.R. Mishra, A.K. Sharma, Effect of susceptor and Mold material on microstructure of in-situ electromagnetic casts of Al–Zn–Mg alloy. Mater. Des. 131, 428–440 (2017). https://doi.org/10.1016/j.matdes.2017.06.038Article Google Scholar 
  81. 81.S. Kaushal, S. Bohra, D. Gupta, V. Jain, On processing and characterization of Cu–Mo-based castings through electromagnetic heating. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00481-8Article Google Scholar 
  82. 82.S. Nandwani, S. Vardhan, A.K. Bagha, A literature review on the exposure time of electromagnetic based welding of different materials. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.10.056Article Google Scholar 
  83. 83.F.J.B. Brum, S.C. Amico, I. Vedana, J.A. Spim, Electromagnetic dewaxing applied to the investment casting process. J. Mater. Process. Technol. 209(7), 3166–3171 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.024Article Google Scholar 
  84. 84.M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through electromagnetic sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27(5), 606–614 (2017). https://doi.org/10.1016/j.pnsc.2017.08.015Article Google Scholar 
  85. 85.V.R. Kalamkar, K. Monkova, (Eds.), Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. (2021) https://doi.org/10.1007/978-981-15-3639-7
  86. 86.V. Bist, A.K. Sharma, P. Kumar, Development and microstructural characterisations of the lead casting using electromagnetic technology. Manager’s J. Mech. Eng. 4(4), 6 (2014). https://doi.org/10.26634/jme.4.4.2840Article Google Scholar 
  87. 87.A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater Today: Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.02.374Article Google Scholar 
Simulating Porosity Factors

다공성 요인 시뮬레이션

Simulating Porosity Factors

https://www.foundrymag.com/issues-and-ideas/article/21926214/simulating-porosity-factors
Pamela Waterman

수치 모델링 도구는 일반적이지만 원인을 파악하기가 너무 어렵 기 때문에 코어 가스 블로우 결함을 거의 이해하지 못합니다. FLOW-3D 소프트웨어는 코어 가스 흐름을 모델링하여 더 나은 품질의 주조로 이어집니다.

파운드리는 첫 번째 시험에서 주조 품질을 달성하기 위해 많은 선행 엔지니어링을 수행해야합니다. 최근 몇 년 동안 금속 흐름, 응고, 미세 구조 진화 및 잔류 응력 모델링을위한 수치 도구가 보편화되었습니다.

그러나 아직 완전히 해결되지 않은 주조 결함 중 하나는 일반적인 코어 가스 블로우 결함입니다. 이 문제의 물리학은 금속, 코어 및 바인더 간의 복잡한 상호 작용을 포함하며 해결되기 전에 많은 주물을 스크랩 할 수 있습니다. 대부분의 경우, 문제는 더 높은 타설 온도를 사용하고 영향을받는 영역에 더 많은 벽 스톡을 추가함으로써 단순히 관리되지만 완전히 해결되지는 않습니다.

그러나 부품 설계가 복잡할수록 제조 문제가 발생할 가능성이 커집니다. 내부 세부 사항이 필요한 주조 조각의 경우 화학적으로 결합 된 모래 코어를 “인쇄”하여 모양을 만들고 금형 내부에 배치해야 합니다. 코어는 부품의 궁극적 인 기능에 중요한 내부 모양을 형성하며 제조 공정의 각 단계는 설계에 제약을 가합니다. 다양한 요구 사항이 코어 송풍 공정, 취급, 조립 및 가스 배출에 적용됩니다. 코어 디자인의 기술은 코어를 가열하는 동안 모양을 유지할 수 있을 만큼 견고하게 만드는 것과 부품이 냉각되었을 때 모래를 제거 할 수 있을 만큼 접착력이 끊어지는 것 사이의 미세한 균형입니다.

최적의 분해 설계

계획된 코어 분해의 메커니즘은 고체에서 가스로의 열 변환이지만 금형 설계는 그 가스가 코어 프린트를 통해 빠져 나갈 수 있도록해야합니다. 그렇지 않으면 금속이 기포를 가두어 모공을 형성 할 수 있습니다. 기껏해야 다공성은 표면 가공으로 밝혀집니다. 최악의 경우 부품이 더 아래쪽에서 실패합니다.

과거에 재료 및 주조 엔지니어가 코어 가스 기포로 인한 다공성 결함 문제를 발견하면 바인더 함량 감소, 코어 환기 증가, 코어 코팅 또는 베이킹과 같은 일련의 표준 문제 해결 작업을 수행했습니다. 미리 코어. 가스가 따라가는 경로를 볼 수 없었기 때문에 하나의 금형을 완료하는 데 종종 몇 주가 걸리는 긴 인출 공정이었습니다. 그리고 다른 부분에 문제가있을 때마다 반복해야했습니다.

이 처리 타임 라인을 압축해야하는 시장 주도적 요구는 주조 시뮬레이션 소프트웨어의 개발을 촉발했습니다. 설계와 제조 모두에 유용한 컴퓨터 기반 모델링을 통해 엔지니어는 실제 부품 비용이나 낭비없이 다양한 접근 방식을 테스트 할 수 있습니다. 파운드리가 특히 환기 설계에 시뮬레이션을 적용 할 수 있도록 Flow Science 는 최근 FLOW-3D 주조 해석 기능에 코어 가스 모델링을 추가했습니다.

흐름에 따라

FLOW-3D는 유체가 공기, 물, 용융 금속 또는 가스인지 여부에 관계없이 광범위한 일시적인 유체 흐름 프로세스에 대한 통찰력을 제공하는 전산 유체 역학 (CFD) 소프트웨어 패키지입니다. 다른 CFD 패키지와 비교할 때 움직이는 유체 표면을 모델링하고 추적하는 방식으로 인해 특히 정확합니다.

코어 가스 흐름에 CFD 방법을 적용하는 것은 어려운 일입니다. 수지 기반 바인더의 화학적 복잡성으로 인해 모래 코어 열 분해 후 가스가 흐르는 위치와 방식을 이해하는 것은 복잡한 과정입니다. 그러나 Flow Science는 여러 그룹과 협력하여 실험 데이터를 얻고 시뮬레이션 된 모델의 결과와 비교했습니다. 이 회사는 General Motors, Graham-White Manufacturing Co. 및 AlchemCast에서 코어 가스 유량 정보를 수집하여 알루미늄, 철 및 강철과 함께 사용되는 모래 수지 코어에 대한 실제 데이터를 얻었습니다.

GM Powertrain의 주조 분석 엔지니어 인 David Goettsch 박사는 15 년 동안 금속 주조의 충진 및 응고 분석에 FLOW-3D를 사용해 왔습니다. 새로운 코어 가스 모델은 설계 단계에서 재킷 코어 벤팅을 최적화하는 데 매우 유용했습니다. 코어 프린트에 대한 다른 모든 요구 사항이있는 기존 코어 박스에 벤트 트랙을 구현하는 것은 매우 어렵습니다. “코어 가스 배출에 대한 사전 분석 작업을 통해 시작하는 동안 높은 불량률을 줄일 수 있습니다.”라고 그는 설명합니다. “아마도 프로세스 기회가 문제를 해결할 수 있습니다. 하지만 그 지점에 도달하려면 테스트 기간이 오래 걸릴 수 있습니다.”

흐름 매개 변수 정의

도에 따라 금속 헤드 압력이 동일한 값에 도달하기 전에 가스 압력이 최고조에 달하여 가스가 거품을 형성 할 수 있습니다. 게이트 설계의 약간의 변경은 주입 속도를 높이는 데 도움이 될 수 있으므로 금속 압력이 더 빨리 생성되고 가스를 먼저 밀어 낼 수 있지만 물리적 시행 착오 접근 방식은 시간이 걸립니다. 가상 모델을 사용하여 지오메트리를 변경하는 방법을 식별하는 것은 코어 가스 시뮬레이션 소프트웨어 개발의 주요 목표였습니다.

Flow Science의 개발자는 바인더 분해 가스 공급원, 모래의 섬도, 무게 비율에 따른 바인더의 양, 작동 온도 및 코어의 물리적 투과성과 같은 프로세스 별 매개 변수와 흐름이면의 물리학을 결합했습니다. 이 모든 값은 샌드 쉘 바인더 및 폴리 우레탄 콜드 박스 바인더 (PUCB)의 산업 보정 샘플을 사용하여 검증되었습니다.

FLOW-3D 분석은 일정한 조성의 이상 기체를 가정하고 전체 바인더 분해의 최악의 시나리오를 취합니다. 타설하는 동안 코어 내에서 조건이 변화함에 따라 소프트웨어는 가스 압력의 변화, 가스 유동장의 기하학적 구조, 결합제 열화 영역 발생 및 금속으로의 가스 분사 가능한 표면 위치를 계산합니다. 모든 데이터는 사후 처리에 사용할 수 있습니다. 사용자는 가스 흐름을 쉽게 시각화하고 확대하고 특정 값을 얻기 위해 포인트를 클릭 할 수 있습니다.

이제 FLOW-3D v9.4에서 사용할 수있는 코어 가스 모델을 통해 Goettsch는 다양한 삽입 및 배출 위치를 시도하고 글로벌 진단을받을 수 있습니다. 가스 발생량, 가스 발생 위치, 금속 전면이 잡히기 전에 유출 된 가스량 확인 그것까지. “실제로 문제의 근본 원인을 확인할 수있을 때 매우 좋습니다.”라고 그는 말합니다. “이러한 시각화는 실제 현상이 무엇을하고 있는지에 대한 작은 창을 확보하는 데 유용합니다.”

멀티 코어 문제 Graham-White Manufacturing의 또 다른 숙련 된 파운드리 엔지니어 인 Elizabeth Ryder는 가스 다공성이 항상 조사하기 어려웠다는 의견을 반영합니다. 그녀는“특히 다중 코어의 경우 어떤 코어가 문제의 원인인지 파악하기가 어려웠습니다. 전체 시스템을 다루려고했습니다.”

1,700 개의 부품을 지속적으로 생산하고 있으며 그중 일부는 연간 10,000 개의 부품을 생산하는 Graham-White는 시뮬레이션을 통해 제조 프로세스를 개선하는 데 매우 만족했습니다. 얇은 벽 부품은 코어 대 금속 비율이 높고 가스가 많이 발생하는 특별한 문제입니다.

Graham-White는 레이저 스캐닝으로 생성 된 회색 철 부품 (약 34 인치)의 3D 모델을 사용하여 평가를 위해 현재 벤팅 설계를 제공했습니다. 이 게이팅 디자인은 수평으로 분할 된 몰드에서 패턴 플레이트 당 4 개의 인상으로 구성되었으며 각 인상에는 각 코어에 대한 통풍구가 있습니다. 중앙 스프 루를 통해 2 초 이내에 각 금형을 채울 수 있습니다.

FLOW-3D 소프트웨어를 사용한 시뮬레이션은 채움 률을 확인했지만 하나의 코어에 환기가 충분하지 않은 것으로 나타났습니다. Graham-White는 코어에 더 깊은 구멍을 뚫어 기존 통풍구를 통해 더 많은 가스를 전달하기 시작했습니다. 새로운 벤팅 설계로 접근 방식을 전환 한 후이 회사는 코어 블로우 스크랩이 약 30 % 감소했습니다.

또한 Flow Science 분석을 기반으로 엔지니어링 그룹은 문제가 있는 코어에 대한 추가 변경 사항을 평가하여 각 부품에 대한 추가 환기를 통해 두 부분으로 나눕니다. Ryder는 FLOW-3D 결과가 설계 초점을 좁히는데 도움이 되었고, 어떤 코어 (멀티 코어 설계)가 범인인지, 심지어 코어의 어느 영역이 문제의 원인인지 즉시 제로화 할 수 있었습니다. “미리 컴퓨터에서 더 많은 일을 할수록 더 좋습니다.”라고 그녀는 말합니다. “모든 것은 시간 절약으로 귀결됩니다.”

Where to go from here

파운드리 스크랩을 줄이고 주조 시뮬레이션 소프트웨어의 도움으로 자신의 핵심 인쇄 디자인의 효율성을 향상시킬 수 있습니다. Flow Science의 FLOW-3D CFD 분석 패키지의 새로운 코어 가스 모델은 중요한 다공성 계수를 시뮬레이션하여 설계자가 첫 번째 주조 전에 다양한 벤팅 설계를 평가하는 데 도움이 되기 때문에 중요합니다. 추가 재료 및 충진 방향에 대한 코어 가스 모델을 검증하는 개발이 계속됩니다.

Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineersv.17 no.3 = no.99 , 2009년, pp.45 – 53  신현우 (두원공과대학 메카트로닉스과 ) ;  정연준 ( 현대자동차(주) ) ;  강승구 ( 인지AMT(주))

Abstract

Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

Keywords: 오일팬 , 내열마그네슘합금, 알루미늄 합금,  다이캐스팅, 유동해석

서론

크랭크케이스의 하부에 부착되는 오일팬은 오일 펌프에 의해 펌핑된 오일이 윤활작용을 마치고 다시 모이는 부품이다. 오일의 온도에 의해 가열되므로 일반적으로 사용되는 마그네슘 합금인 AZ나 AM계열의 합금은 사용이 불가하며 내열소재의 적용이 불가피하다.

현재 ADC12종 알루미늄 오일팬 둥이 적용되고 있으며, 이를 마그네슘으로 대체할 경우 밀도가 알루미늄 2.8g/cm3‘, 마그네슘 1.8g/cm3‘이므로 약 35%의 경량화가 가능하다고 단순하게 말할 수 있다.

그러나 탄성계수는 알루미늄 73GPa이 고 마그네슘 45GPa이므로 외부 하중을 지지하고 있는 부품의 경우는 단순한 재질의 변경만으로는 알루미늄과 같은 정도의 강성을 나타내지 못하므로 형상의 변경 등을 통한 설계 최적화가 요구된다.

마그네슘은 현재까지 개발된 여러 가지 구조용 합금들 중에서 최소의 밀도를 가지고 있으며 동시에 우수한 비강도 및 비탄성 계수를 가지고 있다.1.2)

그러나 이러한 우수한 특성을 가지는 마그네슘 합금은 경쟁 재료에 비해 절대 강도 및 인성이 낮으며 고온에서 인장 강도가 급격히 감소하고 내부식 성능이 떨어지는 등의 문제점이 있다. 현재까지 자동차 부품 중 마그네슘 합금은 Cylinder head cover, Steering wheel, Instrument panel, Seat frame 등 비교적 내열성이 요구되지 않는 부분에만 한정적으로 적용되고 있다.
자동차 산업에서 좀 더 많은 부품에 마그네슘 합금을 적용하기 위해서는 내열성을 향상 시키고 고온강도를 향상시키기 위한 새로운 합금의 개발이 이루어져야 한다. 최근 마그네슘 합금개발에 대한 연구동향은 비교적 저가인 원소를 값비싼 원소가 첨가된 합금계에 부분적으로 첨가하거나 대체함으로써 비슷한 내열 특성을 가지는 합금을 개발하고,34) 이를 자동차 산업이나 전자 산업의 내열 부품 적용으로 확대하기 위하여 진행되고 있다. 현재 마그네슘 내열 부품은 선진국에서 자동차 부품으로 개발되고 있으나6-8)

국내에서는 아직 자동차 부품에 폭 넓게 적용되고 있지 않다. 그러므로 국내 자동차 산업이 치열한 국제 시장에서 생존하기 위해서는 마그네슘 합금의 내열 부품 제조기술을 조기에 개발하여 선진국보다 기술적, 경제적 우위를 확보하는 것이 절실히 요구된다.

본 연구에서는 내열 마그네슘합금을 이용하여 알루미늄 오일팬을 대체할 수 있는 새로운 오일팬의 개발올 위한 적절한 다이캐스팅 공정방안을 도출하고자 한다.

<중략>…….

Fig. 1 Current Al oil pan and cooling lines
Fig. 1 Current Al oil pan and cooling lines
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 5 Filling pattern of current Al oil pan
Fig. 5 Filling pattern of current Al oil pan
Fig. 11 Temperature distribution at t-=1.825sec
Fig. 11 Temperature distribution at t-=1.825sec

<중략>…….

결론

오일팬은 엔진 내부에서 순환되어 돌아오는 오일의 열을 외부로 발산하는 냉각기능 및 엔진으로부터 발생하는 소음이 외부로 전달되지 않도록 소음을 차단하는 역할을 수행하는 매우 중요한 부품 중의 하나이다. 본 연구에서는 현재 개발 중에 있는 새로운 내열 마그네슘 합금을 이용하여 현재 사용하고 있는 알루미늄 오일팬을 대체할 마그네슘 오일팬을 개발하고 시험 생산하였으며 다음과 같은 결론을 얻었다.

  1. 알루미늄 합금과 마그네슘 합금의 단위 부피당 열 용량은 각각 3.07x10J/m/K, 2.38x10J/m/K로서 동일 주조 조건 시 응고 속도 차이가 제품 성형에 영향을 미칠 것으로 예상되었으며, 주조해석 및 제품분석을 통해 확인하였다. 따라서 주조 조건에 가장 큰 영향을 미치는 것으로 확인된 용탕, 금형온도, 주조속도 등을 변경하여 최적 주조공정 조건을 확립하였다.
  2. 제품 및 시험편 성형에 영향을 미치는 것으로 확인된 런너의 곡률 반경을 증대시키고 게이트의 갯수 및 오버플로우 위치와 형상을 조절함으로서 제품 및 시험편의 용탕 흐름을 원활하게 조절 할 수 있었다.
  3. MRI153M 합금은 AE44 합금에 비해 응고 시작점에서 완료점까지의 응고시간이 길어 응고 완료 후, 내부 수축기포가 보다 많이 관찰되었다.
    따라서 MRI153M 합금 주조시 슬리브 충진율, 게이트 통과속도, 충진시간 등을 달리하여 최적 주조 품을 생산할 수 있었다.

Reference

  1. W. Sebastian, K. Droder and S. Schumann, Properties and Processing of Magnesium Wrought Products for Automotive Applications; Conference Paper at Magnesium Alloys and Their Applications,Munich, Germany, 2000 
  2. J. Hwang and D. Kang, “FE Analysis on the press forging of AZ31 Magnesium alloys,” Transactions ofKSAE, Vo1.14, No.1, pp.86-91, 2006  원문보기 
  3. S. Koike, K. Washizu, S. Tanaka, K. Kikawa and T. Baba, “Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines,” SAE 2000-01-1117, 2000 
  4. D.M. Kim, H.S. Kim and S.I. Park, “Magnesium for Automotive Application,” Journal ofKSAE, Vo1.18, No.5, pp.53-67, 1996 
  5. P. Lyon, J. F. King and K. Nuttal, “A New Magnesium HPDC Alloy for Elevated Temperature Use,” Proceedings of the 3rd International Magnesium Conference, ed. G. W. Lorimer, Manchester, UK, pp.1 0-12, 1996 
  6. S. Schumann and H. Friedrich, The Use ofMg in Cars – Today and in Future, Conference Paper at Mg Alloys and Their Applications, Wolfsburg, Germany, 1998 
  7. F. von Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger and D. Eliezer, “New Die Casting Alloy MRI 153 for Power Train Applications,” Magnesium Technology 2002, pp.61-68, 2002 
  8. M.C. Kang and K.Y. Sohn, “The Trend and Prospects of Magnesium Alloys Consumption for Automotive Parts in Europe,” Proceedings of KSAE Autumn Conference, pp.1569-l576, 2003 
Fig. 1.Schematic of wire feeding in a melting line.

