Computational Fluid Dynamics Study of Perforated Monopiles

Computational Fluid Dynamics Study of Perforated Monopiles

Mary Kathryn Walker
Florida Institute of Technology, mwalker2022@my.fit.edu

Robert J. Weaver, Ph.D.
Associate Professor
Ocean Engineering and Marine Sciences
Major Advisor


Chungkuk Jin, Ph.D.
Assistant Professor
Ocean Engineering and Marine Sciences


Kelli Z. Hunsucker, Ph.D.
Assistant Professor
Ocean Engineering and Marine Sciences


Richard B. Aronson, Ph.D.
Professor and Department Head
Ocean Engineering and Marine Sciences

Abstract

모노파일은 해상 풍력 터빈 건설에 사용되며 일반적으로 설계 수명은 25~50년입니다. 모노파일은 수명 주기 동안 부식성 염수 환경에 노출되어 구조물을 빠르게 분해하는 전기화학적 산화 공정을 용이하게 합니다. 이 공정은 모노파일을 보호 장벽으로 코팅하고 음극 보호 기술을 구현하여 완화할 수 있습니다.

역사적으로 모노파일 설계자는 파일 내부가 완전히 밀봉되고 전기화학적 부식 공정이 결국 사용 가능한 모든 산소를 소모하여 반응을 중단시킬 것이라고 가정했습니다. 그러나 도관을 위해 파일 벽에 만든 관통부는 종종 누출되어 신선하고 산소화된 물이 내부 공간으로 유입되었습니다.

표준 부식 방지 기술을 보다 효과적으로 적용할 수 있는 산소화된 환경으로 내부 공간을 재고하는 새로운 모노파일 설계가 연구되고 있습니다. 이러한 새로운 모노파일은 간조대 또는 조간대 수준에서 벽에 천공이 있어 신선하고 산소화된 물이 구조물을 통해 흐를 수 있습니다.

이러한 천공은 또한 구조물의 파도 하중을 줄일 수 있습니다. 유체 역학적 하중 감소의 크기는 천공의 크기와 방향에 따라 달라집니다. 이 연구에서는 천공의 크기에 따른 모노파일의 힘 감소 분석에서 전산 유체 역학(CFD)의 적용 가능성을 연구하고 주어진 파도의 접근 각도 변화의 효과를 분석했습니다.

모노파일의 힘 감소를 결정하기 위해 이론적 3D 모델을 제작하여 FLOW-3D® HYDRO를 사용하여 테스트했으며, 천공되지 않은 모노파일을 제어로 사용했습니다. 이론적 데이터를 수집한 후, 동일한 종류의 천공이 있는 물리적 스케일 모델을 파도 탱크를 사용하여 테스트하여 이론적 모델의 타당성을 확인했습니다.

CFD 시뮬레이션은 물리적 모델의 10% 이내, 이전 연구의 5% 이내에 있는 것으로 나타났습니다. 물리적 모델과 시뮬레이션 모델을 검증한 후, 천공의 크기가 파도 하중 감소에 뚜렷한 영향을 미치고 주어진 파도의 접근 각도에 대한 테스트를 수행할 수 있음을 발견했습니다.

접근 각도의 변화는 모노파일을 15°씩 회전하여 시뮬레이션했습니다. 이 논문에 제시된 데이터는 모노파일의 방향이 통계적으로 유의하지 않으며 천공 모노파일의 설계 고려 사항이 되어서는 안 된다는 것을 시사합니다.

또한 파도 하중 감소와 구조적 안정성 사이의 균형을 찾기 위해 천공의 크기와 모양에 대한 연구를 계속하는 것이 좋습니다.

Monopiles are used in the construction of offshore wind turbines and typically have a design life of 25 to 50 years. Over their lifecycle, monopiles are exposed to a corrosive saltwater environment, facilitating a galvanic oxidation process that quickly degrades the structure. This process can be mitigated by coating the monopile in a protective barrier and implementing cathodic protection techniques. Historically, monopile designers assumed the interior of the pile would be completely sealed and the galvanic corrosion process would eventually consume all the available oxygen, halting the reaction. However, penetrations made in the pile wall for conduit often leaked and allowed fresh, oxygenated water to enter the interior space. New monopile designs are being researched that reconsider the interior space as an oxygenated environment where standard corrosion protection techniques can be more effectively applied. These new monopiles have perforations through the wall at intertidal or subtidal levels to allow fresh, oxygenated water to flow through the structure. These perforations can also reduce wave loads on the structure. The magnitude of the hydrodynamic load reduction depends on the size and orientation of the perforations. This research studied the applicability of computational fluid dynamics (CFD) in analysis of force reduction on monopiles in relation to size of a perforation and to analyze the effect of variation in approach angle of a given wave. To determine the force reduction on the monopile, theoretical 3D models were produced and tested using FLOW-3D® HYDRO with an unperforated monopile used as the control. After the theoretical data was collected, physical scale models with the same variety of perforations were tested using a wave tank to determine the validity of the theoretical models. The CFD simulations were found to be within 10% of the physical models and within 5% of previous research. After the physical and simulated models were validated, it was found that the size of the perforations has a distinct impact on the wave load reduction and testing for differing approach angles of a given wave could be conducted. The variation in approach angle was simulated by rotating the monopile in 15° increments. The data presented in this paper suggests that the orientation of the monopile is not statistically significant and should not be a design consideration for perforated monopiles. It is also suggested to continue the study on the size and shape of the perforations to find the balance between wave load reduction and structural stability.

Figure 1: Overview sketch of typical monopile (MP) foundation and transition piece (TP) design with an internal j-tube (Hilbert et al., 2011)
Figure 1: Overview sketch of typical monopile (MP) foundation and transition
piece (TP) design with an internal j-tube (Hilbert et al., 2011)

References
Andersen, J., Abrahamsen, R., Andersen, T., Andersen, M., Baun, T., & Neubauer,
J. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of
Marine Science and Engineering, 8(5), 352.
https://doi.org/10.3390/jmse8050352
Bakker A. (2008) Lectures on Applied Computational Fluid Dynamics.
www.bakker.org.
Bustamante, A., Vera-Tudela, L., & Kühn, M. (2015). Evaluation of wind farm
effects on fatigue loads of an individual wind turbine at the EnBW baltic 1
offshore wind farm. Journal of Physics: Conference Series, 625, 012020.
https://doi.org/10.1088/1742-6596/625/1/012020
Chakrabarti SK. Hydrodynamics of offshore structures. Springer Verlag;1987.
Christiansen, R. (2020). Living Docks: Structural Implications and Determination
of Force Coefficients of Oyster Mats on Dock Pilings in the Indian River
Lagoon [Master’s Thesis, Florida Institute of Technology].
Clauss, G. (1992). Offshore Structures, Volume 1, Conceptual Design and
Hydromechanics. Springer, London, UK.
COMSOL Multiphysics® v. 6.1. www.comsol.com. COMSOL AB, Stockholm,
Sweden.
Delwiche, A. & Tavares, I. (2017). Retrofit Strategy using Aluminum Anodes for
the Internal section of Windturbine Monopiles. NACE Internation
Corrosion Conference & Expo, Paper no. 8955.
Det Norske Veritas (2014) Fatigue design of offshore steel structures. Norway.
70
Det Norske Veritas (1989). Rules for the Classification of Fixed Offshore
Installations. Technical report, DNV, Hovik, Norway.
DNV. (2011). DNV-RP-C203 Fatigue Design of Offshore Steel Structures (tech.
rep.). http://www.dnv.com
Elger, D. F., LeBret, B. A., Crowe, C. T., & Roberson, J. A. (2022). Engineering
fluid mechanics. John Wiley & Sons, Inc.
FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software].
Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com
Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin
Andersen, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti,
Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose,
Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli.
(2020). Definition of the IEA 15-Megawatt Offshore Reference Wind.
Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-

  1. https://www.nrel.gov/docs/fy20osti/75698.pdf
    Goodisman, Jerry (2001). “Observations on Lemon Cells”. Journal of Chemical
    Education. 78 (4): 516–518. Bibcode:2001JChEd..78..516G.
    doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks
    use an incorrect model for a cell with zinc and copper electrodes in an
    acidic electrolyte
    Hilbert, L.R. & Black, Anders & Andersen, F. & Mathiesen, Troels. (2011).
    Inspection and monitoring of corrosion inside monopile foundations for
    offshore wind turbines. European Corrosion Congress 2011, EUROCORR
  2. 3. 2187-2201.
    H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” in Proceedings
    of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi:
    10.1109/PROC.1967.5962.
    71
    Journee, J. M., and W. W. Massie. Offshore Hydrodynamics, First Edition.
    Delft University of Technology, 2001.
    Keulegan, G. H., and L. H. Carpenter. “Forces on Cylinders and Plates in an
    Oscillating Fluid.” Journal of Research of the National Bureau of
    Standards, vol. 60, no. 5, 1958, pp. 423–40.
    Lahlou, O. (2019). Experimental and Numerical Analysis of the Drag Force on
    Surfboards with Different Shapes (thesis).
    L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cam-bridge University
    Press, 2007. doi:10.1017/cbo9780511618536.
    MacCamy, R.C., Fuchs, R.A.: Wave Forces on Piles: a Diffraction Theory. Corps
    of Engineers Washington DC Beach Erosion Board (1954)
    M. M. Maher and G. Swain, “The Corrosion and Biofouling Characteristics of
    Sealed vs. Perforated Offshore Monopile Interiors Experiment Design
    Comparing Corrosion and Environment Inside Steel Pipe,” OCEANS 2018
    MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-4, doi:
    10.1109/OCEANS.2018.8604522.
    Morison, J. R.; O’Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), “The force
    exerted by surface waves on piles”, Petroleum Transactions, American
    Institute of Mining Engineers, 189 (5): 149–154, doi:10.2118/950149-G
    Paluzzi, Alexander John, “Effects of Perforations on Internal Cathodic Protection
    and Recruitment of Marine Organisms to Steel Pipes” (2023). Theses and
    Dissertations. 1403. https://repository.fit.edu/etd/1403
    Ploeg, J.V.D. (2021). Perforation of monopiles to reduce hydrodynamic loads and
    enable use in deep waters [Master’s Thesis, Delft University of
    Technology] Institutional Repository at Delft University of Technology.
    http://resolver.tudelft.nl/uuid:91eada6f-4f2b-4ae6-be59-2b5ff0590c6f.
    72
    Shi, W., Zhang, S., Michailides, C., Zhang, L., Zhang, P., & Li, X. (2023).
    Experimental investigation of the hydrodynamic effects of breaking waves
    on monopiles in model scale. Journal of Marine Science and Technology,
    28(1), 314–325. https://doi.org/10.1007/s00773-023-00926-9
    Santamaria Gonzalez, G.A. (2023) Advantages and Challenges of Perforated
    Monopiles in Deep Water Sites [Master’s Thesis, Delft University of
    Technology] Institutional Repository at Delft University of Technology.
    http://resolver.tudelft.nl/uuid:490791b6-a912-4bac-a007-f77012c01107
    Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore
    Structures. Number ISBN 0-442-25402-4. Van Nostrand Reinhold
    Company Inc., New York.
    Tang, Y., Shi, W., Ning, D., You, J., & Michailides, C. (2020). Effects of spilling
    and plunging type breaking waves acting on large monopile offshore wind
    turbines. Frontiers in Marine Science, 7.
    https://doi.org/10.3389/fmars.2020.00427
    Teja, R. (2021, June 25). Wheatstone bridge: Working, examples, applications.
    ElectronicsHub. https://www.electronicshub.org/wheatstone-bridge/
    The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick,
    Massachusetts: The MathWorks Inc. https://www.mathworks.com
    Wave gauges. Edinburgh Designs. (2016).
    http://www4.edesign.co.uk/product/wavegauges/
    Wilberts, F. (2017). MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF
    OFFSHORE WIND TURBINE FOUNDATIONS (Master’s Thesis,
    Uppsala University).
Fig. 1. Protection matt over the scour pit.

