Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Figure 3. Flow velocity on seawall in A2-3 modeling.

Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3D Software

Open Journal of Marine Science
Vol.06 No.02(2016), Article ID:65874,6 pages
10.4236/ojms.2016.62026

FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링

Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4
1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2Department of Marine Structures, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3Iran National Center for Oceanography and Atmospheric Sciences, Tehran, Iran
4Department of Civil Engineering, Excellence in Education Center of Jihad University of Khuzestan, Ahvaz, Iran
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.

Keywords: 플로우 속도, 방파제 크라운, 모델링, Flow Velocity, Seawall Crown, Modeling, FLOW-3D

1. 소개

방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].

2. 연구 역사

여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .

3. 재료 및 방법

이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.

표 1. 변수지정.

4. 숫자 모델

FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.

이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.

물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].

그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.

다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.

5. 결과

다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.

언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.

그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가

그림 1. A1 모델링의 방파제의 흐름 속도.

그림 2. A2-1 모델링의 방파제의 흐름 속도.

Figure 3. Flow velocity on seawall in A2-3 modeling.

그림 4. A3-1 모델링의 방파제의 흐름 속도.

그림 5. 방파제 유형 A(61° 경사)의 흐름 속도 의 변화.

그림 6. 방파제 형 B (56 ° 경사)의 흐름 속도의 변화.

그림 7. 방파제 유형 C(51° 경사)의 흐름 속도 의 변화.

그림 8. 방파제 유형 D(45° 경사)의 흐름 속도 변경입니다.

해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.

6. 결론

Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10
cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20
cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.

또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.

이 논문 인용

메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026

참조

  1. 1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  2. 2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York.   [Citation Time(s):1]
  3. 3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam.   [Citation Time(s):1]
  4. 4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual.
    http://www.overtopping-manual.com/manual.html?   [Citation Time(s):1]
  5. 5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771.   [Citation Time(s):1]
  6. 6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London.   [Citation Time(s):1]
  7. 7. Fenton, J.D. (1988) The Numerical Solution of Steady Water Wave Problems. Computers & Geosciences, 14.
    http://dx.doi.org/10.1016/0098-3004(88)90066-0   [Citation Time(s):1]
  8. 8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  9. 9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall.   [Citation Time(s):1]
  10. 10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague.   [Citation Time(s):1]
A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*Shin Taek Jeong,**Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University
고동휘*, 정신택,**, 오남선***

*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과

Abstract

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords 세굴일방향 흐름왕복성 조류 흐름해상 자켓구조물FLOW-3D최대 세굴심, scouruni-directional flowbi-directional tidal current flowoffshore jacket substructureFlow-3Dmaximum scour depth

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

1. 서 론

최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009)ABS(2013)BSH(2007)MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010)CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.

2. 수치해석 모형

본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.

2.1 FLOW-3D의 지배방정식

수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.

2.1.1 연속방정식

직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.

(1)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.

2.1.2 운동방정식

본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.

(2)

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu

(3)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv

(4)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw여기서, RSOR은 질량생성/소멸(Mass source/sink)항, VF는 체적비 (Volume fraction), p는 압력, Gx, Gy, Gz는 방향별 체적력항, fx, fy, fz는 방향별 점성력항, bx, by, bz는 다공질 매체에서 방향별 흐름 손실이다.그리고 점성계수 µ에 대하여 점성력항은 다음 식 (5)~(7)과 같다.

(5)

ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}

(6)

ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}

(7)

ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.

(8)

τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(9)

τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(10)

τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(11)

τxy=−μ{∂v∂x+R∂u∂y−ζvx}τxy=−μ{∂v∂x+R∂u∂y−ζvx}

(12)

τxz=−μ{∂u∂y+∂w∂x}τxz=−μ{∂u∂y+∂w∂x}

(13)

τyz=−μ{∂v∂z+R∂w∂y}τyz=−μ{∂v∂z+R∂w∂y}

2.1.3 Sediment scour model

Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.

2.1.3.1 The critical Shields parameter

무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).

(14)

θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.

(15)

R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.

(16)

θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.

(17)

θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.

2.1.3.2 동반이행(Entrainment)과 퇴적

다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.

(18)

ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.

(19)

d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.

(20)

usettling,i=νfds,i[(10.362+1.049d3∗)0.5−10.36]usettling,i=νfds,i[(10.362+1.049d*3)0.5−10.36]여기서, νf는 유체의 운동점성계수이다.

2.1.3.3 하상이동 모델(Bedload transport)

하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.

(21)

Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.

(22)

qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.

(23)

δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.

(24)

ubedload,i=qb,iδifb,iubedload,i=qb,iδifb,i

2.2 모델 구성 및 해역 조건

2.2.1 해역 조건 및 적용 구조물

본 수치해석은 위도와 안마도 사이의 해양 조건을 적용하였으며 지점은 Fig. 1과 같다.

jkscoe-27-6-373f1.gifFig. 1.Iso-water depth contour map in western sea of Korea.

본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.

jkscoe-27-6-373f2.gifFig. 2.A photo of HeMOSU-1.

2.2.2 모델 구성

본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.

jkscoe-27-6-373f3.gifFig. 3.Comparison of current speed conditions.

2.2.3 구조물 형상 및 격자

HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.

jkscoe-27-6-373f4.gifFig. 4.3 Dimensional plot of jacket structure.
Table 1.

Grid information of jacket structure

Xmin/Xmax(m)Ymin/Ymax(m)Zmin/Zmax(m)No. of x gridNo. of y gridNo. of z grid
−100/100−40/40−9/2031015560
Download Table

한편, 계산영역의 격자 형상은 Fig. 5와 같다.

jkscoe-27-6-373f5.gifFig. 5.3 dimensional grid of jacket structure.

2.3 계산 조건

계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.

Table 2.

Basic information of two scour simulation tests

CaseStructure typeVelocityDirectionAnalysis time
Case 1Jacket1 m/sUnidirectional10,000 sec
Case 2−1~1 m/sBidirectional
Download Table

FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to : Goto

3. 수치모형 실험 결과

3.1 Case 1

본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.

jkscoe-27-6-373f6.gifFig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f7.gifFig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).

이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.

jkscoe-27-6-373f8.gifFig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.

일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.

jkscoe-27-6-373f9.gifFig. 9.Scour phenomenon around jacket substructure(Case 1).

3.2 Case 2

서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.

jkscoe-27-6-373f10.gifFig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f11.gifFig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).

양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.

jkscoe-27-6-373f12.gifFig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.

Fig. 13은 3차원 수치해석 모의 결과이다.

jkscoe-27-6-373f13.gifFig. 13.Scour phenomenon around jacket substructure(Case 2).

3.3 현장 관측

본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.

jkscoe-27-6-373f14.gifFig. 14.Time series of tidal data at Wido (2013.7.1).

2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.

jkscoe-27-6-373f15.gifFig. 15.Iso-depth contour map around HeMOSU-1.

대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to : Goto

4. 결론 및 토의

본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : GotoInternational Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

감사의 글

본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to : Goto

References

American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.

API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.

Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.

Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.

FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.

International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.

Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean).

Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean).

KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).

Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.

U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.

van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.

Figure 7. Formation of incident and reflected waves.

Investigate Impact Force of Dam-Break Flow against Structures by Both 2D and 3D Numerical Simulations

2D 및 3D 수치 시뮬레이션에 의한 댐 붕괴유동의 구조물 충격력 조사

1 Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Ha Noi 116705, Vietnam
2 Hydraulic Construction Institute, 3/95 Chua Boc, Dong Da, Ha Noi 116705, Vietnam
* Author to whom correspondence should be addressed.
Academic Editor: Costanza Aricò
Water 2021, 13(3), 344;

Abstract

본 논문의 목적은 일부 2D 및 3D 수치 모델이 침수 지역에 고립된 건물 또는 건물 배열이 있는 곳에서 홍수 파동을 시뮬레이션하는 능력을 조사하는 것이었습니다.

먼저, 제안된 2D 수치 모델은 구조화된 메시에서 2D 얕은 물 방정식(2D-SWEs)을 해결하기 위한 유한 볼륨 방법(FVM)을 기반으로 했습니다.

FDS (flux-difference splitting)은 정확한 질량 균형을 얻기 위해 사용되었고 Roe 체계는 Riemann 문제를 근사하기 위해 호출되었습니다.

둘째, 상업적으로 이용 가능한 3D CFD 소프트웨어 패키지가 선택되었으며, 여기에는 두 가지 난류 모델이 포함된 Flow 3D 모델이 포함되어 있습니다.

RNG(Renormalized Group) 및 LES(Large-eddy Simulation)를 사용하는 레이놀즈 평균 Navier-Stokes(RAN)입니다. 댐 붕괴 흐름으로 인한 장애물에 대한 충격력의 수치 결과는 3D 솔루션이 2D 솔루션보다 훨씬 낫다는 것을 보여주었습니다.

건물 배열에 작용하는 충격력의 3D 수치 힘 결과를 보유하고 있는 실험 데이터와 비교함으로써, 속도 유도력이 동적 힘에 미치는 영향은 Froude 숫자의 함수와 사고 파동의 수심 함수에 의해 정량화 되었습니다. 또한, 우리는 힘의 강도의 피크 값의 3D 계산 결과에 대한 초기 물 단계와 댐 붕괴 폭의 영향을 조사했습니다.

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.

Keywords: dam-break wave2D numerical modelFlow 3D modelstructuresimpact force

Introduction

홍수 위험 분석에 따른 도시 계획은 최근에 큰 연구 과제였습니다.

건물 또는 건물 그룹에 대한 홍수 파동의 영향에 대한 연구는 하류 지역에 대한 조기 경고 또는 안전 의식 향상에 중요한 역할을 했습니다. 기본적으로 댐 파괴 흐름에 대한 연구는 실험 측정이나 수치 시뮬레이션을 통해 추정 할 수 있습니다 [1,2,3,4,5,6].

컴퓨터 처리 능력의 증가로 인해 불연속 흐름에 대한 수치 연구가 비용 효율적이되었습니다. 지난 10 년 동안 얕은 물 솔버는 정확성과 계산 능력면에서 크게 향상되었습니다. 침수 가능 지역의 수심 및 속도 프로파일과 같은 유체 역학적 매개 변수에 많은주의를 기울였습니다 [1,2,3,4,5,6,7,8].

Migot et al. [9]는 도시 홍수의 실험적 모델링에 관한 많은 기사를 검토했습니다. 그 논문에 언급 된 45 개의 작품 중 단 4 개의 프로젝트 만이 장애물에 가해지는 일정한 또는 비정상적인 흐름의 힘 또는 압력을 측정했습니다.

또한 물리적 및 2D 수치 모델에서 건물 또는 건물 그룹에 돌발 홍수가 미치는 영향에 대한 연구는 거의 없었습니다. 얕은 물 모델은 [10,11]에서 고립된 장애물에 대한 충격의 힘을 예측하는데 사용되었습니다.

한편 Shige-eda [12]는 액체와 건물 배열 간의 상호 작용을 결정하기 위해 물리적 모델과 2D 수치 체계를 선택했습니다. Aureli와 Shige-eda는 수직 속도와 가속도를 무시하기 때문에 댐 파괴 흐름의 힘을 추정하기 위한 2D 얕은 물 방정식 (SWE)의 단점을 보여주었습니다 [10,12].

Migot [9]은 또한 장애물 주변의 시뮬레이션된 홍수 흐름에 대한 2D SWE에 대한 여러 출판물이 있었지만 이 주제에 대한 3D 수치 모델에 대한 연구는 거의 없다고 지적했습니다. 최근 전산 유체 역학 (CFD) 3D 시뮬레이션은 유체 흐름과 관련된 문제를 해결하기위한 광범위한 도구가되었습니다.

댐 파괴 파의 특성은 [13,14,15,16]에 의해 주목되었고 Issakhov [17]는 다양한 종류의 장애물이 압력 분포에 미치는 영향을 조사하기 위해 CFD 방법을 사용했습니다. 그들은 분포가 댐 표면에서 3 배 더 낮다는 것을 밝혔다.

Aureli [10]는 댐 파괴 파가 구조물에 미치는 영향의 정적 힘을 평가하기 위해 실험 테스트와 2D 및 3D 수치 모델을 사용했습니다. Mokarani [18]는 댐 브레이크 흐름 영향의 VOF 시뮬레이션에서 피크 압력 안정성 조건을 연구했습니다.

앞서 언급한 작품에서 구조물이나 구조물 군에 작용하는 힘은 압력에 의한 정 수력 또는 정력이었다. 한편, 급류에서 속도로 인한 힘은 압력 력보다 크거나 같았습니다 [19]. Armanini [20]는 정상 흐름에 대해이 항을 추정하기 위한 분석적 표현 만을 제시했습니다. 우리가 아는 한, 건물 그룹에 작용하는 비정상 흐름의 동적 힘을 생성하기 위해 2D 및 3D 수학적 모델을 모두 사용하는 작업은 없습니다.

따라서 본 연구에서는 제안된 2D 수치 모델과 3D 수학적 모델 모두에 의해 고립 된 장애물 또는 장애물 그룹에 대한 급격한 비정상 흐름의 테스트 사례를 재현했습니다. 수심 및 유속 수문 그래프와 같은 몇 가지 수력 학적 특성이 추정되었으며 측정 된 데이터와 매우 잘 일치했습니다.

특히 댐 브레이크 흐름이 서로 다른 건물에 가하는 동적인 힘도 시뮬레이션했습니다. 속도 유도 힘이 동적 힘에 미치는 영향 수준을 나타내는 매개 변수는 Froude 수와 입사 파동의 수심의 함수인 것으로 밝혀졌습니다. 또한 붕괴된 댐 사이트 폭 (b)과 초기 수위 (h0)는 충격력의 최대 값에 영향을 미치는 변수로 고려되었습니다.

Figure 1. (a) Configuration of experiment test (dimension in meters); (b) Gauges on the vertical front face of building.
Figure 1. (a) Configuration of experiment test (dimension in meters); (b) Gauges on the vertical front face of building.
Figure 2. (a) Distributed pressure profiles at centerline of front face of column; (b) Comparison of load-time histories simulated by different numerical models
Figure 2. (a) Distributed pressure profiles at centerline of front face of column; (b) Comparison of load-time histories simulated by different numerical models
Figure 3. Group of buildings in flooded area.
Figure 3. Group of buildings in flooded area.
Figure 4. Water depth and u-velocity profiles at gauge b.
Figure 4. Water depth and u-velocity profiles at gauge b.
Figure 5. Water hydrographs at gauges a and c.
Figure 5. Water hydrographs at gauges a and c.
Figure 6. Velocity component profiles at gauges a and c.
Figure 6. Velocity component profiles at gauges a and c.
Figure 7. Formation of incident and reflected waves.
Figure 7. Formation of incident and reflected waves.
Figure 8. Snapshots of streamlines of Froude number at different times: 1.0 s, 2.0 s, 5.0 s and 10 s.
Figure 8. Snapshots of streamlines of Froude number at different times: 1.0 s, 2.0 s, 5.0 s and 10 s.
Figure 9. Force in the flow direction exerted on 6 buildings.
Figure 9. Force in the flow direction exerted on 6 buildings.
Figure 10. The linear regression between forces per unit width (F) and q2b/h0.
Figure 10. The linear regression between forces per unit width (F) and q2b/h0.

Conclusions

댐 붕괴 흐름으로 인한 홍수 파도는 높은 속도 또는 큰 깊이가 관련되었을 때 건물에 큰 영향을 미칩니다. 본 논문에서는 2D 및 3D 수치 모델의 건물 및 건물 그룹에 대한 빠른 흐름에 의해 발생하는 유압 특성과 충격 부하를 추정할 수 있는 능력을 조사했습니다. 얕은 물 방정식에 기초한 2D 수학 모델은 FDS 방법으로 해결되었으며, FDS 방법은 최신 버전의 Flow 3D 유체 역학 모델과 함께 사용되었습니다. 연구의 주요 발견은 다음과 같습니다.
(1) 수심 또는 속도 프로파일을 공식화하기 위해 2D 및 3D 수치 솔루션은 모두 매우 유사합니다. 제안된 2D 수치 모델은 정적 힘의 최대 값 뿐만 아니라 수심 및 속도 구성 요소를 포함하는 유압 특성을 예측하는 데 적합합니다. 그러나 LES 및 RAN 난류 모듈이 포함된 3D 유체역학 모델은 2D 얕은 흐름 모델이 1개만 제공하는 동안 두 개의 최고 충격 부하를 잘 포착할 수 있습니다. 일반적으로 3D 결과는 실험 결과와 더 가깝습니다.
(2) 여러 건물에 대한 정적 및 동적 힘은 모두 LES 모듈을 사용하여 Flow 3D에 의해 계산되었습니다. 건물에서 속도에 의한 힘과 압력의 역할은 위치에 따라 다릅니다. 댐 현장 근처에서, 속도 유도 힘은 댐 파괴 파동의 주 방향에서 멀리 떨어져 있거나 두 번째 배열에서 압력 힘이 더 중요합니다. 속도 유도 힘의 영향은 매개 변수 α에 의해 정량화되며, 이는 사고파의 Froude 숫자와 수심 함수로 수행됩니다. q2b/h0과 정적 힘과 동적 힘의 피크 강도 사이의 선형 회귀 관계는 합리적인 R-제곱 양으로 해결됩니다.

추가 연구에서, 제시된 2D 수치 모델의 견고성과 효과는 더 명확하게 드러날 것입니다. 대규모 도메인에 대한 홍수 흐름을 시뮬레이션하는 데 쉽게 적용할 수 있습니다. 또한, α 매개변수의 제안된 방정식(21)은 실제 사례 연구에서 다운스트림 영역의 건물에 대한 속도 유도 힘의 영향을 정확하게 평가하기 위한 매우 의미가 있습니다. 이 매개 변수의 정확도 수준을 높이려면 서로 다른 조건에서 장애물에 작용하는 여러 가지 힘 실험이 구현되어야 합니다.

References

  1. Testa, G.; Zuccala, D.; Alcrudo, F.; Mulet, J.; Frazao, S.S. Flash flood flow experiment in a simplifed urban district. J. Hydraul. Res. 200745, 37–44. [Google Scholar] [CrossRef]
  2. Soares-Frazao, S.; Zech, Y. Dam-break flow through an idealized city. J. Hydraul. Res. 200846, 648–665. [Google Scholar] [CrossRef]
  3. Soares-Frazão, S.; Zech, Y. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res. 200745, 27–36. [Google Scholar] [CrossRef]
  4. Soares-Frazão, S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res. 200745, 19–26. [Google Scholar] [CrossRef]
  5. di Cristo, C.; Evangelista, S.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. Dam-break waves over an erodible embankment: Experiments and simulations. J. Hydraul. Res. 201856, 196–210. [Google Scholar] [CrossRef]
  6. Evangelista, S. Experiments and numerical simulations of dike erosion due to a wave impact. Water 20157, 5831–5848. [Google Scholar] [CrossRef]
  7. Li, Y.L.; Yu, C.H. Research on dam break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng. 2019178, 442–462. [Google Scholar] [CrossRef]
  8. Özgen, I.; Zhao, J.; Liang, D.; Hinkelmann, R. Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity. J. Hydrol. 2016541, 1165–1184. [Google Scholar] [CrossRef]
  9. Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol. 2019568, 334–342. [Google Scholar] [CrossRef]
  10. Aureli, F.; Dazzi, A.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of the force due to the impact of a dam break wave on a structure. Adv. Water Resour. 201576, 29–42. [Google Scholar] [CrossRef]
  11. Milanesi, L.; Pilotti, M.; Belleri, A.; Marini, A.; Fuchs, S. Vulnerability to flash floods: A simplified structural model for masonry buldings. Water Resour. Res. 201854, 7177–7197. [Google Scholar] [CrossRef]
  12. Shige-eda, M.; Akiyama, J. Numerical and experimental study on two dimensional flood flows with and without structures. J. Hydraul. Eng. 2003129, 817–821. [Google Scholar] [CrossRef]
  13. Cagatay, H.O.; Kocaman, S. Dam break flows during initial stage using SWE and RANs approaches. J. Hydraul. Res. 201048, 603–611. [Google Scholar] [CrossRef]
  14. Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam break wave. Ocean Eng. 2018159, 358–371. [Google Scholar] [CrossRef]
  15. Robb., D.M.; Vasquez., J.A. Numerical simulation of dam break flows using depth averaged hydrodynamic and three dimensional CFD models. In Proceedings of the 22nd Canadian Hydrotechnical Conference, Ottawa, ON, Canada, 28–30 April 2015. [Google Scholar]
  16. Kocaman, S.; Evangelista, S.; Viccione, G.; Guzel, H. Experimental and Numerical analysis of 3D dam break waves in an enclosed domain with a single oriented obstacles. Environ. Sci. Proc. 20202, 35. [Google Scholar] [CrossRef]
  17. Issakhov, A.; Zhandaulet, Y.; Nogaeva, A. Numerical simulation of dambreak flow for various forms of the obstacle by VOF method. Int. J. Multiph. Flow 2018109, 191–206. [Google Scholar] [CrossRef]
  18. Mokarani, C.; Abadie, S. Conditions for peak pressure stability in VOF simulations of dam break flow impact. J. Fluids Struct. 201662, 86–103. [Google Scholar] [CrossRef]
  19. Liu, L.; Sun, J.; Lin, B.; Lu, L. Building performance in dam break flow—an experimental sudy. Urban Water J. 201815, 251–258. [Google Scholar] [CrossRef]
  20. Armanini, A.; Larcher, M.; Odorizzi, M. Dynamic impact of a debris flow front against a vertical wall. In Proceedings of the 5th international conference on debris-flow hazards mitigation: Mechanics, prediction and assessment, Padua, Italy, 14–17 June 2011. [Google Scholar] [CrossRef]
  21. Hubbard, M.E.; Garcia Navarro, P. Flux difference splitting and the balancing of source terms and flux gradients. J. Comput. Phys. 2000165, 89–125. [Google Scholar] [CrossRef]
  22. Roe, P.L. A basis for upwind differencing of the two-dimensional unsteady Euler equations. In Numerical Methods in Fluids Dynamics II; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
  23. Bradford, S.F.; Sander, B. Finite volume model for shallow water flooding of arbitrary topography. J. Hydraul. Eng. (ASCE) 2002128, 289–298. [Google Scholar] [CrossRef]
  24. Brufau, P.; Garica-Navarro, P. Two dimensional dam break flow simulation. Int. J. Numer. Meth. Fluids 200033, 35–57. [Google Scholar] [CrossRef]
  25. Hien, L.T.T. 2D Numerical Modeling of Dam-Break Flows with Application to Case Studies in Vietnam. Ph.D. Thesis, Brescia University, Brescia, Italy, 2014. [Google Scholar]
  26. Hien, L.T.T.; Tomirotti, M. Numerical modeling of dam break flows over complex topography. Case studies in Vietnam. In Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam, 21–24 September 2014; ISBN 978-604-82-1383-1. [Google Scholar]
  27. Flow-3D, Version 12.0; User Mannual; Flow Science Inc.: Santa Fe, NM, USA, 2020.
  28. Guney, M.S.; Tayfur, G.; Bombar, G.; Elci, S. Distorted physical model to study sudden partial dam break flow in an urban area. J. Hydraul. Eng. 2014140, 05014006. [Google Scholar] [CrossRef]
  29. Shige-eda, M.; Akiyama, J. Discussion and Closure to “Numerical and experimental study on two dimensional flood flows with and without structures” by Mirei Shige-eda and Juichiro Akiyama. J. Hydraul. Eng. 2005131, 336–337. [Google Scholar] [CrossRef]
  30. Ritter, A. Die Fortpflanzung der Wasserwelle (Generation of the water wave). Z. Ver. Dtsch. Ing. 189236, 947–954. [Google Scholar]
Figure 1. The bathymetry provided with the benchmark problem.

