Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Flow-3D 수치 모델링 결과를 기반으로 하는 슈트 여수로의 캐비테이션 발생 확률적 조사

Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Amin Hasanalipour Shahrabadi1*, Mehdi Azhdary Moghaddam2

1-University of Sistan and Baluchestan،amin.h.shahrabadi@gmail.com

2-University of Sistan and Baluchestan،Mazhdary@eng.usb.ac.ir

Abstract

Probabilistic designation is a powerful tool in hydraulic engineering. The uncertainty caused by random phenomenon in hydraulic design may be important. Uncertainty can be expressed in terms of probability density function, confidence interval, or statistical torques such as standard deviation or coefficient of variation of random parameters. Controlling cavitation occurrence is one of the most important factors in chute spillways designing due to the flow’s high velocity and the negative pressure (Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). By increasing dam’s height, overflow velocity increases on the weir and threats the structure and it may cause structural failure due to cavitation (Chanson, ۲۰۱۳). Cavitation occurs when the fluid pressure reaches its vapor pressure. Since high velocity and low pressure can cause cavitation, aeration has been recognized as one of the best ways to deal with cavitation (Pettersson, ۲۰۱۲). This study, considering the extracted results from the Flow-۳D numerical model of the chute spillway of Darian dam, investigates the probability of cavitation occurrence and examines its reliability. Hydraulic uncertainty in the design of this hydraulic structure can be attributed to the uncertainty of the hydraulic performance analysis. Therefore, knowing about the uncertainty characteristics of hydraulic engineering systems for assessing their reliability seems necessary (Yen et al., ۱۹۹۳). Hence, designation and operation of hydraulic engineering systems are always subject to uncertainties and probable failures. The reliability, ps, of a hydraulic engineering system is defined as the probability of safety in which the resistance, R, of the system exceeds the load, L, as follows (Chen, ۲۰۱۵): p_s=P(L≤R) (۱) Where P(۰) is probability. The failure probability, p_f, is a reliability complement and is expressed as follows: p_f=P[(L>R)]=۱- p_s (۲) Reliability development based on analytical methods of engineering applications has come in many references (Tung & Mays, ۱۹۸۰ and Yen & Tung, ۱۹۹۳). Therefore, based on reliability, in a control method, the probability of cavitation occurrence in the chute spillway can be investigated. In reliability analysis, the probabilistic calculations must be expressed in terms of a limited conditional function, W(X)=W(X_L ,X_R)as follows: p_s=P[W(X_L ,X_R)≥۰]= P[W(X)≥۰] (۳) Where X is the vector of basic random variables in load and resistance functions. In the reliability analysis, if W(X)> ۰, the system will be secure and in the W(X) <۰ system will fail. Accordingly, the eliability index, β, is used, which is defined as the ratio of the mean value, μ_W, to standard deviation, σ_W, the limited conditional function W(X) is defined as follows (Cornell, ۱۹۶۹): β=μ_W/σ_W (۴) The present study was carried out using the obtained results from the model developed by ۱:۵۰ scale plexiglass at the Water Research Institute of Iran. In this laboratory model, which consists of an inlet channel and a convergent thrower chute spillway, two aerators in the form of deflector were used at the intervals of ۲۱۱ and ۲۷۰ at the beginning of chute, in order to cope with cavitation phenomenon during the chute. An air duct was also used for air inlet on the left and right walls of the spillway. To measure the effective parameters in cavitation, seven discharges have been passed through spillway. As the pressure and average velocity are determined, the values of the cavitation index are calculated and compared with the values of the critical cavitation index, σ_cr. At any point when σ≤σ_cr, there is a danger of corrosion in that range (Chanson, ۱۹۹۳). In order to obtain uncertainty and calculate the reliability index of cavitation occurrence during a chute, it is needed to extract the limited conditional function. Therefore, for a constant flow between two points of flow, there would be the Bernoulli (energy) relation as follows (Falvey, ۱۹۹۰): σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) (۵) Where P_atm is the atmospheric pressure, γ is the unit weight of the water volume, θ is the angle of the ramp to the horizon, r is the curvature radius of the vertical arc, and h cos⁡θ is the flow depth perpendicular to the floor. Therefore, the limited conditional function can be written as follows: W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D is a powerful software in fluid dynamics. One of the major capabilities of this software is to model free-surface flows using finite volume method for hydraulic analysis. The spillway was modeled in three modes, without using aerator, ramp aerator, and ramp combination with aeration duct as detailed in Flow-۳D software. For each of the mentioned modes, seven discharges were tested. According to Equation (۶), velocity and pressure play a decisive and important role in the cavitation occurrence phenomenon. Therefore, the reliability should be evaluated with FORM (First Order Reliable Method) based on the probability distribution functions For this purpose, the most suitable probability distribution function of random variables of velocity and pressure on a laboratory model was extracted in different sections using Easy fit software. Probability distribution function is also considered normal for the other variables in the limited conditional function. These values are estimated for the constant gravity at altitudes of ۵۰۰ to ۷۰۰۰ m above the sea level for the unit weight, and vapor pressure at ۵ to ۳۵° C. For the critical cavitation index variable, the standard deviation is considered as ۰.۰۱. According to the conducted tests, for the velocity random variable, GEV (Generalized Extreme Value) distribution function, and for the pressure random variable, Burr (۴P) distribution function were presented as the best distribution function. The important point is to not follow the normal distribution above the random variables. Therefore, in order to evaluate the reliability with the FORM method, according to the above distributions, they should be converted into normal variables based on the existing methods. To this end, the non-normal distributions are transformed into the normal distribution by the method of Rackwitz and Fiiessler so that the value of the cumulative distribution function is equivalent to the original abnormal distribution at the design point of x_(i*). This point has the least distance from the origin in the standardized space of the boundary plane or the same limited conditional function. The reliability index will be equal to ۰.۴۲۰۴ before installing the aerator. As a result, reliability, p_s, and failure probability, p_f, are ۰.۶۶۲۹ and ۰.۳۳۷۱, respectively. This number indicates a high percentage for cavitation occurrence. Therefore, the use of aerator is inevitable to prevent imminent damage from cavitation. To deal with cavitation as planned in the laboratory, two aerators with listed specifications are embedded in a location where the cavitation index is critical. In order to analyze the reliability of cavitation occurrence after the aerator installation, the steps of the Hasofer-Lind algorithm are repeated. The modeling of ramps was performed separately in Flow-۳D software in order to compare the performance of aeration ducts as well as the probability of failure between aeration by ramp and the combination of ramps and aeration ducts. Installing an aerator in combination with a ramp and aerator duct greatly reduces the probability of cavitation occurrence. By installing aerator, the probability of cavitation occurrence will decrease in to about ۴ %. However, in the case of aeration only through the ramp, the risk of failure is equal to ۱۰%.