Numerical study of the flow at a vertical pile with net-like scourprotection matt

그물형 세굴방지 매트를 사용한 수직말뚝의 유동에 대한 수치적 연구

Minxi Zhanga,b, Hanyan Zhaoc, Dongliang Zhao d, Shaolin Yuee, Huan Zhoue,Xudong Zhaoa
, Carlo Gualtierif, Guoliang Yua,b,∗
a SKLOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b KLMIES, MOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
c Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China
d CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China
e CCCC Road & Bridge Special Engineering Co., Ltd, Wuhan 430071, China
f Department of Structures for Engineering and Architecture, University of Naples Federico II, Italy

Abstract

Local scour at a pile or pier in current or wave environments threats the safety of the upper structure all over the world. The application of a net-like matt as a scour protection cover at the pile or pier was proposed. The matt weakens and diffuses the flow in the local scour pit and thus reduces local scour while enhances sediment deposition. Numerical simulations were carried out to investigate the flow at the pile covered by the matt. The simulation results were used to optimize the thickness dt (2.6d95 ∼ 17.9d95) and opening size dn (7.7d95 ∼ 28.2d95) of the matt. It was found that the matt significantly reduced the local velocity and dissipated the vortex at the pile, substantially reduced the extent of local scour. The smaller the opening size of the matt, the more effective was the flow diffusion at the bed, and smaller bed shear stress was observed at the pile. For the flow conditions considered in this study, a matt with a relative thickness of T = 7.7 and relative opening size of S = 7.7 could be effective in scour protection.

조류 또는 파도 환경에서 파일이나 부두의 국지적인 세굴은 전 세계적으로 상부 구조물의 안전을 위협합니다. 파일이나 교각의 세굴 방지 덮개로 그물 모양의 매트를 적용하는 것이 제안되었습니다.

매트는 국부 세굴 구덩이의 흐름을 약화시키고 확산시켜 국부 세굴을 감소시키는 동시에 퇴적물 퇴적을 향상시킵니다. 매트로 덮인 파일의 흐름을 조사하기 위해 수치 시뮬레이션이 수행되었습니다.

시뮬레이션 결과는 매트의 두께 dt(2.6d95 ∼ 17.9d95)와 개구부 크기 dn(7.7d95 ∼ 28.2d95)을 최적화하는 데 사용되었습니다. 매트는 국부 속도를 크게 감소시키고 말뚝의 와류를 소멸시켜 국부 세굴 정도를 크게 감소시키는 것으로 나타났습니다.

매트의 개구부 크기가 작을수록 층에서의 흐름 확산이 더 효과적이었으며 파일에서 더 작은 층 전단 응력이 관찰되었습니다.

본 연구에서 고려한 유동 조건의 경우 상대 두께 T = 7.7, 상대 개구부 크기 S = 7.7을 갖는 매트가 세굴 방지에 효과적일 수 있습니다.

Keywords

Numerical simulation, Pile foundation, Local scour, Protective measure, Net-like matt

Fig. 1. Protection matt over the scour pit.
Fig. 1. Protection matt over the scour pit.
Fig. 2. Local scour pit of pile below the protection matt.
Fig. 2. Local scour pit of pile below the protection matt.

References

[1] C. He, Mod. Transp. Technol. 17 (3) (2020) 46–59 in Chinese.
[2] X. Wen, D. Zhang, J. Tianjin Univ. 54 (10) (2021) 998–1007 (Science and Technology)in Chinese.
[3] M. Zhang, H. Sun, W. Yao, G. Yu, Ocean Eng. 265 (2020) 112652, doi:10.1016/j.
oceaneng.2022.112652.
[4] K. Wardhana, F.C. Hadipriono, J. Perform. Constr. Fac. 17 (3) (2003) 144–150,
doi:10.1061/(ASCE)0887-3828(2003)17:3(144).
[5] R. Ettema, G. Constantinescu, B.W. Melville, J. Hydraul. Eng. 143 (9) (2017)
03117006, doi:10.1061/(ASCE)HY.1943-7900.0001330.
[6] C. Valela, C.D. Rennie, I. Nistor, Int. J. Sediment Res. 37 (1) (2021) 37–46,
doi:10.1016/j.ijsrc.2021.04.004.
[7] B.W. Melville, A.J. Sutherland, J. Hydraul. Eng. 114 (10) (1988) 1210–1226,
doi:10.1061/(ASCE)0733-9429(1988)114:10(1210).
[8] E.V. Richardson, S.R. Davis, Evaluating Scour At Bridges, 4th ed., United States
Department of Transportation, Federal Highway Administration, Washington,
DC., 2001.
[9] D.M. Sheppard, B. Melville, H. Demir, J. Hydraul. Eng. 140 (1) (2014) 14–23,
doi:10.1061/(ASCE)HY.1943-7900.0000800.
[10] A.O. Aksoy, G. Bombar, T. Arkis, M.S. Guney, J. Hydrol. Hydromech. 65 (1)
(2017) 26–34.
[11] D.T. Bui, A. Shirzadi, A. Amini, et al., Sustainability 12 (3) (2020) 1063, doi:10.
3390/su12031063.
[12] B.M. Sumer, J. Fredsoe, The Mechanics of Scour in Marine Environments. World
Advanced Series on Ocean Engineering, 17, World Scientific, Singapore, 2002.
[13] J. Unger, W.H. Hager, Exp. Fluids 42 (1) (2007) 1–19.
[14] G. Kirkil, S.G. Constantinescu, R. Ettema, J. Hydraul. Eng. 134 (5) (2008) 82–84,
doi:10.1061/(ASCE)0733-9429(2008)134:5(572).
[15] B. Dargahi, J. Hydraul. Eng. 116 (10) (1990) 1197–1214.
[16] A. Bestawy, T. Eltahawy, A. Alsaluli, M. Alqurashi, Water Supply 20 (3) (2020)
1006–1015, doi:10.2166/ws.2020.022.
[17] Y.M. Chiew, J. Hydraul. Eng. 118 (9) (1992) 1260–1269.
[18] D. Bertoldi, R. Kilgore, in: Hydraulic Engineering ’93, ASCE, San Francisco, California, United States, 1993, pp. 1385–1390.
[19] Y.M. Chiew, J. Hydraul. Eng. 121 (9) (1997) 635–642.
[20] C.S. Lauchlan, B.W. Melville, J. Hydraul. Eng. 127 (5) (2001) 412–418, doi:10.
1061/(ASCE)0733-9429(2001)127:5(412).
[21] P.F. Lagasse, P.E. Clopper, L.W. Zevenbergen, L.G. Girard, National Cooperative
Highway Research Program (NCHRPReport 593), Countermeasures to protect
bridge piers from scour, Washington, DC, NCHRP, 2007.
[22] S. Jiang, Z. Zhou, J. Ou, J. Sediment Res. (4) (2013) 63–67 in Chinese.
[23] A. Galan, G. Simarro, G. Sanchez-Serrano, J. Hydraul. Eng. 141 (6) (2015)
06015004, doi:10.1061/(ASCE)HY.1943-7900.0001003.
[24] Z. Zhang, H. Ding, J. Liu, Ocean Eng. 33 (2) (2015) 77–83 in Chinese.
[25] C. Valela, C.N. Whittaker, C.D. Rennie, I. Nistor, B.W. Melville, J. Hydraul. Eng.
148 (3) (2022) 04022002 10.1061/%28ASCE%29HY.1943-7900.0001967.
[26] B.W. Melville, A.C. Hadfield, J. Hydraul. Eng. 6 (2) (1999) 1221–1224, doi:10.
1061/(ASCE)0733-9429(1999)125:11(1221).
[27] V. Kumar, K.G. Rangaraju, N. Vittal, J. Hydraul. Eng. 125 (12) (1999) 1302–1305.
[28] A.M. Yasser, K.S. Yasser, M.A. Abdel-Azim, Alex. Eng. J. 54 (2) (2015) 197–203,
doi:10.1016/j.aej.2015.03.004.
[29] S. Khaple, P.R. Hanmaiahgari, R. Gaudio, S. Dey, Acta Geophys. 65 (2017) 957–
975, doi:10.1007/s11600-017-0084-z.
[30] C. Valela, I. Nistor, C.D. Rennie, in: Proceedings of the 6th International Disaster Mitigation Specialty Conference, Fredericton, Canada, Canadian Society for
Civil Engineering, 2018, pp. 235–244.
[31] A. Tafarojnoruz, R. Gaudio, F. Calomino, J. Hydraul. Eng. 138 (3) (2012) 297–
305, doi:10.1061/(ASCE)HY.1943-7900.0000512.
[32] H. Tang, S. Fang, Y. Zhou, K. Cai, Y.M. Chiew, S.Y. Lim, N.S. Cheng, in: Proceedings of the 2nd International Conference Scour and Erosion (ICSE-2), Singapore.
Singapore, Nanyang Technological University, 2004.
[33] W. Zhang, Y. Li, X. Wang, Z. Sun, J. Sichuan Univ. 06 (2005) 34–40 (Engineering
Science Edition)in Chinese.
[34] S. Yang, B. Shi, Trans. Oceanol. Limnol. 5 (2017) 43–47 in Chinese.
[35] H. Wang, F. Si, G. Lou, W. Yang, G. Yu, J. Waterw. Port Coast. Ocean Eng. 141
(1) (2015) 04014030, doi:10.1061/(ASCE)WW.1943-5460.0000270.
[36] L.D. Meyer, S.M. Dabney, W.C. Harmon, Trans. ASAE 38 (3) (1995) 809–815.
[37] G. Spyreas, B.W. Wilm, A.E. Plocher, D.M. Ketzner, J.W. Matthews, J.L. Ellis, E.J. Heske, Biol. Invasions 12 (5) (2010) 1253–1267, doi:10.1007/
s10530-009-9544-y.
[38] T. Lambrechts, S. François, S. Lutts, R. Muñoz-Carpena, C.L. Bielders, J. Hydrol.
511 (2014) 800–810, doi:10.1016/j.jhydrol.2014.02.030.
[39] G. Yu, Dynamic Embedded Anchor with High Frequency Micro Amplitude Vibrations. CN patent No: ZL200810038546.0, 2008.
[40] X. Chen, M. Zhang, G. Yu, Ocean Eng. 236 (2021) 109315, doi:10.1016/j.
oceaneng.2021.109315.
[41] F. Gumgum, M.S. Guney, in: Proceedings of the 6th International Conference
Engineering and Natural Sciences (ICENS), Serbia, Belgrade, 2020.
[42] H. Zhao, S. Yue, H. Zhou, M. Zhang, G. Yu, Ocean Eng. 40 (5) (2022) 111–120
in Chinese.
[43] B. Blocken, C. Gualtieri, Environ. Modell. Softw. 33 (2012) 1–22, doi:10.1016/j.
envsoft.2012.02.001.
[44] N.D. Bennett, B.F. Croke, G. Guariso, et al., Modell. Softw. 40 (2013) 1–20,
doi:10.1016/j.envsoft.2012.09.011.
[45] X. Zhao, Effectiveness and Mechanism of Lattice On Sedimentation and Anti-Erosion of Local Scour Hole At Piers, Shanghai Jiao Tong University, Shanghai, China, 2023.
[46] M. Zhang, G. Yu, Water Resour. Res. 53 (9) (2017) 7798–7815, doi:10.1002/
2017WR021066.