Performance Assessment of NAMI DANCE in Tsunami Evolution and Currents Using a Benchmark Problem

1Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
2Ocean Engineering Department, University of Rhode Island, Narragansett, RI 02882, USA
3Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
4Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod 603950, Russia
*
Author to whom correspondence should be addressed.
Academic Editor: Richard P. Signell
J. Mar. Sci. Eng. 20164(3), 49; https://doi.org/10.3390/jmse4030049
Received: 5 July 2016 / Revised: 2 August 2016 / Accepted: 12 August 2016 / Published: 18 August 2016

Abstract

쓰나미 진화, 전파 및 침수의 수치 모델링은 현상에 관련된 수많은 매개 변수로 인해 복잡합니다. 쓰나미 모션을 해결하는 숫자 코드의 성능과 흐름 및 속도 패턴을 평가하는 것이 중요합니다. NAMI DANCE는 긴 파도 모델링을 위해 개발된 계산 도구입니다.

쓰나미 생성, 전파 및 침수 메커니즘의 수치 모델링 및 효율적인 시각화를 제공하고 쓰나미 매개 변수를 계산합니다. 긴 파도 이론에서, 물 입자의 수직 움직임은 압력 분포에 영향을 미치지 않습니다.

이러한 근사치와 소홀히 하는 수직 가속을 기반으로 질량 보존 및 모멘텀 방정식은 2차원 깊이 평균 방정식으로 줄어듭니다. NAMI DANCE는 유한차 계산 방법을 사용하여 긴 파도 문제에서 선형 및 비선형 형태의 깊이 평균 얕은 수식을 해결합니다.

이 연구에서 NAMI DANCE는 미국 포틀랜드에서 열린 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 연례 회의에서 논의된 벤치 마크 문제에 적용됩니다.

벤치마크 문제는 하나의 독방 파도가 해양 섬 특징이 있는 삼각형 모양의 선반을 전파하는 일련의 실험을 특징으로 합니다. 이 문제는 섬 부근에서 상세한 무료 표면 고도 및 속도 의 타임 시리즈를 제공합니다. 결과를 비교한 결과, NAMI DANCE는 긴 파도 진화, 전파, 증폭 및 쓰나미 전류를 만족스럽게 예측할 수 있음을 보여주었습니다.

키워드: 수치 모델링;쓰나미 전류;깊이 평균 방정식;벤치마크,numerical modelingtsunami currentsdepth-averaged equationbenchmark

쓰나미는 해저 지진, 수중 산사태, 화산 폭발 또는 큰 운석 파업으로 인한 해저의 갑작스런 움직임에 의해 생성되는 큰 파도입니다. 쓰나미 파도는이 현상의 가장 파괴적인 매개 변수로 받아 들여진다; 그러나 큰 파도 움직임에 의해 트리거되는 전류는 경우에 따라 매우 치명적일 수 있습니다.

분지 공명 및 기하학적 증폭은 폐쇄 된 분지에서 쓰나미 영향의 지역 배율에 대한 두 가지 합리적으로 잘 이해된 메커니즘이며, 일반적으로 항구 또는 항구에서 쓰나미 위험 잠재력을 추정 할 때 조사 되는 메커니즘입니다. 반면에 전류에 대한 이해력과 예측 능력은부족하다[1]. 

이 연구는 수치 도구를 사용하여 쓰나미 진화, 전파 및 증폭뿐만 아니라 쓰나미 전류의 추정에 2 차원 깊이 평균 얕은 물 방정식의 충분성을 조사하는 것을 목표로; 즉 나미 댄스. 1970 년대 이후, 독방 파도는 일반적으로 실험 및 수학 연구에서, 쓰나미를 모델링하는 데 사용되었습니다[2]. 

이러한 점에서 수치 코드는 복잡한 목욕을 통해 단일 독방 파도의 진화와 전파에 초점을 맞춘 벤치마크 문제에 적용됩니다. 이 문제는 선반의 근해에 위치한 섬 특징이 있는 삼각형 모양의 선반을 전파할 때 단일 고독한 파도의 변형을 분석하는 일련의 실험을 설명합니다. 섬 부근에 형성되는 해류도 실험에서 조사된다.

이 연구에 사용된 벤치마크 문제는 미국 포틀랜드에서 개최된 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 워크샵의 벤치마크 문제 #5.3]. 벤치마크 데이터와 수치 결과를 비교하여 2차원 깊이 평균 얕은 수식은 쓰나미 파도 진화와 해류에 대해 만족스러운 결과를 제공하므로 쓰나미 완화 전략을 결정하는 동안 사용하기에 충분한 도구임을 관찰합니다.

Figure 1. The bathymetry provided with the benchmark problem.
Figure 1. The bathymetry provided with the benchmark problem.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.

References

  1. Lynett, P.J.; Borrero, J.C.; Weiss, R.; Son, S.; Greer, D.; Renteria, W. Observations and modeling of tsunami-induced currents in ports and harbors. EPSL 2012327, 68–74. [Google Scholar]
  2. Madsen, P.A.; Fuhrman, D.R.; Schaffer, H.A. On the solitary wave paradigm for tsunamis. J. Geophys. Res. 2008113. [Google Scholar] [CrossRef]
  3. NTHMP Mapping & Modeling Benchmarking Workshop: Tsunami Currents. Benchmark #5. Available online: http://coastal.usc.edu/currents_workshop/problems/prob5.html (accessed on 2 August 2016).
  4. Onat, Y.; Yalciner, A.C. Initial stage of database development for tsunami warning system along Turkish coasts. Ocean Eng. 201374, 141–154. [Google Scholar] [CrossRef]
  5. Kian, R.; Yalciner, A.C.; Aytore, B.; Zaytsev, A. Wave Amplification and Resonance in Enclosed Basins; A Case Study in Haydarpasa Port of Istanbul. In Proceedings of the 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement, St. Petersburg, VA, USA, 2–6 March 2015; Volume 11, pp. 1–7.
  6. Patel, V.M.; Dholakia, M.B.; Singh, A.P. Emergency preparedness in the case of Makran tsunami: A case study on tsunami risk visualization for the western parts of Gujarat, India. Geomat. Nat. Hazards Risk 20167, 826–842. [Google Scholar] [CrossRef]
  7. Yalciner, A.C.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H.; Ozyurt, G. Modeling and visualization of tsunamis: Mediterranean examples. In Tsunami and Nonlinear Waves, 1st ed.; Kundu, A., Ed.; Springer: Berlin, Germany, 2007; pp. 273–283. [Google Scholar]
  8. Synolakis, C.E.; Bernard, E.N.; Titov, V.; Kanoglu, U.; Gonzalez, F. Validation and verification of tsunami numerical models. PAGEOPH 2008165, 2197–2228. [Google Scholar] [CrossRef]
  9. Yalciner, A.C.; Zaytsev, A.; Kanoglu, U.; Velioglu, D.; Dogan, G.G.; Kian, R.; Sharghivand, N.; Aytore, B. NTHMP Mapping and Modeling Benchmarking Workshop: Tsunami Currents. Available online: http://coastal.usc.edu/currents_workshop/presentations/Yalciner.pdf (accessed on 2 August 2016).
  10. Ozer, C.; Yalciner, A.C. Sensitivity study of hydrodynamic parameters during numerical simulations of tsunami inundation. PAGEOPH 2011168, 2083–2095. [Google Scholar]
  11. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts. PAGEOPH 2014172, 931–952. [Google Scholar] [CrossRef]
  12. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A.; Suppasri, A.; Imamura, F. Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay. PAGEOPH 2015172, 3473–3491. [Google Scholar] [CrossRef]
  13. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation. In Proceedings of the 2015 American Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2015.
  14. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems. In Proceedings of the 2016 European Geosciences Union, Vienna, Austria, 17–22 April 2016.
  15. Dilmen, D.I.; Kemec, S.; Yalciner, A.C.; Düzgün, S.; Zaytsev, A. Development of a tsunami inundation map in detecting tsunami risk in Gulf of Fethiye, Turkey. PAGEOPH 2015172. [Google Scholar] [CrossRef]
  16. Heidarzadeh, M.; Krastel, S.; Yalciner, A.C. The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences, 6th ed.; Sebastian, K., Jan-Hinrich, B., David, V., Michael, S., Christian, B., Roger, U., Jason, C., Katrin, H., Michael, S., Carl, B.H., Eds.; Springer: Bern, Switzerland, 2013; Volume 37, pp. 483–495. [Google Scholar]
  17. Yalciner, A.C.; Gülkan, P.; Dilmen, D. I.; Aytore, B.; Ayca, A.; Insel, I.; Zaytsev, A. Evaluation of tsunami scenarios for western Peloponnese, Greece. Boll. Geofis. Teor. Appl. 201455, 485–500. [Google Scholar]
  18. Zahibo, N.; Pelinovsky, E.; Kurkin, A.; Kozelkov, A. Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation. Sci. Tsunami Hazards 200321, 202–222. [Google Scholar]
  19. Swigler, D.T. Laboratory Study Investigating the Three-dimensıonal Turbulence and Kinematic Properties Associated with a Breaking Solitary Wave. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 2009. [Google Scholar]
  20. National Tsunami Hazard Mitigation Program. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Available online: http://nws.weather.gov/nthmp/documents/nthmpWorkshopProcMerged.pdf (accessed on 21 July 2016).
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.

Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

NASA/TM—2010-216749

Kevin Breisacher and Jeffrey Moder
Glenn Research Center, Cleveland, Ohio

Prepared for the57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meetingsponsored by the JANNAF Interagency Propulsion CommitteeColorado Springs, Colorado, May 3–7, 2010

Abstract

극저온 추진제의 장기 공간 저장을 위해 축류 제트 믹서는 탱크 압력을 제어하고 열 층화를 줄이기위한 하나의 개념입니다. 1960 년대부터 현재까지 10 피트 이하의 탱크 직경에 대한 광범위한 지상 테스트 데이터가 존재합니다.

Ares V EDS (Earth Departure Stage) LH2 탱크 용으로 계획된 것과 같이 직경이 30 피트 정도 인 탱크 용 축류 제트 믹서를 설계하려면 훨씬 더 작은 탱크에서 사용 가능한 실험 데이터를 확장하고 미세 중력을 설계해야 합니다.

이 연구는 10 배 차이가 나는 2 개의 탱크 크기에서 기존의 지상 기반 축류 제트 혼합 실험의 시뮬레이션을 수행하여 이러한 규모의 변화를 처리하는 전산 유체 역학 (CFD)의 능력을 평가합니다. 저궤도 (LEO) 해안 동안 Ares V 스케일 EDS LH2 탱크에 대한 여러 축 제트 구성의 시뮬레이션이 평가되고 선택된 결과도 제공됩니다.

두 가지 탱크 크기 (직경 1 및 10 피트)의 물을 사용하여 General Dynamics에서 1960 년대에 수행한 제트 혼합 실험 데이터를 사용하여 CFD 정확도를 평가합니다. 제트 노즐 직경은 직경 1 피트 탱크 실험의 경우 0.032 ~ 0.25 인치, 직경 10 피트 탱크 실험의 경우 0.625 ~ 0.875 인치였습니다.

제트 믹서를 켜기 전에 두 탱크에서 열 층화 층이 생성되었습니다. 제트 믹서 효율은 층화 층이 섞일 때까지 탱크의 열전대 레이크의 온도를 모니터링하여 결정되었습니다. 염료는 층화된 탱크에 자주 주입되었고 침투가 기록되었습니다. 실험 데이터에서 사용 가능한 속도나 난류량은 없었습니다.

제시된 시뮬레이션에는 자유 표면 추적 (Flow Science, Inc.의 FLOW-3D)이 포함된 시판되고 시간 정확도가 높은 다차원 CFD 코드가 사용됩니다. 서로 다른 시간에 탱크의 다양한 축 위치에서 계산 된 온도와 실험적으로 관찰된 온도를 비교합니다. 획득한 합의에 대한 다양한 모델링 매개 변수의 영향을 평가합니다.

Introduction

Constellation 프로그램의 일부인 Ares V는 우주 비행사를 달로 돌려 보내도록 설계된 무거운 리프트 발사기입니다. Ares V 스택의 일부인 EDS (Earth Departure Stage)는 지구의 중력에서 벗어나 승무원 차량과 달 착륙선을 달로 보내는데 필요합니다.

이러한 차량의 질량과 달로 보내는 데 필요한 에너지 때문에 EDS의 액체 수소(LH2)와 액체 산소(LO2) 추진제 탱크는 매우 클 것입니다(직경 10m). 탱크 내부로의 환경적 열 누출로 인해 혼합 장치를 포함한 열역학적 환기 시스템(TV)은 설계 한계 내에서 탱크 압력을 유지하고 엔진 시동에 필요한 한도 내에서 액체 온도를 유지하기 위해 며칠의 순서에 따라 공간 내 저장 기간 동안 필요할 수 있습니다.

이러한 혼합 장치 중 하나는 그림 1과 2와 같이 탱크 바닥 근처에 있는 (순가속과 관련하여) 탱크 축을 따라 중심에 있는 축 제트입니다. 축방향 제트 혼합기와 TVS에 통합된 것은 1960년대 중반부터 연구되어 왔으며(참조 1~5), 광범위한 축방향 제트 접지 테스트 데이터(비사이로젠(참조 1~9), 극저온(참조 10~16) 유체 사용), 에탄올을 사용한 일부 드롭 타워 테스트 데이터(참조 17 및 18)가 있습니다. 극저온 추진제를 사용하는 축방향 제트에 대한 기존 접지 테스트 데이터는 3m(10ft) 이하의 탱크 직경으로 제한됩니다.

저자가 알고 있는 바와 같이, 현재 임계 미달의 극저온 추진체를 사용하는 폐쇄형 탱크에 축방향 제트가 포함된 낙하탑, 항공기 또는 우주 비행 시험 데이터는 없습니다.

축방향 제트(Axial jet)는 지구 저궤도(LEO) 연안의 며칠 동안 EDS LH2 탱크에서 작동하는 혼합 장치의 후보 중 하나입니다. 제안된 EDS 탱크 척도의 극저온 저장 탱크에서 작동하는 축 제트 실험 데이터가 존재하지 않기 때문에, EDS 탱크를 위한 축 제트 TV의 초기 설계는 기존 데이터에 대해 고정된 상관 관계 및 CFD 분석에 의존할 필요가 있습니다.

이 연구는 두 개의 탱크 척도에서 크기 순서로 다른 축방향 제트 열분해 성능을 예측하기 위한 CFD 정확도 평가의 현재 진행 상황을 보고합니다. CFD 시뮬레이션은 물을 작동 유체로 사용하는 접지 테스트 축 제트 데이터(참조 1 – 4)와 비교됩니다. 이 평가를 위해 선택된 CFD 코드는 Flow Science(참조 21)의 상용 코드 FLOW-3D로, 극저온 저장 탱크 및 축방향 제트(참조 22~24)의 이전 분석에서 사용되었습니다.

LEO의 대표적인 EDS LH2 탱크에 대한 예비 축 제트 시뮬레이션도 여러 축 제트 구성에 대해 수행됩니다. 이러한 축방향 제트 구성의 열분해 성능을 평가하고 선택된 결과를 제시합니다.

이러한 예비 축방향 제트 EDS 시뮬레이션은 비교적 짧은 시간 동안 혼합기 성능만 평가합니다. 탱크 열 누출, 위상 변화 및 일반적인 자기 압력(제트 오프)/압력 붕괴(제트 온) 사이클을 포함한 보다 상세한 시뮬레이션이 향후 작업에서 추진될 수 있습니다.

Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)

상세 내용은 원문을 참조하시기 바랍니다.


Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity

Summary and Conclusions

사용 가능한 유사성 상관 관계를 사용하는 스케일링 전략은 EDS 클래스 제트 믹서에 대한 적절한 제트 크기 및 작동 조건을 결정하기 위해 개발되었습니다. 물 탱크 시뮬레이션에서 결정된 모델링 매개 변수를 사용하여 열 층화를 제어하기 위해 제트 믹서를 사용하여 EDS 등급 추진제 탱크의 혼합 이력에 대한 CFD 시뮬레이션을 수행했습니다.

시뮬레이션 결과는 다양한 믹싱 동작을 보여 주며 유사성 매개 변수의 사용에서 예상되는 것과 일치했습니다. 이러한 결과는 하위 규모 테스트 및 유사성 상관 관계와 함께 CFD 시뮬레이션이 EDS 등급 탱크를위한 효율적인 제트 믹서 설계를 허용 할 것이라는 확신을 제공합니다.

CFD 시뮬레이션은 다양한 크기의 직경과 제트를 가진 탱크의 제트 믹서에서 수행되었습니다. 1 피트 직경의 물 탱크에서 제트 혼합에 대해 사용 가능한 실험 데이터와 합리적으로 일치하는 모델링 매개 변수가 결정되었습니다. 동일한 모델링 매개 변수를 사용하여 대략 10 배 정도 떨어져있는 스케일로 워터 제트 혼합 실험에서 혼합을 시뮬레이션했습니다. 시뮬레이션 결과는 실험 온도 데이터와 잘 일치하는 것으로 나타났습니다.

References 1.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 1 – Mixer design and experimental investigations,” NASA CR-73908, Nov 1968. 2.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 2 – Experimental data Final report,” NASA CR-73909, Nov 1968. 3.Scale Experimental Mixing Investigations and Liquid-Oxygen Mixer Design,” NASA CR-113897, Sep 1970. 4.Van Hook, J.R. and Poth, L.J., “Study of Cryogenic Fluid Mixing Techniques. Volume 1 – Large-Van Hook, J.R., “Study of Cryogenic Fluid Mixing Techniques. Volume 2 – Large-Scale Mixing Data,” NASA CR-113914, Sep 1970. 5.Poth, L.J. and Van Hook, J.R., “Control of the Thermodynamic State of Space-Stored Cryogens by Jet Mixing,” J. Spacecraft, Vol. 9, No. 5, 1972. 6.Lovrich, T.N. and Schwartz, S.H., “Development of Thermal Stratification and Destratification Scaling Concepts – Volume II. Stratification Experimental Data,” NASA CR-143945, 1975. 7.Dominick, S.M., “Mixing Induced Condensation Inside Propellant Tanks,” AIAA–1984–0514. 8.Meserole, J.S., Jones, O.S., Brennan, S.M. and Fortini, A., “Mixing-Induced Ullage Condensation and Fluid Destratification,” AIAA–1987–2018. 9.Barsi, S., Kassemi, M., Panzarella, C.H. and Alexander, J.I., “A Tank Self-Pressurization Experiment Using a Model Fluid in Normal Gravity,” AIAA–2005–1143. 10.Stark, J.A. and Blatt, M.H., “Cryogenic Zero-Gravity Prototype Vent System,” NAS8-20146, Convair Report GDC-DDB67-006, Oct 1967. 11.Bullard, B.R., “Liquid Propellant Thermal Conditioning System Test Program,” NAS3-12033, Lockheed Missiles & Space Co., NASA CR-72971, July 1972. 12.Erickson, R.C., “Space LOX Vent System,” NAS8-26972, General Dynamics Convair Report CASD-NAS 75-021, April 1975.

13.Lin, C.S., Hasan, M.M. and Nyland, T.W., “Mixing and Transient Interface Condensation of a Liquid Hydrogen Tank,” NASA TM-106201 (or AIAA–1993–1968), 1993. 14.Lin, C.S., Hasan, M.M. and Van Dresar, N.T., “Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank,” NASA TM-106629 (or AIAA–1994–2079), 1994. 15.Olsen, A.D., Cady, E.C., Jenkins, D.S. and Hastings, L., “Solar Thermal Upper Stage Cryogenic System Engineering Checkout Test,” AIAA–1999–2604. 16.Van Overbeke, T.J., “Thermodynamic Vent System Test in a Low Earth Orbit Simulation,” NASA/TM—2004-213193 (or AIAA–2004–3838), Oct 2004. 17.Aydelott, J.C., “Axial Jet Mixing of Ethanol in Cylindrical Containers During Weightlessness,” NASA-TP-1487, July 1979. 18.Aydelott, J.C., “Axial Modeling of Space Vehicle Propellant Mixing,” NASA-TP-2107, Jan 1983. 19.Bentz, M.D., “Tank Pressure Control in Low Gravity by Jet Mixing,” NASA CR–191012, Mar. 1993. 20.Hasan, M.M., Lin, C.S., Knoll, R.H. and Bentz, M.D., “Tank Pressure Control Experiment: Thermal Phenomena in Microgravity,” NASA-TP-3564, 1996. 21.FLOW-3D User’s Manual, version 9.4, Flow Science, Inc., Santa Fe, NM 2009. 22.Grayson, G.D., Lopez, A., Chandler, F.O., Hastings, L.J. and Tucker, S.P., “Cryogenic Tank Modeling for the Saturn AS-203 Experiment,” AIAA–2006–5258. 23.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J., and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks,” AIAA–2007–5552. 24.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J. and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity,” AIAA–2008–5104. 25.Thomas, R.M., “Condensation of Steam on Water in Turbulent Motion,” Int. J. Multiphase Flow, Vol. 5, No. 1, pp. 1–15, 1979. 26.Zimmerli, G.A., Asipauskas, M., Chen, Y. and Weislogel, M.M., “A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks,” AIAA–2010–1294.

Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

FLOW-3D 용어 사전 테이블

FLOW-3D Glossary | FLOW-3D 용어 사전

FLOW-3D 용어 사전 / 용어 설명

FLOW-3D 용어 사전 테이블
FLOW-3D 용어 사전 테이블

FLOW-3D 용어 사전 / 용어 설명

Drift Flux

드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 다를 수도 있고, 상이 같지만(불가침) 유체가 다를 수도 있습니다. 분산된 위상 입자 크기가 클 경우 드리프트 모델의 적용성에 대한 제한이 존재할 수 있습니다. 이러한 제한은 일반적으로 메쉬 셀 크기의 10% 미만으로 분산된 위상 입자 크기를 유지함으로써 방지할 수 있습니다.

배플

얇은 형상 조각을 나타내는데 사용되는 2 차원 개체입니다. 이들은 전처리기에 의해 셀면으로 이동되고 유체의 흐름을 부분적으로 또는 완전히 차단하는 역할을 합니다. 배플은 지정된 열 전달 계수를 가질 수 있으며 배플을 통과하는 양(플럭스 표면)을 측정하는 데 사용할 수 있습니다.

Two-dimensional objects that are used to represent thin pieces of geometry. They are moved by the preprocessor to cell faces and act to partially, or completely block the flow of fluid. Baffles can have heat transfer coefficients specified and can be used to measure quantities that pass through them (a flux surface).