확률적 지정은 수력 공학에서 강력한 도구입니다. 유압 설계에서 임의 현상으로 인한 불확실성이 중요할 수 있습니다. 불확실성은 확률 밀도 함수, 신뢰 구간 또는 표준 편차 또는 무작위 매개변수의 변동 계수와 같은 통계적 토크로 표현될 수 있습니다. 캐비테이션 발생을 제어하는 ​​것은 흐름의 높은 속도와 음압으로 인해 슈트 여수로 설계에서 가장 중요한 요소 중 하나입니다(Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). 댐의 높이를 높이면 둑의 범람속도가 증가하여 구조물을 위협하고 캐비테이션으로 인한 구조물의 파손을 유발할 수 있다(Chanson, ۲۰۱۳). 캐비테이션은 유체 압력이 증기압에 도달할 때 발생합니다. 높은 속도와 낮은 압력은 캐비테이션을 유발할 수 있으므로, 통기는 캐비테이션을 처리하는 가장 좋은 방법 중 하나로 인식되어 왔습니다(Pettersson, ۲۰۱۲). 본 연구에서는 Darian 댐의 슈트 여수로의 Flow-۳D 수치모델에서 추출된 결과를 고려하여 캐비테이션 발생 확률을 조사하고 그 신뢰성을 조사하였다. 이 수력구조의 설계에서 수력학적 불확실성은 수력성능 해석의 불확실성에 기인할 수 있다. 따라서 신뢰성을 평가하기 위해서는 수력공학 시스템의 불확도 특성에 대한 지식이 필요해 보인다(Yen et al., ۱۹۹۳). 따라서 수력 공학 시스템의 지정 및 작동은 항상 불확실성과 가능한 고장의 영향을 받습니다. 유압 공학 시스템의 신뢰성 ps는 저항 R, 시스템의 부하 L은 다음과 같이 초과됩니다(Chen, ۲۰۱۵): p_s=P(L≤R)(۱) 여기서 P(۰)은 확률입니다. 고장 확률 p_f는 신뢰도 보완이며 다음과 같이 표현됩니다. Mays, ۱۹۸۰ 및 Yen & Tung, ۱۹۹۳). 따라서 신뢰성을 기반으로 제어 방법에서 슈트 여수로의 캐비테이션 발생 확률을 조사할 수 있습니다. 신뢰도 분석에서 확률적 계산은 제한된 조건부 함수 W(X)=W(X_L , X_R)은 다음과 같습니다. p_s=P[W(X_L,X_R)≥۰]= P[W(X)≥۰] (۳) 여기서 X는 부하 및 저항 함수의 기본 랜덤 변수 벡터입니다. 신뢰도 분석에서 W(X)> ۰이면 시스템은 안전하고 W(X) <۰에서는 시스템이 실패합니다. 따라서 표준편차 σ_W에 대한 평균값 μ_W의 비율로 정의되는 신뢰도 지수 β가 사용되며, 제한된 조건부 함수 W(X)는 다음과 같이 정의됩니다(Cornell, ۱۹۶۹). β= μ_W/σ_W (۴) 본 연구는 이란 물연구소의 ۱:۵۰ scale plexiglass로 개발된 모델로부터 얻은 결과를 이용하여 수행하였다. 이 실험 모델에서, 입구 수로와 수렴형 투수 슈트 여수로로 구성되며 슈트 중 캐비테이션 현상에 대처하기 위해 슈트 초기에 ۲۱۱과 ۲۷۰ 간격으로 편향기 형태의 2개의 에어레이터를 사용하였다. 여수로 좌우 벽의 공기 유입구에도 공기 덕트가 사용되었습니다. 캐비테이션의 효과적인 매개변수를 측정하기 위해 7번의 배출이 방수로를 통과했습니다. 압력과 평균 속도가 결정되면 캐비테이션 지수 값이 계산되고 임계 캐비테이션 지수 σ_cr 값과 비교됩니다. σ≤σ_cr일 때 그 범위에서 부식의 위험이 있다(Chanson, ۱۹۹۳). 슈트 중 캐비테이션 발생의 불확실성을 구하고 신뢰도 지수를 계산하기 위해서는 제한된 조건부 함수를 추출할 필요가 있다. 따라서 두 지점 사이의 일정한 흐름에 대해 다음과 같은 Bernoulli(에너지) 관계가 있습니다(Falvey, ۱۹۹۰). σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗 ^۲/۲g) (۵) 여기서 P_atm은 대기압, γ는 물의 단위 중량, θ는 수평선에 대한 경사로의 각도, r은 수직 호의 곡률 반경, h cos⁡ θ는 바닥에 수직인 흐름 깊이입니다. 따라서 제한된 조건부 함수는 다음과 같이 쓸 수 있습니다. W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D는 유체 역학의 강력한 소프트웨어. 이 소프트웨어의 주요 기능 중 하나는 수리학적 해석을 위해 유한 체적 방법을 사용하여 자유 표면 흐름을 모델링하는 것입니다. 방수로는 Flow-۳D 소프트웨어에 자세히 설명된 바와 같이 폭기 장치, 램프 폭기 장치 및 폭기 덕트가 있는 램프 조합을 사용하지 않고 세 가지 모드로 모델링되었습니다. 언급된 각 모드에 대해 7개의 방전이 테스트되었습니다. 식 (۶)에 따르면 속도와 압력은 캐비테이션 발생 현상에 결정적이고 중요한 역할을 합니다. 따라서 확률분포함수에 기반한 FORM(First Order Reliable Method)으로 신뢰도를 평가해야 한다 이를 위해 실험실 모델에 대한 속도와 압력의 확률변수 중 가장 적합한 확률분포함수를 Easy fit을 이용하여 구간별로 추출하였다. 소프트웨어. 확률 분포 함수는 제한된 조건부 함수의 다른 변수에 대해서도 정상으로 간주됩니다. 이 값은 단위 중량의 경우 해발 ۵۰۰ ~ ۷۰۰۰ m 고도에서의 일정한 중력과 ۵ ~ ۳۵ ° C에서의 증기압으로 추정됩니다. 임계 캐비테이션 지수 변수의 표준 편차는 ۰.۰۱으로 간주됩니다. . 수행된 시험에 따르면 속도 확률변수는 GEV(Generalized Extreme Value) 분포함수로, 압력변수는 Burr(۴P) 분포함수가 가장 좋은 분포함수로 제시되었다. 중요한 점은 확률 변수 위의 정규 분포를 따르지 않는 것입니다. 따라서 FORM 방법으로 신뢰도를 평가하기 위해서는 위의 분포에 따라 기존 방법을 기반으로 정규 변수로 변환해야 합니다. 이를 위해, 비정규분포를 Rackwitz와 Fiiessler의 방법에 의해 정규분포로 변환하여 누적분포함수의 값이 x_(i*)의 설계점에서 원래의 비정상분포와 같도록 한다. 이 점은 경계면의 표준화된 공간 또는 동일한 제한된 조건부 함수에서 원점으로부터 최소 거리를 갖습니다. 신뢰성 지수는 폭기 장치를 설치하기 전의 ۰.۴۲۰۴과 같습니다. 그 결과 신뢰도 p_s와 고장확률 p_f는 각각 ۰.۶۶۲۹과 ۰.۳۳۷۱이다. 이 숫자는 캐비테이션 발생의 높은 비율을 나타냅니다. 따라서 캐비테이션으로 인한 즉각적인 손상을 방지하기 위해 폭기 장치의 사용이 불가피합니다. 실험실에서 계획한 대로 캐비테이션을 처리하기 위해, 나열된 사양을 가진 두 개의 폭기 장치는 캐비테이션 지수가 중요한 위치에 내장되어 있습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다.

Keywords

Aerator Probable Failure Reliability Method FORM Flow ۳D. 

Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Figure 47: The course of the level on the physical model [22]

NUMERICAL MODELLING OF FLOW IN SPILLWAY

Author Svoboda, Jiří
Contributors Jandora, Jan (advisor); Holomek, Petr (referee)

Abstract

이 학위 논문의 주제는 Boskovice 상수도의 안전 배수로에서 유량 수치 모델링 솔루션입니다. 디플로마 논문의 소개에서는 기본 오버플로를 일반적으로 설명하고 모양과 유형에 따라 구분합니다. 수역에 사용되는 안전 배수로도 있습니다. 그 다음에는 오버 플로우 계산에 대한 설명, 수학적 모델링 및 사용 된 난류 모델에 대한 설명이 이어집니다. 또한이 작업은 Boskovice 상수도에 대한 기술적 설명, AutoCAD 2020 소프트웨어의 안전 배수로, 경사 및 미끄러짐의 가상 3D 모델 생성, Blender 소프트웨어에서의 검사 및 수리를 다룹니다. 결론적으로 Flow-3D 소프트웨어의 흐름 수치 모델링 결과와 토목 공학부 유압 공학과에서 수행 된 유압 모델 연구와의 후속 비교가 제시됩니다.

The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.

Keywords: Spillway, numerical model, 3D model, FLOW-3D, Boskovice dam, rockfill dam.

Introduction

상수도 (VD)는 인구에게 식수 공급, 홍수 방지, 발전 등과 같은 긍정적 인 효과만 있는 것이 아닙니다. 안타깝게도 물 작업, 특히 더 많은 양의 물이 남아있는 작업도 중요한 위협 요소가 될 수 있습니다. 수술 중에 자연의 힘이나 심지어 인적 요인의 실패로 인해 사고가 발생할 수 있습니다. 흐름의 수치 모델링을 위해 안전 배수로를 선택한 VD Boskovice의 경우,이 작업은 1 차 범주에 포함됩니다.