그림 12: 시간 경과에 따른 속도 카운터: 30초 그림 13: 시간 경과에 따른 속도 카운터: 20초

Gemelo digital del puente de Kalix: cargas estructurales de futuros eventos climáticos extremos

Kalix Bridge 디지털 트윈: 미래 극한 기후 현상으로 인한 구조적 부하

Este documento está relacionado con un proyecto en curso para el cual se está desarrollando e implementando un gemelo digital estructural del puente de Kalix en Suecia.
이 문서는 스웨덴 Kalix 교량의 구조적 디지털 트윈이 개발 및 구현되고 있는 진행 중인 프로젝트와 관련이 있습니다.

Autores: Mahyar Kazemian1, Sajad Nikdel2, Mehrnaz MohammadEsmaeili3, Vahid Nik4, Kamyab Zandi*5

RESUMEN Las cargas ambientales, como el viento y el caudal de los ríos, juegan un papel esencial en el diseño y evaluación estructural de puentes de grandes luces. El cambio climático y los eventos climáticos extremos son amenazas para la confiabilidad y seguridad de la red de transporte.

Esto ha llevado a una creciente demanda de modelos de gemelos digitales para investigar la resistencia de los puentes en condiciones climáticas extremas. El puente de Kalix, construido sobre el río Kalix en Suecia en 1956, se utiliza como banco de pruebas en este contexto.

La estructura del puente, realizada en hormigón postensado, consta de cinco vanos, siendo el más largo de 94 m. En este estudio, las características aerodinámicas y los valores extremos de la simulación numérica del viento, como la presión en la superficie, se obtienen utilizando la simulación de remolinos desprendidos retardados (DDES) de Spalart-Allmaras como un enfoque de turbulencia RANS-LES híbrido que es práctico y computacionalmente eficiente para cerca de la pared densidad de malla impuesta por el método LES.

La presión del viento en la superficie se obtiene para tres escenarios climáticos extremos, que incluyen un clima con mucho viento, un clima extremadamente frío y el valor de cálculo para un período de retorno de 3000 años. El resultado indica diferencias significativas en la presión del viento en la superficie debido a las capas de tiempo que provienen de la simulación del flujo de viento transitorio. Para evaluar el comportamiento estructural en el escenario de viento crítico, se considera el valor más alto de presión en la superficie para cada escenario.

Además, se realiza un estudio hidrodinámico en los pilares del puente, en el que se simula el flujo del río por el método VOF, y se examina el proceso de movimiento del agua alrededor de los pilares de forma transitoria y en diferentes momentos. En cada una de las superficies del pilar se calcula la presión superficial aplicada por el caudal del río con el caudal volumétrico más alto registrado.

Para simular el flujo del río, se ha utilizado la información y las condiciones meteorológicas registradas en períodos anteriores. Los resultados muestran que la presión en la superficie en el momento en que el flujo del río golpea los pilares es mucho mayor que en los momentos posteriores. Esta cantidad de presión se puede usar como carga crítica en los cálculos de interacción fluido-estructura (FSI).

Finalmente, para ambas secciones, la presión en la superficie del viento, el campo de velocidades con respecto a las líneas de sondas auxiliares, los contornos del movimiento circunferencial del agua alrededor de los pilares y el diagrama de presión en ellos se informan en diferentes intervalos de tiempo.

요약 바람, 강의 흐름과 같은 환경 하중은 장대 교량의 설계 및 구조 평가에 필수적인 역할을 합니다. 기후 변화와 기상 이변은 교통 네트워크의 신뢰성과 보안에 위협이 됩니다.

이로 인해 극한 기상 조건에서 교량의 복원력을 조사하기 위한 디지털 트윈 모델에 대한 수요가 증가했습니다. 1956년 스웨덴 칼릭스 강 위에 건설된 칼릭스 다리는 이러한 맥락에서 테스트베드로 사용됩니다.

포스트텐션 콘크리트로 만들어진 교량 구조는 5개 경간으로 구성되며 가장 긴 길이는 94m입니다. 본 연구에서는 하이브리드 RANS-LES 난류 접근 방식인 Spalart-Allmaras 지연 분리 와류 시뮬레이션(DDES)을 사용하여 수치적 바람 시뮬레이션의 공기역학적 특성과 표면압 등 극한값을 얻습니다. LES 방법으로 부과된 벽 근처 메쉬 밀도.

바람이 많이 부는 기후, 극도로 추운 기후, 그리고 3000년의 반환 기간에 대해 계산된 값을 포함한 세 가지 극한 기후 시나리오에 대해 표면 풍압을 얻습니다. 결과는 과도 풍류 시뮬레이션에서 나오는 시간 레이어로 인해 표면 풍압에 상당한 차이가 있음을 나타냅니다. 임계 바람 시나리오에서 구조적 거동을 평가하기 위해 각 시나리오에 대해 가장 높은 표면 압력 값이 고려됩니다.

또한 교량 기둥에 대한 유체 역학 연구를 수행하여 하천의 흐름을 VOF 방법으로 시뮬레이션하고 기둥 주변의 물 이동 과정을 일시적이고 다른 시간에 조사합니다. 각 기둥 표면에서 기록된 체적 유량이 가장 높은 강의 흐름에 의해 적용되는 표면 압력이 계산됩니다.

강의 흐름을 시뮬레이션하기 위해 이전 기간에 기록된 정보와 기상 조건이 사용되었습니다. 결과는 강의 흐름이 기둥에 닿는 순간의 표면 압력이 나중에 순간보다 훨씬 높다는 것을 보여줍니다. 이 압력의 양은 유체-구조 상호작용(FSI) 계산에서 임계 하중으로 사용될 수 있습니다.

마지막으로 두 섹션 모두 바람 표면의 압력, 보조 프로브 라인에 대한 속도장, 기둥 주위 물의 원주 운동 윤곽 및 압력 다이어그램이 서로 다른 시간 간격으로 보고됩니다.

키워드: 디지털 트윈 , 풍력 공학, 콘크리트 교량, 유체역학, CFD 시뮬레이션, DDES 난류 모델, Kalix 교량

Palabras clave: Gemelo digital , Ingeniería eólica, Puente de hormigón, Hidrodinámica, Simulación CFD, Modelo de turbulencia DDES, Puente Kalix

1. Introducción

Las infraestructuras de transporte son la columna vertebral de nuestra sociedad y los puentes son el cuello de botella de la red de transporte [1]. Además, el cambio climático que da como resultado tasas de deterioro más altas y los eventos climáticos extremos son amenazas importantes para la confiabilidad y seguridad de las redes de transporte. Durante la última década, muchos puentes se han dañado o fallado por condiciones climáticas extremas como tifones e inundaciones.

Wang et al. analizó los impactos del cambio climático y mostró que se espera que el deterioro de los puentes de hormigón sea aún peor que en la actualidad, y se prevé que los eventos climáticos extremos sean más frecuentes y con mayor gravedad [2].

Además, la demanda de capacidad de carga a menudo aumenta con el tiempo, por ejemplo, debido al uso de camiones más pesados para el transporte de madera en el norte de Europa y América del Norte. Por lo tanto, existe una necesidad creciente de métodos confiables para evaluar la resistencia estructural de la red de transporte en condiciones climáticas extremas que tengan en cuenta los escenarios futuros de cambio climático.