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt

Bok-Hyun Kang*, Ki-Young Kim
Korea University of Technology and Education

코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가

Abstract

To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production line. The variables calculated included wire feed rate, melt temperature, wire diameter, melt flow rate and wire temperature. Efficiency was evaluated after a series of calculations based on the penetration depth of the alloy-wire into the molten copper bath. Of the five variables investigated, the wire feed rate and wire diameter were the most influential factors affecting the feeding efficiency of the cored-wire.

Keywords: Cored wire feeding, Cu melt, Efficiency, Alloying elements

1. 서론

소재산업이 고품질, 환경친화적,저에너지 소비기술을 지향하면서 보다 고효율 공정의 활용이 증가하는 추세에 있다. 철강이나 비철소재에 있어서도 탈산, 탈황, 개재물 처리 및 합금화 등과 같은 청정화를 위한 용탕 처리 뿐만 아니라목표하는 합금의 화학 조성의 정확한 조절이 요구되고 있다.

분말 원재료를 금속 피복재 등으로 감싸서 와이어의 형태로 만들고 이를 릴에 감은 후 순차적으로 풀어서 용탕에 투입하는 코어드 와이어(cored wire)방식은 첨가되는 원재료의 손실을 최소화하고 높은 효율성을 얻을 수 있는 이점이 있다.

용강의 탈산을 위한 Ca투입 시에도 Ca분말을 피복하여 사용한 경우의 회수율이 높아지고,미량의 V나 Al를 합금원소로참가할 때에도 효율적이라고 보고되고 있다[1-5]. 그리고 코어드 와이어를 사용할 경우의 용해 메커니즘에 대한 모델 및 열전달에 관한연구도 보고된 바 있다[6-9].

또한 철강산업에서 뿐만 아니라 주철 제조시에도 코어드 와이어법이 이용되고 있는데, 주철의 구상화 처리[10], 선철의 탈황[11]등에서도 활용이 되고 있다.

한편, 비철산업에서는 코어드 와이어법이 아직 활발히 채용이 되지 않고 있는 상태이나, 전자부품 용동 합금소재와 같이정밀한 합금화가 필요하거나 산화가 용이하여 분말로 첨가 시 회수율이 낮은 원소의 합금 시 그 활용이 기대되고 있다.

실제 정확한 장입 계산으로 합금 원소를 투입 하더라도 최종 목표 조성을 관리하는 것은 쉽지 않다. 특히 산화가 쉬운원소의 경우 용탕에 투입했을 때 회수율의 변동성이 심하고, 마이크로 합금화(micro alloying)와 같이 첨가량이 매우 적다면 화학조성의 조절이 더욱 어렵고, 회수율의 예측 또한 힘들다.

일반적으로 동합금의 제조시 합금원소는 용해 라인에서 연속적으로 첨가 되는데, 기존 공정라인에서의 합금화는 배합로에서 합금원소를 덩어리 또는 분말형태로 투입하여 진행한다. 그러나 이러한 배합방식은 많은 양의 분진 발생으로 작업 환경을 나쁘게 하고, 특히 분말의 상태로 용탕과 접촉하므로 산화가 용이하여 회수율의 변동이 심한 단점이 있다.

동합금 제조에 있어서 코어드 와이어법의 적용에 대한 실험실적 연구는 수행된 바 있으나[12], 다양한 공정변수를 고려하기 위해서는 실제 동합금의 용해, 연주라인에서 실험하는 것은 어려우므로, 전산모사를 활용하여 각 변수의 영향을 알아보는 것도 효과적인 방법 중의 하나이다.

본 연구에서는 아직까지 Cu 합금의 제조에 사용되지 않은 코어드 와이어 피딩법의 전산모사를 통하여 와이어 피딩 시의효율에 미치는 공정변수의 영향을 조사하였다.

2.연구방법

Fig. 1은 용해라인에서의 와이어피딩 모식도를 나타낸 것으로, 배합로에서 합금을 투입한다고 가정하였다. 또한 용탕의유속은 연주되는 슬라브의 유량과 용탕유로의 단면적으로 유로내에서의 용탕유속을 산출하였고, 이러한 용탕의 흐름을가정하여 유체의X+ 방향으로의 유속을 정의하였다.

Fig. 2는계산모델을 나타낸 것으로 100×500×20 mm 크기의 모델을 길이 방향으로 50개, 높이 방향으로 250개, 두께 방향으로 10개의 소로 나누었다. 용탕은 순 Cu로 가정하였고, 와이어의 재질은 Cu이며, 튜브 안에 Cu 분말이 들어있는 것으로 가정하였다.

계산상 합금분말은 정의가 안되기 때문에, 코어드 와이어의 밀도는 벌크 재질 밀도의60%의 밀도로 입력 하였다. 계산에 사용한 재질별 물성은T able 1과 같다.

용탕의 흐름, Cu용탕과 와이어 사이의 열 이동은 상용 유체해석 소프트웨어인 Flow-3D를 이용하여 3차원 계산을 수행하였다. 계산 변수는 와이어의 송급속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도로 하였으며, 상세는 Table2와 같다. 와이어의 송급 속도는 Z- 방향으로 당겨지는 것으로 입력하였다.

Fig. 1.Schematic of wire feeding in a melting line.
Fig. 1.Schematic of wire feeding in a melting line.

<중략>…….

Flg. 2.Three dimensional model for wire feeding simulation
Flg. 2.Three dimensional model for wire feeding simulation
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K

Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
ig. 9.Effect of melt flow rate on the penetration depth of wire.
ig. 9.Effect of melt flow rate on the penetration depth of wire.
Fig. 10.Effect of wire temperature on the penetration depth of wire
Fig. 10.Effect of wire temperature on the penetration depth of wire

<중략>…

4. 결론

코어드와이어 피딩 공정을 와이어의 송급 속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도를 공정변수로 하여 전산 모사하고, 피딩공정의 효율은 와이어의 침투 깊이로 평가하였다.

그 결과, 와이어의 송급 속도와 와이어의 직경이 와이어의 침투 깊이에 가장 영향이 큰 것으로 나타났다. 즉 와이어가 용탕의 상면 가까이에서 용해되어 버리면 산화가 용이하게 되고, 부상하여 슬래그 중으로 들어가기 쉬우므로 효율이 떨어지나, 용탕의 저부에서 용해되면, 대부분 Cu 용탕 중으로 녹아 들어가므로 첨가하는 합금 원소의 회수율이 높아지게 됨을 기대할 수 있다. 연속 주조 라인에서는 빌렛의 최종 조성의 조절이 중요한데, 와이어의 직경과 적정 송급 속도의 조화가 필요하다.

References

[1] P. Murray, Metallurgist, “Use of cored wire to introducemetallic powders into molten metal”,41(1997) 53-55.
[2] S. Basak, R. Kumar Dhal and G. G. Roy, Ironmaking andSteelmaking, “Efficacy and recovery of calcium during CaSicored wire injection in steel melts”,37(2010) 161-168.
[3] D.A. Dyudkin, V.V. Kisilenko, V.P. Onishchuk, A.A. Larionov,and B.V. Neboga, Metallurgist, “Effectiveness of alloyingsteel with vanadium from cored wire”,46(2002) 203-204.
[4] Y. Heikiki and M. Juha, Scandinavian J. of Metallurgy, “Steelcomposition adjustment by wire feeding at Rautaruukki OyRaaha steel works”,19(1990) 142-145.
[5] S.V. Kazakov, A.A. Neretin, S.M. Chumakov, S.D. Zinchenkoand A. B. Lyatin, Metallurgist, “Treatment of converter steelwith calcium-aluminum wire”,42(1998) 173-175.
[6] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, Steel ResearchInt., “Dissolution kinetics of cored wire in molten steel”,77(2006) 541-549.
[7] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, ISIJ Int., “AnImproved Model of Cored Wire Injection in Steel Melts”,44(2004) 1157-1166.
[8] S. Sanyal, J.K. Saha, S. Chandra and C. Bhanu, ISIJ Int.,“Model based optimazation of aluminum wire injection insteel melts”,46(2006) 779-781.
[9] M.G. Kim, D.C. Hwang, J.J. Choi, S.Y. Yoon, B.J. Ye, J.H.Kim and W.B. Kim, J. KFS, “Heat Flow Analysis of FerriticStainless Steel Melt during Ti wire feeding”,29(2009) 277-283.
[10] I. Ruiz, F. Wolfsgruber and J. L. Enriquez, Inter. J. of CastMetals Research, “Production of ductile iron with the coredwire technology”,16(2003) 7-10.
[11] A.M. Zborshchik, Metallurgist, “Cost-effectiveness of de-sulfurizing pig iron with magnesium-bearing cored wire”,45(2001) 360-362.
[12] B.H. Kang, W.H. Lee, J.Y. Cho, M.J. Lee and K.Y. Kim,Advanced Mater. Reasearch, “Yield of alloying elements fedby cored wire into a copper melt”,690-693(2013) 62-65

A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*Shin Taek Jeong,**Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University
고동휘*, 정신택,**, 오남선***

*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과

Abstract

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords 세굴일방향 흐름왕복성 조류 흐름해상 자켓구조물FLOW-3D최대 세굴심, scouruni-directional flowbi-directional tidal current flowoffshore jacket substructureFlow-3Dmaximum scour depth

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

1. 서 론

최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009)ABS(2013)BSH(2007)MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010)CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.

2. 수치해석 모형

본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.

2.1 FLOW-3D의 지배방정식

수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.

2.1.1 연속방정식

직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.

(1)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.

2.1.2 운동방정식

본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.

(2)

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu

(3)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv

(4)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw여기서, RSOR은 질량생성/소멸(Mass source/sink)항, VF는 체적비 (Volume fraction), p는 압력, Gx, Gy, Gz는 방향별 체적력항, fx, fy, fz는 방향별 점성력항, bx, by, bz는 다공질 매체에서 방향별 흐름 손실이다.그리고 점성계수 µ에 대하여 점성력항은 다음 식 (5)~(7)과 같다.

(5)

ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}

(6)

ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}

(7)

ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.

(8)

τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(9)

τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(10)

τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(11)

τxy=−μ{∂v∂x+R∂u∂y−ζvx}τxy=−μ{∂v∂x+R∂u∂y−ζvx}

(12)

τxz=−μ{∂u∂y+∂w∂x}τxz=−μ{∂u∂y+∂w∂x}

(13)

τyz=−μ{∂v∂z+R∂w∂y}τyz=−μ{∂v∂z+R∂w∂y}

2.1.3 Sediment scour model

Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.

2.1.3.1 The critical Shields parameter

무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).

(14)

θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.

(15)

R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.

(16)

θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.

(17)

θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.

2.1.3.2 동반이행(Entrainment)과 퇴적

다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.

(18)

ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.

(19)

d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.

(20)

usettling,i=νfds,i[(10.362+1.049d3∗)0.5−10.36]usettling,i=νfds,i[(10.362+1.049d*3)0.5−10.36]여기서, νf는 유체의 운동점성계수이다.

2.1.3.3 하상이동 모델(Bedload transport)

하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.

(21)

Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.

(22)

qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.

(23)

δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.

(24)

ubedload,i=qb,iδifb,iubedload,i=qb,iδifb,i

2.2 모델 구성 및 해역 조건

2.2.1 해역 조건 및 적용 구조물

본 수치해석은 위도와 안마도 사이의 해양 조건을 적용하였으며 지점은 Fig. 1과 같다.

jkscoe-27-6-373f1.gifFig. 1.Iso-water depth contour map in western sea of Korea.

본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.

jkscoe-27-6-373f2.gifFig. 2.A photo of HeMOSU-1.

2.2.2 모델 구성

본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.

jkscoe-27-6-373f3.gifFig. 3.Comparison of current speed conditions.

2.2.3 구조물 형상 및 격자

HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.

jkscoe-27-6-373f4.gifFig. 4.3 Dimensional plot of jacket structure.
Table 1.

Grid information of jacket structure

Xmin/Xmax(m)Ymin/Ymax(m)Zmin/Zmax(m)No. of x gridNo. of y gridNo. of z grid
−100/100−40/40−9/2031015560
Download Table

한편, 계산영역의 격자 형상은 Fig. 5와 같다.

jkscoe-27-6-373f5.gifFig. 5.3 dimensional grid of jacket structure.

2.3 계산 조건

계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.

Table 2.

Basic information of two scour simulation tests

CaseStructure typeVelocityDirectionAnalysis time
Case 1Jacket1 m/sUnidirectional10,000 sec
Case 2−1~1 m/sBidirectional
Download Table

FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to : Goto

3. 수치모형 실험 결과

3.1 Case 1

본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.

jkscoe-27-6-373f6.gifFig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f7.gifFig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).

이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.

jkscoe-27-6-373f8.gifFig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.

일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.

jkscoe-27-6-373f9.gifFig. 9.Scour phenomenon around jacket substructure(Case 1).

3.2 Case 2

서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.

jkscoe-27-6-373f10.gifFig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f11.gifFig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).

양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.

jkscoe-27-6-373f12.gifFig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.

Fig. 13은 3차원 수치해석 모의 결과이다.

jkscoe-27-6-373f13.gifFig. 13.Scour phenomenon around jacket substructure(Case 2).

3.3 현장 관측

본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.

jkscoe-27-6-373f14.gifFig. 14.Time series of tidal data at Wido (2013.7.1).

2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.

jkscoe-27-6-373f15.gifFig. 15.Iso-depth contour map around HeMOSU-1.

대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to : Goto

4. 결론 및 토의

본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : GotoInternational Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

감사의 글

본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to : Goto

References

American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.

API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.

Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.

Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.

FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.

International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.

Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean).

Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean).

KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).

Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.

U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.

van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.

Fig. 6: Proposed Pattern Layout

Casting Defect Analysis on Caliper Bracket using Mold flow Simulation

금형 흐름 시뮬레이션을 사용한 캘리퍼 브래킷의 주조 결함 분석

Abstract

이 작업에서는 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 Green sand 주조의 모래, 기계 및 설계 관련 결함을 분석합니다. 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷이 분석을 위해 선택됩니다.

캘리퍼 브래킷을 제조하는 동안 수축, 블로우 홀, 몰드 크러쉬 및 샌드 드롭과 같은 결함이 대량 생산에서 발생합니다. 여기에서는 주조 결함 식별, 분석 및 수정에 대한 3 단계 접근 방식을 제시합니다.

모래 관련 결함에서 테스트 매개 변수 및 모래 속성이 수집된 다음 해당 속성을 저널 및 기타 표준과 비교합니다. 기계 관련 주조 결함에서 기계 유지 보수를 관찰 한 다음 유지 보수 일정을 변경하여 브레이크 다운 시간과 유지 보수 비용을 줄입니다.

패턴 관련에서는 “Autodesk 금형 흐름 시뮬레이션 소프트웨어”를 사용하여 패턴에서 결함이 있는 영역을 찾은 다음 패턴을 재 설계하여 결함을 줄입니다.

Keywords: Casting defects, Mold flow, Simulation, Caliper Bracket

Background

이 작업에서 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 모래, 기계 및 설계 관련 결함을 분석하는 것은 원하는 부품 형상을 제조하는 직접적인 방법 중 하나입니다. 주조 결함으로 인해 단위 비용이 증가하고 작업 현장 직원의 사기가 낮아집니다. Vijaya Ramnath (2014)는 제조 리드 타임을 대폭 단축하는 게이팅 시스템의 최적화를 다루었습니다.

Prabhakara Rao et al (2011)은 ProCAST 소프트웨어의 도움으로 주조 응고 시뮬레이션 프로세스에 대해 논의했습니다. Kermanpur et al (2010)은 FLOW-3D 시뮬레이션 소프트웨어를 사용하여 두 자동차 주조 부품의 다중 캐비티 주조 금형에서 금속 흐름 및 응고 거동을 연구하고 시뮬레이션 모델을 검증했습니다.

Nandi 등 (2914)은 기존 방법과 컴퓨터 시뮬레이션 기술을 기반으로 다양한 크기의 피더를 사용하는 알루미늄 합금 (LM6)의 응고 거동을 조사하기 위해 플레이트 주조를 연구했습니다. Gajbhiye (2014)는 허용치, 게이팅 시스템 및 피더가있는 패턴에 대해 얻은 설계 치수에 따라 AutoCAST-X 환경에서 응고 시뮬레이션 분석을 수행했습니다. Masoumi (2005)는 금형 충진의 흐름 패턴을 실험적으로 관찰하기 위해 직접 관찰을 사용했습니다.

Dabade (2013)는 실험 설계법 (Taguchi 법)과 컴퓨터 지원 주조 시뮬레이션 기법을 결합한 새로운 주조 결함 분석 방법을 제안하고 연구하여 모래, 몰딩, 녹색 모래 주조의 방법, 충전 및 응고. Rajesh Rajkolhe (2014)와 Vipul Vasava (2013)는 주조 시뮬레이션 기술이 주조 결함 문제 해결 및 방법 최적화를 위한 강력한 도구가 된다고 발표했습니다.

Guharaja (2006)는 가능한 가장 낮은 비용으로 매개 변수 설계의 Taguchis 방법으로 품질을 개선함으로써이를 입증했습니다. 검토를 기반으로이 작업에서는 컴퓨터 지원 주조 시뮬레이션 기술을 사용하여 그린 샌드 주조의 설계 관련 결함을 분석합니다. 주조. 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷이 분석을 위해 선택됩니다.

캘리퍼 브래킷을 제조하는 동안 수축, 블로우 홀, 몰드 크러쉬 및 샌드 드롭과 같은 결함이 대량 생산에서 발생합니다. 여기에서는 주조 결함 식별, 분석 및 수정에 대한 3 단계 접근 방식을 제시합니다. 모래 관련 결함에서 테스트 매개 변수 및 모래 속성이 수집된 다음 해당 속성을 저널 및 기타 표준과 비교합니다.

기계 관련 주조 결함에서 기계 유지 보수를 관찰 한 다음 유지 보수 일정을 변경하여 브레이크 다운 시간과 유지 보수 비용을 줄입니다. 패턴 관련에서는 “Autodesk 금형 흐름 시뮬레이션 소프트웨어”를 사용하여 패턴의 결함 영역을 찾은 다음 패턴의 재 설계를 수행하여 결함을 줄입니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Fig. 5: Existing Pattern Layout
Fig. 5: Existing Pattern Layout
Fig. 6: Proposed Pattern Layout
Fig. 6: Proposed Pattern Layout

Conclusions

이 작업은 산업 부품의 결함을 줄이기 위해 시뮬레이션 기술을 사용하여 주조 결함을 식별하는 것을 목표로합니다. 주조 부품의 품질을 향상시키기 위해 여러 가지 장점과 지능형 도구 형태를 제공합니다. 이것은 주조의 품질과 수율을 향상시키는 데 확실히 도움이 될 것입니다. 이러한 기술적 인 방법으로 주조 결함을 검사하면 주조 산업에서 불량품 관리 조건을 경고 할 수 있습니다. 이 프로젝트에서는 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷을 분석을 위해 선택합니다. 캘리퍼 브라켓을 제작하는 동안 양산시 수축, 블로우 홀, 몰드 크러쉬, 샌드 드롭과 같은 결함이 발생합니다. 더 나은 품질의 주조를 얻기 위해 다양한 매개 변수를 찾기 위해 많은 테스트가 수행되었습니다. 모래 매개 변수를 적절하게 선택함으로써 주조 결함을 성공적으로 줄였습니다. 거부가 통제 될 때까지 모래 혼합 공정 매개 변수의 변화를 위해 지속적으로 노력할 수 있습니다. 그런 다음 적절한 유지 보수 정책을 제공하여 CASTING 기계의 성능 수준을 높였습니다. 이로 인해 CASTING 기계의 OEE가 향상되었습니다. 마지막으로 세 가지 이상의 수정 사항이있는 새로운 패턴 디자인이 제안됩니다. 이 새로운 패턴 디자인은 주조 결함을 성공적으로 줄였습니다. 더 나은 품질을 위해 주조 결함에 근거한 주조품의 거부를 가능한 한 줄여야합니다.
분석 결과는 제품 품질의 향상을 보여줍니다. 마지막으로 캐스팅 거부율이 감소합니다.

Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)

Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation

Alexandre Reikher
A Dissertation Submitted in
Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
In Engineering
at
The University of Wisconsin Milwaukee
December 2012

ABSTRACT

얇은 벽 부품의 주조는 오늘날 다이 캐스트 산업의 현실이 되었습니다. 전산 유체 역학 분석은 생산 개발 프로세스의 필수적인 부분입니다. 일반적으로 에너지 방정식과 결합 된 3 차원 Navier-Stokes 방정식은 유동 및 응고 패턴, 유동 선단의 위치, 함수로서 고체-액체 인터페이스의 위치를 ​​이해하기 위해 해결되어야 합니다.

캐비티 충전 및 응고 과정에서 시간. 얇은 벽 주조에 대한 지배 방정식의 일반적인 솔루션에는 많은 수의 계산 셀이 필요하므로 솔루션을 생성하는 데 비현실적으로 오랜 시간이 걸립니다.

Hele Shaw 유동 모델링 접근법을 사용하면 평면 외 유동을 무시함으로써 얇은 캐비티의 유동 문제 해결을 단순화 할 수 있습니다. 추가적인 이점으로, 문제는 3 차원 문제에서 2 차원 문제로 축소됩니다. 그러나 Hele-Shaw 근사는 흐름의 점성력이 관성력보다 훨씬 더 높아야하며,이 경우 Navier-Stokes 방정식은 Reynolds의 윤활 방정식으로 축소됩니다.

그러나 다이 캐스트 공정의 빠른 사출 속도로 인해 관성력을 무시할 수 없습니다. 따라서 윤활 방정식은 흐름의 관성 효과를 포함하도록 수정되어야 합니다.

이 박사 학위 논문에서는 얇은 공동에서 응고와 함께 액체 금속의 정상 상태 및 과도 흐름을 모델링하기 위한 빠른 수치 알고리즘이 개발되었습니다. 설명된 문제는 저온 챔버, 고압 다이 캐스트 공정, 특히 얇은 환기 채널에서 관찰되는 금속 흐름 현상과 밀접한 관련이 있습니다.

채널의 금속 흐름 속도가 고체-액체 계면 속도보다 훨씬 높다는 사실을 사용하여 두께에 따른 열 전달을 처리하면서 금속 흐름을 주어진 시간 단계에서 안정된 것으로 처리하여 새로운 수치 알고리즘을 개발했습니다.

일시적인 방향. 얇은 캐비티의 흐름은 채널 두께에 대한 운동량과 연속성 방정식을 통합 한 후 2 차원으로 처리되고 열 전달은 두께 방향의 1 차원 현상으로 모델링 됩니다. 엇갈린 격자 배열은 유동 지배 방정식을 이산화하는데 사용되며 결과적인 편미분 방정식 세트는 SIMPLE (Semi-Implicit Method for Pressure Linked Equations) 알고리즘을 사용하여 해결됩니다.

상 변화를 수반하는 두께 방향 열 전달 문제는 제어 볼륨 공식을 사용하여 해결됩니다. 고체-액체 계면의 위치와 모양은 솔루션의 일부로 Stefan 조건을 사용하여 찾을 수 있습니다. 시뮬레이션 결과는 응고와 함께 전체 3 차원 흐름 및 열 전달 방정식을 해결하는 상용 소프트웨어 FLOW-3D®의 예측과 잘 비교되는 것으로 나타났습니다.

제안된 수치 알고리즘은 또한 얇은 채널에서 일시적인 금속 충전 및 응고 문제를 해결하기 위해 적용되었습니다. 움직이는 고체-액체 인터페이스의 존재는 이제 반복적으로 해결되는 일련의 흐름 방정식에 비선형 성을 도입합니다.

다시 한번, FLOW3D®의 예측과 잘 일치하는 것이 관찰되었습니다.

이 두 연구는 제안 된 관성 수정 레이놀즈의 윤활 방정식과 함께 두께를 통한 열 손실 및 응고 모델을 성공적으로 구현하여 다이 캐스트 공정 중에 얇은 채널에서 액체 금속의 유동 및 응고에 대한 빠른 분석을 제공 할 수 있음을 나타냅니다. CPU 시간을 대폭 절약하여 얻은 이러한 시뮬레이션 결과는 다이 캐스트 다이의 환기 채널을 설계하는 동안 빠른 초기 분석을 제공하는 데 사용할 수 있습니다.

Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a.  plunger pushes metal from the sleeve through the gating system into the cavity; b. after  solidification process is complete, the die opens; c. the part is ejected from the cavity.
Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a. plunger pushes metal from the sleeve through the gating system into the cavity; b. after solidification process is complete, the die opens; c. the part is ejected from the cavity.
Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a.  molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on  plunger; c. plunger pushes metal from the sleeve through the gating system into the  cavity; d. high pressure is maintained during solidification; e. after solidification is  complete, the die opens; f. the part is ejected from the cavity.
Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a. molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on plunger; c. plunger pushes metal from the sleeve through the gating system into the cavity; d. high pressure is maintained during solidification; e. after solidification is complete, the die opens; f. the part is ejected from the cavity.
Figure 4.6 A schematic of a die-cast die with shot sleeve and plunger: 1) Shot  sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die,  5) Mold cavity, 6) Ventilation channel.
Figure 4.6 A schematic of a die-cast die with shot sleeve and plunger: 1) Shot sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die, 5) Mold cavity, 6) Ventilation channel.
Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The  overflows are created when the metal front, after filling the main cavity, fills up the  machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up.
Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The overflows are created when the metal front, after filling the main cavity, fills up the machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up.
Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)
Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)
Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled  with liquid metal at the end of the fill process. (The temperature is in 0C.)
Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled with liquid metal at the end of the fill process. (The temperature is in 0C.)
Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a)  Measured length of metal flow in the ventilation channel after solidification stops it; b)  Enlarged image of the solidified metal in the channel
Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a) Measured length of metal flow in the ventilation channel after solidification stops it; b) Enlarged image of the solidified metal in the channel
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.

Numerical simulation of flow and compression of green sand

Abstract

산업 박사 프로젝트의 초점은 주조 부품에 최종 기하학적 모양을 제공하는 모래 주형 (녹색 모래)의 생산에 집중되었습니다. 주조 부품의 고품질을 보장하기 위해서는 금형 자체의 제조 공정을 균일하고 안정적으로 제어하는 ​​것이 중요합니다.

따라서 녹사(주물사)의 흐름과 퇴적을 특성화하고 모델링하는 방법에 대한 기본적인 이해를 얻는 것이 중요했기 때문에 모래 주형의 제조 공정 시뮬레이션에 사용할 수 있었습니다. 녹색 모래의 유동성은 모래 샷 중에 모래로 챔버를 채우는 호퍼를 통해 모래가 아래로 흐를 때 중요합니다.

녹색 모래의 유동성은 주로 물과 벤토나이트의 양에 의해 좌우되며 둘 다 감소 시킵니다. 따라서 유동성과 내부 힘은 리브 및 기타 기하학적 장애물로 인한 그림자가 있을 수 있는 복잡한 금형 형상을 얼마나 잘 채울 수 있는지 제어합니다.

흐름이 조기에 중단되면 금형이 완전히 채워지지 않거나 재료 밀도의 변동이 너무 높아 주조 부품의 최종 표면에 영향을 미칠 수 있습니다. 벤토나이트에 의해 생성된 습식 다리는 벤토나이트와 물이 녹색 모래를 매우 응집력 있게 만드는 모래 알갱이를 서로 달라붙게 하고 혼합물을 짜 냄으로써 주조 공정을 위한 강력한 금형을 얻기 위해 금형을 안정시키는 기계적 특성을 얻습니다.

따라서 생사 유동성은 챔버의 적절한 충진을 위해 샌드 샷 중에 중요하며, 후속적으로 압착 공정 동안의 견고한 기계적 특성은 금형의 최종 강도에 중요합니다. 이는 이러한 기계적 거동이 역 관계를 갖기 때문에 문제가 됩니다.

예를 들어 녹색 모래가 너무 건조하면 녹색 모래의 유동성이 매우 높고,특정 수분 함량 수준에 따라 곰팡이의 강도가 낮고 그 반대도 마찬가지입니다. 따라서 정확한 생사 상태를 확보하고 샌드 샷 중에 금형 충진을 개선하는 것이 매우 중요합니다.

이산 요소 방법 (DEM)은 방법의 이산적인 특성이 녹색 모래의 입상 구조를 잘 모의하기 때문에 수치 모델로 선택되었습니다. DEM 모델은 롤링 저항 모델을 사용하여 비 구형 석영 모래 입자의 롤링 저항을 에뮬레이션하고 응집성 모델을 사용하여 벤토나이트에서 석영 모래 입자의 결합을 에뮬레이트합니다.

그린 샌드는 항복 궤적이 발견된 링 전단 테스터로 특성화되었으며 유동성을 정의하는 새로운 방법이 제안 되었습니다. 링 전단 시험기는 DEM 모델의 정적 마찰 계수를 얻기 위해 사용되었습니다.

측정된 높이에서 녹색 모래의 단순한 기계적 거동을 조사하기 위해 모래 더미 실험이 사용되었습니다. 이 높이에서 DEM 모델은 구름 저항 값을 얻고 응집 모델에서 매개 변수를 얻는 것과 관련하여 보정 되었습니다.

이 프로젝트는 DISAMATIC 공정에서 샌드 샷을 사용하여 모래 주형을 생산하는 동안 모래 입자의 흐름과 모래 퇴적을 처리했습니다. 챔버의 녹색 모래 퇴적은 캐비티 내부에 통풍구가 배치된 특수 캐비티 설계로 조사되었습니다.

에어 벤트는 샌드 샷 중에 공기 흐름과 함께 녹색 모래를 운반하는 데 사용됩니다. 챔버와 캐비티의 에어 벤트 설정을 변경함으로써 캐비티 설계에서 좁은 통로의 충진을 개선하여 최종 샌드 몰드도 개선 할 수 있었습니다.

캐비티 디자인을 사용한 샌드 샷은 챔버의 공기 흐름과 통풍구를 통한 공기 흐름을 모델링하기 위해 고전적인 전산 유체 역학 (CFD)과 결합 된 녹색 모래의 흐름을 모델링하는 이산 요소 방법 (DEM)으로 시뮬레이션되었습니다.

이러한 실험과 시뮬레이션은 DISAMATIC 프로세스와이를 개선하는 방법에 대한 유익한 통찰력을 제공했습니다. 또한 유동층을 사용하여 생사의 유동화 특성을 조사하고 새로 개발 된 Anton Paar Powder Cell을 사용하여 유동 점도를 얻었습니다.

상업적 측면 특수 설계된 캐비티 지오메트리에서 그린 샌드로 몰드 챔버를 채우는 것에 대한 지식을 얻었습니다. 에어 탱크에 초기에 적용된 공기 압력과 함께 에어 벤트의 설정은 캐비티의 충진을 개선하여 최종 금형을 개선하는 데 유용한 아이디어를 제공했습니다.

또한, 결합 된CFD-DEM 모델을 사용하여 STAR-CCM +의 상용 소프트웨어를 적용하여 형상의 3D 슬라이스 표현으로 프로세스를 성공적으로 시뮬레이션 할 수있었습니다. 따라서 향후 DISAMATIC 프로세스를 시뮬레이션하기 위한 독립형 코드를 개발하는 것이 더 가능해집니다. DISAMATIC 프로세스의 샌드 샷은 링 전단 테스터가 다음의 견고한 기계적 거동을 나타낼 수 있는 연속체 모델로 모델링 될 수도 있습니다.

Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3. Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5. Stripping off the PP where the PP is stripped from the mold and returns to its starting position in the molding chamber. 6. Closing the molding chamber and repeating a new cycle. The edited figure and text are from [8]
Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3. Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5. Stripping off the PP where the PP is stripped from the mold and returns to its starting position in the molding chamber. 6. Closing the molding chamber and repeating a new cycle. The edited figure and text are from [8]
Figure 2.1: The green sand mixture. The figure is from [8]
Figure 2.1: The green sand mixture. The figure is from [8]
Figure 2.2: The size distribution of the green sand applied in the project. The figure is from [9]
Figure 2.2: The size distribution of the green sand applied in the project. The figure is from [9]
Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite
cohesive and thereby the sand grains will stick together. The pictures are from the slides
in [10](http://www.sut.ac.th/engineering/Metal/ru/GREEN20%SAND.pdf).
Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite cohesive and thereby the sand grains will stick together
Figure 2.11: The density as a function of compactability with respect to the number of rammings 1-10. The first ramming starts from the left indicated by the number. The cross placed in the middle shows the average value of the batches with an individual color. The dotted lines are the standard deviations of compactability % as a horizontal line and the standard deviations of density [ kg m3 ] as a vertical line.
Figure 2.11: The density as a function of compactability with respect to the number of rammings 1-10. The first ramming starts from the left indicated by the number. The cross placed in the middle shows the average value of the batches with an individual color. The dotted lines are the standard deviations of compactability % as a horizontal line and the standard deviations of density [ kg m3 ] as a vertical line.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.
Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the mechanical behaviours.
Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed on the Mohr circle
Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed on the Mohr circle
Figure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The performed experiments placed on the Mohr circle.
Figure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The performed experiments placed on the Mohr circle.

Conclusion

이 논문에서는 시멘트와 충전제의 비 중복 입자 분포를 사용하여 유변학에 대한 분쇄 모래 충전제의 형상 효과를 분리했습니다. 실험 결과는 필러의 종횡비가 증가함에 따라 매트릭스의 유동성이 감소하고 두 종류의 필러에 따라 최대 부피 분율 임계 값이 다양 함을 보여주었습니다. DEM 모델을 사용하여 슬럼프 흐름 테스트를 시뮬레이션하고 실험 결과의 10 % 이내 인 수치 예측을 얻었습니다. 불일치로 인해 모델에 의해 부피 분율 임계 값이 약간 검증되었습니다. 그럼에도 불구하고 수치 결과는 유망 해 보이며 우리는 이산화를 개선하고 다른 상호 작용 모델을 탐색하여 DEM 모델을 추가로 개발할 계획입니다.

FLOW-3D (x) Workflow

Optimization of a Tilt Pour Casting

경동 주조 최적화

최적화 목표

연소 엔진 피스톤의 경동 주조를 최적화하여 공기 혼입을 최소화합니다.

엔지니어링 과제

이 최적화의 목적은 경동 주조 중에 공기 혼입 및 난류의 양을 최소화하는 것입니다. 이 목표는 주물 채우기 모션의 프로필을 수정하여 달성됩니다. 공기 혼입과 난류를 최소화하면 주조에 결함이 발생할 가능성이 줄어 듭니다. 또한 충전 매개 변수를 최적화하면 비용 증가 없이 품질을 높일 수 있습니다.

최적화 전 틸트 타설 주조

최적화 솔루션

사용자가 경동 주조 시뮬레이션의 여러 반복을 실행할 수 있는 워크 플로우를 생성합니다. FLOW-3D (x) 는 노드를 사용하여 최적화를위한 자동화 된 워크 플로를 구성합니다. 세 가지 프로세스 변수 (회전 시작, 회전 지속 시간 및 체적 유량)는 변수 입력으로 사용되며 시뮬레이션이 반복 될 때마다 달라집니다.

FLOW-3D (x) 워크 플로우

Excel 스프레드 시트 노드는 금형 회전의 시작 및 지속 시간과 충전 프로파일의 체적 유량에 대한 테이블을 정의하는 데 사용됩니다. 계산기 노드는 프로파일 설명을 레이들 동작을 규정하는 movin.inp 파일로 변환합니다. 다음으로 FLOW-3D 노드는 시뮬레이션을 실행하는 데 사용됩니다. 각 시뮬레이션의 출력은 후 처리 노드에 의해 결과에서 추출된 총 충전 비율과 동반 공기량 비율입니다. 채우기 비율은 시뮬레이션의 동적 종료 조건으로 사용되어 금형이 완전히 채워지도록 합니다. 최적화 연구에 허용되는 예산 또는 시뮬레이션 수는 30 개로 설정됩니다. 단일 시뮬레이션 실행은 약 15 분입니다.

최적화 결과

사용 FLOW-3D (X) 의 데이터를 분석 도구를 결과 Pareto Front 그래픽 표현이 혼입된 공기의 최소량과 높은 충전 분율 최적 충전 프로파일에 있는 시뮬레이션 대응을 보여준다. 시뮬레이션 및 반복 설계 기능은 모두 FLOW-3D (x)에 의해 자율적으로 생성됩니다 . 또한 각 개별 시뮬레이션의 이미지와 비디오를 출력하도록 설정할 수 있습니다.

다음은 원래의 주입 속도와 주입 시간 (왼쪽)과 오른쪽의 최적화 된 값을 비교 한 것입니다. 주입 속도가 약간 증가하고 주입이 약간 더 일찍 완료됩니다.

원래 주입 속도
최적화 된 주입 속도

다음은 원래 금형 회전 속도 및 기간 (왼쪽)과 오른쪽의 최적화 된 값을 비교한 것입니다. 회전 속도가 증가하고 회전 시간이 원본보다 짧다는 것을 알 수 있습니다.

원래 금형 회전율

FLOW-3D (X)에 대한 자세한 내용은  기술 문의 담당자에게 문의 바랍니다.

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Figure 8 Evaluation test of thermal sprayed coatings

Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines

고효율 가스 터빈용 신소재 및 제조 기술 개발

Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015)

가스 터빈 복합 화력 (GTCC) 발전 시장은 재생 에너지와 공존 할 수 있는 가장 깨끗하고 경제적인 화력 발전 시스템으로 장기적으로 성장할 것으로 예상됩니다. 효율성을 더욱 높이려면 터빈 부품 재료의 특성을 개선하고 첨단 블레이드 설계에 필요한 복잡한 구조를 구축하기 위한 제조 기술 개발이 필수적입니다.

이 보고서는 가스 터빈의 고온 적용을 위한 재료 및 제조 기술로서 합금 설계 및 주조, 코팅, 용접 수리 및 냉각 구멍 드릴링 공정을 포함한 기술 개발을 제시합니다.

최근 몇 년 동안 세계 에너지 수요는 특히 중국과 인도와 같은 아시아 국가에서 현저하게 증가하고 있습니다. 2035 년 글로벌 에너지 소비량은 2010 년 대비 약 1.5 배 수준에이를 것으로 예상됩니다. 일본에서는 에너지 자급률이 10 % 미만이며 에너지 사용 효율을 높이고 환경 부하를 줄이는 것이 시급한 문제입니다. . 특히 현재 일본 전기 생산량의 거의 90 %를 차지하고있는 화력 발전의 효율화가 필요하다. 발전 효율은 가스 터빈 (시스템의 주요 구성 요소)의 연소 온도에 크게 영향을받습니다. 온도가 상승함에 따라 열 순환 효율이 향상 될 수 있기 때문에 Mitsubishi Hitachi Power Systems, Ltd.