이론적 사고는 극도로 높은 경제적 피해를 입히고 환경에 피해를 줄 수 있으며 국가 규모에 사회적 영향을 미치고 큰 인명 손실을 초래할 수 있습니다. 가설적인 사고는 여러 가지 이유로 발생할 수 있습니다. 예를 들어, 홍수가 극심한 동안의 배수로에서 배수로의 마루가 넘쳐 댐의 공기 경사면이 표면 침식으로 이어지고 이후 배수로가 파열 될 수 있습니다.

이러한 사고를 방지하기 위해 VD에 안전 유출 구조물을 구축하고 있으며, 유출이 넘치지 않도록 관련 VD 범주에 해당하는 충분한 용량이 있어야 합니다. 안타깝게도 VD 운영의 역사에서 안전 배수로에 충분한 용량이 없었고 극심한 홍수 흐름 중에 댐이 유출되고 VD 댐이 파열되는 경우가 있습니다. 이러한 이유로 안전 배수로를 설계하는 것은 비용과 시간이 많이 드는 프로세스입니다.

설계 중에는 설계 홍수파 (NPV) 및 제어 홍수파 (KPV)를 안전하게 전달하기 위해 충분한 용량이 사용됩니다. 적절한 설계를 확인하기 위해 안전 배수로의 흐름 모델링이 사용되며, 여기서 물리적 모델이 일반적으로 사용되며 실험실에서 축소 된 규모로 생성됩니다. 수년 동안 컴퓨터 기술 사용 가능성이 증가함에 따라 다양한 소프트웨어에서 수치 모델링을 사용하여 CFD (유체 흐름 시뮬레이션)를 사용하여 안전 배수로의 흐름을 모델링하여 재정 비용을 크게 줄일 수 있었습니다.

<중략>………….

Figure 1: Basic type of sharp-edged overflow (Bazin's overflow) [1]
Figure 1: Basic type of sharp-edged overflow (Bazin’s overflow) [1]
Figure 3: Overflow with a wide crown [1]
Figure 3: Overflow with a wide crown [1]
Figure 4: Schematic longitudinal section of shaft overflow [14]
Figure 4: Schematic longitudinal section of shaft overflow [14]
Figure 5: Overflow over overflow of general cross-section [1]
Figure 5: Overflow over overflow of general cross-section [1]
Figure 6: Imperfect overflow [1]
Figure 6: Imperfect overflow [1]
Figure 7: Types of overflows according to floor plan [1]
Figure 7: Types of overflows according to floor plan [1]
Figure 8: Lateral contraction and lateral constriction coefficient of pillars [1]
Figure 8: Lateral contraction and lateral constriction coefficient of pillars [1]
Figure 9: Schematic comparison of a pressureless jet surface with a pressure and vacuum surface [22]
Figure 9: Schematic comparison of a pressureless jet surface with a pressure and vacuum surface [22]
Figure 14: Situation of external relations of VD Boskovice [17]
Figure 14: Situation of external relations of VD Boskovice [17]
Figure 15: Air slope of VD Boskovice [24]
Figure 15: Air slope of VD Boskovice [24]
Figure 16: Guide slope of VD Boskovice [24]
Figure 16: Guide slope of VD Boskovice [24]
Figure 17: Sampling tower of VD Boskovice [24]
Figure 17: Sampling tower of VD Boskovice [24]
Figure 18: Fountain front safety spillway [24]
Figure 18: Fountain front safety spillway [24]
Figure 19: Sliding of the security object VD Boskovice [24]
Figure 19: Sliding of the security object VD Boskovice [24]
Figure 20: Slip and divergent broth of the security object VD Boskovice [24]
Figure 20: Slip and divergent broth of the security object VD Boskovice [24]
Figure 21: Probable course of the theoretical PV10 000 in Bělá in the profile of the VD Boskovice dam [6]
Figure 21: Probable course of the theoretical PV10 000 in Bělá in the profile of the VD Boskovice dam [6]
Figure 22: Floor plan of the safety spillway and part of the VD Boskovice slip [12]
Figure 22: Floor plan of the safety spillway and part of the VD Boskovice slip [12]
Figure 23: Longitudinal section of BP and slope in the plane of symmetry [12]
Figure 23: Longitudinal section of BP and slope in the plane of symmetry [12]
Figure 24: Modified floor plan of the overflow and chute of VD Boskovice for the creation of a 3D model
Figure 24: Modified floor plan of the overflow and chute of VD Boskovice for the creation of a 3D model
Figure 25: Created overflow structure without modification
Figure 25: Created overflow structure without modification
Figure 26: Created overflow structure after treatment
Figure 26: Created overflow structure after treatment
Figure 27: Detail of the modified overflow shape
Figure 27: Detail of the modified overflow shape
Figure 33: 3D model with normals shown in blue
Figure 33: 3D model with normals shown in blue
Figure 37: Improperly selected mesh block size
Figure 37: Improperly selected mesh block size
Figure 45: Flow profile in Flow-3D without 3D model displayed
Figure 45: Flow profile in Flow-3D without 3D model displayed
Figure 47: The course of the level on the physical model [22]
Figure 47: The course of the level on the physical model [22]
Figure 51: Comparison of levels in PFm4a
Figure 51: Comparison of levels in PFm4a
Figure 52: Isoline of overflow pressures at flow Q = 173.49 m3/s
Figure 52: Isoline of overflow pressures at flow Q = 173.49 m3/s

결론

이 학위 논문에서는 Flow-3D 소프트웨어에서 Boskovice 상수도의 계획된 안전 오버플로 흐름을 시뮬레이션했습니다. 계획된 안전 범람의 범람 가장자리 길이는 21.99m입니다. 그러나 VD Boskovice의 재건 내에서 VD Boskovice [7]의 수력 학적 모델 연구 결과에 따라 안전 개체 VD Boskovice [7]의 결론에 따라 24.60m로 증가했습니다.

MBH 수준 (해발 432.30m)에서는 최고 유량 Q10 000 = 186.5 m3 / s로 제어 홍수 파 KPV10 000의 안전한 전송이 없지만 유량 Q = 167.0 m3 / s 만 있기 때문에 에스. 이 진술은 Flow-3D에서 난류 RNG k – ε 모델을 사용한 수치 적 흐름 모델링에 의해 확인되었으며 MBH에서 173.49 m3 / s의 유속을보고했습니다.

따라서 수력학적 모델 연구 [7]와 Flow3D의 수치 적 흐름 모델링 간의 차이는 약 3.7 % 였는데, 이는 물리적 모델의 형상 또는 생성 된 형상의 가능한 오류와 같은 다양한 요인으로 인한 것일 수 있습니다. 가상 3D 모델. 또한 실제 모델에서 측정하는 동안 발생할 수 있는 오류 (예 : 오버플로 높이 또는 흐름 값을 결정할 때의 장치 오류). 수치 모델의 경우 차이는 사용 된 셀 네트워크 셀 크기, 거칠기, 전류 폭기의 무시, 수치 적 방법에 의해 주어진 불확실성 또는 3D 모델의 단순화로 인한 것일 수 있습니다.

이러한 요소는 Flow-3D 소프트웨어에서 시뮬레이션 된 레벨의 과정에 영향을 미칠 수 있습니다. 일부 영역에서는 유압 모델 연구 [7]의 현재 깊이와 센티미터 단위 만 다릅니다. 그러나 일부 영역에서는 이러한 차이가 수십 센티미터 정도, 예외적으로 1m 측벽에서 더 두드러지며 이는 Flow-3D 소프트웨어의 유동 시뮬레이션에서는 발생하지 않았습니다.

Flow-3D의 흐름에 의한 수치 모델링에 따르면, Q10 000 = 186.5 m3 / s의 피크 흐름을 가진 제어 홍수 파 KPV10 000은 해발 432.40 m의 탱크 레벨에서만 안전 오버플로를 통해 전송됩니다. 즉, MBH 레벨보다 10cm 높음. 이 계산은 오버플로 가장자리 21.99m의 너비에 대해 수행되었지만 이미 재구성 된 안전 오버플로 VD Boskovice의 너비는 24.60m입니다.