Los activos de transporte por carretera se diseñan, construyen y explotan basándose en numerosas fuentes de datos y varios modelos. Por lo tanto, los ingenieros de diseño usan modelos establecidos proporcionados por las normas; ingenieros de construccion
documentar los datos en el material real y proporcionar planos según lo construido; los operadores recopilan datos sobre el tráfico, realizan inspecciones y planifican el mantenimiento; los científicos del clima combinan datos y modelos climáticos para
predecir eventos climáticos futuros, y los ingenieros de evaluación calculan el impacto de la carga climática extrema en la estructura.

Dadas las fuentes abrumadoras y la complejidad de los datos y modelos, es posible que la información y los cálculos actualizados no estén disponibles para decisiones cruciales, por ejemplo, con respecto a la seguridad estructural y la operabilidad de la infraestructura durante episodios de eventos extremos. La falta de una integración perfecta entre los datos de la infraestructura, los modelos estructurales y la toma de decisiones a nivel del sistema es una limitación importante de las soluciones actuales, lo que conduce a la inadaptación e incertidumbre y crea costos e ineficiencias.

El gemelo digital estructural de la infraestructura es una simulación estructural viva que reúne todos los datos y modelos y se actualiza desde múltiples fuentes para representar su contraparte física. El Digital Twin estructural, mantenido durante todo el ciclo de vida de un activo y fácilmente accesible en cualquier momento, proporciona al propietario/usuarios de la infraestructura una idea temprana de los riesgos potenciales para la movilidad inducidos por eventos climáticos, cargas de vehículos pesados e incluso el envejecimiento de un infraestructura de transporte.

En un proyecto en curso, estamos desarrollando e implementando un gemelo digital estructural para el puente de Kalix en Suecia. El objetivo general del presente artículo es presentar un método y estudiar los resultados de la cuantificación de las cargas estructurales resultantes de eventos climáticos extremos basados en escenarios climáticos futuros para el puente de Kalix. El puente de Kalix, construido sobre el río Kalix en Suecia en 1956, está hecho de una viga cajón de hormigón postensado. El puente se utiliza como banco de pruebas para la demostración de métodos de evaluación y control de la salud estructural (SHM) de última generación.

El objetivo específico de la investigación actual es dar cuenta de parámetros climáticos como el viento y el flujo de agua, que imponen cargas estáticas y dinámicas en las estructuras. Nuestro método, en el primer paso, consiste en simulaciones de flujo de viento y simulaciones de flujo de agua utilizando un modelado CFD transitorio basado en el modelo de turbulencia LES/DES para cuantificar las cargas de viento e hidráulicas; esto constituye el punto focal principal de este artículo.

En el siguiente paso, se estudiará la respuesta estructural del puente mediante la transformación de los perfiles de carga eólica e hidráulica en cargas estructurales en el análisis de EF estructural no lineal. Por último, el modelo estructural se actualizará incorporando sin problemas los datos del SHM y, por lo tanto, creando un gemelo digital estructural que refleje la verdadera respuesta de la estructura. Los dos primeros enfoques de investigación permanecen fuera del alcance inmediato del presente artículo.

2. Descripción del puente de Kalix

El puente de Kalix consta de 5 vanos largos de los cuales el más largo tiene unos 94 metros y el más corto 43,85 m. El puente es de hormigón postensado, el cual se cuela in situ de forma segmentaria y una viga cajón no prismática como se muestra en la Fig. 1. El puente es simétrico en geometría y hay una bisagra en el punto medio. El ancho del tablero del puente en la losa superior e inferior es de aproximadamente 13 my 7,5 m, respectivamente. El espesor del muro es de 45 cm y el espesor de la losa inferior varía de 20 cm a
50 cm.

Fig. 1. Geometría y secciones del puente

Fig. 1. Geometría y secciones del puente

3. Simulación de viento

Las pruebas en túnel de viento solían ser la única forma de examinar la reacción de los puentes a las cargas de viento Consulte [3]; sin embargo, estos experimentos requieren mucho tiempo y son costosos. Se requieren cerca de 6 a 8 semanas para realizar una prueba típica en un túnel de viento Consulte [4]. Los últimos logros en la capacidad computacional de las computadoras brindan oportunidades para la simulación práctica del viento alrededor de puentes utilizando la dinámica de fluidos computacional (CFD).

Es beneficioso investigar la presión del viento en los componentes del puente utilizando una simulación por computadora. Es necesario determinar los parámetros de simulación del puente y el campo de viento a su alrededor; por lo tanto, se pueden evaluar con precisión sus impactos en las fuerzas aplicadas en el puente.

Las demandas de diseño de las estructuras de puentes requieren una investigación rigurosa de la acción del viento, especialmente en condiciones climáticas extremas. Garantizar la estabilidad de los puentes de grandes luces, ya que sus características y formaciones son más propensas a la carga de viento, se encuentra entre las principales consideraciones de diseño [3].

3.1. Parámetros de simulación

La velocidad básica del viento se elige 22 m/s según el mapa de viento de Suecia y la ubicación del puente de Kalix según EN 1991-1-4 [5] y el código sueco BFS 2019: 1 EKS 11; ver figura 1. La superficie libre sobre el agua se considera un área expuesta a la carga de viento. La dirección del ataque del viento dominante se considera perpendicular al tablero del puente.

Las simulaciones actuales se basan en tres escenarios que incluyen: viento extremo, frío extremo y valor de diseño para un período de retorno de 3000 años. Cada condición tiene diferentes valores de temperatura, viento básico
velocidad, viscosidad cinemática y densidad del aire, como se muestra en la Tabla 1. Los conjuntos de datos meteorológicos se sintetizaron para dos semanas meteorológicas extremas durante el período de 30 años de 2040-2069, considerando 13 escenarios climáticos futuros diferentes con diferentes modelos climáticos globales (GCM) y rutas de concentración representativas (RCP).

Se seleccionaron una semana de frío extremo y una semana de viento extremo utilizando el enfoque desarrollado
de Nik [7]. El planteamiento se adaptó a las necesidades de este trabajo, considerando el horario semanal en lugar de mensual. Se ha verificado la aplicación del enfoque para simulaciones complejas, incluidos los sistemas de energía Consulte [7] Consulte [8], hidrotermal Consulte [ 9] y simulaciones de microclimas Consulte [10].

Para considerar las condiciones climáticas extremas de una infraestructura muy importante, el valor de la velocidad básica del viento debe transferirse del período de retorno de 50 años a 3000 años como se indica en la ecuación 1 [6]. El perfil de velocidad y turbulencia se crea en base a EN 1991-1-4 [5] para la categoría de terreno 0 (Z0 = 0,003 my Zmín = 1 m), donde Z0 y Zmín son la longitud de rugosidad y la altura mínima, respectivamente. La variación de la velocidad del viento con la altura se define en la ecuación 2, donde co (z) es el factor de orografía tomado como 1, vm (z) es la velocidad media del viento a la altura z, kr es el factor del terreno que depende de la longitud de la rugosidad , e Iv (z) es la intensidad de la turbulencia; ver ecuación 3.���50=[0.36+0.1ln12�]     1�����=��·ln��0·���  [2]���=�����=�1�0�·ln�/�0  ��� ����≤�≤����  [3]���=������                                ��� �<����                   [4]

Velocidad del viento, variación de la velocidad del viento con la altura, intensidad de la turbulencia

Se calcula que el valor de la velocidad del viento para T = período de retorno de 3000 años es de 31 m/s; por lo tanto, los diagramas de velocidad del viento e intensidad de turbulencia se obtienen como se muestra en la figura 2.

Tabla. 1. Información meteorológica para tres escenarios

Tabla. 1. Información meteorológica para tres escenarios

Fig.  2. Valor de cálculo para la información del periodo de retorno de 3000 años: (a) Velocidad del viento y (b) Perfil de intensidad de turbulencia, y (c) Especificaciones del modelo

Fig. 2. Valor de cálculo para la información del periodo de retorno de 3000 años: (a) Velocidad del viento y (b) Intensidad de la turbulencia perfil, y (c) Especificaciones del modelo

3.2. Modelo de turbulencia

Para que las investigaciones sean precisas en el flujo alrededor de estructuras importantes como puentes, se aplica un enfoque híbrido que incluye simulaciones de remolinos desprendidos retardados (DDES) y es computacionalmente eficiente [11] [12]. Este modelo de turbulencia usa un método RANS cerca de las capas límite y el método LES lejos de las capas límite y en el área del flujo de la región separada ‘.

En el primer paso, el enfoque de simulación de remolinos separados se ha ampliado para adquirir predicciones de fuerza fiables en los modelos con un gran impacto del flujo separado. Hay varios ejemplos en la parte de revisión de Spalart Consulte [11] para varios casos que usan la aplicación del modelo de turbulencia de simulación de remolino separado (DES).

La formulación DES inicial [13] se desarrolla utilizando el enfoque de Spalart-Allmaras. Con respecto a la transición del enfoque RANS al LES, se revisa el término de destrucción en la ecuación de transporte de viscosidad modificada: la distancia entre un punto en el dominio y la superficie sólida más cercana (d) se sustituye por el factor introducido por:�~=���(�.����·∆)

Factor que sustituye la distancia entre el punto en el dominio y la superficie sólida más cercana (d)

donde CDES es un coeficiente, se considera como 0,65 y Δ es una escala de longitud asociada con el espaciado de la rejilla local:�=���(��.��.��)

Escala de longitud asociada con el espaciado de rejilla local

Se ha empleado un enfoque modificado de DES, conocido como simulación de remolinos desprendidos retardados (DDES), para dominar el probable problema de la “separación inducida por la rejilla” (GIS) que está relacionado con la geometría de la rejilla. El objetivo de este nuevo enfoque es confirmar que el modelado de turbulencia se mantiene en modo RANS en todas las capas de contorno [14]. Por lo tanto, la definición del parámetro se modifica como se define:�~=�-�����(0. �-����·�)   6

Modificación del parámetro d

donde fd es una función de filtro que considera un valor de 0 en las capas límite cercanas al muro (zona RANS) y un valor de 1 en las áreas donde se realizó la separación del flujo (zona LES).

3.3. Rejilla computacional y resultados

RWIND 2.01 Pro se emplea para la simulación de viento CFD, que usa el código CFD externo OpenFOAM® versión 17.10. La simulación CFD tridimensional se realiza como una simulación de viento transitorio para flujo turbulento incompresible utilizando el algoritmo SIMPLE (Método semi-implícito para ecuaciones vinculadas a presión).

