ESTUDIO MOVIMIENTO DE METAL LIQUIDO A VELOCIDADES MAYORES DE 1 M/S
Author: Primitivo Carranza Torme Supervised by : Dr. Jesus Mª Blanco Ilzarbe Energy Engineering Department Faculty of Engineering – Bilbao, Vizcaya University of Basque Country UPV / EHU
INTRODUCTION
주조 금속 부품은 모든 산업 분야에서 매우 중요합니다. 그러나 이들을 제조함에 있어서 액상재료에서 최종 형태에 이르기까지 용융온도, 합금, 성형, 주입, 응고 등 여러 변수를 동시에 제어해야 한다.
이러한 모든 측면은 올바르게 수행되어야 합니다. 단 하나의 오류로 인해 주조가 고객의 사양을 충족하지 못하기 때문입니다. 금속 주조는 고대(5,000년 이상)에서 현대 엔지니어링 과학으로 발전한 인간 활동으로, 새로운 개념과 솔루션의 지속적인 흐름으로 모든 복잡성을 포괄합니다.
본 논문에서 주조 기술 연구는 금속 특성, 합금 효과, 작업 및 열처리, 유체 흐름 또는 응고에 대한 별도의 연구보다 훨씬 더 광범위한 분석입니다. 주조 공정에서 강력한 재순환 영역은 공기, 가스, 주형 모래 입자 및 주물의 품질에 심각한 영향을 미치는 기타 결함을 가둘 수 있습니다.
특히 이러한 결함이 상당한 경제적 손실을 초래하는 넓은 표면을 채우는 동안. (HURST, 1996) 우리는 주물용 충진 및 공급 시스템 설계의 이론과 실제 지식을 바탕으로 이 연구를 시작했습니다(Sigworth, 2018).
이러한 기술은 문제 해결, 프로세스 개선 및 최적화와 같은 진단 목적과 새로운 기술 개발 모두에 효과적인 것으로 입증되었습니다. 금속 가공의 특정 문제에 대한 이러한 시뮬레이션 기술의 적용은 액체 금속의 속도가 1m/s보다 큰 경우 따라야 할 단계를 명확하게 정의하는 균일한 처리를 사용하지 않습니다.
이것이 우리 연구의 대상이 되는 조각들입니다. 1980년대 이래로 강력한 경쟁 압력(국가 경제 간의 경쟁 및 강철 대 알루미늄 또는 알루미늄 대 플라스틱 또는 복합 재료와 같은 다른 재료 간의 경쟁)으로 인해 금속 및 재료 분야에서 심오한 기술 변화가 있었습니다.
(Steel statistic year book, 2019) 어쨌든 수익성을 보장하기 위해서는 기존 금속 가공 작업을 지속적으로 업그레이드하고 최적화하는 것이 필수적이며, 아마도 가장 중요한 것은 지속적으로 새로운 제품과 프로세스를 개발하는 것입니다.
제조 및 시뮬레이션. 국가 경제의 경우 이는 현재 기술을 사용하여 대부분의 서방 국가에서 새로운 금속 생산 공장을 건설하는 것이 정당화될 수 없으므로 연구 개발 노력이 기존 작업을 개선할 수 있음을 의미합니다.
그리고 가장 중요한 것은 새로운 제품 및 프로세스 개념을 개발하는 것이 이러한 산업과 사회 전체의 지속적인 복지에 매우 중요하다는 것입니다. 높은 비생산율, 자동화 및 로봇화가 그러한 노력의 핵심 요소가 되어야 합니다.
분명히, 이러한 개발의 구현 시간은 상당히 짧아야 하므로 전통적인 기술이 대안적이고 더 빠르고 비용 효율적인 접근 방식에 자리를 내주어야 합니다. 수학적 모델링과 더 큰 범위의 전산 모델링 접근 방식은 절실히 필요한 기술 변화를 실현하는 데 도움이 되는 큰 잠재력을 가지고 있다고 믿어집니다. (European Steel Sector Copetitiveness of the European Steel Sector, 2008)
기술 변화의 필요성에 대한 추진력은 하드웨어뿐만 아니라 다양한 물리적 시뮬레이션 및 소프트웨어 패키지를 포함하는 컴퓨팅 도구의 보다 비용 효율적인 가용성에 대한 강력한 추진력도 필요합니다.
Publication Date:2013-07-24 Research Org.: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) Sponsoring Org.: DOE/LANL OSTI Identifier: 1088904 Report Number(s): LA-UR-13-25537 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Country of Publication: United States Language: English Subject: Engineering(42); Materials Science(36); Radiation Chemistry, Radiochemistry, & Nuclear Chemistry(38)
Introduction
The plutonium foundry at Los Alamos National Laboratory casts products for various special nuclear applications. However, plutonium’s radioactivity, material properties, and security constraints complicate the ability to perform experimental analysis of mold behavior. The Manufacturing Engineering and Technologies (MET-2) group previously developed a graphite mold to vacuum cast small plutonium disks to be used by the Department of Homeland Security as point sources for radiation sensor testing.
A two-stage pouring basin consisting of a funnel and an angled cavity directs the liquid into a vertical runner. A stack of ten disk castings connect to the runner by horizontal gates. Volumetric flow rates were implemented to limit overflow into the funnel and minimize foundry returns. Models using Flow-3D computational fluid dynamics software are employed here to determine liquid Pu flow paths, optimal pour regimes, temperature changes, and pressure variations.
Setup
Hardcopy drawings provided necessary information to create 3D .stl models for import into Flow-3D (Figs. 1 and 2). The mesh was refined over several iterations to isolate the disk cavities, runner, angled cavity, funnel, and input pour. The final flow and mold-filling simulation utilizes a fine mesh with ~5.5 million total cells. For the temperature study, the mesh contained 1/8 as many cells to reduce computational time and set temperatures to 850 °C for the molten plutonium and 500 °C for the solid graphite mold components (Fig. 3).
Flow-3D solves mass continuity and Navier-Stokes momentum equations over the structured rectangular grid model using finite difference and finite volume numerical algorithms. The solver includes terms in the momentum equation for body and viscous accelerations and uses convective heat transfer.
Simulation settings enabled Flow-3D physics calculations for gravity at 980.665 cm/s 2 in the negative Z direction (top of mold to bottom); viscous, turbulent, incompressible flow using dynamically-computed Renormalized Group Model turbulence calculations and no-slip/partial slip wall shear, and; first order, full energy equation heat transfer.
Mesh boundaries were all set to symmetric boundary conditions except for the Zmin boundary set to outflow and the Zmax boundary set to a volume flow. Vacuum casting conditions and the high reactivity of remaining air molecules with Pu validate the assumption of an initially fluidless void.
Results
The flow follows a unique three-dimensional path. The mold fills upwards with two to three disks receiving fluid in a staggered sequence. Figures 5-9 show how the fluid fills the cavity, and Figure 7 includes the color scale for pressure levels in these four figures. The narrow gate causes a high pressure region which forces the fluid to flow down the cavity centerline.
It proceeds to splash against the far wall and then wrap around the circumference back to the gate (Figs. 5 and 6). Flow in the angled region of the pouring basin cascades over the bottom ledge and attaches to the far wall of the runner, as seen in Figure 7.
This channeling becomes less pronounced as fluid volume levels increase. Finally, two similar but non-uniform depressed regions form about the centerline. These regions fill from their perimeter and bottom until completion (Fig. 8). Such a pattern is counter, for example, to a steady scenario in which a circle of molten Pu encompassing the entire bottom surface rises as a growing cylinder.
Cavity pressure becomes uniform when the cavity is full. Pressure levels build in the rising well section of the runner, where impurities were found to settle in actual casting. Early test simulations optimized the flow as three pours so that the fluid would never overflow to the funnel, the cavities would all fill completely, and small amounts of fluid would remain as foundry returns in the angled cavity.
These rates and durations were translated to the single 2.7s pour at 100 cm 3 per second used here. Figure 9 shows anomalous pressure fluctuations which occurred as the cavities became completely filled. Multiple simulations exhibited a rapid change in pressure from positive to negative and back within the newly-full disk and surrounding, already-full disks.
The time required to completely fill each cavity is plotted in Figure 10. Results show negligible temperature change within the molten Pu during mold filling and, as seen in Figure 11, at fill completion.
Conclusions
Non-uniform cavity filling could cause crystal microstructure irregularities during solidification. However, the small temperature changes seen – due to large differences in specific heat between Pu and graphite – over a relatively short time make such problems unlikely in this case.
In the actual casting, cooling required approximately ten minutes. This large difference in time scales further reduces the chance for temperature effects in such a superheated scenario. Pouring basin emptying decreases pressure at the gate which extends fill time of the top two cavities.
The bottom cavity takes longer to fill because fluid must first enter the runner and fill the well. Fill times continue linearly until the top two cavities. The anomalous pressure fluctuations may be due to physical attempts by the system to reach equilibrium, but they are more likely due to numerical errors in the Flow3D solver.
Unsuccessful tests were performed to remove them by halving fluid viscosity. The fine mesh reduced, but did not eliminate, the extent of the fluctuations. Future work is planned to study induction and heat transfer in the full Pu furnace system, including quantifying temporal lag of the cavity void temperature to the mold wall temperature during pre-heat and comparing heat flux levels between furnace components during cool-down.
Thanks to Doug Kautz for the opportunity to work with MET-2 and for assigning an interesting unclassified project. Additional thanks to Mike Bange for CFD guidance, insight of the project’s history, and draft review.
에피택셜 과 등축 응고 사이의 경쟁은 적층 제조에서 실행되는 레이저 용융 동안 CMSX-4 단결정 초합금에서 조사되었습니다. 단일 트랙 레이저 스캔은 레이저 출력과 스캐닝 속도의 여러 조합으로 방향성 응고된 CMSX-4 합금의 분말 없는 표면에서 수행되었습니다. EBSD(Electron Backscattered Diffraction) 매핑은 새로운 방향의 식별을 용이하게 합니다. 영역 분율 및 공간 분포와 함께 융합 영역 내에서 핵을 형성한 “스트레이 그레인”은 충실도가 높은 전산 유체 역학 시뮬레이션을 사용하여 용융 풀 내의 온도 및 유체 속도 필드를 모두 추정했습니다. 이 정보를 핵 생성 모델과 결합하여 용융 풀에서 핵 생성이 발생할 확률이 가장 높은 위치를 결정했습니다. 금속 적층 가공의 일반적인 경험에 따라 레이저 용융 트랙의 응고된 미세 구조는 에피택셜 입자 성장에 의해 지배됩니다. 더 높은 레이저 스캐닝 속도와 더 낮은 출력이 일반적으로 흩어진 입자 감소에 도움이 되지만,그럼에도 불구하고 길쭉한 용융 풀에서 흩어진 입자가 분명했습니다.
The competition between epitaxial vs. equiaxed solidification has been investigated in CMSX-4 single crystal superalloy during laser melting as practiced in additive manufacturing. Single-track laser scans were performed on a powder-free surface of directionally solidified CMSX-4 alloy with several combinations of laser power and scanning velocity. Electron backscattered diffraction (EBSD) mapping facilitated identification of new orientations, i.e., “stray grains” that nucleated within the fusion zone along with their area fraction and spatial distribution. Using high-fidelity computational fluid dynamics simulations, both the temperature and fluid velocity fields within the melt pool were estimated. This information was combined with a nucleation model to determine locations where nucleation has the highest probability to occur in melt pools. In conformance with general experience in metals additive manufacturing, the as-solidified microstructure of the laser-melted tracks is dominated by epitaxial grain growth; nevertheless, stray grains were evident in elongated melt pools. It was found that, though a higher laser scanning velocity and lower power are generally helpful in the reduction of stray grains, the combination of a stable keyhole and minimal fluid velocity further mitigates stray grains in laser single tracks.
Introduction
니켈 기반 초합금은 고온에서 긴 노출 시간 동안 높은 인장 강도, 낮은 산화 및 우수한 크리프 저항성을 포함하는 우수한 특성의 고유한 조합으로 인해 가스 터빈 엔진 응용 분야에서 광범위하게 사용됩니다. CMSX-4는 특히 장기 크리프 거동과 관련하여 초고강도의 2세대 레늄 함유 니켈 기반 단결정 초합금입니다. [ 1 , 2 ]입계의 존재가 크리프를 가속화한다는 인식은 가스 터빈 엔진의 고온 단계를 위한 단결정 블레이드를 개발하게 하여 작동 온도를 높이고 효율을 높이는 데 기여했습니다. 이러한 구성 요소는 사용 중 마모될 수 있습니다. 즉, 구성 요소의 무결성을 복원하고 단결정 미세 구조를 유지하는 수리 방법을 개발하기 위한 지속적인 작업이 있었습니다. [ 3 , 4 , 5 ]
적층 제조(AM)가 등장하기 전에는 다양한 용접 공정을 통해 단결정 초합금에 대한 수리 시도가 수행되었습니다. 균열 [ 6 , 7 ] 및 흩어진 입자 [ 8 , 9 ] 와 같은 심각한 결함 이 이 수리 중에 자주 발생합니다. 일반적으로 “스트레이 그레인”이라고 하는 응고 중 모재의 방향과 다른 결정학적 방향을 가진 새로운 그레인의 형성은 니켈 기반 단결정 초합금의 수리 중 유해한 영향으로 인해 중요한 관심 대상입니다. [ 3 , 10 ]결과적으로 재료의 단결정 구조가 손실되고 원래 구성 요소에 비해 기계적 특성이 손상됩니다. 이러한 흩어진 입자는 특정 조건에서 에피택셜 성장을 대체하는 등축 응고의 시작에 해당합니다.
떠돌이 결정립 형성을 완화하기 위해 이전 작업은 용융 영역(FZ) 내에서 응고하는 동안 떠돌이 결정립 형성에 영향을 미치는 수지상 응고 거동 및 처리 조건을 이해하는 데 중점을 두었습니다. [ 11 , 12 , 13 , 14 ] 연구원들은 단결정 합금의 용접 중에 표류 결정립 형성에 대한 몇 가지 가능한 메커니즘을 제안했습니다. [ 12 , 13 , 14 , 15 ]응고 전단에 앞서 국부적인 구성 과냉각은 이질적인 핵 생성 및 등축 결정립의 성장을 유발할 수 있습니다. 또한 용융 풀에서 활발한 유체 흐름으로 인해 발생하는 덴드라이트 조각화는 용융 풀 경계 근처에서 새로운 결정립을 형성할 수도 있습니다. 두 메커니즘 모두에서, 표류 결정립 형성은 핵 생성 위치에 의존하며, 차이점은 수상 돌기 조각화는 수상 돌기 조각이 핵 생성 위치로 작용한다는 것을 의미하는 반면 다른 메커니즘은 재료, 예 를 들어 산화물 입자에서 발견되는 다른 유형의 핵 생성 위치를 사용한다는 것을 의미합니다. 잘 알려진 바와 같이, 많은 주물에 대한 반대 접근법은 TiB와 같은 핵제의 도입을 통해 등축 응고를 촉진하는 것입니다.22알루미늄 합금에서.
헌법적 과냉 메커니즘에서 Hunt [ 11 ] 는 정상 상태 조건에서 기둥에서 등축으로의 전이(CET)를 설명하는 모델을 개발했습니다. Gaumann과 Kurz는 Hunt의 모델을 수정하여 단결정이 응고되는 동안 떠돌이 결정립이 핵을 생성하고 성장할 수 있는 정도를 설명했습니다. [ 12 , 14 ] 이후 연구에서 Vitek은 Gaumann의 모델을 개선하고 출력 및 스캐닝 속도와 같은 용접 조건의 영향에 대한 보다 자세한 분석을 포함했습니다. Vitek은 또한 실험 및 모델링 기술을 통해 표류 입자 형성에 대한 기판 방향의 영향을 포함했습니다. [ 3 , 10 ]일반적으로 높은 용접 속도와 낮은 출력은 표류 입자의 양을 최소화하고 레이저 용접 공정 중 에피택셜 단결정 성장을 최대화하는 것으로 나타났습니다. [ 3,10 ] 그러나 Vitek은 덴드라이트 조각화를 고려하지 않았으며 그의 연구는 불균질 핵형성이 레이저 용접된 CMSX -4 단결정 합금에서 표류 결정립 형성을 이끄는 주요 메커니즘임을 나타냅니다. 현재 작업에서 Vitek의 수치적 방법이 채택되고 금속 AM의 급속한 특성의 더 높은 속도와 더 낮은 전력 특성으로 확장됩니다.
AM을 통한 금속 부품 제조 는 지난 10년 동안 급격한 인기 증가를 목격했습니다. [ 16 ] EBM(Electron Beam Melting)에 의한 CMSX-4의 제작 가능성은 자주 조사되었으나 [ 17 , 18 , 19 , 20 , 21 ] CMSX의 제조 및 수리에 대한 조사는 매우 제한적이었다. – 4개의 단결정 구성요소는 레이저 분말 베드 융합(LPBF)을 사용하며, AM의 인기 있는 하위 집합으로, 특히 표류 입자 형성을 완화하는 메커니즘과 관련이 있습니다. [ 22 ]이러한 조사 부족은 주로 이러한 합금 시스템과 관련된 처리 문제로 인해 발생합니다. [ 2 , 19 , 22 , 23 , 24 ] 공정 매개변수( 예: 열원 전력, 스캐닝 속도, 스폿 크기, 예열 온도 및 스캔 전략)의 엄격한 제어는 완전히 조밀한 부품을 만들고 유지 관리할 수 있도록 하는 데 필수적입니다. 단결정 미세구조. [ 25 ] EBM을 사용하여 단결정 합금의 균열 없는 수리가 현재 가능하지만 [ 19 , 24 ] 표류 입자를 생성하지 않는 수리는 쉽게 달성할 수 없습니다.[ 23 , 26 ]
이 작업에서 LPBF를 대표하는 조건으로 레이저 용융을 사용하여 단결정 CMSX-4에서 표류 입자 완화를 조사했습니다. LPBF는 스캐닝 레이저 빔을 사용하여 금속 분말의 얇은 층을 기판에 녹이고 융합합니다. 층별 증착에서 레이저 빔의 사용은 급격한 온도 구배, 빠른 가열/냉각 주기 및 격렬한 유체 흐름을 경험하는 용융 풀을 생성 합니다 . 이것은 일반적으로 부품에 결함을 일으킬 수 있는 매우 동적인 물리적 현상으로 이어집니다. [ 28 , 29 , 30 ] 레이저 유도 키홀의 동역학( 예:, 기화 유발 반동 압력으로 인한 위상 함몰) 및 열유체 흐름은 AM 공정에서 응고 결함과 강하게 결합되고 관련됩니다. [ 31 , 32 , 33 , 34 ] 기하 구조의 급격한 변화가 발생하기 쉬운 불안정한 키홀은 다공성, 볼링, 스패터 형성 및 흔하지 않은 미세 구조 상을 포함하는 유해한 물리적 결함을 유발할 수 있습니다. 그러나 키홀 진화와 유체 흐름은 자연적으로 다음을 통해 포착 하기 어렵 습니다 .전통적인 사후 특성화 기술. 고충실도 수치 모델링을 활용하기 위해 이 연구에서는 전산유체역학(CFD)을 적용하여 표면 아래의 레이저-물질 상호 작용을 명확히 했습니다. [ 36 ] 이것은 응고된 용융물 풀의 단면에 대한 오랫동안 확립된 사후 특성화와 비교하여 키홀 및 용융물 풀 유체 흐름 정량화를 실행합니다.
CMSX-4 구성 요소의 레이저 기반 AM 수리 및 제조를 위한 적절한 절차를 개발하기 위해 적절한 공정 창을 설정하고 응고 중 표류 입자 형성 경향에 대한 예측 기능을 개발하는 것부터 시작합니다. 다중 합금에 대한 단일 트랙 증착은 분말 층이 있거나 없는 AM 공정에서 용융 풀 형상 및 미세 구조의 정확한 분석을 제공하는 것으로 나타났습니다. [ 37 , 38 , 39 ]따라서 본 연구에서는 CMSX-4의 응고 거동을 알아보기 위해 분말을 사용하지 않는 단일 트랙 레이저 스캔 실험을 사용하였다. 이는 CMSX-4 단결정의 LPBF 제조를 위한 예비 실험 지침을 제공합니다. 또한 응고 모델링은 기존 용접에서 LPBF와 관련된 급속 용접으로 확장되어 표류 입자 감소를 위한 최적의 레이저 용융 조건을 식별했습니다. 가공 매개변수 최적화를 위한 추가 지침을 제공하기 위해 용융물 풀의 매우 동적인 유체 흐름을 모델링했습니다.
재료 및 방법
단일 트랙 실험
방전 가공(EDM)을 사용하여 CMSX-4 방향성 응고 단결정 잉곳으로부터 샘플을 제작했습니다. 샘플의 최종 기하학은 치수 20의 직육면체 형태였습니다.××20××6mm. 6개 중 하나⟨ 001 ⟩⟨001⟩잉곳의 결정학적 방향은 레이저 트랙이 이 바람직한 성장 방향을 따라 스캔되도록 절단 표면에 수직으로 위치했습니다. 단일 레이저 용융 트랙은 EOS M290 기계를 사용하여 분말이 없는 샘플 표면에 만들어졌습니다. 이 기계는 최대 출력 400W, 가우시안 빔 직경 100의 이터븀 파이버 레이저가 장착된 LPBF 시스템입니다. μμ초점에서 m. 실험 중에 직사각형 샘플을 LPBF 기계용 맞춤형 샘플 홀더의 포켓에 끼워 표면을 동일한 높이로 유지했습니다. 이 맞춤형 샘플 홀더에 대한 자세한 내용은 다른 곳에서 설명합니다. 실험 은 아르곤 퍼지 분위기에서 수행되었으며 예열은 적용되지 않았습니다 . 단일 트랙 레이저 용융 실험은 다양한 레이저 출력(200~370W)과 스캔 속도(0.4~1.4m/s)에서 수행되었습니다.
성격 묘사
레이저 스캐닝 후, 레이저 빔 스캐닝 방향에 수직인 평면에서 FZ를 통해 다이아몬드 톱을 사용하여 샘플을 절단했습니다. 그 후, 샘플을 장착하고 220 그릿 SiC 페이퍼로 시작하여 콜로이드 실리카 현탁액 광택제로 마무리하여 자동 연마했습니다. 결정학적 특성화는 20kV의 가속 전압에서 TESCAN MIRA 3XMH 전계 방출 주사 전자 현미경(SEM)에서 수행되었습니다. EBSD 지도는0.4μm _0.4μ미디엄단계 크기. Bruker 시스템을 사용하여 EBSD 데이터를 정리하고 분석했습니다. EBSD 클린업은 그레인을 접촉시키기 위한 그레인 확장 루틴으로 시작한 다음 인덱스되지 않은 회절 패턴과 관련된 검은색 픽셀을 해결하기 위해 이웃 방향 클린업 루틴으로 이어졌습니다. 용융 풀 형태를 분석하기 위해 단면을 광학 현미경으로 분석했습니다. 광학 특성화의 대비를 향상시키기 위해 10g CuSO로 구성된 Marbles 시약의 변형으로 샘플을 에칭했습니다.44, 50mL HCl 및 70mL H22영형.
응고 모델링
구조적 과냉 기준에 기반한 응고 모델링을 수행하여 표유 입자의 성향 및 분포에 대한 가공 매개변수의 영향을 평가했습니다. 이 분석 모델링 접근 방식에 대한 자세한 내용은 이전 작업에서 제공됩니다. [ 3 , 10 ] 참고문헌 3 에 기술된 바와 같이 , 기본 재료의 결정학적 배향을 가진 용융 풀에서 총 표유 입자 면적 분율의 변화는 최소이므로 기본 재료 배향의 영향은 이 작업에서 고려되지 않았습니다. 우리의 LPBF 결과를 이전 작업과 비교하기 위해 Vitek의 작업에서 사용된 수학적으로 간단한 Rosenthal 방정식 [ 3 ]또한 레이저 매개변수의 함수로 용융 풀의 모양과 FZ의 열 조건을 계산하기 위한 기준으로 여기에서 채택되었습니다. Rosenthal 솔루션은 열이 일정한 재료 특성을 가진 반무한 판의 정상 상태 점원을 통해서만 전도를 통해 전달된다고 가정하며 일반적으로 다음과 같이 표현 됩니다 [ 40 , 41 ] .
티=티0+η피2 파이케이엑스2+와이2+지2———-√경험치[- 브이(엑스2+와이2+지2———-√− 엑스 )2α _] ,티=티0+η피2파이케이엑스2+와이2+지2경험치[-V(엑스2+와이2+지2-엑스)2α],(1)
여기서 T 는 온도,티0티0본 연구에서 313K( 즉 , EOS 기계 챔버 온도)로 설정된 주변 온도, P 는 레이저 빔 파워, V 는 레이저 빔 스캐닝 속도,ηη는 레이저 흡수율, k 는 열전도율,αα베이스 합금의 열확산율입니다. x , y , z 는 각각 레이저 스캐닝 방향, 가로 방향 및 세로 방향의 반대 방향과 정렬된 방향입니다 . 이 직교 좌표는 참조 3 의 그림 1에 있는 시스템을 따랐습니다 . CMSX-4에 대한 고상선 온도(1603K)와 액상선 온도(1669K)의 등온선 평균으로 응고 프런트( 즉 , 고체-액체 계면)를 정의했습니다. [ 42 , 43 , 44 ] 시뮬레이션에 사용된 열물리적 특성은 표 I 에 나열되어 있습니다.표 I CMSX-4의 응고 모델링에 사용된 열물리적 특성
어디θθ는 스캔 방향과 응고 전면의 법선 방향( 즉 , 최대 열 흐름 방향) 사이의 각도입니다. 이 연구의 용접 조건과 같은 제한된 성장에서 수지상 응고 전면은 고체-액체 등온선의 속도로 성장하도록 강제됩니다.V티V티. [ 46 ]
응고 전선이 진행되기 전에 새로 핵 생성된 입자의 국지적 비율ΦΦ, 액체 온도 구배 G 에 의해 결정 , 응고 선단 속도V티V티및 핵 밀도N0N0. 고정된 임계 과냉각에서 모든 입자가 핵형성된다고 가정함으로써△티N△티N, 등축 결정립의 반경은 결정립이 핵 생성을 시작하는 시점부터 주상 전선이 결정립에 도달하는 시간까지의 성장 속도를 통합하여 얻습니다. 과냉각으로 대체 시간d (ΔT_) / dt = – _V티G디(△티)/디티=-V티G, 열 구배 G 사이의 다음 관계 , 등축 입자의 국부적 부피 분율ΦΦ, 수상 돌기 팁 과냉각ΔT _△티, 핵 밀도N0N0, 재료 매개변수 n 및 핵생성 과냉각△티N△티N, Gäumann 외 여러분 에 의해 파생되었습니다 . [ 12 , 14 ] Hunt의 모델 [ 11 ] 의 수정에 기반함 :
계산을 단순화하기 위해 덴드라이트 팁 과냉각을 전적으로 구성 과냉각의 것으로 추정합니다.△티씨△티씨, 멱법칙 형식으로 근사화할 수 있습니다.△티씨= ( _V티)1 / 엔△티씨=(ㅏV티)1/N, 여기서 a 와 n 은 재료 종속 상수입니다. CMSX-4의 경우 이 값은a = 1.25 ×106ㅏ=1.25×106 s K 3.4m− 1-1,엔 = 3.4N=3.4, 그리고N0= 2 ×1015N0=2×1015미디엄− 3,-삼,참고문헌 3 에 의해 보고된 바와 같이 .△티N△티N2.5K이며 보다 큰 냉각 속도에서 응고에 대해 무시할 수 있습니다.106106 K/s. 에 대한 표현ΦΦ위의 방정식을 재배열하여 해결됩니다.
As proposed by Hunt,[11] a value of Φ≤0.66Φ≤0.66 pct represents fully columnar epitaxial growth condition, and, conversely, a value of Φ≥49Φ≥49 pct indicates that the initial single crystal microstructure is fully replaced by an equiaxed microstructure. To calculate the overall stray grain area fraction, we followed Vitek’s method by dividing the FZ into roughly 19 to 28 discrete parts (depending on the length of the melt pool) of equal length from the point of maximum width to the end of melt pool along the x direction. The values of G and vTvT were determined at the center on the melt pool boundary of each section and these values were used to represent the entire section. The area-weighted average of ΦΦ over these discrete sections along the length of melt pool is designated as Φ¯¯¯¯Φ¯, and is given by:
Φ¯¯¯¯=∑kAkΦk∑kAk,Φ¯=∑kAkΦk∑kAk,
(6)
where k is the index for each subsection, and AkAk and ΦkΦk are the areas and ΦΦ values for each subsection. The summation is taken over all the sections along the melt pool. Vitek’s improved model allows the calculation of stray grain area fraction by considering the melt pool geometry and variations of G and vTvT around the tail end of the pool.