(MHPS)는 1980 년대 초부터 더 높은 온도 / 더 나은 효율성 및 더 큰 용량을 가진 고급 시스템을 개발했습니다.
그림 11에서 보듯이 터빈 입구 온도는 1984 년 (Type D) 1,100 ° C 등급에서 시작하여 1989 년 1,350 ° C 등급 (Type F), 1997 년 1,500 ° C 등급 (Type 지).

또한 2011 년에는 1,600 ° C 급 가스 터빈 (J 형)이 출범했습니다 .2 2004 회계 연도부터 국가 프로젝트 “1,700 ° C 급 가스 터빈을위한 원소 기술 개발”이 시작되었습니다. J 형 가스 터빈 개발 프로젝트는 첨단 열 차단 코팅 (TBC) 및 냉각 / 공기 역학 기술과 같은 결과도 활용되었습니다 (그림 2).

가스 터빈 온도를 더욱 높이려면 이러한 고온을 견딜 수있는 신소재를 설계하고 터빈 부품의 특성을 개선하며 고급 블레이드 설계에 필요한 복잡한 구조를 구축하기 위한 제조 기술을 발명하는 것이 중요합니다.
이 보고서는 MHPS가 Mitsubishi Heavy Industries, Ltd. (MHI) 연구 및 혁신 센터와 함께 개발하고 있는 이러한 기술을 소개합니다.

 Figure 1    Increase in the turbine inlet temperature and transition of applied materials and technologies
Figure 1 Increase in the turbine inlet temperature and transition of applied materials and technologies
Characteristics of the M501J gas turbine
Characteristics of the M501J gas turbine

MHPS와 MHI는 MGA1400, MGA1400DS, MGA2400을 고온 환경에서 사용할 수 있을 만큼 내구성이 있는 고강도 Ni 계 초합금으로 개발하여 자사 제품에 적용하고 있습니다. 일반적으로 인터 빈 블레이드에 사용되는 초합금은 주조 방법에 따라 기존 주조 합금, 방향 응고 합금, 단결정 합금 중 하나로 분류됩니다.

이 세 가지 유형 중 MGA1400 및 MGA2400은 기존 주조 합금의 범주에 해당하는 반면 MGA1400DS는 방향성 응고 합금입니다 . 단결정 합금은 입자 경계가 없기 때문에 가장 강하고 (그 존재는 재료 강도 측면에서 불리 함) 입자 경계 강화를 고려하지 않고 합금 조성을 최적화 할 수 있습니다.

그러나 주조 공정에서 발생하는 주조 결함은 강도를 크게 저하시킬 수 있으므로 제조 기술의 확립이 중요합니다. 산업용 가스 터빈 블레이드는 크기가 크기 때문에 항공기 엔진보다 제조하기가 더 어렵습니다.

MHI 연구 혁신 센터는 1700 ° C 급 가스 터빈을 건설하기 위해 NIMS (National Institute for Materials Science)와 공동 연구를 수행하여 단결정 블레이드용 고내열 소재를 개발했습니다. 고온에서 재료의 강도를 검증하는 것 뿐만 아니라 결함이 없는 좋은 단결정 구조를 얻기 위한 주조 기술 개발도 필수적입니다.

신소재는 원재료 및 주조 비용 등 경제성 측면에서도 만족스러워야 한다. 또한 고온에서 필요한 모든 재료 특성 (예 : 크리프 강도, 열 피로 강도 및 내 산화성)을 나타내야 합니다. 특히 크리프 강도와 열 피로 강도의 공존을 실현하기 위한 기술 개발이 어려웠습니다.

NIMS 합금 설계 프로그램에 의해 결정된 조성으로 테스트 합금을 조사하는 동안 MHI와 NIMS는 속성 예측을 위한 데이터베이스를 확장하기 위해 주로 열 피로 강도에 대한 데이터를 수집했습니다. 이러한 노력으로 인해 크리프 강도와 열 피로 강도 모두에서 우수한 특성을 가진 단결정 합금 인 MGA1700이 개발되었습니다 (그림 3).

일반적으로 레늄과 같은 고가의 희귀 금속을 포함하는 고강도의 다른 단결정 합금과 달리 MGA1700은 콘없이 고강도를 실현하는 획기적인 합금입니다.

 Figure 3    Micro structure and high-temperature strength property of the designed alloy
Figure 3 Micro structure and high-temperature strength property of the designed alloy
   Figure 8    Evaluation test of thermal sprayed coatings
Figure 8 Evaluation test of thermal sprayed coatings
 Figure 11    Schematic diagram of LMD Figure 13    Cross-sectional comparison of weld beads between analysis results and LMD application      Figure 12    Analytical model and a typical result of the analysis
Figure 11 Schematic diagram of LMD Figure
Figure 12 Analytical model and a typical result of the analysis
13 Cross-sectional comparison of weld beads between analysis results and LMD application

중략 ……

References

1. Komori, T. et al., the 41th GTSJ Seminar material (2013) pp. 57-64 2. Yuri, M. et al., Development of 1600°C-Class High-efficiency Gas Turbine for Power Generation Applying J-Type Technology, Mitsubishi Heavy Industries Technical Review Vol. 50 No. 3 (2013) pp.1-10. 3. Okada, I. et al., Development of Ni base Superalloy for Industrial Gas Turbine, Superalloy2004,(2004),p707-712. 4. Kishi, K. et al., Welding Repair Technology for Single Crystal Blade and Vane,Proceedings of the International Gas Turbine Congress, (2014), IGTC07-116S. 5. KREUTZ, E.W. et al., Process Development and Control of Laser Drilled and Shaped Holes in TurbineComponents, JLMN-Journal of Laser Micro/Nanoengineering, Vol.2 No.2 (2007), p123. 6. Sezer, H.K. et al., Mechanisms of Acute Angle Laser Drilling induced Thermal Barrier CoatingDelamination,Journal of Manufacturing Science and Engineering, vol.131 (2009), p.051014-1 7. Goya, S. et al., High-Speed & High-Quality Laser Drilling Technology Using a Prism Rotator, MitsubishiHeavy Industries Technical Review Vol. 52 No. 1 (2015) pp. 106-109

Simulation Gallery

Simulation Gallery

Simulation Gallery | 시뮬레이션 갤러리

시뮬레이션 비디오 갤러리에서 FLOW-3D  제품군으로 모델링 할 수 있는 다양한 가능성을 살펴보십시오 .

적층 제조 시뮬레이션 갤러리

FLOW-3D AM 은 레이저 파우더 베드 융합, 바인더 제트 및 직접 에너지 증착과 같은 적층 제조 공정을 시뮬레이션하고 분석합니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다. 

Multi-material Laser Powder Bed Fusion | FLOW-3D AM

Micro and meso scale simulations using FLOW-3D AM help us understand the mixing of different materials in the melt pool and the formation of potential defects such as lack of fusion and porosity. In this simulation, the stainless steel and aluminum powders have independently-defined temperature dependent material properties that FLOW-3D AM tracks to accurately capture the melt pool dynamics. Learn more about FLOW-3D AM’s mutiphysics simulation capabilities at https://www.flow3d.com/products/flow3…

Laser Welding Simulation Gallery

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어로 다공성, 열 영향 영역을 최소화하고 미세 구조 진화를 제어 할 수 있습니다. 레이저 용접 공정을 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화를 특징으로 합니다.

Keyhole welding simulation | FLOW-3D WELD

물 및 환경 시뮬레이션 갤러리

FLOW-3D 는 물고기 통로, 댐 파손, 배수로, 눈사태, 수력 발전 및 기타 수자원 및 환경 공학 과제 모델링을 포함하여 유압 산업에 대한 많은 응용 분야를 가지고 있습니다. 엔지니어는 수력 발전소의 기존 인프라 용량을 늘리고, 어류 통로, 수두 손실을 최소화하는 흡입구, 포 이베이 설계 및 테일 레이스 흐름을위한 개선 된 설계를 개발하고, 수세 및 퇴적 및 공기 유입을 분석 할 수 있습니다.

금속 주조 시뮬레이션 갤러리

FLOW-3D CAST  에는 캐스팅을 위해 특별히 설계된 광범위하고 강력한 물리적 모델이 포함되어 있습니다. 이러한 특수 모델에는 lost foam casting, non-Newtonian fluids, and die cycling에 대한 알고리즘이 포함됩니다. FLOW-3D CAST 의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계주기를 단축하고 비용을 절감 할 수 있는 통찰력을 제공합니다.

HPDC |Comparison of slow shot profiles and entrained air during a filling simulation |FLOW-3D CAST

Shown is a video comparing two slow shot profiles. The graphs highlight the shot profiles through time and the difference in entrained air between the slow shots. Note the lack of air entrained in shot sleeve with calculated shot profile which yields a much better controlled flow within the shot sleeve.

Coastal & Maritime Applications | FLOW-3D

FLOW-3D는 선박 설계, 슬로싱 다이내믹스, 파동 충격 및 환기 등 연안 및 해양 애플리케이션에 이상적인 소프트웨어입니다. 연안 애플리케이션의 경우 FLOW-3D는 연안 구조물에 심각한 폭풍과 쓰나미 파장의 세부 정보를 정확하게 예측하고 플래시 홍수 및 중요 구조물 홍수 및 손상 분석에 사용됩니다.

Particles | 입자

입자 / Particles

본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.

금속 증착 시뮬레이션으로 시각화된 Lagrangian 입자
FLOW-3D의 Lagrangian 입자 모델

FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.

  • 마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
  • 가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.

각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.

다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.

가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.

액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.

각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.

Lagrangian 입자를 직접 금속 증착에 적용

직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.

laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.

  • 용융 풀의 크기와 모양
  • 금속 흐름 및 그 내부의 냉각 속도
  • 응고된 층의 형상

이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.

입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.

시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.

새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

주조 분야

Metal Casting

주조제품, 금형의 설계 과정에서 FLOW-3D의 사용은 회사의 수익성 개선에 직접적인 영향을 줍니다.
(주)에스티아이씨앤디에서는  FLOW-3D를 통해 해결한 수많은 경험과 전문 지식을 엔지니어와 설계자에게 제공합니다.

품질 및 생산성 문제는 빠른 시간 안에 시뮬레이션을 통해 예측 가능하므로 낮은 비용으로 해결 할수 있습니다. FLOW-3D는 특별히 주조해석의 정확성 향상을 위한 다양한 설계 물리 모델들을 포함하고 있습니다.

이 모델에는 Lost Foam 주조, Non-newtonian 유체 및 금형의 다이싸이클링 해석에 대한 알고리즘 등을 포함하고 있습니다. 시뮬레이션의 정확성과 주조 제품의 품질을 향상시키고자 한다면, FLOW-3D는 여러분들의 이러한 요구를 충족시키는 제품입니다.

Ladle Pour Simulation by Nemak Poland Sp. z o.o.


관련 기술자료

Fig. 1. Protection matt over the scour pit.

Numerical study of the flow at a vertical pile with net-like scourprotection matt

그물형 세굴방지 매트를 사용한 수직말뚝의 유동에 대한 수치적 연구 Minxi Zhanga,b, Hanyan Zhaoc, Dongliang Zhao d, Shaolin Yuee, Huan Zhoue,Xudong ...
그림 2.1 가공 후 부품 보기

1 m/s보다 빠른 속도에서 액체 금속의 움직임 연구

ESTUDIO MOVIMIENTO DE METAL LIQUIDO A VELOCIDADES MAYORES DE 1 M/S Author: Primitivo Carranza TormeSupervised by :Dr. Jesus Mª Blanco ...
Figure 14. Defects: (a) Unmelt defects(Scheme NO.4);(b) Pores defects(Scheme NO.1); (c); Spattering defect (Scheme NO.3); (d) Low overlapping rate defects(Scheme NO.5).

Molten pool structure, temperature and velocity
flow in selective laser melting AlCu5MnCdVA alloy

용융 풀 구조, 선택적 온도 및 속도 흐름 레이저 용융 AlCu5MnCdVA 합금 Pan Lu1 , Zhang Cheng-Lin2,6,Wang Liang3, Liu Tong4 ...
Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling

Optimization of filling systems for low pressure by Flow-3D

Dissertação de MestradoCiclo de Estudos Integrados Conducentes aoGrau de Mestre em Engenharia MecânicaTrabalho efectuado sob a orientação doDoutor Hélder de ...
Figure 1: Mold drawings

3D Flow and Temperature Analysis of Filling a Plutonium Mold

플루토늄 주형 충전의 3D 유동 및 온도 분석 Authors: Orenstein, Nicholas P. [1] Publication Date:2013-07-24Research Org.: Los Alamos National Lab ...
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

Computer Simulation of Centrifugal Casting Process using FLOW-3D

Aneesh Kumar J1, a, K. Krishnakumar1, b and S. Savithri2, c 1 Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, ...
Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

TianLiabJ.M.T.DaviesaXiangzhenZhucaUniversity of Birmingham, Birmingham B15 2TT, United KingdombGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United KingdomcBrunel Centre for Advanced Solidification ...
Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

반고체 레오 다이 캐스팅 공정으로 제작된 알루미늄 합금 브래킷의 수치 시뮬레이션 및 생산 실험 검증을 기반으로 한 게이팅 시스템 설계 ...
Fig. 1. Modified Timelli mold design.

Characterization of properties of Vanadium, Boron and Strontium addition on HPDC of A360 alloy

A360 합금의 HPDC에 대한 바나듐, 붕소 및 스트론튬 첨가 특성 특성 OzenGursoyaMuratColakbKazimTurcDeryaDispinarde aUniversity of Padova, Department of Management and Engineering, ...
図3 He ガスストリッパー装置の図と全景.

RIKEN RIBF의 He-Gas 스트리퍼 및 회전 디스크 스트리퍼

He Gas Stripper and Rotating Disk Stripper at the RIKEN RIBF 理研 RI ビームファクトリーにおける He ガスと回転ディスクストリッパー 今尾 浩士 *・長谷部 裕雄 ...

FLOW-3D CAST

FLOW-3D_CAST_2023R2
FLOW-3D CAST 2023R2

새로운 결과 파일 형식

FLOW-3D POST 2023R2는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.

FLOW-3D POST 2023R2 에서 사용자는 이제 flsgrf , EXODUS II 또는 flsgrf 및 EXODUS II 파일 형식 으로 선택한 데이터를 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용 하여 FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 보조 정보를 추출할 수 있습니다.

새로운 결과 파일 형식은 솔버 엔진의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다.

FLOW-3D POST의 표면 LIC
FLOW-3D POST 의 새로운 EXODUS II 파일 형식 및 Surface LIC 표현의 예

이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 사용자에게 원활한 시뮬레이션 경험을 제공합니다. FLOW-3D POST 의 새로운 시각화 기능 에 대해 자세히 알아보세요 .

정수압 초기화

사용자가 사전 정의된 금속 영역에서 정수압을 초기화해야 하는 경우가 종종 있습니다. 크고 복잡한 시뮬레이션에서는 정수압 솔버의 수렴 속도가 느려지는 경우가 있습니다. FLOW-3D CAST 2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.

새로운 TDC(열 다이 사이클링) 모델

https://youtube.com/watch?v=jfmEDRgyiw4%3Fcontrols%3D1%26rel%3D0%26playsinline%3D0%26modestbranding%3D0%26autoplay%3D1%26enablejsapi%3D1%26origin%3Dhttps%253A%252F%252Fwww.flow3d.com%26widgetid%3D1

열 다이 사이클링 - 샷 슬리브
새로운 Thermal Die Cycling 모델로 예측된 ​​샷 슬리브의 온도 분포

FLOW-3D CAST 2023R2 의 재설계된 열 다이 사이클링(TDC) 모델은 고압 다이 캐스팅 및 기타 영구 금형 주조 공정의 프로세스 시트와 더 잘 일치하는 더 간단하고 직관적인 설정 프로세스를 제공합니다. 

이제 TDC 시퀀스는 충전 단계의 시작 부분 에서 시작되어 하위 프로세스 전반에 걸쳐 시간에 따른 냉각/가열 라인 정의에 대한 더 높은 정확성과 정렬을 제공합니다. 향상된 스프레이 냉각 모델을 통해 사용자는 부품별로 처리 일정을 정의할 수 있을 뿐만 아니라 스프레이, 세척 및 코팅 처리에 대한 옵션을 처방할 수 있습니다. 슬라이더 동작도 포함되며 이제 냉각 채널과 가열 요소가 슬라이더와 함께 이동합니다. 

이러한 기능은 다양한 단계, 일정, 이동, 처리 및 조립 단계를 보여주는 깔끔하고 직관적인 프로세스 개요를 제공하는 새로운 Thermal Die Cycling 대화 상자를 통해 제어됩니다.

FLOW-3D CAST의 열 다이 사이클링 대화상자
FLOW-3D CAST 의 새로운 Thermal Die Cycling 대화 상자

이러한 개발은 개선된 열 솔루션뿐만 아니라 TDC와 관련된 공정의 응고 및 납땜에 대한 더 나은 예측을 촉진합니다.

FLOW-3D CAST 2023R1 의 새로운 기능

FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. 

FLOW-3D CAST 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

FLOW-3D CAST 2023R1 의 고급 기능을 통해 사용자는 다음을 수행할 수 있습니다.

  • 기가캐스팅 제작 시 등 샷 성능 최적화
  • 툴링 마모 해결
  • 고급 탄소강 및 저합금강 주조 시뮬레이션
  • 거시적 분리의 효과를 설명합니다.

플런저 모션 개선

우리는 슬로우 샷 계산기를 개선하여 정확성을 높이고, 공기 혼입을 줄이며, 낮은 충전 수준을 더 잘 처리할 수 있도록 유효성 범위를 확장했습니다. 또한 사용자 인터페이스를 간소화했으며 향상된 슬로우 샷 계산기와 결합하여 인상적인 결과를 제공합니다. 이제 플런저 위치 또는 시간 기반 정의에서 슬로우 샷 계산기의 데이터를 쉽게 사용할 수 있습니다. 새로운 계산기는 또한 슬로우 샷이 끝날 때 혼입되는 공기를 크게 줄이는 세련된 샷 프로필을 제공합니다.

슬로우 샷 계산기 개선
2007년 슬로우 샷 계산기와 2022년 버전 비교. 슬로우 샷이 끝나면 새 계산기를 사용하여 동반 공기량이 감소하는 것을 확인하십시오.

확장된 PQ 2 분석

대형 주조는 계산 비용이 많이 들고 기가 주조는 시뮬레이션 소프트웨어를 한계까지 밀어붙일 수 있습니다. 속도 경계 조건이나 금속 입력을 사용하여 샷 슬리브와 플런저를 근사화하는 것은 런타임을 줄이는 유용한 단순화 방법입니다. 그러나 PQ 

2 분석 없이는 HPDC 기계가 한계에 가깝게 작동하고 예상대로 작동하지 않아 부품 품질을 위협하는지 알 수 없습니다. 