En la simulación actual, el solucionador de estado estacionario se considera como la condición inicial, lo que significa que cuando se está calculando el flujo transitorio, el cálculo del estado estacionario de la condición inicial comienza en la primera parte de la simulación y tan pronto como se calcula. completado, el cálculo de transitorios se iniciará automáticamente.

Fig.  3. Dominio del túnel de viento y rejilla computacional de referencia (8.057.279 celdas)

Fig. 3. Dominio del túnel de viento y rejilla computacional de referencia (8.057.279 celdas)

La cuadrícula computacional se realiza mediante 8.057.279 celdas tridimensionales y 8.820.901 nudos, también se consideran las dimensiones del dominio del túnel de viento 2000 m * 1000 m * 100 m (largo, ancho, alto) como se muestra en la figura 3. El volumen mínimo de la celda es de 6,34 * 10-5 m3, el volumen máximo es de 812,30 m3 y la desviación máxima es de 1,80.

La presión residual final se considera 5 * 10-5. El proceso de generación de mallas e independencia de la rejilla se ha realizado utilizando los cuatro tamaños de malla que se muestran en la figura 4 para la malla de referencia, y finalmente se ha conseguido la independencia de la rejilla.

Fig.  4. Estudio de rejilla de cuatro tamaños de malla computacional a través de la línea de sondeo.

Fig. 4. Estudio de rejilla de cuatro tamaños de malla computacional a través de la línea de sondeo.

Se han realizado tres simulaciones para obtener el valor de la presión del viento para condiciones climáticas extremas y el valor de cálculo del viento que se muestra en la Fig. 5. Para cada escenario, el resultado de la presión del viento se obtiene utilizando el modelo de turbulencia transitoria DDES con respecto a 30 (s) de duración que incluye 60 capas de tiempo (Δt = 0,5 s).

Se puede observar que el área frontal del puente está expuesta a la presión del viento positiva y la cantidad de presión aumenta en la altura cerca del borde del tablero para todos los escenarios. Además, la Fig. 5. ilustra los valores negativos de la presión del viento en su totalidad en la superficie de la cubierta. El valor de pertenencia para el período de 3000 años es mucho más alto que los otros escenarios.

Es importante tener en cuenta que el intervalo de la velocidad del viento de entrada tiene un gran impacto en el valor de la presión en la superficie más que en los otros parámetros. Además, para cada escenario, el intervalo más alto de presión del viento y succión durante el tiempo total debe considerarse como una carga de viento crítica impuesta a la estructura. El valor más bajo de la presión en la superficie se obtiene en el escenario de condiciones de frío extremo, mientras que en condiciones de mucho viento, el valor de la presión se vuelve un orden de magnitud más alto.

Fig.  5. Contorno de presión superficial y diagrama para 60 capas de tiempo (Δt = 0.5 s) a través de una línea de sondeo para tres escenarios.

Fig. 5. Contorno de presión superficial y diagrama para 60 capas de tiempo (Δt = 0.5 s) a través de una línea de sondeo para tres escenarios.

Además, es importante tener en cuenta que el comportamiento del puente sería completamente diferente debido a las diferentes temperaturas del aire, y puede ocurrir un posible caso crítico en el escenario que experimente una presión menor. Con respecto al valor de entrada de cada escenario, el rango más alto de presión del viento pertenece al nivel de diseño debido al período de retorno de 3000 años, que ha recibido la velocidad del viento más alta como velocidad de entrada.

4. Simulación hidráulica

Los pilares de los puentes a través del río pueden bloquear el flujo al reducir la sección transversal del río, crear corrientes parásitas locales y cambiar la velocidad del flujo, lo que puede ejercer presión en las superficies de los pilares. Cuando el río fluye hacia los pilares del puente, el proceso del flujo de agua alrededor de la base se puede dividir en dos partes: aplicando presión en el momento en que el agua golpea el pilar del puente y después de la presión inicial cuando el agua fluye alrededor de los pilares [15].

Cuando el agua alcanza los pilares del puente a una cierta velocidad, el efecto de la presión sobre los pilares es mucho mayor que la presión del fluido que queda a su alrededor. Debido a los desarrollos de la ciencia de la computación, así como al desarrollo cada vez mayor de los códigos dinámicos de fluidos computacionales, se han utilizado ampliamente varias simulaciones numéricas y se ha demostrado que los resultados de muchas simulaciones son consistentes con los resultados experimentales [16].

Por ello, en esta investigación se ha utilizado el método de la dinámica de fluidos computacional para simular los fenómenos que gobiernan el comportamiento del flujo de los ríos. Para este estudio se ha seleccionado una solución tridimensional basada en cálculos numéricos utilizando el modelo de turbulencia LES. La simulación tridimensional del flujo del río en diferentes direcciones y velocidades nos permite calcular y analizar todas las presiones en la superficie de los pilares del puente en diferentes intervalos de tiempo.

4.1. Parámetros de simulación

El flujo del río se puede definir como un flujo de dos fases, que incluye agua y aire, en un canal abierto. El flujo de canal abierto es un flujo de fluido con una superficie libre en la que la presión atmosférica se distribuye uniformemente y se crea por el peso del fluido. Para simular este tipo de flujo se utiliza el método multifase VOF.

El programa Flow3D, disponible en el mercado, utiliza los métodos de fracciones volumétricas VOF y FAVOF. En el método VOF, el dominio de modelado se divide primero en celdas de elementos o volúmenes de controles más pequeños. Para los elementos que contienen fluidos, se mantienen valores numéricos para cada una de las variables de flujo dentro de ellos.

Estos valores representan la media volumétrica de los valores en cada elemento. En las corrientes superficiales libres, no todas las celdas están llenas de líquido; algunas celdas en la superficie de flujo están medio llenas. En este caso, se define una cantidad llamada volumen de fluido, F, que representa la parte de la celda que se llena con el fluido.

Después de determinar la posición y el ángulo de la superficie del flujo, será posible aplicar las condiciones de contorno apropiadas en la superficie del flujo para calcular el movimiento del fluido. A medida que se mueve el fluido, el valor de F también cambia con él. Las superficies libres son monitoreadas automáticamente por el movimiento de fluido dentro de una red fija. El método FAVOR se usa para determinar la geometría.

También se puede usar otra cantidad de fracción volumétrica para determinar el nivel de un cuerpo rígido desocupado ( Vf ). Cuando se conoce el volumen que ocupa el cuerpo rígido en cada celda, el límite del fluido dentro de la red fija se puede determinar como VOF. Este límite se usa para determinar las condiciones de contorno del muro que sigue el arroyo. En general, la ecuación de continuidad de masa es la siguiente:��𝜕�𝜕�+𝜕𝜕�(����)+�𝜕𝜕�(����)+𝜕𝜕�(����)+������=����   10

Ecuación de continuidad de masa

Las ecuaciones de movimiento para los componentes de la velocidad de un fluido en coordenadas 3D, o en otras palabras, las ecuaciones de Navier-Stokes, son las siguientes:𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�+��2�����=-1�𝜕�𝜕�+��+��-��-��������-��-���    11𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�+��������=-�1�𝜕�𝜕�+��+��-��-��������-��-���  12𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�=-1�𝜕�𝜕�+��+��-��-��������-��-���              13

Ecuaciones de Navier-Stokes

Donde VF es la relación del volumen abierto al flujo, ρ es la densidad del fluido, (u, v, w) son las componentes de la velocidad en las direcciones x, y y z, respectivamente, R SOR es la función de la fuente, (Ax, Ay, Az ) son las áreas fraccionales, (Gx, Gy, Gz ) son las fuerzas gravitacionales, (fx, fy, fz ) son las aceleraciones de la viscosidad y (bx, by, bz ) son las pérdidas de flujo en medios porosos en las direcciones x, y, z, respectivamente [17].

La zona de captación del río Kalix es grande y amplia, por lo que tiene un clima subpolar con inviernos fríos y largos y veranos suaves y cortos. Aproximadamente el 50% de las precipitaciones en esta zona es nieve. En mayo, por lo general, el deshielo provoca un aumento significativo en el caudal del río. Las condiciones climáticas del río se resumen en la Tabla 2, [18].

Contrariamente a la tendencia general de este estudio, la previsión de las condiciones meteorológicas mencionadas está utilizando la información meteorológica registrada en los períodos pasados. En función de la información meteorológica disponible, definimos las condiciones de contorno al realizar los cálculos.

Tabla 2: Parámetros del modelo y tabla 3:Condiciones de contorno del modelo

Tabla 2: Parámetros del modelo y tabla 3:Condiciones de contorno del modelo

4.2 Cuadrícula computacional y resultados

Primero, según las dimensiones de los pilares en tres direcciones X, Y, Z, y según la dimensión longitudinal de los pilares (D = 8,5 m; véase la figura 7), el dominio se extiende 10D aguas arriba y 20D aguas abajo. Se ha utilizado el método de mallado estructurado (cartesiano) y el software Flow3D para resolver este problema. Para una cuadrícula correcta, el dominio se debe dividir en diferentes secciones.

Esta división se basa en lugares con fuertes pendientes. Usando la creación de una nueva superficie, el dominio se puede dividir en varias secciones para crear una malla regular con las dimensiones correctas y apropiadas, se puede especificar el número de celdas en cada superficie.

Fig. 6: Estudio de rejilla para el dominio hídrico

Fig. 6: Estudio de rejilla para el dominio hídrico

Esto aumenta el volumen final de las células. Por esta razón, hemos dividido este dominio en tres niveles: Grueso, medio y fino. Los resultados de los estudios de independencia de la red se muestran en la figura 6. Para comprobar los resultados calculados, primero debemos asegurarnos de que la corriente de entrada sea la correcta. Para hacer esto, el caudal de entrada se mide en el dominio de la solución y se compara con el valor base. Las dimensiones del dominio de la solución se especifican en la figura 7. Esta figura también contribuye al reconocimiento de los pilares del puente y su denominación de superficies.

Como se muestra en la Fig. 8, el caudal del río se encuentra dentro del intervalo admisible durante el 90% del tiempo de simulación y el caudal de entrada se ha simulado correctamente. Además, en la Fig. 9, la velocidad media del río se calcula en función del caudal y del área de la sección transversal del río.