이전 평가에서 생성 된 항목에 수치 모델링 만 사용하는 것이 완전히 신뢰할 수있는 것은 아님이 분명합니다. 민감도 분석 및 물리적 모델에 대한 수리적 연구와의 후속 비교가 없는 가상 3D 모델. 그러나 향후 몇 년 동안 물리적 모델로 평가할 필요 없이 수치 적 흐름 모델링의 결과가 충분히 신뢰할 수 있다면 실험실에서 수행되는 더 많은 비용이 드는 수력학적 모델 연구를 점진적으로 대체 할 수 있습니다.

Reference

[1] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno: AKADEMICKÉ
NAKLADATELSTVÍ CERM, 2007. ISBN 978-80-7204-512-9.
[2] BOOR, B., J. KUNŠTÁTSKÝ a C. PATOČKA. Hydraulika pro vodohospodářské
stavby. Praha: SNTL, 1968. ISBN 04-710-68.
[3] STARA, Vlastimil a Helena KOUTKOVÁ. 3. Vodohospodářská konference
s mezinárodní účastí: Součinitel přepadu přelivu s kruhově zaoblenou korunou
z fyzikálních experimentů. Brno, 2003. ISBN 80-86433-26-9.
[4] ŘÍHA, Jaromír. Hydrotechnické stavby II: Modul 01 Přehrady. Studijní opora. FAST
VUT v Brně 2006.
[5] JANDORA, Jan. Matematické modelování ve vodním hospodářství. VUT v Brně, 2008.
[6] KŘÍŽ, Tomáš. Manipulační řád pro vodní dílo Boskovice na toku Bělá v km 7,400. Brno,
2020.
[7] ŠULC, Jan a Michal ŽOUŽELA. Hydraulický modelový výzkum bezpečnostního objektu
VD Boskovice na ÚVS Stavební fakulty VUT v Brně. Výzkumná zpráva, LVV-ÚVSFAST VUT v Brně, 2013
[8] Autodesk® AutoCAD® 2020 [Počítačový software]. (2019). https://www.autodesk.cz/
[9] Blender v2.90 [Počítačový software]. (2020). https://www.blender.org/
[10] FLOW-3D® verze 11.0.4 [Počítačový software]. (2015). Santa Fe, NM: Flow Science,
Inc. https://www.flow3d.com
[11] Why FLOW-3D? Flow-3D [online]. [cit. 2020-11-03]. Dostupné z:
https://www.flow3d.com/products/flow-3d/why-flow-3d/
[12] Podklady poskytnuté Ing. Petrem Holomkem (Povodí Moravy, s. p.)
[13] CHANSON, H. a J.S. MONTES. Journal of Irrigation and Drainage Engineering:
Overflow Characteristics of Circular Weirs: Effcets of Inflow Conditions. 3. Reston: The
American Society of Civil Engineers, 1998. ISBN 0733-9437.
[14] KRATOCHVÍL, Jiří, Miloš JANDA a Vlastimil STARA. Projektování přehrad:
Komplexní projekt HT. Brno: Vysoké učení technické v Brně, 1988.
[15] STUDNIČKA, Tomáš. Matematické modelování odlehčovacích komor na stokových
sítích. Brno, 2013. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební.
Vedoucí práce Ing. Petr Prax, Ph.D.
[16] ŘÍHA, Jaromír. Hydraulika podzemních vod: Modul 01. Studijní opora. FAST VUT
v Brně 2006.

[17] ArcMap Desktop 10.5 Version: 10.5.0.6491, [Počítačový software]. (2016). Copyright ©
1995-2016 Esri
[18] VD Boskovice. Povodí Moravy [online]. Media Age Digital, s.r.o., 2010-2020. [cit. 2020-
09-08]. Dostupné z: http://www.pmo.cz/cz/o-podniku/vodni-dila/boskovice/.
[19] DESATOVÁ, Martina. Numerické modelování proudění v bezpečnostním přelivu
vybraného vodního díla. Brno, 2020. Diplomová práce. Vysoké učení technické v Brně,
Fakulta stavební, Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
[20] HOLINKA, Matouš. Numerické modelování proudění v bezpečnostním objektu vodního
díla. Brno, 2017. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební,
Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
[21] KŘIVOHLÁVEK, Roman. Numerické modelování proudění v bezpečnostním přelivu
vodního díla Letovice. Brno, 2018. Diplomová práce. Vysoké učení technické v Brně,
Fakulta stavební, Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
[22] ŠULC, Jan, Podklady k přednáškám předmětu CR053 Bezpečnostní objekty
hydrotechnických staveb. Brno, 2020.
[23] HOLEČEK, Miroslav. Hydraulika přelivu sypaných přehrad. Praha, 2006. České vysoké
učení technické v Praze, Fakulta stavební, Katedra hydrotechniky.
[24] Místní šetření dne 17. 12. 2020 za účasti Bc. Jiří Svoboda a Milan Coufal
(Povodí Moravy, s. p.).
[25] JANDORA, Jan, Podklady k přednáškám předmětu CR005 Matematické modelování ve
vodním hospodářství. Brno, 2020.
[26] KOZUBKOVÁ, Milada, Modelování proudění tekutin, FLUENT, CFX. Vysoká škola
Báňská Technická univerzita Ostrava, 2008.

FLOW-3D (x) Workflow

Calibrating Simulation Parameters

시뮬레이션 매개 변수 보정

교정 연구의 목표

계단식 배수로에서 공기 유입 시뮬레이션에 대한 다양한 수치 매개 변수의 영향을 조사합니다.

엔지니어링 과제

쉽게 실험 데이터와 일치하도록 공기 유입 및 도움말 보정의 최초의 시뮬레이션에 수치 매개 변수의 영향을 연구에 사용할 수 있는 자동화된 워크 플로우 생성 1 .

연구할 매개 변수는 메쉬 크기, 난류 모델, 난류 길이 스케일 및 동적 대 고정 난류 길이 스케일입니다. 또한 FLOW-3D (x) 는 마지막 시간 단계에서 유입된 공기 농도의 이미지와 시뮬레이션에서 공기 유입의 진화를 보여주는 애니메이션을 생성합니다.

FLOW-3D (x) 워크 플로우

시뮬레이션은 동반된 공기의 양을 보고하기 위해 3, 4, 5 단계의 샘플링 볼륨으로 설정됩니다. FLOW-3D (x) 는 노드를 사용하여 자동화된 워크 플로를 구성합니다. 

첫 번째 노드는 .csv 파일에서 시뮬레이션 매개 변수를 읽는데 사용됩니다. 그런 다음 매개 변수는 시뮬레이션을 실행 하기 위해 FLOW-3D 노드로 전송됩니다 . 후 처리 노드는 배수로의 각 단계에서 샘플링 볼륨에서 동반된 공기 볼륨을 추출하고, 마지막 시간 단계에서 동반된 공기의 이미지를 생성하고, 공기 동반 애니메이션을 생성합니다. 마지막 노드는 샘플링 볼륨에서 보고된 동반 공기 값을 .csv 파일에 씁니다.

매개 변수 정의 입력 파일에 18 개의 매개 변수 세트가 지정되어 있으므로 예산 또는 허용되는 반복 횟수가 18로 설정되었습니다. 단일 시뮬레이션의 런타임은 각 반복에서 사용되는 메시 크기에 따라 다릅니다.

시뮬레이션 매개 변수를 보정하는 계단식 방수로

매개 변수 연구 결과

사용 FLOW-3D (X) 의 데이터 분석 기능 및 자동 화상 생성하면 빠른 시각적 평가 결과의 검증을 허용합니다. 또한 각 시뮬레이션 실행에 대한 각 단계의 공기 유입 값은 보고된 .csv 파일에서 쉽게 액세스 할 수 있습니다. 최적화 연구 시간을 절약하기 위해 배치 실행이 사용되었습니다.

교정 전

보정 전 계단식 배수로 동반 공기

0.01m의 메쉬 크기, k-ω 난류 모델 및 0.005m와 동일한 난류 길이 척도를 사용하는 시뮬레이션의 마지막 시간 단계에서 유입 공기

References

메쉬 크기 = 0.005m, k-ω 난류 모델 및 0.005m와 같은 난류 길이 척도의 시뮬레이션에서 마지막 시간 단계에서 혼입된 공기. 2 배 더 미세한 메쉬를 사용한 공기 혼입의 시작은 0.01m 메쉬보다 실험 결과와 유사하게 비교됩니다.