경계 조건

도메인의 범위에서 솔루션을 정의합니다. 경계 위치에서 흐름의 실제 상태를 나타내는 경계 조건을 선택하는 것이 중요합니다.

Defines the solution at the extents of the domain. It is important to choose boundary conditions that represent the true condition of the flow at the boundary location.

CFD

CFD (Computational Fluid Dynamics)는 수치 솔루션을 통해 컴퓨터의 유체 흐름을 시뮬레이션 하는 유체 역학의 한 분야입니다.

Computational Fluid Dynamics (CFD), the branch of fluid mechanics dedicated to simulating the flow of fluid on a computer via numerical solutions.

Complements

Complements를 정의합니다. 예를 들어, 솔리드 구의 complements는 솔리드 재료로 둘러싸인 구형 구멍입니다.

The inverse of a shape defines the complement. For example, the complement of a solid sphere is a spherical hole surrounded by solid material.

Client

클라이언트 컴퓨터는 자신이 FLOW-3D를 실행하고 있지만, FLOW-3D 소프트웨어 라이선스는 다른 컴퓨터 (서버 컴퓨터)에서 획득하는 컴퓨터를 의미합니다.

A client machine is a computer that runs FLOW-3D  but acquires the software license from a different machine (the server machine)

Components

Components는 공간의 개체를 정의하며 하위 구성 요소로 구성됩니다. 구성 요소는 열 전도율, 비열 및 표면 거칠기와 같은 재료 특성을 가질 수 있습니다.

Components define objects in space and are comprised of subcomponents. A component can have material properties such as thermal conductivity, specific heat and surface roughness.

Custom result

시뮬레이션 중 또는 완료 후 사용자가 생성한 데이터를 그래픽으로 표시합니다. 생성하려면 사용자가 flsgrf결과 파일을 연 다음 플로팅 매개 변수(예 : 플로팅 할 도메인 부분, 플로팅 할 수량 등)를 선택해야 합니다.

Graphical displays of data generated by the user during the simulation or after it has completed. To generate, the user must open an flsgrf results file and then select the plotting parameter (e.g., portion of domain to plot, quantity to plot, etc.).

Domain

지배 방정식을 풀 영역입니다. 이것은 메쉬의 범위에 의해 정의됩니다.

The region in which the governing equations are to be solved. This is defined by the extents of the mesh.

Diagnostics

전 처리기 및 솔버의 진행 상황과 오류 및 경고에 대한 정보가 포함된 파일 세트입니다.

A suite of files that contain information on the progress of the preprocessor and solver as well as errors and warnings.

EPSI

압력/연속 반복이 어느 지점에서 수렴되는지를 결정하는데 사용된 수렴 기준입니다. 기본 숫자 설정을 사용하면 이 값은 FLOW-3D에 의해 자동으로 계산되며 시간 단계가 증가함에 따라 작아집니다.

The convergence criterion that was used to determine at what point the pressure/continuity iterations have converged. With the default numerical settings, this value is automatically computed by FLOW-3D  and becomes smaller as the time step increases.

Existing result

prpplt.* 또는 flsplt.* 파일은 전처리 종료 솔버 실행 종료시 또는 자동으로 생성되는 플롯 파일입니다.

A plot file that is automatically created, either at the end of preprocessing or the end of the solver run- prpplt.* or flsplt.*.

F3D_HOME

FLOW-3D 프로그램 파일이 있는 디렉토리를 정의하는 환경 변수.

Environment variable that defines the directory where the FLOW-3D  program files are located.

Floating license

FLOW-3D는 서버 시스템에 라이센스를 액세스하는 각 클라이언트 컴퓨터와 컴퓨터 네트워크에서 실행합니다. 허용하는 라이센스 최대 동시 시뮬레이션 수는 구매한 솔버 토큰 수에 의해 제한됩니다.

A license that allows FLOW-3D  to be run on a network of computers with each client machine accessing the license on a server machine. The maximum number of concurrent simulations is limited by the number of solver tokens purchased.

Flsgrf file

솔버가 생성한 결과 파일. 이 파일은 사전에 정의된 시간 간격으로 생성된 정보를 포함하며 그래픽 디스플레이를 생성하는 데 사용됩니다. 사용자 정의 플로팅 중에 포스트 프로세서에서 사용합니다.

Results file produced by the solver. This file contains information produced at predefined time intervals and is used to produce graphical displays. Used by the postprocessor during custom plotting.

Flsplt file

솔버가 자동으로 생성한 플롯 파일입니다. 이 파일에는 시뮬레이션의 히스토리 데이터, 메시 등에 대한 기본 정보와의 $GRAFIC 이름 목록에 사전 정의된 그래픽 요청이 포함되어 prepin.* 파일 안에 있습니다.

Plot file produced automatically by the solver. This file contains basic information on history data, mesh, etc. from the simulation as well as any pre-defined graphics requests in the $GRAFIC namelist in prepin.*.

Fluid #1 surface area

선택한 길이 단위의 자유 표면 영역을 제곱 됩니다. 인터페이스가 예리한 문제에만 해당됩니다.

The free-surface area in the chosen length units squared. This is only relevant for problems with a sharp interface.

Fluid thermal energy

영역에 존재하는 모든 유체에 포함된 총 열 에너지 (에너지 전송이 켜져 있는 시뮬레이션에만 해당).

The total thermal energy contained by all the fluid present in the domain (relevant only for simulations with energy transport turned on).

Free surface

유체와 유체 사이의 인터페이스. FLOW-3D에서 이 인터페이스는 전단이 없는 것으로 가정되며, 이는 빈 공간에 있는 가스가 유체에 무시할 수 있는 트랙션을 발휘함을 의미한다.

The interface between fluid and void. In FLOW-3D , this interface is assumed to be shear-free, meaning that any gas in the void space exerted negligible traction on the fluid.

GUI

” Graphical User Interface”.  GUI는 사용자가 FLOW-3D를 제어할 수 있는 그래픽 패널, 대화 상자 및 창을 제공합니다.

“Graphical User Interface”. The GUI presents the graphical panels, dialog boxes and windows that allow the user to control FLOW-3D .

Iteration count

각 시간 단계에서 필요한 압력/연속 반복 횟수입니다. 압력/연속성 반복은 유체 볼륨이 유지되도록 하고 유체 전체에서 올바른 압력을 계산하는 데 필요합니다.

The number of pressure/continuity iterations required at each time step. The pressure/continuity iterations are necessary to ensure that the fluid volume is maintained and to compute the correct pressure throughout the fluid.

License file

사용자가 FLOW-3D 를 실행할 수 있도록 암호화된 정보가 포함된 Flow Science에서 제공하는 전자 파일 입니다.

Electronic file provided by Flow Science that contains encrypted information enabling the user to run FLOW-3D .

License server

플로팅 라이센스 시스템의 작동을 활성화하기 위해 FLEXlm 라이센스 소프트웨어가 설치된 시스템. FLOW-3D는 License Server에 설치할 필요가 없습니다.

Computer on which the FLEXlm licensing software is installed to enable the operation of a floating license system. FLOW-3D  does not need to be installed on the license server.

Licensing

FLOW-3D 실행을 제어하는 ​​FLEXlm 소프트웨어.

FLEXlm software that controls the running of FLOW-3D .

Max. residual

압력/연속성 반복의 최종 반복에서 연속성 방정식의 실제 발산. 이 값은 메시지가 나타나지 않는 한 일반적으로 epsi보다 작습니다 .

The actual divergence of the continuity equation on the final iteration of the pressure/continuity iterations. This value is usually smaller than epsi unless the message, pressure iteration did not converge in xxxx iterations appears.

Mean kinetic energy

모든 계산 셀의 운동 에너지의 합을 도메인에 존재하는 총 유체 질량으로 나눈 값입니다. 이 양이 시간이 지남에 따라 변하지 않으면 정상 상태에 도달했음을 나타내는 좋은 지표입니다.

The sum of kinetic energy of all the computational cells, divided by the total mass of fluid present in the domain. When this quantity ceases to change over time, it is a good indicator that steady-state has been reached.

Node-locked license

특정 컴퓨터에 고정된 라이센스. 노드 잠금 라이센스는 네트워크를 통해 액세스 할 수 없으므로 일반적으로 모든 작업을 한 컴퓨터에서 수행해야하는 경우에만 사용됩니다.

A license that is locked to a particular computer. A node-locked license cannot be accessed across a network, and so is typically only used when all work is to be done on one computer.

Non-inertial reference frame

가속화되는 참조 프레임. 비 관성 참조 프레임은 움직이는 컨테이너를 모방하는 데 사용할 수 있습니다.

A frame of reference that is accelerating. A non-inertial reference frame can be used to mimic a moving container.

Pltfsi

1D 및 2D 플롯을 생성하는 FLOW-3D에 포함된 그래픽 디스플레이 프로그램.

Graphics display program included with FLOW-3D  that produces 1D and 2D plots.

Postprocessor

FLOW-3D 내의 Postprocessor 프로그램은 FLOW-3D 또는 타사 시각화 프로그램에서 읽을 수 있는 데이터 파일을 생성하거나 타사 소프트웨어 프로그램에서 읽을 텍스트 데이터를 생성하는 솔버 출력 데이터를 처리하는 프로그램입니다.

The program within FLOW-3D  that processes the solver output data to produce data files that can be read by FLOW-3D ’s or third-party’s visualization programs, or produce text data to be read by third party software programs.

Prepin file

FLOW-3D 시뮬레이션을 실행하는데 필요한 모든 정보가 포함된 텍스트 파일 입니다. GUI를 사용하거나 텍스트 편집기를 사용하여 수동으로 작성할 수 있습니다.

Text file that contains all of the information necessary to create a FLOW-3D  simulation. It can be created using the GUI or manually with a text editor.

Preprocessor

솔버의 실행을 준비하기 위해 입력 파일을 기반으로 메쉬 및 초기 조건을 생성하는 FLOW-3D 내의 프로그램 입니다.

The program within FLOW-3D  that generates the mesh and initial conditions based on the input file in preparation for the running of the solver.

Prpgrf file

전처리기에 의해 생성된 결과 파일로 전 처리기의 정보를 포함하며 후 처리기에서 사용자 플롯을 생성하는 데 사용할 수 있습니다. 이 파일은 미리보기 버튼을 선택하거나 시뮬레이션에서 사전 프로세서(runpre 사용)를 실행하는 경우에만 실행됩니다.

Results file produced by the preprocessor. Contains information from the preprocessor and can be used by the postprocessor to create custom plots. This file is produced only when the Preview button is selected or if only the pre-processor is run on the simulation (using runpre).

Prpplt file

전처리기에 의해 자동으로 생성된 파일을 플롯 합니다. 메시, 구성 요소, 초기 조건 및 재료 특성에 대한 정보가 포함되어 있습니다.

Plot file produced automatically by the preprocessor. Contains information on meshing, components, initial conditions and material properties.

Restart simulation

이전 시뮬레이션에서 계속되는 시뮬레이션입니다. 이전 시뮬레이션의 결과는 다시 시작 시뮬레이션을 위한 초기 조건 및 (선택적으로) 경계 조건을 생성하는 데 사용됩니다.

A simulation which continues from a previous simulation. The results from the previous simulation are used to generate the initial conditions and (optionally) boundary conditions for the restart simulation.

Server

라이센스 서버를 호스팅하는 시스템

The machine that hosts the license server.

Stability limit

각 시간 단계에서 사용할 수 있는 최대 시간 단계. 더 큰 시간 단계는 수치적 불안정성과 비물리적 결과로 이어질 것이다.

The maximum time step that can be used during each time step. A larger time step will lead to numerical instabilities and nonphysical results.

STL (Stereolithography) File

.STL 파일 형식은 일련의 삼각형이 있는 솔리드 모델의 표면에 근접한 표준 데이터 전송 형식이다. 삼각형은 가장자리에서 결합해야 하며 일관된 방향을 가리키는 정규식이 있어야 한다.

The .STL file format is a standard data transmission format that approximates the surfaces of a solid model with a series of triangles. The triangles must join at the edges and must have normals that point in a consistent direction.

Solid fraction

응고된 영역의 유체 분율 (응고 모델이 켜져 있는 시뮬레이션에만 해당).

The fraction of fluid in the domain that has become solidified (relevant only for simulations where the solidification model has been turned on).

Solver

입력 파일에 정의된 흐름 문제를 시뮬레이션하는 방정식을 계산하는 FLOW-3D 내의 솔버 프로그램 입니다.

The program within FLOW-3D  that solves the system of equations that simulate the flow problem defined in the input file.

STL Viewer

스테레오리소그래피(STL) 파일을 표시하는 특수 유틸리티입니다. STL 파일은 CAD 소프트웨어로 제작되며 3 차원 객체의 표면을 형성하는 많은 삼각형으로 구성됩니다. 의 STL 뷰어 FLOW-3D는 메인 메뉴에서 유틸리티/STL 뷰어를 클릭하여 GUI를 통해 액세스 할 수 있습니다. 그러면 뷰어가 별도의 창에서 열립니다. 메쉬 및 형상 탭에서 STL 파일을 열고 볼 수도 있습니다.

A special utility that displays stereolithography (STL) files. STL files are produced by CAD software and are composed of many triangles that form the surface of a three-dimensional object. The STL Viewer in FLOW-3D  is accessible via the GUI by clicking Utilities/STL Viewer in the main menu. This causes the viewer to open in a separate window. STL files can also be opened and viewed in the Meshing and Geometry tab.

Subcomponents

하위 구성 요소는 구성 요소라고하는 더 큰 모양을 형성하기 위해 결합할 수 있는 기하학적 모양입니다. 하위 구성 요소는 재료를 추가하거나 (고체로) 다른 하위 구성 요소에서 재료를 제거하거나 (구멍으로) 또는 모양 외부에 재료를 추가하도록 정의할 수 있습니다.

Subcomponents are geometric shapes that can be combined to form larger shapes, called components. A subcomponent can be defined to add material (as solids), remove material from other subcomponents (as holes), or add material outside of the shape (as a complement).

Time-step size

계산에 사용된 실제 시간 단계. 이 값은 안정성 한계와 같거나 작을 수 있습니다.

The actual time step used in the computation. This value can be equal to or less than the stability limit.

Units

Units are based upon the values set for the physical properties. Items such as mesh block extents and cell lengths automatically conform to the units used for setting these physical properties.

단위는 물리적 특성에 설정된 값을 기반으로 합니다. 메쉬 블록 범위 및 셀 길이와 같은 항목은 이러한 물리적 속성을 설정하는 데 사용되는 단위를 자동으로 따릅니다.

Volume error (%)

주어진 시간에 도메인에 존재하는 총 유체의 백분율로 설명되지 않은 유체 부피의 백분율을 의미합니다. 따라서 단순히 총 부피가 작기 때문에 유체가 시스템 밖으로 배출되는 시뮬레이션에서 큰 비율의 부피 오류가 발생할 수 있습니다.

The percentage of fluid volume not accounted for as a percentage of the total fluid present in the domain at a given time. Therefore, a large percentage volume error can occur for simulations where fluid is draining out of the system simply because the total volume present is small.

Volume of fluid #1

선택한 길이 단위로 입방체에 존재하는 유체 #1의 총 부피입니다. 2 유체 문제의 경우, 유체 #2의 부피는 항상 도메인 부피에서 유체 #1의 부피를 뺀 값입니다.

The total volume of fluid #1 present in the system, in the chosen length units cubed. For two-fluid problems, the volume of fluid #2 is always the domain volume minus the volume of fluid #1.

Wall shear stress

FLOW-3D 옵션은 벽면 및 객체 인터페이스에서 전단 응력 계산을 켜거나 끌 수 있도록 해줍니다. “no-slip” 인터페이스의 효과를 모델링 하려면 벽면 전단 응력을 켜야 합니다.

The FLOW-3D  option that allows the user to turn on or off the computation of shear stress at wall and object interfaces. Wall shear stress must be turned on to model the effect of “no-slip” interfaces.

Workspace

작업 공간은 시뮬레이션 프로젝트를 위한 파일 컨테이너입니다. 작업 공간은 사용자가 FLOW-3D 뿐만 아니라 하드 드라이브에서도 작업을 구성하는 데 도움이 됩니다.

A workspace is a file container for simulation projects. Workspaces help the user organize their work, not only within FLOW-3D , but also on their hard drive.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

FLOW-3D 기술자료로 이동

Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

Modeling and characterization of a carbon fiber emitter for electrospray ionization

A K Sen1, J Darabi1, D R Knapp2 and J Liu2
1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering,
University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
2 Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue,
Charleston, SC 29425, USA
E-mail: darabi@engr.sc.edu

뾰족한 탄소 섬유(CF)를 사용하는 새로운 마이크로 스케일 이미터는 질량 분석 (MS) 분석에서 전기 분무에 사용할 수 있습니다. 탄소 섬유는 360 µm OD 및 75 µm ID의 용융 실리카 모세관과 동축에 위치하며 날카로운 팁은 튜브 말단에서 30 µm 연장됩니다.

Abstract

전기 분무 이온화 (ESI) 프로세스는 전기 유체 역학을 해결하기 위한 Taylor–Melcher 누설 유전체 유체 모델 및 액체-가스 인터페이스 추적을 위한 유체 부피 (VOF) 접근 방식을 기반으로 하는 전산 유체 역학 (CFD) 코드를 사용하여 시뮬레이션 됩니다. CFD 코드는 먼저 기존 지오메트리에 대해 검증한 다음 CF 이미터 기반 ESI 모델을 시뮬레이션하는데 사용됩니다.

시뮬레이션된 전류 흐름 및 전류 전압 결과는 CF 이미터의 실험 결과와 잘 일치합니다. 이미터 형상, 전위차, 유속 및 액체의 물리적 특성이 CF 이미터의 전기 분무 거동에 미치는 영향을 철저히 조사합니다.

스프레이 전류와 제트 직경은 액체의 유속, 전위차 및 물리적 특성과 상관 관계가 있으며 상관 결과는 문헌에 보고된 결과와 정량적으로 비교됩니다. (이 기사의 일부 그림은 전자 버전에서만 색상입니다)

Introduction

1980 년대 후반부터 매트릭스 보조 레이저 탈착 이온화 (MALDI)와 전기 분무 이온화 (ESI)의 두 가지 이온화 기술을 구현하여 감도, 속도 및 구조 정보 수준 측면에서 MS 분석이 엄청나게 성장했습니다. 1980 년대 초까지 전자 충격 (EI) 또는 화학 이온화 (CI) 방법은 가스 크로마토 그래피에 적합한 작은 생체 분자를 이온화 하는 데 사용되었습니다.

그러나 크고 열에 민감한 비 휘발성 샘플은 적절한 사전 처리 없이 EI 또는 CI-MS 기술로 분석 할 수 없습니다 [1]. ESI 기술을 사용하면 액체상에서 직접 이러한 큰 분자를 분석 할 수 있습니다 [2]. Zeleny [3, 4]는 출구에 높은 전위를 적용하여 모세관에서 액체 용액을 분사 할 수 있음을 보여주었습니다.

Dole [5, 6] 및 Fenn [7]의 선구적인 연구는 ESI를 고분자 및 생체 분자와 같은 대형 화합물의 이온화 방법으로 표시했습니다. 이에 이어이 기술에 의한 기상 이온 발생에 관련된 과정과 메커니즘이 널리 조사되고 있습니다.

ESI 방법에서 기체 이온화 된 분자는 강한 전계가 있는 상태에서 미세한 물방울을 생성하여 액체 용액에서 생성됩니다. ESI 프로세스의 이러한 능력은 단백질 및 기타 생체 분자 연구에 자연적으로 적용됨을 발견했습니다. ESI 방법과 관련된 다양한 프로세스가 그림 1에 나와 있습니다.

Figure 1. Schematic of an ESI process.
Figure 1. Schematic of an ESI process.

ESI 전위는 일반적으로 전도성 물질로 코팅 된 이미 터 튜브를 통해 외부에서 샘플 액체에 적용되지만 액체 샘플 내부에 적용될 수도 있습니다. Herring과 Qin [8]은 이미 터 팁에 삽입된 팔라듐 와이어를 통해 전기 분무 전위가 적용되는 모세관 전기 영동 (CE)을위한 ESI 인터페이스를 보여주었습니다.

Chiou의 설계 [9]에서는 작은 PDMS 칩에 있는 샘플 저장소, 마이크로 채널 및 실리카 모세관 노즐과 통합 된 내장 전극을 통해 전기 분무를 위한 고전압이 적용되었습니다.

Cao and Moini [10]는 ESI 전압이 모세관 내부에 위치한 전극을 통해인가되고 전기적 접촉이 출구 근처 모세관 벽의 작은 구멍을 통해 유지되는 전기 분무 방출기를 설계했습니다. 작은 모세관 직경 (~ 10 µm)을 가진 이미 터를 사용하여 낮은 전압에서 전기 분무가 가능하지만, 더 작은 구멍은 과도한 배압으로 인해 쉽게 막힐 수 있습니다.

직경이 더 큰 (> 50µm) 이미 터를 처리하는 것이 더 쉽습니다. 그러나 그들은 더 작은 직경의 이미 터만큼 효율적이지 않습니다 [11]. 일반적으로 ESI 전압을 적용하기 위해 유리 또는 용융 실리카와 같은 절연 재료로 제작 된 저 유량 이미 터의 외주에 전도성 코팅이 적용됩니다.

용융 실리카 모세관의 끝 부분에있는 스퍼터 코팅 된 귀금속 층은 내구성에 빠르게 영향을 미치는 것으로 관찰되었습니다. 코팅의 빠른 열화는 방전, 전기 화학적 반응 및 층과 용융 실리카 표면 사이의 불량한 기계적 결합으로 인해 발생할 수 있습니다.

이러한 에미 터의 수명은 스퍼터 코팅 후에 금을 전기 도금하거나 [12] 스퍼터 코팅 된 금 위에 SiOx를 코팅하여 증가시킬 수 있습니다 [13]. 크롬 또는 니켈 합금의 접착층 위에 금으로 코팅 된 이미 터는 우수한 결합력을 제공 할 수 있으며 음극으로 작동 할 때 내구성이 있습니다.

그러나 양극으로 작동하는 동안 접착층은 금 막을 통해 화학적으로 용해됩니다. 이미 터의 안정성과 내구성을 향상시키기 위해 대체 전도성 코팅이 평가되었습니다.

안정적인 ESI 작동을 위해 콜로이드 흑연 코팅 이미 터가 사용되었으며 수명이 길었습니다 [14]. 폴리아닐린 (PANI) 코팅 이미 터는 두꺼운 코팅으로 인해 높은 내구성을 보여주고 방전에 강합니다. PANIcoated와 gold-coated nanospray emitter의 electrospray ionization 거동을 비교 한 결과 PANIcoated emitter는 goldcoated emitter와 비슷한 향상된 감도를 제공합니다 [15].

그라파이트-폴리이 미드 혼합물은 또한 무 접착 전기 분무 방출기의 경우 전도성 코팅으로 사용되었습니다. 전도성 코팅의 안정성은 산화 스트레스 동안 좋은 성능을 나타내는 전기 화학적 방법에 의해 조사되었습니다 [16].