Para extraer la cantidad de presión aplicada a los diferentes lados de las columnas, hemos seleccionado el intervalo de tiempo de simulación de 10 a 25 segundos (tiempo de estabilización de descarga en la cantidad de 1800 metros cúbicos por segundo). Los resultados calculados para cada lado se muestran en la Fig. 10 y 11. Los contornos de velocidad también se muestran en las Figuras 12 y 13. Estos contornos se ajustan en función de la velocidad del fluido en un momento dado.

Debido a las dimensiones del dominio de la solución y al caudal del río, el flujo de agua llega a los pilares del puente en el décimo segundo y la presión inicial del flujo del río afecta las superficies de los pilares del puente. Esta presión inicial decrece con el tiempo y se estabiliza en un rango determinado para cada lado según el área y el porcentaje de interacción con el flujo. Para los cálculos de interacción fluido-estructura (FSI), se puede usar la presión crítica calculada en el momento en que la corriente golpea los pilares.

Fig. 7: Dibujo del dominio hidrostático

Fig. 7: Dibujo del dominio hidrostático

Fig. 8: caudal del río; La figura 9: Caudal de la velocidad del río; La figura 10: Presión en la pila del puente - I; La figura 11: Presión en la pila del puente – II

Fig. 8: caudal del río; La figura 9: Caudal de la velocidad del río; La figura 10: Presión en la pila del puente – I; La figura 11: Presión en la pila del puente – II

Fig. 12: Contador de velocidad en el tiempo: 30s Fig. 13: Contador de velocidad en el tiempo: 20 s

Fig. 12: Contador de velocidad en el tiempo: 30s Fig. 13: Contador de velocidad en el tiempo: 20 s

5. Conclusión

Los efectos de las condiciones meteorológicas extremas, incluido el viento dinámico y el flujo de agua, se investigaron numéricamente para el puente de Kalix. Se definieron tres escenarios para las simulaciones dinámicas de viento, incluido el clima con mucho viento, el clima extremadamente frío y el valor de diseño para un período de retorno de 3.000 años. Aprovechando las simulaciones CFD, se determinaron las presiones del viento en pasos de 60 tiempos (30 segundos) utilizando el modelo de turbulencia transitoria DDES.

Los resultados indican diferencias significativas entre los escenarios, lo que implica la importancia de los datos de entrada, especialmente el diagrama de velocidades del viento. Se observó que el valor de diseño para el período de devolución de 3000 años tiene un impacto mucho mayor que los otros escenarios. Además, se mostró la importancia de considerar el rango más alto de presión del viento en la superficie a través de los pasos de tiempo para evaluar el comportamiento estructural del puente en la condición más crítica.

Además, se consideró el caudal máximo del río para una simulación transitoria según las condiciones meteorológicas registradas, y los pilares del puente se sometieron al caudal máximo del río durante 30 segundos. Por lo tanto, además de las condiciones físicas del flujo del río y cómo cambia la dirección del flujo aguas abajo, se cuantificaron las presiones máximas del agua en el momento en que el flujo golpea los pilares.

En el trabajo futuro, el rendimiento estructural del puente de Kalix será evaluado por
imposición de la carga del viento, la presión del agua y la carga del tráfico, creando así un gemelo digital estructural que refleja la verdadera respuesta de la estructura.

6. Reconocimiento

Los autores agradecen enormemente el apoyo de Dlubal Software por proporcionar la licencia de RWIND Simulation, así como de Flow Sciences Inc. por proporcionar la licencia de FLOW-3D.

Autores: Mahyar Kazemian1, Sajad Nikdel2, Mehrnaz MohammadEsmaeili3, Vahid Nik4, Kamyab Zandi*5

Candidato a doctorado, becario en el Departamento de Ingeniería de Timezyx Inc., Canadá.

M.Sc. estudiante, pasante en el Departamento de Ingeniería, Timezyx Inc., Canadá.

Estudiante de licenciatura, pasante en el Departamento de Ingeniería, Timezyx Inc., Canadá.

4 Profesor adjunto en la división de Física de la construcción de la Universidad de Lund y la Universidad Tecnológica de Chalmers, Suecia.

* 5 Director, Timezyx Inc., Vancouver, BC V6N 2R2, Canadá. E-mail: kamyab.zandi@timezyx.com


Referencias

  1. Jančula, M., Jošt, J., & Gocál, J. (2021). Influencia de las acciones ambientales agresivas en las estructuras de los puentes. Transportation Research Procedia, 55 , 1229–1235. https://doi.org/10.1016/j.trpro.2021.07.104
  2. Wang, X., Nguyen, M., Stewart, MG, Syme, M. y Leitch, A. (2010). Análisis de los impactos del cambio climático en el deterioro de la infraestructura de hormigón – Informe de síntesis. CSIRO, Canberra.
  3. Kemayou, BTM (2016). Análisis de secciones de tableros de puentes por el método de la pseudocompresibilidad basado en FDM y LES: Mejora del rendimiento mediante la implementación de la computación en paralelo (tesis). Universidad de Arkansas.
  4. Larsen, A. y Walther, JH (1997). Análisis aeroelástico de secciones de vigas de puentes basado en simulaciones discretas de vórtices. Journal of Wind Engineering and Industrial Aerodynamics, 67–68 , 253–265. https://doi.org/10.1016/s0167-6105(97)00077-9
  5. Eurocódigo 1: Acciones en estructuras. (2006). Instituto Británico de Normas.
  6. ASCE. Cargas mínimas de cálculo para edificios y otras estructuras. (2013). Sociedad Estadounidense de Ingenieros Civiles.
  7. Nik, VM (2016). Facilitación de la simulación energética para el clima futuro: síntesis de conjuntos de datos meteorológicos típicos y extremos a partir de modelos climáticos regionales (RCM). Applied Energy, 177 , 204–226. https://doi.org/10.1016/j.apenergy.2016.05.107
  8. Perera, AT, Nik, VM, Chen, D., Scartezzini, J.‑L. y Hong, T. (2020). Cuantificación de los impactos del cambio climático y los eventos climáticos extremos en los sistemas energéticos. Nature Energy, 5 (2), 150–159. https://doi.org/10.1038/s41560-020-0558-0
  9. Nik, VM (2017). Aplicación de conjuntos de datos meteorológicos típicos y extremos en la simulación higrotérmica de componentes de construcción para el clima futuro: un estudio de caso para un muro de entramado de madera. Energy and Buildings, 154 , 30–45. https://doi.org/10.1016/j.enbuild.2017.08.042
  10. Hosseini, M., Javanroodi, K. y Nik, VM (2022). Evaluación de impacto de alta resolución del cambio climático en el rendimiento energético de los edificios considerando los eventos meteorológicos extremos y el microclima – Investigando las variaciones en el confort térmico interior y los grados-día. Ciudades sostenibles y sociedad, 78 , 103634. https://doi.org/10.1016/j.scs.2021.103634
  11. Spalart, P. R. (2009). Simulación de remolinos separados. Revisión anual de mecánica de fluidos, 41 , 181–202. https://doi.org/10.1146/annurev.fluid.010908.165130
  12. Spalart, PR, et al. (2006) Una nueva versión de simulación de remolinos separados, resistente a densidades de rejilla ambiguas. Dinámica de fluidos teórica y computacional, 2006. 20 (3), 181-195. https://doi.org/10.1007/s00162-006-0015-0
  13. Spalart, PR (1997). Comentarios sobre la viabilidad de LES para alas y sobre una aproximación híbrida RANS/LES. En Actas de la Primera Conferencia Internacional de AFOSR sobre DNS/LES. Prensa de Greyden.
  14. Boudreau, M., Dumas, G. y Veilleux, J.-C. (2017). Evaluación de la capacidad del enfoque de modelado de turbulencia DDES para simular la estela de un cuerpo de farol. Aeroespacial, 4 (3), 41. https://doi.org/10.3390/aerospace4030041
  15. Wang, Y., Zou, Y., Xu, L. y Luo, Z. (2015). Análisis de la presión del flujo de agua en pilas de puentes considerando el efecto del impacto. Problemas matemáticos en ingeniería, 2015 , 1–8. https://doi.org/10.1155/2015/687535
  16. Qi, H., Zheng, J. y Zhang, C. (2020). Simulación numérica del campo de velocidades alrededor de dos pilares de pilas en tándem del puente longitudinal. Fluidos, 5 (1), 32. https://doi.org/10.3390/fluids5010032
  17. Jalal, H. K. y Hassan, W. H (2020). Simulación numérica tridimensional de la socavación local alrededor de la pila de un puente circular utilizando el software flow-3d. Ciclo de conferencias de IOP: Ciencia e ingeniería de materiales, 745 , 012150. https://doi.org/10.1088/1757-899x/745/1/012150
  18. Herzog, S. D., Conrad, S., Ingri, J., Persson, P. y Kritzberg, E. S (2019). Cambios inducidos por crecidas de primavera en la especiación y destino del Fe a mayor salinidad. Geoquímica aplicada, 109 , 104385. https://doi.org/10.1016/j.apgeochem.2019.104385

NUMERICAL ANALYSIS OF THE HYDRODYNAMICS CHARACTERISTICS OF TORPEDO ANCHOR INSTALLATION UNDER THE INFLUENCE OF OCEAN CURRENTS

魚雷錨擲錨過程受海流擲下之運移特性數值分析

번역된 기고 제목: 해류의 영향에 따른 어뢰 앵커 설치의 유체 역학 특성에 대한 수치 분석

Translated title of the contribution: NUMERICAL ANALYSIS OF THE HYDRODYNAMICS CHARACTERISTICS OF TORPEDO ANCHOR INSTALLATION UNDER THE INFLUENCE OF OCEAN CURRENTS

L. Y. Chen, R. Y. Yang

Abstract

The gravity-installed anchor (GIA) is a type of the anchor foundation that is installed by penetrating the seabed using the weight of the anchor body. It has the advantages of high installation efficiency, low cost, and no requirement of additional installation facilities. The GIA type used in this study is the torpedo anchor, which has been ap-plied in practical cases widely. The purpose of this study is to investigate the numerical analysis of the anchor trans-porting during the installation of the torpedo anchor under the action of ocean currents. Therefore, this article con-siders external environmental conditions and the different forms of torpedo anchors by using computational fluid dynamics (CFD) software, FLOW-3D, to simulate the fluid-solid interaction effect on the torpedo anchor. The falling time, impact velocity, displaced angle, and horizontal displacement of the torpedo anchor were observed at an installation height (i.e., the distance between the seabed and the anchor release height) of 85 meters. The obtained results show that when the current velocity is greater, the torpedo anchor will have a larger displaced angle, which will affect the impact velocity of the anchor on the seabed and may cause insufficient penetration depth, leading to installation failure.