참고 문헌

1 Felder, Stefan (2013). Air-water flow properties on stepped spillways for embankment dams: Aeration, energy dissipation and turbulence on uniform, non-uniform and pooled stepped chutes. PhD Thesis, School of Civil Engineering, The University of Queensland.

FLOW-3D skimming upstream view

계단식 여수로의 흐름 시뮬레이션

FLOW-3D 는 매끄러운 여수로에서 유량 매개 변수를 결정하는데 널리 사용됩니다. 일반적으로 여수로에서 에너지 손실을 찾는 것이 목적인데, 이는 stilling basins 및 other energy dissipaters 를 설계하는 데 사용됩니다.

계단식 여수로에서 에너지 손실을 계산하기 위해 FLOW-3D 를 사용하는 것에 대한 관심이 증가하고 있습니다. 계단식 여수로 모델링 프로세스는 다음 지침에 따라 도움이 될 수 있습니다.

igure 1. Typical geometric representation of a smooth and a stepped spillway.
igure 1. Typical geometric representation of a smooth and a stepped spillway.

소개

계단식 여수로의 흐름은 네 가지 일반 범주로 나뉩니다. 낮잠 흐름, 과도 흐름, 비 공기 스키밍 흐름 및 폭기 스키밍 흐름. 다음 팁은 경사면에서 최대 45도까지 환기되지 않는 계단식 여수로의 Nappe 흐름, 과도기 흐름 및 비 통기성 skimming flow Model에서 개발되었습니다. 추가 비 통기성 skimming 결과는 Bombardelli et al 에서 찾을 수 있습니다. (2010, FloSci-Bib33-10)  및 Meireles et al (2010, FloSci-Bib61-10), 폭기 스키밍 흐름 모델 결과는  Sarfaraz 및 Attari (2011, FloSci-Bib34-11)에서 확인할 수 있습니다.

FLOW-3D skimming upstream view
FLOW-3D skimming upstream view
FLOW-3D skimming downstream view
FLOW-3D skimming downstream view

2 차원으로 시작하고 VOF 방법 선택

지오메트리 또는 흐름에 3D 불일치가없는 한(일반적으로 사실임) 여수로 시뮬레이션을 먼저 2D 사례로 실행합니다. 에너지 손실에 대한 결과는 2D에서 3D로 크게 변하지 않습니다. 이것은 메쉬 크기를 상당히 절약하고 훨씬 더 빠른 시뮬레이션 실행을 가능하게 합니다. 

스키밍 및 전환 흐름의 경우 기본 VOF (Volume-of-Fluid-Advection) 방법이 적절해 보입니다 (IFVOF = 4). Nappe 흐름의 경우 분할 Lagrangian VOF 방법 (IFVOF = 6)을 사용하여 제트 곡률을 해결하는 것이 좋습니다. 흐름 체제가 미리 알려지지 않은 경우 Split Lagrangian 방법을 사용합니다.

메시 해상도

계단식 여수로 Weir 흐름은 상류 속도와 여수로의 형상에 따라 다른 영역을 나타냅니다. 이러한 서로 다른 정권을 스키밍, 과도기 및 Nappe 흐름이라고합니다. 흐름 영역을 정확하게 예측하려면 메쉬 셀이 흐름 매개 변수를 캡처할 수 있을만큼 충분히 작은지 확인해야 합니다. 

스키밍 및 과도적 흐름의 경우 상대적으로 낮은 해상도가 허용될 수 있습니다. 계단의 가장 짧은 길이 / 높이를 분석하기 위한 4 ~ 5 개의 셀이 여러 테스트를 기반으로 충분 해 보이지만 여수로 경사가 45도 이상 더 클 때 메시가 상당히 미세해야 합니다. 에너지 손실 계산을 크게 향상시키는 추가 해상도는 발견되지 않았습니다. 반면에 Nappe 흐름은 떨어지는 제트를 해결하기 위해 매우 미세한 메쉬가 필요합니다.

벨기에 Zele에서 나온 WWTP의 개략도

활성화 된 슬러지 모델링

Activated Sludge Model

폐수 처리 플랜트 (WWTP) 내부의 생화학 적 반응 및 유체 역학에 대한 자세한 이해는 설계자와 엔지니어가 새로운 플랜트 설계를 평가하고, 관리 결정을 정량화하고, 새로운 제어 계획을 개발하고, 안전한 작업자 교육을 제공하는 데 도움이 될 수 있습니다. 이 블로그에서는 독자들에게 대규모 생화학 반응 시스템을 동적으로 해결 하는 FLOW-3D 의 새로운 ASM (Activated Sludge Model)을 소개합니다.

폭기조

폭기조는 대부분의 생화학 반응이 WWTP의 2 차 처리 부분에서 발생하는 곳입니다. 일반적으로 폭기 탱크는 대부분의 생화학 반응이 완료되는 데 걸리는 시간을 허용하는 긴 경로를 가지고 있습니다. 종이 폭기조의 전체 길이를 횡단하는 데 걸리는 시간을 잔류 시간이라고합니다. 폭기조에 산소가 주입되어 폐수에서 박테리아가 증식합니다. 박테리아는 산소를 사용하여 물에있는 폐기물을 분해하고 그렇게하면서 플록 또는 슬러지 블랭킷이라고하는 응집체를 형성합니다. 활성화 된 슬러지의 일부는 폐수의 생화학 적 처리를 더욱 촉진하기 위해 폭기조로 다시 재활용됩니다.

벨기에 Zele에서 나온 WWTP의 개략도
벨기에 Zele에서 나온 WWTP의 개략도

생화학 반응의 표준 시스템

국제 물 협회 (IWA)는 지난 40 년간 생화학 적 반응을 설명하는 세 가지 주요 수학적 시스템을 제안했다. 이러한 각 시스템 인 ASM-1, ASM-2 및 ASM-3은 폭기조 내부의 다양한 종의 성장 및 붕괴 역학을 다양한 세부 수준으로 포착합니다. ASM-3이 가장 포괄적입니다. 첫 번째 시스템 인 ASM-1은 아래 표 형식과 확장 형식으로 표시됩니다.

결합 편미분 방정식의 확장 시스템으로서의 생화학 반응의 ASM-1 시스템
결합 편미분 방정식의 확장 시스템으로서의 생화학 반응의 ASM-1 시스템

ASM 솔버 기능

대부분의 생화학 반응은 Monod 모델 또는 유사한 모델을 기반으로합니다. Monod 모델은 미생물의 성장 및 붕괴 속도를 예측하는 수학적 모델이며 간단한 방정식으로 설명됩니다.

여기서 a 와 k 는 최대 비 성장률 상수이고 기질 농도는 최대 비 성장률의 절반에 해당합니다. C 는 시간에 따라 변화하는 미생물 종의 농도 t 입니다. Monod 모델은 종의 농도에 따라 반응의 순서를 동적으로 변경하는 특성이 있습니다.

For C   >> A는 , 변화율 C는  0 차에 접근한다.

For C   << a는 , 변화율 C는 일차 접근한다.

이 모든 것은 미생물 종의 농도가 높으면 썩고 자라는 속도가 빨라지고, 종의 양이 적으면 썩거나 자라는 속도가 느리다는 것입니다. Monod 방정식의 해는 다음과 같이 Lambert 함수에 의해 제공됩니다.

간단한 Monod 방정식에 대한 분석 솔루션과 FLOW-3D 솔루션의 비교
간단한 Monod 방정식에 대한 분석 솔루션과 FLOW-3D 솔루션의 비교

생화학 반응을 설명하는 표준 시스템에는 Monod 용어의 긴 사슬이 포함되어 있습니다. FLOW-3D 의 ASM 모델은 WWTP에서 박테리아 종의 Monod 기반 성장 및 붕괴를 완벽하게 추적 할 수 있습니다. ASM 모델은 FLOW-3D 의 유체 역학 솔버 와 통합되어 속도 및 압력 장을 기반으로 한 박테리아의 움직임이 성장 및 붕괴 속도와 결합 될 수 있습니다.

FLOW-3D 의 ASM 솔버 결과가 벨기에 Zele의 폐수 처리장 (WWTP)에서 배출 될 때 다양한 유입수 종 농도의 붕괴 및 성장에 대해 보여줄 것 입니다. 종 및 유체 역학 계산을 정확하게 추적하면 폐수 처리 전문가가 정량적으로 뒷받침되는 설계 및 운영 결정을 내릴 수 있습니다.