우리는 매우 유능한 PQ 2 분석을 수행 하고 이를 금속 입력 및 속도 경계 조건에 적용하여 이 문제를 해결했습니다. 이는 가장 크고 가장 복잡한 주조에서도 충전 정확도를 유지하면서 처리 시간을 크게 줄이는 것을 의미합니다.

https://youtube.com/watch?v=V58ePIPAEOA%3Fcontrols%3D1%26rel%3D0%26playsinline%3D0%26modestbranding%3D0%26autoplay%3D0%26enablejsapi%3D1%26origin%3Dhttps%253A%252F%252Fwww.flow3d.com%26widgetid%3D3

곰팡이 침식 예측

주조 금형과 다이는 기계적 스트레스 요인을 포함한 다양한 이유로 마모됩니다. 기존 전단 하중 측정법은 이 마모를 연구할 때 도움이 되지만 지금까지는 금형에 대한 금속의 충돌을 설명하지 못했고 모래 주조 금형에 포함된 모래의 최종 위치를 예측할 수 없었습니다. 이 문제를 해결하기 위해 우리는 이 마모 메커니즘을 더 잘 이해할 수 있도록 새로운 출력을 추가했습니다. 새로운 출력에는 이러한 유형의 침식이 발생할 가능성이 있는 지역과 모래 함유물의 예상 위치가 표시됩니다.

https://youtube.com/watch?v=2KiZ538TIMg%3Fcontrols%3D1%26rel%3D0%26playsinline%3D0%26modestbranding%3D0%26autoplay%3D0%26enablejsapi%3D1%26origin%3Dhttps%253A%252F%252Fwww.flow3d.com%26widgetid%3D5

다이 솔더링 예측

알루미늄 주조에 사용되는 영구 다이는 용융된 알루미늄이 다이의 철과 결합하여 화학적 마모를 겪게 되며, 이는 부품 품질뿐만 아니라 다이의 수명과 유지 관리 요구 사항에 영향을 미치는 땜납을 형성합니다. 이 마모 메커니즘의 중요성으로 인해 우리는 납땜의 위치와 심각도를 모두 예측하는 모델을 구축하게 되었습니다.

다이 솔더링 시뮬레이션
시뮬레이션된 솔더(왼쪽)와 관찰된 솔더(오른쪽, 빨간색). 사진은 다이에 관한 것이지만 시뮬레이션에서는 부품을 보여주기 때문에 이미지가 거울처럼 보입니다.

화학 기반 탄소 및 저합금강 응고 모델

우리의 장기 개발 목표 중 하나의 결과는 석출 반응, 응고 및 재용해 경로, 미세 구조 특징 및 결함을 정확하게 설명하는 탄소강 및 저합금강에 대한 강력한 화학 기반 응고 모델 입니다. 이 모델은 또한 중요한 3상 포정반응과 델타 페라이트에서 오스테나이트로의 전이로 인한 대량 수축과 관련된 결함을 설명합니다.

이 모델은 실험과의 탁월한 일치를 보여주며, 예를 들어 과포정 합금이 응고가 끝날 때 페라이트 영역을 개발할 수 있는 이유와 같은 비직관적이고 시간 의존적인 동작에 대한 통찰력을 제공합니다.

수축 예측 검증

거시 분리 예측

대규모 분리는 주조품의 품질과 다운스트림 처리에 중요한 영향을 미칠 수 있으므로 이를 화학 기반 응고 모델에 추가했습니다. 이 모델은 매크로 분리 관련 결함이 발생할 수 있는 위치를 예측하므로 캐스팅 전에 이를 예측하고 완화할 수 있습니다.

시뮬레이션 대 실험 강철 주조
강철 주조에 대한 실험과 시뮬레이션 결과를 비교합니다. WT Adams, Jr. 및 KW Murphy, “주강 주물에서 라이저 아래의 심각한 화학 물질 분리를 방지하기 위한 최적의 완전 접촉 상단 라이저”, AFS Trans., 88(1980), pp. 389-404

FLOW-3D CAST 2022R2 의 새로운 기능

FLOW-3D CAST 2022R2 제품군 출시로 Flow Science는 FLOW-3D CAST 의 워크스테이션과 HPC 버전을 통합하여 단일 노드 CPU 구성에서 다중 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 형태 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성요소 제어, 개선된 동반 공기 기능이 포함됩니다.

통합 솔버

우리는  FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.

많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서도 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 OpenMP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.

성능 확장의 예
증가하는 CPU 코어 수를 사용한 성능 확장의 예
메쉬 분해의 예
OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

솔버 성능 개선

멀티 소켓 워크스테이션

다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.

낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스

대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.

정제된 체적 대류 안정성 한계

시간 단계 안정성 제한은 모델 런타임의 주요 동인이며, 2022R2에서는 새로운 시간 단계 안정성 제한인 3D 대류 안정성 제한을 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.

압력 솔버 프리컨디셔너

경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 사전 조절기를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임은 1.9에서 335까지 더 빨라졌습니다!

점탄성 유체에 대한 로그 형태 텐서 방법

점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissemberg 수에 효과적입니다.

활성 시뮬레이션 제어 확장

능동 시뮬레이션 제어 기능이 확장되어 연속 주조 및 적층 제조 응용 분야에 일반적으로 사용되는 팬텀 개체는 물론 주조 및 기타 여러 열 관리 응용 분야에 사용되는 냉각 채널에도 사용됩니다.

팬텀 물체 속도 제어의 예
연속 주조 응용 분야에 대한 가상 물체 속도 제어의 예
동적 열 제어의 예
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예
동적 냉각 채널 제어의 예
산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예

FLOW-3D CAST 아카이브 의 새로운 기능

FLOW-3D CAST는 다양한 금속 주조 해석이 가능한 완벽한 열유동 해석 프로그램으로, 매우 정확한 모델링과 다기능성, 사용 용이성 및 고성능 클라우드 컴퓨팅 기능을 결합한 최첨단 금속 주조 해석 시뮬레이션 플랫폼입니다. 모든 금속 주조 공정에 대해 FLOW-3D CAST는  빠르고 직관적인 해석이 가능한 작업 공간을 제공합니다. 11개 공정에 대한 Workspace, 강력한 후처리, 충진 예측, 응고 및 결함 분석을 통해 FLOW-3D CAST는 최적의 주조 제품 설계에 필요한 도구와 로드맵을 모두 제공합니다.

FLOW-3D Cast는 거의 모든 주조 공정을 모델링 할 수 있도록 설계되었습니다. FLOW-3D Cast의 매우 정확한 유동 및 응고 결과는 표면 산화물, 혼입된 공기, 매크로 및 미세 다공성과 같은 중요한 주조 결함을 포착합니다. 다른 특별한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활, 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열 응력을 모델링 할 수있는 열 다이 사이클링이 있습니다.

최적화된 시뮬레이션 설계를 통해 개발 시간을 단축하고 출시 시간을 단축하며 수율을 높일 수 있습니다. FLOW-3D CAST를 사용하면 설계 및 개발 비용을 절감할 수 있습니다.

FLOW-3D CAST Continuous Casting WorkspaceFLOW-3D CAST Gravity Die Casting Workspace
FLOW-3D CAST HPDC WorkspaceFLOW-3D CAST Investment Casting WorkspaceFLOW-3D CAST Low Pressure Sand Casting Workspace
FLOW-3D CAST Low Pressure Die Casting WorkspaceFLOW-3D CAST Sand Casting WorkspaceFLOW-3D CAST Sand Core Making Workspace
Lost Foam CastingFLOW-3D CAST Tilt Pour Casting
HPDC Oxides Simulation | FLOW-3D CAST
BMW Injector Casting Process – Innovative ingate system for gravity casting
Continuous Slab Casting | FLOW-3D CAST
Horizontal Centrifugal Pipe Casting | FLOW-3D CAST
FLOW-3D POST Optimal presentation

FLOW-3D POST

FLOW-3D POST 2023R2
FLOW-3D POST 2023R2

FLOW-3D POST 2023R2 의 새로운 기능

새로운 결과 파일 형식

FLOW-3D POST 2023R2는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.

FLOW-3D POST 2023R2 에서 사용자는 이제 선택한 데이터를 flsgrf , EXODUS II 또는 flsgrf 및 EXODUS II 파일 형식 으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용 하여 FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 보조 정보를 추출할 수 있습니다. 

새로운 결과 파일 형식은 hydr3d 솔버의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다.

레이 트레이싱을 이용한 화장품 크림 충전

혼입 공기 시뮬레이션

FLOW-3D POST의 표면 LIC

레이 트레이싱을 이용한 화장품 크림 충전

혼입 공기 시뮬레이션

이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다. 

또한 FLOW-3D POST 2023R2 는 최신 버전의 ParaView로 업그레이드되었으며 ParaView 5.11.1 과 관련된 개선 사항을 제공합니다 .

새로운 시각화 기능

임의의 클립 및 슬라이스를 매끄럽게 만듭니다.

EXODUS II 파일 형식을 사용하면 사용자는 모든 방향에서 부드러운 슬라이스를 생성할 수 있으므로 보고 싶은 대로 정확히 흐름을 시각화하는 것이 더 쉬워집니다.

아크형 웨어 시뮬레이션
호형 위어 위의 흐름 방향에 맞춰 정렬된 슬라이스입니다. Surface LIC 표현에서 매끄러운 표면과 유선형을 확인하세요.

모델 출력의 더 나은 정량화

EXODUS II 파일은 체적 개체이므로 흐름의 특성을 더 쉽게 정량화할 수 있습니다. 예를 들어, 아래 표시된 주조 응고 시뮬레이션에서 오른쪽 패널은 히스토그램을 사용하여 주조의 다공성 분포를 설명할 수 있는 방법을 보여줍니다. 마찬가지로 접촉 탱크의 예는 시간이 지남에 따라 소독제 및 병원체 농도 분포가 어떻게 변화하는지 보여주므로 설계 요구 사항이 충족되었는지 여부를 보여주는 데 도움이 됩니다. 

주조 응고 결과

접촉식 탱크 시뮬레이션의 진화

향상된 광선 추적

광선 추적은 기술적인 청중과 비기술적인 청중 모두에게 결과를 전달하는 데 유용한 도구이며 EXODUS II 파일 형식에서 사용할 수 있는 체적 데이터는 이 시각화 방법과 잘 작동합니다.

광선 추적을 사용한 병 채우기 시뮬레이션
FLOW-3D POST 의 뛰어난 광선 추적 기능을 보여주는 병 채우기 시뮬레이션

Surface LIC로 유동장 표현

새로운 Surface LIC 시각화 도구는 흐름 선단이 함께 모이는 재순환 및 불감대뿐만 아니라 온도, 오염 물질 등의 일반적인 이동을 강조하여 흐름장을 시각화하는 데 도움이 됩니다.

FLOW-3D POST의 표면 LIC
FLOW-3D POST 의 새로운 EXODUS II 파일 형식 및 Surface LIC 표현의 예

애니메이션 유선형

애니메이션 유선형은 표준 보기에서 보기 어려울 수 있는 흐름의 내부 구조에 대한 세부 정보를 시각화하는 데 도움이 됩니다.

FLOW-3D POST 2023R1 의 새로운 기능

FLOW-3D POST 2023R1은 기본 MP4 지원을 갖춘 업데이트된 ParaView 엔진, 쉬운 설치를 위한 자동 종속성 테스트 기능을 갖춘 간소화된 Linux 설치 프로그램, Windows 11 및 RHEL 8 지원을 특징으로 합니다.

단위 표시

단위는 엔지니어링 분석 결과를 해석하고 전달하는 핵심 부분입니다. FLOW-3D POST 2023R1 에서는 단위가 결과 파일에서 자동으로 판독되고 공간 및 히스토리 플롯의 범례에 설정되므로 시뮬레이션 결과를 쉽게 해석하고 전달할 수 있습니다.

FLOW-3D POST 장치 디스플레이

자동 PQ 2 플롯

FLOW-3D CAST는 수년 동안 PQ 2 분석을 통해 HPDC 기계 성능에 대한 정보를 제공해 왔으며 이제 FLOW-3D POST 에서 시각화를 지원하도록 이 기능을 확장했습니다. PQ 2 정보는 사전 정의된 플롯에 자동으로 요약되므로 플롯의 가시성을 전환하여 기계가 주조 작업을 수행하는 방식을 확인하기만 하면 됩니다 . 추가적인 이점은 데이터와 시간을 비교하여 압력이 기계 성능을 초과하는 시기를 확인할 수도 있다는 것입니다.

자동-pq2-플롯-flow3d-post-2023r1

입자 시각화

우리는 상호 작용을 보다 직관적으로 만들고 다른 응용 프로그램에서 사용하기 위해 입자를 STL 파일로 쉽게 내보내거나 FLOW-3D AM 의 경우 분말 용융 시뮬레이션의 초기 조건으로 내보낼 수 있도록 입자를 표시하는 방법을 다시 검토했습니다. FLOW-3D POST 2023R1 에서는 배율 1을 사용하여 입자의 물리적 크기를 신속하게 표시하고 파일 > 데이터 저장 옵션을 사용하여 입자를 STL로 저장할 수 있습니다.

FLOW-3D POST 2023R1의 입자 시각화

FLOW-3D POST 2022R1 의 새로운 기능

FLOW-3D POST 2022R1은 FLOW-3D 의 포스트 프로세서 에 세 가지 중요한 개발을 제공합니다. 즉, 간소화된 2D 슬라이싱, ParaView의 Python 도구를 사용한 고급 자동화, 향상된 포스트 프로세싱 렌더링 속도입니다.

2D 슬라이싱 기능

2D 슬라이싱 기능이 확장되고 간소화되어 작업이 더욱 간단해지고 강력해졌습니다. FLOW-3D POST 사용자는 이제 슬라이스 표면의 벡터 표현과 여러 색상 변수를 사용하여 2D 슬라이스를 빠르게 생성할 수 있습니다. 이 2분짜리 비디오는 새로운 2D 슬라이스 기능의 예를 제공합니다.

파이썬 도구

2022R1에 ParaView의 Python 도구가 추가되면 FLOW-3D POST 의 자동화 기능이 확장 되어 반복 작업을 자동화하는 매크로는 물론 클릭 한 번으로 전체 결과 세트를 생성하는 일괄 후처리도 포함됩니다. 특정하거나 정교한 유형의 후처리, 시뮬레이션 후 시뮬레이션을 표시하려는 경우 출력을 표준화하고 후처리 작업을 자동화할 수 있는 이러한 새로운 기능을 통해 엄청난 이점을 얻을 수 있습니다.

일괄 후처리를 사용하면 후처리 작업을 사전 정의하는 스크립트 또는 상태 파일을 사용하여 명령줄에서 후처리할 수 있으므로 DOE, 매개변수 스윕 또는 자동화된 워크플로우로 인한 여러 결과 파일에 대한 이미지 및 애니메이션 생성이 용이해집니다. 배치 스크립트 또는 상태 파일을 다양한 결과 파일이나 시뮬레이션 결과 파일의 전체 작업 공간에 적용하여 각 사례에 대해 원하는 출력을 빠르고 일관되게 생성할 수 있습니다. 또한 단일 결과 파일에 대한 일련의 다양한 시각화 출력을 생성하는 데 활용할 수도 있습니다.

PvBatch와 매크로를 통합하여 사용자 사이트 에서 후처리 워크플로를 쉽게 자동화하고 가속화하는 방법에 대한 30분짜리 비디오 튜토리얼에 액세스하십시오 .

성능 향상

우리는 또한 후처리 속도에 대해 연구해 왔으며 FLOW-3D POST 2022R1은 일반적으로 FLOW-3D POST v1.1 보다 10%-30% 더 빠르지 만 정확한 속도 향상은 시뮬레이션 및 출력 세부 사항에 따라 다릅니다. 오른쪽의 몇 가지 예는 성능 향상을 보여줍니다.

샘플 시뮬레이션속도를 올리다
미로 위어1.3배
벨하우징 주조1.14배
유체-구조 상호작용1.2배

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

Hydraulic Energy Losses|유압 에너지 손실

유압 에너지 손실

이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production  Hydro-Québec Équipement .

이 내용은 특히 유압 에너지 소산율 평가를 위해 FLOW-3D가 제공하는 유압 에너지 흐름과 총 수두의 연산을 검토한다. FLOW-3D 에서는 모델 출력에서 직접 시각화할 수 있는 변수 중 총 유압 헤드가 포함되었다. 그림 1은 강 우회 터널(a river diversion tunnel)을 통한 절토에 걸친 총 유압 헤드 분포(total hydraulic head distribution)를 보여준다. 버전 10에서 FLOW-3D는 플럭스 배플로 계산하고 시계열로 시각화하고 외부 도구로 분석할 수 있는 일체형 값으로 유압 에너지 흐름과 총 수두를 도입했다.

하천변환터널을 통한 단면내 총 유압높이 분포
그림 1. 하천변환터널을 통한 단면내 총 유압높이 분포

총 유압 에너지

베르누이의 방정식

수압 에너지, eG는 흐름에서 물의 입자의 잠재력과 운동 에너지의 합이다. 에너지 밀도로서 J/m³으로 표현되며, 베르누이의 방정식(Eq. 1)에 의해 주어진다.

(1) \displaystyle {{e}_{G}}\quad =\quad p\ -g\rho z+\rho \frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{2}

기호 의미가 있는 곳

e G유압 에너지 밀도(J/m3 )
p압력(Pa ≡ N/m2 ≡ J/m3 )
g중력의 가속도( – 9,81m/s2 )
ρ밀도(kg/m3)
u, v, wx, y 및 z(m/s) 단위의 속도
z일부 기준 수준 이상의 높이(m) 또는 고도

수력 에너지 단순화된 계단식

일반적으로 에너지는 스스로를 변형시키지만 결코 손실되지 않는 전통적인 양으로 간주된다. 토목 공학에서 물의 흐름을 나타내기 위해, 에너지 변환을 중력 전위 에너지로 시작하여 운동 에너지로 변환한 다음 열 에너지로 변환하는 계단식 에너지로 상상하기에 충분한 경우가 많다. 또한 처음 두 형태(잠재성과 운동성)의 양만을 명시적으로 모델링하여 에너지 캐스케이드의 범위를 더욱 제한하는 것이 일반적이다.

상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.
그림 2. 상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.

수압 에너지 캐스케이드는 그림 2와 같이 보에서 풀로의 유량이 떨어지는 경우에 잘 나타난다.

그림에 표시된 입자의 트랙을 따라가십시오.

  • 위치 A에서는 저수지의 상류에서 물 입자는 거의 움직이지 않고 있다.
  • 위치 B에서 입자는 B 위의 자유 표면이 약간 낮아짐에 따라 일부 위치 에너지를 희생하여 속도를 얻었다.
  • 위치 C에서는 입자가 자유 낙하 궤적으로 유체를 따르므로 더 많은 위치 에너지가 운동에너지로 변형되었다.
  • 하강 흐름이 하부 풀의 물과 접촉하면 활발한 모멘텀 교환이 이루어지며 초기 유압 에너지의 상당 부분이 격동의 에너지 폭포와 점성 공정을 통해 열로 손실되었다.
  • 위치 D에서 입자는 위치 A, B, C에 비해 낮은 유압 에너지로 영역을 떠난다.

A에서 B, C로 이동하는 동안, 점성과 난류 과정은 대개 흐름에 거의 영향을 미치지 않는다. 총 유압 에너지 eG는 필요시 작은 손실 조건을 고려하여 질량처럼 보존된 양으로 취급될 수 있다. C의 다운 스트림에서, 이 전통적인 수력 에너지(conservative hydraulic energy)의 모델은 더 큰 규모의 에너지 손실 조건과 흐름에 미치는 영향을 고려함으로써 확장될 수 있다.

질량 및 에너지 예산

볼륨 컨트롤

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단순히 당연하게 여겨지고 있다.

흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

CV는 다음 규칙을 따르는 한 하나의 선택사항의 정의 표면으로 둘러싸인 볼륨이다.