탄소 코팅 이미 터의 기능은 마이크로 스프레이 및 시스리스 CE 및 ESI 응용 분야에서 입증되었습니다. 이 이미 터는 견고하지는 않지만 방수가 되지 않는 CE 또는 ESI 애플리케이션에 충분히 내구성이있었습니다 [17].

우리는 막힘 문제를 제거하고 시료 액체와 금층 사이의 접촉 문제를 피할 수있는 뾰족한 탄소 섬유 기반의 새로운 ESI 방출기를 도입하여 ESI 시스템의 적용 성, 신뢰성 및 내구성을 향상 시켰습니다 [18]. 이 작업에서 탄소 섬유 기반 ESI 이미 터는 전산 유체 역학 (CFD) 소프트웨어 패키지 FLOW-3D [19]를 사용하여 시뮬레이션됩니다.

실험은 새로운 CF 이미 터를 사용하여 수행됩니다. 모델 예측은 실험 결과와 비교됩니다. 새로운 이미 터의 ESI 성능은 이미 터의 기하학적 구조, 유속, 액체의 물리적 특성과 같은 다양한 매개 변수에 대한 반응을 연구하여 평가됩니다.

스프레이 전류 및 제트 직경은 유량 및 액체의 특성과 상관 관계가 있으며 상관 결과는 문헌에보고 된 결과와 정량적으로 비교됩니다. 다음 섹션에서 ESI 공정을 지배하는 전기 유체 역학 이론은 Taylor–Melcher 누설 유전체 모델 [20]을 참조하여 설명됩니다.

그런 다음 Hartman 등이 사용하는 ESI 구성을 고려하여 CFD 코드의 유효성을 확인합니다 [21]. 또한 CF 기반 ESI 모델에 대한 시뮬레이션 및 실험 결과가 제시되고 논의됩니다. 마지막으로 모수 연구 결과와 상관 관계를 제시하고 논의합니다.

Figure 2. Forces in the liquid cone.
Figure 2. Forces in the liquid cone.
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 15. Electric field contours at various time steps
Figure 15. Electric field contours at various time steps
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

References

[1] Siuzdak M 1996 Mass Spectrometry for Biotechnology (New York: Academic)
[2] Cole R B (ed) 1997 Electrospray Ionization Mass Spectrometry (New York: Wiley-Interscience)
[3] Zeleny J 1914 Phys. Rev. 3 69–91
[4] Zeleny J 1917 Phys. Rev. 10 1–6
[5] Dole M, Mack L L, Hines R L, Mobley R C, Ferguson L D and Alice M B 1968 Molecular beams of macroions
J. Chem. Phys. 49 2240–9
[6] Clegg G A and Dole M 1971 Molecular beams of macroions: III. Zein and polyvinylpyrrolidone Biopolymers
10 821–6
[7] Fenn J B, Mann M, Meng C K, Wong S F and Whitehouse C M 1989 Electrospray ionization for mass
spectrometry of large biomolecules Science 246 64–71
[8] Herring C J and Qin J 1999 An on-line preconcentrator and the evaluation of electrospray interfaces for the capillary
electrophoresis/mass spectrometry of peptides Rapid Commun. Mass Spectr. 13 1–7
[9] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C B 2002 Microscale Tools for Sample Preparation, Separation
and Detection of Neuropeptides Sensors Actuators B 86 280–6
[10] Cao P and Moini M 1997 A novel sheathless interface for capillary electrophoresis/electrospray ionization mass
spectrometry using an in-capillary electrode J. Am. Soc. Mass Spectrom 8 561–4
[11] Janini G M, Conards T P, Wilkens K L, Issaq H J and Veenstra T D 2003 A sheathless nanoflow electrospray
interface for on-line capillary electrophoresis mass spectrometry Anal. Chem 75 1615–9
[12] Barroso M B de Jong and Ad P 1999 Sheathless preconcentration-capillary zone electrophoresis-mass
spectrometry applied to peptide analysis J. Am. Soc. Mass Spectrom 10 1271–8
[13] Valaskovic G A and McLafferty F W 1996 Long-lived metallized tips for nanoliter electrospray mass spectrometry
J. Am. Soc. Mass Spectrom. 7 1270–2
[14] Zhu X, Thiam S, Valle B C and Warner I M 2002 A colloidal graphite coated emitter for seathless capillary
electrophoresis/nanoelectrospray ionization mass spectrometry Anal. Chem 74 5405–9
[15] Maziarz E P I II, Lorenz S A, White T P and Wood T D 2000 Polyaniline: a conductive polymer coating for durable
nanospray emitters J. Am. Soc. Mass. Spectrom 11 659–63
[16] Nilsson S, Wetterhall M, Bergquist J, Nyholm L and Markides K E 2001 A simple and robust conductive
graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry Rapid
Commun. Mass Spectr. 15 1997–2000
[17] Chang Y Z and Her G R 2000 Sheathless capillary electrophoresis/electospray mass spectrometry using a
carbon-coated tapered fused silica capillary with a beveled edge Anal. Chem. 72 626–30
[18] Liu J, Ro K W, Busman M and Knapp D R 2004 Electrospray ionization with a pointed carbon fiber emitter Anal. Chem. 76 3599–606
[19] Hirt C W 2004 Electro-hydrodynamics of semi–conductive fluids: with application to electro–spraying Flow Science
Technical Note 70 FSI–04–TN70 1–7
[20] Saville D A 1997 Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model Annu. Rev. Fluid Mech. 29 27–64
[21] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M and Scarlett B 1999
Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet J. Aerosol Sci.
30 823–49
[22] Castellanos A 1998 Basic Concepts and Equations in Electrohydrodynamics Electrohydrodynamics
ed A Castellanos (Berlin: Springer)
[23] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press)
[24] Hirt C W and Nichols B D 1981 Volume of fluid (VOF) method for the dynamics of free boundaries J. Comp. Phys.
39 201–25
[25] De la Mora F J and Loscertales I G 1994 The current emitted by highly conducting Taylor cones J. Fluid Mech. 260
155–84
[26] Ganan-Calvo A M 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal
scaling laws in electrospraying Phys. Rev. Lett. 79 217–20
[27] Higuera F J 2004 Current/flow–rate characteristic of an electrospray with a small meniscus J. Fluid Mech.
513 239–46
[28] Zeng J, Sobek D and Korsmeyer T Electro-hydrodynamic modeling of electrospray ionization: cad for a microfluidic
device-mass spectrometer interface Transducers ’03: 12th Int. Conf. on Solid State Sensors, Actuators and
Microsystems 2 1275–8
[29] Ganan–Calvo A M, Davila J and Barrero A 1997 Current and droplet size in the electrospraying of liquids. Scaling laws J. Aerosol Sci. 28 249–75
[30] Cloupeau M and Prunet-Foch B 1989 Electrostatic spraying of liquids in cone–jet mode J. Electrost. 22 135–59

Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

A non-fluorine mold release agent for Ni stamp in nanoimprint process

Tien-Li Chang a,*, Jung-Chang Wang b
, Chun-Chi Chen c
, Ya-Wei Lee d
, Ta-Hsin Chou a
a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan
cNational Nano Device Laboratories, Taiwan
d Research and Development Division, Ordnance Readiness Development Center, Taiwan

Abstract

이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.

Introduction

나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.

따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].

오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.

각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.

Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].

그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.

본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.

Experiment

먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 ​​메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.

디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.

이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.

Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.
Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on anisotropic etching to remove reside.

마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.

PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.

수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.

200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.

마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.

Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational modes of molecular bonds.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The pillar diameter is 200 nm, and its period is 400 nm.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A nanoimprint system geometry, and (B) its grid plot.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.
Fig. 7. Simulation results of temperature distribution between Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views, respectively. The study of computed condition in nanoimprint process is at 150 o C and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated results have already decided before doing nanoimprint experiment.

References

[1] M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Nature 417 (2002) 835.
[2] S.Y. Chou, C. Keimel, J. Gu, Appl. Phys. Lett. 84 (2004) 5299.
[3] Q. Wang, G. Farrell, P. Wang, G. Rajan, T. Thomas, Sensor Actuator A 134 (2007) 405.
[4] C. Kentsch, W. Henschel, D. Wharam, D.P. Kern, Microelectron. Eng. 83 (2006) 1753.
[5] T.L. Chang, Y.W. Lee, C.C. Chen, F.H. Ko, Microelectron. Eng. 84 (2007) 1689.
[6] S. Tisa, F. Zappa, A. Tosi, S. Cova, Sensor Actuator A 140 (2007) 113.
[7] M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Lab Chip 5 (2005) 5545.
[8] W. Hu, E.K.F. Yim, R.M. Reano, K.W. Leong, S.W. Pang, J. Vac. Sci. Technol. B 84 (2005) 2984.
[9] H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht, Microelectron. Eng. 423 (2002) 61.
[10] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, Microelectron. Eng. 73–74 (2004) 196.
[11] A. Yokoo, M. Nakao, H. Yoshikawa, H. Masuda, T. Tamamura, Jpn. J. Appl. Phys. 38 (1999) 7268.

Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem

3-D transient simulation of viscoelastic coating flows

점탄성 코팅 흐름의 3-D 과도 시뮬레이션

James M. Brethour
Flow Science, Inc.
Santa Fe, New Mexico USA 87505
Presented at the 13th International Coating Science and Technology Symposium, September 10-
13, 2006, Denver, Colorado1

일시적인 프로세스의 3 차원 시뮬레이션은 자유 표면 이동 중에 왜곡을 방지하기 위해 시뮬레이션 중에 업데이트 해야 하는 복잡한 메시를 생성하기 때문에 일반적으로 사용자와 컴퓨터 모두에게 매우 어렵고 지루합니다.

고정된 규칙적인 메시를 통해 유체 운동을 추적하는 Eulerian 기술을 사용하면 이러한 어려움이 제거됩니다. 이러한 방식으로, 큰 유체 변형과 심지어 분열을 계산할 수 있습니다.

이 작업에 사용된 계산 소프트웨어인 FLOW-3D® [1]는 지속적으로 변화하는 유체 영역의 자유 표면을 추적하기 위해 Volume-of-Fluid 기반 기술의 독창적이고 진정한 형태 인 TruVOF®를 사용합니다.

이 모델에 추가 된 것은 점탄성 흐름의 시뮬레이션을 가능하게 하는 사용자 정의입니다. 점탄성 모델은 형태 텐서 [2]를 사용하여 각 유체 요소의 변형 및 회전 이력을 추적합니다. 이러한 계산은 이미 흐름 모델에 존재하는 질량 보존 및 운동량 방정식과 함께 해결됩니다. 필요한 추가 매개 변수는 탄성 계수와 이완 시간입니다.

계산 결과는 슬롯 코팅 [3]에서 하류 접촉 라인이 불안정해질 때까지 코팅액의 공급이 점차 감소하는 저 유량 한계의 실험 결과와 비교됩니다. 계산 결과는 모세관 수의 변화와 유체의 탄성 모두에 대한 실험과 잘 연관되어 있습니다.

Figure 1: Two-dimensional slice of slot coating process; in the experiments, the coating gap was maintained at 100 μm, the slot gap was 125 μm, and the vacuum pressure and web speed were continously varied.
Figure 1: Two-dimensional slice of slot coating process; in the experiments, the coating gap was maintained at 100 μm, the slot gap was 125 μm, and the vacuum pressure and web speed were continously varied.
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem
Figure 3: Plot of low flow limits in slot coating as a function of capillary number and fluid elasticity. The solid markers indicate simulation results while the open markers indicate experimental results [3]. The lines represent best-fit power-law curves.
Figure 3: Plot of low flow limits in slot coating as a function of capillary number and fluid elasticity. The solid markers indicate simulation results while the open markers indicate experimental results [3]. The lines represent best-fit power-law curves.

Particles | 입자

입자 / Particles

본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.

금속 증착 시뮬레이션으로 시각화된 Lagrangian 입자
FLOW-3D의 Lagrangian 입자 모델

FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.

  • 마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
  • 가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.

각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.

다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.

가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.

액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.

각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.

Lagrangian 입자를 직접 금속 증착에 적용

직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.

laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.

  • 용융 풀의 크기와 모양
  • 금속 흐름 및 그 내부의 냉각 속도
  • 응고된 층의 형상

이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.

입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.

시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.

새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.

FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids

Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method

낙하 형성 및 분리는 표면 장력 구동 흐름으로 인해 가늘어지는 유체 목의 형성을 포함하여 큰 위상 변화를 수반하며, 목의 pinch-off에서 Laplace pressure와 같은 속성은 유한한 시간 특이성을 나타냅니다. 드롭 형성 중에 발생하는 큰 위상 변형과 비선형성을 정확하게 시뮬레이션하는 것은 일반적으로 pinch-off 순간에 가까운 작은 특징을 해결하기 위해서는 고해상도 및 정확도가 필요하기 때문에 수치 시뮬레이션이 계산적으로 요구됩니다.

필요한 질량 및 계산 시간을 보존하고 인터페이스를 추적하는 데 내재된 이점에도 불구하고, 초기 실무자들이 물 점도가 10배 이상인 유체에 대한 수렴 문제를 보고했기 때문에 낙하 형성 연구에 VOF(Volume-of-fluid) 방법을 활용하는 연구는 거의 없습니다.

이 기여에서, 우리는 FLOW-3D에 구현된 VOF 방법을 사용하여 물 점도보다 4배 더 높은 점도 값을 포함하여 뉴턴 유체에 대한 드리프트의 원형 자유 표면 흐름을 시뮬레이션합니다. 우리는 이 연구의 일부로 수행된 실험에 대해 시뮬레이션된 목 모양, 목 진화 속도 및 헤어짐 길이를 벤치마킹합니다.

핀치오프 역학은 관성, 점성 및 모세관 응력의 복잡한 상호 작용에 의해 결정되며, 여기서 실험과 시뮬레이션 모두에서 대조되는 자기 유사 스케일링 법칙은 종종 역학에 대해 설명합니다. 우리는 시뮬레이션된 반지름 진화 프로파일이 축 대칭 흐름에 대한 뉴턴 유체에 대해 실험적으로 관찰되고 이론적으로 예측되는 핀치오프 역학과 일치함을 보여준다. 또한, 우리는 가는 목 안에서 법칙, 속도 및 변형 필드의 스케일링에 대한 사전 요인을 결정하고, 우리는 실험과 비교할 수 있는 중단 시간과 길이뿐만 아니라 사전 요인을 VOF 방법을 사용하여 시뮬레이션할 수 있음을 보여줍니다.

experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
 A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids. (a) A sequence of simulated images of water (0 wt. % glycerol) shows neck formation and subsequent thinning and pinch-off dynamics including the formation of the satellite drop. (b) A sequence of images shows neck radius evolution and drop detachment for the low viscosity fluid composed of 50 wt. % glycerol in water. The time step between images is 500 µs, and the scale bar represents a length of 1 mm for the two cases shown. The color bar shows the velocity field in units of cm/s. The addition of glycerol seems to exercise a relatively minor influence on pinch-off dynamics despite a five-fold increase in viscosity.
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process. The instantaneous neck radius of water and the inertio-capillary fit are shown. The inset shows a self-similar nature of neck thinning dynamics close to a pinch-off moment. The characteristic cone angle of 18.1◦ as predicted by Day et al.50 and visualized in experiments52 is captured well using the VOF method.
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases. (a) Glycerol thinning is shown through a sequence of snapshots with a time step ∆t = 5 ms and reveals quite different dynamics compared to previously seen for low viscosity fluids. The length of a filament changes significantly when the glycerol content increases above 70 wt. %. (b) Final lengths of the simulated liquid filaments before pinch-off for three cases of glycerol + water mixtures (0 wt. %, 70 wt. %, and 100 wt. %).
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture. (a) A set of images obtained from experiments (upper row) and simulations (bottom row) with a time step of 1 ms show good agreement. The simulated drop profiles shown in the bottom row are colored by the velocity magnitude [ranging from 0 (dark blue) to 100 cm/s (red) and colored online], and velocity vectors are shown in the images. (b) Radius evolution with time of liquid filament formed during the drop formation process is shown on a log-log plot for the two cases.
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics

우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 배출, 가스 배출 및 가압과 같은 추진 기능에 영향을 미칩니다. 어떤 경우에는 추진체 운동에 의해 생성되는 힘도 알아야합니다. 이것은 액체 질량이 전체 우주선 질량의 상당 부분을 포함할 때 특히 그렇습니다.

FLOW-3D: Aircraft Fuel Tank Sloshing
FLOW-3D: Aircraft Fuel Tank Sloshing : 회전과 가속을 하는 동안 전투기의 연료 탱크 시뮬레이션

Visualizing Non-Inertial Reference Frame Motion

연료 탱크 슬로싱은 연료의 slosh 역학을 구성하며, 여기서 연료의 역학은 컨테이너와 상호 작용하여 시스템 역학을 변경할 수 있습니다. 일반적으로 연료에는 자유 표면이 있습니다. FLOW-3D는 TruVOF를 사용한 정확한 자유 표면 추적으로 인해 연료 슬로싱 역학을 시뮬레이션하는 데 탁월한 소프트웨어입니다. 또한 FLOW-3D의 NIRF (Non-Inertial Reference Frame) 모듈을 사용하면 고정된 참조 프레임에서 연료 및 움직이는 컨테이너 (연료 탱크)를 시각화하기 위한 쉽고 계산 효율적인 설정이 가능합니다.

FLOW-3D의 NIRF 모듈 기능을 강조하기 위해 우주 왕복선의 연료 슬로 싱을 보여주는 샘플 시뮬레이션이 설정됩니다. 우주 왕복선은 처음 25 초 동안 위쪽으로 가속한 다음, 다음 25 초 동안 같은 양만큼 감속합니다. 그 후 각 가속도를 사용하여 셔틀이 90도 회전한 다음 다시 선형 가속을 계속합니다. 이 복잡한 우주 왕복선 기동 중에 복잡한 자유 표면 유체 운동을 보는 것은 흥미롭습니다. RNG 난류 모델은 유체의 난류 운동 에너지를 추정하는데 사용됩니다.

애니메이션의 왼쪽 창에는 FlowSight에서 생성 된 NIRF 시각화가 표시되고 오른쪽 뷰포트에는 FlowSight를 사용하여 다시 생성된 비 NIRF 시각화가 표시됩니다. NIRF 시각화는 고정된 기준 프레임에서 유체와 탱크의 움직임을 이해하는데 도움이되므로 시스템의 전반적인 역학을 보다 관련성 있게 강조 할 수 있습니다.

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

관련 기술자료


Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey Abstract: 차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 ...
더 보기
Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션 To cite this article: Halah Kais Jalal and ...
더 보기
Abb. 3 Detail des Rechens am Vorversuch zum Seilrechen – Blick in Fließrichtung

Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D

Abstract Sebastian Krzyzagorski · Roman Gabl · Jakob Seibl · Heidi Böttcher · Markus AuflegerOnline publiziert: 17. Februar 2016© Die ...
더 보기
Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

청정 및 에너지 절약 단조 기술을 위한 혁신적인 다이 재료 및 윤활 전략 이 최종 기술 보고서에는 수상 번호 DE-FC07-01ID14206에 ...
더 보기
(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertationsubmitted to the Graduate School of UNISTin partial fulfillment of therequirements for the degree ofMaster of ScienceHaneol Park07/09/2019Approved by_________________________AdvisorIn ...
더 보기
Figure 8 Evaluation test of thermal sprayed coatings

Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines

고효율 가스 터빈용 신소재 및 제조 기술 개발 Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015) 가스 ...
더 보기
Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b

Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways

눈사태가 일리노이 고속도로에 미치는 영향을 줄이기 위한 생활장벽 설계 John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 ...
더 보기
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics 우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 ...
더 보기
Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy 전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다 ...
더 보기
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기

FLOW-3D AM

flow3d AM-product
flow3d AM-product

FLOW-3D AM 은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

L-PBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 사용하면 아래 동영상처럼 입자의 분포를 무작위로 떨어뜨려 파우더 베드 배치 프로세스를 시뮬레이션할 수 있습니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

파우더 베드 용해

파우더 베드를 놓은 후 FLOW-3D  WELD 에서 레이저 빔 공정 매개 변수를 지정 하여 고 충실도 용융 풀 시뮬레이션을 수행 할 수 있습니다  . 온도, 속도, 고체 분율, 온도 구배 및 고체 속도의 플롯을 자세히 분석 할 수 있습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

다층 적층 제조

첫 번째 용융 층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고 된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

dem9
dem10

FLOW DEM

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

주요 기능 :고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7

응용 분야

1. Mechanical Engineering 분야

수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

2. Civil Engineering분야

3. Civil Engineering 분야

파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

dem11

3. Chemical Engineering, Pharmaceutics 분야

유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

dem12

4. MEMS, Electrical Engineering 분야

하전 입자를 포함한 전기장 해석 등

dem15

입자 그룹 가시화

그룹 가시화

DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

원래 입자수
입자 사이즈를 키운경우
그룹 가시화
  • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
  • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
  • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

주조 시뮬레이션에 DEM 적용

그룹 가시화 비교 예

그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Figure2 Outline of a flap gate

FLAP GATE TO PREVENT URBAN AREA FROM TSUNAMI

Osamu Kiyomiya 1, and Kazuya Kuroki 2

1 일본 도쿄 와세다 대학교 토목 공학과 교수
2일본 도쿄 와세다 대학교   토목 공학과 학생

요약

저자들은 쓰나미로부터 보호하기 위해 플랩 게이트를 제안하고 게이트의 특성과 디자인 및 유압에 대한 연구를 시작했습니다. 쓰나미의 위험이 예상되면 몇 분 안에 플랩이 일어 서서 쓰나미 침해로부터 해안 거주 지역을 보호합니다.

이 백서에서는 플랩 게이트 설계에 필요한 파압 및 게이트 동작을 확인하기 위해 보어 파 생성기를 사용하여 수로 탱크에서 2 차원 유압 모델 테스트를 논의합니다. 또한, 모델 테스트 결과를 비교하기 위해 VOF 방법을 사용하여 쓰나미로 인한 수력 특성을 시뮬레이션했습니다.

수치 해석의 결과는 일반적으로 모델 테스트에서 얻은 결과를 추적했습니다. 그러나 수치 해석에서의 파압은 파단 조건에서 모델 시험 결과와 일치하지 않았습니다. Flow 3D에 의한 3 차원 FEM은 또한 플랩 게이트가 포트 입구에 설치된 포트 영역에서 쓰나미의 런업 동작을 시뮬레이션했습니다.

테스트와 계산을 통해 쓰나미 플랩 게이트는 항구 거주 지역에 대한 쓰나미 침해에 효율적입니다.

일본은 많은 생명과 재산을 잃은 해안선을 따라 많은 쓰나미 침해 이력을 가지고 있습니다. 최근에는 쓰나미가 수반되는 대규모 지진으로 인한 피해도 예측하고 있습니다. 따라서 해안 지역의 쓰나미 대책 개선이 요구됩니다. 저자들은 이러한 대책 중 하나로 플랩 게이트의 사용을 제안하고, 현재 수력 학적 특성에 대한 연구를 진행하고 있습니다.

그림 2에서 볼 수 있듯이 플랩 게이트는 하단 가장자리에 핀 메커니즘으로 설계되었으며 일반적으로 해저에 위치합니다. 쓰나미가 해안 지역을 강타 할 것으로 예상되면 플랩의 cell이 공기로 부풀려 부력이 빠르게 위로 떠오르게됩니다.