Zele WWTP

Zele WWTP는 1983 년 50,000 명의 주민을 위해 벨기에에서 건설되었습니다. 일반적으로이 WWTP의 유입수는 가정용 폐수 40 %와 산업 폐수 60 %로 구성됩니다. 1 차 처리 공정 후 유입수는 생물학적 활성 슬러지 처리장으로 흘러 재활용 활성 슬러지와 혼합됩니다.

벨기에 Zele에서 나온 WWTP의 개략도 [2]. 녹색 상자는 2 차 처리 과정을 나타냅니다.
벨기에 Zele에서 나온 WWTP의 개략도 [2]. 녹색 상자는 2 차 처리 과정을 나타냅니다.

활성 오니 조 또는 폭기조는 약 400 m의 레인 6으로 분할되어 하나의 플러그 유동 폭기조 구성 3 각. 폭기조에서 나오는 유출 물은 각각 2050 m 3 용적의 2 개의 2 차 정화기 (SC1 및 SC2)로 이동합니다 . 최종 폐수는 인근 하천으로 배출됩니다. 2 차 정화기 아래에서 활성 슬러지의 일부는 폭기조로 다시 재활용되어 2 차 처리의 효율성을 높입니다.

우리는 2 차 처리 구성 요소의 기하학적 구조와 다양한 종의 유입 농도에 대한 자세한 정보를 이용할 수 있기 때문에 사례 연구를 위해이 WWTP를 선택했습니다. 정보는 상세하지만 완전하지는 않으며이 불완전한 정보는 폐수 농도에 중대한 영향을 미칠 것이며 나중에 논의 할 것입니다.

기하학, 메싱 및 물리학

지오메트리 생성 및 메싱은 간단했습니다. FLOW-3D 에는 완전한 WWTP를 완전히 정의하는 데 사용 된 기본 지오메트리 모양 모음이 있습니다. 이러한 모양은 생성하기 쉽고 외부 CAD 소프트웨어를 사용하여 생성 된 일부 지오메트리와 달리 오류가 없습니다. 마찬가지로, 구조화 된 그리드를 사용하면 구조화되지 않은 그리드 생성과 관련된 일반적인 오류를 처리하는 시간이 절약되었습니다.

폭기조 내부의 물리학은 복잡하며 질량 및 운동량 보존 방정식 (Navier-Stokes 방정식), 종 수송, 반응 역학, 산소 용해 및 연속 밀도 평가의 완전한 시스템을 해결해야합니다. FLOW-3D 는 가장 정확한 계산을 위해 완전히 결합 된 방식으로 이러한 모든 물리학을 설명합니다.

FLOW-3D의 Zele WWTP 설정. 화살표는 흐름 방향을 나타내며 유입수는 녹색 화살표의 시작 부분에서 도메인으로 들어갑니다.
FLOW-3D의 Zele WWTP 설정. 화살표는 흐름 방향을 나타내며 유입수는 녹색 화살표의 시작 부분에서 도메인으로 들어갑니다.

세 가지 표준 수학적 모델 인 ASM-1, ASM-2 및 ASM-3 중에서 연구자들은이 WWTP에서 ASM-1 수학적 모델을 사용합니다. 이는 간단하면서도 많은 중요한 생화학 과정을 다루기 때문입니다. ASM-1 모델은 일반적으로 폐수에서 발견되거나 처리 과정에서 생성되는 13 종의 진화를 고려합니다 [표 1].

종 IDZele의 초기 유입 농도 (mg / l)
가용성 불활성 유기물SI7.5
쉽게 생분해되는 기질SS400.0
미립자 불활성 유기물XI40.0
천천히 생분해되는 기질XS40.0
활성 종속 영양 바이오 매스XB, H120.0
활성 독립 영양 바이오 매스XB, A5.0
바이오 매스 붕괴로 인한 미립자 제품XP0.0
산소SO0.0
질산염 및 아질산염 질소SNO0.0
암모늄 질소SNH15.0
용해성 생분해 성 유기 질소SND8.2
미립자 생분해 성 유기 질소XND11.3
알칼리도SALKNot included

표 1. 표준 ASM-1 수학 시스템의 종 목록과 Zele WWTP에서 측정 된 초기 유입수 농도. 이러한 초기 농도 중 일부는 추론되며 큰 불확실성이 관련 될 수 있습니다. S와 X는 각각 용해성 물질과 미립자 물질을 나타냅니다.

이들 종 각각은 반응하지 않는 불활성 종 (SI 및 XI)을 제외하고 하나 이상의 생화학 적 과정에 의존합니다. 불활성 종의 유입 및 유출 농도는 XI의 경우와 같이 침전으로 인해 달라질 수 있습니다. SALK는 WWTP에서 측정되지 않았기 때문에이 사례 연구에서 무시되었습니다.

관심 유출량

폐수 엔지니어가 관심을 갖는 주요 유출량은 총 화학적 산소 요구량 (COD tot ), 암모늄 질소 (SNH) 농도, 아질산염 및 질산염 질소 (SNO) 및 총 킬달 질소 (TKN)입니다.

  • COD tot = SI + SS + XI + XS
  • TKN ~ XND + SND + SNH

이 양은 처리 된 물의 전반적인 품질을 나타냅니다.

유출량측정 된 유입 농도 (mg / l)FLOW-3D 유출 농도 (mg / l)
CODtot600264.04
SNH1530.34
SNO01.86
TKN3537.28

총 COD, SNH 및 TKN의 농도는 폐수가 폭기조를 통과하여 WWTP를 빠져 나 가면서 감소해야합니다. 이 동작은 총 COD [표 2]에 대해 올바르게 예측되지만 SNH 및 TKN에 대해서는 그렇지 않습니다. SNO의 농도는 증가 할 것으로 예상되며 이는 ASM 솔버에 의해 정확하게 예측됩니다. 모든 폐수 종의 농도는 아래 애니메이션에 표시됩니다.

Zele WWTP에 있는 모든 종의 진화에 대한 시뮬레이션 결과

애니메이션은 Zele WWTP에있는 모든 종의 진화에 대한 시뮬레이션 결과를 보여줍니다.

WWTP 데이터에 대한 결과의 민감도

나는 폐수에서 일부 종의 잘못된 진화를 모델링의 가정과 누락된 WWTP 데이터에 기인합니다. 유입수에서 측정 된 종 농도의 불확실성; 초기 농도에 대한 정보 누락; 그리고 입자상 물질의 침강 특성에 대한 누락 된 데이터는 폐수의 종 농도에 영향을 미쳤을 가능성이 있습니다.

마찬가지로 불완전한 지오메트리 사양은 WWTP 내부의 유체 역학 계산의 정확성에 부정적인 영향을 미칠 수 있습니다. 또한 폭기조에 산소를 살포하는 것에 대한 정보는 부분적으로 만있었습니다. 산소는 다른 종의 부패와 성장에 큰 영향을 미치는 중요한 구성 요소입니다.

WWTP의 모든 데이터를 항상 측정 할 수있는 것은 아닙니다. 이러한 경우 보정 된 수치 모델을 가상 실험실로 효과적으로 사용하여 다양한 WWTP 설계를 테스트 할 수 있습니다. 이 사례 연구는 특히 폭기조에서 WWTP의 2 차 처리 부분에서 종의 농도를 추적 할 수 있음을 보여줍니다. 그리고 이것은 유체 역학 효과를 고려하면서 할 수 있습니다. 완전한 WWTP 데이터와 문제 사양이 존재하는 경우 엔지니어와 설계자는 WWTP 플랜트 운영 및 설계 최적화에 대해 더 나은 정보를 바탕으로 결정을 내릴 수 있습니다.

우리는 활성 슬러지 모델을 추가로 개발하고 보정하기 위해 폐수 처리 산업의 연구원 및 전문가와 협력 할 수 있습니다. 귀하의 WWTP 프로젝트 및 연구에 대해 논의하려면 adwaith@flow3d.com 으로 이메일을 보내 주십시오 .

참고 문헌

[1] Henze M., Lossdrecht M.C.M., Ekama G.A., Brdjanovic D., Biological Wastewater Treatment, Principles, Modelling and Design, IWA publishing 2008.