중력설치형 앵커(GIA)는 앵커 본체의 무게를 이용하여 해저를 관통하여 설치하는 앵커 기초의 일종이다. 설치 효율성이 높고, 비용이 저렴하며, 추가 설치 시설이 필요하지 않다는 장점이 있습니다. 본 연구에서 사용된 GIA 유형은 어뢰앵커로 실제 사례에 널리 적용되어 왔다.

본 연구의 목적은 해류의 작용에 따라 어뢰앵커 설치 시 앵커 이송에 대한 수치해석을 연구하는 것이다. 따라서 이 기사에서는 어뢰 앵커에 대한 유체-고체 상호 작용 효과를 시뮬레이션하기 위해 전산유체역학(CFD) 소프트웨어인 FLOW-3D를 사용하여 외부 환경 조건과 다양한 형태의 어뢰 앵커를 고려합니다.

어뢰앵커의 낙하시간, 충격속도, 변위각, 수평변위 등은 설치높이(즉, 해저와 앵커 해제 높이 ​​사이의 거리) 85m에서 관찰되었다. 얻은 결과는 현재 속도가 더 높을 때 어뢰 앵커의 변위 각도가 더 커져 해저에 대한 앵커의 충격 속도에 영향을 미치고 침투 깊이가 부족하여 설치 실패로 이어질 수 있음을 보여줍니다.

  • Ocean currentsEngineering & Materials Science100%
  • AnchorsEngineering & Materials Science74%
  • Numerical analysisEngineering & Materials Science63%
  • HydrodynamicsEngineering & Materials Science62%
  • GravitationEngineering & Materials Science9%
  • Computational fluid dynamicsEngineering & Materials Science4%
  • FluidsEngineering & Materials Science3%
  • CostsEngineering & Materials Science
  • 해류
  • 앵커
  • 수치해석
  • 유체 역학
  • 중력
  • 전산유체역학

FLOW-3D 교육사례

고객 맞춤형 교육

Education Customer List

오시는 길
FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2023R2 의 새로운 기능

2023R2 FLOW-3D 릴리스

FLOW-3D 2023R2 의 새로운 기능

새로운 결과 파일 형식

FLOW-3D POST 2023R2 는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.

FLOW-3D POST 2023R2 에서 사용자는 이제 selected data를 flsgrf , EXODUS II 둘중 하나 또는 flsgrf 와 EXODUS II 둘다 파일 형식으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용하여 FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 위치에서의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 추가 정보를 추출할 수 있습니다. 

레이 트레이싱을 이용한 화장품 크림 충전
FLOW-3D POST 의 새로운 EXODUS II 파일 형식으로 채워진 화장품 크림 모델의 향상된 광선 추적 기능의 예

새로운 결과 파일 형식은 솔버 엔진의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다. 이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다. 

FLOW-3D POST 의 새로운 시각화 기능 에 대해 자세히 알아보세요 .

난류 모델 개선

FLOW-3D 2023R2는 two-equation(RANS) 난류 모델에 대한 dynamic mixing length 계산을 크게 개선했습니다. 거의 층류 흐름 체계와 같은 특정 제한 사례에서는 이전 버전의 코드 계산 한계가 때때로 과도하게 예측되어 사용자가 특정 mixing length를 수동으로 입력해야 할 수 있습니다. 

새로운 dynamic mixing length 계산은 이러한 상황에서 난류 길이와 시간 척도를 더 잘 설명합니다. 이제 사용자는 고정된(물리 기반) mixing length를 설정하는 대신 더 넓은 범위의 흐름에 동적 모델을 적용할 수 있습니다.

접촉식 탱크 혼합 시뮬레이션
적절한 고정 mixing length와 비교하여 접촉 탱크의 혼합 시뮬레이션을 위한 기존 동적 mixing length 모델과 새로운 동적 mixing length 모델 간의 비교

정수압 초기화

사용자가 미리 정의된 유체 영역에서 정수압을 초기화해야 하는 경우가 많습니다. 이전에는 대규모의 복잡한 시뮬레이션에서 정수압 솔버의 수렴 속도가 느려지는 경우가 있었습니다. FLOW-3D 2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.

압축성 흐름 솔버 성능

FLOW-3D 2023R2는 최적화된 압력 솔버를 도입하여 압축성 흐름 문제에 대해 상당한 성능 향상을 제공합니다. 압축성 제트 흐름의 예에서 2023R2 솔버는 2023R1 버전보다 최대 4배 빠릅니다.

압축성 제트 시뮬레이션
FLOW-3D 의 압축성 제트 시뮬레이션의 예

FLOW-3D 2023R2 의 새로운 기능

FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R2에서 IT 관련 개선 사항을 받았습니다.  FLOW-3D 2023R2은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로우를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로우가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

확장된 PQ 2 분석

제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량 운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리하도록 단순화하는 경우가 많습니다. 우리는 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 현실적인 결과를 제공했습니다. 이로써 시뮬레이션 시간을 줄이고 모델 복잡성의 감소시킬 수 있습니다.

FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2022R2 제품군 출시로 Flow Science는 FLOW-3D 의 워크스테이션과 HPC 버전을 통합하여 노드 병렬 고성능 컴퓨팅 실행할 수 있도록 단일 노드 CPU 구성에서 다중 노드에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 형태 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성요소 제어, entrained air 기능이 개선되었습니다.

통합 솔버

FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행할 수 있습니다.

많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 Open MP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.

성능 확장의 예
CPU 코어 수 증가에 따른 성능 확장의 예
메쉬 분해의 예
Open MP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

솔버 성능 개선

멀티 소켓 워크스테이션

다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.

낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스

대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.

정제된 체적 대류 안정성 한계

Time step 안정성 한계는 모델 런타임의 주요 요인이며, 2022R2에서는 새로운 time step 안정성 한계인 3D 대류 안정성 한계를 Numerics 탭에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.

압력 솔버 프리컨디셔너

경우에 따라 까다로운 유동 해석의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 프리컨디셔너 기능을 활성화하여 압력 수렴을 돕습니다. 런타임이 1.9~335배 더 빨라졌습니다!

점탄성 유체에 대한 로그 형태 텐서 방법

점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수에 효과적입니다.

점탄성 흐름을 위한 개선된 솔루션
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수의 개선된 솔루션의 예입니다. 제공: MF Tome 외, J. Non-Newton. Fluid. Mech. 175-176 (2012) 44–54

활성 시뮬레이션 제어 확장

Active simulation 제어 기능이 확장되어 연속 주조 및 적층 제조 응용 분야에 일반적으로 사용되는 팬텀 개체는 물론 주조 및 기타 여러 열 관리 응용 분야에 사용되는 냉각 채널에도 사용됩니다.

팬텀 물체 속도 제어의 예
연속 주조 응용 분야에 대한 가상 물체 속도 제어의 예
동적 열 제어의 예
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예
동적 냉각 채널 제어의 예
산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예

향상된 공기 동반 기능

디퓨저 및 이와 유사한 산업용 기포 흐름 응용 분야의 경우 이제 질량 공급원을 사용하여 물기둥에 공기를 유입할 수 있습니다. 또한, 동반된 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.

디퓨저 모델의 예
디퓨저 모델의 예: 이제 질량 소스를 사용하여 물기둥에 공기를 유입할 수 있습니다.

FLOW-3D 아카이브 의 새로운 기능

FLOW-3D 2022R1 의 새로운 기능

FLOW-3D v12.0 의 새로운 기능

Figure 2-15: Système expérimental du plan incliné

새로운 콘크리트의 유체 흐름 모델링

Sous la direction de :
Marc Jolin, directeur de recherche
Benoit Bissonnette, codirecteur de recherche

Modélisation de l’écoulement du béton frais

Abstract

현재의 기후 비상 사태와 기후 변화에 관한 다양한 과학적 보고서를 고려할 때 인간이 만든 오염을 대폭 줄이는 것은 필수적이며 심지어 중요합니다. 최신 IPCC(기후변화에 관한 정부 간 패널) 보고서(2022)는 2030년까지 배출량을 절반으로 줄여야 함을 나타내며, 지구 보존을 위해 즉각적인 조치를 취해야 한다고 강력히 강조합니다.

이러한 의미에서 콘크리트 생산 산업은 전체 인간 이산화탄소 배출량의 4~8%를 담당하고 있으므로 환경에 미치는 영향을 줄이기 위한 진화가 시급히 필요합니다.

본 연구의 주요 목적은 이미 사용 가능한 기술적 품질 관리 도구를 사용하여 생산을 최적화하고 혼합 시간을 단축하며 콘크리트 폐기물을 줄이기 위한 신뢰할 수 있고 활용 가능한 수치 모델을 개발함으로써 이러한 산업 전환에 참여하는 것입니다.

실제로, 혼합 트럭 내부의 신선한 콘크리트의 거동과 흐름 프로파일을 더 잘 이해할 수 있는 수치 시뮬레이션을 개발하면 혼합 시간과 비용을 더욱 최적화할 수 있으므로 매우 유망합니다. 이러한 복잡한 수치 도구를 활용할 수 있으려면 수치 시뮬레이션을 검증, 특성화 및 보정하기 위해 기본 신 콘크리트 흐름 모델의 구현이 필수적입니다.

이 논문에서는 세 가지 단순 유동 모델의 개발이 논의되고 얻은 결과는 신선한 콘크리트 유동의 수치적 거동을 검증하는 데 사용됩니다. 이러한 각 모델은 강점과 약점을 갖고 있으며, 신선한 콘크리트의 유변학과 유동 거동을 훨씬 더 잘 이해할 수 있는 수치 작업 환경을 만드는 데 기여합니다.

따라서 이 연구 프로젝트는 새로운 콘크리트 생산의 완전한 모델링을 위한 진정한 관문입니다.