수년에 걸쳐 용융 풀 현상 모델링의 정확도를 개선하기 위해 많은 고급 수치 방법이 개발되었습니다. 우리는 FLOW-3D와 함께 고충실도 CFD를 사용했습니다. FLOW-3D는 여러 물리 모델을 통합하는 상용 FVM(Finite Volume Method)입니다. [ 47 , 48 ] CFD는 유체 운동과 열 전달을 수치적으로 시뮬레이션하며 여기서 사용된 기본 물리 모델은 레이저 및 표면력 모델이었습니다. 레이저 모델에서는 레이 트레이싱 기법을 통해 다중 반사와 프레넬 흡수를 구현합니다. [ 36 ]먼저, 레이저 빔은 레이저 빔에 의해 조명되는 각 그리드 셀을 기준으로 여러 개의 광선으로 이산화됩니다. 그런 다음 각 입사 광선에 대해 입사 벡터가 입사 위치에서 금속 표면의 법선 벡터와 정렬될 때 에너지의 일부가 금속에 의해 흡수됩니다. 흡수율은 Fresnel 방정식을 사용하여 추정됩니다. 나머지 에너지는 반사광선 에 의해 유지되며 , 반사광선은 재료 표면에 부딪히면 새로운 입사광선으로 처리됩니다. 두 가지 주요 힘이 액체 금속 표면에 작용하여 자유 표면을 변형시킵니다. 금속의 증발에 의해 생성된 반동 압력은 증기 억제를 일으키는 주요 힘입니다. 본 연구에서 사용된 반동 압력 모델은피아르 자형= 특급 _{ B ( 1- _티V/ 티) }피아르 자형=ㅏ경험치{비(1-티V/티)}, 어디피아르 자형피아르 자형는 반동압력, A 와 B 는 재료의 물성에 관련된 계수로 각각 75와 15이다.티V티V는 포화 온도이고 T 는 키홀 벽의 온도입니다. 표면 흐름 및 키홀 형성의 다른 원동력은 표면 장력입니다. 표면 장력 계수는 Marangoni 흐름을 포함하기 위해 온도의 선형 함수로 추정되며,σ =1.79-9.90⋅10− 4( 티− 1654케이 )σ=1.79-9.90⋅10-4(티-1654년케이)엔엠− 1-1. [ 49 ] 계산 영역은 베어 플레이트의 절반입니다(2300 μμ미디엄××250 μμ미디엄××500 μμm) xz 평면 에 적용된 대칭 경계 조건 . 메쉬 크기는 8입니다. μμm이고 시간 단계는 0.15입니다. μμs는 계산 효율성과 정확성 간의 균형을 제공합니다.
결과 및 논의
용융 풀 형태
이 작업에 사용된 5개의 레이저 파워( P )와 6개의 스캐닝 속도( V )는 서로 다른 29개의 용융 풀을 생성했습니다.피- 브이피-V조합. P 와 V 값이 가장 높은 것은 그림 1 을 기준으로 과도한 볼링과 관련이 있기 때문에 본 연구에서는 분석하지 않았다 .
단일 트랙 용융 풀은 그림 1 과 같이 형상에 따라 네 가지 유형으로 분류할 수 있습니다 [ 39 ] : (1) 전도 모드(파란색 상자), (2) 키홀 모드(빨간색), (3) 전환 모드(마젠타), (4) 볼링 모드(녹색). 높은 레이저 출력과 낮은 스캐닝 속도의 일반적인 조합인 키홀 모드에서 용융물 풀은 일반적으로 너비/깊이( W / D ) 비율이 0.5보다 훨씬 큰 깊고 가느다란 모양을 나타냅니다 . 스캐닝 속도가 증가함에 따라 용융 풀이 얕아져 W / D 가 약 0.5인 반원형 전도 모드 용융 풀을 나타냅니다. W / D _전환 모드 용융 풀의 경우 1에서 0.5 사이입니다. 스캐닝 속도를 1200 및 1400mm/s로 더 높이면 충분히 큰 캡 높이와 볼링 모드 용융 풀의 특징인 과도한 언더컷이 발생할 수 있습니다.
힘과 속도의 함수로서의 용융 풀 깊이와 너비는 각각 그림 2 (a)와 (b)에 표시되어 있습니다. 용융 풀 폭은 기판 표면에서 측정되었습니다. 그림 2 (a)는 깊이가 레이저 출력과 매우 선형적인 관계를 따른다는 것을 보여줍니다. 속도가 증가함에 따라 깊이 대 파워 곡선의 기울기는 꾸준히 감소하지만 더 높은 속도 곡선에는 약간의 겹침이 있습니다. 이러한 예상치 못한 중첩은 종종 용융 풀 형태의 동적 변화를 유발하는 유체 흐름의 영향과 레이저 스캔당 하나의 이미지만 추출되었다는 사실 때문일 수 있습니다. 이러한 선형 동작은 그림 2 (b) 의 너비에 대해 명확하지 않습니다 . 그림 2(c)는 선형 에너지 밀도 P / V 의 함수로서 용융 깊이와 폭을 보여줍니다 . 선형 에너지 밀도는 퇴적물의 단위 길이당 에너지 투입량을 측정한 것입니다. [ 50 ] 용융 풀 깊이는 에너지 밀도에 따라 달라지며 너비는 더 많은 분산을 나타냅니다. 동일한 에너지 밀도가 준공 부품의 용융 풀, 미세 구조 또는 속성에서 반드시 동일한 유체 역학을 초래하지는 않는다는 점에 유의하는 것이 중요합니다. [ 50 ]
레이저 흡수율 평가
레이저 흡수율은 LPBF 조건에서 재료 및 가공 매개변수에 따라 크게 달라진다는 것은 잘 알려져 있습니다. [ 31 , 51 , 52 ] 적분구를 이용한 전통적인 흡수율의 직접 측정은 일반적으로 높은 비용과 구현의 어려움으로 인해 쉽게 접근할 수 없습니다. [ 51 ] 그 외 . [ 39 ] 전도 모드 용융 풀에 대한 Rosenthal 방정식을 기반으로 경험적 레이저 흡수율 모델을 개발했지만 기본 가정으로 인해 키홀 용융 풀에 대한 정확한 예측을 제공하지 못했습니다. [ 40 ] 최근 간외 . [ 53 ] Ti–6Al–4V에 대한 30개의 고충실도 다중 물리 시뮬레이션 사례를 사용하여 레이저 흡수에 대한 스케일링 법칙을 확인했습니다. 그러나 연구 중인 특정 재료에 대한 최소 흡수(평평한 용융 표면의 흡수율)에 대한 지식이 필요하며 이는 CMSX-4에 대해 알려지지 않았습니다. 다양한 키홀 모양의 용융 풀에 대한 레이저 흡수의 정확한 추정치를 얻기가 어렵기 때문에 상한 및 하한 흡수율로 분석 시뮬레이션을 실행하기로 결정했습니다. 깊은 키홀 모양의 용융 풀의 경우 대부분의 빛을 가두는 키홀 내 다중 반사로 인해 레이저 흡수율이 0.8만큼 높을 수 있습니다. 이것은 기하학적 현상이며 기본 재료에 민감하지 않습니다. [ 51, 52 , 54 ] 따라서 본 연구에서는 흡수율의 상한을 0.8로 설정하였다. 참고 문헌 51 에 나타낸 바와 같이 , 전도 용융 풀에 해당하는 최저 흡수율은 약 0.3이었으며, 이는 이 연구에서 합리적인 하한 값입니다. 따라서 레이저 흡수율이 스트레이 그레인 형성에 미치는 영향을 보여주기 위해 흡수율 값을 0.55 ± 0.25로 설정했습니다. Vitek의 작업에서는 1.0의 고정 흡수율 값이 사용되었습니다. [ 3 ]
퓨전 존 미세구조
그림 3 은 200~300W 및 600~300W 및 600~300W 범위의 레이저 출력 및 속도로 9가지 다른 처리 매개변수에 의해 생성된 CMSX-4 레이저 트랙의 yz 단면 에서 취한 EBSD 역극점도와 해당 역극점도를 보여 줍니다. 각각 1400mm/s. EBSD 맵에서 여러 기능을 쉽게 관찰할 수 있습니다. 스트레이 그레인은 EBSD 맵에서 그 방향에 해당하는 다른 RGB 색상으로 나타나고 그레인 경계를 묘사하기 위해 5도의 잘못된 방향이 사용되었습니다. 여기, 그림 3 에서 스트레이 그레인은 대부분 용융 풀의 상단 중심선에 집중되어 있으며, 이는 용접된 단결정 CMSX-4의 이전 보고서와 일치합니다. [ 10 ]역 극점도에서, 점 근처에 집중된 클러스터⟨ 001 ⟩⟨001⟩융합 경계에서 유사한 방향을 유지하는 단결정 기반 및 에피택셜로 응고된 덴드라이트를 나타냅니다. 그러나 흩어진 곡물은 식별할 수 있는 질감이 없는 흩어져 있는 점으로 나타납니다. 단결정 기본 재료의 결정학적 방향은 주로⟨ 001 ⟩⟨001⟩비록 샘플을 절단하는 동안 식별할 수 없는 기울기 각도로 인해 또는 단결정 성장 과정에서 약간의 잘못된 방향이 있었기 때문에 약간의 편차가 있지만. 용융 풀 내부의 응고된 수상 돌기의 기본 방향은 다시 한 번⟨ 001 ⟩⟨001⟩주상 결정립 구조와 유사한 에피택셜 성장의 결과. 그림 3 과 같이 용융 풀에서 수상돌기의 성장 방향은 하단의 수직 방향에서 상단의 수평 방향으로 변경되었습니다 . 이 전이는 주로 온도 구배 방향의 변화로 인한 것입니다. 두 번째 전환은 CET입니다. FZ의 상단 중심선 주변에서 다양한 방향의 흩어진 입자가 관찰되며, 여기서 안쪽으로 성장하는 수상돌기가 서로 충돌하여 용융 풀에서 응고되는 마지막 위치가 됩니다.
더 깊은 키홀 모양을 특징으로 하는 샘플에서 용융 풀의 경계 근처에 침전된 흩어진 입자가 분명합니다. 이러한 새로운 입자는 나중에 모델링 섹션에서 논의되는 수상돌기 조각화 메커니즘에 의해 잠재적으로 발생합니다. 결정립이 강한 열 구배에서 핵을 생성하고 성장한 결과, 대부분의 흩어진 결정립은 모든 방향에서 동일한 크기를 갖기보다는 장축이 열 구배 방향과 정렬된 길쭉한 모양을 갖습니다. 그림 3 의 전도 모드 용융 풀 흩어진 입자가 없는 것으로 입증되는 더 나은 단결정 품질을 나타냅니다. 상대적으로 낮은 출력과 높은 속도의 스캐닝 레이저에 의해 생성된 이러한 더 얕은 용융 풀에서 최소한의 결정립 핵형성이 발생한다는 것은 명백합니다. 더 큰 면적 분율을 가진 스트레이 그레인은 고출력 및 저속으로 생성된 깊은 용융 풀에서 더 자주 관찰됩니다. 국부 응고 조건에 대한 동력 및 속도의 영향은 후속 모델링 섹션에서 조사할 것입니다.
응고 모델링
서론에서 언급한 바와 같이 연구자들은 단결정 용접 중에 표류 결정립 형성의 가능한 메커니즘을 평가했습니다. [ 12 , 13 , 14 , 15 , 55 ]논의된 가장 인기 있는 두 가지 메커니즘은 (1) 응고 전단에 앞서 구성적 과냉각에 의해 도움을 받는 이종 핵형성 및 (2) 용융물 풀의 유체 흐름으로 인한 덴드라이트 조각화입니다. 첫 번째 메커니즘은 광범위하게 연구되었습니다. 이원 합금을 예로 들면, 고체는 액체만큼 많은 용질을 수용할 수 없으므로 응고 중에 용질을 액체로 거부합니다. 결과적으로, 성장하는 수상돌기 앞에서 용질 분할은 실제 온도가 국부 평형 액상선보다 낮은 과냉각 액체를 생성합니다. 충분히 광범위한 체질적으로 과냉각된 구역의 존재는 새로운 결정립의 핵형성 및 성장을 촉진합니다. [ 56 ]전체 과냉각은 응고 전면에서의 구성, 동역학 및 곡률 과냉각을 포함한 여러 기여의 합입니다. 일반적인 가정은 동역학 및 곡률 과냉각이 합금에 대한 용질 과냉각의 더 큰 기여와 관련하여 무시될 수 있다는 것입니다. [ 57 ]
서로 다른 기본 메커니즘을 더 잘 이해하려면피- 브이피-V조건에서 응고 모델링이 수행됩니다. 첫 번째 목적은 스트레이 그레인의 전체 범위를 평가하는 것입니다(Φ¯¯¯¯Φ¯) 처리 매개 변수의 함수로 국부적 표류 입자 비율의 변화를 조사하기 위해 (ΦΦ) 용융 풀의 위치 함수로. 두 번째 목적은 금속 AM의 빠른 응고 동안 응고 미세 구조와 표류 입자 형성 메커니즘 사이의 관계를 이해하는 것입니다.
그림 4 는 해석적으로 시뮬레이션된 표류 입자 비율을 보여줍니다.Φ¯¯¯¯Φ¯세 가지 레이저 흡수율 값에서 다양한 레이저 스캐닝 속도 및 레이저 출력에 대해. 결과는 스트레이 그레인 면적 비율이 흡수된 에너지에 민감하다는 것을 보여줍니다. 흡수율을 0.30에서 0.80으로 증가시키면Φ¯¯¯¯Φ¯약 3배이며, 이 효과는 저속 및 고출력 영역에서 더욱 두드러집니다. 다른 모든 조건이 같다면, 흡수된 전력의 큰 영향은 평균 열 구배 크기의 일반적인 감소와 용융 풀 내 평균 응고율의 증가에 기인합니다. 스캐닝 속도가 증가하고 전력이 감소함에 따라 평균 스트레이 그레인 비율이 감소합니다. 이러한 일반적인 경향은 Vitek의 작업에서 채택된 그림 5 의 파란색 영역에서 시뮬레이션된 용접 결과와 일치합니다 . [ 3 ] 더 큰 과냉각 구역( 즉, 지 /V티G/V티영역)은 용접 풀의 표유 입자의 면적 비율이 분홍색 영역에 해당하는 LPBF 조건의 면적 비율보다 훨씬 더 크다는 것을 의미합니다. 그럼에도 불구하고 두 데이터 세트의 일반적인 경향은 유사합니다. 즉 , 레이저 출력이 감소하고 레이저 속도가 증가함에 따라 표류 입자의 비율이 감소합니다. 또한 그림 5 에서 스캐닝 속도가 LPBF 영역으로 증가함에 따라 표유 입자 면적 분율에 대한 레이저 매개변수의 변화 효과가 감소한다는 것을 추론할 수 있습니다. 그림 6 (a)는 그림 3 의 EBSD 분석에서 나온 실험적 표류 결정립 면적 분율 과 그림 4 의 해석 시뮬레이션 결과를 비교합니다.. 열쇠 구멍 모양의 FZ에서 정확한 값이 다르지만 추세는 시뮬레이션과 실험 데이터 모두에서 일관되었습니다. 키홀 모양의 용융 풀, 특히 전력이 300W인 2개는 분석 시뮬레이션 예측보다 훨씬 더 많은 양의 흩어진 입자를 가지고 있습니다. Rosenthal 방정식은 일반적으로 열 전달이 순전히 전도에 의해 좌우된다는 가정으로 인해 열쇠 구멍 체제의 열 흐름을 적절하게 반영하지 못하기 때문에 이러한 불일치가 실제로 예상됩니다. [ 39 , 40 ] 그것은 또한 그림 4 의 발견 , 즉 키홀 모드 동안 흡수된 전력의 증가가 표류 입자 형성에 더 이상적인 조건을 초래한다는 것을 검증합니다. 그림 6 (b)는 실험을 비교Φ¯¯¯¯Φ¯수치 CFD 시뮬레이션Φ¯¯¯¯Φ¯. CFD 모델이 약간 초과 예측하지만Φ¯¯¯¯Φ¯전체적으로피- 브이피-V조건에서 열쇠 구멍 조건에서의 예측은 분석 모델보다 정확합니다. 전도 모드 용융 풀의 경우 실험 값이 분석 시뮬레이션 값과 더 가깝게 정렬됩니다.
모의 온도 구배 G 분포 및 응고율 검사V티V티분석 모델링의 쌍은 그림 7 (a)의 CMSX-4 미세 구조 선택 맵에 표시됩니다. 제공지 /V티G/V티( 즉 , 형태 인자)는 형태를 제어하고지 ×V티G×V티( 즉 , 냉각 속도)는 응고된 미세 구조의 규모를 제어하고 , [ 58 , 59 ]지 -V티G-V티플롯은 전통적인 제조 공정과 AM 공정 모두에서 미세 구조 제어를 지원합니다. 이 플롯의 몇 가지 분명한 특징은 등축, 주상, 평면 전면 및 이러한 경계 근처의 전이 영역을 구분하는 경계입니다. 그림 7 (a)는 몇 가지 선택된 분석 열 시뮬레이션에 대한 미세 구조 선택 맵을 나타내는 반면 그림 7 (b)는 수치 열 모델의 결과와 동일한 맵을 보여줍니다. 등축 미세구조의 형성은 낮은 G 이상 에서 명확하게 선호됩니다.V티V티정황. 이 플롯에서 각 곡선의 평면 전면에 가장 가까운 지점은 용융 풀의 최대 너비 위치에 해당하는 반면 등축 영역에 가까운 지점의 끝은 용융 풀의 후면 꼬리에 해당합니다. 그림 7 (a)에서 대부분의지 -V티G-V티응고 전면의 쌍은 원주형 영역에 속하고 점차 CET 영역으로 위쪽으로 이동하지만 용융 풀의 꼬리는 다음에 따라 완전히 등축 영역에 도달하거나 도달하지 않을 수 있습니다.피- 브이피-V조합. 그림 7 (a) 의 곡선 중 어느 것도 평면 전면 영역을 통과하지 않지만 더 높은 전력의 경우에 가까워집니다. 저속 레이저 용융 공정을 사용하는 이전 작업에서는 곡선이 평면 영역을 통과할 수 있습니다. 레이저 속도가 증가함에 따라 용융 풀 꼬리는 여전히 CET 영역에 있지만 완전히 등축 영역에서 멀어집니다. CET 영역으로 떨어지는 섹션의 수도 감소합니다.Φ¯¯¯¯Φ¯응고된 물질에서.
그만큼지 -V티G-V티CFD 모델을 사용하여 시뮬레이션된 응고 전면의 쌍이 그림 7 (b)에 나와 있습니다. 세 방향 모두에서 각 점 사이의 일정한 간격으로 미리 정의된 좌표에서 수행된 해석 시뮬레이션과 달리, 고충실도 CFD 모델의 출력은 불규칙한 사면체 좌표계에 있었고 G 를 추출하기 전에 일반 3D 그리드에 선형 보간되었습니다. 그리고V티V티그런 다음 미세 구조 선택 맵에 플롯됩니다. 일반적인 경향은 그림 7 (a)의 것과 일치하지만 이 방법으로 모델링된 매우 동적인 유체 흐름으로 인해 결과에 더 많은 분산이 있었습니다. 그만큼지 -V티G-V티분석 열 모델의 쌍 경로는 더 연속적인 반면 수치 시뮬레이션의 경로는 용융 풀 꼬리 모양의 차이를 나타내는 날카로운 굴곡이 있습니다(이는 G 및V티V티) 두 모델에 의해 시뮬레이션됩니다.
유체 흐름을 통합한 응고 모델링
수치 CFD 모델을 사용하여 유동 입자 형성 정도에 대한 유체 흐름의 영향을 이해하고 시뮬레이션 결과를 분석 Rosenthal 솔루션과 비교했습니다. 그림 8 은 응고 매개변수 G 의 분포를 보여줍니다.V티V티,지 /V티G/V티, 그리고지 ×V티G×V티yz 단면에서 x 는 FLOW-3D에서 (a1–d1) 분석 열 모델링 및 (a2–d2) FVM 방법을 사용하여 시뮬레이션된 용융 풀의 최대 폭입니다. 그림 8 의 값은 응고 전선이 특정 위치에 도달할 때 정확한 값일 수도 있고 아닐 수도 있지만 일반적인 추세를 반영한다는 의미의 임시 가상 값입니다. 이 프로파일은 출력 300W 및 속도 400mm/s의 레이저 빔에서 시뮬레이션됩니다. 용융 풀 경계는 흰색 곡선으로 표시됩니다. (a2–d2)의 CFD 시뮬레이션 용융 풀 깊이는 342입니다. μμm, 측정 깊이 352와 잘 일치 μμ일치하는 길쭉한 열쇠 구멍 모양과 함께 그림 1 에 표시된 실험 FZ의 m . 그러나 분석 모델은 반원 모양의 용융 풀을 출력하고 용융 풀 깊이는 264에 불과합니다. μμ열쇠 구멍의 경우 현실과는 거리가 멀다. CFD 시뮬레이션 결과에서 열 구배는 레이저 반사 증가와 불안정한 액체-증기 상호 작용이 발생하는 증기 함몰의 동적 부분 근처에 있기 때문에 FZ 하단에서 더 높습니다. 대조적으로 해석 결과의 열 구배 크기는 경계를 따라 균일합니다. 두 시뮬레이션 결과 모두 그림 8 (a1) 및 (a2) 에서 응고가 용융 풀의 상단 중심선을 향해 진행됨에 따라 열 구배가 점차 감소합니다 . 응고율은 그림 8 과 같이 경계 근처에서 거의 0입니다. (b1) 및 (b2). 이는 경계 영역이 응고되기 시작할 때 국부 응고 전면의 법선 방향이 레이저 스캐닝 방향에 수직이기 때문입니다. 이것은 드라이브θ → π/ 2θ→파이/2그리고V티→ 0V티→0식에서 [ 3 ]. 대조적으로 용융 풀의 상단 중심선 근처 영역에서 응고 전면의 법선 방향은 레이저 스캐닝 방향과 잘 정렬되어 있습니다.θ → 0θ→0그리고V티→ 브이V티→V, 빔 스캐닝 속도. G 와 _V티V티값이 얻어지면 냉각 속도지 ×V티G×V티및 형태 인자지 /V티G/V티계산할 수 있습니다. 그림 8 (c2)는 용융 풀 바닥 근처의 온도 구배가 매우 높고 상단에서 더 빠른 성장 속도로 인해 냉각 속도가 용융 풀의 바닥 및 상단 중심선 근처에서 더 높다는 것을 보여줍니다. 지역. 그러나 이러한 추세는 그림 8 (c1)에 캡처되지 않았습니다. 그림 8 의 형태 요인 (d1) 및 (d2)는 중심선에 접근함에 따라 눈에 띄게 감소합니다. 경계에서 큰 값은 열 구배를 거의 0인 성장 속도로 나누기 때문에 발생합니다. 이 높은 형태 인자는 주상 미세구조 형성 가능성이 높음을 시사하는 반면, 중앙 영역의 값이 낮을수록 등축 미세구조의 가능성이 더 크다는 것을 나타냅니다. Tanet al. 또한 키홀 모양의 용접 풀 [ 59 ] 에서 이러한 응고 매개변수의 분포 를 비슷한 일반적인 경향으로 보여주었습니다. 그림 3 에서 볼 수 있듯이 용융 풀의 상단 중심선에 있는 흩어진 입자는 낮은 특징을 나타내는 영역과 일치합니다.지 /V티G/V티그림 8 (d1) 및 (d2)의 값. 시뮬레이션과 실험 간의 이러한 일치는 용융 풀의 상단 중심선에 축적된 흩어진 입자의 핵 생성 및 성장이 등온선 속도의 증가와 온도 구배의 감소에 의해 촉진됨을 보여줍니다.
그림 9 는 유체 속도 및 국부적 핵형성 성향을 보여줍니다.ΦΦ300W의 일정한 레이저 출력과 400, 800 및 1200mm/s의 세 가지 다른 레이저 속도에 의해 생성된 3D 용융 풀 전체에 걸쳐. 그림 9 (d)~(f)는 로컬ΦΦ해당 3D 보기에서 밝은 회색 평면으로 표시된 특정 yz 단면의 분포. 이 yz 섹션은 가장 높기 때문에 선택되었습니다.Φ¯¯¯¯Φ¯용융 풀 내의 값은 각각 23.40, 11.85 및 2.45pct입니다. 이들은 그림 3 의 실험 데이터와 비교하기에 적절하지 않을 수 있는 액체 용융 풀의 과도 값이며Φ¯¯¯¯Φ¯그림 6 의 값은 이 값이 고체-액체 계면에 가깝지 않고 용융 풀의 중간에서 취해졌기 때문입니다. 온도가 훨씬 낮아서 핵이 생존하고 성장할 수 있기 때문에 핵 형성은 용융 풀의 중간이 아닌 고체-액체 계면에 더 가깝게 발생할 가능성이 있습니다.
그림 3 (a), (d), (g), (h)에서 위쪽 중심선에서 멀리 떨어져 있는 흩어진 결정립이 있었습니다. 그들은 훨씬 더 높은 열 구배와 더 낮은 응고 속도 필드에 위치하기 때문에 과냉각 이론은 이러한 영역에서 표류 입자의 형성에 대한 만족스러운 설명이 아닙니다. 이것은 떠돌이 결정립의 형성을 야기할 수 있는 두 번째 메커니즘, 즉 수상돌기의 팁을 가로지르는 유체 흐름에 의해 유발되는 수상돌기 조각화를 고려하도록 동기를 부여합니다. 유체 흐름이 열 구배를 따라 속도 성분을 갖고 고체-액체 계면 속도보다 클 때, 주상 수상돌기의 국지적 재용융은 용질이 풍부한 액체가 흐물흐물한 구역의 깊은 곳에서 액상선 등온선까지 이동함으로써 발생할 수 있습니다. . [ 55] 분리된 수상돌기는 대류에 의해 열린 액체로 운반될 수 있습니다. 풀이 과냉각 상태이기 때문에 이러한 파편은 고온 조건에서 충분히 오래 생존하여 길 잃은 입자의 핵 생성 사이트로 작용할 수 있습니다. 결과적으로 수상 돌기 조각화 과정은 활성 핵의 수를 효과적으로 증가시킬 수 있습니다.N0N0) 용융 풀 [ 15 , 60 , 61 ] 에서 생성된 미세 구조에서 표류 입자의 면적을 증가시킵니다.
그림 9 (a) 및 (b)에서 반동 압력은 용융 유체를 아래쪽으로 흐르게 하여 결과 흐름을 지배합니다. 유체 속도의 역방향 요소는 V = 400 및 800mm/s에 대해 각각 최대값 1.0 및 1.6m/s로 더 느려집니다 . 그림 9 (c)에서 레이저 속도가 더 증가함에 따라 증기 침하가 더 얕고 넓어지고 반동 압력이 더 고르게 분포되어 증기 침강에서 주변 영역으로 유체를 밀어냅니다. 역류는 최대값 3.5m/s로 더 빨라집니다. 용융 풀의 최대 너비에서 yz 단면 의 키홀 아래 평균 유체 속도는 그림에 표시된 경우에 대해 0.46, 0.45 및 1.44m/s입니다.9 (a), (b) 및 (c). 키홀 깊이의 변동은 각 경우의 최대 깊이와 최소 깊이의 차이로 정의되는 크기로 정량화됩니다. 240 범위의 강한 증기 내림 변동 μμm은 그림 9 (a)의 V = 400mm/s 경우에서 발견 되지만 이 변동은 그림 9 (c)에서 16의 범위로 크게 감소합니다.μμ미디엄. V = 400mm/s인 경우 의 유체장과 높은 변동 범위는 이전 키홀 동역학 시뮬레이션과 일치합니다. [ 34 ]
따라서 V = 400mm/s 키홀 케이스의 무질서한 변동 흐름이 용융 풀 경계를 따라 응고된 주상 수상돌기에서 분리된 조각을 구동할 가능성이 있습니다. V = 1200mm/s의 경우 강한 역류 는 그림 3 에서 관찰되지 않았지만 동일한 효과를 가질 수 있습니다. . 덴드라이트 조각화에 대한 유체 유동장의 영향에 대한 이 경험적 설명은 용융 풀 경계 근처에 떠돌이 입자의 존재에 대한 그럴듯한 설명을 제공합니다. 분명히 하기 위해, 우리는 이 가설을 검증하기 위해 이 현상에 대한 직접적인 실험적 관찰을 하지 않았습니다. 이 작업에서 표유 입자 면적 분율을 계산할 때 단순화를 위해 핵 생성 모델링에 일정한 핵 생성 수 밀도가 적용되었습니다. 이는 그림 9 의 표류 입자 영역 비율 이 수지상정 조각화가 발생하는 경우 이러한 높은 유체 흐름 용융 풀에서 발생할 수 있는 것, 즉 강화된 핵 생성 밀도를 반영하지 않는다는 것을 의미합니다.
위의 이유로 핵 형성에 대한 수상 돌기 조각화의 영향을 아직 배제할 수 없습니다. 그러나 단편화 이론은 용접 문헌 [ 62 ] 에서 검증될 만큼 충분히 개발되지 않았 으므로 부차적인 중요성만 고려된다는 점에 유의해야 합니다. 1200mm/s를 초과하는 레이저 스캐닝 속도는 최소한의 표류 결정립 면적 분율을 가지고 있음에도 불구하고 분명한 볼링을 나타내기 때문에 단결정 수리 및 AM 처리에 적합하지 않습니다. 따라서 낮은 P 및 높은 V 에 의해 생성된 응고 전면 근처에서 키홀 변동이 최소화되고 유체 속도가 완만해진 용융 풀이 생성된다는 결론을 내릴 수 있습니다., 처리 창의 극한은 아니지만 흩어진 입자를 나타낼 가능성이 가장 적습니다.