쓰나미가 지나간 후에는 문에있는 cell에 물이 채워져 다시 해저에 가라 앉습니다. 플랩 작동 시간은 쓰나미에 대해 몇 분으로 설정됩니다. 이탈리아의 “Progetto Moze”에서는 플랩 게이트의 작동 메커니즘이 이미 채택되었지만이 게이트는 폭풍 해일에는 적합하지만 쓰나미에는 적합하지 않습니다.

여기에 소개된 플랩 게이트는 해안 거주지의 쓰나미를 방지하기 위해 만이나 강 하구에 설치됩니다. 이 게이트는 도시의 쓰나미 침해를 막기 위해 해안선을 따라 육지에 설치할 수도 있습니다. 플랩 게이트 설치는 일본의 여러 지역에서 계획 단계에 있습니다. 플랩 게이트의 유효성을 확인하기 위해 유압 모델 테스트와 수치 시뮬레이션을 수행했습니다.  

Figure 1 Tsunami attacks coast line
Figure 1 Tsunami attacks coast line
Figure2 Outline of a flap gate
Figure2 Outline of a flap gate

OUTLINE OF MODEL TESTS

2.1 FLAP GATE 모델을  

부상 플랩 게이트의 두 종류가 있습니다: 첫 번째 유형은 플랩의 하부 표면에 설치된 스토퍼를 사용하여 플랩의 움직임을 제어하고 다른 하나는로드와 케이블로 트러스 메커니즘으로 플랩을 안정화합니다. 플랩은 바다 방향으로 자유롭게 이동하지만 육지로 이동할 수는 없습니다. 닫았을 때 수직이거나 바다쪽으로 기울어 진 플랩에 추가합니다.

Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)
Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)

그림 3 게이트의 초기 단계 그림 4 쓰나미 발생 (보어 웨이브) 모델의 규모는 S = 1 / 50으로 설정되었습니다. 플랩의 각도는 75°와 90°로 설정되었습니다. 텐션로드는수평에서 39° 각도로 똑 바르고 기울어 지도록 설정 됩니다. 인장로드는 직사각형 단면이 있는 3 개의 스테인리스 스틸 빔을 사용하여 제조되며 핀으로 연결됩니다. 초기 위치에서 텐션로드는 해저에 세 번 접힌 상태로 설치됩니다. 그림 3은 모델의 초기 설치 위치를 보여줍니다. 쓰나미 지루 파의 도착과 함께 플랩은 부력과 양력으로 인해 위로 떠 오릅니다. 수위가 0 일 때 보어 웨이브가 도착하더라도 수위가 상승하면 플랩이 즉시 위로 쉽게 이동할 수 있습니다. 이것은 플랩 게이트가 해안선을 따라 도로 또는 호안과 같은 육지 지역에 적용 가능하다는 것을 의미합니다. 플랩은 스티렌 폼으로 채워진 아크릴 및 폴리 염화 비닐 플레이트를 사용하여 제조되었습니다.

구조의 질량은 19.4kg이며, 모델 구조는 높이 475mm, 깊이 790mm, 두께 50mm입니다. 테스트는 그림 4에 표시된 게이트 리프트 보어 생성기를 사용하여 유량 탱크에서 수행되었습니다. 실험 수로 치수는 길이 25,000mm, 폭 1,000mm (수류 섹션) 및 높이 1,500mm입니다. 저수조는 수로 좌측에 위치하고 있으며, 무거운 무게로 현관 문 (보어 생성 게이트)을 빠르게 들어 올려 보어 웨이브를 생성합니다. 이 방법은 댐 파괴 방법이라고도합니다. 플랩 모델은 수로의 채널 바닥에 설치할 수 있도록 설계되었으며 길이 735mm, 깊이 100mm입니다.

2.2 측정 방법  

플랩 동작과 쓰나미 파형은 디지털 비디오 카메라를 사용하여 기록되었습니다. 용량 성 파고계 6 대를 설치하여 보어 파의 수위와 유속을 측정 하였다. 유속은 지정된 수위에서 미터 사이의 시간 차이를 측정 한 다음 미터 사이의 거리를 해당 시간 차이로 나누어 계산했습니다. 고정 모형 시험에서는 5cm 간격으로 9 개의 파압 계를 배치하여 파압을 측정 하였다. 진동 모델 테스트에서는 파동 압력 게이지를 5 개 위치에 설치하여 파압을 측정했습니다. 고정 모델 테스트에서는 플랩에서 작동하는 회전 모멘트를 측정하기 위해 플랩의 회전 중심에서 450mm 떨어진 위치에 플랩에 수직 인 위치에로드 셀을 부착했습니다. 진동 모델 테스트에서 스트레인 게이지는로드 장력을 측정하기 위해 플랩의 회전 중심에서 450mm 위치에로드에 부착되었습니다. 회전 모멘트는 힘의 수평 성분을 사용하여 계산되었습니다.  

테스트 결과는 아래 문서를 참고하시기 바랍니다.

Structured FAVOR™ grid in cylindrical coordinates

CFD Modeling Techniques | CFD 모델링 기술

Modeling Techniques

CFD를 폭넓게 사용한 적이 있는 사람이라면 누구나 사용할 최적의 수치 기법이 뭔가에 관한 개인적인 취향이나 선입견을 가지고 있습니다.  이 절에서는 저자가 사용한 모델링 기법의 일부와 그들이 다른 기법보다 나은 선택이라고 생각하는 이유에 대해 설명합니다.

Anyone who has used CFD extensively will have his own preferences and prejudices for what are the best numerical methods to use.  The articles in this section explain some of the modeling techniques the author has used and why he believes they are good choices with respect to other methods.

Structured FAVOR™ grid in cylindrical coordinates
Structured FAVOR™ grid in cylindrical coordinates

이 절에서는 FAVOR (Fractional-Area-Volume-Obstacle-Representation ) 법과 VOF (Volume-of-Fluid) 법에 중점을두고 있습니다.  복잡한 장애물 주위의 유체 흐름을 모델링하는 경우 많은 숙련자는 장애물의 형상으로 변형된 계산 격자를 사용하는 것을 선호합니다.  이러한 계산 격자는 일반적으로 물체 적합 격자(body-fitted grids)라고합니다.  대조적으로, FAVOR 법은 요소에 면적 점유율 및 체적 점유율이 할당된 생성이 용이한 사각형 격자가 사용됩니다.  이러한 방식의 관련성에 대해서는 FAVOR와 물체 적합 좌표계 및 No Loss with FAVOR의 절에서 논의되고 있습니다.

These articles center on the FAVOR (Fractional-Area-Volume-Obstacle-Representation) method and the VOF (Volume-of-Fluid) method.  When modeling fluid flow around complex obstacles many practitioners prefer to use computational grids that are deformed to the shape of the obstacles, these are generally referred to as body-fitted grids.  The FAVOR method, in contrast, employees easy to generate rectangular grids whose elements are assigned fractional areas and volumes.  The connection between these approaches is discussed in the articles FAVOR vs. Body-Fitted Coordinates and No Loss with FAVOR.

Structured FAVOR™ Grids

VOF와 FAVOR ™은 모두 표면 기반의 계산 방법과 달리 볼륨 기반입니다. 경계 조건이 규정되는 유체 및 장애물 표면을 직접 설명하는 것이 논리적으로 보이지만 더 나은 방법은 유체 및 고체 영역의 볼륨을 사용하는 것입니다. 볼륨에는 많은 장점이 있습니다. 시간 종속적인 계산 시뮬레이션에서 움직이고 변화하는 유체 표면을 고려하십시오. 이를 자유 표면이라고하며 그 결정은 유체 역학 솔루션의 필수적인 부분이됩니다. 유체 표면은 시간이 지남에 따라 생성 및 파괴 될 수있을뿐만 아니라 유체 볼륨을 완전히 둘러 쌀 수도 있고 그렇지 않을 수도 있습니다.

Both VOF and FAVOR™ are volume-based, as opposed to surface based, computational methods. Even though it seems logical to directly describe fluid and obstacle surfaces on which boundary conditions are to be prescribed, a better method is to use the volumes of fluid and solid regions. Volumes have many advantages. Consider fluid surfaces that move and evolve in time-dependent computational simulations. These are referred to as free surfaces and their determination becomes an integral part of a fluid dynamic solution. Fluid surfaces can not only be created and destroyed over time, but may or may not completely enclose fluid masses.

간단한 예로는 호스를 빠져나가는 물이 있다고 가정하면 물의 표면적은 바깥쪽으로 흐르면서 커지고 있습니다. 만약 그것이 방울로 분해된다면, 서로 연결되지 않은 여러 표면이 있게 됩니다. 두 개 이상의 낙하물이 충돌하고 이들의 개별 표면이 더 이상 존재하지 않는 경우, 결합 낙하물을 둘러싼 단일 표면으로 대체됩니다. 또는 단순한 유체 강하가 임의로 변형되어 표면적이 변경될 수 있지만 유체가 압축할 수 없을 때는 부피에 변동이 없습니다. 이러한 종류의 행동은 개별 표면의 규격을 문제가 되게합니다.

A simple example is water exiting a hose. The surface area of the water is growing as it flows outward. If it breaks up into drops there are then multiple surfaces that are not connected to one another. Should two or more drops collide and coalesce their individual surfaces no longer exist being replaced by a single surface surrounding the combined drops. Or a simple fluid drop can arbitrarily deform resulting in a changing surface area, but its volume is unchanged when the fluid is incompressible. This sort of behavior makes the specification of individual surfaces problematic.

 한편, 유체나 고형물의 부피를 정의하는 것은 질량의 보존(그리고 불변의 부피 형태의 비압축성)이 유지하기가 더 쉽기 때문에 이치에 맞습니다. 유체 용적은 그들이 원하는 대로 결합하고 분리될 수 있으며, 결과 표면을 쉽게 평가할 수 있습니다. Volume methods에서 표면의 위치는 부피 영역이 끝나는 위치에 있습니다.

On the other hand, defining volumes of fluids or solids makes sense because conservation of mass (and incompressibility in the form of unchanging volumes) is easier to maintain. Fluid volumes may coalesce and breakup as they will, allowing easy evaluation of their resulting surfaces. In volume methods the location of a surface is wherever the volume region ends. 

Volume methods은 강력한 numerical 도구입니다. VOF 및 FAVOR™ 기법에 이러한 기법을 구현하는 방법은 첨부된 기사에 자세히 설명되어 있다.

Volume methods are powerful numerical tools. How they are implemented in the VOF and FAVOR™ techniques is described in detail in the accompanying articles.

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

FLOW-3D Spillway Visualization

Volume of Fluid (VOF) History

Volume of Fluid (VOF)

FLOW-3D Spillway Visualization

VOF(Volume of Fluid) 방법은 이전의 MAC(Marker-and-Cell) 방법을 기반으로 한다[1]. MAC 방법은 표식기 입자를 사용하여 유체가 고정된 오일러 그리드 내에 존재하는 위치를 찾아냈다. MAC는 자유로운 표면으로 압축할 수 없는 유체의 역학을 시뮬레이션한 최초의 연산 방법이었다. 유체를 추적하기 위한 마커 입자의 사용은 특히 3차원에서 계산적으로 비용이 많이 들고, 입자가 한 그리드 소자에서 다른 그리드 소자로 이동할 때 그리드 요소 특성(질량 등)의 변화가 이산적인 변화를 겪기 때문에 연산 노이즈를 도입한다. 마커 입자를 인터페이스 추적 체계로 대체하려는 다양한 시도가 있었지만, 유체 질량이 종종 분리되거나 결합되어 인터페이스 표면의 생성과 파괴로 이어지기 때문에 대부분 실패했다.

유체 표면 대신 유체 부피를 추적하는 유체 부피(Volume of fluid method)의 발상은 유체 변수의 부피를 사용하는 것이 관례인 2상(물과 증기) 문제에 대한 연구로부터 비롯되었다. 증기의 부피 분율은 물과 증기가 혼합된 상태에서 증기의 양을 기록하는 연속 변수다. 이 체적 개념을 불압성 유체의 자유 표면을 찾기 위해 불연속 변수에까지 확장(예: 액체와 0의 단위 값)한 것은 1975년 간행물 “다차원, 과도 자유 표면 흐름 계산을 위한 방법”[2]에서 니콜스와 허트의 “다차원, 과도 자유 표면 흐름”에서 처음 입증되었다.

계산적 의미 만들기

VOF 개념은 플로우 모델이 일반적으로 압력, 밀도, 온도 등과 같은 종속 변수를 저장하기 위해 각 그리드 요소에서 하나의 숫자 값만 사용하기 때문에 계산이 타당하다. 그렇다면 왜 요소 내의 유체 분포를 정의하기 위해 둘 이상의 변수가 필요할까? 예를 들어, 원소의 유체가 둘 이상의 blob으로 분포된 경우, 각 blob에 대해 더 많은 종속 변수가 필요할 것이다. 이런 관점에서 보면 원소의 유체량만 기록하는 것이 타당하다. 그러나 문제는 체적분율 변수의 추정 불연속적 특성이다. 오일러 그리드를 통한 불연속 유체 인터페이스의 이동을 추적하려면 더 많은 정보가 필요하다.

Making Computational Sense

이 문제는 많은 출판사에서 많은 사람들이 다루어 왔다. 제안된 거의 모든 방법은 인접한 그리드 요소의 볼륨 분율 검사에 기초한 근사치의 어떤 유형에 의존한다. 예를 들어, 1차원 흐름에서는 정확한 방법을 도출하기 쉽다. 액체와 기체를 분리하는 예리한 인터페이스를 가진 1차원 도관을 따라 액체가 흐르고 있다고 가정해 보자. 인터페이스 업스트림 그리드 요소에서, 볼륨 분율은 1과 같고, 인터페이스 다운스트림에서는 볼륨 분율은 0과 같다. 0과 1 사이의 볼륨 비율 값을 갖는 인터페이스를 포함하는 그리드 요소에서 액체는 1의 볼륨 비율을 포함하는 인접 셀에 연결된 셀의 측면에 위치해야 하기 때문에 해당 셀 내에서 인터페이스를 쉽게 찾을 수 있다. 그런 다음 인터페이스는 체적 분율의 곱에 셀의 크기를 곱한 곱에 의해 액체 이웃에 연결된 셀 가장자리로부터 다운스트림 거리에 위치한다. 이 위치는 인터페이스가 날카로운 불연속성을 유지하도록 유체를 삽입할 때 사용할 수 있다. 불행하게도, 2, 3차원에서는 그리드 요소 내에서 인터페이스를 위치시키는 간단한 방법이 존재하지 않는다.

One method proposed for advecting discontinuous fluid interfaces was presented in the 1980 Los Alamos Scientific Laboratory report, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” [3] by Nichols, Hirt and Hotchkiss, and in a 1981 publication, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,쓴 [히트와 니콜스가 쓴 [4]. 주로 경수-원자로 안전 연구를 위한 이 프로그램의 초기 적용은 [5]와 [6]에서 확인할 수 있다.

VOF Variations | VOF 변형 모델

VOF 방법의 많은 변형이 문헌에 보고되었지만, 대부분은 원본에서 사용된 방법을 따르지 않는다[4]. 특히 원래의 VOF 방식은 주변 가스가 아닌 압축 불가능한 액체에서만 유체 역학을 위한 Navier-Stokes 방정식을 해결했다. 대신에 유체가 없는 표면은 경계 조건에 의해 처리되었고 유체가 포함된 그리드 요소의 목록은 지속적으로 업데이트되었다. 원래 모델의 가스 영역은 모멘텀을 무시할 수 있는 낮은 밀도를 가지며, 공간적으로 균일한 가스 압력을 가지는 것으로 가정했다. 다른 대부분의 VOF 모델에서 사용하는 대안은 인터페이스에 경계 조건을 설정하지 않기 위해 2-유체 시뮬레이션을 사용하는 것이다. 이 옵션은 가스 역학을 위해 해결해야 하기 때문에 원래 방법보다 상당히 많은 계산 자원을 필요로 한다. 또한 대부분의 2-유체 모델은 인터페이스에서 가스와 액체 사이에 존재하는 속도 “슬립”의 가능성을 무시한다. 슬립의 존재를 무시하고 가스/액체 혼합물의 평균 속도로 인터페이스를 이동하면 심각한 오류가 발생할 수 있다.

Modeling Fluid Advection | 모델링 유체 부착

대체 VOF 방법 개발자들이 항상 높이 평가하지 않는 또 다른 점은 VOF 유체 분율 수량 F의 첨부를 위해 모델링된 방정식이다. 원래의 방법 [4]은 F에 대한 보수적인 운송 방정식을 사용했다.

∂F∂t+∇∙(Fu→)=0

부착을 위해 레벨 설정 방법을 사용하는 것과 같은 많은 대안 VOF 공식은 비보수적 전송 방정식을 사용한다.

∂F∂t+u→∙∇F=0

보수적인 방법의 장점은 변경되어서는 안 되는 유체량을 쉽게 계산하고 표시하기 때문에 시뮬레이션에서 한 번의 간단한 불압력 정밀도 검사를 제공한다는 것이다.

TruVOF 솔루션

이용 가능한 인기 있는 상용 코드 중 FLOW-3D만이 [4]에서 참조한 원래의 1유체 모델을 기반으로 한다. 물론, 열 전달, 표면 장력, 위상 변화, 이동 장애물 및 유체 구조 상호작용과 같은 다양한 물리적 프로세스에 대한 많은 모델을 포함하여 이 소프트웨어에 대한 많은 개선이 평생에 걸쳐 이루어졌다.

다른 기사 읽기 : VOF (Volume of Fluid) 란 무엇인가? | FLOW-3D

참고문헌

References

  1. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow,” Phys. Fluids 8, 2182 (1965); J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, “THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces,” Los Alamos Scientific Laboratory report LA-3425 (March 1966).
  2. D. Nichols and C. W. Hirt, “Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies,” Proc. Of the First International Conference on Numerical Ship Hydrodynamics, Gaithersburg, Maryland, October 20-23, 1975.
  3. D. Nichols, C. W. Hirt and R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” Los Alamos Scientific Laboratory report LA-8355 (August 1980).
  4. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Jour. Computational Physics, 39, 201 (1981).
  5. D. Nichols and C. W. Hirt, Numerical Simulation of BWR Vent Clearing Hydrodynamics,” Proc. 1978 Annual Meeting ANS, San Diego, CA; Nuc. Sci. Eng. 73, 196 (1980).
  6. W. Hirt and B. D. Nichols, “A Computational Method for Free Surface Hydrodynamics,” ASME 1980 Pressure Vessels and Piping Conf. San Francisco, CA (August 1980) Jour, Pressure Vessel Technology, 103, 136 (1981)
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

Hydraulic Energy Losses|유압 에너지 손실

유압 에너지 손실

이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production  Hydro-Québec Équipement .

이 내용은 특히 유압 에너지 소산율 평가를 위해 FLOW-3D가 제공하는 유압 에너지 흐름과 총 수두의 연산을 검토한다. FLOW-3D 에서는 모델 출력에서 직접 시각화할 수 있는 변수 중 총 유압 헤드가 포함되었다. 그림 1은 강 우회 터널(a river diversion tunnel)을 통한 절토에 걸친 총 유압 헤드 분포(total hydraulic head distribution)를 보여준다. 버전 10에서 FLOW-3D는 플럭스 배플로 계산하고 시계열로 시각화하고 외부 도구로 분석할 수 있는 일체형 값으로 유압 에너지 흐름과 총 수두를 도입했다.

하천변환터널을 통한 단면내 총 유압높이 분포
그림 1. 하천변환터널을 통한 단면내 총 유압높이 분포

총 유압 에너지

베르누이의 방정식

수압 에너지, eG는 흐름에서 물의 입자의 잠재력과 운동 에너지의 합이다. 에너지 밀도로서 J/m³으로 표현되며, 베르누이의 방정식(Eq. 1)에 의해 주어진다.

(1) \displaystyle {{e}_{G}}\quad =\quad p\ -g\rho z+\rho \frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{2}

기호 의미가 있는 곳

e G유압 에너지 밀도(J/m3 )
p압력(Pa ≡ N/m2 ≡ J/m3 )
g중력의 가속도( – 9,81m/s2 )
ρ밀도(kg/m3)
u, v, wx, y 및 z(m/s) 단위의 속도
z일부 기준 수준 이상의 높이(m) 또는 고도

수력 에너지 단순화된 계단식

일반적으로 에너지는 스스로를 변형시키지만 결코 손실되지 않는 전통적인 양으로 간주된다. 토목 공학에서 물의 흐름을 나타내기 위해, 에너지 변환을 중력 전위 에너지로 시작하여 운동 에너지로 변환한 다음 열 에너지로 변환하는 계단식 에너지로 상상하기에 충분한 경우가 많다. 또한 처음 두 형태(잠재성과 운동성)의 양만을 명시적으로 모델링하여 에너지 캐스케이드의 범위를 더욱 제한하는 것이 일반적이다.

상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.
그림 2. 상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.

수압 에너지 캐스케이드는 그림 2와 같이 보에서 풀로의 유량이 떨어지는 경우에 잘 나타난다.

그림에 표시된 입자의 트랙을 따라가십시오.

  • 위치 A에서는 저수지의 상류에서 물 입자는 거의 움직이지 않고 있다.
  • 위치 B에서 입자는 B 위의 자유 표면이 약간 낮아짐에 따라 일부 위치 에너지를 희생하여 속도를 얻었다.
  • 위치 C에서는 입자가 자유 낙하 궤적으로 유체를 따르므로 더 많은 위치 에너지가 운동에너지로 변형되었다.
  • 하강 흐름이 하부 풀의 물과 접촉하면 활발한 모멘텀 교환이 이루어지며 초기 유압 에너지의 상당 부분이 격동의 에너지 폭포와 점성 공정을 통해 열로 손실되었다.
  • 위치 D에서 입자는 위치 A, B, C에 비해 낮은 유압 에너지로 영역을 떠난다.

A에서 B, C로 이동하는 동안, 점성과 난류 과정은 대개 흐름에 거의 영향을 미치지 않는다. 총 유압 에너지 eG는 필요시 작은 손실 조건을 고려하여 질량처럼 보존된 양으로 취급될 수 있다. C의 다운 스트림에서, 이 전통적인 수력 에너지(conservative hydraulic energy)의 모델은 더 큰 규모의 에너지 손실 조건과 흐름에 미치는 영향을 고려함으로써 확장될 수 있다.

질량 및 에너지 예산

볼륨 컨트롤

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단순히 당연하게 여겨지고 있다.

흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

CV는 다음 규칙을 따르는 한 하나의 선택사항의 정의 표면으로 둘러싸인 볼륨이다.

  • 정의 표면은 스스로 교차하지 않는 한 임의의 형태를 가질 수 있다.
  • 표면은 각 패치가 다른 패치와 물샐틈없는 가장자리로 연결되어 있는 한 패치로 구성될 수 있다.

CV의 부피는 밀폐된 질량이나 에너지와 같은 적분, 자체 보존 수량을 계산하는 데 사용된다.

CV의 표면은 들어오고 나가는 플럭스를 정의하기 위해 사용되며, 밀폐된 수량에 대한 예산을 세우고 그 시간 이력을 감시할 수 있다.