  • 정의 표면은 스스로 교차하지 않는 한 임의의 형태를 가질 수 있다.
  • 표면은 각 패치가 다른 패치와 물샐틈없는 가장자리로 연결되어 있는 한 패치로 구성될 수 있다.

CV의 부피는 밀폐된 질량이나 에너지와 같은 적분, 자체 보존 수량을 계산하는 데 사용된다.

CV의 표면은 들어오고 나가는 플럭스를 정의하기 위해 사용되며, 밀폐된 수량에 대한 예산을 세우고 그 시간 이력을 감시할 수 있다.

그림 3은 떨어지는 물 분사기의 특성을 분석하는 데 사용할 수 있는 제어 부피의 예를 제시한다. 이 제어 볼륨으로 유입되고 유출되는 유일한 것은 제트기 자체로서 왼쪽 상단에서 들어오고 오른쪽 하단에서 떠난다.

FLOW-3D의 고정형상 제어량

FLOW-3D를 사용하면 고정된 형태와 위치의 CV를 세 가지 기본 형태의 플럭스 배플의 도움을 받아 쉽게 정의할 수 있다.

  • 구(Sphere)들은 닫힌 표면이다.
  • 실린더는 양끝이 개방되어 있으므로, 실린더의 끝이 흐르지 않도록 유량 한계 밖으로 뻗어나가도록 주의해야 한다.
  • 전체 흐름 영역 또는 하위 도메인을 교차시켜 CV를 조립하는 데 사용할 수 있는 평면 직사각형 패치

그림 4는 세 가지 유형의 플럭스 배플을 계산 메쉬로 렌더링한 후에 볼 수 있는 실제 모델에서 그린 예다. 그것들은 불투명한 것으로 렌더링되지만 그것들이 배플을 측정하는 유일한 플럭스로 정의된다면 흐름에 완전히 스며들 수 있다.

(2) hG≡eG/-gρ

(3) hG=z+

그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.

그림 5는 평면 배플 표면을 사용하여 두 가지 제어 볼륨을 정의하는 방법을 보여준다.

  • 제어 볼륨 DC, 긴 입방형 모양은 6개의 면으로 구성되어 있다. 반대편 두 면은 C와 D라고 불리는 배플이다. 밑면과 윗면이 그려지고 그 위치는 흐름 영역보다 훨씬 위아래 있는 한 중요하지 않다. 앞면과 뒷면은 큐브의 남은 두 면이며, 그들의 위치 또한 앞과 뒤가 잘 있는 한 중요하지 않다. 흐름 영역의
  • 제어 볼륨 BA도 마찬가지로 정의된다. 그것은 자유로운 표면 흐름을 포함하는 하위 도메인인 입구 포탈의 일부를 둘러싸고 있다. 자유 표면 흐름은 면 B와 A의 유입량 차이가 수위(및 수량)에 변화 속도를 부여하고 진동을 유발하여 천천히 감쇠하거나 전혀 감쇠하지 않기 때문에 진정한 안정 상태에 이르기 더 어렵다. 이 경우, 질량과 에너지의 신뢰할 수 있는 예산은 성질의 진화가 정지해 있는 에피소드를 식별하고 평균화를 수행하기 위해 흐름의 시계열을 처리함으로써 이루어진다.

그림 5의 수직 플럭스 배플은 사용 가능한 수직 표면(DB, DA, CB, CA)의 순열을 사용하여 몇 개의 다른 CV를 정의하는데 사용할 수 있다.

에너지 예산

수력 에너지 균형은 점성 열 생성을 손실로 명시적으로 표시하기 때문에 정의에 따라 누출된다. 이상적으로, 수력 에너지 캐스케이드는 다른 원인으로 인해 에너지를 잃지 않아야 하며 어떤 것도 얻지 않아야 한다. 여기서 다시 수치 모델로 연습하면 약간 다른 그림이 그려진다. 모든 수치 모델에는 인위적인 소스 또는 수력 에너지 싱크가 있다.

예를 들어, 셀 크기가 에너지 전달 흐름 특징보다 훨씬 작을 때 계산 메쉬에 흐름 간섭이 발생한다. 셀 크기가 충분히 작지 않을 때, 속도 대비는 자연 흐름에서보다 더 큰 공간 범위에 걸쳐 확산된다. 그 확산은 운동 에너지를 약간 작게 만들고 자연 현상보다는 그리드 효과에 기인하는 에너지 방산 역할을 한다.

에너지 예산을 모니터링하면 모델의 신뢰성에 대한 단서를 얻을 수 있으며 다른 매개변수 값이나 그리드 셀 크기를 사용하는 런을 비교하는 데 사용할 수 있다. 인위적인 손익이 관리되고 있을 때 유압 에너지 소산 속도는 종종 수치 모델에서 얻은 중요한 결과 중 하나이며 설계 변동을 구별하는 데 중요하다.

총 유압 헤드

에너지 밀도로서의 총 유압 헤드

아래 hG로 상징되는 총 유압 헤드는 Eq. 1의 총 유압 에너지 eG를 단순히 (-g ρ )로 나눈 값이다.

(2) \displaystyle {{h}_{G}}~\equiv ~{{e}_{G}}/\text{ }-g\text{ }\rho

(3) \displaystyle {{h}_{G}}\ =\quad z\ \ +\frac{p}{{-g\rho }}\ \ +\frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{{-2g}}

다음과 같은 경우를 제외하고 기호가 모두 이미 소개된 경우:

hG, 총 유압 헤드(m)

총 유압 헤드는 다음과 같은 합이기 때문에 합계로 인정된다.

  • 입면체 헤드 z + p/(-gρ)
  • 운동 에너지 헤드 u²/(-2g)

유량에서 측정한 입압 헤드는 물의 국부적 자유 표면 고도를 잘 측정할 수 있는 것으로 간주된다.

저수지 및 강의 평온한 범위에서는 흐름 속도가 운동 에너지 헤드가 무시해도 될 정도로 충분히 낮아서 때때로 hG가 입압 헤드와 동일하다고 간주될 수 있다.

총 유압 헤드 hG는 때로 정체 높이라고 불리기도 한다. 흐름 내에 유체의 입자가 있는 경우, 모든 속도가 갑자기 위쪽으로 향하게 되고 주변 유체가 장애물이 되지 않을 경우 입자가 도달하는 최종 높이다.

총 유압 헤드 hG는 교각과 교대 등 유압 설계에 있어 유비쿼터스 변수다. 그것은 또한 채널과 펜스탁과 같이 에너지가 관리된 방식으로 전달되거나 소멸되어야 할 때마다 흐름의 수압 에너지를 나타낸다. hG는 다른 엔지니어링 작업의 키 높이와 동일한 고도 척도를 사용하여 엔지니어링 도면에 주석으로 나타날 수 있기 때문에 선택의 변수다.

총 유압헤드의 통합값으로부터의 유압에너지 소산

두 흐름 단면 A와 B 사이에 발생하는 에너지 소산에 대한 일체적 접근방식은 흐름의 하향 방향에서 HG의 감소로부터 계산된다.

HG의 도움을 받아 A와 B 사이의 에너지 소산을 계산하기 위해 각 단면에서의 HG 값을 먼저 –ρg에 곱하여 에너지 밀도 흐름으로 만든 다음 Q에 곱하여 총 유압 에너지 흐름으로 주조한다.
두 횡단면의 에너지 흐름의 차이를 보면, 두 횡단면에서 부피 흐름 Q가 동일한 상황에서, 아래와 같이 상류 횡단면에서 다운스트림 단면으로 이동하는 흐름에서 발생하는 유압 에너지 손실을 산출한다.

그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.

업스트림 리치는 유입과 배출 흐름의 차이에 따라 수위가 변동하는 볼륨 밸런스의 예를 제시한다. 동시에, 터널을 통과하는 유량의 비율은 상류와 하류 사이의 압력 균형에서 기인하며, 터널 벽의 마찰과 분리된 구조물에서의 흐름 에너지 손실과 통로를 따라의 전환이 큰 역할을 한다. 그림 10은 FLOW-3D에서 플럭스 배플로 알려진 수많은 흐름 측정 단면을 보여준다. 이들의 용도는 다음과 같다.

  • 추가 분석을 위한 유용한 기준으로 특정 모델 실행의 흐름 체계의 안정성 평가
  • 종단 종단 수위 및 수력 에너지 흐름의 그래프 작성 및 분석(수력 에너지 소산율 포함)
  • 설계 변이 간 미세 비교 허용
  • 일반적으로 흐름 동작이 예상에 부합하는지 검증하고, 체크하지 않을 경우 흐름의 진부도를 감소시킬 수 있는 수치적 아티팩트를 검출하고 수정한다.

예제 2 – 자연 암석 표면을 통한 고속 자유 주행

그림 8은 자연 암석의 유유히트레이스와 자유 주행의 예를 보여준다.

이 모델은 지표면의 단위 면적당 수압 에너지 소산율을 평가하는 것을 목적으로 했다. 이 속도는 W/m² 단위로, 자유 주행을 따라 암석 표면의 침식 잠재력을 평가하기 위한 입력값이었다.

그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

그림 9는 도구 자체를 확인하고 소산율 평가를 수행하는 데 사용된 계량장치를 나타낸다. 망사블록도 윤곽이 잡힌다.

원하는 소산 속도를 측정하고, 마찬가지로 중요한 것은 흐름의 품질 및 측정 도구의 평가를 위해 평면 및 원통형 플럭스 배플의 종류가 배치되었다.

평면 플럭스 배플은 제어 볼륨을 구성하고 이를 사용하여 CV 내에서 볼륨 흐름의 안정성과 에너지 소산을 모니터링할 수 있다. 테일레이스에서는 사이드월(sidewall)에 의해 흐름이 잘 담겨 있고 횡단면을 가로질러 상당히 균일하다. 에너지 소산율은 25~50kW/m²이었다.

배출 관문 발치에 원통형 유동 배플이 위치한다. 실린더를 통과하는 평균 체적 유량은 정상적인 유량 변동 때문에 시간 경과에 따라 가변적이었지만 적절한 평균 구간을 취할 때 0이 되는 경향이 있었다. 배플을 통한 순유압 에너지 흐름에 대해 동일한 평균을 취했을 때, 예상대로 음의 값이 산출되었고, 이는 면적으로 나누면 30 kW/m²에 가까웠다. 타원형 수평 단면으로 확장된 또 다른 원통형 흐름 배플도 꼬리 경주가 끝날 무렵에 위치했다. 거기서 만들어진 유사한 검증도 비슷한 합의를 보여주었다.

원통형 유동 배플이 유압 에너지 소산 측정에 예상대로 작용했다는 결론이 나왔다. 그런 다음 방산이 가장 높을 것으로 예상되었던 아래쪽 경사면에 놓인 원통형 배플에 주의를 돌렸다.

그림 10은 자유 주행 위에 위치한 원통형 배플 번호 3을 통해 순 부피와 에너지 흐름의 시계열로, 꼬리표에서 자연 암석 표면으로의 전환 근처를 보여준다. 그림은 두 흐름의 높은 진폭 변동이 존재하며 그 흐름들에 의해 어떤 경향도 잘 숨겨져 있음을 보여준다.

그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)
그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)

그림 11은 그림 10의 순 부피와 에너지 플럭스의 시간 통합을 나타낸다. 시간 통합은 부피(m³)와 에너지(J)의 값을 산출한다. 볼륨 시계열은 정권이 정지해 있는 시간 간격을 선택할 수 있고, 순 볼륨 변화가 0에 가까워지도록 통합 시간 경계를 선택할 수 있다. 에너지 시계열은 에너지 소산의 예상대로 정기적으로 하향 추세를 보여준다. W/s 단위의 추세의 기울기는 소산율을 추정한다. 그런 다음 원통형 배플 인클로저 베이스의 표면적 영역으로 나누어 면적 단위당 원하는 산란율을 얻을 수 있다. 실린더의 반지름을 선택하여 면적이 100m²에 가까울 수 있도록 했다. 이 경우 소산율이 286kW/m²로 나타났다.

그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.
그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.

이러한 결과는 다른 분야의 엔지니어들과의 토론에서 사용되었다. 다른 요인 중에서도 암석 표면이 예비 추정에서 비롯된 공기 주입식 개미가 아니었기 때문에 불확실성의 여백이 크다는 것이 명백해졌다. 또한 수압 에너지가 바위가 아닌 물 속에서 소멸되고, 최대 소산의 위치가 반드시 바위에 대한 최대 작용의 위치가 아니라는 것도 모듈러에 의해 지적되었다. 위에 제시된 분석의 미니어처는 상당한 부담이었지만, 배플이 모델러에게 참신한 방법으로 사용되고 있기 때문에 필요하다고 여겨졌다. 학문 간 논의와 값의 규모 순서는 수치 그 자체보다는 모형의 가장 유용한 결과였다.

결론

FLOW-3D의 플럭스 배플은 이를 통과하는 부피와 유압 에너지 순 흐름에 대한 정밀한 평가를 제공한다. 이들의 연산 알고리즘은 제어 볼륨 접근방식과 함께 사용되는 FLOW-3D의 기본 수치 체계로 정교하게 조정되며, 높은 수준의 일관성이 요구되는 상황에서 대량 보존에 관한 FLOW-3D 자체의 성능 검증을 포함한 수많은 측정을 위해 잘 설계되어 있다.

토탈 유압 헤드의 연산은 수많은 방법으로 이루어질 수 있는데, 토목 및 유압 엔지니어에게 수량의 매우 높은 유용성을 볼 때 놀라운 일이 아니다. FLOW-3D가 제공하는 방법 중 하나는 플럭스 평균 총 유압 헤드의 배플 유량 면적에 대한 계산이다. 여기에서 주어진 유량관을 가로지르는 두 플럭스 배플에서의 값 사이의 차이로 측정한 유량에서의 수압 에너지 손실률은 가우스 발산 정리에 의해 원시 유량 변수와 연결된 제어 볼륨 접근법으로 계산될 수 있는 유량 손실률이 정확히 여기에 나타난다.

논문자료 알아보기

Simulation of Joule heating-based Core Drying

This article was contributed by Eric Riedel 1,2

1Otto-von-Guericke-University Magdeburg, Institute of Manufacturing Technology and Quality Management, Germany

2Soplain GmbH, Germany

현대의 주조 생산에는 샌드 코어를 사용해야 합니다. 환경 인식의 확대는 물론 규제 강화로 인해 코어가 열로 건조되고 치유되는 무기, 무배출 바인더 시스템 개발이 뒷받침되고 있습니다. 핫박스 공정이라고 하는 것에서는 코어 박스에서 열이 발생하여 샌드바인더 혼합물로 전달됩니다. 그러나 핫박스 공정은 크게 두 가지 기술적 단점을 보입니다.

첫 번째 단점은 약 1 W/(m·K)의 석영 모래의 열전도율이 매우 낮다는 것입니다. 외부 열 전달로 인해 공정에 시간이 많이 소요되고 쉘 형성과 그에 따른 품질 문제가 발생할 수 있습니다. 이 때문에 최대 523.15K 이상의 매우 높은 코어 박스 온도가 적용되어 열 전달을 가속합니다. 열상자 공정의 두 번째 단점은 코어 건조 자체를 실시간으로 직접 측정하고 디지털화할 수 없다는 점입니다. 대신 코어 박스에서와 같은 주변 파라미터를 기록해야만 수동적으로 측정할 수 있습니다.

ACS 프로세스

특허받은 새로운 ACS(Advanced Core Solution) 프로세스는 시간과 에너지 효율이 높은 코어 건조 및 양생을 목표로 합니다. ACS 프로세스는 모든 무기 바인더 시스템에 공통적인 특성을 사용합니다.

물 기반이기 때문에 전기적으로 전도성이 있습니다. 주요 요인은 전기 전도성 코어 박스 재료의 개발로, 모래-바인더 혼합물에 대한 전도도를 조정할 수 있습니다. 전압이 인가되면 그림 1에서와 같이 코어 박스와 모래-바인더 혼합물을 통해 전류가 균일하게 흐릅니다. 좀 더 정확히 말하면, 전류가 모래 알갱이 사이에 있는 전기 전도성 바인더 브리지를 통해 흐릅니다. 

고유의 전기 저항으로 인해 모래 중심부는 셸 형성 없이 균일하게 가열됩니다. Joule heating이라 불리는 그 이면의 과학적 원리는 Joule 의 제1법칙에 근거하고 있습니다. 직렬 공정에서 전기 전도성 코어 박스는 Joule heating을 통해 가열되어 건조 공정이 추가로 가속화됩니다. 이는 ACS 공정의 경우 코어 박스 내부의 복잡한 가열 장치가 더 이상 필요하지 않으므로 코어 박스 구조가 단순화되기 때문에 더욱 중요한 장점입니다.

이 새로운 프로세스를 통해 처음으로 열이 필요한 곳, 즉 코어 내에서 직접 생성됩니다. 필요한 열은 균질하게 분포된 바인더를 통해 생성되어 인접 모래로 전달되기 때문에, 석영 모래의 낮은 열전도율은 더 이상 제한 공정 인자가 아닙니다. 또한 최초로 건조별 전기 파라미터를 기록함으로써 건조 프로세스 자체를 포괄적으로 실시간 모니터링할 수 있습니다. FLOW-3D를 사용하여 ACS 프로세스를 시뮬레이션할 수 있으며, 프로세스 편익의 정량화를 포함한 산업적 적용에 대한 중요한 기준을 충족합니다.

그림 1: 전류 흐름의 기본 비교: a) 미포함, b) 코어 박스의 전기 전도도를 모래-바인더 혼합물에 대한 조정

모델 설명

모델링은 Starobin 등의 작업을 기반으로 합니다. [1], 그러나 FLOW-3D의 전기-기계 모델로 확장합니다. 전기 전위(즉, 냄비 = 1)를 활성화하면 전기-열 효과, 즉 줄 가열(에테르모 = 1)을 고려해야 합니다. 

모델 세부 정보는 [2]에서 확인할 수 있습니다. 구성 요소의 전기적 특성을 통해 코어 박스는 전기 전도도(초)와 유전 전위(오디엘)를 가진 동적 전위(오이포템 = 1)를 할당받으며, 전체 모래-바인더 혼합물의 전기 전도도를 설명하기 위해 모래 코어에도 동일하게 적용됩니다. 

전극에는 한 전극에 대해 고정 전위(외전 = 0), 전기 전도도, 음전위(외전)가 할당되고 다른 전극에 대해서는 양의 전위(외전)가 할당됩니다. 전기 전도도에 대한 온도에 의존하는 정의는 아직 가능하지 않기 때문에, 우리는 재시동 시뮬레이션과 능동 시뮬레이션 제어로 작업했습니다. 

이렇게 하면 각 온도 범위의 평균 전기 전도도, 즉 293.15 ~ 303.15 K, 303.15 ~ 313.15 K 등을 고려할 수 있다. 다음의 조사는 1유체 시뮬레이션에 초점을 맞춘 조사, 즉 purging 은 고려하지 않았습니다.

예제

첫 번째 단계에서는 상업적으로 이용 가능한 무기 모래-바인더 혼합물이 가열 및 온도에 의존하는 전기 전도성을 조사하기 위해 시뮬레이션 모델의 실험 조사 및 유효성 검사를 위해 사용되었습니다. 