마지막으로 단일 레이저 트랙의 응고 거동을 조사하면 에피택셜 성장 동안 표류 입자 형성을 더 잘 이해할 수 있다는 점에 주목하는 것이 중요합니다. 우리의 현재 결과는 최적의 레이저 매개변수에 대한 일반적인 지침을 제공하여 최소 스트레이 그레인을 달성하고 단결정 구조를 유지합니다. 이 가이드라인은 250W 정도의 전력과 600~800mm/s의 스캔 속도로 최소 흩어진 입자에 적합한 공정 창을 제공합니다. 각 처리 매개변수를 신중하게 선택하면 과거에 스테인리스강에 대한 거의 단결정 미세 구조를 인쇄하는 데 성공했으며 이는 CMSX-4 AM 빌드에 대한 가능성을 보여줍니다. [ 63 ]신뢰성을 보장하기 위해 AM 수리 프로세스를 시작하기 전에 보다 엄격한 실험 테스트 및 시뮬레이션이 여전히 필요합니다. 둘 이상의 레이저 트랙 사이의 상호 작용도 고려해야 합니다. 또한 레이저, CMSX-4 분말 및 벌크 재료 간의 상호 작용이 중요하며, 수리 중에 여러 층의 CMSX-4 재료를 축적해야 하는 경우 다른 스캔 전략의 효과도 중요한 역할을 할 수 있습니다. 분말이 포함된 경우 Lopez-Galilea 등 의 연구에서 제안한 바와 같이 분말이 주로 완전히 녹지 않았을 때 추가 핵 생성 사이트를 도입하기 때문에 단순히 레이저 분말과 속도를 조작하여 흩어진 입자 형성을 완화하기 어려울 수 있습니다 . [ 22 ]결과적으로 CMSX-4 단결정을 수리하기 위한 레이저 AM의 가능성을 다루기 위해서는 기판 재료, 레이저 출력, 속도, 해치 간격 및 층 두께의 조합을 모두 고려해야 하며 향후 연구에서 다루어야 합니다. CFD 모델링은 2개 이상의 레이저 트랙 사이의 상호작용과 열장에 미치는 영향을 통합할 수 있으며, 이는 AM 빌드 시나리오 동안 핵 생성 조건으로 단일 비드 연구의 지식 격차를 해소할 것입니다.
결론
LPBF 제조의 특징적인 조건 하에서 CMSX-4 단결정 의 에피택셜(기둥형) 대 등축 응고 사이의 경쟁을 실험적 및 이론적으로 모두 조사했습니다. 이 연구는 고전적인 응고 개념을 도입하여 빠른 레이저 용융의 미세 구조 특징을 설명하고 응고 조건과 표유 결정 성향을 예측하기 위해 해석적 및 수치적 고충실도 CFD 열 모델 간의 비교를 설명했습니다. 본 연구로부터 다음과 같은 주요 결론을 도출할 수 있다.
단일 레이저 트랙의 레이저 가공 조건은 용융 풀 형상, 레이저 흡수율, 유체 흐름 및 키홀 요동, 입자 구조 및 표류 입자 형성 민감성에 강한 영향을 미치는 것으로 밝혀졌습니다.
레이저 용접을 위해 개발된 이론적인 표유 결정립 핵형성 분석이 레이저 용융 AM 조건으로 확장되었습니다. 분석 모델링 결과와 단일 레이저 트랙의 미세구조 특성화를 비교하면 예측이 전도 및 볼링 조건에서 실험적 관찰과 잘 일치하는 반면 키홀 조건에서는 예측이 약간 과소하다는 것을 알 수 있습니다. 이러한 불일치는 레이저 트랙의 대표성이 없는 섹션이나 유체 속도 필드의 변화로 인해 발생할 수 있습니다. CFD 모델에서 추출한 열장에 동일한 표유 입자 계산 파이프라인을 적용하면 연구된 모든 사례에서 과대평가가 발생하지만 분석 모델보다 연장된 용융 풀의 실험 데이터와 더 정확하게 일치합니다.
이 연구에서 두 가지 표류 결정립 형성 메커니즘인 불균일 핵형성 및 수상돌기 조각화가 평가되었습니다. 우리의 결과는 불균일 핵형성이 용융 풀의 상단 중심선에서 새로운 결정립의 형성으로 이어지는 주요 메커니즘임을 시사합니다.지 /V티G/V티정권.
용융 풀 경계 근처의 흩어진 입자는 깊은 키홀 모양의 용융 풀에서 독점적으로 관찰되며, 이는 강한 유체 흐름으로 인한 수상 돌기 조각화의 영향이 이러한 유형의 용융 풀에서 고려하기에 충분히 강력할 수 있음을 시사합니다.
일반적으로 더 높은 레이저 스캐닝 속도와 더 낮은 전력 외에도 안정적인 키홀과 최소 유체 속도는 또한 흩어진 입자 형성을 완화하고 레이저 단일 트랙에서 에피택셜 성장을 보존합니다.
References
R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp.17–20.BookGoogle Scholar
A. Basak, R. Acharya, and S. Das: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3845–59.ArticleGoogle Scholar
R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, p. S17004.ArticleGoogle Scholar
T. Kalfhaus, M. Schneider, B. Ruttert, D. Sebold, T. Hammerschmidt, J. Frenzel, R. Drautz, W. Theisen, G. Eggeler, O. Guillon, and R. Vassen: Mater. Des., 2019, vol. 168, p. 107656.ArticleCASGoogle Scholar
S.S. Babu, S.A. David, J.W. Park, and J.M. Vitek: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1–12.ArticleCASGoogle Scholar
L. Felberbaum, K. Voisey, M. Gäumann, B. Viguier, and A. Mortensen: Mater. Sci. Eng. A, 2001, vol. 299, pp. 152–56.ArticleGoogle Scholar
S. Mokadem, C. Bezençon, J.M. Drezet, A. Jacot, J.D. Wagnière, and W. Kurz: TMS Annual Meeting, 2004, pp. 67–76.
J.M. Vitek: ASM Proc. Int. Conf. Trends Weld. Res., vol. 2005, pp. 773–79.
B. Kianian: Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, 2017.Google Scholar
M. Ramsperger, L. Mújica Roncery, I. Lopez-Galilea, R.F. Singer, W. Theisen, and C. Körner: Adv. Eng. Mater., 2015, vol. 17, pp. 1486–93.ArticleCASGoogle Scholar
A.B. Parsa, M. Ramsperger, A. Kostka, C. Somsen, C. Körner, and G. Eggeler: Metals, 2016, vol. 6, pp. 258-1–17.ArticleGoogle Scholar
C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, and G. Eggeler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3781–92.ArticleGoogle Scholar
D. Bürger, A. Parsa, M. Ramsperger, C. Körner, and G. Eggeler: Mater. Sci. Eng. A, 2019, vol. 762, p. 138098,ArticleGoogle Scholar
R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett: Science, 2019, vol. 363, pp. 849–52.ArticleCASGoogle Scholar
B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi: Adv. Mater. Sci. Eng., 2018, vol. 2018, p. 4920718.ArticleGoogle Scholar
P.-J. Chiang, R. Jiang, R. Cunningham, N. Parab, C. Zhao, K. Fezzaa, T. Sun, and A.D. Rollett: in Advanced Real Time Imaging II, pp. 77–85.
J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, and M.J. Matthews: Adv. Eng. Mater., 2019, vol. 21, pp. 1–9.ArticleGoogle Scholar
C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun: Phys. Rev. X, 2019, vol. 9, p. 021052.CASGoogle Scholar
S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.ArticleCASGoogle Scholar
N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan: Appl. Phys. Rev., 2019, vol. 11, p. 064054.ArticleCASGoogle Scholar
T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.ArticleCASGoogle Scholar
I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov: J. Mater. Process. Technol., 2010, vol. 210, pp. 1624–31.ArticleCASGoogle Scholar
S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer: JOM, 2018, vol. 70, pp. 1011–16.ArticleCASGoogle Scholar
Y. He, C. Montgomery, J. Beuth, and B. Webler: Mater. Des., 2019, vol. 183, p. 108126.ArticleCASGoogle Scholar
D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.Google Scholar
M. Tang, P.C. Pistorius, and J.L. Beuth: Addit. Manuf., 2017, vol. 14, pp. 39–48.CASGoogle Scholar
R.E. Aune, L. Battezzati, R. Brooks, I. Egry, H.J. Fecht, J.P. Garandet, M. Hayashi, K.C. Mills, A. Passerone, P.N. Quested, E. Ricci, F. Schmidt-Hohagen, S. Seetharaman, B. Vinet, and R.K. Wunderlich: Proc. Int.Symp. Superalloys Var. Deriv., 2005, pp. 467–76.
B.C. Wilson, J.A. Hickman, and G.E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.ArticleCASGoogle Scholar
J.J. Valencia and P.N. Quested: ASM Handb., 2008, vol. 15, pp. 468–81.Google Scholar
H.L. Wei, J. Mazumder, and T. DebRoy: Sci. Rep., 2015, vol. 5, pp. 1–7.Google Scholar
N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.ArticleCASGoogle Scholar
R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.ArticleCASGoogle Scholar
M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel: Addit. Manuf., 2019, vol. 30, p. 100835.CASGoogle Scholar
K. Higuchi, H.-J. Fecht, and R.K. Wunderlich: Adv. Eng. Mater., 2007, vol. 9, pp. 349–54.ArticleCASGoogle Scholar
Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen: Addit. Manuf., 2019, vol. 28, pp. 600–09.Google Scholar
J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews: Appl. Mater. Today, 2017, vol. 9, pp. 341–49.ArticleGoogle Scholar
M. Schneider, L. Berthe, R. Fabbro, and M. Muller: J. Phys. D, 2008, vol. 41, p. 155502.ArticleGoogle Scholar
Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, and W.K. Liu: Nat. Commun., 2021, vol. 12, p. 2379.ArticleCASGoogle Scholar
B.J. Simonds, E.J. Garboczi, T.A. Palmer, and P.A. Williams: Appl. Phys. Rev., 2020, vol. 13, p. 024057.ArticleCASGoogle Scholar
J. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, 2016, pp. 483–532.Google Scholar
W. Tiller, K. Jackson, J. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.ArticleCASGoogle Scholar
D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.ArticleGoogle Scholar
F. Yan, W. Xiong, and E.J. Faierson: Materials, 2017, vol. 10, p. 1260.ArticleGoogle Scholar
J.M. Vitek, S.A. David, and L.A. Boatner: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 109–18.ArticleCASGoogle Scholar
X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, S.E. Atabay, M.A. Shandiz, and M. Brochu: Prog. Addit. Manuf., 2020, vol. 5, pp. 41–49.ArticleGoogle Scholar
The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: an experimental study and numerical modeling
계단식 여수로는 댐의 여수로 위로 흐르는 큰 물의 에너지를 분산시키는 비용 효율적인 유압 구조입니다. 이 연구에서는 삼각주형 요소(TPE)가 계단식 배수로의 수력 성능에 미치는 영향에 초점을 맞췄습니다. 9개의 계단식 배수로 모델이 TPE의 다양한 모양과 레이아웃으로 실험 및 수치적으로 조사되었습니다. 적절한 난류 모델을 채택하려면 RNG k – ε 및 표준 k – ε모델을 활용했습니다. 계산 모델 결과는 계단 표면의 속도 분포 및 압력 프로파일을 포함하여 실험 사례의 계단 여수로에 대한 복잡한 흐름을 만족스럽게 시뮬레이션했습니다. 결과는 계단식 여수로에 TPE를 설치하는 것이 캐비테이션 효과를 줄이는 효과적인 방법이 될 수 있음을 나타냅니다. 계단식 여수로에 TPE를 설치하면 에너지 소실률이 최대 54% 증가했습니다. 계단식 배수로의 성능은 TPE가 더 가깝게 배치되었을 때 개선되었습니다. 또한, 실험 데이터를 이용하여 거칠기 계수( f )와 임계 깊이 대 단차 거칠기( yc / k )의 비율 사이의 관계를 높은 정확도로 얻었다.
Abbasi, S. & Kamanbedast, A. A. 2012 Investigation of effect of changes in dimension and hydraulic of stepped spillways for maximization energy dissipation. World Applied Sciences Journal 18 (2), 261–267. Arjenaki, M. O. & Sanayei, H. R. Z. 2020 Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach. Modeling Earth Systems and Environment 1–12. Attarian, A., Hosseini, K., Abdi, H. & Hosseini, M. 2014 The effect of the step height on energy dissipation in stepped spillways using numerical simulation. Arabian Journal for Science and Engineering 39 (4), 2587–2594. Azhdary Moghaddam, M. 1997 The Hydraulics of Flow on Stepped Ogee-Profile Spillways. Doctoral Dissertation, University of Ottawa, Canada. Bakhtyar, R. & Barry, D. A. 2009 Optimization of cascade stilling basins using GA and PSO approaches. Journal of Hydroinformatics 11 (2), 119–132. Barani, G. A., Rahnama, M. B. & Sohrabipoor, N. 2005 Investigation of flow energy dissipation over different stepped spillways. American Journal of Applied Sciences 2 (6), 1101–1105. Boes, R. M. & Hager, W. H. 2003 Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679. Chamani, M. R. & Rajaratnam, N. 1994 Jet flow on stepped spillways. Journal of Hydraulic Engineering 120 (2), 254–259. Chanson, H. 1994 Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic Research 32 (2), 213–218. Felder, S., Guenther, P. & Chanson, H. 2012 Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of Several Pooled Stepped Configurations. No. CH87/12. School of Civil Engineering, The University of Queensland. Harlow, F. H. & Nakayama, P. I. 1968 Transport of Turbulence Energy Decay Rate. No. LA-3854. Los Alamos Scientific Lab, N. Mex. Hekmatzadeh, A. A., Papari, S. & Amiri, S. M. 2018 Investigation of energy dissipation on various configurations of stepped spillways considering several RANS turbulence models. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (2), 97–109. Henderson, F. M. 1966 Open Channel Flow. MacMillan Company, New York. Kavian Pour, M. R. & Masoumi, H. R. 2008 New approach for estimating of energy dissipation over stepped spillways. International Journal of Civil Engineering 6 (3), 230–237. Li, S., Li, Q. & Yang, J. 2019 CFD modelling of a stepped spillway with various step layouts. Mathematical Problems in Engineering. Li, S., Yang, J. & Li, Q. 2020 Numerical modelling of air-water flows over a stepped spillway with chamfers and cavity blockages. KSCE Journal of Civil Engineering 24 (1), 99–109. Moghadam, M. K., Amini, A. & Moghadam, E. K. 2020 Numerical study of energy dissipation and block barriers in stepped spillways. Journal of Hydroinformatics. Morovati, K., Eghbalzadeh, A. & Javan, M. 2016 Numerical investigation of the configuration of the pools on the flow pattern passing over pooled stepped spillway in skimming flow regime. Acta Mechanic Journal 227, 353–366. Parsaie, A. & Haghiabi, A. H. 2019 The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation 70, 101624. Peng, Y., Zhang, X., Yuan, H., Li, X., Xie, C., Yang, S. & Bai, Z. 2019 Energy dissipation in stepped spillways with different horizontal face angles. Energies 12 (23), 4469. Roushangar, K., Foroudi, A. & Saneie, M. 2019 Influential parameters on submerged discharge capacity of converging ogee spillways based on experimental study and machine learning-based modeling. Journal of Hydroinformatics 21 (3), 474–492. Sarkardeh, H., Marosi, M. & Roshan, R. 2015 Stepped spillway optimization through numerical and physical modeling. International Journal of Energy and Environment 6 (6), 597. Shahheydari, H., Nodoshan, E. J., Barati, R. & Moghadam, M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182. Tabari, M. M. R. & Tavakoli, S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science and Engineering 41 (4), 1215–1224. Toombes, L. & Chanson, H. 2000 Air-water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zurich, Switzerland, pp. 22–24. Torabi, H., Parsaie, A., Yonesi, H. & Mozafari, E. 2018 Energy dissipation on rough stepped spillways. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (3), 325–330. Wüthrich, D. & Chanson, H. 2014 Hydraulics, air entrainment, and energy dissipation on a Gabion stepped weir. Journal of Hydraulic Engineering 140 (9), 04014046. Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1), 3–51. Yakhot, V. & Smith, L. M. 1992 The renormalization group, the ɛ-expansion and derivation of turbulence models. Journal of Scientific Computing 7 (1), 35–61.
Effect of carrier gases on the entrainment defects within AZ91 alloy castings
Tian Liab J.M.T.Daviesa Xiangzhen Zhuc aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom
Abstract
An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.
연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.
키워드
마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성
1 . 소개
지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 5, 6] .
Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.
연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.
Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.
Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.
SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)
단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)
이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)
트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)
산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.
Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.
그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.
또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.
여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.
2 . 실험
2.1 . 용융 및 주조
3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.
표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).
알
아연
미네소타
시
철
니
마그네슘
9.4
0.61
0.15
0.02
0.005
0.0017
잔여
그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).
수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.
모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.
2.2 . 산화 세포
전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.
도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 접촉하지 않았습니다).
실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.
3 . 결과
3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성
0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.
그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.
도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.
무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.
Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 . 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .
표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).
도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 . 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .
3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성
SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).
Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰( 도 8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.
산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 . 5 및 7 .
연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.
표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).
테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.
3.3 . 산화 전지에서 산화막의 진화
섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47], [48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.
.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .
10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .
도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 . 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.
이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .
SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).
4 . 논의
4.1 . SF 6 /air 에서 형성된 연행 결함의 진화
Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.
실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7 약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6 0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8 kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .
그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15 kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10 kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.
이 반응 과정은 3단계로 나눌 수 있다.
1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지 않았을 수 있습니다( MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .
2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12 kmol의 ZnO, 1.38 × 10 -14 kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10 kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9 kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.
산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)
Al 2 O 3 + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)
Mg + MgAl 2 O 4 = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.
3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)
Mg 3 N 2 + 6H 2 O = 3Mg(OH) 2 + 2NH 3 ↑(4)
AlN+ 3H 2 O = Al(OH) 3 + NH 3 ↑
또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.
4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화
도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.
1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지 않았습니다( 2.67 x 10 -10 kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.
2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 . 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.
커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 . 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O 4 [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .
3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .
요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.
4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향
SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2 절 에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).
동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).
연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.
앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.
(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.
(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).
따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.
도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.
산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.
따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .
그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .
또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 R 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.
그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.
또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .
따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.
7 . 결론
1.
AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.
실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.
산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .
감사의 말
저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.
참조 [1] MK McNutt , SALAZAR K. 마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 레 스톤 , 버지니아 ( 2013 ) Google 학술검색 [2] 마그네슘 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 ( 1996 ) Google 학술검색 [삼] I. Ostrovsky , Y. Henn ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5 8월 19-22일 Scopus에서 레코드 보기Google 학술검색 [4] Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao 액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지 기사PDF 다운로드Scopus에서 레코드 보기 [5] JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth 적용 에너지 , 283 ( 2021 ) , 제 116269 조 기사PDF 다운로드Scopus에서 레코드 보기 [6] AM 루이스 , JC 켈리 , 조지아주 Keoleian 적용 에너지 , 126 ( 2014 ) , pp. 13 – 20 기사PDF 다운로드Scopus에서 레코드 보기 [7] J. 캠벨 주물 버터워스-하이네만 , 옥스퍼드 ( 2004 ) Google 학술검색 [8] M. Aryafar , R. Raiszadeh , A. Shalbafzadeh J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051 교차 참조Scopus에서 레코드 보기 [9] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지 교차 참조Scopus에서 레코드 보기 [10] R. 라이자데 , WD 그리피스 J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [11] L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay JOM , 71 ( 2019 ) , pp. 2235 – 2244 교차 참조Scopus에서 레코드 보기 [12] S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert 코로스. 과학. , 166 ( 2020 ) [13] GE Bozchaloei , N. Varahram , P. Davami , SK 김 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지 Scopus에서 레코드 보기 [14] S. 폭스 , J. 캠벨 Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886 기사PDF 다운로드Scopus에서 레코드 보기 [15] M. 콕스 , RA 하딩 , J. 캠벨 메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지 Scopus에서 레코드 보기 [16] C. Nyahumwa , NR Green , J. Campbell 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽 Scopus에서 레코드 보기 [17] A. Ardekhani , R. Raiszadeh J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362 교차 참조Scopus에서 레코드 보기 [18] X. Dai , X. Yang , J. Campbell , J. Wood 메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽 Scopus에서 레코드 보기 [19] EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘 필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359 교차 참조Scopus에서 레코드 보기 [20] WD 그리피스 , NW 라이 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196 교차 참조Scopus에서 레코드 보기 [21] AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨 국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220 교차 참조Scopus에서 레코드 보기 [22] C. 칭기 주조공학 연구실 Helsinki University of Technology , Espoo, Finland ( 2006 ) Google 학술검색 [23] Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조 기사PDF 다운로드Scopus에서 레코드 보기 [24] S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie 메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조 기사PDF 다운로드Scopus에서 레코드 보기 [25] 에스엠. Xiong , X.-F. 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [26] 지브이리서치 그랜드뷰 리서치 ( 2018 ) 미국 Google 학술검색 [27] T. 리 , J. 데이비스 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400) 교차 참조Scopus에서 레코드 보기 [28] JF Fruehling, 미시간 대학, 1970. Google 학술검색 [29] S. 쿨링 제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57 Scopus에서 레코드 보기Google 학술검색 [30] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지 기사PDF 다운로드Scopus에서 레코드 보기 [31] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42 기사PDF 다운로드Scopus에서 레코드 보기 [32] K. Aarstad , G. Tranell , G. Pettersen , TA Engh SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술 TMS ( 2003년 ) Google 학술검색 [33] 에스엠 Xiong , X.-L. 리우 메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [34] T.-S. 시 , J.-B. Liu , P.-S. 웨이 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [35] G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294) 기사PDF 다운로드Scopus에서 레코드 보기 [36] H. Bo , LB Liu , ZP Jin J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [37] A. 미락 , C. 데이비슨 , J. 테일러 코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000 기사PDF 다운로드Scopus에서 레코드 보기 [38] BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한 메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지 Scopus에서 레코드 보기 [39] WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao China Foundry , 9 ( 2012 ) , pp. 226 – 230 교차 참조Scopus에서 레코드 보기 [40] UI 골드슐레거 , EY 샤피로비치 연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지 Scopus에서 레코드 보기 [41] A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry 트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지 Scopus에서 레코드 보기 [42] E. Zhang , GJ Wang , ZC Hu 메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지 Scopus에서 레코드 보기 [43] NR 그린 , J. 캠벨 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [44] C 라일리 , MR 졸리 , NR 그린 MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 ) Google 학술검색 [45] HE Friedrich, BL Mordike, Springer, 독일, 2006. Google 학술검색 [46] C. Zheng , BR Qin , XB Lou 기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388 2010년 미트 교차 참조Scopus에서 레코드 보기Google 학술검색 [47] SM Xiong , XF 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [48] SM Xiong , XL Liu 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [49] TS Shih , JB Liu , PS Wei 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [50] K. Aarstad , G. Tranell , G. Pettersen , TA Engh 매그. 기술. ( 2003 ) , PP. (5) – (10) Scopus에서 레코드 보기 [51] G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지 기사PDF 다운로드Scopus에서 레코드 보기 [52] XF 왕 , SM Xiong 코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307 기사PDF 다운로드Scopus에서 레코드 보기 [53] SH Nie , SM Xiong , BC Liu 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지 기사PDF 다운로드Scopus에서 레코드 보기 [54] C. Bauer , A. Mogessie , U. Galovsky Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168) 교차 참조Scopus에서 레코드 보기 [55] QG 왕 , D. Apelian , DA Lados J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84 기사PDF 다운로드Scopus에서 레코드 보기 [56] S. Wang , Y. Wang , Q. Ramasse , Z. Fan 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974 교차 참조Scopus에서 레코드 보기 [57] S. Hayashi , W. Minami , T. Oguchi , HJ Kim 카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지 교차 참조Scopus에서 레코드 보기 [58] K. 아르스타드 노르웨이 과학 기술 대학교 ( 2004년 ) Google 학술검색 [59] RL 윌킨스 J. Chem. 물리. , 51 ( 1969 ) , p. 853 -& Scopus에서 레코드 보기 [60] O. Kubaschewski , K. Hesselemam 무기물의 열화학적 성질 Springer-Verlag , 벨린 ( 1991 ) Google 학술검색 [61] R. Schmidt , M. Strobele , K. Eichele , HJ Meyer 유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735 교차 참조Scopus에서 레코드 보기 [62] B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao 제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지 Scopus에서 레코드 보기 [63] O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지 Scopus에서 레코드 보기 [64] SSS Kumari , UTS Pillai , BC 빠이 J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509 기사PDF 다운로드Scopus에서 레코드 보기 [65] H. Scholz , P. Greil J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽 Scopus에서 레코드 보기 [66] P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider 매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽 Scopus에서 레코드 보기 [67] HV 앳킨슨 , S. 데이비스 메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000 교차 참조Scopus에서 레코드 보기 [68] EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년 교차 참조Scopus에서 레코드 보기 [69] T. Li , WD Griffiths , J. Chen 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528 교차 참조Scopus에서 레코드 보기 [70] M. Tiryakioglu , D. Hudak는 J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179 교차 참조Scopus에서 레코드 보기 [71] Y. Yue , WD Griffiths , JL Fife , NR Green 제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136 교차 참조Scopus에서 레코드 보기Google 학술검색 [72] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871) Scopus에서 레코드 보기 [73] ZC Hu , EL Zhang , SY Zeng 메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지 교차 참조Scopus에서 레코드 보기
산업 박사 프로젝트의 초점은 주조 부품에 최종 기하학적 모양을 제공하는 모래 주형 (녹색 모래)의 생산에 집중되었습니다. 주조 부품의 고품질을 보장하기 위해서는 금형 자체의 제조 공정을 균일하고 안정적으로 제어하는 것이 중요합니다.
따라서 녹사(주물사)의 흐름과 퇴적을 특성화하고 모델링하는 방법에 대한 기본적인 이해를 얻는 것이 중요했기 때문에 모래 주형의 제조 공정 시뮬레이션에 사용할 수 있었습니다. 녹색 모래의 유동성은 모래 샷 중에 모래로 챔버를 채우는 호퍼를 통해 모래가 아래로 흐를 때 중요합니다.
녹색 모래의 유동성은 주로 물과 벤토나이트의 양에 의해 좌우되며 둘 다 감소 시킵니다. 따라서 유동성과 내부 힘은 리브 및 기타 기하학적 장애물로 인한 그림자가 있을 수 있는 복잡한 금형 형상을 얼마나 잘 채울 수 있는지 제어합니다.
흐름이 조기에 중단되면 금형이 완전히 채워지지 않거나 재료 밀도의 변동이 너무 높아 주조 부품의 최종 표면에 영향을 미칠 수 있습니다. 벤토나이트에 의해 생성된 습식 다리는 벤토나이트와 물이 녹색 모래를 매우 응집력 있게 만드는 모래 알갱이를 서로 달라붙게 하고 혼합물을 짜 냄으로써 주조 공정을 위한 강력한 금형을 얻기 위해 금형을 안정시키는 기계적 특성을 얻습니다.
따라서 생사 유동성은 챔버의 적절한 충진을 위해 샌드 샷 중에 중요하며, 후속적으로 압착 공정 동안의 견고한 기계적 특성은 금형의 최종 강도에 중요합니다. 이는 이러한 기계적 거동이 역 관계를 갖기 때문에 문제가 됩니다.
예를 들어 녹색 모래가 너무 건조하면 녹색 모래의 유동성이 매우 높고,특정 수분 함량 수준에 따라 곰팡이의 강도가 낮고 그 반대도 마찬가지입니다. 따라서 정확한 생사 상태를 확보하고 샌드 샷 중에 금형 충진을 개선하는 것이 매우 중요합니다.
이산 요소 방법 (DEM)은 방법의 이산적인 특성이 녹색 모래의 입상 구조를 잘 모의하기 때문에 수치 모델로 선택되었습니다. DEM 모델은 롤링 저항 모델을 사용하여 비 구형 석영 모래 입자의 롤링 저항을 에뮬레이션하고 응집성 모델을 사용하여 벤토나이트에서 석영 모래 입자의 결합을 에뮬레이트합니다.
그린 샌드는 항복 궤적이 발견된 링 전단 테스터로 특성화되었으며 유동성을 정의하는 새로운 방법이 제안 되었습니다. 링 전단 시험기는 DEM 모델의 정적 마찰 계수를 얻기 위해 사용되었습니다.
측정된 높이에서 녹색 모래의 단순한 기계적 거동을 조사하기 위해 모래 더미 실험이 사용되었습니다. 이 높이에서 DEM 모델은 구름 저항 값을 얻고 응집 모델에서 매개 변수를 얻는 것과 관련하여 보정 되었습니다.
이 프로젝트는 DISAMATIC 공정에서 샌드 샷을 사용하여 모래 주형을 생산하는 동안 모래 입자의 흐름과 모래 퇴적을 처리했습니다. 챔버의 녹색 모래 퇴적은 캐비티 내부에 통풍구가 배치된 특수 캐비티 설계로 조사되었습니다.
에어 벤트는 샌드 샷 중에 공기 흐름과 함께 녹색 모래를 운반하는 데 사용됩니다. 챔버와 캐비티의 에어 벤트 설정을 변경함으로써 캐비티 설계에서 좁은 통로의 충진을 개선하여 최종 샌드 몰드도 개선 할 수 있었습니다.
캐비티 디자인을 사용한 샌드 샷은 챔버의 공기 흐름과 통풍구를 통한 공기 흐름을 모델링하기 위해 고전적인 전산 유체 역학 (CFD)과 결합 된 녹색 모래의 흐름을 모델링하는 이산 요소 방법 (DEM)으로 시뮬레이션되었습니다.