[2] Peterson B., Vanrollenghem P.A., Gernaey K., Henze M. (2002) Evaluation of an ASM-1 model calibration procedure on a municipal–industrial wastewater treatment plant, Journal of Hydroinformatics, 4(1): 15-38.

[3] Henze, M., Grady, C. P. L. Jr., Gujer, W., Marais, G. v. R. & Matsuo, T. (1987) Activated Sludge Model No. 1. IAWPRC Scientific and Technical Reports No. 1. London, UK.

Bubble diffuser aeration systems / 폭기조 모델링

FLOW-3D에서 입자 유형

  • 마커(Marker) : 유체에서만 움직임
  • 기체 입자(Gas particle)
    • 중력, 드래그, 질량 포함
    • 유체의 커플링 운동량의 양방향
    • 체적/압력 커플링

구현 과정에서의 검토 내용

  • 물리 식별
    • 입자 유형 활성화
    • 물성치 정의
  • 격자와 형상
    • 입자 블록: 초기 입자 분포 정의
    • 입자 소스: 생성 속도로 정의

모델에 대한 가정 검토

  • 하위 격자 크기
    • 입자 크기 << 격자 크기
    • 유체 변위 없음
  • 입자와 입자간 상호작용 없음
  • 주된 유체를 떠날 경우 입자가 삭제됨
  • 입자 수 제한

실행 시간에 대한 검토

  • 입자 수에 따른 결과
    • 작은 기포의 직경과 높은 입자의 수
    • 큰 입자를 사용하여 입자 수 감소
  • 많은 입자를 셀 수 있는 RAM
  • 공기 혼입 / 표류 유동 모델
    • 더 나은 계산 효율

Bubble diffuser aeration systems

Aeration Modeling in FLOW-3D

FLOW-3D Particle Model

The Lagrangian particle model is a sub-grid model can be used to track the motion of spherical particles with different attributes and sizes smaller than a computational cell.

  • Partides can be:
    • Massless (i.e. marker particles)
    • Solid Spheres (i.e. mass particles)
    • Droplets of fluid (i.e. fluid particles)
    • Bubbles of gas (i.e. gas particles)
  • Assumptions/Limitations
    • Particle size << Mesh size
    • No particle-particle interaction

Aeration Tank Setup Example

New Solver developments – gas dissolution


  • Include mass transfer between gas inside the bubble and the surrounding fluid
  • Accounts for saturation in ambient fluid
  • Accounts for loss of mass / volume shrinkage of gas particle
A vertical jet flowing into a moving cross stream

공기 유입 / Air Entrainment

Air Entrainment / 공기 유입

A vertical jet flowing into a moving cross stream

FLOW-3D 의 공기 혼입 모델(air entrainment model)은 자유 표면에서 용해되지 않은 공기 혼입을 시뮬레이션하는 강력한 도구입니다. 제트 및 방수로 충돌시 관찰되는 국부적이고 난류가없는 자유 표면 혼입 기능이 있습니다. 이러한 기능은 엔지니어가 설계시 공기 유입을 예측하고, 공기유입이 안전하게 작동하도록 적절한 수정을 할 수 있게 합니다.

Spillway hydraulics / 여수로 수리장치

여수로 구조는 다양한 작동 조건을 처리 할 수 ​​있도록 설계되어야 합니다. 유동 조건이 설계 범위의 상단에 도달하면 여수로 표면의 불규칙성으로 인해 유동이 분리 될 수 있습니다. 이는 여수로 표면의 압력이 캐비테이션을 일으킬 정도로 낮아지게 합니다. 캐비테이션은 구조물의 강도에 매우 해로우며 치명적인 손상을 초래할 수 있습니다.

공기 유입은 캐비테이션의 가능성을 줄이는 수단입니다. 물이 공기에 존재하면 캐비테이션 영역의 붕괴하는 기포에 감쇠 효과를 추가하여 캐비테이션 손상을 줄입니다. 여수로의 속도가 충분히 높으면 공기를 동반시키고 캐비테이션을 줄이기 위해 폭기 장치를 추가해야합니다.

폭기 흐름의 시뮬레이션과 폭기 장치에서 포획된 공기의 예측.

왼쪽 이미지는 거시적 인 밀도에 의해 착색됩니다. 오른쪽 그래프는 폭기 장치에 유입 된 수분의 일정한 부피와 폭기 장치 이후의 수분 및 공기의 양을 비교 한 것입니다.

아래 동영상은 FLOW-3D에서 공기 유입 과정을 시뮬레이션하는 방법을 보여줍니다. 여기에는 공기혼입 및 드리프트 플럭스 모델의 이론에 대한 세부 정보와 FLOW-3D에서 기본 공기혼입 시뮬레이션을 설정하는 방법에 대한 데모가 포함되어 있습니다.

Fish passage design / 물고기 개체수 유지를 위한 어도 설계

공기가 물로 혼입되면 미생물의 성장을 유지하고 건강한 어류 개체군의 생존을 보장 할 수 있습니다. 그러나 과포화 상태의 용존 기체는 수생 생물에 부정적인 영향을 미치는 수질 문제가 됩니다. 공기 동반 모델의 또 다른 용도는 강의 하류로 방출되는 배수로에서 동반되는 공기의 농도를 결정하기 위해 해양 생물학에서 사용됩니다.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

Grit Chamber Modeling

Grit Chamber Modeling

This material was provided by Yovanni A. Cataño-Lopera, Research Associate at University of Illinois at Urbana-Champaign.

142.4 평방 마일의 지역에 거주하는 130만명의 주민들이 사용하는 간척지는 예전부터 모래가 균일하지 않게 분포되어 있었습니다. 특히, 더 많은 모래가 2개의 탱크, 11번과 12번에 만들어졌습니다. 1997년 원래 12개의 탱크에 6개의 공기 순환 탱크로 교체된 후에도 모래의 고르지 않은 분배 문제가 지속되었습니다. 6차 그리트 탱크(이전의 11번 및 12번 탱크)의 모래 과부하 문제를 해결하기 위해 탱크 입구를 조절해야 하며, 이로 인해 그리드 챔버의 용량이 손실됩니다. 모래 탱크를 공기 순환 탱크로 교체한 후에도 문제가 지속됨에 따라, 물 분배 시스템의 수문 특성을 연구할 필요성이 분명해 졌습니다.

Velocity and shear velocity distribution along feeding tunnel and distributor

FLOW-3D를 사용하여 폭기조로 유입되는 흐름을 전산 유체역학 시뮬레이션하였습니다. 더 높은 펌핑 속도(Q ≥ 225 mgd)의 경우 분배 시스템의 흐름이 분배 시스템의 남쪽에서 상대적으로 낮은 속도로 비대칭이 되는 것으로 관찰되었습니다. (여기서 6번째 그릿 탱크가 위치합니다). 그리트 챔버로 유입되는 물의 속도가 낮을수록 모래가 더 많이 쌓이기 때문에 결과는 문제의 원인에 대한 초기 정보를 제공합니다. 챔버 유입구 터널에서 부유된 침전물의 연속적인 투입은 FLOW-3D를 이용하여 다양한 펌핑 속도에 대한 영향을 조사하였으며, 결과는 유출량이 증가함에 따라 챔버 6으로 전환된 침전물의 비대칭성은 더 두드러진다는 것을 보여줍니다.

Bedload and suspended sediment distribution in the grit chambers

For visualization as well as post-processing of the simulation data, Tecplot 360 by Tecplot was used.