373.15 K에 도달하는 데 필요한 시간뿐만 아니라 모래 코어에 입력되는 전력 및 에너지를 측정하였다. 실험 분석과 결과를 바탕으로 기초적인 시뮬레이션 모델을 만들었습니다. 재량권을 이유로, 기초 결과 중 일부는 질적으로만 제시된다. 결과는 그림 2에 제시되어 있으며, 측정값과 시뮬레이션 사이의 높은 수준을 보여줍니다.

Comparison of experimental and simulation results
그림 2: 실험 결과와 시뮬레이션 결과의 비교.
 측정 지점은 293.15 K: a) 온도 상승 전력 입력- 측정값으로부터의 평균 편차: 0,95 %, b) 에너지 입력 – 측정값으로부터의 평균 편차: 4.8 %에서 시작하여 10 단계로 지정된 목표 온도의 도달도를 나타냅니다.

검증된 결과를 바탕으로 단순하지만 부피가 큰 기하학을 이용해 ACS 프로세스와 시뮬레이션을 보여주는데, 고전적인 핫박스 프로세스에 비해 진보된 ACS 개발의 기초와 높은 잠재력을 잘 보여줍니다. 

기하학적 정렬은 그림 3에서 확인할 수 있습니다. (1) 고전적인 핫박스 프로세스, (2) 콜드 툴을 사용하는 ACS 콜드 스타트 프로세스(293.15 K), (3) 줄 효과로 인한 공구 난방에 대한 ACS 시리즈 프로세스 등 세 가지 경우를 시뮬레이션했습니다. 모든 3차원 모델은 1mm 크기의 셀로 분쇄되었습니다. 표 1은 계산된 시나리오의 가장 중요한 세부 사항을 요약합니다.

Geometric alignment of simulation setup
그림 3: 전도성 코어 가열 및 건조를 위한 시뮬레이션 설정의 기하학적 정렬
Overview of calculated core drying cases
표 1: 계산된 코어 건조 사례 개요.
 값은 실제 실험에서 파생됩니다.

결과 및 토론

그림 4는 고전적인 핫박스 공정을 위한 온도와 수분 발달을 보여주며, 외부 열 전달 및 그에 상응하는 수분 감소를 명확히 보여주고 있습니다. 

시뮬레이션은 시뮬레이션의 마지막에 모래 코어 센터에 수분이 남아 있는 상태에서 120초 동안 수행되었습니다. 실제로 사이클 타임 대상은 코어 센터에 쉘 형성과 잔류 수분이 있는 건조 프로세스의 조기 종료를 강요합니다. 단, 그림 5에 나타낸 ACS 콜드 스타트 시뮬레이션(코어 슈팅 머신을 가동했을 때의 첫 번째 샷에 대응)에서는 새로운 프로세스의 기본 원리인 코어의 균일한 heating이 내부 아웃 수분 수송으로 이어집니다.

 게다가, 모래 코어는 코어 박스보다 더 빨리 가열됩니다. 직렬 공정에서 코어 박스는 Joule heating을 통해 373.15 K 이상의 온도에 도달하여 고온 박스와 ACS 공정이 혼합되어 건조 공정이 더욱 가속화됩니다. 

ACS 영상 시리즈 시뮬레이션의 결과는 그림 6에 요약되어 있습니다. 핫박스 공정에서 120초가 지나도 모래심이 완전히 낫지 않지만, ACS 공정에서는 72초나 45초 후에 코어가 완전히 건조될 수 있습니다. 코어 박스 온도가 상당히 낮음에도 불구하고, 새로운 프로세스는 코어 건조에서 상당한 가속도와 새로운 접근방식의 큰 잠재력을 보여줍니다. 

한 가지 주요 이점은 관련 에너지 요건과 그에 상응하는 CO2 배출량을 포함하여 사이클 타임의 대폭적인 감소입니다. 모래심에 유입된 에너지는 시뮬레이션을 이용해 미리 예측은 물론 실제 공정 중에도 측정할 수 있어 공정 설계와 투명성 측면에서 또 다른 큰 장점입니다. 

또한, 시뮬레이션은 시험 표본의 기하학적 독립적 동질 난방을 명확히 보여주는데, 이는 습기가 코어 중심에 갇히지 않고 셸 형성을 방지함을 의미합니다. 전체적으로, 새로운 공정은 공정의 효율성과 무기적으로 결합된 모래 코어의 품질에서도 상당한 증가를 가능하게 합니다. 세 가지 사례의 프로세스 도표는 모두 그림 7에 요약되어 있습니다.

요약 및 전망

시연된 모델링은 새로운 코어 건조 프로세스를 정확하게 시뮬레이션하는 FLOW-3D의 기능과 기존의 핫 박스 프로세스와 비교하여 보다 효율적인 코어 건조 및 양생에 대한 새로운 프로세스의 가능성을 보여줍니다. 새로운 시뮬레이션 설정이 아직 개발 단계에 있고 더 많은 실제 사례 실험이 필요한 경우에도 건조 동작에 대한 뛰어난 통찰력을 얻을 수 있으며, 지금까지의 실험 측정과 매우 잘 일치합니다.

현재 시뮬레이션 내에서 모래-바인더 혼합물의 전기 전도성은 석영모래를 통해 생성되며, 실제로는 전기 전도성이 아니라 실제 측정된 모래-바인더 혼합물의 전기 전도성에 해당된다. 이렇게 하면 전체 모래-바인더 혼합물의 전기 전도성이 시뮬레이션에서 설명되며 실험 결과에 적합한 것으로 보입니다. 좀 더 정밀한 시뮬레이션을 위해, 실제 전도성 곡선을 고려하기 위해 고체 코어의 온도에 의존하는 전기 전도성(예: 모래-바인더 혼합물)을 절약할 수 있는 가능성이 도움이 될 것입니다. 추가 단계는 2유체 시뮬레이션 모델에 집중됩니다. 초기 실험은 좋은 결과로 기본적인 타당성을 보여줍니다.

아직 취해야 할 조치에도 불구하고, FLOW-3D로 ACS 공정을 시뮬레이션할 수 있는 능력은 줄 가열 기반 코어 건조 공정을 전체적으로 수립하는 데 중요한 이정표를 세우고 무기 모래 코어 제조에 이 공정의 이점을 보여준다고 할 수 있습니다.

References

  • Starobin, C.W. Hirt, H. Lang, M. Todte, Core Drying Simulation and Validation, AFS Proceedings, Schaumburg, IL USA, 2011
  • FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA
World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너

등록비

  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐

여행

컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0
info.mun@maritim.de

뮌헨

뮌헨의 모든 것

뮌헨 도시지도 다운로드

CFD가 레이저 용접을 만나면 : 불꽃이 어떻게 날아갑니까?

Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development

When CFD meets laser welding: How sparks fly!

CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 . 

자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.

자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다. 

이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.

레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다. 

레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다. 

분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.

CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.

이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.

레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.

코어 가스(Core Gas)

코어 가스(Core Gas)

 

코어로 주조 모델링 (Modeling Castings with Cores)

모래 속의 화학 결합제는 용융 된 금속에 의해 가열 될 때 가스를 생성 할 수 있으며 적절하게 환기되지 않으면 가스가 금속으로 흘러 가스의 다공성 결함이 발생할 수 있습니다. 이것은 빠르게 가열되고 긴 환기 경로를 갖는 주물의 얇은 내부 특징을 형성하는 코어에서 가장 가능성이 높습니다. FLOW-3D CAST의 코어 가스 모델은 이러한 가스 결함의 가능성을 예측하고 코어에서 모든 갇히는 가스들을 안전하게 배출 할 수있는 코어 벤팅을 설계하는 데 도움이됩니다.

 

알루미늄 및 철 주조의 결함 모델링 (Modeling Defects in Aluminum and Iron Castings)

‘Core Gas’ 모델은 철 주물 (그림 1)과 알루미늄 주물 (그림 2) 모두에서 수지 결합 코어의 결함을 예측합니다. 충전 및 응고 모델과 동시에 작동이 가능하며 주조의 충전 중 및 충전 후 갇히는 가스 생성 및 흐름을 계산합니다.

 

그림 1 : 열린 플라스크 부분 V8 Al 블록 어셈블리의 채우기. 두 개의 코어는 블록의 워터 재킷 공동을 형성합니다. 플라스크 바닥에 Al이 20 초 안에 채워집니다.

그림 2 : 환기가 되지 않을 때 워터 재킷 코어는 충전 중에 금속에 가스를 불어 넣습니다.
Shiloh사의 용접설비

FLOW-3D WELD를 이용한 해석과 실험 결과의 비교

FLOW-3D@ WELD를 이용한 해석과 실험 결과의 비교

자료 제공: SHILOH INDUSTRIES, INC
자료 제공: FLOW Science Japan

미국 Shiloh사는 주조 및 용접, 프레스 가공 등을 다루는 부품업체로 경량화, 원재료 절약, 원가에서 경쟁력을 갖춘 머티리얼 전문회사입니다. 그 동안 Shiloh사는 FLOW-3D@ 주조 문제 해결에 사용해 왔으나, 최근 FLOW-3D@ WELD 용접 모듈에 주목하여 FLOW-3D@ WELD를 이용하여 해석을 실시하였으며, 그 결과를 Shiloh사의 레이저 용접 실험 결과와 비교한 내용입니다.

Shiloh사의 용접설비
Shiloh사의 용접설비

두 금속은 사용하는 플레이트의 두께가 다르며 CASE2에서는 금속간 갭이 있습니다.

해석 결과 (실험과 비교)

FLOW-3D@ WELD를 사용하여 CASE1, CASE2 분석을 실시했습니다. CASE1은 바닥 직전까지 용해 시키지만, CASE2는 완전히 관통하고 있습니다. 관통시에도 바닥이 빠지지 않는 것은 표면 장력과 대류의 영향에 의한 것으로 생각됩니다.

용융 영역(CASE1)
용융 영역(CASE1)
CASE1-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)
CASE1-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)
CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)
CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

Summary

CASE1, CASE2 모두 단면 형상에서 2개의 경사가 나타나고 있으며,그 특징은 분석 결과에서도 뚜렷하게 관찰됩니다.

CASE2는 용융 영역의 팽창도 잘 재현할 수 있었습니다. FLOW-3D@ WELD는 레이저 용접의 대략적인 형상, 용융폭 등 레이저 용접 경향을 잘 파악하는 것을 확인할 수 있습니다.

Cavitation | 캐비테이션

캐비테이션이란 무엇입니까?

The spillways of the Glen Canyon dam in 1983 (Lee and Hoopes, 1996).

캐비테이션은 유체 흐름의 매우 낮은 압력 또는 포화 압력을 높이는 온도 상승으로 인해 유체 내에서 증기 또는 기포가 빠르게 발생하는 것입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유도 된 힘은 1983 년 Glen Canyon 댐의 배수로에서 경험 한 손상에서 볼 수 있듯이 며칠 내에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한 고압 다이 캐스팅에서 캐비테이션이 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 급속한 압력 강하를 초래하고 후속 캐비테이션으로 이어질 수 있습니다. 생성된 증기 기포는 최종 주조에서 다공성을 유발하거나 더 나쁜 경우 다이에 손상을 일으켜 주조품을 훼손시키고 다이 수명을 감소시킬 수 있습니다.

캐비테이션은 터빈과 파이프에 손상을 줄 수 있고, 댐의 배수로에서 콘크리트를 침식하는 등의 원인이 될 수 있습니다. 아래 이미지는 댐의 배수로 바닥 근처의 콘크리트 침식을 보여줍니다. 댐에 사용되는 콘크리트는 일반적으로 강도가 높지만 캐비테이션은 여전히 그것을 부식시킬 수 있습니다.

Eroded concrete due to cavitation on the spillway of a dam

캐비테이션은 때때로 오염 물질과 유기 분자를 분해하고, 소수성 화학 물질을 결합하고, 캐비테이션 기포의 파열로 인해 생성 된 충격파를 통해 신장 결석을 파괴하고, 혼합을위한 난류를 증가시켜 수질 정화와 같은 특정 산업 응용 분야에서 의도적으로 유도됩니다.

따라서 캐비테이션이 발생할 가능성이있는 위치와 그 강도를 이해하는 것이 중요합니다. 캐비테이션을 실험을 수행하거나 실험 결과의 현상을 시각화하는 것이 어렵고, 잠재적으로 손상 될 수 있으므로 수치해석 시뮬레이션으로 검토하는 것이 매우 필요하고, 유용합니다.

Real-World Applications | 실제 응용 분야

  • 물 및 환경 구조 내에서 손상을 주는 캐비테이션 시뮬레이션
  • 다이 손상 및 주조 다공성을 유발할 수 있는 고압 다이 캐스팅 중 캐비테이션 시뮬레이션
  • MEMS 장치 내의 열 거품 형성 시뮬레이션
  • 열 전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Modeling Cavitation in FLOW-3D

FLOW-3D의 캐비테이션 모델은 thermal bubble jets 와 MEMS devices를 시뮬레이션하는데 성공적으로 사용되었습니다. FLOW-3D는 “active”또는 “passive” 모델 옵션을 제공합니다. Active 모델은 기포 영역을 열고 수동 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전파하지만, 기포 영역의 형성을 시작하지는 않습니다.

Active모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합하며, Passive모델은 작은 기포의 간단한 모양이 예상되는 시뮬레이션에 가장 적합합니다. 활성 모델과 에너지 전송 계산을 통해 위상 변화도 옵션입니다. 기포는 계면에서의 증발 또는 응축으로 인해 추가로 팽창하거나 수축 할 수 있습니다.

Sample Results

아래 시뮬레이션은 수축 노즐을 보여줍니다. 애니메이션은 매우 일시적인 진동 동작을 보여주는 캐비테이션 버블의 진화를 보여줍니다. 캐비테이션 부피 분율은 초기 연속 액체에서 캐비테이션의 시작을 시각화하기 위해 플롯됩니다.

아래 애니메이션은 진입 속도가 8m/s이고 수렴 기울기가 18 °이고 발산 기울기가 8 ° 인 벤츄리 내의 캐비테이션을 보여줍니다. 다시 말하지만, 캐비테이션의 과도 동작은 잘 모델링되어 있으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션주기 기간을 예측합니다 (Stutz and Reboud 1997).

Cavitation in a venturi

물 탱크를 통해 이동하는 고속 발사체를 시뮬레이션하여 발사체 후류에서 생성 된 저압 영역의 공동 기둥을 보여줍니다. 발사체의 초기 속도는 600m / s입니다. 아래는 탱크의 움직임과 후행하는 캐비테이션 유체의 애니메이션입니다. 발사체가 감속함에 따라 캐비테이션 기둥의 반경이 좁아집니다.

@

High-speed bullet

References

Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.

Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.

Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.

Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

화학기반 응고모델 / chemistry-based solidification

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 응고 모델은 업계를 주조 시뮬레이션의 다음 개척지로 발전시켜 사용자에게 캐스트 부품의 강도와 무결성을 예측하는 동시에 스크랩을 줄이고 제품 안전 및 성능 요구 사항을 충족합니다.

응고 모델 기능

새로운 응고 모델은 핵 생성, 분리 및 냉각 조건을 고려한 온도 및 화학의 진화로부터 잠열, 열전도율, 열용량, 밀도, 점도 등 응고 경로 및 재료 특성을 계산합니다.

응고 모델은 SDAS (secondary dendrite arm sapcing) 및 입자 크기와 같은 구성 및 냉각 조건을 기반으로 미세 구조 진화를 예측합니다. 또한 확산 및 이류로 인한 거시적 분리를 예측합니다. 기계적 특성과 미세 구조 간의 경험적 관계는 실험 측정을 기반으로합니다. 독특하고 강력한 미세 구조 및 기계적 특성 예측 기능을 갖춘 새로운 응고 모델은 미세 다공성 예측을위한 무 차원 Niyama 기준과 같은 다른 모델의 기반을 마련합니다.

응고 미세 구조 및 다공성 결함은 주조의 기계적 특성에 영향을 미치는 주요 요인입니다. 차례로 국부적 인 미세 구조는 합금의 화학적 조성, 응고 속도 및 합금 원소의 분리로 인한 화학적 비균질성에 의해 결정됩니다. 새로운 응고 모델을 사용하여 공정 설계자는 다양한 공정 매개 변수 및 합금 구성이 기계적 특성에 미치는 영향을 결정하여 가능한 최고 품질의 안전한 제품을 생산하기 위해 주조 성능을 최적화 할 수 있습니다.

Solidification of AlSi9Cu3

Aluminium A356

응고 모델에는 전체 모델과 단순화 된 모델이 모두 포함되어있어 사용자가 시뮬레이션 워크 플로를 더 잘 제어 할 수 있습니다. 전체 모델은 용융물이 응고됨에 따라 화학적 조성과 상 변화를 고려하는 반면, 단순화 된 모델은 더 빠른 런타임을 제공하고 전체 모델만큼 많은 메모리를 필요로하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화 된 모델에서 시작할 수 있으며 그 반대의 경우도 마찬가지입니다. 이는 시뮬레이션의 여러 단계뿐만 아니라 다양한 유형의 시뮬레이션에 적합한 모델을 사용할 수있는 완벽한 유연성을 제공합니다.

리소스를 적게 사용한다는 분명한 이점이 있으므로 사용자는 가능한 한 단순화 된 모델을 사용하는 것이 좋습니다. 사용자는 매크로 분리가 중요한 경우 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클링 시뮬레이션의 경우 이러한 모델링 시나리오에서는 전체 분석이 필요하지 않기 때문에 소프트웨어에 의해 단순화 된 모델이 적용됩니다.

벽이 얇은 일부 주조의 경우 확산 및 이류에 기반한 매크로 분리는 중요하지 않습니다. 이러한 주물에서 응고 경로는 전체적으로 거의 동일하며 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 진화를 추적 할 필요가 없습니다. 이러한 유형의 시나리오의 경우 사용자가 단순화 된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

Casting Case Study

Casting Case Study

금속 주조물의 결함을 식별하고, 가볍고 튼튼한 주조 부품을 위해 새로운 재료로 부품을 설계하거나, 최적의 설계를 위해 반복적인 설계 작업을 수행하는 것은 고객이 당사의 소프트웨어를 사용하여 작업 요구 사항을 충족하고, 고철 비율을 줄임으로써 조직의 비용을 절감하는 일부 방법입니다.

이를 통해 제품 개발 시간을 단축함으로써 제품의 시장 출시 및 경쟁 우위를 위한 시간 확보가 용이해 집니다.

Customer Case Studies

Increasing Productivity by Reducing Ejection Times
Realizing Da Vinci’s Il Cavallo
Aluminum Integral Foam Molding Process

Solidification model

Solidification model

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 고체화 모델은 주조 시뮬레이션을 새로운 단계로 발전시킬것 입니다. 사용자는 주조 부품의 강도와 무결성을 예측하면서도 고철을 줄이고 제품 안전 및 성능 요구사항을 충족할 수 있습니다.

Solidification model capabilities

새로운 응고모델은 핵, 분리, 냉각 조건을 고려한 온도와 화학의 진화로 인한 잠열, 열전도도, 열 용량, 밀도, 점성 등을 포함한 고체화 경로와 재료 특성을 계산합니다.

응고모델은 이차 덴드라이트 암 사핑(SDAS) 및 입자 크기와 같은 구성 및 냉각 조건에 기반한 미세 구조 진화를 예측합니다. 또한 확산과 집착으로 인한 매크로 분리를 예측합니다. 기계적 특성과 미세구조 사이의 경험적 관계는 실험 측정을 기반으로 합니다. 독특하고 강력한 마이크로 구조와 기계적 특성 예측 기능을 갖춘 새로운 고체화 모델은 마이크로도 예측을 위한 차원 없는 니야마 기준과 같은 다른 모델의 기초를 제공합니다.