그림 3은 떨어지는 물 분사기의 특성을 분석하는 데 사용할 수 있는 제어 부피의 예를 제시한다. 이 제어 볼륨으로 유입되고 유출되는 유일한 것은 제트기 자체로서 왼쪽 상단에서 들어오고 오른쪽 하단에서 떠난다.

FLOW-3D의 고정형상 제어량

FLOW-3D를 사용하면 고정된 형태와 위치의 CV를 세 가지 기본 형태의 플럭스 배플의 도움을 받아 쉽게 정의할 수 있다.

  • 구(Sphere)들은 닫힌 표면이다.
  • 실린더는 양끝이 개방되어 있으므로, 실린더의 끝이 흐르지 않도록 유량 한계 밖으로 뻗어나가도록 주의해야 한다.
  • 전체 흐름 영역 또는 하위 도메인을 교차시켜 CV를 조립하는 데 사용할 수 있는 평면 직사각형 패치

그림 4는 세 가지 유형의 플럭스 배플을 계산 메쉬로 렌더링한 후에 볼 수 있는 실제 모델에서 그린 예다. 그것들은 불투명한 것으로 렌더링되지만 그것들이 배플을 측정하는 유일한 플럭스로 정의된다면 흐름에 완전히 스며들 수 있다.

(2) hG≡eG/-gρ

(3) hG=z+

그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.

그림 5는 평면 배플 표면을 사용하여 두 가지 제어 볼륨을 정의하는 방법을 보여준다.

  • 제어 볼륨 DC, 긴 입방형 모양은 6개의 면으로 구성되어 있다. 반대편 두 면은 C와 D라고 불리는 배플이다. 밑면과 윗면이 그려지고 그 위치는 흐름 영역보다 훨씬 위아래 있는 한 중요하지 않다. 앞면과 뒷면은 큐브의 남은 두 면이며, 그들의 위치 또한 앞과 뒤가 잘 있는 한 중요하지 않다. 흐름 영역의
  • 제어 볼륨 BA도 마찬가지로 정의된다. 그것은 자유로운 표면 흐름을 포함하는 하위 도메인인 입구 포탈의 일부를 둘러싸고 있다. 자유 표면 흐름은 면 B와 A의 유입량 차이가 수위(및 수량)에 변화 속도를 부여하고 진동을 유발하여 천천히 감쇠하거나 전혀 감쇠하지 않기 때문에 진정한 안정 상태에 이르기 더 어렵다. 이 경우, 질량과 에너지의 신뢰할 수 있는 예산은 성질의 진화가 정지해 있는 에피소드를 식별하고 평균화를 수행하기 위해 흐름의 시계열을 처리함으로써 이루어진다.

그림 5의 수직 플럭스 배플은 사용 가능한 수직 표면(DB, DA, CB, CA)의 순열을 사용하여 몇 개의 다른 CV를 정의하는데 사용할 수 있다.

에너지 예산

수력 에너지 균형은 점성 열 생성을 손실로 명시적으로 표시하기 때문에 정의에 따라 누출된다. 이상적으로, 수력 에너지 캐스케이드는 다른 원인으로 인해 에너지를 잃지 않아야 하며 어떤 것도 얻지 않아야 한다. 여기서 다시 수치 모델로 연습하면 약간 다른 그림이 그려진다. 모든 수치 모델에는 인위적인 소스 또는 수력 에너지 싱크가 있다.

예를 들어, 셀 크기가 에너지 전달 흐름 특징보다 훨씬 작을 때 계산 메쉬에 흐름 간섭이 발생한다. 셀 크기가 충분히 작지 않을 때, 속도 대비는 자연 흐름에서보다 더 큰 공간 범위에 걸쳐 확산된다. 그 확산은 운동 에너지를 약간 작게 만들고 자연 현상보다는 그리드 효과에 기인하는 에너지 방산 역할을 한다.

에너지 예산을 모니터링하면 모델의 신뢰성에 대한 단서를 얻을 수 있으며 다른 매개변수 값이나 그리드 셀 크기를 사용하는 런을 비교하는 데 사용할 수 있다. 인위적인 손익이 관리되고 있을 때 유압 에너지 소산 속도는 종종 수치 모델에서 얻은 중요한 결과 중 하나이며 설계 변동을 구별하는 데 중요하다.

총 유압 헤드

에너지 밀도로서의 총 유압 헤드

아래 hG로 상징되는 총 유압 헤드는 Eq. 1의 총 유압 에너지 eG를 단순히 (-g ρ )로 나눈 값이다.

(2) \displaystyle {{h}_{G}}~\equiv ~{{e}_{G}}/\text{ }-g\text{ }\rho

(3) \displaystyle {{h}_{G}}\ =\quad z\ \ +\frac{p}{{-g\rho }}\ \ +\frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{{-2g}}

다음과 같은 경우를 제외하고 기호가 모두 이미 소개된 경우:

hG, 총 유압 헤드(m)

총 유압 헤드는 다음과 같은 합이기 때문에 합계로 인정된다.

  • 입면체 헤드 z + p/(-gρ)
  • 운동 에너지 헤드 u²/(-2g)

유량에서 측정한 입압 헤드는 물의 국부적 자유 표면 고도를 잘 측정할 수 있는 것으로 간주된다.

저수지 및 강의 평온한 범위에서는 흐름 속도가 운동 에너지 헤드가 무시해도 될 정도로 충분히 낮아서 때때로 hG가 입압 헤드와 동일하다고 간주될 수 있다.

총 유압 헤드 hG는 때로 정체 높이라고 불리기도 한다. 흐름 내에 유체의 입자가 있는 경우, 모든 속도가 갑자기 위쪽으로 향하게 되고 주변 유체가 장애물이 되지 않을 경우 입자가 도달하는 최종 높이다.

총 유압 헤드 hG는 교각과 교대 등 유압 설계에 있어 유비쿼터스 변수다. 그것은 또한 채널과 펜스탁과 같이 에너지가 관리된 방식으로 전달되거나 소멸되어야 할 때마다 흐름의 수압 에너지를 나타낸다. hG는 다른 엔지니어링 작업의 키 높이와 동일한 고도 척도를 사용하여 엔지니어링 도면에 주석으로 나타날 수 있기 때문에 선택의 변수다.

총 유압헤드의 통합값으로부터의 유압에너지 소산

두 흐름 단면 A와 B 사이에 발생하는 에너지 소산에 대한 일체적 접근방식은 흐름의 하향 방향에서 HG의 감소로부터 계산된다.

HG의 도움을 받아 A와 B 사이의 에너지 소산을 계산하기 위해 각 단면에서의 HG 값을 먼저 –ρg에 곱하여 에너지 밀도 흐름으로 만든 다음 Q에 곱하여 총 유압 에너지 흐름으로 주조한다.
두 횡단면의 에너지 흐름의 차이를 보면, 두 횡단면에서 부피 흐름 Q가 동일한 상황에서, 아래와 같이 상류 횡단면에서 다운스트림 단면으로 이동하는 흐름에서 발생하는 유압 에너지 손실을 산출한다.

그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.

업스트림 리치는 유입과 배출 흐름의 차이에 따라 수위가 변동하는 볼륨 밸런스의 예를 제시한다. 동시에, 터널을 통과하는 유량의 비율은 상류와 하류 사이의 압력 균형에서 기인하며, 터널 벽의 마찰과 분리된 구조물에서의 흐름 에너지 손실과 통로를 따라의 전환이 큰 역할을 한다. 그림 10은 FLOW-3D에서 플럭스 배플로 알려진 수많은 흐름 측정 단면을 보여준다. 이들의 용도는 다음과 같다.

  • 추가 분석을 위한 유용한 기준으로 특정 모델 실행의 흐름 체계의 안정성 평가
  • 종단 종단 수위 및 수력 에너지 흐름의 그래프 작성 및 분석(수력 에너지 소산율 포함)
  • 설계 변이 간 미세 비교 허용
  • 일반적으로 흐름 동작이 예상에 부합하는지 검증하고, 체크하지 않을 경우 흐름의 진부도를 감소시킬 수 있는 수치적 아티팩트를 검출하고 수정한다.

예제 2 – 자연 암석 표면을 통한 고속 자유 주행

그림 8은 자연 암석의 유유히트레이스와 자유 주행의 예를 보여준다.

이 모델은 지표면의 단위 면적당 수압 에너지 소산율을 평가하는 것을 목적으로 했다. 이 속도는 W/m² 단위로, 자유 주행을 따라 암석 표면의 침식 잠재력을 평가하기 위한 입력값이었다.

그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

그림 9는 도구 자체를 확인하고 소산율 평가를 수행하는 데 사용된 계량장치를 나타낸다. 망사블록도 윤곽이 잡힌다.

원하는 소산 속도를 측정하고, 마찬가지로 중요한 것은 흐름의 품질 및 측정 도구의 평가를 위해 평면 및 원통형 플럭스 배플의 종류가 배치되었다.

평면 플럭스 배플은 제어 볼륨을 구성하고 이를 사용하여 CV 내에서 볼륨 흐름의 안정성과 에너지 소산을 모니터링할 수 있다. 테일레이스에서는 사이드월(sidewall)에 의해 흐름이 잘 담겨 있고 횡단면을 가로질러 상당히 균일하다. 에너지 소산율은 25~50kW/m²이었다.

배출 관문 발치에 원통형 유동 배플이 위치한다. 실린더를 통과하는 평균 체적 유량은 정상적인 유량 변동 때문에 시간 경과에 따라 가변적이었지만 적절한 평균 구간을 취할 때 0이 되는 경향이 있었다. 배플을 통한 순유압 에너지 흐름에 대해 동일한 평균을 취했을 때, 예상대로 음의 값이 산출되었고, 이는 면적으로 나누면 30 kW/m²에 가까웠다. 타원형 수평 단면으로 확장된 또 다른 원통형 흐름 배플도 꼬리 경주가 끝날 무렵에 위치했다. 거기서 만들어진 유사한 검증도 비슷한 합의를 보여주었다.

원통형 유동 배플이 유압 에너지 소산 측정에 예상대로 작용했다는 결론이 나왔다. 그런 다음 방산이 가장 높을 것으로 예상되었던 아래쪽 경사면에 놓인 원통형 배플에 주의를 돌렸다.

그림 10은 자유 주행 위에 위치한 원통형 배플 번호 3을 통해 순 부피와 에너지 흐름의 시계열로, 꼬리표에서 자연 암석 표면으로의 전환 근처를 보여준다. 그림은 두 흐름의 높은 진폭 변동이 존재하며 그 흐름들에 의해 어떤 경향도 잘 숨겨져 있음을 보여준다.

그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)
그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)

그림 11은 그림 10의 순 부피와 에너지 플럭스의 시간 통합을 나타낸다. 시간 통합은 부피(m³)와 에너지(J)의 값을 산출한다. 볼륨 시계열은 정권이 정지해 있는 시간 간격을 선택할 수 있고, 순 볼륨 변화가 0에 가까워지도록 통합 시간 경계를 선택할 수 있다. 에너지 시계열은 에너지 소산의 예상대로 정기적으로 하향 추세를 보여준다. W/s 단위의 추세의 기울기는 소산율을 추정한다. 그런 다음 원통형 배플 인클로저 베이스의 표면적 영역으로 나누어 면적 단위당 원하는 산란율을 얻을 수 있다. 실린더의 반지름을 선택하여 면적이 100m²에 가까울 수 있도록 했다. 이 경우 소산율이 286kW/m²로 나타났다.

그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.
그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.

이러한 결과는 다른 분야의 엔지니어들과의 토론에서 사용되었다. 다른 요인 중에서도 암석 표면이 예비 추정에서 비롯된 공기 주입식 개미가 아니었기 때문에 불확실성의 여백이 크다는 것이 명백해졌다. 또한 수압 에너지가 바위가 아닌 물 속에서 소멸되고, 최대 소산의 위치가 반드시 바위에 대한 최대 작용의 위치가 아니라는 것도 모듈러에 의해 지적되었다. 위에 제시된 분석의 미니어처는 상당한 부담이었지만, 배플이 모델러에게 참신한 방법으로 사용되고 있기 때문에 필요하다고 여겨졌다. 학문 간 논의와 값의 규모 순서는 수치 그 자체보다는 모형의 가장 유용한 결과였다.

결론

FLOW-3D의 플럭스 배플은 이를 통과하는 부피와 유압 에너지 순 흐름에 대한 정밀한 평가를 제공한다. 이들의 연산 알고리즘은 제어 볼륨 접근방식과 함께 사용되는 FLOW-3D의 기본 수치 체계로 정교하게 조정되며, 높은 수준의 일관성이 요구되는 상황에서 대량 보존에 관한 FLOW-3D 자체의 성능 검증을 포함한 수많은 측정을 위해 잘 설계되어 있다.

토탈 유압 헤드의 연산은 수많은 방법으로 이루어질 수 있는데, 토목 및 유압 엔지니어에게 수량의 매우 높은 유용성을 볼 때 놀라운 일이 아니다. FLOW-3D가 제공하는 방법 중 하나는 플럭스 평균 총 유압 헤드의 배플 유량 면적에 대한 계산이다. 여기에서 주어진 유량관을 가로지르는 두 플럭스 배플에서의 값 사이의 차이로 측정한 유량에서의 수압 에너지 손실률은 가우스 발산 정리에 의해 원시 유량 변수와 연결된 제어 볼륨 접근법으로 계산될 수 있는 유량 손실률이 정확히 여기에 나타난다.

논문자료 알아보기

FLOW-3D HYDRO

FLOW-3D HYDRO

제품 개요

최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 사용하시는 것에 관심이 있는 경우, 언제든지 아래 연락처로 연락주세요.
연락처 : 02-2026-0442
이메일 : flow3d@stikorea.co.kr

FLOW-3D HYDRO 는 더 높은 수준의 정확도와 모델 해상도를 제공하기 위해 3D 비 유압 모델링 기능이 필요한 경우 고급 모델링 도구로 사용할 수 있습니다. 일반적인 모델링 응용 분야는 소형 댐 / 인프라, 운송 수력학, 복잡한 3D 하천 수력학, 열 부력 연기, 배수구 및 오염 물질 수송과 관련됩니다. 

FLOW-3D HYDRO의 핵심 기능은 전체 3D 모델과 동적으로 연결될 수있는 얕은 물 모델입니다. 

이 기능을 통해 사용자는 멀티 스케일 모델링 애플리케이션을위한 모델 도메인을 확장하여 필요한 모델 해상도로 계산 효율성을 극대화 할 수 있습니다. FLOW-3D HYDRO  또한 강 및 환경 응용 분야에 특화된 추가 기능과 고급 물리학을 포함합니다.

시뮬레이션 템플릿

FLOW-3D HYDRO 의 작업 공간 템플릿으로 시간을 절약하고 실수를 방지하며 일관된 모델을 실행하십시오 . 작업 공간 템플릿은 일반적인 응용 분야에 대한 유체 속성, 물리적 모델, 수치 설정 및 시뮬레이션 출력을 미리로드합니다.

작업 공간 템플릿은 7 가지 모델 클래스에 사용할 수 있습니다.

  • 자유 표면 – TruVOF (기본값)
  • 공기 유입
  • 열 기둥
  • 퇴적물 수송
  • 얕은 물
  • 자유 표면 – 2 유체 VOF
  • 자유 표면 없음

사전로드 된 예제 시뮬레이션

FLOW-3D HYDRO 의 40 개 이상의 사전로드 된 물 중심 예제 시뮬레이션 라이브러리는 애플리케이션 모델링을위한 훌륭한 시작점을 제공합니다. 사전로드 된 예제 시뮬레이션은 모델러에게 모델 설정 및 모범 사례의 로드맵뿐만 아니라 대부분의 애플리케이션에 대한 자세한 시작점을 제공합니다.이전다음

비디오 튜토리얼

비디오 자습서는 새로운 사용자가 다양한 응용 프로그램을 모델링하는 방법을 빠르게 배울 수있는 훌륭한 경로를 제공합니다. FLOW-3D HYDRO 비디오 튜토리얼 기능 :

  • 광범위한 응용 및 물리학을위한 AZ 단계별 기록
  • “사용 방법”정보
  • 모범 사례를위한 팁
  • CAD / GIS 데이터, 시뮬레이션 파일 및 후 처리 파일

고급 솔버 개발

Tailings Model

새로운 Tailings Model은 tailings dam failure로 인한 tailings runout을 시뮬레이션하기위한 고급 기능을 제공합니다. tailings정의에 대한 다층 접근 방식과 함께 미세하고 거친 입자 구성을 나타내는 이중 모드 점도 모델은 모든 방법으로 건설 된 tailings 댐의 모델링을 허용합니다. 

얕은 물, 3D 및 하이브리드 3D / 얕은 물 메싱을 포함한 유연한 메싱을 통해 얕은 지역에서 빠른 솔루션을 제공하면서 다층 tailings의 복잡성을 정확하게 모델링 할 수 있습니다. 점성 경계층의 정확한 표현을 위해 얕은 물 메시에 2 층 Herschel-Bulkley 점도 모델을 사용할 수 있습니다.

모델 하이라이트

  • 미세 입자 및 거친 입자 광미 조성물을위한 이중 모드 점도 모델
  • 침전, 패킹 및 입자 종의 난류 확산을 포함한 Tailings  수송
  • 얕은 물 메시를위한 2 층 Herschel-Bulkley 점도 모델
  • 3D, 얕은 물, 3D / 얕은 물 하이브리드 메시를 포함한 유연한 메시 접근 방식
  • Multi-layer, variable composition tailings for general definition of tailings dam construction

Shallow Water

FLOW-3D HYDRO 의 얕은 물 모델링 기능은 3D 메시를 얕은 물 메시와 결합하여 탁월한 모델링 다양성을 제공하는 고유 한 하이브리드 메시를 사용합니다. 압력 솔버의 수치 개선으로 더 안정적이고 빠른 시뮬레이션이 가능합니다. 하이브리드 메쉬의 하단 전단 응력 계산이 크게 향상되어 정확도가 더욱 향상되었습니다. 지형에 거칠기를 적용하는 새로운 방법에는 Strickler, Chezy, Nikuradse, Colebrook-White, Haaland 및 Ramette 방정식이 포함됩니다.

Two-Fluid VOF Model

sharp 인터페이스가 있거나 없는 압축 가능 또는 비압축성 2 유체 모델은 항상 1 유체 자유 표면 모델과 함께 FLOW-3D 에서 사용할 수 있습니다 . 사실, sharp 인터페이스 처리는 TruVOF 기술을 자유 표면 모델과 공유하며 상용 CFD 소프트웨어에서 고유합니다. 최근 개발에는 2- 필드 온도 및 인터페이스 슬립 모델이 포함되었습니다. 이 모델은 오일 / 물, 액체 / 증기, 물 / 공기 및 기타 2 상 시스템에 성공적으로 적용되었습니다.

FLOW-3D HYDRO 는 2- 유체 솔루션의 정확성과 안정성에서 두 가지 중요한 발전을보고 있습니다. 운동량과 질량 보존 방정식의 강화 된 결합은 특히 액체 / 기체 흐름에서 계면에서 운동량 보존을 향상시킵니다. 연속성 방정식에서 제한된 압축성 항의 확장 된 근사값은 더 빠르고 안정적인 2 유체 압력 솔버를 만듭니다.

예를 들어, 터널 및 드롭 샤프트 설계와 같은 유압 응용 분야에서 공기가 종종 중요한 역할을 하기 때문에 두 개발 모두 FLOW-3D HYDRO 릴리스에 적시에 적용됩니다. 일반적으로 낮은 마하 수로 인해 이러한 경우 물과 공기에 제한된 압축성이 사용됩니다.

고성능 컴퓨팅 및 클라우드

고성능 컴퓨팅 FLOW-3D HYDRO

일반 워크스테이션 또는 랩톱으로 많은 작업을 수행 할 수 있지만, 대형 시뮬레이션과 고화질 시뮬레이션은 더 많은 CPU 코어를 활용함으로써 엄청난 이점을 얻을 수 있습니다. FLOW-3D CLOUD 및 고성능 컴퓨팅은 더 빠르고 정확한 모델을 실행할 수있는 더 빠른 런타임과 더 많은 선택권을 제공합니다.

하천 및 환경 중심 애플리케이션

TRANSPORTATION HYDRAULICS
SMALL DAMS AND DIVERSIONS
RIVER HYDRAULICS
SEDIMENT TRANSPORT AND DEPOSITION
OUTFALLS EFFLUENTS
THERMAL PLUMES BUOYANT FLOWS

Case Studies

벨기에 Zele에서 나온 WWTP의 개략도

활성화 된 슬러지 모델링

Activated Sludge Model

폐수 처리 플랜트 (WWTP) 내부의 생화학 적 반응 및 유체 역학에 대한 자세한 이해는 설계자와 엔지니어가 새로운 플랜트 설계를 평가하고, 관리 결정을 정량화하고, 새로운 제어 계획을 개발하고, 안전한 작업자 교육을 제공하는 데 도움이 될 수 있습니다. 이 블로그에서는 독자들에게 대규모 생화학 반응 시스템을 동적으로 해결 하는 FLOW-3D 의 새로운 ASM (Activated Sludge Model)을 소개합니다.

폭기조

폭기조는 대부분의 생화학 반응이 WWTP의 2 차 처리 부분에서 발생하는 곳입니다. 일반적으로 폭기 탱크는 대부분의 생화학 반응이 완료되는 데 걸리는 시간을 허용하는 긴 경로를 가지고 있습니다. 종이 폭기조의 전체 길이를 횡단하는 데 걸리는 시간을 잔류 시간이라고합니다. 폭기조에 산소가 주입되어 폐수에서 박테리아가 증식합니다. 박테리아는 산소를 사용하여 물에있는 폐기물을 분해하고 그렇게하면서 플록 또는 슬러지 블랭킷이라고하는 응집체를 형성합니다. 활성화 된 슬러지의 일부는 폐수의 생화학 적 처리를 더욱 촉진하기 위해 폭기조로 다시 재활용됩니다.

벨기에 Zele에서 나온 WWTP의 개략도
벨기에 Zele에서 나온 WWTP의 개략도

생화학 반응의 표준 시스템

국제 물 협회 (IWA)는 지난 40 년간 생화학 적 반응을 설명하는 세 가지 주요 수학적 시스템을 제안했다. 이러한 각 시스템 인 ASM-1, ASM-2 및 ASM-3은 폭기조 내부의 다양한 종의 성장 및 붕괴 역학을 다양한 세부 수준으로 포착합니다. ASM-3이 가장 포괄적입니다. 첫 번째 시스템 인 ASM-1은 아래 표 형식과 확장 형식으로 표시됩니다.

결합 편미분 방정식의 확장 시스템으로서의 생화학 반응의 ASM-1 시스템
결합 편미분 방정식의 확장 시스템으로서의 생화학 반응의 ASM-1 시스템

ASM 솔버 기능

대부분의 생화학 반응은 Monod 모델 또는 유사한 모델을 기반으로합니다. Monod 모델은 미생물의 성장 및 붕괴 속도를 예측하는 수학적 모델이며 간단한 방정식으로 설명됩니다.