이러한 실험과 시뮬레이션은 DISAMATIC 프로세스와이를 개선하는 방법에 대한 유익한 통찰력을 제공했습니다. 또한 유동층을 사용하여 생사의 유동화 특성을 조사하고 새로 개발 된 Anton Paar Powder Cell을 사용하여 유동 점도를 얻었습니다.
상업적 측면 특수 설계된 캐비티 지오메트리에서 그린 샌드로 몰드 챔버를 채우는 것에 대한 지식을 얻었습니다. 에어 탱크에 초기에 적용된 공기 압력과 함께 에어 벤트의 설정은 캐비티의 충진을 개선하여 최종 금형을 개선하는 데 유용한 아이디어를 제공했습니다.
또한, 결합 된CFD-DEM 모델을 사용하여 STAR-CCM +의 상용 소프트웨어를 적용하여 형상의 3D 슬라이스 표현으로 프로세스를 성공적으로 시뮬레이션 할 수있었습니다. 따라서 향후 DISAMATIC 프로세스를 시뮬레이션하기 위한 독립형 코드를 개발하는 것이 더 가능해집니다. DISAMATIC 프로세스의 샌드 샷은 링 전단 테스터가 다음의 견고한 기계적 거동을 나타낼 수 있는 연속체 모델로 모델링 될 수도 있습니다.
이 논문에서는 시멘트와 충전제의 비 중복 입자 분포를 사용하여 유변학에 대한 분쇄 모래 충전제의 형상 효과를 분리했습니다. 실험 결과는 필러의 종횡비가 증가함에 따라 매트릭스의 유동성이 감소하고 두 종류의 필러에 따라 최대 부피 분율 임계 값이 다양 함을 보여주었습니다. DEM 모델을 사용하여 슬럼프 흐름 테스트를 시뮬레이션하고 실험 결과의 10 % 이내 인 수치 예측을 얻었습니다. 불일치로 인해 모델에 의해 부피 분율 임계 값이 약간 검증되었습니다. 그럼에도 불구하고 수치 결과는 유망 해 보이며 우리는 이산화를 개선하고 다른 상호 작용 모델을 탐색하여 DEM 모델을 추가로 개발할 계획입니다.
X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2 a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006
Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR
LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.
이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.
상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.
수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.
지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.
기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.
폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.
용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.
Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.
Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.
Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.
이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.
현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.
또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.
[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44. [2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785. [3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225. [4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904. [5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003. [6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507. [7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174. [8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005. [9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999. [10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003, pp. 317–323. [11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251. [12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002. [13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418. [14] X. Yao, An experimental analysis of casting formation in the expendable pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994. [15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52. [16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999. [17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001. [18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.
본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.
FLOW-3D의 Lagrangian 입자 모델
FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.
마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.
각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.
다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.
가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.
액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.
각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.
Lagrangian 입자를 직접 금속 증착에 적용
직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.
laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.
용융 풀의 크기와 모양
금속 흐름 및 그 내부의 냉각 속도
응고된 층의 형상
이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.
입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.
시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.
새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.
가공 및 제조 업계에서는 다양한 유형의 The granular media model를 접할 수 있습니다. 특이한 특성으로 인해 입상 재료는 유용한 목적을 위해 전달, 혼합 또는 조작하려는 엔지니어에게 어려운 문제를 제기 할 수 있습니다. 입상 매체 모델은 고체 입자와 기체 또는 액체 (예 : 모래와 공기 또는 모래와 물) 일 수있는 유체의 혼합물의 거동을 예측하는 데 사용됩니다. 입상 고체와 유체의 혼합물은 수수료 표면에 의해 제한 될 수있는 비압축성 유체로 취급됩니다. 입상 매체 모델은 고농축 입상 재료의 흐름을 위해 개발되었습니다. 이 모델은 “연속”접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현을 기반으로 하여 개별 모래 입자를 처리하려고 하지 않습니다.
Granular미디어 모델링
모래와 공기의 혼합물은 공기와 모래 재료가 개별 속도로 흐르지만 압력 및 점성 응력으로 인한 운동량 교환을 통해 결합되는 2 상 흐름입니다. 전형적인 코어 모래에서 모래 입자의 직경은 약 10 분의 1 밀리미터이며 공동으로 날려지는 모래의 부피 분율은 일반적으로 50 % 이상입니다. 이 범위에서는 모래와 공기 사이에 강력한 결합이 존재하므로 그 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2 상 효과는 Drift-Flux라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.
상대 속도 접근 방식을 사용하는 이 복합 흐름은 입상 매체 모델의 기반으로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현 될 수 있다고 가정합니다. 그러나 복합 유체는 모래 다짐 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 입자-입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 농축 물질의 특성을 갖습니다.
캐비티의 순수한 공기 영역을 배출하기 위해 단열 기포로 처리됩니다. 단열 기포는 유체 또는 단단한 벽으로 둘러싸인 공기 영역입니다. 기포의 압력은 기포 부피의 함수이며 기포가 차지하는 영역에서 균일 한 값을 갖습니다. 통풍구는 기포 내의 공기가 공동 외부로 배출되도록 합니다.
Sand Core Blowing Applications
유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.
모래는 0.63 부피 분율의 가까운 포장 한계에서 초기화되었습니다. 배출관 입구의 바닥에있는 모래는 중력의 작용으로 떨어지기 시작하지만 위의 거의 모든 모래는 고정되어 있습니다. 1-4, 여기서 색상은 패킹으로 인한 흐름 저항입니다 (빨간색은 완벽하게 단단함). 짧은 시간에 거품과 같은 영역이 형성되고 모래의 윗면을 향해 올라갑니다. 기포가 상단에 도달 할 때까지 기포 표면 주위의 흐름 만 보이며 표면이 붕괴됩니다. 상단 표면의 움푹 들어간 부분은 측면을 34 °의 지정된 안식각으로 줄이는 국부적 흐름을 가지고 있습니다. 한편이 패턴을 반복하기 위해 바닥에 또 다른 거품이 형성됩니다.
이 새로운 모델의 적용을 설명하기 위해 D. Lefebvre, A. Mackenbrock, V. Vidal, V에 의해 “날린 코어 및 금형 설계에서 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다. Pavan and PM Haigh., Hommes & Fonderie, 2004 년 12 월. 데이터는 하나의 충전 포트가있는 2 차원 다이 형상에 대한 것입니다. 다이의 벤팅은 비대칭 적이 어서 벤트가 충전 패턴에 미치는 영향을 연구 할 수 있었습니다.
시뮬레이션 영역의 크기는 폭 30cm, 높이 15cm, 두께 1cm입니다. 밀도 1.508 gm/cc의 모래 / 공기 혼합물을 상자 입구에서 절대 2 기압의 압력으로 상자에 넣었습니다. 상자의 오른쪽에는 5 개의 열린 통풍구가 있고 상자의 아래쪽과 왼쪽에는 6 개의 통풍구가 더 있습니다. 이 배열은 상자의 비대칭 채우기로 이어집니다.
Figure 5: 연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.
계산 그리드는 수평으로 80 개의 메쉬 셀과 수직으로 40 개의 메쉬로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 박스에 도달하는 데 걸리는 시간은 0.07 초 였고 3.2GHz Pentium 4 PC 컴퓨터에서 직렬 모드로 실행되는 CPU 시간이 약 8.9 초가 필요했습니다 (만족할 정도로 작지만 물론 이것은 2D 케이스였습니다. 계산 영역에 3200 개의 셀이 있음).
연속체 모델 시뮬레이션의 결과와 Lefebvre 등 논문의 사진을 비교 한 결과가 그림 5에 나와 있습니다. 시각적 일치는 많은 세부 사항에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혀있는 비대칭 영향을 포착합니다.
Sand Casting Workspace(사형주조)는 샌드 캐스터에 주입, 응고 및 냉각 분석을 시뮬레이션하는 데 필요한 모든 도구를 제공합니다. Sand Casting Workspace는 엔지니어의 언어를 사용하여, 사용이 간편한 인터페이스를 제공하도록 설계되어 있습니다.
사형주조의 결함은 흔히 충전 단계에서 추적할 수 있습니다. FLOW–3D CAST는 뛰어난 금속 흐름 예측에 대해 뛰어난 정확도를 제공하여, 쉽게 결함을 파악할 수 있습니다. 산화물 형성 및 콜드샷을 정확하게 추적하여 최종 주물에서의 발생 위치를 확인합니다. 압탕의 크기를 조정하고 핫 스팟(최종응고부)에 배치하는 한편, 진보된 응고 및 수축 분석을 통해 가장 까다로운 제조 환경에서도 최종적으로 최적화된 설계를 달성할 수 있습니다.
저압 사형 주조(LPSC) Workspace 는 주조 공장에서 일반적으로 사용되는 모든 공정을 시뮬레이션할 수 있는 간편한 도구를 제공합니다. 새로운 LPSC Workspace를 통해 사용자는 프로세스 파라미터를 모델링하고 최적화하는 데 필요한 도구를 사용할 수 있습니다.
필터는 하단 충진 스프로(sprues)에 삽입하여 충진 패턴을 추가로 제어하고, 용해 시 불순물을 제거할 수 있습니다. FLOW-3D CAST는 충전 중 흐름에 미치는 영향을 모델링하기 위한 세라믹 필터를 제공합니다. LPSC Workspace는 응고중의 수축 및 미세수축결함을 해결하기 위해 발열 압탕어셈블리 및 단열 슬리브를 제공합니다.
FLOW-3D CAST의 틸트 기능을 사용하면 응고 전에 몰드를 거꾸로 뒤집어 충전 스프루(sprues)가 라이저 역할을 할 수 있습니다. 이 접근 방식은 충진 스프루(sprues)가 적절하게 설계된 경우 추가 라이저가 필요하지 않습니다.
정밀 주조 공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품(왁스)패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.
정밀 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했습니다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였습니다.
오늘날 정밀 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.
정밀 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.
왁스 패턴 생성 후, 패턴 클러스터 또는 ‘트리’를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.
Figure 1. Solid model of the casting geometry
정밀 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 정밀 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.
이 연구의 주요 목적은 정밀 주조 공정에서 주요 요소인 복사 열 전달과 정밀 주조 공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 정밀 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.
Figure 2. Shell mold
Methodology
현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.
complement 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
“complement”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
솔리드 특성 GUI의 구성 요소 특성에서 “Thermal penetration depth”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
이제 전처리기를 실행하십시오.
Analyze 탭>3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “thermally active component volume”을 선택하고 “Render”을 선택하십시오.
Display에 이제 형상의 셸 부분 만 표시됩니다.
개체 목록 (창의 왼쪽 하단)에서 “component 1″을 선택하고 “component 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.
Figure 3. The view of the two mesh blocks for the creation of a void with discretization
쉘 몰드 용 STL 파일을 만든 후에, 이 파일을 component 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘heat transfer type 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. heat transfer type 1은 방사선을 포함한 종합 열 전달 계수가 됩니다. 쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.
MATERIAL
PROPERTY
VALUE
UNIT
Fluid –AluminiumA356 alloy
Density
2437
kg/m³
Thermal conductivity
116.8
W/(m K)
Specific heat
1074
J/(kg K)
Latent heat
433.22
kJ/m³
Liquidus temperature
608
0C
Solidus temperature
552.4
0C
Zircon Mold
Thermal conductivity
1.09
W/(m K)
Specific heat* Density
1.63E+06
J/( m³
Initial and boundary conditions used are show in Table 2.
Mold temperature
430°C
Melt pouring temperature
680°C
Filling time
7 s
Interface heat transfer coefficient
850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect)
30 -100 W/m2K
Table 2. Initial and boundary conditions used for the simulation
Sprue basin에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.
Results & Discussion
Validation with reported experimental results
충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다. 온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. probe points C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.
Fill sequence & solidification pattern for two different sprue locations
2 개의 상이한 탕구 위치에서 용탕 충전 순서는 5a 및 5b에 나와 있습니다. 최종 탕구가 더 많은 splashing을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.
Figure 5a. Fill sequence at different time intervals when the sprue is located at one end
Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle
Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end
Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle
Effect of shell thickness
정밀 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.
Effect of shell heat transfer coefficient
쉘 열 전달 계수는 열이 쉘 몰드의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.
Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values
Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values
Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Conclusions
정밀 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.
FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.
References
Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.
Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting Process, Transactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.
하수도 시스템은 액션영화의 도피 루트로 사용되지 않는 한 흥미롭지 않을 것입니다. 폭우로 인해 이산화탄소 수치가 올라갈 때까지 여러분은 그것에 대해 생각조차 하지 않을 것입니다. 불행하게도, 770개 이상의 오래 된 미국 도시들 아래에 있는 하수구 시스템은 심한 폭풍으로 오염 문제를 일으킵니다. 이러한 구형 설계는 하수 및 폭풍 유실을 위한 비용 효율적인 단일 스타일 파이프를 사용했으며 연결된 파이프로 강 및 호수에 하수를 내보냅니다(CSO).
1994년 미국 환경보호청(EPA)은 주로 북동부 및 그레이트 레이크 지역의 관련 지방 자치 단체들에게 CSO관련 문제를 줄이거나 제거하도록 하는 정책을 발표했습니다. (2000년 “Clean Water Act”의 일부로 법률화된 정책). 인디애나 폴리스(Indianapolis)는 가벼운 비 폭풍으로 인해 하수 오물의 백업 및 범람이 발생할 수 있는 도시 중 하나였으므로, 주요 건설 조건에서 2025년까지 문제를 해결하는 것이 필요하였습니다.
인디애나 폴리스는 국제 디자인 회사인 AECOM에 Citizens Energy Group이 건설하고 있는 3개의 깊은 암석 저장 터널 중 첫 번째를 설계할 것을 요청했습니다. 총 25마일인 이 시스템은 대규모 지하 펌프장과 기존의 하수구에서 CSO를 수직으로 떨어뜨리는 연결 구조물을 포함합니다. 첫 번째 터널의 경우, 강우가 가라 앉은 후에 3 개의 커다란 강하 구조물이 CSO를 저장 터널로 전환하여 후속 처리를 수행했습니다.
프로젝트를 해결하기 위해 AECOM은 여러 가능한 낙하 구조물 설계의 동작을 시뮬레이션하기 위해 FLOW-3D를 선택하여, 구축 및 평가 예산이 책정 된 물리적 모델에 대한 재 작업의 필요성을 최소화했습니다. 테스트 결과는 예측 값과 일치하였으므로 재설계가 필요하지 않았습니다. 또한, 이제 AECOM은 유압 설계작업의 첫 번째 단계를 일반적으로 CFD시뮬레이션을 사용합니다.
Large Scale Project on a Tight Delivery Schedule
촉박한 납품 일정에 따른 대규모 프로젝트
20세기에 건설된 하수 처리장은 주거용, 상업용, 환경유출물의 유출로 무엇을 해야 할 것인지에 대한 새로운 인식을 가져다 주었습니다. CSO 방전은 정상적으로 운영되는 동안 처리시설로 직접 이동되며 모든 과정이 양호하게 운영됩니다. 불행하게도, 대규모 폭풍이 발생하는 동안, 발전소들의 초과 용량문제를 피하기 위해 인근 수역으로 과도한 유량을 방출합니다. 이들 배출은 기름과 살충제, 야생동물 배설물에 이르기까지 다양한 오염 물질을 포함합니다. 고무적인 성공의 신호로, 1990 년대에 착공된 새로운 CSO 분리, 저장 및 처리 시설로 오염의 영향에 대해 67 %의 개선을 이루었지만, 여전히 많은 연구가 이루어져야 합니다. 인디애나 폴리스의 경우, 인디애나 폴리스시 공공사업부가 CSO 장기 통제계획을 준비한 2008년에 그러한 노력이 시작되었습니다. 정상적인 처리 공장에서 처리 할 수 있을 때까지 오버플로우가 발생하는 “저장 및 운송”접근법의 핵심은 인디애나 폴리스 터널 저장 시스템 또는 인디애나라고 합니다.
이 시스템의 첫번째 단계는 딥 록 터널 커넥터(DRTC)라고 불리는 1억 8천만달러 가치의 프로젝트입니다. DRTC는 길이 7마일의 18피트 직경의 지하 터널로, 기존의 인디애나 폴리스의 3개의 서버 대 계층 유출 연결의 흐름 경로를 다시 만들 것입니다(그림 1). 목표는 과잉 강우 유출을 기존 하수구와 새 터널 사이의 낙하 구조를 통해 이들 대피소에서 거대한 터널로 안전하게 재배치하고, 폭풍 후 처리를 위해 처리장으로 펌핑 될 수있을 때까지 유지합니다.
Fig. 1. City of Indianapolis Deep Rock Tunnel Connector (DRTC), a “storage and transport” concept being built to handle combined sewage overflow (CSO) during heavy storms. Three vertical drop structures will capture this flow and divert it downwards to 18-foot-diameter storage tunnels running more than 250 feet underground; the tunnels store the CSO until sewage treatment plant capacity becomes available. (Image courtesy Citizens Energy Group)
평균적으로 지표면 아래 250피트 깊이에서, DRTC는 건설과 궁극적인 운영 동안 위의 주변 지역에 대한 혼란을 최소화하도록 설계되었습니다. 그러나 이 프로젝트의 규모와 복잡성은 AECOM의 과제에 긴급성을 더했습니다. 세 장소 각각에 대한 가능한 낙하 구조 설계와 평가, 구조물 설계의 60%를 7개월 이내에 마무리 지었습니다.
이러한 구조물의 목적은 표준 도시 하수 시스템에서 깊은 저장 터널로 하수 흐름을 전달하는 동시에, 효율적 손실( 느린 속도 또는 백업)과 장기적인 도심을 방지하는 것입니다. 각 섹션의 크기와 모양이 유입 흐름의 볼륨 및 속도와 세심하게 일치하지 않을 경우 발생할 수 있는 구조적 손상입니다. AECOM의 수석 기술 전문가인 라이언 에디슨 컨설턴트는 계약의 스케줄링 요구 사항이 유효성 검사를 위해서는, 단 하나의 모델에만 물리적 건물과 테스트 활동을 제한할 것이라는 것을 알게되었습니다. 다른 주요 건설 프로젝트에 15년간 FLOW-3D 시뮬레이션 소프트웨어를 사용해 왔기 때문에, 난류, 과전압 및 에너지 낭비를 예측하는 능력은 충분하지 않고 디자인 프로젝트에 적합하다고 자신했습니다. 또한 여러 검증(what-if) 시나리오를 실행하기 위한 소프트웨어 옵션을 통해 설계 세부 사항을 다시 실행해야 하는 위험을 최소화할 수 있었습니다. 변경 사항이 적용될 경우 상당한 이점은 여러개의 병렬 시공 트랙이 있는 프로젝트에 있습니다. 시간 제약에도 불구하고, 에디슨은 특히 이 도전에 만족했습니다. 왜냐하면 “CFD로 드롭 구조 설계를 만들고 물리학에서 이것들은 너무 큰 구조이기 때문입니다.”라고 그는 말합니다. 그것들은 CFD는 실제로 사용되지 않는데 보통 물리적 모델이나 손으로 계산하는 것으로 이루어집니다.
DRTC 프로젝트를 위해서, 그는 먼저 시뮬레이션된 작동 조건에 대해서 컴퓨터 설계를 테스트할 것입니다. 에디슨은 3차원의 일시적이고 격동적인 흐름 조건을 모델링 할 수 있는 소프트웨어 패키지인 FLOW-3D를 사용했습니다. 각 설계에 대한 계산 메쉬를 변경하지 않고도 여러 설계 지오 메트리를 모델링 할 수 있는 기능이였습니다. 시뮬레이션 데이터로 무장한 에디슨은 그 결과를 아이오와 대학교 II. 시설에서 시험한 1:10 크기의 물리적 모델의 작동 데이터와 비교하였습니다. (후자는 원래 아이오와 유압 연구소라고 불렸지만, 지금은 그룹의 다양한 범위를 반영하여 IIHR-Hydroscience & Engineering으로 알려져 있습니다.)
Zeroing in on the Drop-Structure Challenge
드롭 구조 과제에서 영점 조정
가장 제한적인 DRTC 사이트의 지오 메트리는 CSO 008로 지정된 레귤레이터에서 발생합니다. 기존 CSO 레귤레이터(기울기 약 75피트 아래)를 새 18피트 직경의 수집 터널과 연결하려면, 이 위치에서 150피트 이상의 수직 방향 주행이 필요합니다. 각 낙하 구조에 7백만달러 이상이 소요되는 경우, 프로젝트 관리자들은 물리적 모델이 구축된 후 비용과 시간이 많이 소요되는 재설계가 필요한 가능성을 낮추려고 애썼습니다.
역사적으로 낙하 구조는 이전 프로젝트를 적용하여 설계된 후 축소 모델로 구축되었으며, 테스트만으로도 6개월 이상이 소요될 수 있습니다. 가속화된 이 프로젝트에서, 2009년 가을에 시작한 AECOM의 초기 과제는 두가지 표준 개념 중에서 하나를 선택하는 것이었습니다. 포장-파운드 스타일과 접선 vortex버전, 둘 다 시속 35마일의 폭풍이 몰아치는 물 속에서 속도를 늦추고 통제하기 위해서 직접 계산 및 FLOW-3D에서 결정한 일반 구조 직경 및 구성 요소 크기를 사용한 초기 CFD분석으로, AECOM은 시공 가능성 및 비용 고려 사항을 평가하는 데 사용했습니다. CSO 008의 현장 요구 사항과 비용 효율성을 고려할 때, 시 당국과 AECOM은 접선 소용돌이 낙하 구조를 선택했습니다. 이 설계의 핵심 요소는 흐름을 먼저 환상적인 제트로 유도한 다음, vortex 유도 나선형 흐름을 생성하는 테이퍼(확대) 접근 채널에 의해 공급되는 수직 튜브(드롭 샤프트)입니다. 이 통제 된 하강은 속도가 느려지고 하루 3 억 갤런 (mgd) 이상에 이르는 흐름을 안전하게 처리합니다. 스토리지 터널의 파괴적인 난류를 방지하는 것이 핵심 목표이므로 드롭 샤프트 흐름의 사전 차단이 설계의 핵심입니다.
구조 자체는 6 개의 주요 부분으로 구성됩니다. 1) 접근 채널 (기존의 하수 터널에서 나온 것), 2) 수평 흐름을 넓히고 수직 드롭 샤프트로 수평 흐름을 전달하는 직사각형 전이 테이퍼 채널, 3) 드롭 샤프트 자체 4) 탈 기실 (유량을 수평 방향으로 방향을 바꾸고 공기 유입을 감소시키는), 5) 수직 공기 배출구를 통해 낙하에서 유입 된 공기를 제거하고 적하 유체의 공기 코어가 열려 있고 6) 탈기 챔버와 저장 터널 챔버를 연결하는 파이프 (adit) (그림 2).
Fig. 2. CAD diagram of proposed Indianapolis DRTC combined sewage overflow (CSO) vertical drop structure, showing approach channel, taper channel and vortex dropshaft. Using FLOW-3D CFD analysis software, AECOM simulated the flow behavior, gaining confidence in the system performance prior to physical model testing. (Image courtesy AECOM) Prediction of Shrinkage Defects During Investment Casting Process
This article was contributed by Dr. S. Savithri, Senior Principal Scientist at CSIR-NIIST
인베스트먼트 주조공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.
인베스트먼트 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였다.
오늘날 투자 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.
인베스트먼트 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.
왁스 패턴 생성 후, 패턴 클러스터를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.
Figure 1. Solid model of the casting geometry
인베스트먼트 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 투자 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.
이 연구의 주요 목적은 투자 주조 공정에서 주요 요소인 복사 열 전달과 인베스트먼트 주조공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 인베스트먼트 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.
Figure 2. Shell mold
Methodology
현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.
구성 요소 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
“보완”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
솔리드 특성 GUI의 구성 요소 특성에서 “열 침투 깊이”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
이제 전처리기를 실행하십시오.
분석 탭> 3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “열 활성화 구성 요소 볼륨”을 선택하고 “렌더링”을 선택하십시오.
Display에 이제 형상의 셸 부분 만 표시됩니다.
개체 목록 (창의 왼쪽 하단)에서 “구성 요소 1″을 선택하고 “구성 요소 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.
Figure 3. The view of the two mesh blocks for the creation of a void with discretization
쉘 몰드 용 STL 파일을 만든 후 파일을 구성 요소 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 우리는 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘열 전달 유형 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. 열 전달 유형 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.
쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.
MATERIAL
PROPERTY
VALUE
UNIT
Fluid –AluminiumA356
alloy
Density
2437
kg/m³
Thermal conductivity
116.8
W/(mK)
Specific heat
1074
J/(kgK)
Latent heat
433.22
kJ/m³
Liquidus temperature
608
°C
Solidus temperature
552.4
°C
Zircon Mold
Thermal conductivity
1.09
W/(mK)
Specific heat* Density
1.63E+06
J/( m³K)
Initial and boundary conditions used are show in Table 2.
Mold temperature
430°C
Melt pouring temperature
680°C
Filling time
7 s
Interface heat transfer coefficient
850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect)
30 -100 W/m2K
Table 2. Initial and boundary conditions used for the simulation
탕구저에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.
Results & Discussion
Validation with reported experimental results
충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.
온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. 프로브 포인트 C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.
Fill sequence & solidification pattern for two different sprue locations
두 가지 다른 스프 루 위치의 채우기 순서 및 응고 패턴
2 개의 상이한 탕구 위치에 주물충전 순서는5a 및5b에 나와 있습니다. 최종 탕구가 더 많은 스플라인을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.
Figure 5a. Fill sequence at different time intervals when the sprue is located at one end
Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle
Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end
Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle
Effect of shell thickness
인베스트먼트 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.
Effect of shell heat transfer coefficient
셸 열 전달 계수는 열이 셸 금형의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.
Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values
F
Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values
Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Conclusions
인베스트먼트 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.
FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.
References
Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.
Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting Process, Transactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.
Design and CFD Analysis
설계 및 CFD분석
일반적인 소용돌이 설계는 널리 받아들여지고 있지만, 각 낙하 구조는 최적의 접선 흐름 특성을 보장하기 위해 인디애나 폴리스의 위상에 맞는 적절한 크기를 가져야 했습니다. 특히, 가능한 설계에 대한 AECOM의 계획은 세가지 목표를 가지고 있었습니다. 결합된 접근법과 테이퍼 채널을 짧은 길이로 제한하는 현장, 고유의 제약이 있었는지를 결정합니다. 허용 가능하지만 접근 방식에서 과도한 난류 조건이 발생하지 않았습니다. 테이퍼 채널에 안정적인 흐름 조건이 존재하는지 확인하고 다양한 흐름 조건에서 흐름 안정성을 평가했고, 논리적 기준점은 밀워키 인라인 스토리지 프로젝트라고 불리는 잘 알려지고 문서화된 시스템이었습니다.
Edison은 DRTC 프로젝트 규모에 맞춰 H-4로 지정된 Milwaukee 드롭 구조 설계를 기반으로 초기 설계를 기반으로했습니다. 166 피트의 기본 낙하 길이를 포함하고 체적 유량, 벽, 대칭 및 기타 초기 매개 변수를 지정하는 FLOW-3D 분석을 설정합니다. 그는 우리가 CFD를 통해 발견한 것은 밀워키에서 이 디자인을 사용하면 우리의 어플리케이션에 잘 맞지 않는다는 것이라고 말합니다. FLOW-3D는 이것을 보여 주고 있었기 때문에 CFD를 사용하여 변형을 시도하고 우리의 수정된 디자인을 고안했습니다. 더 넓은 접근 경로, 더 넓은 테이퍼 및/또는 더 깊은 테이퍼 깊이를 사용한 수정은 에디슨은 FLOW-3D에서 각 변동 사항을 설정하는 것이 매우 빠르다고 말합니다. (그림 3,4,5). 개선의 진전은 고무적이었습니다. 시뮬레이션 결과의 높은 수준은 심지어 절삭(침식)을 개선하기 위해 드롭 축의 바닥에 의문스러운 플레이트가 수직 흐름이 수평으로 전환되는 난류 분리 및 감소가되도록 기능을 추가하도록 설득했습니다.
Figs. 3, 4 and 5. Tangential drop structure flow simulated with FLOW-3D. Structure dimensions were optimized through multiple design iterations. (Image courtesy AECOM)
9번째 설계 변동에 대한 FLOW-3D 출력 동작인 V9는 접근 섹션을 확장했으며, 모든 흐름 볼륨 레벨에서 300mg/d까지 양호한 흐름 안정성을 보였으며 유압식 점프는 없었습니다. 그리고 양호한 Froude numners(유체 움직임에 미치는 중력의 영향을 나타내기 위해 사용되는 치수 없는 수량), 2010년 2월부터 AECOM이 물리적 시험과 검증을 위해 선택하였습니다(그림 6). 그 계획은 아이오와 연구소의 시험 결과에 기초하여 CFD와 최적화를 추가하는 것이였습니다.
Fig. 6. Scale model (1:10) of vertical drop structure, tested at University of Iowa IIHR Hydroscience & Engineering facility. (Image courtesy AECOM)
에디슨은 V9에서 결정된 치수 매개 변수에 대해 그 디자인을 아이오와 주에 가져가서 CFD를 이용해 만들었는데 완벽하게 작동했습니다. (II.)직원들은 실제로 무언가를 설치한 것은 이번이 처음이며, 변경하라고 말할 만한 것이 아무것도 없다고 말했습니다. 측정된 데이터는 드롭 샤프트 연결 구조 내의 수면 높이, Adit내 공기 침투의 정량, 벤트 샤프트 위로 공기 흐름을 포함했습니다. 흐름이 증가함에 따라 와류량이 증가함에 따라 축 벽에 부착되어 탈산소까지 원활하게 회전하는 모습이 포착되었습니다(그림 7).