수처리 분야

Municipal

FLOW-3D는아래 시설물과 같은 도시의 수처리 시설물 설계와 분석에 매우 활발하게 사용되고 있습니다:

  • Mixing, settling, and contact tanks
  • Control structures like weirs, gates, ramps, and orifices
  • Combined sewer (CSO) and stormwater sewer (SSO) overflow facilities
  • Pump and lift stations
  • Treatment plant headworks
  • Filtration systems and passive earth and stone filters
  • Baffle and wall placement
  • Hydraulic efficiency and short-circuiting

Vortex simulation municipal application with FLOW-3D

Vortex formation simulated with FLOW-3D

FLOW-3D는 자유표면, 가압(pressurized), 미임계(sub-critical)와 초임계(super-critical) 흐름조건 등을 전환하는 자유표면과 제한된 흐름패턴 모두와 균일한 모델 상태에 최적화되어 있습니다. 추가 물리 패키지를 포함하여 대부분의 복잡한 상황을 모델링 FLOW-3D에 포함되어 있습니다 :

  • Flow bulking due to air entrainment
  • Air bubble escape and air pocket pressurization
  • Drifting and settling particulate matter and the effect on the flow pattern of sediment accumulation
  • Chemical reactions
  • Moving gates and paddles
  • Fast-spinning bladed objects, pumps, and impellers
  • Dissolving and eroding solids
  • Granular flow (slurries)

적용사례

정수장 : DAF SYSTEMS

  • 용존공기부상법 (DAF Systems: Dissolved Air Floation )
    • 가압상태에서 과포화된 물을 감압시키면, 미세기포가 발생되어 상승하면서 수중의콜로이드물질과 충돌/부착되는 원리를 이용하여 수중의 부유물질을 제거하는 수처리 방법
  • Two Phase(Water+Air)/Drift Flux을 이용 기포에 의한 지내의 유동양상을 파악
  • 해석을 통한 기존 구조물의 문제점 파악하여 개선
  • 정수장_DAF_시스템

정수장 : 펌프장 해석

정수장_펌프장_모델해석결과

정수장_펌프장_모델

정수장 : 분말활성탄접촉조

  • v분말활성탄 접촉조 : 유입구의 구조, 수로의 장폭비, 도류벽구조에 의한 변화 -> 최적형상 도출
  • v해석을 통해 각종 Index(Morill Index, Modal Index 등) 분석

분말활성탄접촉초

정수장 : 응집제의 확산

  • G, 혼화지 구조에 따른 turn over time, 지내 속도 분포, 체류시간(t), 등 분석
  • 완속 혼화기, 급속혼화기에서 응집제의 혼화 및 분산 효과 파악

고속분사기_응집제확산

정수장 : 분배수로 유량분배

  • 분배수로의 기능 : 응집지 및 침전비 별로 균일하게 물을 분배함
  • 분배수로의 구조에 따른 응집지 유입수의 유량분배 해석
  • 구조별 유량분배 문제점 파악 및 개선방안 제시
  • 구조별 유량분배를 정량화하여 정수장 효율 향상에 기여함.

분배수로_유량분배

정수장 : 응집지 속도구배(du/dy) 검증

  • 응집기내부의 유동양상 및 속도구배(G)를 규명하여 최적의 운영조건 도출

응집지속도구배

정수장 : 여과지 역세척

  • Strainer를 통한 역세척수 유입 시 유동양상 해석 실시
  • 역세척 시 압력분포의 균일성, 사수부, 침전수의 월류여부 파악
  • 여과 및 역세척의 문제점 파악하여 효율향상 극대화

여과지_역세척

정수장 : 정수지 실험해석 비교

  • 정수지의 기능 : 염소를 균일하게 혼화
  • 정수지 유동양상 및 염소 농도, 체류시간 해석으로 CT 값 예측 및 문제점 개선
  • 실험과의 비교를 통하여 정확성 확보
  • 기존 정수지의 효율향상 및 최적 정수지 형태 제안
  • 정수지는 분말활성탄접촉조와 기능과 형상 유사

정수장_정수지해석

정수장 : 침전지대기온도, 일사량 등 외부조건 고려

  • 대기온도, 일사량 등 외부조건을 고려한 침전지 유동해석 실시
  • 침전지 내부의 밀도류 발생 원인 분석 및 Floc의 운동양상, 제거효율을 해석
  • 실험과의 비교를 통하여 정확성 확보

정수장_침전지_외부조건고려해석

정수장 : 취수탑 선택취수

  • v취수탑 : 상수도·관개·수력발전용 물을 저수지나 하천으로부터 끌어들이기 위한 구조물
  • v취수탑의 선택취수 문제 해석 사례
  • v취수탑 개도 조건에 따른 유출수온도, 조류 유입, 수심별 유입량 등을 예측

취수탑해석

 

하수처리장 : 침전지

  • 침전지 : 하수와 슬러지의 분리 및 배출 기능
    • 해석목적
    • 2차 침전지에서 유량 분배 문제점 파악
    • 2차 침전지에서 유입부 개선안 도출
    • 2차 침전지내의 슬러지 배출 개선안 도출

하수처리장_침전지_모델 하수처리장_침전지_모델_해석결과

 

하수처리장 : 침전지 유량분배 및 유속

  • 구조물의 형상, 유량에 따른 침전지 유동해석
  • 각 지별 유량 분배 균등 여부 파악
  • 슬러지의 재부상(scouring) 여부 예측 및 방지 방안 검토
  • 월류형식, 유입부의 위치 및 규격, 등 설계 요소를 조절하여 균등 분배 유도
    • 하수처리장_침전지_유량분배_해석결과

하수처리장 : 침전지 월류부 해석

  • 침전지 월류부 유동양상 파악
  • 침전지 형상, 월류부 형상에 따른 유속분포 비교
  • 사수부 파악 및 단락류 최소화를 위한 월류부 형상 결정
  • 슬러지의 월류부 개선을 통한 효율 향상

하수처리장_침전지_월류부해석

하수처리장 : 침전지 침전효율

  • 구조물의 형상별, 처리 유량별 침전효율, 사수부 평가
  • 균일한 유속분포에 의한 침전효율 향상
  • 침전지 형상, 유입부 위치, 등을 변경하여 효율 비교
  • 체류시간 검토를 통한 효율 비교
  • 슬러지 침전형태의 비교

하수처리장_침전지_침전효율

하수처리장 : 무산소조

  • 하수처리장 : 무산소조
  • 하수 및 반송슬러지의 혼합, 임펠러의 회전에 의한 혼합양상 해석 실시
  • 유입수 및 내부반송수의 유속분포, 혼합농도 평가
  • 단락류 발생정도 파악 및 완전교반 유도에 유리한 설계방안 검토
  • 내부반송량, 반송슬러지 유입관의 위치 개선으로 효율 향상

하수처리장_무산소조

하수처리장 : 담체의 부상

  • 설계 요소에 따른 담체의 분포 및 흐름 양상 예측
  • 해석 설계 요소 : 조의 형상, 펌프의 용량 및 위치, 내부 배플의 형상

하수처리장_담체의부상

하수처리장 : 호기조 (Aerator)

  • 호기조내 체류시간 분석
  • 기포의 분포, 조내 위치별 D.O 예측
  • 단락류 발생 정도 및 사수부 파악
  • 폭기량 및 폭기 방식에 따른 내부 유동양상을 통한 효율예측

하수처리장_호기조

하수처리장 : 호기조 (D.O 예측)

  • 용존산소량 (Dissolved Oxygen) : 물 속에 녹아 있는 산소량 è 수온이 높아지거나 오염되면 DO감소
  • 조내 산기관에 의해 오염수를 전체적으로 용존산소량 증가 목적 è 조내 사수부, 체류시간 분석
  • 산기관에 의한 공기 방울의 분포 및 D.O 분포를 수류의 흐름을 고려하여 예측
  • 호기조의 구조 및 산기관의 배치에 따른 효율 분석

하수처리장_호기조_용존산소량

하수처리장 : 막분리조

  • 막분리조내의 수류순환 유동해석 실시
  • Air 유입과 Membrane내의 수류순환 유동 검토
  • 사수부 최소화를 위한 구조 변경 (유입부 방식, 위치 및 산기관 위치, 등)
  • 처리 유량에 따른 내부 효율 변화 검토 – 운영조건 제시

하수처리장_막분리조

 

하수처리장 : SBR/PSBR 호기공정

  • 송풍기 작동시 원수와 슬러지의 혼합양상 분석
  • 수중포기기와 송풍기의 작동에 의해 조 내의 슬러지 혼합 활성화 여부 판단 : 수중포기기와 송풍기의 적절한 위치 및 회전수 조절에 의해 개선안 제시 가능

하수처리장_SBR_호기공정

하수처리장 : SBR/PSBR 배출공정

  • 조 내의 유출게이트 OPEN하여 조 내의 상등수 배출양상 분석
  • 바닥의 슬러지 유출없이 배출가능 여부 해석을 통하여 파악 슬러지가 배출되지 않도록 내의 형상 및 문제점 개서안 제시

하수처리장_SBR_배출공정