여기서 a 와 k 는 최대 비 성장률 상수이고 기질 농도는 최대 비 성장률의 절반에 해당합니다. C 는 시간에 따라 변화하는 미생물 종의 농도 t 입니다. Monod 모델은 종의 농도에 따라 반응의 순서를 동적으로 변경하는 특성이 있습니다.

For C   >> A는 , 변화율 C는  0 차에 접근한다.

For C   << a는 , 변화율 C는 일차 접근한다.

이 모든 것은 미생물 종의 농도가 높으면 썩고 자라는 속도가 빨라지고, 종의 양이 적으면 썩거나 자라는 속도가 느리다는 것입니다. Monod 방정식의 해는 다음과 같이 Lambert 함수에 의해 제공됩니다.

간단한 Monod 방정식에 대한 분석 솔루션과 FLOW-3D 솔루션의 비교
간단한 Monod 방정식에 대한 분석 솔루션과 FLOW-3D 솔루션의 비교

생화학 반응을 설명하는 표준 시스템에는 Monod 용어의 긴 사슬이 포함되어 있습니다. FLOW-3D 의 ASM 모델은 WWTP에서 박테리아 종의 Monod 기반 성장 및 붕괴를 완벽하게 추적 할 수 있습니다. ASM 모델은 FLOW-3D 의 유체 역학 솔버 와 통합되어 속도 및 압력 장을 기반으로 한 박테리아의 움직임이 성장 및 붕괴 속도와 결합 될 수 있습니다.

FLOW-3D 의 ASM 솔버 결과가 벨기에 Zele의 폐수 처리장 (WWTP)에서 배출 될 때 다양한 유입수 종 농도의 붕괴 및 성장에 대해 보여줄 것 입니다. 종 및 유체 역학 계산을 정확하게 추적하면 폐수 처리 전문가가 정량적으로 뒷받침되는 설계 및 운영 결정을 내릴 수 있습니다.

Zele WWTP

Zele WWTP는 1983 년 50,000 명의 주민을 위해 벨기에에서 건설되었습니다. 일반적으로이 WWTP의 유입수는 가정용 폐수 40 %와 산업 폐수 60 %로 구성됩니다. 1 차 처리 공정 후 유입수는 생물학적 활성 슬러지 처리장으로 흘러 재활용 활성 슬러지와 혼합됩니다.

벨기에 Zele에서 나온 WWTP의 개략도 [2]. 녹색 상자는 2 차 처리 과정을 나타냅니다.
벨기에 Zele에서 나온 WWTP의 개략도 [2]. 녹색 상자는 2 차 처리 과정을 나타냅니다.

활성 오니 조 또는 폭기조는 약 400 m의 레인 6으로 분할되어 하나의 플러그 유동 폭기조 구성 3 각. 폭기조에서 나오는 유출 물은 각각 2050 m 3 용적의 2 개의 2 차 정화기 (SC1 및 SC2)로 이동합니다 . 최종 폐수는 인근 하천으로 배출됩니다. 2 차 정화기 아래에서 활성 슬러지의 일부는 폭기조로 다시 재활용되어 2 차 처리의 효율성을 높입니다.

우리는 2 차 처리 구성 요소의 기하학적 구조와 다양한 종의 유입 농도에 대한 자세한 정보를 이용할 수 있기 때문에 사례 연구를 위해이 WWTP를 선택했습니다. 정보는 상세하지만 완전하지는 않으며이 불완전한 정보는 폐수 농도에 중대한 영향을 미칠 것이며 나중에 논의 할 것입니다.

기하학, 메싱 및 물리학

지오메트리 생성 및 메싱은 간단했습니다. FLOW-3D 에는 완전한 WWTP를 완전히 정의하는 데 사용 된 기본 지오메트리 모양 모음이 있습니다. 이러한 모양은 생성하기 쉽고 외부 CAD 소프트웨어를 사용하여 생성 된 일부 지오메트리와 달리 오류가 없습니다. 마찬가지로, 구조화 된 그리드를 사용하면 구조화되지 않은 그리드 생성과 관련된 일반적인 오류를 처리하는 시간이 절약되었습니다.

폭기조 내부의 물리학은 복잡하며 질량 및 운동량 보존 방정식 (Navier-Stokes 방정식), 종 수송, 반응 역학, 산소 용해 및 연속 밀도 평가의 완전한 시스템을 해결해야합니다. FLOW-3D 는 가장 정확한 계산을 위해 완전히 결합 된 방식으로 이러한 모든 물리학을 설명합니다.

FLOW-3D의 Zele WWTP 설정. 화살표는 흐름 방향을 나타내며 유입수는 녹색 화살표의 시작 부분에서 도메인으로 들어갑니다.
FLOW-3D의 Zele WWTP 설정. 화살표는 흐름 방향을 나타내며 유입수는 녹색 화살표의 시작 부분에서 도메인으로 들어갑니다.

세 가지 표준 수학적 모델 인 ASM-1, ASM-2 및 ASM-3 중에서 연구자들은이 WWTP에서 ASM-1 수학적 모델을 사용합니다. 이는 간단하면서도 많은 중요한 생화학 과정을 다루기 때문입니다. ASM-1 모델은 일반적으로 폐수에서 발견되거나 처리 과정에서 생성되는 13 종의 진화를 고려합니다 [표 1].

종 IDZele의 초기 유입 농도 (mg / l)
가용성 불활성 유기물SI7.5
쉽게 생분해되는 기질SS400.0
미립자 불활성 유기물XI40.0
천천히 생분해되는 기질XS40.0
활성 종속 영양 바이오 매스XB, H120.0
활성 독립 영양 바이오 매스XB, A5.0
바이오 매스 붕괴로 인한 미립자 제품XP0.0
산소SO0.0
질산염 및 아질산염 질소SNO0.0
암모늄 질소SNH15.0
용해성 생분해 성 유기 질소SND8.2
미립자 생분해 성 유기 질소XND11.3
알칼리도SALKNot included

표 1. 표준 ASM-1 수학 시스템의 종 목록과 Zele WWTP에서 측정 된 초기 유입수 농도. 이러한 초기 농도 중 일부는 추론되며 큰 불확실성이 관련 될 수 있습니다. S와 X는 각각 용해성 물질과 미립자 물질을 나타냅니다.

이들 종 각각은 반응하지 않는 불활성 종 (SI 및 XI)을 제외하고 하나 이상의 생화학 적 과정에 의존합니다. 불활성 종의 유입 및 유출 농도는 XI의 경우와 같이 침전으로 인해 달라질 수 있습니다. SALK는 WWTP에서 측정되지 않았기 때문에이 사례 연구에서 무시되었습니다.

관심 유출량

폐수 엔지니어가 관심을 갖는 주요 유출량은 총 화학적 산소 요구량 (COD tot ), 암모늄 질소 (SNH) 농도, 아질산염 및 질산염 질소 (SNO) 및 총 킬달 질소 (TKN)입니다.

  • COD tot = SI + SS + XI + XS
  • TKN ~ XND + SND + SNH

이 양은 처리 된 물의 전반적인 품질을 나타냅니다.

유출량측정 된 유입 농도 (mg / l)FLOW-3D 유출 농도 (mg / l)
CODtot600264.04
SNH1530.34
SNO01.86
TKN3537.28

총 COD, SNH 및 TKN의 농도는 폐수가 폭기조를 통과하여 WWTP를 빠져 나 가면서 감소해야합니다. 이 동작은 총 COD [표 2]에 대해 올바르게 예측되지만 SNH 및 TKN에 대해서는 그렇지 않습니다. SNO의 농도는 증가 할 것으로 예상되며 이는 ASM 솔버에 의해 정확하게 예측됩니다. 모든 폐수 종의 농도는 아래 애니메이션에 표시됩니다.

Zele WWTP에 있는 모든 종의 진화에 대한 시뮬레이션 결과

애니메이션은 Zele WWTP에있는 모든 종의 진화에 대한 시뮬레이션 결과를 보여줍니다.

WWTP 데이터에 대한 결과의 민감도

나는 폐수에서 일부 종의 잘못된 진화를 모델링의 가정과 누락된 WWTP 데이터에 기인합니다. 유입수에서 측정 된 종 농도의 불확실성; 초기 농도에 대한 정보 누락; 그리고 입자상 물질의 침강 특성에 대한 누락 된 데이터는 폐수의 종 농도에 영향을 미쳤을 가능성이 있습니다.

마찬가지로 불완전한 지오메트리 사양은 WWTP 내부의 유체 역학 계산의 정확성에 부정적인 영향을 미칠 수 있습니다. 또한 폭기조에 산소를 살포하는 것에 대한 정보는 부분적으로 만있었습니다. 산소는 다른 종의 부패와 성장에 큰 영향을 미치는 중요한 구성 요소입니다.

WWTP의 모든 데이터를 항상 측정 할 수있는 것은 아닙니다. 이러한 경우 보정 된 수치 모델을 가상 실험실로 효과적으로 사용하여 다양한 WWTP 설계를 테스트 할 수 있습니다. 이 사례 연구는 특히 폭기조에서 WWTP의 2 차 처리 부분에서 종의 농도를 추적 할 수 있음을 보여줍니다. 그리고 이것은 유체 역학 효과를 고려하면서 할 수 있습니다. 완전한 WWTP 데이터와 문제 사양이 존재하는 경우 엔지니어와 설계자는 WWTP 플랜트 운영 및 설계 최적화에 대해 더 나은 정보를 바탕으로 결정을 내릴 수 있습니다.

우리는 활성 슬러지 모델을 추가로 개발하고 보정하기 위해 폐수 처리 산업의 연구원 및 전문가와 협력 할 수 있습니다. 귀하의 WWTP 프로젝트 및 연구에 대해 논의하려면 adwaith@flow3d.com 으로 이메일을 보내 주십시오 .

참고 문헌

[1] Henze M., Lossdrecht M.C.M., Ekama G.A., Brdjanovic D., Biological Wastewater Treatment, Principles, Modelling and Design, IWA publishing 2008.

[2] Peterson B., Vanrollenghem P.A., Gernaey K., Henze M. (2002) Evaluation of an ASM-1 model calibration procedure on a municipal–industrial wastewater treatment plant, Journal of Hydroinformatics, 4(1): 15-38.

[3] Henze, M., Grady, C. P. L. Jr., Gujer, W., Marais, G. v. R. & Matsuo, T. (1987) Activated Sludge Model No. 1. IAWPRC Scientific and Technical Reports No. 1. London, UK.

Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

[FLOW-3D 이론] 1. 개요

  1. 개요

FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 물리 흐름 문제에 대해 과도적 3차원 해결책을 얻습니다. 다양한 물리적 및 수치 옵션을 통해 사용자는 다양한 유체 흐름 및 열 전달 현상 분석을 위해 FLOW-3D를 적용할 수 있습니다.

유체 운동은 비선형, 과도, 2차 미분 방정식으로 설명됩니다. 이러한 방정식을 풀기 위해 유체 운동 방정식을 사용해야합니다. 이러한 방법을 개발하는 과학을 전산 유체 역학이라고 합니다. 이 방정식의 수치해는 대수적 표현으로 다양한 항을 근사화 합니다. 그런 다음 결과 방정식을 해결하여 원래 문제에 대한 대략적인 해결책을 제시합니다. 이 과정을 시뮬레이션이라고 합니다. FLOW-3D에서 사용할 수 있는 수치해석 알고리즘의 개요는 운동 방정식에 대한 섹션에 나옵니다.

일반적으로 수치 모델은 계산 Mesh 또는 그리드로 시작합니다. 이것은 여러 개의 서로 연결된 요소 또는 셀로 구성됩니다. 이러한 셀은 물리적 공간을 해당 볼륨과 관련된 여러 노드가 있는 작은 볼륨으로 세분화합니다. 노드는 압력, 온도 및 속도와 같은 미지수의 값을 저장하는데 사용됩니다. Mesh는 사실상 원래의 물리적 공간을 대체하는 숫자 공간입니다. 또한 별도의 위치에서 흐름 파라미터를 정의하고, 경계 조건을 설정하고, 유체 운동 방정식의 수치 근사치를 개발하는 방법을 제공합니다. FLOW-3D 접근 방식은 흐름 영역을 직사각형 셀의 격자로 세분하는 것입니다. 이 격자는 brick elements라고도 합니다.

계산 Mesh는 물리적 공간을 효과적으로 이산화 시킵니다. 각 유체 매개 변수는 불연속 지점에서 값 배열에 의해 Mesh로 표시됩니다. 실제 물리적 파라미터는 공간에서 연속적으로 변하기 때문에 노드 사이의 간격이 미세한 Mesh는 더 거친 Mesh보다 현실을 더욱 잘 표현해줍니다. 그런 다음 수치 근사치의 기본 속성에 도달합니다. 그리드 간격이 줄어들면 유효한 모든 유효한 수치 근사가 원래 방정식에 접근합니다. 근사치가 이 조건을 만족하지 않으면 올바르지 않은 것으로 간주해야 합니다.

동일한 물리적 공간에 대해 격자 간격을 줄이거나 Mesh를 조정하면 더 많은 요소와 노드가 생겨 수치 모델의 크기가 커집니다. 그러나 유체 흐름 및 열 전달의 실제 현실과는 별도로, 시뮬레이션 엔지니어들이 적절한 크기의 Mesh를 선택하도록 하는것과 밀접한 관계에 있는 설계 주기, 컴퓨터 하드웨어 및 마감일의 현실적인 문제도 있습니다. 이러한 제약 조건을 만족시키는 것과 사용자가 정확한 결과를 얻는 것 사이에서 타협점을 찾는 것은, CFD 모델 개발 못지않은 중요한 균형 잡힌 행위입니다.

직사각형 그리드는 규칙적이거나 구조적인 특성 때문에 생성 및 저장이 매우 쉽습니다. 균일하지 않은 그리드 간격은 복잡한 흐름 도메인을 매칭할 때 유연성을 더합니다. 연산 셀은 세 개의 지수를 사용하여 연속적으로 번호가 매겨집니다. 즉, x 방향은 i, y 방향은 j, z 방향은 k입니다. 이 방법으로 3차원 Mesh의 각 셀은 물리적 공간의 점의 좌표와 유사한 고유한 주소(i, j, k)로 식별할 수 있습니다.

구조화된 직사각형 그리드는 수치적 방법의 개발의 상대적 용이성, 원래의 물리적 문제와의 관계에 대한 후자의 투명성, 그리고 마지막으로 수치적 해결의 정확성과 안정성의 추가적인 이점을 가지고 있습니다. 유한 차분법과 유한 체적법에 기초한 가장 오래된 수치 알고리즘은 원래 이러한 Mesh에서 개발되었습니다. 이것은 FLOW-3D에서 수치적 접근방식의 핵심을 형성합니다. 유한차분법은 테일러 확장의 특성과 파생된 정의의 직접적인 적용에 기초합니다. 미분 방정식에 대한 수치적 해결책을 얻기 위해 적용된 방법 중 가장 오래된 방법이며, 첫 번째 적용은 1768년 오일러에 의해 개발된 것으로 간주됩니다. 유한체적법은 유체 운동을 위한 보존법의 일체형태에서 직접 파생되므로 자연적으로 보존 특성을 보유합니다.

FLOW-3D는 일반적인 유체 방정식의 다른 제한 사례에 해당하는 여러 모드에서 작동할 수 있습니다. 예를 들어, 하나의 모드는 압축 가능한 흐름을 위한 것이고 다른 하나는 압축할 수 없는 흐름 상황을 위한 것입니다. 후자의 경우 유체의 밀도와 에너지가 일정하다고 가정할 수 있으므로 계산할 필요가 없습니다. 또한 1유체 모드와 2유체 모드가 있습니다. 자유 표면은 단일 유체 비압축 모드에 포함될 수 있습니다. 이러한 작동 모드는 동작 방정식에 대한 다양한 선택에 해당합니다.

자유 표면은 FLOW-3D로 수행된 많은 시뮬레이션에서 존재합니다. 유량 매개변수와 재료 특성(밀도, 속도, 압력 등)이 불연속성을 경험하기 때문에 모든 계산 환경에서 자유 표면을 모델링하는 것은 어렵습니다. FLOW-3D에서는, 액체에 인접한 가스의 관성이 무시되고, 가스에 의해 점유되는 부피는 균일한 압력과 온도로만 표현되는 빈 공간, 질량의 공백으로 대체됩니다. 대부분의 경우 가스 모션의 세부 사항은 훨씬 무거운 액체의 움직임에 중요하지 않기 때문에 이 접근 방식은 계산 노력을 줄이는 이점이 있습니다. 자유 표면은 액체의 외부 경계 중 하나가 됩니다. 자유 표면의 경계 조건에 대한 적절한 정의는 자유 표면 역학을 정확하게 포착하기 위해 중요합니다.

VOF(Volume of Fluid) 방법은 이러한 목적으로 FLOW-3D에 사용됩니다. 유체 함수의 볼륨 정의, VOF 전송 방정식 해결 방법, 자유 표면의 경계 조건 설정 등 세 가지 주요 구성요소로 구성됩니다.

일부 물리 및 수치 모델은 Flow Science의 기술 노트: http://users.flow3d.com/technical-notes/ 에 자세히 설명되어 있으며, 여기에는 예제도 포함되어 있습니다.

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Modeling Methods

An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

자유 표면 모델링 방법

기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

  1. A scheme is needed to describe the shape and location of a surface,
  2. An algorithm is required to evolve the shape and location with time, and
  3. Free-surface boundary conditions must be applied at the surface.

다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

  1. 표면의 형상과 위치를 설명하는 방식
  2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
  3. 표면에 적용할 자유 표면 경계 조건

Lagrangian Grid Methods

Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

라그랑주 격자 법

개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

Surface Height Method

Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

표면 높이 법

낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

Marker-and-Cell (MAC) Method

The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

MAC 방법

시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

Surface Marker Method

One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

표면 마커 법

마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

Volume-of-Fluid (VOF) Method

The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

VOF (Volume-of-Fluid) 법

마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

Variable-Density Approximation to the VOF Method

One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

VOF 법의 가변 밀도 근사

VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

Summary

A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

References

1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

Capillary Flows/Capillary Filling/Thermocapillary Switch/Capillary Absorption/Marangoni flow

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서는 한 곳에서 다른 곳으로 액체 용액을 전달하기 위해 긴 마이크로 채널이 자주 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력은 액체를 마이크로 채널로 끌어 당깁니다 (액체가 칩 표면에 “젖은”경우). 이 페이지에서는 충진, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D의 특정 응용 분야를 다룹니다.

Marangoni flow in a dish of water that is heated at its center.

Marangoni flow는 중앙에서 데워진 물이 담긴 접시에 흐릅니다. 불균일한 표면 장력에 의해 생성 된 흐름은 20ºC의 초기 온도에서 0.75cm 깊이의 얕은 8.0cm 직경의 물 접시에 의해 입증됩니다. 원형 접시의 중앙에는 직경 0.5cm의 원통형 막대가 있습니다. 80 Cº의 온도로 가열하고 0.05 cm 깊이까지 수면에 담근다. 핫로드 근처의 물이 가열됨에 따라 표면 장력이 0.1678 dyne / cm / ºC만큼 감소하여 표면이 접시의 바깥 쪽 테두리쪽으로 후퇴합니다. Retraction는 처음에 표면에 뿌려진 질량없는 마커 입자로 표시됩니다.

Capillary Absorption

고체 물질의 기공에 모세관 흡수 때문에 액체와 고체 사이의 접착 발생합니다. 이 같은 흡수의 간단하면서도 유용한 시험은 핀란드 ABO Akademi 대학의 마르티 Toivakka에 의해 제안되었습니다. 테스트 기공은 ± 1.0 μm의 측면 벽 1.0 μm의 반경 원호입니다. 팽창 목에 연결된 넓은 2차원 채널로 구성되어 있습니다. 체적력의 부재 하에서, 표면장력 과 wall adhesion pull liquid 는 액체와 고체 사이의 static contact angle에 의해 결정됩니다. 첨부된 그림은 FLOW-3D가 올바르게 특정 접촉 각도 (유체는 적색표현) 충전 레벨을 계산하는 것을 나타냅니다.

Thermocapillary Switch

액체의 작은 덩어리나 가벼운 빔의 경로에서 움직이는 굴절, 혹은 반사로 다른 길로 리디렉션 할 수 있습니다. 이 개념은 특히나 한번 빔 내부 반사로 인해 갇혀 있는 섬유에 들어가 광학 섬유로 연결에서 매력적입니다. 어떠한 복잡성의 광 회로를 만들려면, 하나의 광섬유에서 다른 가벼운 방향을 바꿀 수 있는“스위치”를 둘 필요가 있습니다.

The animation above shows a FLOW-3D simulation of a drop of water in a 14mm-wide channel that is being heated at the bottom.

Capillary Filling

모세관 충전 과정을 이해하는 것은 칩 설계에 중요합니다.. 액체 흐름 통로의 다른 형상 포획 기포의 가능성 등의 충전 공정의 기술은, 같은 챔버와 칩의 내부 구조를 배치 기둥 분할하고, 밸브 결합에 설계자 안내 등 다양한 모세관 충전 동작이 발생할 수 있습니다.

시뮬레이션은 아래의 모세관 작용의 분석 예측의 유효성을 검사합니다. 모세관 채우기는 정확하게 표면 장력과 중력에 의해 균형을 잡습니다.이것은 FLOW-3D에 의해서 정확하게 예측되는 기본적인 과정입니다.

Flushing

Flushing

화장실이 어떻게 작동하는지 궁금한 적이 있습니까? 사실 꽤 복잡합니다. 손잡이를 밀면 물이 용기를 채우기 시작합니다. 용기의 유체 레벨이 트랩 상단 (보울 뒤) 위로 올라가면 위어 유형의 흐름이 시작됩니다. 흐름이 충분히 빠르면 트랩 상단에 거품이 형성되어 사이펀이 생성됩니다. 그 시점에서 사이펀은 용기에서 물을 빼내고 변기가 내립니다.

많은 지역에서 물 절약은 중요한 문제이며 가정과 상업용 모두에 저 유량 화장실이 필요합니다. 그러나 화장실이 첫 번째 시도에서 작업을 완료하지 못하면 물 절약 목표가 실패합니다. FLOW-3D는 최적의 결과를 얻기 위해 다양한 설계를 모델링하는 데 사용할 수 있습니다.

Toilet Flushing Examples

아래 3D 애니메이션에서 FLOW-3D는 물 동작의 세척 순서를 보여줍니다. 물의 두 영역이 공과 함께 초기화됩니다. 공은 6 자유도의 완전 결합 유체-고체 모션을 시뮬레이션하기 위해 움직이는 물체 모델(GMO)을 사용하여 모델링됩니다. 중력은 수세식 탱크에서 물을 용기로 밀어 넣습니다. 분석은 정체 영역과 공이 영역을 벗어나는 기간을 나타내는 흐름 프로파일과 압력 윤곽을 보여줍니다. 공 대신 다른 질량과 모양을 사용할 수 있습니다. 플러싱 과정에서 잔여 물도 분석 할 수 있습니다.

아래의 횡단면 플롯은 수조의 흐름 재순환과 상세한 흐름 프로필을 보여줍니다. Collision 모델은 규정된 반발 및 마찰 계수를 기반으로 바운싱을 예측하는 공을 시뮬레이션하는 데 사용되었습니다. 물과 공기 사이의 일시적인 예리한 경계면은 FLOW-3D의 TruVOF 방법을 사용하여 잘 유지됩니다.