에디슨은 후속 실험을 위해 여러번 시험장을 돌아다녔습니다. 물리적 모델이 처음부터 올바르게 작동했기 때문에 시험 프로그램을 확장할 시간이 있었습니다. “재미 있는 것은 환기구를 움직이는 것과 같이 우리가 궁금했던 것들을 탐구해서 지적으로 그것을 가지고 놀 시간이 있었다는 것입니다.” 에디슨은 예정보다 앞서 있었기 때문에 잔여 프로젝트 시간을 이용해 탈염소와 adit 내의 유압 장치를 조사할 수 있었습니다.
Fig. 7. Operation of scale-model vertical drop structure, showing test run of 300 million gallons per day (mgd). Flow vortex development shows good rotation and attachment to the shaft wall all the way down to the de-aeration chamber. No design modifications were necessary to the simulated design. (Image courtesy AECOM)
Final Results
AECOM은 2010년 7월 DRTC에 대한 전반적인 작업을 마쳤습니다. 2013년 3월부터 18구경 터널을 굴착하기 시작했고, CSO드롭 구조 3개(CFD로 설계된 나머지 2개의 구조물만 있음)는 모두 현재 공사 중입니다.
에디슨의 의견으로는, 토목 공학은 전체적으로 CFD를 채택하는 데 느린 편이었습니다. 이를 입증하기 위해 그는 인천 국제 공항을 처음 방문한 당시 접선 소용돌이 모형의 소위 “묘지”에서 본것을 기술했습니다. 그러나 그는 이들을 다시 처리해야 했다고 말했습니다. 그는 유압 설계를 위한 시뮬레이션 사용으로 판매되는 것을 권장하고 있습니다.
에디슨은 DRTC노력을 요약하면서 “정말 재미 있었습니다. 물리적 모델링이 필요한 위치에 대해 더 자세히 알아보았고, 그렇다면 어떤 경우에는 순수한 RAID기반 설계를 수행할 수 있습니다. 많은 DRTC작업들이 그것의 증거입니다. 물리적 모델은 실제로 필요하지 않았지만 검증을 통해 위험을 줄일 수 있었습니다. 프로젝트에서 이 두가지를 모두 수행할 수 있었다는 것은 믿을 수 없는 일입니다.”라고 말했습니다.
This article first appeared in WaterWorld Magazine.
캐비티 또는 다공성 결함은 일반적으로 마지막 냉각 지점에서 발생됩니다. 라이저는 일반적으로 주조물이 응고 될 때 용융 금속을 주물에 제공하여 이러한 결함을 방지하는 데 사용됩니다. 그러나 라이저(risers)가 효과적이려면 수축을 보상하기에 충분한 재료를 포함 할 수 있도록 적절한 크기로 올바른 위치에 배치해야합니다. FLOW-3D에서 캐스터가 결함이 없는 주물을 위한 냉각 및 공급 시스템을 설계할 수 있도록 도와 주는 두가지 새로운 도구가 개발되었습니다. 즉, 마지막으로 동결할 장소의 예측과 열 계수의 계산입니다.
마지막으로 냉각할 위치 / Last Places to Freeze
주조물 내에서 마지막으로 냉각되고 수축 다공성 결함이 발생할 가능성이 높은 직접 표시 위치. 이러한 장소들은 고체 부분의 진행이나 응고 시간으로부터 파생될 수 있지만, 그것들을 시각화하는 좀 더 직접적인 방법이 항상 선호된다.
그림 1. 핫스팟 입자는 바로 이웃이 고체가 된 후 응고 될 때 셀의 중앙에 삽입됩니다.그림 2. 핫스팟 입자를 포함하는 액체 부피의 진화 예시 : t3> t2> t1.
특수한 유형의 고정 입자가 “핫 스폿”이라고 하는 가장 최근의 자유로운 위치를 식별하고 시각화하는 데 사용됩니다. 이 출력은 응고 모델이 사용될 때 자동으로 생성됩니다. 핫 스폿 입자는 그림 1에서 도해로 나타난 것처럼 모든 인접 요소가 고체가 된 후 응고될 때 셀에 삽입됩니다.
이러한 입자는 자유로운 마지막 위치를 식별하는것 외에도 이러한 위치에서 수축 다공성 결함의 가능성과 크기, 즉 셀 응고 시간, 핫 스폿 ID및 핫 스폿 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 셀 응고 시간은 셀 이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 응고되는 순서를 보여 줍니다(1은 첫번째, 2는 두번째 등). 마지막으로, 핫 스폿 크기는 다음 등식으로 계산된다.
hsm (i) 는 입자 i의 핫스팟 크기입니다 . t 0 은 입자의 위치에서 셀 응고 시간입니다. ν liq (t) 는 시간 t 에
그림 2는 연결된 액체 영역 부피가 입자 i 의 시간 함수로 어떻게 변하는 지 보여줍니다 . 계산 된 양은 모든 핫스팟 크기의 값을 0과 1 사이의 범위로 가져 오도록 정규화됩니다. 이는 다공성 형성에 대한 잠재적 인 영향과 관련하여 주조 내 여러 핫스팟의 간단한 비교 분석을 허용합니다. 값이 높을수록 응고 중에 연결된 액체 영역이 더 커졌으며 마지막 동결 위치에서 수축 다공성 결함이있을 가능성이 더 큽니다.
열 모듈러스 방법 / The Thermal Modulus Method
열 계수 법은 특히 알루미늄 합금 및 강철 주조물의 경우 일반적인 라이저 설계에 가장 많이 사용되는 방법 중 하나입니다. 주어진 주물 부품의 경우 그 계수는 다음과 같이 정의됩니다.
, 여기서:
V는 주조 부품의 체적이고,
A은(는)주물 부품의 표면적입니다.
주물의 기하학적 계수는 구 또는 블록과 같은 일반적인 형상에 대해 계산하기 쉽습니다. 이보다 더 복잡한 작업에는 일반적인 모양에 따라 주조 섹션을 지루하게 근사치를 계산해야 합니다. 또한 기하학적 계수 접근 방식은 주물의 기하학적 구조에 전적으로 의존합니다. 실제 주조물은 한기 및 절연체를 사용하여 응고 진행을 제어합니다. 이러한 특성은 기하학적 계수 접근 방식에서 무시된다. 계수 계산을 자동화하고 냉각, 단열 및 기타 몰드 변화와 관련된 열 효과를 고려하기 위해 라이저 설계에 흔히 열 계수라는 혁신적인 접근 방식이 사용됩니다.
열 계수 접근 방식의 경우 먼저 주물의 응고 시뮬레이션을 실행합니다. 시뮬레이션이 완료되면, Chvorinov의 규칙에 따른 응고 시간으로부터 주물 전체에 해당하는 계수를 계산할 수 있습니다. 이 방법을 사용하여 계산된 등가 계수를 열 계수라고 합니다. 라이저 설계를 안내하기 위해 기하학적 계수와 동일한 방법으로 사용할 수 있다.
Chvorinov의 규칙은 응고 시간 사이의 관계를 제공하며, 그 계수는 다음과 같이 기록될 수 있다.
, 여기서:
t는 주조 응고 시간입니다.
N은 상수(일반적으로 2와 같음)입니다.
B는 금형의 상수입니다. 다음 공식을 사용하여 계산할 수 있습니다.
, 여기서:
mρρ는 금속의 밀도이고,
mT는 금속의 용해 또는 동결 온도입니다.
0TT는 금형의 초기 온도입니다.
k는 주형의 열 전도율입니다.
ρ는 주형의 밀도입니다.
c는 곰팡이의 특정한 열이다.
L은 금속의 융해열이다.
mcc는 금속의 특정한 열이며,
pourTT는 금속 주입 온도이다.
일반적으로 주조 공정을 설계할 때 라이저의 응고 시간이 인접한 주조 섹션의 응고 시간보다 긴 방식으로 라이저를 선택하여 적절한 이송을 할 수 있습니다. Chvorinov의 규칙에 따르면 응고 시간은 주물의 계수에 정비례합니다. 따라서 응고 시간을 비교할 때 모듈을 직접 비교할 수 있습니다. 모듈은 기하학적인 양에 불과하기 때문에 모듈의 비교는 설계 작업을 훨씬 더 단순하게 만든다. 금속 주조 엔지니어는 실제 주조 공정의 구체적인 내용을 고려하지 않고도 보다 큰 계수로 압탕을 설계하여 부품을 적절하게 이송할 수 있습니다.
냉방 및 공급 시스템 설계를 위한 새로운 도구의 적용
예를 들어, 새로운 공구를 사용하는 증기 터빈 실린더의 절반에 대한 중력 주조를 위한 냉각 및 공급 시스템 설계가 유량 과학 중국에 의해 제공되고 이 절에서 논의된다. 부품의 외부 치수는 2.83×2.34×1.10 m이며, 총 용적은 아래와 같이 약 0.95입방 미터이다. 주조 재료는 탄소강이며 주입 온도는 1530°C이다.
그림 3. 주물 부품 지오 메트리
첫째, 냉각 장치와 라이저가 없는 주물의 응고 시뮬레이션을 실행합니다. 그 목적은 뜨거운 스폿 위치를 식별하고 한기와 라이저의 위치와 라이저의 크기를 결정하는 것이다. 이 두가지 새로운 공구는 냉기와 라이저 설계를 개선하는데 사용됩니다.
마지막으로 입자를 동결하는 장소는 셀 응고 시간, 입자 ID및 핫 스폿 크기로 각각 색상이 지정된 다음 그림에 표시됩니다. 핫 스폿 위치와 수축 다공성 결함이 발생할 가능성은 이러한 그림에서 직접 확인할 수 있습니다. 주조물의 기하학적 특성에 따라 라이저 배치 위치는 그림. 4의 마지막 프레임에서 볼 수 있듯이 쉽게 결정할 수 있습니다. 단, 바닥 껍질에는 라이저 배치에 적합하지 않은 몇개의 핫 스폿이 있습니다. 이러한 위치에서 수축 다공성 결함을 방지하기 위해 한기를 사용하여 응고 패턴을 변경하고 라이저 영역에 마지막으로 동결하는 위치를 구동할 수 있습니다.
그림 4. 핫 스폿 위치는 세가지 속성(왼쪽 위에서 시계 방향)으로 색상이 지정됩니다. 핫 스폿 응고 시간, 입자 ID및 핫 스폿 크기.
열 모듈 계산
계산된 열 계수는 오른쪽에 표시되어 있습니다. 값이 클수록 마지막으로 고정할 위치와 일치합니다. 또한 열 계수를 사용하여 핫 스폿 위치의 라이저 크기를 결정할 수 있습니다.
일단 한기와 라이저가 결정되면 냉각제와 라이저를 사용한 두번째 응고 시뮬레이션을 실행하여 냉각제와 라이저 설계를 검증한다. 핫 스폿 크기로 채색된 마지막 자유형 입자와 열 계수는 그림. 6과 같다. 한기가 마지막 부분을 성공적으로 운전하여 라이저 부위를 얼리는 것을 볼 수 있다. 하지만, 라이저 아래에는 여전히 위험한 핫 스폿이 있다. 실제로 실제 주조물은 아래 그림과 같이 핫 스폿 입자로 식별된 위치에서 수축 다공성 결함을 보여 줍니다.
그림 5. 계산된 열 계수
마지막으로 동결할 장소는 라이저가 아니라 주조물에 있습니다. 이는 라이저 위치와 크기가 올바르게 결정되더라도 주물이 라이저 쪽으로 방향성 있게 응고되지 않도록 응고 패턴이 올바르지 않음을 나타냅니다. 한가지 해결책은 발열체 슬리브를 사용하여 응고 패턴을 수정하는 것이다. 이것은 이 글의 범위를 벗어나므로 더 이상의 논의는 없을 것이다.
그림 6. 핫 스폿 위치(상단 좌측), 단열 계수(상단 오른쪽)는 계측된 주조물로 계산되며 수축 결함의 관측된 위치입니다.
결론
금속 공학자들이 결함이 없는 주물을 위한 냉각 및 공급 시스템을 설계하는 데 도움이 되도록 FLOW-3DCAST5.0에서 두개의 새로운 공구가 개발되었습니다:마지막으로 동결할 장소와 열 계수의 계산입니다. 수축 다공성 결함이 발생할 가능성이 높은 곳은 마지막으로 동결할 장소입니다. 이들은 한기와 라이저가 위치해야 하는 위치를 나타냅니다. 열 계수는 냉기와 라이저 위치를 결정하는 데도 사용할 수 있습니다. 또한 라이저 크기를 결정하는 데 사용할 수 있습니다.
이 비디오는 벽 온도에 의해 색칠 된 금형을 통해 10 사이클을 보여줍니다. 슬라이스는 첫 번째 단계에서 코어 냉각 채널을 표시하고 한 단계에서 다른 단계에서 꺼지는 것을 표시하도록 선택되었습니다.
New results file format, Hydrostatic pressure initialization, New Thermal Die Cycling (TDC) model, Expanded PQ2 analysis, Mold erosion prediction, Die soldering prediction....
New results file format, New visualization capabilities, Better quantification of model outputs, Improved ray tracing, Representing flow fields with Surface LIC, Animated streamlines
FLOW-3D는 세계에서 가장 어려운 CFD문제를 해결하는 소프트웨어로, 3차원 자유표면 해석 분야에서 널리 사용되는 최적의 수치해석 소프트웨어 입니다. 특히 자유표면(자유수면)을 가진 유동흐름을 정확하게 예측하는 분야에서는 타의 추종을 불허하는 정확성을 자랑합니다.
FLOW-3D는 핵폭탄 개발 프로젝트로 유명한 미국 국립 연구소 LANL(LosAlamos National Laboratory)의 허트(C. W. Hirt) 박사가 새로운 자유표면 추적기법(free surface tracking method)인 VOF(Volume ofFluid) 방법을 연구 개발한 후, 수 많은 유동현상에 대한 물리 모델을 추가하고 성능을 개선하여, 설계 및 운영단계에서 사용되면서 엔지니어에게 귀중한 통찰력을 제공하는 세계적인 CFD 소프트웨어 입니다.
FLOW-3D는 정확한 자유표면 추적, 압축성/비압축성 유동, 층류/난류, 열전달(전도, 대류, 복사), 점성발열, 상변화(응고,증발)/공동현상, 표면장력, 다상유동, 물질확산, 자연대류/밀도류, 뉴턴/비뉴턴유체, 틱소트로피, 다공성매질, 가속도계/관성계, 입자추적, 전기섭동/전기삼투압/주울발열, 열모세관현상 등 수많은 물리 모델을 제공합니다.
FLOW-3D는 오늘날 복잡한 자유 표면 및 제한된 흐름 문제를 분석하는 데 사용할 수 있는 가장 강력한 도구 중 하나입니다. 사용하기 쉬운 모델링 인터페이스를 제공하며 지난 15년 이상 제가 작업한 수력 발전, 환경, 수자원 및 처리 관련 프로젝트의 설계에 필수적인 도구였습니다. Flow Science의 기술 지원 팀과 개발자는 함께 작업하기 쉽고, 조언을 제공하고, 코드의 잠재적 개선 사항에 대한 사용자의 의견을 듣고, 발생하는 문제를 신속하게 해결하고자 합니다. Flow Science의 전체 팀은 함께 일하기에 훌륭했고 모든 엔지니어에게 훌륭한 자원입니다.
FLOW-3D is one of the most powerful tools available to analyze complex free surface and confined flow problems out there today. It provides an easy-to-use modeling interface and has been an integral tool in the design of hydroelectric, environmental, water resource and treatment related projects I’ve worked on over the last 15+ years. Flow Science’s technical support team and developers are easy to work with and are eager to provide advice, hear input from its users on potential enhancements to the code as well as quickly resolving issues that arise. The entire team at Flow Science have been great to work with and are a great resource to all engineers.
FLOW-3D CAST는 우리의 품질 프로그램에 엄청난 자산이었습니다. 6가지 주조 시뮬레이션 소프트웨어를 평가한 후 Howell Foundry는 FLOW-3D CAST를 구매하기로 결정했습니다. 이 결정의 일부 요인에는 설정 다양성, 비용 및 가장 중요한 시뮬레이션의 현실 정확도가 포함됩니다. 업데이트된 결과 뷰어와 결합된 FLOW-3D CAST 의 강력한 시뮬레이션 기능은 가장 복잡한 작업에서 특히 첫 번째 타설에서 고품질 주조를 보장하는 데 도움이 되었습니다.
FLOW-3D CAST has been a tremendous asset to our quality program. After having evaluated six different casting simulation software, Howell Foundry made the decision to purchase FLOW-3D CAST. Some of the factors in this decision include its setup versatility, cost, and most importantly its accuracy of the simulation to reality. FLOW-3D CAST’s powerful simulation ability coupled with its updated results viewer has been especially helpful on our most complex jobs to make sure we have a quality casting on the first pour.
우리는 FLOW-3D를 사용하여 지난 20년 동안 많은 소모성 발사체 시스템에 대한 추진제 슬로시 및 풀스루 시뮬레이션을 개발했습니다. 보다 최근에는 Flow Science 지원 직원이 차량 기동으로 인한 ullage collapse effects를 포착하기 위해 극저온 추진제 탱크 시뮬레이션에 열 전달을 추가하는 데 중요한 역할을 했습니다.
We have used FLOW-3D to develop propellant slosh and pull-through simulations for a number of expendable launch vehicle systems over the last 20 years. More recently, the Flow Science support staff has been instrumental in helping us add heat transfer to cryogenic propellant tank simulations in order to capture ullage collapse effects due to vehicle maneuvers.
저는 연구 및 산업 응용 분야에서 유체 흐름 문제를 해결하는 데 15년 이상 FLOW-3D를 사용해 왔습니다 . 우리는 강 및 해안 구조물, 수처리 장치, 댐, 여수로, 깊은 터널 및 CSO 전환 구조물의 설계에 이 소프트웨어를 광범위하게 사용합니다. FLOW-3D는 수치 솔버 기술, 클라우드 컴퓨팅, 전처리 및 후처리 도구의 최신 기술을 통합하여 고객에게 상당한 시간과 비용을 절감합니다. FLOW-3D 영업 및 기술 지원 팀은 훌륭합니다!
I have used FLOW-3D for over 15 years solving fluid flow problems in research and industrial applications. We use the software extensively in the design of river and coastal structures, water treatment units, dams, spillways, deep tunnels, and CSO diversion structures. FLOW-3D integrates state of the art in numerical solver techniques, cloud computing, pre- and post-processing tools resulting in substantial time and cost savings to our clients. FLOW-3D sales and technical support teams are excellent!
FLOW-3D 는 다른 소프트웨어로 시각화하거나 정량화하기 어려운 복잡한 유압 문제에 대한 통찰력을 제공하는 정교한 도구입니다. 정교함에도 불구하고 소프트웨어는 매우 사용자 친화적이며 Flow Science는 훌륭한 문서와 기술 지원을 제공합니다. FLOW-3D 모델 에서 얻은 결과는고객과 사내 비모델러 모두에게 깊은 인상을 남겼습니다.
FLOW-3D is a sophisticated tool that provides insight into complex hydraulic problems that would be difficult to visualize or quantify with other software. Despite the sophistication, the software is very user friendly, and Flow Science provide great documentation and technical support. The results we have obtained from our FLOW-3D models have impressed both our clients and non-modelers in-house.
4C-Technologies에서 우리는 거의 35년 동안 다양한 소프트웨어 흐름 시뮬레이션 솔루션을 사용하는 선구자였습니다. 다양한 금속 합금으로 주조된 HPDC 부품에서 부품 설계 및 도구/러너 설계를 최적화합니다. 2008년부터 우리는 FLOW-3D를 사용하여 지금까지 최고의 정확도를 제공하는 것으로 나타났습니다. 또한 FLOW-3D 팀 의 지원은 탁월합니다.
At 4C-Technologies we have been pioneers in using various software flow simulation solutions for nearly 35 years. We optimize part designs and tool/runner designs on casted HPDC parts in various metal alloys. Since 2008 we have solely been using FLOW-3D as it turned out to give by far the best accuracy. Furthermore, the support from the FLOW-3D team is outstanding.
20년 이상 FLOW-3D 와 함께 CFD 분석을 사용하면서 우리의 신뢰 수준은 이제 일반 연구 목적 및 최종 설계 응용 프로그램에 CFD 모델링을 사용하는 데 확신을 가질 정도로 높아졌습니다. 이 소프트웨어는 개념적 세부 사항과 구성을 신속하게 변경할 수 있는 유연성을 제공하여 설계를 단계적으로 진행할 수 있도록 합니다.
From using CFD analysis with FLOW-3D for over twenty years, our level of trust has increased to the point that we are now confident in using CFD modeling for general study purposes and final design applications. The software gives us flexibility to quickly change conceptual details and configurations allowing the design to advance in stages.
우리는 FLOW-3D AM을 사용하여 기초 과학의 경계를 발전시켜 왔습니다 . FLOW-3D AM은 다중 합금 3D 프린팅 중 복잡한 현상을 지배하는 물리학에 대한 우리의 가설을 테스트하는 훌륭한 도구였습니다. FLOW-3D AM은 우리가 열 프로필의 진화와 관련된 물질 전달 및 복잡한 적층 구조에서 열 응력의 발달을 이해하는 데 도움이 되었습니다.
We have been using FLOW-3D AM to advance the boundaries of fundamental science. FLOW-3D AM has been a great tool to test our hypotheses about the physics governing complex phenomena during multi-alloy 3D printing. FLOW-3D AM has helped us understand the evolution of thermal profiles and the associated mass transport and development of thermal stresses in complicated additively-built structures.
FLOW-3D 는 많은 응용 프로그램이 있는 강력한 도구입니다. 우리는 FLOW-3D를 사용하여 물 전환 구조의 흐름과 수력을 효과적으로 해결했습니다. 우리는 또한 제안된 물고기 통로를 통한 물 흐름을 모델링했습니다. 우리는 정확성, 계산 속도, 특히 사용자 친화적인 GUI에 깊은 인상을 받았습니다. 그리고 우리 고객들은 모델 출력과 포스트 프로세서에 의해 생성된 애니메이션에 깊은 인상을 받았습니다. 우리는 또한 매우 반응이 좋은 지원 직원에게 감사합니다.
FLOW-3D is a powerful tool with many applications. We used FLOW-3D to effectively resolve flow through and hydraulic forces on a water diversion structure. We also modeled water flow through a proposed fish passage. We have been impressed with the accuracy, computational speed, and especially the user friendly GUI. And, our clients have been impressed with the model output, as well as, animations created by the post-processer. We are also appreciative of the highly responsive support staff.
수년에 걸쳐 FLOW-3D는 기존의 유압 모델링 도구로는 해결하기 매우 어려웠을 복잡한 유압 문제를 해결하는 데 도움을 주었습니다. 우리는 FLOW-3D 팀에게 매우 감사합니다 . 그들은 수년에 걸쳐 지속적으로 소프트웨어를 개선해 왔으며 우리의 요구에 매우 신속하게 대응해 왔습니다.
Over the years, FLOW-3D has helped us solve complex hydraulic problems that would have otherwise been very difficult to solve with conventional hydraulic modeling tools. We are very thankful to the team at FLOW-3D. They have constantly been making the software better over the years, and have been very responsive to our needs.
FLOW-3D 는 당사의 우주 공학 연구 및 개발 프로세스에서 필수적인 도구입니다. FLOW-3D는 극저온 연료 역학의 프로세스를 더 잘 이해하여 질량을 줄이고 발사기 성능을 향상시키는데 도움이 됩니다.
FLOW-3D is an essential tool in our space engineering research & development process. FLOW-3D helps us better understand processes in cryogenic fuel dynamics, leading to savings in mass and improved launcher performance.
하천 교량의 파괴 대책으로서 희생파일에 대한 FLOW-3D를 이용한 수치 연구 Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami Abstract Scour is defined as the erosive action of flowing water, as ...
Mary Kathryn WalkerFlorida Institute of Technology, mwalker2022@my.fit.edu Robert J. Weaver, Ph.D.Associate ProfessorOcean Engineering and Marine SciencesMajor Advisor Chungkuk Jin, Ph.D.Assistant ProfessorOcean Engineering and Marine Sciences Kelli Z. Hunsucker, Ph.D.Assistant ProfessorOcean ...
Waqed H. Hassan | Zahraa Mohammad Fadhe* | Rifqa F. Thiab | Karrar MahdiCivil Engineering Department, Faculty of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, IraqCivil Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala 56001, ...
수치모델링을 이용한 측면 유입특성이 본류에 미치는 영향 조사 Mohammad Raze Raeisi Dehkordi1*, Amir Hossein Yeganeh Mazhar1, Farzaneh Kheradzare21- PhD. Student in the Department of Construction and Water Management, Science and ...
Difference Analysis of Wave Disaster Characteristics Induced by Landslides of Different Water Entry Scales 王雷, 解明礼, 黄会宝, 柯虎, 高强人民珠江 2024年45卷第2期DOI:10.3969/j.issn.1001-9235.2024.02.003 纸质出版日期:2024 Abstract This paper conducts a three-dimensional numerical analysis on ...
Abstract Artificial Intelligence (AI) techniques, such as Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and dimensional analysis-based empirical equations (DAEEs), can estimate scour depth around bridge piers ...
수직 수중 펄스 제트에 의한 모래층 정련에 대한 펄스 폭과 진폭의 영향 조사 Chuan Wang abc, Hao Yu b, Yang Yang b, Zhenjun Gao c, Bin Xi b, Hui Wang b, Yulong Yao b aInternational Shipping Research Institute, GongQing Institute of Science and Technology, Jiujiang, 332020, ChinabCollege of Hydraulic Science ...
해저 산사태 쓰나미의 최대 초기 파동 진폭 추정: 3차원 모델링 접근법 Ramtin Sabeti a, Mohammad Heidarzadeh ab aDepartment of Architecture and Civil Engineering, University of Bath, Bath BA27AY, UKbHydroCoast Consulting ...
M.T. Mansouri Kia1,2, H.R. Sheibani 3, A. Hoback 41 Manager of Dam and Power Plant Construction, Khuzestan Water and Power Authority (KWPA), Ahwaz, Iran.2 Ph.D., Department of Civil Engineering, Payame ...
물리적 모델링 및 CFD 비교: 방수로 모드의 HydroCombined 발전소 사례 연구 Gonzalo Duró, Mariano De Dios, Alfredo López, Sergio O. Liscia ABSTRACT This study presents comparisons between the results of ...
텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst published: 07 February 2024https://doi.org/10.1111/jace.19718 Abstract Tungsten carbide was manufactured by ...
Hassan, Waqed H.; Fadhe, Zahraa Mohammad; Thiab, Rifqa F.; Mahdi, Karrar 초록 This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven ...
Mahdi Ebrahimi, Mirali Mohammadi, Sayed Mohammad Hadi Meshkati & Farhad Imanshoar Abstract The overtopping breach is the most probable reason of embankment dam failures. Hence, the investigation of the mentioned phenomenon is one of ...
C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal (up201806112@fe.up.pt) ORCID 0009-0003-8587-2309F. L. NunesDepartment of Metallurgical and Materials Engineering, ...
FLOW-3D를 사용하여 PKW 둑의 흐름 수력학에 대한 베이스 노즈 모양의 영향을 분석하기 위한 실험 및 수치 연구 수행 Behshad Mardasi 1Rasoul Ilkhanipour Zeynali 2Majid Heydari 3 Abstract Weirs are essential ...
바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled dynamics of interfacial fluid phases and unconstrained solid particles during ...
Kalix Bridge 디지털 트윈: 미래 극한 기후 현상으로 인한 구조적 부하 Este documento está relacionado con un proyecto en curso para el cual se está desarrollando e implementando un gemelo ...
번역된 기고 제목: 해류의 영향에 따른 어뢰 앵커 설치의 유체 역학 특성에 대한 수치 분석 Translated title of the contribution: NUMERICAL ANALYSIS OF THE HYDRODYNAMICS CHARACTERISTICS OF TORPEDO ANCHOR INSTALLATION ...
다양한 수력학적 및 기하학적 조건에서 아래에 반원형 게이트가 결합된 두 개의 직사각형 복합 웨어의 배수 계수 ABSTRACT Two-component composite hydraulic structures are commonly employed in irrigation systems. The first component, ...
프로필 오목부가 탁도 퇴적물에 미치는 영향: 전 세계 대륙 경계에 대한 해저 협곡의 통찰력 Kaiqi Yu a, Elda Miramontes bc, Matthieu J.B. Cartigny d, Yuping Yang a, Jingping Xu aaDepartment of Ocean Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Rd., ...
다양한 기질 수준 변화를 갖는 침식성 층 위의 댐 파손 흐름에 대한 수치 조사 Alireza Khoshkonesh1, Blaise Nsom2, Saeid Okhravi3*, Fariba Ahmadi Dehrashid4, Payam Heidarian5,Silvia DiFrancesco61 Department of Geography, School ...
FLOW-3D World Users Conference 2024 에 전 세계 고객을 초대합니다. 이 컨퍼런스는 독일 함부르크의 Steigenberger Hotel Hamburg 에서 2024년 6월 10~12일에 개최됩니다 . 세계에서 가장 유명한 기업 및 기관의 동료 ...