응고 미세 구조와 다공성 결함은 주물의 기계적 특성에 영향을 미치는 주요 요소입니다. 또한, 국소 미세 구조는 합금 원소의 분리에 따른 합금의 화학적 구성, 응고율 및 화학적 비동종성에 의해 결정됩니다. 공정 설계자는 새로운 응고 모델을 사용하여 다양한 공정 매개변수 및 합금 조합이 기계적 특성에 미치는 영향을 판단하여 주조물의 성능을 최적화하여 가능한 최고 품질의 안전한 제품을 생산할 수 있습니다.

Solidification of A356

 

Solidification of A206

MICROSTRUCTURE OUTPUT

  • Secondary dendrite arm spacing (SDAS)
  • Grain size

MECHANICAL PROPERTY OUTPUT

  • Ultimate tensile strength (UTS)
  • Elongation
  • Quality index
  • Yield strength for heat treated properties

DEFECT INDICATORS

  • Dimensionless Niyama criterion
  • Microporosity

완전하고 단순화된 화학 기반 응고 모델

유연성 모델

솔리드화 모델에는 전체 모델과 단순화된 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용융이 응고될 때 화응고 모델에는 전체 모델과 단순 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크 플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용해가 응고됨에 따라 화학적 구성과 위상 변화를 고려하는 반면, 단순화된 모델은 보다 빠른 런트를 제공하고 전체 모델만큼 많은 메모리를 필요로 하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화된 모델에서 시작하거나 그 반대로 시작할 수 있습니다. 이를 통해 다양한 시뮬레이션 유형과 시뮬레이션 단계에 적합한 모델을 사용할 수 있는 완전한 유연성을 제공합니다.

사용할 모델

자원을 적게 사용하는 것의 명백한 이점 때문에 사용자는 가능한 단순화된 모델을 많이 사용할 것을 권장한다. 매크로 분리가 중요한 경우에는 사용자가 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클 시뮬레이션의 경우, 이러한 모델링 시나리오에서는 완전한 분석이 필요하지 않기 때문에 소프트웨어가 단순화된 모델을 적용합니다.

일부 박막형 주조물의 경우 확산 및 홍보에 기반한 매크로 세그멘테이션은 중요하지 않습니다. 이러한 주조물에서 응고 경로는 전체적으로 거의 동일합니다. 따라서 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 변화를 추적할 필요가 없습니다. 이러한 유형의 시나리오에서는 사용자가 간소화된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

FLOW-3D CAST Bibliography

FLOW-3D CAST bibliography

아래는 FSI의 금속 주조 참고 문헌에 수록된 기술 논문 모음입니다. 이 모든 논문에는 FLOW-3D CAST 해석 결과가 수록되어 있습니다. FLOW-3D CAST를 사용하여 금속 주조 산업의 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our Metal Casting Bibliography. All of these papers feature FLOW-3D CAST results. Learn more about how FLOW-3D CAST can be used to successfully simulate applications for the Metal Casting Industry.

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019. 

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019. 

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi.org/10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi.org/10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi.org/10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi.org/10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi.org/10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi.org/10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi.org/10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi.org/10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi.org/10.1016/j.jmatprotec.2018.11.016

92-18   Fast, Flexible… More Versatile, Foundry Management Technology, March, 2018. 

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi.org/10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi.org/10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi.org/10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi.org/10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. doi.org/10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi.org/10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi.org/10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, 2015.

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, doi.org/10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), doi.org/10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, doi.org/10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi.org/10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi.org/10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, doi.org/10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi.org/10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, doi.org/10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, doi.org/10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, doi.org/10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order Form; Europe Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조

  • 금형의 모션 제어
  • 최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링
  • 정확한 가스 고립 및 기공 예측

Workspace Overview

경동주조(Tilt Pour Casting) Workspace는 엔지니어가 FLOW-3D  CAST로 경동주조(Tilt Pour Casting)을 성공적으로 모델링 할 수 있도록 설계된 직관적인 모델링 환경입니다 . 작업 공간에는 프로세스별 특정 다이 및 재료 유형이 포함되어 있으며, 정확한 기계 기능에 맞게 회전 동작을 쉽게 정의 할 수 있습니다. 

기포 결함의 완전한 분석을 위해 충진 분석에 벤트 및 배압이 포함되어 있으며, 다이사이클링 및 최신 응고 모델은 작업 공간의 하위 프로세스 아키텍처를 통해 충진시 매끄럽게 연결됩니다. Tilt Pour Casting Workspace는 단순하지만 다양한 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

Tilt Pour Simulation | FLOW-3D CAST
Tilt Pour Casting | FLOW-3D CAST
8-Cavity Tilt Pour | FLOW-3D CAST v5.1

프로세스 모델링

  • 틸트 주입
  • 역 틸트 주입

유연한 격자 생성

  • FAVOR ™ 단순 격자 생성 도구
  • 멀티 블록
  • Conforming mesh

금형 온도 관리

  • 다이 사이클링
  • 열 포화
  • 완전 열전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 열 계수
  • 기계적 특성 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

금형 동작 제어

  • 6 개의 회전축
  • 회전 속도를위한 테이블 형식 입력

결함 예측

  • 매크로 및 미세 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

다이나믹 시뮬레이션 제어

  • 모션 제어를위한 이벤트 프로브 기반 트리거

완벽한 분석 패키지

  • 다중 뷰포트가있는 애니메이션-3D, 2D, 히스토리 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 병렬 시뮬레이션 결과 비교
  • 용융 온도, 고체 분율 측정 용 센서
  • 입자 추적기
  • 일괄 배치 처리
  • 보고서 생성

Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조

  • 최첨단 Foam 잔여물 추적
  • 진보된 Foam 증발 및 금속 유동 모델링
  • 응고, 다공성 및 표면 결함 분석

Workspace Overview

Lost Foam Casting Workspace(소실모형주조) 는 Lost Foam Casting에 필요한 충진, 응고 및 냉각 하위 프로세스를 시뮬레이션하는 모든 도구를 제공합니다. 각 하위 프로세스는 해석 엔지니어가 사용하기 쉬운 인터페이스를 제공하도록 맞춤화된 템플릿 디자인을 기반으로합니다.

Lost Foam Casting 의 결함은 충진 프로파일에서 추적할 수 있기 때문에  FLOW-3D  CAST 의 용탕유동 및 소실모형(foam)의 연소 시뮬레이션의 탁월한 정확도는 고품질의 Lost Foam Casting 주물을 생산하는 데 귀중한 통찰력을 제공합니다. 기포. 잔류물 형성과 같은 주입 결함은 최종 주조에서 정확하게 추적되고 처리됩니다.

Lost Foam Casting Workspace | FLOW-3D CAST
Lost Foam Residue Tracking – Filling Simulation | FLOW-3D CAST
Lost Foam Impeller Tree – Filling Simulation | FLOW-3D CAST
Lost Foam Residue Simulation | FLOW-3D CAST

PROCESSES MODELED

  • Filling
  • Solidification
  • Cooling

FLEXIBLE MESHING

  • Structured meshing for fast, easy generation
  • Multi-block meshing for localized accuracy control
  • Foam-conforming meshes for memory optimization

MOLD MODELING

  • Ceramic filters
  • Inserts – standard and porous
  • Air vents
  • Chills
  • Insulating and exothermic sleeves
  • Moving ladles and stoppers

ADVANCED SOLIDIFICATION

  • Chemistry-based solidification
  • Dimensionless Niyama criteria
  • Cooling rates, SDAS, grain size mechanical properties

FILLING ACCURACY

  • Foam/melt interface tracking
  • Gas/bubble entrapment
  • Automatic melt flow drag calculation in filters

DEFECT PREDICTION

  • Foam residue defect tracking
  • Cold shuts
  • Porosity prediction
  • Shrinkage
  • Hot spots

DYNAMIC SIMULATION CONTROL

  • Probe-controlled pouring control

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Sand Casting Workspace, 사형주조

Sand Casting Workspace Highlights, 사형주조

  • 모래 특성의 통합에는 투과성, 코어 가스 및 수분 함량이 포함됩니다.
  • 주입 컵 채우기 조건에 따라 동적 래들 주입 및 동적 래들 동작
  • 첨단 솔루션을 통해 정확한 가스 포집 및 다공성 제공

Workspace Overview

Sand Casting Workspace(사형주조)는 샌드 캐스터에 주입, 응고 및 냉각 분석을 시뮬레이션하는 데 필요한 모든 도구를 제공합니다. Sand Casting Workspace는 엔지니어의 언어를 사용하여, 사용이 간편한 인터페이스를 제공하도록 설계되어 있습니다.

사형주조의 결함은 흔히 충전 단계에서 추적할 수 있습니다. FLOW3D CAST는 뛰어난 금속 흐름 예측에 대해 뛰어난 정확도를 제공하여, 쉽게 결함을 파악할 수 있습니다. 산화물 형성 및 콜드샷을 정확하게 추적하여 최종 주물에서의 발생 위치를 확인합니다. 압탕의 크기를 조정하고 핫 스팟(최종응고부)에 배치하는 한편, 진보된 응고 및 수축 분석을 통해 가장 까다로운 제조 환경에서도 최종적으로 최적화된 설계를 달성할 수 있습니다.

프로세스 모델링

  • 충전재
  • 응고
  • 냉각

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 적합 메쉬

주형 모델링

  • 가스 및 수분 배출이 가능한 투과성 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 공기 통로

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마(Niyama ) 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

충전 정확도

  • 가스/버블 포획
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산
  • 난류 모델링

코어 모델링

  • 가스 생성을 포함한 모래 코어
  • 소금 코어

결함 예측

  • 혼입 공기
  • 산화물 형성 및 추적
  • 콜드 샷
  • 다공성 예측
  • 수축
  • 핫 스팟

라이저 공구

  • 발열체 조립체
  • 절연 및 발열 슬리브

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Die Casting Workspace, 저압주조

Workspace Highlights, 저압주조

  • 매우 정확한 충진을 위한 압력 제어 주입
  • 공극, 배기 및 역압 효과를 포함한 전체 프로세스 모델링
  • 다공성과 같은 정밀한 조기 동결 및 응고 결함을 해결하기 위한 향상된 응고 및 열 전달 제어

Workspace Overview

저압주조 Workspace 는 엔지니어가 FLOW-3D CAST를 통해 저압주조 제품을 성공적으로 모델링하도록 설계된 직관적인 모델링 환경입니다. 

유연한 압력 제어를 통해 엔지니어는 가압, 벤트 및 배압 조건을 정확하게 재현하여 주입, 공기 갇힘 및 미세수축결함에 대한 완전한 분석을 수행할 수 있습니다.

금형온도해석 및 최첨단 응고 모델은 작업 공간의 서브 프로세스 아키텍처를 통해 원활하게 충전 상태에 연결됩니다. 저압주조 Workspace은 단순하면서도 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

프로세스 모델링

  • 중력 저 압력 다이 캐스트 주조

유연한 메쉬

  • FAVOR™단순 메시 생성 도구
  • 멀티 블록 메쉬
  • 중첩된 메쉬

다이 열 관리

  • 열사이 사이클
  • 열 포화도
  • 풀 열 전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫 스폿 식별
  • 기계적 특성 예측
  • 마이크로 아키텍처 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

진공 및 환기

  • 대화형 프로브 배치
  • 면적 및 손실 계수 계산기

LADLE운동

  • 6도의 자유 동작 정의

주입 정확도

  • 가스 및 기포 걸림
  • 표면 산화물 계산
  • RNG및 LES난류 모델
  • 배경 압력

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

동적 시뮬레이션 컨트롤

  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 컨트롤

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Sand Casting (LPSC) Workspace, 저압사형주조

Workspace Highlights, 저압사형주조

  • 투과성, 코어 가스 및 수분 함량을 포함한 모래 특성 통합
  • 전체 프로세스 모델링에는 보이드, 환기 및 역압 영향이 포함됨
  • 고급 다이내믹스에는 채우기 후 고체화 틸트 동작이 포함됨

Workspace Overview

저압 사형 주조(LPSC) Workspace 는 주조 공장에서 일반적으로 사용되는 모든 공정을 시뮬레이션할 수 있는 간편한 도구를 제공합니다. 새로운 LPSC Workspace를 통해 사용자는 프로세스 파라미터를 모델링하고 최적화하는 데 필요한 도구를 사용할 수 있습니다.

필터는 하단 충진 스프로(sprues)에 삽입하여 충진 패턴을 추가로 제어하고, 용해 시 불순물을 제거할 수 있습니다. FLOW-3D CAST는 충전 중 흐름에 미치는 영향을 모델링하기 위한 세라믹 필터를 제공합니다. LPSC Workspace는 응고중의 수축 및 미세수축결함을 해결하기 위해 발열 압탕어셈블리 및 단열 슬리브를 제공합니다.

FLOW-3D CAST의 틸트 기능을 사용하면 응고 전에 몰드를 거꾸로 뒤집어 충전 스프루(sprues)가 라이저 역할을 할 수 있습니다. 이 접근 방식은 충진 스프루(sprues)가 적절하게 설계된 경우 추가 라이저가 필요하지 않습니다.

프로세스 모델링

  • 압력 또는 용량 제어 바닥 공급
  • 회전식 응고

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 구성 메쉬

주형 모델링

  • 가스 및 수분 배출이 포함된 허용 가능한 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 에어벤트

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

라이저 공구

  • 발열체 데이터베이스
  • 발열성 및 절연성 슬리브

주입 정확도

  • 가스/버스/자갈 끼임
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산

몰드 모션 컨트롤

  • 시간 제어 금형 회전

결함 예측

  • 다공성 예측
  • 수축
  • 핫 스팟

동적 시뮬레이션 컨트롤

  • 문제가 제어되는 주입 속도

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

High Pressure Die Casting Workspace, 고압다이캐스팅

High Pressure Die Casting Workspace Highlights

  • 주입 정확도가 탁월합니다.
  • 전체 프로세스 모델링에는 고급 환기, PQ2 및 스프레이 냉각이 포함됩니다.
  • 동적 시뮬레이션 제어를 통해 동적 런타임 프로세스를 제어할 수 있습니다.
  • 최첨단 알루미늄 실리콘 합금 고형화입니다.

고압 다이 캐스팅 Workspace

고압 다이 캐스팅 Workspace은 엔지니어가 FLOW-3D CAST를 사용하여, 고압 다이 캐스팅 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

FLOW-3D CAST v5.1은 첨단 다이 열 제어, 기계 파라미터 모델링,주입 및 배압 조건의 정확한 해석기능과 결합된 샷 슬리브 모션의 완전한 제어는 가장 까다로운 HPDC 시뮬레이션에 필요한 최적화된 솔루션입니다. HPDC Workspace에는 진보된 미세수축공 예측 및 후처리 기능 외에도 Al-Si 및 Al-Cu 기반 합금에 대한 최첨단 화학 기반 응고 및 재료 강도 모델이 포함되어 있습니다.

모델링된 프로세스

  • 고압 다이 주조
 

유연한 메시

  • FAVOR™ 간단한 메쉬 생성 도구
  • 멀티 블록 메시
  • 중첩 메시
 

다이 열 관리

  • 열 다이 사이클링
  • 열 포화도
  • 전체 열 전달 모델링
  • 스마트 냉각 채널 제어
  • 스프레이 냉각 경로 모델링
 

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 기계적 특성 예측
  • 미세 구조 예측
 

국자 모션

  • 자유 모션 정의 6도
 

진공 및 환기

  • 대화형 프로브 배치
  • 지역 및 손실 계수 계산기
 

충전 정확도

  • 느리고 빠른 샷 모델링
  • 강화 압력 효과
  • 가스 및 버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델
  • 역압력
 

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석
 

표면 결함 분석

  • PQ2 분석
  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

Gravity Die Casting Workspace, 중력주조

Gravity Die Casting Workspace Highlights, 중력주조

  • 최첨단 다이 열 관리, 동적 냉각 채널, 분무 냉각 및 열 순환
  • Ladle 주입 조건에 따라 동적 Ladle 모션이 있는 Ladle 주입
  • 첨단 유량 솔루션으로 정확한 가스 갇힘 및 가스 다공성 제공

Workspace Overview

Gravity Die Casting Workspace(중력주조)는 엔지니어가 FLOW-3D CAST를 사용하여 중력주조 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

Ladle 모션, 벤트 및 배압이 충진해석에 포함되어 공기 갇힘 및 미세 응고수축공의 정확한 예측과 금형온도분포 및 상태 예측이 가능합니다.-첨단 응고 모델은 Workspace의 하위 프로세스 아키텍처를 통해 충준해석기능에 원활하게 연결됩니다. Gravity Die Casting Workspace는 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

PROCESSES MODELED

  • Gravity die casting
  • Vacuum die casting

FLEXIBLE MESHING

  • FAVOR™ simple mesh generation tool
  • Multi-block meshing
  • Nested meshing

MOLD MODELING

  • Localized die heating elements and cooling channels
  • Spray cooling of the die surface
  • Ceramic filters
  • Air vents

ADVANCED SOLIDIFICATION

  • Porosity
  • Shrinkage
  • Hot spots
  • Mechanical property
  • Microstructure

SAND CORES

  • Core gas evolution
  • Material definitions for core properties

DIE THERMAL MANAGEMENT

  • Thermal die cycling
  • Heat saturation
  • Full heat transfer

LADLE MOTION

  • 6 degrees of freedom motion definition

DEFECT PREDICTION

  • Macro and micro porosity
  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

VACUUM AND VENTING

  • Interactive probe placement
  • Area and loss coefficient calculator

MACRO AND MICRO POROSITY

  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

FILLING ACCURACY

  • Gas and bubble entrapment
  • Surface oxide calculation
  • RNG and LES turbulence models
  • Backpressure

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Continuous Casting Workspace, 연속주조

연속 주조 Workspace Highlights

  • 고급 모션 컨트롤에는 수직 빌릿, 수평 파이프 및 롤러 시트 캐스팅이 포함됨
  • 열 및 냉각 동적 제어는 타의 추종을 불허하는 열 관리 분석 제공
  • 유체의 완전한 시뮬레이션 – 고급 열 응력 해석을 통해 동작중의 고체 전환

Workspace Overview

Continuous Casting Workspace는 연속형 빌릿 주조 및 직접 냉간 연속 주조 등 일반적으로 사용되는 모든 주조 공장 공정을 시뮬레이션할 수 있는 사용하기 쉬운 도구를 지속적으로 주조 사용자에게 제공합니다. 새로운 Continuous Casting Workspace를 통해 사용자는 연속 주조 공정을 모델링하고 공정 파라미터를 최적화하는 데 필요한 도구를 찾을 수 있습니다.

멀티 블록 메쉬는 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 제공하는 효율적인 방법을 제공합니다. Mold 및 Billlet 냉각, 용해 유량, 과열 및 Mold 형상과 같은 공정 매개변수가 분석에 포함됩니다. 용탕 표면의 운동과 몰드의 온동은 후처리 중에 빠르게 시각화되며, 이 과정에서 충진 및 응고 패턴도 쉽게 평가되므로 공정 수정을 자신 있게 구현할 수 있습니다.

 

 

모델링된 프로세스

  • 연속 빌릿 및 시트 캐스팅
  • 직접 냉각 연속 주조

유연한 메시

  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

열 금형 모델링

  • 난방 및 냉각 요소와 지역화 된 다이 가열 제어
  • 용융 및 금형에서 대류 및 복사 열 전달

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성