원자력 시설물의 잔해물 거동 예측

Debris Transport in a Nuclear Reactor Containment Building

원자로 격리 건물에서 파편 운송

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Emergency Core Cooling System (ECCS)

파이프 파손 후 ECCS (비상 코어 냉각 시스템)가 활성화됩니다. 격리 건물 압력을 낮추고 대기에서 방사성 물질을 제거하기 위해 격리 스프레이를 켤 것입니다. 물은 부식 열을 제거하고 용융을 방지하기 위해 코어에 주입됩니다. 이 물은 이후 파이프 파손 부위에서 흘러 나옵니다. 격납 스프레이와 부식 열 제거에서 나온 물은 외부 탱크에서 ECCS 펌프에 의해 격납용기로 펌핑됩니다. 스프레이 및 브레이크 흐름을 통해 격리실로 펌핑된 물의 양은 격리실 바닥에 모이고 풀을 형성합니다.

Sump Strainers and Debris

외부 탱크의 물이 고갈된 후에는 ECCS 펌프에 대한 흡입기가 격납건물 내 하나 이상의 섬프로 전환됩니다(두 개의 섬프 스트레이너 예가 왼쪽에 표시됨). 섬프의 기능은 원자로 건물 풀에서 펌프 흡입구로 물을 재순환하는 것입니다. 각 섬프에는 이물질이 ECCS 펌프로 빨려 들어가 막힘이나 손상이 발생하는 것을 방지하기 위해 스트레이너 시스템이 있습니다. 그러나 스트레이너에 쌓인 이물질로 인해 펌프가 요구하는 순정 흡수헤드(NPSH)를 초과하는 헤드 손실이 발생하여 펌프가 고장을 일으키고 발전소를 안전하게 정지시킬 수 없습니다. 원자력규제위원회 일반안전문제(GSI) 191의 핵심입니다.

FLOW-3D Applied to Evaluate Performance

FLOW-3D는 격납용기 풀을 모델링하고 스트레이너에 도달할 수 있는 이물질의 양을 결정하는 데 사용됩니다. 파이프 파손, 직접 분무 구역(분무기가 비처럼 POOL에 유입되는 지역), 유출 분무 구역(분무수가 더 높은 고도에서 바닥에서 흘러나와 폭포처럼 POOL에 유입되는 지역)은 질량-모멘텀 소스 입자가 밀집된 지역으로 모델링되며, 적절한 유량과 속도가 할당됩니다. 후자는 POOL 표면까지의 자유 낙하 거리에 따라 달라집니다. 여과기 영역은 격납용기 POOL에서 물을 끌어오는 흡입구로 모델링됩니다.

Containment pool simulation

모델을 자유 표면으로 실행하여 (풀의 섬프 흡입 또는 초크 포인트로 인한) 상당한 수위 변화를 식별하고, RNG 모델을 활성화하여 풀의 난류를 예측합니다. 파괴된 절연체가 격납용기 풀을 통해 이동할 수 있는 능력은 정착 속도(정지 상태에서 이동할 수 있는 기능)와 텀블링 속도(바닥을 가로질러 이동할 수 있는 기능)의 기능입니다. 안착 속도는 절연체를 고정하는 데 필요한 운동 에너지의 양과 관련이 있습니다. 이러한 안착 및 텀블링 속도는 연도 및 탱크 테스트를 통해 결정되며, FLOW-3D 모델에 의해 계산된 값입니다.

모델이 정상 상태 상태에 도달한 후에는 FLOW-3D 결과가 후처리되어 다양한 이물질 유형을 POOL 바닥(빨간색으로 표시됨)으로 넘어뜨릴 수 있을 정도로 속도가 높은 영역 또는 난류가 서스펜션의 이물질을 운반할 수 있을 정도로 높은 영역(노란색으로 표시됨)을 결정합니다.

그런 다음 속도 벡터를 빨간색 및 노란색 영역과 함께 사용하여 흐름이 이물질을 스트레이너 쪽으로 운반하는지 여부를 확인합니다. 그런 다음 이러한 영역을 초기 이물질 분포 영역과 비교하여 각 이물질의 유형 및 크기에 대한 운송 분율을 결정합니다.

Conclusions

이물질 잔해 수송 테스트를 CFD 모델링과 결합하면 ECCS 스트레이너가 견딜 수 있어야하는 잔해 부하를 다른 방법으로는 가정해야하는 지나치게 보수적인 값에서 크게 줄일 수 있습니다. CFD는 또한 수두 손실 테스트를 지원하기 위해 ECCS 스트레이너 주변의 흐름 패턴, 수두 손실 테스트 및 플랜트 설계 수정을 식별하는 데있어 격납용 POOL 수위 변화를 식별하는데 유용함이 입증되었습니다.

Alion logo

1Alion Science and Technology is a consulting engineering company with the ITS Operation comprised of engineering professionals skilled at developing and completing diverse projects vital to power plant operations. Alion ITSO provides engineering, program management, system integration, human-systems integration, design review, testing, and analysis for nuclear, electrical and mechanical systems, as well as environmental services. Alion ITSO has developed a meticulous Quality Assurance Program, which is compliant with 10CFR50 Appendix B, 10CFR21, ASME NQA-1, ANSI N45.2 and applicable daughter standards. Alion ITSO has provided a myriad of turnkey services to customers, delivering the highest levels of satisfaction for almost 15 years.

Wave Energy Devices

파동 에너지 장치 모델링
최근 몇 년 동안 파력 에너지와 같은 재생 가능 자원을 사용하여 환경 영향이 적은 에너지를 생산하는 신기술 개발에 대한 국제적인 관심이 기하 급수적으로 증가했습니다. 바다 (해류, 파도 등)에서 전기를 유도하는 파동 에너지 장치는 특히 중요하며 FLOW-3D로 정확하게 모델링 할 수 있습니다.

포인트 흡수 장치
점 흡수 장치는 수면의 파도를 사용하여 에너지를 생성하는 많은 파도 장치 중 하나입니다. 포인트 흡수 에너지 장치는 기본적으로 파도에서 에너지를 흡수하고 바닥에 대한 부력 상단의 움직임을 전력으로 변환하는 부동 구조입니다.

이 시뮬레이션은 부력 구형 구조가 위에 있는 포인트 흡수기 장치를 보여주고, 들어오는 파동의 파고와 수조에 따라 위아래로 움직입니다. FLOW-3D의 이동 객체 모델은 x 또는 y 방향으로 이동을 제한하면서 z 방향으로 커플링 모션을 허용하는 데 사용됩니다. 스톡스 유형의 파장은 진폭 5m, 파장은 100m로 사용되었습니다. RNG 모델은 파동이 포인트 업소버 장치와 상호작용할 때 발생하는 난류를 포착하기 위해 사용되었습니다. 예상대로, 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 그림은 난류로 인해 장치 근처의 복잡한 속도장이 진화하기 때문에 질량 중심의 불규칙한 순환 운동을 보여줍니다.

Multi-Flap, Bottom-Hinged Wave Energy Converter

Oscillating flap은 바다의 파동으로부터 에너지를 추출하여 기계 에너지로 변환합니다. 암은 Water wave에 반응하여 피벗 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 멀티플랩파 에너지 변환기를 만들 수 있습니다. 3개의 플랩 배열이 아래 왼쪽에 표시된 CFD 시뮬레이션에서 시뮬레이션됩니다. 모든 플랩은 하단에 힌지로 연결되며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 깊이 30m에서 주파수가 10초인 4m 진폭 파형으로 작동 중입니다. 시뮬레이션은 한 플랩이 배열 내의 다른 플랩에 미치는 영향을 연구하는 데 중요한 중심 평면을 따라 복잡한 속도 ISO 표면을 보여줍니다. 3개의 플랩이 유사한 동적 모션으로 시작하는 동안, 곧 플랩의 상호 작용 효과가 모션을 위상 밖으로 렌더링합니다. 우측에는 유사한 플랩 에너지 변환기가 표시되어 있습니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 완전히 물에 잠깁니다. 이러한 에너지 변환기를 표면 천공 플랩 에너지 변환기라고 합니다. 이 두 시뮬레이션 예는 모두 미네르바 다이내믹스에 의해 제공되었습니다.

Oscillating Water Column

진동하는 물 기둥은 부분적으로 잠긴 속이 빈 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수선 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수있는 터빈을 통해 대기로 흐르게됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

위의 CFD 시뮬레이션은 진동하는 water columns를 보여줍니다. FLOW-3D로 포착된 물리학을 강조하기 위해 물기둥이 중공 구조에서 상승 및 하강하는 부분만 모델링합니다. 시뮬레이션은 파형 생성의 다른 선택을 제외하고 유사한 결과를 전달합니다. 왼쪽의 시뮬레이션은 웨이브 유형 경계 조건을 사용하고 오른쪽의 시뮬레이션은 움직이는 물체 모델을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

Capillary Flows

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서 긴 마이크로 채널은 종종 액체 용액을 한 장소에서 다른 장소로 전달하는 데 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력이 액체를 마이크로 채널로 당깁니다(액체가 칩 표면에 “습기”되는 경우). 이 페이지에서는 충전, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D에 대한 몇 가지 특정 용도에 대해 다룹니다.

Marangoni Flows

마랑고니는 그 중심에 가열된 물 접시에 흐릅니다. 균일하지 않은 표면 장력에 의해 발생하는 흐름은 20ºC의 초기 온도에서 깊이 0.75cm의 얕은 8.0cm의 물 접시에 의해 입증됩니다. 원형 접시 중앙에 놓인 원통형 막대는 직경 0.5cm로 80Cº의 온도로 가열되고 0.05cm의 깊이까지 수면에 잠깁니다. 핫 로드 주변의 물이 가열되면 표면 장력이 0.1678dyne/cm/ºC만큼 감소하여 표면이 접시의 바깥쪽 림 쪽으로 수축됩니다. 수축은 처음에 표면에 뿌려진 질량이 없는 마커 입자에 의해 나타납니다.

Capillary Filling

모세관 충전 공정을 이해하는 것은 칩 설계에 중요합니다. 액체 흐름 경로의 기하학적 구조가 다르면 기포를 고정할 수 있는 등의 모세관 충진 동작이 달라질 수 있습니다. 충전 프로세스에 대한 지식은 설계자가 챔버, 결합 기둥, 분할 및 밸브와 같은 칩의 내부 구조를 정렬하는 데 도움이 됩니다. 오른쪽의 시뮬레이션은 모세관 작용의 분석적 예측을 검증합니다. 모세관 충전은 표면 장력과 중력에 의해 균형을 이루며, 이는 FLOW-3D로 정확하게 예측되는 기본 공정입니다.

Thermocapillary Switch

910/5000광선의 경로 안팎으로 이동하는 소량의 액체는 굴절이나 반사를 통해 다른 경로로 방향을 바꿀 수 있습니다. 이 개념은 광선이 광섬유에 들어가면 내부 반사에 의해 포착되는 광섬유와 관련하여 특히 매력적입니다. 복잡한 광학 회로를 만들려면 한 광섬유에서 다른 광섬유로 빛을 리디렉션 할 수있는 “스위치”가 필요합니다.

제안 된 한 가지 개념은 열 모세관을 기반으로합니다. 광섬유 광선을 교차하는 마이크로 채널에 액체의 작은 방울을 놓습니다. 방울이 채널을 따라 빔이 통과해야하는 곳으로 이동하면 빔이 다른 섬유로 반사됩니다. 방울은 양면을 다르게 가열하여 이동합니다. 이것은 방울이 채널의 더 차가운 끝쪽으로 당겨 지도록 방울의 양쪽에있는 반월판의 표면 장력의 변화를 일으 킵니다.

Whole Blood Spontaneous Capillary Flow

Sketch of the cross section of the device (w=150 µm, h1=300 µm, h2=1200 µm, α=14.5o)

모세관 기반 마이크로 시스템은 추가 작동 메커니즘이 필요하지 않기 때문에 저렴하고 제작하기 쉽습니다. 마이크로펌프나 주사기와 같은 일반적인 마이크로 시스템은 부피가 크고 휴대할 수 없는 흐름 작동을 필요로 합니다.

버팔로 대학의 최근 연구는 모세관 유동 작용을 사용하여 미세 기기에서 액체를 이동시키는 간단한 해결책을 연구했습니다. 이 작업은 FLOW-3D를 사용하여 수정된 V-그루브 채널에서 자발적 모세관 흐름을 시뮬레이션합니다. 좁은 V-그루브 기하학(왼쪽)은 전혈과 같은 높은 점도의 유체도 이 유체를 통해 이동할 수 있기 때문에 좋은 솔루션을 제공합니다. 홈의 끝부분은 자발적인 모세관 흐름을 촉진하고 평행판은 충분한 혈액수송을 보장합니다.

본 연구에서는 FLOW-3D를 사용하여 채널 내 유체 헤드의 유속과 액체 전방의 진행을 추정합니다.

결과는 실험 및 분석(간단한) 결과와 비교됩니다. 아래 그림은 수치, 실험 및 분석 결과의 비교를 보여줍니다. FLOW-3D 결과는 실험 결과와 매우 일치합니다.

FLOW-3D Results

Analysis A: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes
Analysis B: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes

Animation of the results post-processed in FlowSight.

References

J. Berthiera, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Pohera, D. Gosselin, M. Cubizolles, P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 2014

Oil Filters

Oil Filters

FLOW-3D의 다공성 매체 모델은 필터의 흐름을 시뮬레이션하는데 적합합니다. 최적의 설계를 결정하기 위해 적용 할 수있는 여러 가지 항력 공식이 있으며, 이는 미립자를 잘 포착하고 항력을 최소화합니다. 입자는 입자의 궤적을 결정하기 위해 다양한 크기 또는 질량으로 도입 될 수 있습니다.

분석할 수있는 데이터 출력에는 속도 프로필, 체류 시간, 유체 이동 거리, 변형률 및 유선이 포함됩니다. 또한 사용자 지정을 통해 막힘 및 그에 따른 추가 드래그를 예측하는 기능을 쉽게 확장 할 수 있습니다. Flow Science는 수정할 수있는 다양한 숫자 루틴을 제공합니다.

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오

2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.

작업 공간 열기

3.작업 공간을 로드 하려면 OK누르십시오.

작업 공간에서 시뮬레이션 작업

작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.

Example를 추가하십시오

작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는
방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.

1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오

2.File -> Add example 선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가선택할 수 있습니다.

3.예제 대화 상자에서 예제를 선택하고 열기를 누르십시오. 자연 대류(Natural Convection) 예제를 선택했습니다.

시뮬레이션 예제 추가

4.새 시뮬레이션 대화 상자가 열립니다.

5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.

6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.

7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.

작업 공간에서의 시뮬레이션

작업 공간에서 시뮬레이션 제거

작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를 선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.

2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.

모든 작업 공간 및 디스크에서 시뮬레이션 삭제

작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션
파일을 삭제하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션
삭제를
선택하십시오.

2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.

3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.

경고

이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.

작업 공간에 기존 시뮬레이션 추가

기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.

1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가 선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation 을 선택할 수도 있습니다.

2.prepin.*파일 위치로 이동하여 열기를 선택하십시오.

작업 공간에 기존 시뮬레이션 추가

3.시뮬레이션이 이제 작업 공간에 나타납니다.

작업 공간에 새로운 시뮬레이션 추가

대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가 선택하십시오.

2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example 불러오십시오.

3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금
각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기
충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.

4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI CGS 단위의 경우 Celsius
Kelvin, 엔지니어링 단위의 경우 Fahrenheit Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량
및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.

노트

새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.

5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우
찾아보기 아이콘 (
browse_icon_v12)을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.

6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( browse_icon_v12)을 사용하여 원하는 위치로 이동하십시오.

7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.

heat transfer example

새로운 시뮬레이션 추가

다른 옵션

우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.

일반적으로 사용되는 Add Simulation Copy… 그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을
작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.

추가 정보

재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.

전처리 및 시뮬레이션 실행

시뮬레이션 전처리

시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에
유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local 선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.

추가 정보

자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.

시뮬레이션 실행

시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히
정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의
아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다
.

추가 정보

시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

작업 공간에서 모든 시뮬레이션 실행

작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

대기열

사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장을 참조하십시오.

파일 시스템에서 파일 찾기

어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.

파일 링크

4.모델 설정

Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체,
기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.

이 섹션은 물에 잠긴 모래(; 파랑)의 바닥에서 가열된 구리 블록(; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.

예제 문제

이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에
대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.

시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.

탐색

모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여 Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.

시뮬레이션의 다양한 측면을 정의하기위한 탐색 아이콘

통제 수단

다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.

행동

버튼/

동작

기술

회전

왼쪽

길게 클릭

마우스 왼쪽 버튼을 클릭 한 채로 Meshing & Geometry 창에서
마우스를 움직입니다. 그에 따라 모델이 회전합니다.

중간 버튼/스크롤

스크롤/클릭 한
상태

마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭
한 상태로 유지하십시오.

우측

길게 클릭

마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.

객체에 초점 설정

해당 없음

객체 위에 커서를 놓기

커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를
통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry 탭에서 Tools->
Mouse Hover
Selection
환경 설정 이 활성화된 경우에만
수행됩니다.

선택

왼쪽

더블 클릭

객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가
조작을 위해 객체를 선택하고 활성화합니다. Meshing
& Geometry
탭에서 Tools
->Mouse Hover Selection 환경 설정 이
비활성화 된 경우에만 활성화됩니다.

액세스 객체 속성

우측

딸깍 하는 소리

강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체
식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.

커서 좌표 반환 (프로브)

왼쪽

Shift + 클릭

Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.

피벗 점 배치

왼쪽

cntrl + 클릭

Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가
피벗 점을 중심으로 회전합니다. 토글 사용자 정의 피벗 피벗 점을 끕니다.
보기 창 위의 버튼을 누릅니다.

도움이
되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.

메시 및 지오메트리 탭의 컨트롤

글로벌

이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면
시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.

글로벌 아이콘 f3d_global_icon을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.

글로벌 탭 예를 들어 문제

추가 정보

자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.

물리

물리 f3d_models_icon아이콘을 클릭하여 물리 위젯을 엽니다.

모델 선택을위한 물리 위젯

이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.

관련 물리 메커니즘(, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고활성화 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.

·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.

문제 평가를위한 밀도 평가 모델

·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.

예를 들어 중력 모델

·
Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.

열전달 모델 예 : 문제

·
Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.

예를 들어 문제의 점도 모델

추가 정보

자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.

유체

유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon f3d_fluids_icon아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼Matdatbas을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.

이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 207e-6을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.

유체 특성 (예 : 문제)

추가 정보

자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

Geometry(기하)

기하형상 f3d_geometry_icon아이콘을 클릭하여 물리 위젯을 엽니다.

이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.

구리 블록을 만들려면 먼저 지정된 상자 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.

예제 문제에 대한 구리 블록 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.

상자아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.

예를 들어 침대 문제 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.

예제 문제에 대한 형상 정의

새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.

노트

표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 즐겨 찾기옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.

추가 정보

자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.

구성 요소 속성

열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘f3d_geometry_icon을 클릭하여 구성 요소 속성 위젯에서 설정합니다.

구성 요소 특성 위젯

각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.

구리 블록 고체 특성

여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드 Matdatbas 아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz 선택하고 Load를 선택하십시오.

베드 솔리드 속성

추가 정보

l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.

Meshing(메싱)

Mesh Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. f3d_mesh_icon아이콘을 눌러 add_iconMesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.

메시 블록을 형상에 맞추기

Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton 탭을 선택하고 Mesh Plane 2 0.2를 입력합니다.

z 높이 조정

이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.

y 메쉬 평면 조정

최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.

또한 솔버가 Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면 즐겨 찾기아이콘을 클릭한 다음 생성을 선택하십시오.

호의

잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.

선호하는 결과

추가 정보

l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.

l FAVORTM FAVORize
옵션에 대한 자세한 내용은 모델 설정 즐겨 찾기장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.

경계 조건

FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다(f3d_bc_icon ).

이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.

·X Min :

o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.

XMIN 경계 조건

·다음으로, 유체 분율 사용에서 유체 표고 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

·마지막으로 온도를 298K로 설정하십시오.

XMIN 경계 조건

·
X Max :

o경계 조건 위젯의 경계 섹션 아래에 있는 X 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로, 유체 분율 사용에서 유체 높이 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

o마지막으로 온도를 298K로 맞춥니다.

oXMAX 경계 조건

·
Z 최대 :

o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로 유체 분율을 0.0으로 설정하십시오.

o마지막으로 온도를 298K로 맞춘다.

ZMAX 경계 조건

추가 정보

자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.

초기 조건

도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.

·
구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.

유체 초기 조건

유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.

f3d_initial_icon 아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.

유체 초기 조건

다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.

유체 초기 조건 계속

추가 정보

자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.

출력

FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력 f3d_output_icon 아이콘을 클릭합니다.

다른 데이터 유형은 다음과 같습니다.

·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.

·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.

·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.

일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.

출력 탭 설정

추가 정보

자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.

Numerics

기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.

이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.

추가 정보

자세한 내용은 모델 설정 장의 Numerics 옵션 섹션을 참조하십시오.

일반 시뮬레이션 설정 점검 목록

시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.

시작하기 전에

1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.

2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.

3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.

모델 설정 : 일반

1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.

2.사용할 솔버와 프로세서 수를 선택하십시오.

3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 ( : mm-gm-msec)사용하고 규모가 큰 문제는 큰 단위 ( : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.

4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 f> 0(유체 1을 나타내는) 또는 유체 분획 f \ geq 0(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스
추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는 f = 0두 유체 문제에서 처리되는 영역을 정의합니다.

5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.

6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.

모델 설정 : 물리

1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화

모델 설정 : 유체

1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.

2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.

3.인터페이스의 속성 정의: f = 1 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.

모델 설정 : Mesh 및 형상

1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상
정의와 관련된 문제를 파악하는 데 도움이 됩니다.

2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.

3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.

4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.

5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이 0 <f <1있는 셀과 셀이 f = 1다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다.f = 0 ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. f = 1 f = 0 .

6.지오메트리를 정의하는 모든 배플 정의

7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.

8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다.t = 0 .주석이
달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.

9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)

모델 설정 : 출력

1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.

2.재시작 데이터에 추가할 출력을 선택하십시오.

3.선택한 데이터에 기록할 정보를 선택하십시오.

4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.

모델 설정 : 숫자

1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.

5.FLOW-3D에서 후 처리

이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서 FlowSight에 대한 튜토리얼은 FlowSight 설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.

FlowSight 사용에 대한 기본 참조는 FlowSight Help->helpLocal Help 메뉴에서 액세스하는 FlowSight 사용자 설명서입니다.

추가 정보

기존 플롯

기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.

1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.

2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리 flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.

3. 확인을 선택 flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.

기존 결과 대화 상자

4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.

기존 플롯보기

커스텀 플롯

1.분석 탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를 선택하십시오.

2.전체 출력 파일을 보려면 사용자 정의 단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.

3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을 클릭하십시오.

FLOW-3D 결과 대화 상자

이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.

·Custom : 이 매뉴얼 의 FLSINP 파일을 사용하여 플롯합니다. 사용자 정의 섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.

·프로브 : 개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브 플롯