다중물리 메조 규모 시뮬레이션을 통해 레이저 분말층 융합에서 공정 종료의 함몰 형성 메커니즘 공개 Haodong Chen a,b, Xin Lin a,b,c, Yajing Sund, Shuhao Wanga,b, Kunpeng Zhu a,b,c and Binbin Dana,b ...
Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhouhttps://doi.org/10.1063/5.0191504 In order to comprehensively reveal the evolutionary dynamics of the molten pool and the state of motion of the fluid during the high-precision laser ...
This application note was contributed by Johannes Hartmann and Vera Jüchter, Department of Materials Science, Chair of Metals Science and Technology, University of Erlangen-Nuremberg
알루미늄 폼은 우수한 댐핑 및 높은 에너지 흡수율 및 굴곡 강성과 같은 예외적인 특성을 보여줍니다[1]. 강성은 특히 하중 지지 및 경량 구조에 사용하기에 특히 매력적입니다. 중량별 강성을 높이고 보다 우수한 하중 전달을 위해 알 Aluminum Foam Sandwiches (AFS)와 같은 컴팩트한 특성이 필요합니다 [2].
Erlangen-Nuremberg 대학의 금속 공학과 기술 위원장은 알루미늄 발포 특성을 점차적으로 생산하기 위해 다이캐스팅 공정인 Integral Foam Molding 개발하였습니다(그림 1 참조). 이 공정은 폴리머의 사출 성형으로 개발되었으며 따라서 컴팩트한 층을 가진 복잡한 폼을 비용 효율적으로 대량 생산에 적합합니다. 이 노트에 설명 된 시뮬레이션 기법은 프로세스 매개 변수를 선택하는데 도움을 주기 위한 모델링프로세스를 확인할 수 있습니다.
Figure 1. Cross section of an aluminum integral foam with a compact skin, a transition region with decreasing relative density and smaller pores, as well as a foamed core.
Aluminum Integral Foam Molding Technology
일정량의 발포제 (수소화 마그네슘, MgH2)가 러너 시스템에 배치되고 샷 챔버는 알루미늄 용융물로 채워진다 (공정은 그림 2에 묘사되어 있으며, 공정은 [3]에 자세히 설명되어있다). 피스톤이 진행됨에 따라, 분말은 난류 방식으로 주형에 이송된다. 기술 변형 “고압 일체형 폼 몰딩 (HP-IFM)”의 경우 표준 다이캐스팅 공정에서 알 수 있듯이 이 부품은 주변의 높은 압력에서 완전히 채워져 우수한 표면 품질을 보장합니다. 템퍼링된 금형 표면에서 시작하여 용융물은 일체형으로 고형화되기 시작합니다. 몇 밀리 초가 지나면 금형은 코어 풀러 시스템 위에 열리고 부피는 국부적으로 증가하고 압력은 감소하여 열분해 및 수소화 마그네슘 입자의 수소 방출로 인해 여전히 반고체 내부 영역에서 기공 성장을 시작합니다. 모든 발포제 입자는 이웃하는 공극의 역압에 의해 멈추어 질 때까지 공극의 성장을 지속합니다. 발포된 입자의 벽은 알루미늄 합금의 응고된 입자에 의해 안정화가 되며 이를 endogenous stabilization이라고 합니다[4].
Figure 2. Schematic process cycle of “High Pressure Integral Foam Molding (HP-IFM)” of aluminum.
주조 부품의 전체 부피에서 균일한 형태에 대한 전제조건은 분해 순간의 양호한 입자분포입니다. 또한, 발포제 유입시의 용융물의 온도는 수소화 마그네슘의 분해를 결정하며 (그림 3 참조), 게다가 발포시 solid phase의 양을 결정한다. 그러나 고상의 양이 너무 많으면 기공의 강성이 증가하고 현상 기공의 구형화를 방해하여 구조가 파괴된다 [2].
Microcellular Aluminum Integral Foams – Approaching the Process Limits
일체형 발포 성형 공정시뮬레이션은 새로운 부품 설계의 몰드 충진 특성을 조사하는 데 도움이 될 뿐만 아니라 입자 침투도 예측하고 비용을 절약할 수 있게 발포 공정 조건을 결정할 수 있는 강력한 도구입니다. 현재 연구의 목표는 다공성 수준을 일정하게 유지하면서 기공 크기를 줄이는 것입니다. 전산 유체 역학 (CFD) 시뮬레이션은 가능한 한 현재의 프로세스 한계에 가깝게 접근할 수 있습니다. 발포 형태의 개선은 기계적 물성에서 균질 한 구조를 유도 할뿐만 아니라 기계적 성질에 의해 더 얇은 부품의 생산이 가능할 것입니다. 이 목적은 용융물 내에서의 높은 입자 분포 밀도와 동시에 응집 현상의 감소와 함께 완전히 안정된 기공 성장에 의해서만 달성 될 수 있다.
Figure 3. Schematic curves of decomposition of magnesium hydride as a function of the melt temperature, calculated by the Johnson-Mehl-Avrami approach [2]
Figure 4. Adjustment of heat transfer by comparisons of a real solidification curve (black) to the growth rate of the solidified skin in simulation (red).
Adapting the Simulation Parameters to Practical Integral Foam Molding Experiments
입자 거동이나 온도장에 대한 신뢰성 있는 예측을 위한 CFD 시뮬레이션을 사용할 수 있으려면 실제 실험과 일치하도록 매개 변수를 결정해야 합니다. 이를 위해, 30-130 ms의 지연 시간을 갖는 일체형 발포 부품을 제작하였으며 성형 팽창 및 기공 성장 개시 순간에 고상분율 때문에 발포 형성이 불가능한 다른 밀도의 형상을 만들었습니다. 열 전달 계수 (완전한 액체 용융물과 완전 응고된 용융물)를 변화시켜 합금 AlSi9Cu3 (Fe)의 주조 사이클을 시뮬레이션하면 응고 곡선을 적용할 수 있습니다. 이러한 목표를 달성하기 위해 시뮬레이션을 피스톤 이동이 시작되기 전에 실제 온도분포를 묘사해야 합니다. 온도는 배치된 열에 의해 숏 챔버에서 국부적으로 측정되었으며 시뮬레이션 내 실제 데이터와 잘 일치하여 성공적으로 묘사 될 수 있었습니다. 금형 충진 중에 금형 표면에서 온도 측정을 참조 할 수도 있습니다. 시간 경과에 따른 그 변화는 시뮬레이션 결과와 잘 일치합니다.
표면장력이나 응고 항력계수와 같은 용융의 유동을 정의하는 추가 매개 변수 단계에서는 다른 설정과 시뮬레이션을 비교하여 조정됩니다. 시뮬레이션 내에서 용융물의 흐름이 실제 시험과 일치하는 즉시 매개 변수가 설정됩니다
Figure 5. Adjustment of melt flow defining parameters such as the surface tension by comparisons of real experiments (left) to simulations (right)
냉각 및 용해 흐름 특성을 정의한 후 입자의 유입을 시뮬레이션 합니다. 입자 / 유체 의 상호 작용에 대한 시뮬레이션을 조정하기 위해 매개 변수계수의 X 선 샘플과 비교가 되며 구리선 입자에서는 수산화 마그네슘보다 높은 함량 입자가 적용됩니다. (그림 6 참조). 시뮬레이션 결과는 실험과 매우 잘 어울리므로 프로세스 매개 변수의 함수로서 입자 분포의 신뢰할 수 있습니다.
Figure 6. Adjustment of parameters influencing particle/melt-interactions by comparisons of x-rayed samples left); produced by the entrainment of copper particles) to simulations (right)
Conclusion
전체적으로 FLOW-3D는 실제 생산 전에 새로운 부품 제조의 잠재적 결함을 조사하는 중요한 수단이 될 수 있다는 것을 증명할 수 있었습니다. 이러한 방식으로, 차가운 흐름 또는 데드 존이 없는 성공적인 충전 및 발포제 분포가 보장 될 수 있다. 또한, 예상되는 온도 필드의 정확한 묘사로, 수소화 마그네슘의 분해 특성 및 기공형성을 예측할 수 있습니다. 이는 일체형 폼 구조와 관련하여 고객의 요구를 충족시키기 위한 공정 변수를 정의 할 수 있는 가능성을 제공합니다
1 Criterion is the solid phase fraction where the shear strength and therefore the resistance to pore evolution increases drastically.
References
[1] C. Körner, R. F. Singer, Adv. Eng. Mater.2000, 2 (4), pp. 159-165. [2] C. Körner, in Integral Foam Molding of Light Metals – Technology, Foam Physics and Foam Simulation, Springer, Berlin, Heidelberg, Germany 2008. [3] H. Wiehler, C. Körner, R. F. Singer, Adv. Eng. Mater.2008, 10 (3), pp. 171-178. [4] J. Hartmann, A. Trepper, C. Körner, Adv. Eng. Mater.2011, 13 (11), pp. 1050-1055.
Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>
What You Should Know About CFD Modeling when Selecting a CFD Package
유체 흐름 및 열 전달 해석용 소프트웨어 패키지에는 여러 형태가 있습니다. 물리적 근사와 수치 해법의 기법이 패키지마다 크게 다르기 때문에 적절한 패키지를 선택하는 것은 매우 어렵습니다. 다음 설명에서는 열유동 시뮬레이션 소프트웨어를 선택할 때 고려해야 할 중요한 몇 가지를 소개합니다.
Software packages for fluid flow and heat transfer analysis come in many forms. These packages differ greatly in their physical approximations and numerical solution techniques, which makes the selection of a suitable package a challenging proposition. The following discussion covers some important items to consider when choosing flow simulation software.
Meshing and Geometry
유한 요소 또는 “body-fitted coordinates”를 채용하고 있는 수치해석 방법은 유체 영역의 기하학적 형상에 적합한 격자를 생성해야 합니다. 정확한 수치 근사치를 얻기 위해 허용 할 수 있는 요소 크기 및 형상에서 이러한 격자를 생성하는 것은 매우 중요한 작업입니다.
복잡한 경우에는 이와 같은 방법으로 격자를 생성하면 며칠 또는 몇 주가 걸릴 수 있습니다. 어떤 프로그램은 사각형의 격자 요소만을 사용함으로써 문제를 해결하려고 하지만, 그럴 경우에는 경계부분에 계단이 생기고 흐름과 열전달 특성이 달라지는 문제에 직면하게 됩니다.
FLOW-3D는 FAVOR™(면적율 / 부피 비율)법 을 사용하여 지오메트리의 특성을 원활하게 포함하므로써, 간단한 사각형 격자만으로도 두 문제를 해결할 수 있습니다. 또한, 간단하고 강력한 솔리드 모델러가 FLOW-3D 패키지에 기본 포함되어 있으며, CAD 프로그램에서 생성한 기하형상 데이터를 가져올 수 있습니다.
Solution methods that employ finite-element or “body-fitted coordinates” require the generation of a solution grid that conforms to the geometry of the flow region. It is a non-trivial task to generate these grids with acceptable element sizes and shapes for accurate numerical approximations. In complicated cases this type of grid generation may consume days or even weeks of effort. Some programs attemptto eliminate this generation problem by using only rectangular grid elements, but then they must contend with “stair-step” boundaries that alter flow and heat-transfer properties. FLOW-3D solves both problems by using easy-to-generate rectangular grids in which geometric features are smoothly embedded using the FAVOR™ (fractional area/volume) method. A simple and powerful solids modeler is packaged with FLOW-3D or users may import geometric data from a CAD program.
Momentum Equation vs. Approximate Flow Models
유체 운동량의 정확한 처리가 중요한 몇 가지 이유가 있습니다. 첫째, 이것은 복잡한 기하학적 형상에서 유체가 어떻게 흐르는지를 예측하는 유일한 방법입니다. 둘째, 액체에 의하여 걸린 동적인 힘(압력)은 운동량에서만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 수송을 계산하려면 다른 유체 입자 및 경계에 대한 개별 유체 입자의 상대적인 움직임을 정확하게 파악하는 것이 필요합니다. 이것은 운동량의 정확한 처리를 의미합니다. 운동량 보존을 대충 근사하기만 한 CFD 모델은 FLOW-3D에서는 사용되지 않습니다. 이러한 모델은 현실적인 유체 구성 및 온도 분포 예측에 사용할 수 없기 때문입니다.
An accurate treatment of fluid momentum is important for several reasons. First, it is the only way to predict how fluid will flow through complicated geometry. Second, the dynamic forces (i.e., pressures) exerted by the fluid can only be computed from momentum considerations. Finally, to compute the convective transport of thermal energy, it is necessary to have an accurate picture of how individual fluid particles move in relation to other fluid particles and confining boundaries. This implies an accurate treatment of momentum. Simplified flow models that only crudely approximate the conservation of momentum are not used in FLOW-3D because they cannot be used to predict realistic fluid configurations and temperature distributions.
Liquid-Solid Heat Transfer Area
액체와 고체 사이 (금속 주형 등)의 열전달은 경계면 면적의 정확한 추정이 필요합니다. 경계가 계단 모양으로 되어 있는 경우, 보통 이 면적이 크게 추정됩니다. 예를 들어, 실린더의 표면적은 약 27 %정도 크게 추정됩니다. FLOW-3D의 경우 정확한 경계면 면적은 FAVOR™법에 따라 FLOW-3D 전처리기에서 컨트롤 볼륨마다 자동으로 계산됩니다.
Heat transfer between a liquid and a solid (e.g., metal-to-mold) requires an accurate estimate of the interfacial area. Stair-step boundaries over-estimate this area; for example, the surface area of a cylinder would be over-estimated by a factor of 27%. Accurate interfacial areas are automatically computed by the FAVOR™ method for each control volume in the FLOW-3D pre-processor.
Control Volume Effects on Liquid-Solid Heat Transfer
컨트롤 볼륨의 크기가 액체와 고체 사이에서 교환되는 열 비율과 양에 영향을 줄 수 있습니다. 이것은 열이 액체와 고체의 경계면을 포함하는 컨트롤 볼륨을 흐를 필요가 있기 때문입니다. FLOW-3D는 액체와 고체의 경계면에 걸쳐 열 전달률을 계산할 때 컨트롤 볼륨의 크기와 전도율이 고려됩니다.
The size of control volumes can influence the rate and amount of heat exchanged between a liquid and solid because heat must also flow in the control volumes containing the liquid/solid interface. In FLOW-3D control volume sizes and their conductivities are accounted for when computing heat transfer rates across liquid-solid interfaces.
Implicitness and Accuracy
비선형 방정식과 결합 방정식의 Implicit 방법은 반복 될 때마다 under-relaxation 특성을 갖는 반복적 해법이 필요합니다. 이 동작은 상황에 따라 심각한 오류 (또는 수렴 속도의 급격한 하락)가 발생할 수 있습니다. 예를 들어, 비율이 큰 컨트롤 볼륨을 사용하는 경우나, 실제로는 중요하지 않은 효과를 예상하고 암시적인 해법을 사용하는 경우 등입니다. FLOW-3D는 가능한 명시적인 수치해법이 사용되고 있습니다. 이것은 필요한 계산량이 적고, 수치 안정성의 요구 사항이 요구된 정밀도에 상응하기 때문입니다. 자세한 내용은 “암시적인 수치해법과 명시적인 수치해법“을 참조하십시오.
Implicit methods for nonlinear and coupled equations require iterative solution methods that have the character of an under-relaxation in each iteration. This behavior can cause significant errors (or very slow convergence) in some situations, for example, when using control volumes with large aspect ratios or when the implicitness is used in anticipation of an effect that is not actually significant. In FLOW-3D explicit numerical methods are used whenever possible because they require less computational effort, and their numerical stability requirements are equivalent to accuracy requirements. Read more in the Implicit vs. Explicit Numerical Methods article.
Implicit Numerical Methods For Convective Transport
모든 크기의 타임 스텝 크기를 계산에 사용할 수 있는 암시적인 수치 기법은 CPU 시간을 줄이기 위해 많이 사용되는 방법입니다. 불행하게도, 이 방법은 대류 현상 해석에 대해 정확하지 않습니다. 암시적인 해법은 근사 방정식에 확산 효과를 도입함으로써 시간 단계의 독립성을 획득합니다. 수치 확산을 물리적 확산 (열전도 등)에 추가해도 확산율이 변경될 뿐이므로 심각한 문제가 되지 않을 수 있습니다. 그러나 수치 확산(발산)을 대류 과정에 추가하면 모델링 대상의 물리 현상의 특성은 완전히 다르게 됩니다. FLOW-3D는 시간의 정확한 근사치를 보장하기 위해 프로그램에 의해 time step이 자동으로 제어됩니다.
Implicit numerical techniques that allow arbitrarily large time-step sizes to be used in calculations are a popular way to reduce CPU time requirements. Unfortunately, these methods are not accurate for convective processes. Implicit methods gain their time-step independence by introducing diffusive effects into the approximating equations. The addition of numerical diffusion to physical diffusion, e.g., to heat conduction, may not cause a serious problem as it only modifies the diffusion rate. However, adding numerical diffusion to convective processes completely changes the character of the physical phenomena being modeled. In FLOW-3D time steps are automatically controlled by the program to ensure time-accurate approximations.
Relaxation and Convergence Parameters
암시적으로 근사치를 사용하는 수치법은 하나 이상의 수렴 및 완화(이완)의 매개 변수를 선택해야 합니다. 이러한 매개 변수를 신중하게 선택하지 않으면 발산하거나 수렴에 시간이 걸리는 경우가 있습니다. FLOW-3D를 융합하는 매개 변수와 완화(이완) 매개 변수를 하나씩만 사용하여 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 수치 해법을 제어하는 매개 변수를 사용자가 설정할 필요는 없습니다.
Numerical methods that use implicit approximations also require the selection of one or more convergence and relaxation parameters. Making poor choices for these parameters can lead to either divergences or slow convergence rates. Only one convergence and one relaxation parameter are used in FLOW-3D, and both parameters are dynamically selected by the program. Users are not required to set any parameters controlling the numerical solver.
Free-Surface Tracking
액체와 기체의 경계면 (자유 표면 등)의 모델링에 사용되는 방법은 두 가지가 있습니다. 하나는 액체, 기체 두 영역의 흐름을 계산하고 경계면을 유체 밀도의 급격한 변화로 처리하는 방법입니다.
일반적으로 밀도의 불연속은 고차 수치 근사를 사용하여 모델링됩니다. 불행하게도 이 프로세스는 소수의 격자 셀에서 경계면이 평탄화되고, 이러한 경계면에 보통 존재하는 유체흐름의 접선 속도의 급격한 변화는 고려되지 않습니다.
기체가 계산 영역에 들어가는 액체로 대체되는 경우에는 이 방법에는 기체의 출구 포트 또는 출구 싱크도 보충 할 필요가 있습니다. 또한 이러한 방법은 일반적으로 유체의 비압축성를 충족하기 위해 더 많은 노력이 필요합니다. 이것이 발생하는 기체 영역에 거의 균일 한 압력 조정이 필요하며, 이를 통해 계산 수렴 시간이 소요되기 때문입니다.
FLOW-3D는 VOF (Volume-of-Fluid) 법 이라는 독창적인 방법이 사용되고 있습니다. 이것은 진정한 3 차원 경계면 추적 방식으로, 경계면을 3 차원 인터페이스로 추적하는 체계입니다. 또한 옵션의 표면 장력을 포함한 일반적인 접선 응력 경계 조건은 경계면에 적용됩니다. 기체 영역은 모델에 포함하도록 사용자가 요청하지 않는 한 계산되지 않습니다.
There are two methods used to model liquid-gas interfaces (i.e., free surfaces). One of these is to compute flow in both the liquid and gas regions and to treat the interface as a sharp change in fluid density. Typically, the density discontinuity is modeled using higher-order numerical approximations. Unfortunately, this treatment allows the interface to smooth out over a few grid cells and does not account for a corresponding sharp change in tangential flow velocity that generally exists at such interfaces. This technique must also be supplemented with escape ports or sinks for the gas if it is to be replaced by liquid entering a computational region. Further, such methods must typically work harder to satisfy the incompressibility of the fluids. This happens because gas regions must have nearly uniform pressure adjustments which tend to slow down the solution convergence rate. A different technique, the Volume-of-Fluid (VOF) method, is used in FLOW-3D. This is a true three-dimensional interface tracking scheme in which the interface is closely maintained as a step discontinuity. Moreover, normal and tangential stress boundary conditions, including optional surface tension forces, are applied at the interface. Gas regions are not computed unless the user requests these regions to be included in the model.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
Investigation of Mould Leakages in a Gravity Casting
This article was contributed by Gabriele Taricco of CM Taricco and Stefano Mascetti of XC Engineering.
Metal leakages in the original gravity casting mould
몰드 설계는 유체 역학과 금속 응고 패턴뿐만 아니라 주형 자체에서 발생할 수 있는 문제와 응력에 대한 반응을 고려해야 하는 매우 복잡한 작업입니다. 이탈리아에 본사를 둔 주형 제작 업체인 CMTaricco 사는 최근에 새로운 주형 중 하나의 하부에서 금속 누출 문제에 직면했습니다. 주형 누출의 원인은 처음에는 분명하지 않았으며 몇 번의 공정 주기 후에만 나타났습니다. 제작 일정에 차질이 생기고 부품 주조 비용이 급격히 증가하기 때문에 문제가 중요한 것은 분명했습니다.
Investigation of an idea
공정 자체는 주입과 오버플로우 설계인 중력 주조 방식이었기 때문에 유체 역학 부분에서는 문제가 발생할 수 없었습니다. GabrieleTaricco (CMTaricco의 소유주)의 가설은 금속 누출이 주형의 열 손실의 설계 불량에서 기인하여 균일하지 않은 분포를 초래한다는 것이었습니다. 변형률과 그에 따라 주형 바닥에서 크고 원하지 않는 변형이 순환하면서 금속이 유출될 수 있는 중요한 영역의 개방까지 주기적으로 시행되었습니다. 이를 확인하고 문제에 대한 신속한 해결책을 찾기 위해 FLOW-3D시뮬레이션을 실행하여 주형이 가열될 때 발생하는 현상을 정확하게 파악했습니다.
Schematic of a critical area where metal was flowing out of the mould
A careful setup, to achieve a fast resolution of the issue
문제의 원인은 신속하게 파악할 수 있어야 했기 때문에 최신 Flow-3D기능을 모두 활용하여 정확한 설정이 필요했습니다. 특히, 채택된 meshing기법은 전통적인 설정과 거의 동일한 정확도를 유지하면서 전산 셀의 수를 크게 줄이는데 매우 도움이 되었습니다. 빠른 시뮬레이션으로 주형 세척에 사용된 첫 번째 방법은 주형 내부의 얇은 캐비티를 직교 축과 정렬하기 위해 주형을 수직 축 주위로 회전시키는 것이었습니다.
Rotating the mould around the vertical axis in order to align the inner thin cavity of the mould
두 번째 트릭은 내부 공동 (얇은 벽)에 new conformal mesh기능을 사용하는 한편 전체 도메인에 대해 기존의 더 큰 메쉬 블록을 유지하는 것 이었습니다. The conformal mesh는 open volume과 일치하고, 작은 간극을 갖는 cavity로 제한됩니다.
A global view of the mould with cores and its alignment with the mesh blocks
마지막으로, 외부 공간을 주형에 제한하기 위해(현재 구두 상자 모양이 되고, 20도 회전하며, 모델 축과 정렬상태) 일부’ 도메인제거’ 요소가 사용되었습니다.즉, FLOW-3D의 내부 솔리드 모델을 통해 직접 연결됩니다
Domain removing components (yellow) were used to limit the space externally to the mould.
나머지 설정은 소프트웨어의 권장 기본값 대부분을 이용하여 기존 체계를 따랐습니다. 이러한 기능과 FLOW-3D의 새로운 하위 도메인 분해 기능 덕분에 설계된 9 000 000 셀을 유체 하위 도메인의 경우에만 1 840 000 셀로, 고체 서브 도메인의 경우 2 430 000 셀로 줄이는 것이 가능했습니다.
The analysis
주입 시뮬레이션 후, 양호한 주입 패턴을 보장하기 위해 시뮬레이션의 초점이 열 다이 사이클링 분석으로 리디렉션 되었습니다. 이 경우 설정은 일반 데스크 톱 컴퓨터에서 10개의 생산 사이클을 재현하는 데 1시간이면 간단하고 빠릅니다(i7930 K, 상업적 가치 1500달러). 그 결과 CM의 초기 가설이 확인되었습니다. FlowSight를 사용하여 단일 이미지에서 여러 시점과 횡단면에서 온도 필드를 관찰한 결과 온도가 d라는 것이 분명했습니다. 주형의 침입은 예상되는 변형과 금속 누출을 쉽게 유발할 수 있습니다.
Simulation of the mould’s temperature during the die cyclings
Further analysis with the Fluid-Structure Interaction module
일단 문제가 확인되고 기술 요원이 향상된 금형 설계를 시작하면 CM Taricco는 다이 상의 응력 및 변형에 대한 FEM 해석을 실행하는 최종 확인을 원했습니다. 이 분석을 수행하기 위해 XC Engineering Srl은 CM이 계산을 설정하고 수행하는 것을 도왔습니다. 분석의 결과는 정확히 CM이 생각하고 있는 것을 보여주었습니다. FLOW-3D는 붓기가 거의 걸리지 않은 금형에서 발견 된 실제 변형과 동일한 위치와 크기를 극도의 정확도로 재현 할 수 있었습니다. 이것은 CM에 대한 좋은 소식이었으며, 실제 주조 조건을 기반으로 실제 금형 변형을 예측하기 위해 설계 단계에서 FSI 모듈을 사용하는 추가 권장 사항을 시행했습니다.
Deformation of the mould during the die cyclings, simulated using theFluid Structure Interaction model. Deformations are amplified x20.
Conclusion
해석결과, CM직원은 CFD솔루션의 온도영역에 대한 모든정보를 사용하여 최적화된 새로운 주형을 설계할 수 있었습니다. 새로운 주형은 열 에너지를 보다 효율적인 방법으로 방출할 수 있었으며 주조물은 수 십번의 공정 주기 후에도 금속 누출의 영향을 받지 않았습니다.
The cast part after mould optimization. No critical leak defects are present.
공동 또는 다공성 결함은 일반적으로 마지막 응고 위치에서 형성됩니다. 라이저는 일반적으로 주조물이 굳을 때 녹은 금속을 주조물에 제공하여 이러한 결함을 방지하는데 사용됩니다. 그러나 라이저가 효과를 발휘하려면 적절한 크기에 적절한 위치에 배치하여 수축량을 보상할 수 있는 충분한 재료를 포함해야 합니다. FLOW-3D CAST에서는 캐스터가 결점 없는 주물을 위한 냉각 및 공급 시스템을 설계할 수 있도록 두 가지 새로운 도구가 개발되었습니다. 즉, 마지막으로 응고될 장소의 예측과 열 계수 계산입니다.
Last Places to Freeze
마지막으로 응고딜 장소는 주물 내 가장 늦게 응고되는 위치와 수축 다공성 결함이 형성될 가능성이 있는 위치를 직접 표시합니다. 이러한 장소는 고체 분율 진화 또는 응고 시간으로부터 파생될 수 있지만, 보다 직접적인 시각화 방법이 항상 선호됩니다.
특수 유형의 고정 입자는 “핫 스폿”이라고 불리는 마지막 응고 위치를 식별하고 시각화하는 데 사용됩니다. 이 출력은 응고 모델을 사용할 때 자동으로 생성됩니다. 핫 스폿 입자는 그림 1에 도식적으로 나타난 바와 같이, 모든 인접 영역이 고체화된 후에 응고될 때 셀에 삽입됩니다.
이러한 입자는 최종 자유도 위치를 파악하는 것 외에 이러한 위치에서 수축 다공성 결함의 가능성과 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 즉, 셀 응고 시간, 핫 스폿 ID 및 핫 스폿크기, 셀이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 첫번째 지점, 두번째 지점인 순서를 나타냅니다. 마지막으로 핫 스팟크기는 다음 공식으로 계산됩니다.
이 입자들은 마지막으로 동결된 위치를 식별하는 것 외에도 이러한 위치에서 수축 다공성 결함의 가능성 및 크기, 즉 셀 응고 시간, 핫 스폿 ID 및 핫 스폿 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 셀 응고 시간은 셀이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 굳어지는 순서를 나타냅니다. 1은 첫 번째, 2는 두 번째 등. 마지막으로, 핫 스폿 크기는 다음 방정식으로 계산됩니다.
hsm(i) 는 입자 i에 대한 핫스팟 크기입니다.
t0 는 입자 위치에서의 세포 응고 시간입니다.
νliq(t) 는 시간 t에서 입자를 포함하는 액체 영역의 부피입니다.
Figure 1. A hot spot particle is inserted at the center of a cell when it solidifies after its immediate neighbors become solid.
Figure 2. 핫스팟 입자를 포함하는 액체 부피의 진행상태 예시 : t3> t2> t1.
그림 2는 연결된 액체 지역의 부피가 입자 속도의 함수로서 어떻게 변하는지를 보여 준다. 그런 다음 계산된 양을 정규화하여 모든 핫 스팟 크기 값을 0과 1사이의 범위로 가져옵니다. 이를 통해 다공성 형성에 미치는 잠재적인 영향과 관련하여 주물 내 여러 핫 스폿을 간단하게 비교 분석할 수 있습니다. 값이 높을수록 응고하는 동안 연결된 액체 영역이 커지며 최종-동결 위치에서 다공성 결함이 줄어들 가능성이 높아집니다.
The Thermal Modulus Method
열 계수 법은 일반적인 라이저 설계 시 가장 많이 사용되는 방법 중 하나이며, 특히 알루미늄 합금 및 강철 주물에 사용됩니다. 주어진 주물 부품의 경우, 그 계수는 다음과 같이 정의됩니다.
V는 주조 부품의 체적이며
A는 주조 부품의 표면적입니다.
주물의 기하학적 계수는 구체나 블록과 같은 정규 형상에 대해 계산하기 쉽습니다. 그보다 더 복잡한 것은 보통 모양으로 주조 섹션을 지루하게 근사치를 구하는 것입니다. 또한, 기하학적 계수형 접근 방식은 주물의 기하학적 구조에 전적으로 의존합니다.
실제 주조물은 냉각제와 절연체를 사용하여 응고 진행을 제어합니다. 이러한 형상은 기하 계수 접근 방식에서는 무시된다. 계수 계산을 자동화하고, 동결 융해, 단열 및 기타 주형 변형과 관련된 열 영향을 고려하기 위해 열 계수라고 하는 혁신적인 접근법이 라이저 디자인에 사용된다.
열 계수 접근 방식의 경우 먼저 주조물의 응고 시뮬레이션이 실행됩니다. 시뮬레이션이 완료되면, Cavorinov의 규칙에 근거한 응고 시간으로부터 주물 전체의 등가 계수를 계산할 수 있습니다. 이 접근법을 사용하여 계산된 등가 계수를 열 계수라고 한다. 그것은 라이저 설계를 가이드하기 위해 기하학적 계수와 동일한 방법으로 사용될 수 있다.
Chvorinov의 법칙은 응고 시간과의 관계를 나타내며 그 계수는 다음과 같이 쓸 수 있습니다.
t is the casting solidification time,
N is a constant (usually equal to 2), and
B is the mold constant. It can be calculated using the following formula:
주조 공정을 설계할 때 라이저는 적절한 유동을 위해 라이저의 응고 시간이 인접 주조 섹션의 응고 시간보다 긴 방식으로 설계됩니다. Chvorinov의 규칙에 따르면 응고 시간은 주물의 계수에 정비례합니다. 따라서 응고 시간을 비교할 때 모듈화를 직접 비교할 수 있습니다. 모듈형은 기하학적인 양이기 때문에, 모듈형의 비교는 훨씬 단순하게 설계를 할수있습니다. 금속 주조 엔지니어는 실제 주조 공정의 세부 사항을 고려하지 않고도 부품을 적절하게 이송할 수 있도록 계수가 큰 라이저를 설계할 수 있습니다.
Application of the New Tools to Cooling and Feeding System Design
예를 들어, 새로운 도구를 사용하는 증기 터빈 실린더의 절반에 대한 냉각 및 공급 시스템 설계가 제공되고 이 섹션에서 Flow Science China 도움을 받아 논의됩니다. 부품의 외부 치수는 2.83×2.34×1.10미터이고 총 부피는 아래와 같이 약 0.95 세제곱미터입니다. 주물 재료는 탄소강이며 주입 온도는 150°C입니다.
Figure 3. Casting part geometry
첫째, 냉각제와 라이저가 없는 주조물의 응고 시뮬레이션을 실행합니다. 그 목적은 핫 스폿 위치를 확인하고 응고 건조기 및 라이저의 위치와 라이저의 크기를 결정하는 것입니다. 두개의 새로운 도구는 냉기와 라이저 설계를 개선하는 데 사용됩니다.
입자를 응고할 마지막 위치는 각각 셀 응고 시간, 입자 ID 및 핫 스폿 크기로 표시된 다음 그림과 같습니다. 이러한 그림을 통해 핫 스폿 위치와 수축 다공성 결함을 형성할 가능성을 직접 확인할 수 있습니다. 주물의 기하학적 특성에 기초하여, 라이저를 배치하는 위치는 그림의 마지막 프레임과 같이 쉽게 확인할 수 있습니다.
그러나 하단 쉘에 몇개의 핫 스폿이 있으며 이는 라이저를 배치하는 데 적합하지 않습니다. 이러한 위치에서 다공성 결함의 수축을 방지하기 위해 냉각제를 사용하여 응고 패턴을 변경하고 마지막으로 라이저 영역까지 응고시킬 수 있습니다.
Figure 4. Hot spot locations colored by three attributes (clockwise from top left): hot spot solidification time, particle id and hot spot magnitude.
Thermal Modulus Computation
계산 된 thermal modulus는 오른쪽에 표시됩니다. 더 큰 값은 응고될 마지막 위치와 일치합니다. 또한 열 모듈러스를 사용하여 핫스팟 위치에서 라이저의 크기를 결정할 수 있습니다.
냉각 및 라이저가 결정되면 냉각 및 라이저 설계를 확인하기 위해 냉각 및 라이저가 포함된 두 번째 응고 시뮬레이션이 실행됩니다. 핫스팟 크기로 채색된 마지막 응고 위치 입자와 thermal modulus가 그림 6에 나와 있습니다. 냉각이 마지막 장소를 라이저 영역으로 성공적으로 응고시키는 것을 볼 수 있습니다. 그러나 라이저 아래에는 여전히 위험한 핫 스팟이 있습니다. 실제로 실제 주조는 아래 그림에 표시된 것처럼 핫스팟 입자로 식별된 위치에서 수축 다공성 결함을 보여줍니다.
Figure 5. Calculated thermal modulus
Calculated thermal modulus 마지막으로 동결할 장소는 라이저가 아닌 주물 안에 있습니다. 즉, 라이저 위치와 크기가 올바르게 결정되더라도 주물이 라이저 쪽 방향으로 굳지 않도록 응고 패턴이 올바르지 않다는 것을 의미합니다. 한 가지 해결책은 발열 라이저 슬리브를 사용하여 응고 패턴을 수정하는 것입니다. 이것은 본 기사의 범위를 벗어나기 때문에, 더 이상 논의되지 않을 것입니다.
Figure 6. 핫 스폿 위치(왼쪽 위), 계측된 주조물을 사용하여 계산된 열적 계수(오른쪽 위) 및 수축 결함이 관찰된 위치
FLOW-3D CAST의 모델링 기능을 사용하면 주조 엔지니어가 코어 주입과 건조와 같은 코어 제작 프로세스를 쉽게 시뮬레이션 할 수 있습니다.
Core Shooting
샌드 코어는 모래-공기 혼합물을 주형으로 분사하여 생성됩니다. 주조 엔지니어의 목표는 모래 내의 공기 불순물 유입을 방지하는 것 인데, 이때 사용자는 안정적으로 FLOW-3D CAST의 모델링 기능을 통해 모래가 주입되는 노즐의 개수와 위치 및 공기가 빠져나가는 벤트 노즐의 개수와 위치를 변경하여 최적의 노즐 구성을 얻을 수 있습니다.
Core Drying
코어 건조 모델은 모래가 코어 금형으로 주입된 후 남아 있는 습기의 건조 과정을 계산합니다. 일반적으로 건조는 금형에 있는 동안 코어를 통해 뜨거운 공기를 불어넣음으로써 이루어집니다. 코어의 저온 부분에서 가열, 수분 증발 및 일시적인 습기 응결을 시뮬레이션하여 건조 과정을 최적화할 수 있습니다. 이를 통해 완전한 건조를 보장하는 동시에 공기의 가열 및 배출과 관련된 에너지 비용을 최소화할 수 있습니다.
Core Drying Validation
A comparison made by BMW between simulation and experiment of the drying of an inorganic core.
연속 주조는 용강이 반제품 빌렛, 블룸 또는 슬래브로 응고되어 후속 압연기에서 압연하는 공정입니다. 연속 주조시, 용강은 레들에서 주조기로 이송됩니다. 주조 작업이 시작되면 레들의 바닥에 있는 슬라이딩 셔터가 열리고 철강은 제어된 속도로 턴디쉬 안으로 그리고 턴디쉬에서 하나 이상의 주형으로 흐릅니다.
1950 년대에 연속 주조가 도입되기 전에 철강은 고정 금형에 붓고 잉곳을 성형했습니다. 그 이후로 지속적인 주조는 수율, 품질, 생산성 및 비용 효율성을 향상시키기 위해 발전해 왔습니다. 주조 회사는 공정 개선을 위해 항상 노력하고 있으며, FLOW-3D CAST를 사용한 시뮬레이션은 물리적 시행 착오없이 비용을 절감할 수 있는 기회를 제공합니다.
Semi-Continuous Casting of a 600 mm Slab with Stress Calculation
이 시뮬레이션에서는 600mm직경 슬래브의 반 연속 주조의 공정이 모델링 됩니다. 액체 금속, A7050 합금은 세라믹 노즐을 통해 상단에서 들어가 흑연 주형을 통과하고, 표면 열전달계수와 지정된 온도로 모델링 된 물 분무에 의해 냉각됩니다. 하단의 강철 캡은 금속의 이동을 시작하여 액체 금속이 유출되는 것을 방지합니다. 캡은 0.3mm/sec의 일정한 속도로 아래쪽으로 이동하는 General Moving Object 물리 모델로 모델링 됩니다. 열응력 해석 모델은 균일하지 않은 냉각 및 수축으로 인해 고상 금속에서 발생하는 응력 및 변형을 예측하는 데 사용됩니다. 이 애니메이션은 Von Mises stress 결과를 보여 주는데, 400배로 확대된 결과입니다.
Continuous Casting Simulations
Rotational channel continuous casting example.
Solid fraction contours of the continuous casting process of a cylindrical steed rod using the general moving object and solidification models.
A 2D axisymmetric slice showing transient solidification contours through the transition region during continuous casting of a cylindrical steel rod.
영구 금형과 모래 금형의 차이점은 영구 금형을 재사용 할 수 있다는 것입니다. 금형을 재사용하는 주조 공정에는 중력, 경동, 저압 다이캐스팅 및 고압 다이 캐스팅이 포함됩니다. 영구 금형에는 금속과 흑연의 두 가지 유형이 있고 몰드 유형의 사용은 주조 금속에 달려 있습니다. 금속 주형에 사용되는 주조 금속은 알루미늄, 구리 합금, 아연 및 마그네슘을 포함합니다. 흑연 주형에 사용되는 주조 금속은 강 및 철입니다. 또한 내부 공동을 생성하기 위해 샌드 코어를 사용하는 반영구적인 금형이 있습니다. FLOW-3D CAST는 금형의 충진, 응고 및 열응력과 관련된 주조 결함을 포착하여 처음 프로세스를 올바르게 설계하고 궁극적으로 시간과 비용을 절약 할 수 있습니다.
Simulation of a low pressure die casting showing the filling temperature of a tire rim.
ALL NEW FLOW-3DCAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.
ALL NEW FLOW-3DCAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다. FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.
WYSIWYN Process Workspaces
What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.
FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.
Simulation setup is simplified by only showing the components applicable for a given process.
Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.
Defect Prediction / 결함 예측
Identify Filling Defects using Particles 결함 예측 및 입자를 이용한 주입 결함 식별
파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.
붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.
Predict filling defects caused by entrapped gas using the Particle Model.
Metal/Wall Contact Time 금속/벽 접촉 시간
벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.
Identify solidification defects with the new Thermal Modulus output.
Solidification Defect Identification 응고 결함 식별
일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.
Risers will likely need to be placed on the circled regions.
Hot Spots 핫 스팟
또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.
Porosity Analysis Tool
FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.
New defect identification tools allow users to analyze porosity.
Arbitrary 2D Clips 임의 2D 클립
기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.
Intensification Pressure 강화 압력
고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.
Adjusting Shrinkage Porosity 수축 기공 조절
사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.
Gas Pressure and Venting Efficiency 가스 압력 및 밴트 효율성 검토
사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.
Databases 데이터베이스
주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.
Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터
시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.
게이트 속도 주형 내 고상 분율 최저/최고 용탕 온도 및 금형 온도 다양한 프로브 위치에서의 온도 시뮬레이션 진단(예:시간 스텝, 안정성 한계)
Plotting Capabilities Plotting기능
이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.
Conforming Meshes
임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다. 메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.
Summary Views of Components/Cooling Channels
FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.
Under the Hood
FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.
Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델
열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.
Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.
Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기
스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.
(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD 컨설팅 서비스를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다. 상담에는 비용은 전혀 들지 않습니다.
CFD는 엔지니어가 공기, 물 또는 모든 유체와의 상호 작용을 이해할 수 있게 하는 매우 효과적인 기술로 대부분의 유동현상에 해답을 제시 할 수있는 막대한 잠재력을 가지고 있습니다. 다양한 유체 흐름 현상이나 온도 및 열전달 분석 등 필요한 시나리오에 대한 맞춤 솔루션을 제공합니다.
당사에는 20년 이상 수치해석 연구에 전념하고 있는 전문 연구인력과 다양한 기술적 경험과 전문 시뮬레이션 기술을 제공하는 숙련된 기술컨설팅팀이 준비되어 있습니다. 귀하의 프로젝트 성공 가능성을 기술시연을 통해 제공 할 수 있습니다. 프로그램 소개나 자문이 필요하신 분들은 언제든지 아래 연락처로 문의하시기 바랍니다.
전화 : 02-2026-0455
Email : flow3d@stikorea.co.kr
컨설팅 형태
수치해석 의뢰
고객이 당면한 문제를 분석 /검토/협의 후, 가장 적절한 수치해석 방법을 수립합니다.
주로 상호 협의된 설계안 및 해석 조건에 대해 수치해석을 수행하여 결과를 도출 분석, 검토합니다.
설계 변경 인자 및 해석 횟수는 고객과 협의하여 진행합니다. 수치해석 결과를 분석 검토하여 설계에 반영하기 위한 의견을 제시하여 드립니다.
해석 대행 의뢰
고객사에 해석 프로세스가 정립되어 있는 경우에 대해, 계산 장비와 수치해석 인력을 이용하여 해석 대행 및 해석 결과물을 제출합니다.
컨설팅 절차
해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.
주요 컨설팅 의뢰 분야
수자원 분야
댐체, 수문, 제반 구조물 안정성 검토
댐, 여수로 유동 해석
여수로 수위별 방류량 해석
여수로 월류 및 수위 검토 해석
발전소 취수로 유동 해석
배수터널 방류향 해석
취수탑 유입 유량 해석
교각주위 세굴 해석
수문 수차 유량 해석
저수지 수위별 유동해석
배수암거 부정류 해석
저수지 연결 터널 유동 해석
교각 유동 작용 힘 검토
도수터널 통수 능력 해석
부유사 확산 검토
냉각수 취수로 유량 해석
수문 유동 양상 분석
배수터널 방류량 해석
월류 수위별 유량 유속 해석
수처리 분야
Wastewater Treatment Plant
정수지 유동해석
분배수로 유량분배 해석
침전지 유동 및 유속 분포 해석
반응조 농도 및 반응시간 해석
응집지 유동해석
하수처리시설 슬러지 농도 해석
DAF 응집제 농도 해석
수조 최적 교반 해석
여과지 유동해석
혼화지 유동해석
호기조 담체 거동해석
수처리 구조물 유동 양상 분석
하수처리시설 유동해석
분말활성탄 접촉조 해석
PSBR 반응조 해석
지하수 ICE RING 형성 해석
절리면 모세관 열유동 해석
DAF 실증시설 부상조 해석
착수정 유량 분배 해석
우주 항공분야
발사체 탱크 슬로싱 댐핑 평가 해석
항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
항공기 날개 연료 탱크 내부 유동 해석
항공기 연료 탱크 내부 유동 해석
추진체 관리 장치 내부 유동 해석
엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석
자동차 분야
자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
피스톤 쿨링젯 시스템 해석
전착 도장 해석
자동차 연료 주입구의 주입 유량별 유동 특성 분석
기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
베어링 내 윤활을 위한 오일의 유동 양상 해석
해양분야
해양 컨테이너 연료 탱크 슬로싱 해석
방파제 구조물 주변 유동 해석
선박 운항에 따른 항주파 및 유동 특성 분석
사석 방파제 등 구조물 주변 유동 해석
진동수주형 파력 발전 구조물 최적화 모델 해석
선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
발전소 부근 해역 온배수 영향 예측
지진 해일에 의한 영향 해석
주조 해석 분야
고압다이캐스팅 충진 거동 및 응고 해석
저압주조 충진 거동 및 응고 해석
경동주조 충진 거동 및 응고 해석
중력주조 충진 거동 및 응고 해석
원심주조 충진 거동 및 응고 해석
금형온도 분포 해석
제품 및 금형 열응력, 변형 해석
주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
금형 및 몰드 냉각방안 최적화 검토
Micro/Bio/Nano Fluidics 분야
Slit 및 Slot 코팅 해석
Roll 코팅 해석
Gravure / Gravure-offset 프린팅 해석
Curtain 코팅 해석
Multi-layer Slide 코팅 해석
전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
마이크로 채널 액적 생성 연속성 및 혼합 해석
잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
열모데관 유동해석과 모세관 충진 해석
유전 영동 현상을 이용한 액적 융합 해석
레이저 용접 분야
이종재 레이저 용접 해석
용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
이종재의 레이저 용접 시 wobbling 해석
레이저 용접 Melt Pool 거동 해석
레이저 파워, 속도에 따른 balling 결함 영향 해석
공기/열 흐름 분야 (HVAC System Designs)
HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행
발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음
건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능
고객 정보보호 보장
고객이 의뢰하는 컨설팅 내용은 경쟁에 민감한 정보를 포함할 수 있기 때문에 (주)에스티아이씨앤디에서는 고객의 기밀정보를 보호하기 위한 엄격한 관리절차와 이행을 보장합니다. 고객의 기밀정보는 절대 외부에 누설되지 않습니다.
수치해석 용역 또는 기술컨설팅, Custom 개발이 필요하시면 언제든지 아래 연락처로 연락주시기 바랍니다.
FLOW-3D의 열 응력 진화 (TSE) 모델은 모델링 할 수있는 주조 공정의 범위를 확장합니다. FSI / TSE 모델은 주변 유체의 압력 력, 온도 구배 및 지정된 구속 조건에 대한 응답으로 솔리드 및 응고 부품의 모델 응력 및 변형에 대한 유한 요소 접근법을 사용하여 유체와 솔리드 간의 완전 결합 상호 작용을 설명합니다.
불균일 냉각으로 인해 응고 과정에서 열 응력이 발생합니다. 이러한 응력은 주형 벽의 수축과 주조 모양의 불규칙성에 영향을받습니다.
위의 시뮬레이션은 고형 알루미늄 V6 엔진 블록의 Von Mises 응력을 보여줍니다. 이 블록은 강철 다이 내에서 주조 된 알루미늄 A380 합금으로 구성됩니다. 알루미늄의 주입 온도는 527 ° C 였고 초기 다이 온도는 125 ° C였다. 부품을 다이에서 60 초 동안 냉각시킨 후 다이를 열고 주변 조건 (125 ° C)에서 부품을 9 분 동안 계속 냉각시켜 총 10 분의 시뮬레이션 시간을 가졌다. 보여진 폰 미제스 응력은 부품 내부의 전단 응력의 크기를 측정 한 것으로, 파열이 가장 많이 발생하는 부위를 나타냅니다. 응력은 금형과 응고 금속에서 동시에 계산 될 수 있습니다. 메싱은 FLOW-3D의 구조화 된 메쉬를 초기 템플릿으로 사용하여 자동으로 수행 할 수 있습니다. 사용자는 중첩 또는 링크 된 메쉬 블록을 생성하고 V11.0의 새로운 준수 메쉬 기능을 사용하여 메쉬의 로컬 해상도를 제어 할 수 있습니다. 또는 Exodus-II 형식의 타사 메쉬 생성 소프트웨어에서 Finite Element 메쉬를 가져 오는 옵션이 있습니다.
Simulating Thermal Stress
아래 그림은 강철 다이 내에 알루미늄 A380 합금 주물로 구성된 알루미늄 커버입니다. 주입 온도는 654 ℃이고 초기 다이 온도는 240 ℃이다. 부품은 6 초 동안 다이 내에서 냉각되어 부품이 완전히 고화되었다 (러너 시스템 제외). 그런 다음 다이를 열고 부품을 주변 조건 (25 ° C)에서 10 초 더 냉각시켰다. 러너 시스템을 제거한 후 주위 조건에서 10 초간 더 냉각시켰다. 여기에 표시된 일반 변위는 가장 큰 변형 영역을 강조하기 위해 30 번 확대 된 부품 표면의 동작을 나타냅니다.
Component Coupling within the Fluid-Structure Interaction and Thermal Stress Evolution Models
FLOW-3D v11의 새로운 기능은 인접한 유체 구조 상호 작용 (FSI) 구성 요소 및 / 또는 열 응력 진화 (TSE) 응고 유체 영역 사이의 탄성 응력을 허용하는 기존의 유한 요소 역학 해석법으로의 업그레이드입니다. 결합. 이 새로운 기능은 복잡하고 변형이 심한 다중 재료 부품 (예 : 몰드에서 금속 주 조용 응고 또는 바이메탈 게이지)의 열 응력과 변형을 시뮬레이션하고 연결된 유압에서 힘을 시뮬레이션하는 것을 포함하여 풍부한 모델링 가능성을 열어줍니다. 레이디 얼 게이트 및 파이프 라인 지원 시스템과 같은
모델에는 복잡한 프로세스를 효율적으로 계산할 수있는 몇 가지 옵션이 있습니다.
No coupling
이 옵션은 인접한 FSI 구성 요소가 스트레스를 교환하지 않는 단순화 된 사례를 나타냅니다. 이것은 계산 상 효율적이며 구성 요소 간의 응력 상호 작용이 중요하지 않은 시나리오에 적합합니다.
Full coupling
전체 커플 링 옵션은 함께 융합되었지만 재료 특성이 다른 이웃 FSI 구성 요소를 모델링하기위한 것입니다. 두 구성 요소는 서로 떨어져서 당기거나 서로 밀어 낼 수 없지만 인터페이스의 응력은 구성 요소간에 전송됩니다. 이는 바이메탈 스트립과 같은 접합 구조를 모델링하는 데 이상적입니다.
Partial coupling
부분 커플 링 옵션은 인접한 FSI 구성 요소가 마찰 및 수직력을 통해 상호 작용하지만 분리 될 수있는 일반적인 문제를 모델링하기위한 것입니다. 이 옵션은 FSI 구성 요소와 TSE 응고 유체 영역을 결합하는 데 사용할 수 있으므로 다이에서 냉각되는 부품과 주조 부품에 대한 열 응력의 영향을 조사하는 데 이상적입니다.
모델의 새로운 기능을보다 자세히 보여주기 위해 두 가지 시뮬레이션이 제공됩니다. 첫 번째 상황은 전체 커플 링 옵션을 사용하여 시간에 따라 변화하는 온도에 따라 바이메탈 스트립 벤딩을 모델링하는 반면 두 번째 예는 다이 커플 링에서 V6 엔진 블록의 응고 중 열 응력을 보는 부분 커플 링 모델의 사용을 보여줍니다 .
Full Coupling Example: Bimetallic Strip
전체 커플 링 옵션의 가장 단순한 예 중 하나는 온도 구배에 따른 바이메탈 스트립의 움직임입니다. 이러한 스트립은 두 개의 금속이 온도 변화에 반응하여 동일한 속도로 팽창하지 않기 때문에 열 스위치 및 굴곡에서 일반적으로 사용됩니다. 시뮬레이션에서 모델링 된 바이메탈 스트립은 그림 1에서와 같이 동일 치수의 구리 스트립에 접합 된 길이 15cm, 두께 0.5cm의 강철 스트립으로 구성된 캔틸레버 빔입니다.
그림 1 : 예제 시뮬레이션에 사용 된 바이메탈 스트립의 개략도. 검은 색 화살표는 처짐이 탐지 된 곳을 나타냅니다. 긍정적 인 처짐은 상향이다. 이어서, 스트립을 온도가 70 초 이상 균일하게 변화하는 환경에 두었다. 그림 2는 시뮬레이션을위한 스트립 팁의 편향과 시간 경과에 따른 다양한 온도에서의 분석 솔루션을 보여줍니다. 결과는 온도가 변했을 때와 스트립의 열 관성으로 인한 스트립의 응답 사이의 약간의 지연을 포함하여 몇 가지 흥미로운 특징을 보여줍니다. 이 지연은 해석 솔루션이 온도의 순간 변화를 가정하기 때문에 계산 된 해석 편차와 해석 편향 사이의 타이밍 차이에 영향을 미칩니다. 변위의 진폭 차이는 분석 결과에서 무한히 얇은 스트립의 가정에 기인 할 수 있습니다. 계산 모델의 두께는 장착 지점에서 추가 응력을 추가하여 처짐이 증가합니다.
그림 2 : 시뮬레이션 시간 동안 스트립의 끝에서의 처짐. 플롯에는 해석 적 (밝은 파란색) 및 계산 된 (빨간색) 편향과 스트립의 평균 온도 (진한 파란색)가 표시됩니다.
Partial Coupling Example: Metal Casting within a Deformable Die
그림 3 : V6 엔진 블록의 온도 프로파일 단면도. 시뮬레이션 시작 7 초.
두 번째 예제 시뮬레이션은 부분 결합 모델을 사용하여 변형 가능한 스틸 다이 내의 금속 주조물에 응력이 발생하는 것을 보여줍니다. 다이의 두 반쪽과 응고 된 유체는 서로 부분적으로 결합되어있어 정상 응력과 마찰을 통해 상호 작용합니다. 이 시뮬레이션은 금형과 주조 부품의 열 응력 변화가 770K의 고 상선 온도 바로 아래에서 293K의 주변 온도까지 냉각되는 것을 보여줍니다. 주조 부품은 A380 알루미늄 합금으로 이루어져 있으며 금형 반은 H-13 강으로 구성됩니다.
캐스트 부품과 주변 다이의 유한 요소 메쉬는 그림 3과 같이 3,665,533 개의 요소와 3,862,378 개의 노드로 구성됩니다. 또한 다이 반쪽과 TSE 응고 된 유체 영역 각각에 대해 서로 다른 메쉬가 표시됩니다. 앞면에있는 빨간색 원은지지 피스톤 (그림에서는 보이지 않음)으로 인한 것입니다.
그림 4는 충진 후 고압 다이 캐스팅 부품 300s의 주조물 온도와 변위 크기로 채색 된 강철 다이 조각을 결합한 이미지를 보여줍니다. 이 시뮬레이션에서, 다이는 응고 알루미늄에 결합되어 응력이 그들 사이에 전달됩니다. 변위 크기는 다이의 에지에서 0에서부터 주조에 인접한 0.1mm 이상까지 다양합니다.
몰드와 응고 된 유체 표면 사이의 계면에서의 응력은 부분적으로 결합되고, 구속 된 수축이 보일 수있다. 그림 4는 시뮬레이션을 통해 주조 부품과 다이 반제품의 절반에 발생하는 변형을 보여줍니다. 다이 반쪽과 주물은 온도가 감소함에 따라 다른 속도로 줄어들므로 간섭 영역에 큰 응력이 발생하고 잠재적 문제 영역이 있음을 나타냅니다. 금형과 부품의 결합 응력을 계산하면 각 부품 내에서 발생하는 응력을 더 잘 예측하고 부품 품질을 개선하고 공구 수명을 연장하는 방법에 대한 통찰력을 얻을 수 있습니다.
Conclusion
서로 다른 솔리드 오브젝트의 상호 작용은 현대의 설계 및 엔지니어링에서 중요한 부분입니다. FLOW-3D에 대한 FSI 구성 요소와 TSE 응고 유체 영역 간의 새로운 커플 링 옵션을 추가하면 오늘날의 엔지니어가 정기적으로 겪게되는 복잡한 형상을 평가할 수있는 유용한 도구를 제공합니다.
FLOW-3D의 TSE(Thermalstressdiversion)모델은 모델링 가능한 주조 프로세스의 범위를 확장합니다. FSI/SETSE모델은 주변 유체, 열 구배 및 지정된 구속 조건의 압력에 대응하여 솔리드 및 단단한 구성 요소의 응력 및 변형을 모델링 하는 유한 요소 접근 방식을 사용하여 유체와 솔리드 사이의 완전 결합 상호 작용을 설명합니다.
균일하지 않은 냉각에 의해 발생하는 응고 과정 동안 열 스트레스가 발생합니다. 이러한 응력은 주형 벽의 수축 및 주물 형상의 불규칙에 의해 영향을 받습니다. Von Mises stresses in a solidified aluminum V6 engine block
위의 시뮬레이션은 VonMises가 단단한 알루미늄 V6엔진 블록에서 응력을 나타냅니다. 이 블록은 강철 다이 내에서 주조된 알루미늄 A380합금으로 구성되어 있습니다.
알루미늄의 주입 온도는 527°C였으며 초기 다이 온도는 125°C였습니다. 부품을 60초 동안 다이 내에서 냉각한 후 주변 조건(125°C)에서 9분 동안 부품을 계속 냉각시켜 총 10분의 시뮬레이션 시간을 제공했습니다. 표시된 VonMises 응력은 부품 내 전단 응력의 크기를 측정한 것이며, 따라서 찢어지기 쉬운 부위를 보여 줍니다.
응력은 금형과 응고 금속에서 동시에 계산할 수 있습니다. FLOW-3D의 구조화된 메쉬를 초기 템플릿으로 사용하여 자동으로 메쉬 작업을 수행할 수 있습니다. 사용자는 중첩 또는 링크된 메쉬 블록을 만들고 V1.1.0의 새로운 적합한 메쉬 기능을 사용하여 메쉬의 로컬 해상도를 제어할 수 있습니다. 또는, Exodus-II형식의 타사 메쉬 생성 소프트웨어에서 유한 요소 메쉬를 가져올 수 있습니다.
Simulating Thermal Stress
아래에 표시된 알루미늄 커버는 강철 다이 내 알루미늄 A380합금으로 구성되어 있습니다. 주입 온도는 654°C였으며 초기 다이 온도는 240°C였습니다. 부품이 다이 내에서 6s동안 냉각되었으며 이때 부품이 완전히 경화되었습니다(러너 시스템 제외). 그런 다음 다이를 열고 부품이 주변 조건(25°C)에서 10초 이상 냉각되도록 했습니다. 그런 다음 탕도(runner)시스템을 제거했고, 이후 주변 조건에서 10초간 더 냉각했습니다. 여기에 표시된 정상 변위는 부품 표면의 움직임을 나타내며, 최대 변형 영역을 강조하기 위해 30회 증폭됩니다.
Displacements in a die cast part, die closed.
Displacements in the part and runners, die open.
Displacements in the part with runner system removed.
Component Coupling within the Fluid-Structure Interaction and Thermal Stress Evolution Models
FLOW-3Dv11의 새로운 기능은 인접한 FSI(유체-구조물 상호 작용)구성 요소 및/또는 TSE(열 스트레스 진화)고체화된 유체 영역 간의 탄성 응력을 결합할 수 있는 기존의 유한 요소 고체 역학 용제의 업그레이드입니다. 이 새로운 기능은 복합 재료 부품(예:주형에서 응고되는 금속 주물 응고제 또는 바이메탈 게이지)의 열 응력과 변형을 시뮬레이션하고 반경 게이트 및 파이프 라인 지지 시스템과 같은 연결된 유압 구조에 가해지는 힘을 시뮬레이션하는 등 다양한 모델링 가능성을 열어 줍니다.
모델에는 복잡한 프로세스를 효율적으로 계산할 수 있는 여러가지 옵션이 있습니다.
No coupling
이 옵션은 인접 FSI구성 요소가 응력을 교환하지 않는 단순화된 경우를 나타냅니다. 그것은 계산적으로 효율적이며 요소들 간의 스트레스 상호 작용이 중요하지 않은 시나리오에 적합하다.
Full coupling
전체 커플링 옵션은 서로 다른 재료 특성을 가진 인접 FSI구성 요소를 모델링 하기 위한 것입니다. 두 구성 요소는 서로 당기거나 미끄러질 수 없지만 인터페이스의 응력은 구성 요소 간에 전달됩니다. 이는 바이메탈과 같이 접합된 구조물을 모델링 하는 데 이상적입니다.
Partial coupling
부분 커플링 옵션은 인접 FSI구성 요소가 마찰력과 정상적인 힘을 통해 상호 작용하지만 분리될 수 있는 일반적인 문제를 모델링 하기 위한 것. 이 옵션은 FSI구성 요소와 TSE의 고체화된 유체 영역을 결합하는 데 사용될 수 있으므로 부품이 다이에서 냉각될 때 주조 부품 및 다이에 대한 열 응력의 영향을 조사하는 데 이상적입니다.
두가지 시뮬레이션이 제시되어 모델의 새로운 특징을 보다 자세히 보여 줍니다. 첫번째 상황에서는 완전한 커플링 옵션을 사용하여 시간이 변화하는 온도에 대응하여 바이메탈 벤딩을 모델링 하는 반면, 두번째 예에서는 다이에서 V6엔진 블록을 응고하는 동안 부분 커플링 모델을 사용하여 열 응력을 확인하는 것을 보여 줍니다.
Full Coupling Example: Bimetallic Strip
전체 커플링 옵션의 가장 간단한 예 중 하나는 온도 구배에 대한 반응으로 바이메탈이 움직이는 것입니다. 이러한 스트립은 온도 변화에 대응하여 두 금속이 동일한 속도로 팽창하지 않기 때문에 열 스위치 및 벤딩에 일반적으로 사용됩니다. 시뮬레이션에서 모델링 된 바이메탈은 그림 1과 같이 길이 15cm, 두께 0.5cm의 강철 스트립으로 구성된 캔틸레버 빔입니다.
그림 1:예제 시뮬레이션에 사용된 바이메탈의 개략도; 검은 색 화살표는 편향이 프로브 되는 위치를 나타내고, 양의 편향은 상향이다.
그리고 나서 스트립은 온도가 70초에 걸쳐 균일하게 변화하는 환경에 배치되었다. 그림 2는 시간 경과에 따른 다양한 온도에서 시뮬레이션 및 분석 용액을 위한 스트립 팁의 편향을 보여 준다. 결과는 온도가 변한 시기와 스트립의 열적 관성으로 인한 스트립의 반응 사이의 약간의 지연을 포함하여 몇가지 흥미로운 특징을 보여 준다. 이러한 지연은 분석 솔루션이 온도의 즉각적인 변화를 가정하기 때문에 계산된 편향과 분석적 편향 사이의 타이밍 차이에도 영향을 미친다. 변위의 진폭 차이는 분석 결과에서 무한대의 얇은 스트립의 가정에 기인할 수 있다. 계산 모델의 두께는 장착 지점에 응력을 추가하여 편향을 증가시킵니다.
그림 2:스트립의 끝에서 시뮬레이션 시간에 걸쳐 처짐. 그림에 표시된 것은 스트립의 평균 온도( 진한 파란 색)뿐만 아니라 분석적( 연한 파란 색)및 계산( 빨간 색)편향입니다.
Partial Coupling Example: Metal Casting within a Deformable Die
Figure 3: V6 엔진 블록의 온도 프로파일 단면도. 시뮬레이션 시작 7 초.
두번째 예제 시뮬레이션에서는 부분 커플링 모델을 사용하여 변형 가능한 강철 다이 내 금속 주물의 응력 개발을 보여 줍니다. 다이의 두 절반과 응고된 유체는 부분적으로 서로 결합되어 정상적인 응력과 마찰을 통해 상호 작용합니다. 시뮬레이션은 다이와 주물 부품의 열 응력 변화를 770,000 K의 solidus온도 바로 아래에서 298K의 주변 온도로 냉각하는 모습을 보여 줍니다. 주물 부분은 A380알루미늄 합금으로 구성되어 있고 다이 반쪽은 H-13강철로 구성되어 있습니다.
주조 부품과 주변 다이의 유한 요소 메시는 그림 3과 같이 3,665,533 요소와 3,862,378개 노드로 구성됩니다. 또한 각 다이의 절반에 대해 분리된 메쉬와 TSE고형화된 유체 영역도 나와 있습니다. 전면의 빨간 색 원은 서포트 피스톤 때문입니다(그림과 같이 표시되지 않음).
Figure 4 는 채워진 후 고압 다이 캐스팅 부품 300s의 주조물 온도와 변위 크기로 채색 된 강철 다이 조각을 결합한 이미지를 보여줍니다. 이 시뮬레이션에서, 다이는 응고하는 알루미늄에 연결되어 응력이 그들 사이에 전달됩니다. 변위 크기는 다이의 에지에서 0에서부터 주조에 인접한 0.1mm 이상까지 다양합니다.
금형과 응고된 유체 표면 사이의 경계면에서 발생하는 응력이 부분적으로 결합되어 제한된 수축을 확인할 수 있습니다. 그림 4는 시뮬레이션을 통해 주형 부분의 변형과 다이 부분의 절반의 변형을 보여 줍니다. 온도가 감소함에 따라 다이 캐스트와 주물이 서로 다른 속도로 수축하여 간섭 영역에 큰 응력이 발생하고 잠재적인 문제 영역이 나타납니다. 다이와 부품에서 결합된 응력을 계산하면 사용자가 각 구성 요소 내에서 발생하는 응력을 더 잘 예측하고 부품 품질을 개선하고 도구 수명을 연장하는 방법에 대한 통찰력을 제공할 수 있습니다.
Conclusion
다른 단단한 물체들의 상호 작용은 현대 디자인과 공학의 중요한 부분입니다. FSI구성 요소와 TSE고정 유체 영역 간의 새로운 결합 옵션이 FLOW-3D에 추가되어 오늘날의 엔지니어들이 정기적으로 접하는 복잡한 기하학적 구조를 평가하는 데 유용한 도구가 되었습니다.
주조의 복잡성이 증가함에 따라, 게이팅 및 피딩 시스템 및 적절한 다이 온도 관리가 최적화되어 있음에도 불구하고, 대부분의 경우 절삭유 부족으로 인한 다공성 수축이 불가피합니다. 고압 및 영구 몰드 주조에서 수축 다공성을 감소시키기 위해 국부적으로 금속을 압착하는 데 압착 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 압착의 타이밍과 위치에 따라 크게 좌우됩니다. 이러한 실제 시나리오를 예측하기 위해 스퀴즈 핀 모델이 FLOW-3D 버전 11.1 및 FLOW-3D Cast v4.1에서 개발되어 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움을 줍니다.
주조물의 복잡성이 증가함에 따라 최적화된 탕구계 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고, 많은 부품에서 불량한 공급으로 인한 수축 다공성이 불가피한 경우가 많습니다.
고압 및 영구 금형 주물에서는 squeeze 핀을 사용하여 금속을 국부적으로 눌러 수축 다공성을 낮추는 경우가 많습니다. 단, squeeze 핀의 효과는 그 배치와 가압 시기에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D에서 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는데 도움이 되는 스퀴즈 핀 모델이 개발되었습니다 .
Squeeze Pin Model in FLOW-3D
스퀴즈 핀 모델은 규정 된 moving objects model 을 기반으로하며 열 전달 및 응고 역학 고려 사항을 기반으로하는 단순 수축 모델과 함께 작동합니다. 활성화되면 스퀴즈 핀이 인접한 액체 금속의 수축량을 감지하고 해당 부피를 정확하게 보정하기 위해 이동합니다. 스퀴즈 핀은 최대 허용 거리를 벗어나거나 표면에 너무 많은 굳은 금속을 만나면 멈 춥니 다. 핀에 대한 힘을 정의 할 수 있으며 금속 압력으로 변환됩니다. 그 압력은 thermal stress evolution 및 미세 다공성 모델과 함께 사용할 수 있습니다 .
스퀴즈 핀의 활성화 타이밍은 모델의 구성 요소입니다. 이 모델은 몇 가지 유연한 활성화 제어를 제공합니다. 스퀴즈 핀은 Active Simulation Control 이벤트에 의해 사용자가 지정한 시간에 활성화되거나 자동으로 활성화되도록 설정할 수 있습니다. 후자의 경우 다음 조건이 충족되면 스퀴즈 핀이 활성화됩니다.
핀은 액체 영역에 인접 해 있습니다.
핀 사이의 경쟁을 피하기 위해 핀이 인접한 액체 경로를 통해 다른 핀에 연결되어 있지 않습니다.
인접한 액체 영역에는 게이트가 응고 된 금속으로 밀봉되기 전에 금속이 캐비티 밖으로 밀려 나올 수있는 자유 표면이 없습니다.
자동 활성화 제어는 핀의 정확한 타이밍을 알 수없는 설계 단계에서 유용합니다. 이 경우 핀 활성화 시간은 모델 출력의 일부입니다.
버전 11.1의 새로운 기능인 Active Simulation Control을 사용하여 다이캐스팅 기계에서 실제 스퀴즈 핀 제어 시스템을 모방 할 수 있습니다. 이를 통해 사용자는 주조의 다른 부분에있는 솔루션을 기반으로 핀 타이밍에 더 많은 제어 및 개선을 추가 할 수 있습니다.
Squeeze Pin Model Applications
주물에서 공급이 어려운 부분의 다공성을 줄이거 나 제거하는 스퀴즈 핀의 효과 시뮬레이션
숏 슬리브 피스톤은 응고 수축을 보상하고 강화 압력을 적용하기 위해 응고 중에 스퀴즈 핀으로 정의 할 수 있습니다.
기존 스퀴즈 핀 설계 검증
스퀴즈 핀 배치 최적화
스퀴즈 핀 활성화 타이밍 최적화
실제 다이캐스팅 기계에서 스퀴즈 핀 제어 검증 및 최적화
Sample Results
2-캐비티 고압 다이 캐스트에 대한 사례 연구가 수행되었습니다. 두 세트의 시뮬레이션이 실행되었습니다. 하나는 스퀴즈 핀이없는 것이고 다른 하나는 스퀴즈 핀이있는 것입니다. 스퀴즈 핀의 구성은 그림 1에 나와 있습니다. 스퀴즈 핀은 두 개의 주조 부품 각각의 중앙에 배치됩니다. 이 스퀴즈 핀은 자동으로 활성화되도록 설정됩니다. 플런저는 충전 완료 즉시 활성화되도록 설정되는 압착 핀으로도 정의됩니다. 결과 수축 분포는 그림 2에 나와 있습니다. 스퀴즈 핀에 의한 수축 감소는 주물 중앙과 비스킷 중앙에서 분명합니다. 두 시뮬레이션의 총 매크로 수축도 비교되고 그림 3에 그려져 있는데, 이는 스퀴즈 핀에 의한 극적인 수축 감소를 정량적으로 보여줍니다.
핀 활성화 시간은 그림 4와 같이 화면, HD3MSG, HD3OUT 및 REPORT 파일에 기록됩니다. 시간 정보는 고압 다이캐스팅 기계에서 스퀴즈 핀 제어 매개 변수로 직접 사용할 수 있습니다. 또한 각 스퀴즈 핀의 이동 거리와 변위량도 일반 이력 데이터에 기록되어 각 스퀴즈 핀의 효과를 확인하는 데 사용할 수 있습니다. 그림 5와 같이 각 스퀴즈 핀의 이동 거리가 표시됩니다. 플런저는 미리 정해진대로 시뮬레이션 시작시 즉시 움직이고, 플런저 근처가 마지막 응고 영역이고 가장 큰 수축을 생성한다는 사실로 인해 가장 멀리 그리고 가장 길게 움직이는 것을 볼 수 있습니다. 두 개의 주조 부품 각각의 중앙에 정의 된 두 개의 스퀴즈 핀이 동시에 활성화됩니다.주조 및 압착 핀 구성의 대칭으로 인해 거의 동일한 거리를 이동했습니다.
Figure 3. Macro-shrinkage volume comparison with and without squeeze pins.
Figure 4. The output of the pin’s activation in HD3MSG file.
Figure 5. The traveled distance of each squeeze pin.
주조의 복잡성이 증가함에 따라 최적화된 게이팅 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고 공급 불량으로 인한 수축 다공성은 종종 큰 부품 섹션에서 불가피합니다. 고압 및 영구 주형 주조에서 수축 공극률을 줄이기 위해 금속을 국부적으로 누르는데 스퀴즈 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 위치와 가압 타이밍에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D 에서 스퀴즈핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움 이되는 스퀴즈핀 모델이 개발되었습니다 .
열 다이 사이클링 시뮬레이션에서 다이의 온도 분포를 정확하게 예측하려면 스프레이 냉각의 공간 변화를 모델링해야 합니다. 새로운 다이 스프레이 냉각 모델은 이러한 목적으로 개발되었으며 현재 FLOW-3D의 최신 버전에서 사용할 수 있습니다. 이 모델은 전체 다이 캐비티에 걸쳐 일정한 열 전달 계수를 가정하는 대신 각 스프레이의 냉각을 명시적으로 계산합니다. 다이 표면의 스프레이 영역은 스프레이 노즐의 움직임으로 인해 지속적으로 계산되고 업데이트됩니다. 또한 모델은 분무되는 유체의 차단을 고려하여 살수 각도와 다이 표면의 형태로 인해 냉각에 미치는 영향을 고려한다. 새로운 모델은 안정적이고 현실적인 입력 매개 변수를 사용하여 다이 표면에 정확한 온도 분포를 제공하여 엔지니어가 냉각 프로세스를 보다 효율적으로 설계하고 최적화하여 핫 스팟을 제거할 수 있도록 도와 줍니다.
스프레이 구역 계산 / Spray Area Computation
새 모델에서는 다이 표면의 형상과 분무 노즐 위치가 살수 냉각에 미치는 영향을 고려합니다. 아래 그림과 같이 다이 표면에 분사되는 일부 영역은 막히고 일부 영역은 2개 이상의 스프레이로 덮여 있습니다. 이러한 영역은 다양한 스프레이 냉각 효과를 구별하기 위해 광선 추적 알고리즘을 사용하여 계산하고 식별합니다. 스프레이 영역은 FlowSightTM에서 시각화할 수 있으며, 스프레이 냉각을 통해 유닛 영역별로 제거된 총 분사 시간 및 총 열 등의 다른 특성도 확인할 수 있습니다.
열 전달 계수 결정 / Heat Transfer Coefficient Determination
스프레이 냉각 메커니즘은 복잡하며 스프레이 냉각 열전달 계수 (HTC)는 스프레이 모양, 냉각수 유량, 스프레이 압력, 금형 온도, 스프레이 각도 및 스프레이 거리와 같은 다양한 변수에 따라 달라집니다. 스프레이 냉각 HTC 계산을 단순화하기 위해, 모든 스프레이 표면 요소에 대해 HTC는 기본 요소 HTC에 종속 요소 (예 : 원추형 스프레이)를 곱하여 계산됩니다.
스프레이 냉각 메커니즘은 복잡하며, 스프레이 냉각 열 전달 계수(HTC)는 스프레이 형태, 냉각수 유량, 스프레이 압력, 금형 온도, 스프레이 각도, 스프레이 거리 등 다양한 변수에 따라 달라집니다. 스프레이 냉각 HTC의 계산을 단순화하기 위해 모든 스프레이 표면 요소에 대해 HTC는 기본 HTC에 원뿔형 스프레이의 경우와 같은 의존성 요인을 곱한 후 계산됩니다.
여기에서
0HTCHTC는 노즐이 지정된 거리에서 몰드에 분사할 때 기본 스프레이 열 전달 계수입니다. 기준 열 전달 계수는 분무 콘의 특성, 살수 매체 및 살수 압력 등에 따라 달라지며, 주형 표면 온도의 함수입니다.
dff는 거리 d종속 인자 함수이다.
bff는 살수 각도β의존적 인자 함수이다.
eff는(표면 법선과 살수 방향 사이의)살수 각도이며, Eu의존적 인자 함수이다.
스프레이 거리 d와 스프레이 각도 β 및 ε의 의미는 아래 그림과 같습니다
기본 열 전달 계수 및 의존 계수 함수는 이론 또는 경험으로부터 유도 된 실험 측정으로부터 곡선 맞춤을 할 수 있습니다. 스프레이가 원추형이 아닌 경우 종속 요소가 다를 수 있습니다.
스프레이 노즐 정의 / Spray Nozzles Definition
분무 노즐은 뱅크로 분류된다. 동일한 뱅크의 노즐은 스프레이 콘 각도와 같은 특성을 가지고 있다. 또한, 동일한 살수 매체 온도와 동일한 그룹의 다이 구성 요소에 분사하고, 동일한 상태 제어 표를 공유하며, 동일한 열 전달 계수 기능을 가진다.
모든 스프레이 노즐 뱅크는 사실상 동일한 로봇 암에 장착됩니다. 로봇 암의 변환 및 회전 이동은 FLOW–3D 에서 지정할 수 있습니다. 모션 데이터가 외부 파일에 저장된 경우 외부 파일에서 가져오거나 연결할 수 있습니다. 스프레이 기계에 프로그래밍된 제어 데이터를 모델에 직접 사용할 수 있기 때문에 외부 파일을 가져오거나 연결할 수 있으면 입력이 상당히 간단해 집니다.
노즐 속성은 노즐 데이터베이스에서 직접 읽을 수 있습니다. 열 전달 계수 기능은 스프레이 콘 각도를 포함한 스프레이 콘 특성에 따라 달라지기 때문에 노즐 데이터베이스에 포함된 모든 노즐 특성의 일부입니다. 데이터베이스에 노즐이 정의되어 있지 않으면 그 속성을 직접 입력할 수 있습니다. 열 전달 계수 기능은 상수이거나 표로 정의할 수 있습니다. 다른 테이블 입력과 마찬가지로 데이터를 외부 파일에 연결할 수 있습니다. 동일한 노즐을 자주 사용하는 경우 재료 데이터베이스에 새 재료를 추가하는 것과 유사하게 해당 특성을 노즐 데이터베이스에 쉽게 추가할 수 있습니다.
각 노즐에 대해 스프레이 출처 및 엔드 좌표 또는 스프레이 방향을 정의해야 합니다. 노즐 위치가 미리 설계되어 있고 데이터를 사용할 수 있거나 노즐 수가 상대적으로 많을 경우 외부 파일에서 이 위치를 읽을 수 있습니다. 노즐 수가 적으면 위치를 대화식으로 선택하고 표 형식으로 입력할 수 있습니다.
Sample Results
새로운 모델의 성능과 다이 스프레이 프로세스를 명시적으로 시뮬레이션하는 것의 중요성을 입증하기 위해 사례 연구가 수행되었습니다. 이는 큰 치수와 얇은 벽 두께를 가진 차량 구조 부품의 생산에 기초한다. 이젝터 다이의 다이 표면 안에 세개의 열전대가 배치됩니다. 위치는 다음 그림에 나와 있습니다. 첫번째 열전대는 주조 영역의 다이 표면에 배치됩니다. 두번째 열전대는 캐비티 밖에서 정의됩니다. 따라서 용해된 부분은 접촉하지 않지만 분사 과정 중에는 냉각되는 부분이 있습니다. 세번째 열전대는 비스킷에 있는데, 이것은 다이 내부의 핫 스폿입니다.
시뮬레이션은 5개의 사이클을 기반으로 하며, 각 사이클은 응고, 방출, 스프레이 냉각 및 주거라는 4개의 세그먼트로 정의됩니다. 전체 다이 캐비티에 걸쳐 일정한 열 전달 계수를 가정하는 암시적 다이 스프레이 냉각 시뮬레이션에서는 실제 공정 값을 사용할 수 없으므로 항상 스프레이의 평균 시간을 추정하기가 어렵습니다. 이 사례 연구에서는 열전대 1의 온도가 측정과 일치하도록 평균 시간을 추정하고 조정합니다. 반대로 각 스프레이 노즐의 냉각을 명시적으로 시뮬레이션하는 새로운 스프레이 냉각 모델의 경우, 실제 분사 프로세스에는 모든 시간 값이 포함되어 있어 시뮬레이션에 직접 전달될 수 있습니다. 이는 새로운 다이 스프레이 냉각 모델의 장점 중 하나입니다.
아래의 첫번째 애니메이션은 스프레이 냉각 중 다이 표면의 스프레이 영역을 보여 줍니다. 두번째 애니메이션은 다섯번째 주기에서 스프레이 냉각 중의 다이 표면 온도를 보여 줍니다. 글로벌 스프레이 및 핫 스팟 스프레이의 효과를 명확하게 확인할 수 있습니다.
Spray area during spray cooling. Simulation courtesy of Audi AG.
Die surface temperature at the fifth cycle of spray cooling. Simulation courtesy of Audi AG.
다섯번째 사이클 동안 세개의 열전대 온도가 다음 그림에 표시되어 있습니다. 실선은 암시적 모델의 결과를 나타내고 점선은 새로운 다이 스프레이 냉각 모델의 결과를 나타냅니다. 사이클이 끝날 때 세개의 열전대의 온도 차이도 표시됩니다. 암시적 모델에서 열전대 1의 온도를 일치시키기 위해 비스킷 영역이 지나치게 냉각되어 열전대 3에서 다이 온도의 90°C차이가 발생한다는 것을 알 수 있습니다. 이는 극적인 차이입니다. 다이 캐스터의 경우 비스킷의 온도는 다이 캐스팅 프로세스에서 매우 민감한 온도입니다. 사이클이 끝날 때 캐비티(열전대 2)외부의 온도 차이는 20°C입니다. 이러한 값은 실제 공정에서 우수한 품질의 주물이 생산되거나 사출 중에 다이에 응고되는지 여부를 결정합니다. 다이 스프레이 냉각 프로세스의 명확한 시뮬레이션은 정확한 다이 온도 분포를 예측하는 데 매우 중요합니다.
Conclusions
새로운 다이 스프레이 냉각 모델은 몰드 표면 형태의 영향과 스프레이 노즐의 위치 및 움직임을 고려하여 FLOW-3D 사용자에게 다이 준비의 모든 측면을 모델링 할 수 있는 능력을 제공합니다. 또한 열 다이 사이클 시뮬레이션을 위한 신뢰할 수 있고 사실적인 입력 파라미터를 사용하여 다이 표면의 정확한 온도 분포를 정확하게 예측할 수 있습니다. 이를 통해 금속 주물 엔지니어는 다이의 내부 냉각 구조와 스프레이 냉각 매개 변수를 보다 효율적으로 설계하고 평가할 수 있습니다.
References
Müller, et al., A die spray cooling model for thermal die cycling simulations, Transactions of NADCA 2015 Die Casting Congress & Exposition, Indianapolis, T15-101, 2015
FLOW-3D 의 고객들은 끊임없이 자신의 설계 및 제조 공정을 개선하기 위하여 시뮬레이션을 사용한 결과와 실제를 비교 검증을 하고 있습니다.
Ladle Pour Simulation
Shot sleeve 공정을 최적화하는 것은 제품 품질을 보장하는 데 매우 중요합니다. FLOW-3D의 시뮬레이션 결과와 실제 사례 간의 비교는 시뮬레이션을 사용하여 엔지니어가 고가의 금형을 제조하기 전에 디자인을 향상시킬 수 있는 방법을 강조합니다. FLOW-3D의 GMO 기능을 이용하여 사용자는 전체 공정을 따라 실제 ladle로부터 fast shot까지 유체의 움직임을 정확하게 포착 할 수 있습니다. Simulation courtesy of Mr. Antoni Drys from Nemak Poland Sp. z o.o
Gravity Casting Validation
A gravity casting simulation compared with the reconstruction of the real filling, based on thermocoupled data. Courtesy of XC Engineering and Peugeot PSA.
Foundry: Simulating a Flow Fill Pattern
X 레이 사진 및 FLOW-3D 충전 시뮬레이션 비교표입니다. A356 알루미늄 합금으로의 사형 주형의 3 차원 중력 충진양상이고, legend 색은 용탕의 압력입니다. 시뮬레이션 결과는 대칭의 수직면에 나타나고 있습니다. X-rays courtesy of Modeling of Casting, Welding, and Advanced Solidification Processes VII, London, 1995.
X-ray validation of a sand mold filling
HPDC: Flow Pattern
Short shot compared to simulation results show good correlation. Courtesy of Littler Diecast Corporation.
Short sleeve validation – simulation versus casting part
HPDC Validation Showing Air Entrapment Defects
FLOW-3D의 Air Entrapment model을 사용하여 나온 시뮬레이션과 실험결과를 보여줍니다. 이는 세탁기 용 전동 모터에 대한 프론트 커버의 HPDC 결과입니다. 공기 관련 결함은 이미지의 컬러 형태로 정성적으로 표시됩니다. FLOW-3D 내의 다른 수치 기능에 의해 물리적인 air pocket도 명확하게 포착됩니다.
Successful comparison of casting simulation versus experimental results courtesy of Antrametal.
Modeling Air Entrapment
디젤 엔진 용 오일 필터 하우징(380 다이 캐스트 합금.)의 X 선 검증 사례입니다. X 선에 대한 자세한 영역은 최대 porosity concentration를 나타냅니다.
X-ray vs. FLOW-3D Cast validation of an oil filter housing for a diesel engine.
Simulation vs. Short Shot
Validation snapshots of actual casting parts vs. FLOW-3D simulations. From left to right: A transmission housing, an oil pan and an auto part.
Validating a High Pressure Die Casting Filling
HPDC casting validation comparing FLOW-3D results to the actual part
Predicting Die Erosion
The area of die erosion due to cavitation was correctly located in a comparison of FLOW-3D results to a real-world case.
Core Drying Validation
A comparison made by BMW between simulation and experiment of the drying of an inorganic core.
Predicting Lost Foam Filling
Comparison of real time X-ray and FLOW-3D metal flow simulation results on a lost foam L850 Block Bulkhead Slice. Simulation courtesy of GM Powertrain.
FLOW-3D의 모델링 기능은 쉽게 주조 엔지니어로 하여금 core shooting과 core drying 등과 같은 core 생성공정을 시뮬레이션 할 수 있게 합니다.
Core Shooting
Sand core는 주형에 모래와 공기 혼합물을 불어 넣음으로써 제조됩니다. 주조 엔지니어의 목적은 모래 안의 공기 갇힘을 방지하고, 우수한 안정성을 가진 코어를 만들기 위해서 충분한 packing을 가지는 균질한 모래 분포를 달성하는 것입니다. FLOW-3D의 모델링 기능은 사용자가 공기 탈출을 통해서 venting nozzle 의 개수와 위치를 변경함으로써 취입되고,이를 통해 최적의 노즐 구성을 얻을 수 있게 합니다.
Core Drying
Core drying 모델은 core die에 모래가 취입 된 후 남아 있는 수분의 과도 건조(transient drying ) 해석을 수행합니다. 일반적으로, 건조 과정은 코어를 통해 뜨거운 공기를 다이에 불어 넣음으로써 수행됩니다. 가열 시뮬레이션 하는 동안 수분 증발과 코어의 차가운 부분에서의 수분의 임시 응축 등은 건조 공정을 최적화 하는 데 이용됩니다. 이는 가열과 공기의 송풍과 연관되어 에너지 비용을 최소화 하면서 완전한 건조를 보장합니다.