In view of the current climate emergency and the various scientific reports on climate change, it is essential and even vital to drastically reduce man-made pollution. The latest IPCC (Intergovernmental Panel on Climate Change) report (2022) indicates that emissions must be halved by 2030 and strongly emphasizes the need to act immediately to preserve the planet. In this sense, the concrete production industry is responsible for 4-8% of total human carbon dioxide emissions and therefore urgently needs to evolve to reduce its environmental impact. The main objective of this study is to participate in this industrial transition by developing a reliable and exploitable numerical model to optimize the production, reduce mixing time and also reduce concrete waste by using technological quality control tools already available. Indeed, developing a numerical simulation allowing to better understand the behavior and flow profiles of fresh concrete inside a mixing-truck is extremely promising as it allows for further optimization of mixing times and costs. In order to be able to exploit such a complex numerical tool, the implementation of elementary fresh concrete flow models is essential to validate, characterize and calibrate the numerical simulations. In this thesis, the development of three simple flow models is discussed and the results obtained are used to validate the numerical behavior of fresh concrete flow. Each of these models has strengths and weaknesses and contributes to the creation of a numerical working environment that provides a much better understanding of the rheology and flow behavior of fresh concrete. This research project is therefore a real gateway to a full modelling of fresh concrete production.


Key words

fresh concrete, rheology, numerical simulation, mixer-truck, rheological probe.

Figure 2-15: Système expérimental du plan incliné
Figure 2-15: Système expérimental du plan incliné
Figure 2-19: Essai d'affaissement au cône d'Abrams
Figure 2-19: Essai d’affaissement au cône d’Abrams

Reference

Amziane, S., Ferraris, C. F., & Koehler, E. (2006). Feasibility of Using a Concrete
Mixing Truck as a Rheometer.
Anderson, J. D. (1991). Fundamentals of aerodynamics. McGraw-Hill.
Balmforth, N. J., Craster, R. V., & Sassi, R. (2002). Shallow viscoplastic flow on an
inclined plane. Journal of Fluid Mechanics, 470, 1-29.
https://doi.org/10.1017/S0022112002001660
Banfill, P., Beaupré, D., Chapdelaine, F., de Larrard, F., Domone, P., Nachbaur, L.,
Sedran, T., Wallevik, O., & Wallevik, J. E. (2000). Comparison of concrete
rheometers International tests at LCPC (Nantes, France) in October 2000. In
NIST.
Baracu T. (2012). Computational analysis of the flow around a cylinder and of the
drag force.
Barreto, D., & Leak, J. (2020). A guide to modeling the geotechnical behavior of soils
using the discrete element method. In Modeling in Geotechnical Engineering (p.
79-100). Elsevier. https://doi.org/10.1016/B978-0-12-821205-9.00016-2
Baudez, J. C., Chabot, F., & Coussot, P. (2002). Rheological interpretation of the
slump test. Applied Rheology, 12(3), 133-141. https://doi.org/10.1515/arh-2002-
0008
Beaupre, D. (2012). Mixer-mounted probe measures concrete workability.
Berger, X. (2023). Proposition de recherche et préparation orale de doctorat (GCI8084).
Bergeron, P. (1953). Considérations sur les facteurs influençant l’usure due au
transport hydraulique de matériaux solides. Application plus particulière aux
machines. https://www.persee.fr/doc/jhydr_0000-0001_1953_act_2_1_3256
Bingham, E. (1922). Fluidity and Plasticity (Digitized by the Internet Archive in 2007).
http://www.archive.org/details/fluidityplasticiOObinguoft
Bruschi, G., Nishioka, T., Tsang, K., & Wang, R. (2003). A comparison of analytical
methods drag coefficient of a cylinder.

Caceres, E. C. (2019). Impact de la rhéologie des matériaux cimentaires sur l’aspect
des parements et les procédés de mise en place. https://tel.archivesouvertes.fr/tel-01982159
Chanson, H., Jarny, ; S, & Coussot, P. (2006). Dam Break Wave of Thixotropic Fluid.
https://doi.org/10.1061/ASCE0733-94292006132:3280
Chi, Z. P., Yang, H., Li, R., & Sun, Q. C. (2021). Measurements of unconfined fresh
concrete flow on a slope using spatial filtering velocimetry. Powder Technology,
393, 349-356. https://doi.org/10.1016/j.powtec.2021.07.088
Cochard, S., & Ancey, C. (2009). Experimental investigation of the spreading of
viscoplastic fluids on inclined planes. Journal of Non-Newtonian Fluid
Mechanics, 158(1-3), 73-84. https://doi.org/10.1016/j.jnnfm.2008.08.007
Coussot, Philippe., & Ancey, C. (Christophe). (1999). Rhéophysique des pâtes et
des suspensions. EDP Sciences.
CSA Group. (2019). CSA A23.1:19 / CSA A23.2:19 : Concrete materials and
methods of concret construction / Test methods and standard practices for
concrete.
Daczko, J. A. (2000). A proposal for measuring rheology of production concrete.
De Larrard, F. (1999). Structures granulaires et formulation des bétons.
http://www.lcpc.fr/betonlabpro
De Larrard, F., Ferraris, C. F., & Sedran, T. (1998). Fresh concrete: A HerscheIBulkley material (Vol. 31).
Domone P.L.J., J. J. (1999). Properties of mortar for self-compacting concrete.
RILEM, 109-120.
El-Reedy, M. (2009). Advanced Materials and Techniques for Reinforced Concrete
Structures.
Emborg M. (1999). Rheology tests for self-compacting concrete – how useful are
they for the design of concrete mix for full-scale production.
Fall A. (2008). Rhéophysique des fluides complexes : Ecoulement et Blocage de
suspensions concentrées. https://www.researchgate.net/publication/30515545
Ferraris, C. F., Brower, L. E., Beaupré, D., Chapdelaine, F., Domone, P., Koehler,
E., Shen, L., Sonebi, M., Struble, L., Tepke, D., Wallevik, O., & Wallevik, J. E.

(2003). Comparison of concrete rheometers: International tests at MB.
https://doi.org/10.6028/NIST.IR.7154
Ferraris, C. F., & de Larrard, F. (1998a). Rhéologie du béton frais remanié III – L’essai
au cône d’Abrams modifié.
Ferraris, C. F., & de Larrard, F. (1998b, février). NISTIR 6094 Testing and modelling
of fresh concrete rheology. NISTIR 6094.
https://ciks.cbt.nist.gov/~garbocz/rheologyNISTIR/FR97html.htm
Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye Ghana, A., Allwood, J., Baiocchi,
G., Clift, R., Nenov, V., Yetano Roche Spain, M., Roy, J., Abdel-Aziz, A.,
Acquaye, A., Allwood, J. M., Ceron, J., Geng, Y., Kheshgi, H., Lanza, A.,
Perczyk, D., Price, L., … Minx, J. (2014). Climate Change 2014.
Fox R., & McDonald A. (2004). Introduction to fluid mechanics.
Franco Correa I.-D. (2019). Étude tribologique à hautes températures de matériaux
céramiques structurés à différentes échelles.
GIEC. (2022). Climate Change 2022 : Mitigation of Climate Change. www.ipcc.ch
Gouvernement du Canada. (2021, mai 31). Déclaration commune : L’industrie
canadienne du ciment et le gouvernement du Canada annoncent un partenariat.
https://www.ic.gc.ca/eic/site/icgc.nsf/fra/07730.html
Grenier, M. (1998). Microstructure et résistance à l’usure de revêtements crées par
fusion laser avec gaz réactifs sur du titane.
Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von GummiBenzollösungen. Kolloid-Zeitschrift, 39(4), 291-300.
https://doi.org/10.1007/BF01432034
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics
of free boundaries. Journal of Computational Physics, 39(1), 201-225.
https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
Hoornahad, H., & Koenders, E. A. B. (2012). Simulation of the slump test based on
the discrete element method (DEM). Advanced Materials Research, 446-449,
3766-3773. https://doi.org/10.4028/www.scientific.net/AMR.446-449.3766

Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosd, F., & Deflorenne, F. (1996).
Validation of BTRHEOM, the new rheometer for soft-to-fluid concrete. In
Materials and Structures/Mat~riaux et Constructions (Vol. 29).
Jeong, S. W., Locat, J., Leroueil, S., & Malet, J. P. (2007). Rheological properties of
fine-grained sediments in modeling submarine mass movements: The role of
texture. Submarine Mass Movements and Their Consequences, 3rd
International Symposium, 191-198. https://doi.org/10.1007/978-1-4020-6512-
5_20
Kabagire, K. D. (2018). Modélisation expérimentale et analytique des propriétés
rhéologiques des bétons autoplaçants.
Katopodes, N. D. (2019). Volume of Fluid Method. In Free-Surface Flow (p.
766-802). Elsevier. https://doi.org/10.1016/b978-0-12-815485-4.00018-8
Khayat. (2008). Personnal Communication.
Kosmatka, S. (2011). Dosage et contrôle des mélanges de béton (8ème édition).
Li, H., Wu, A., & Cheng, H. (2022). Generalized models of slump and spread in
combination for higher precision in yield stress determination. Cement and
Concrete Research, 159. https://doi.org/10.1016/j.cemconres.2022.106863
Massey, B., & Smith, J. (2012). Mechanics of fluids 9ème édition.
Mokéddem, S. (2014). Contrôle de la rhéologie d’un béton et de son évolution lors
du malaxage par des mesures en ligne à l’aide de la sonde Viscoprobe.
https://tel.archives-ouvertes.fr/tel-00993153
Munson, B. R., & Young, D. R. (2006). Fundamental of Fluid Mechanics (5th éd.).
Munson, M., Young, M. , & Okiishi, M. (2020). Mécanique des fluides (8ème édition).
Murata, J., & Kikukawa, H. (1992). Viscosity Equation for Fresh Concrete.
Nakayama, Y., & Boucher, R. F. (2000). Introduction to fluid mechanics. ButterworthHeinemann.
Němeček, J. (2021). Numerical simulation of slump flow test of cement paste
composites. Acta Polytechnica CTU Proceedings, 30, 58-62.
https://doi.org/10.14311/APP.2021.30.0058
Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., & Vassilevski, Y. V. (2011). A
numerical method for the simulation of free surface flows of viscoplastic fluid in

3D. Journal of Computational Mathematics, 29(6), 605-622.
https://doi.org/10.4208/jcm.1109-m11si01
Noh, W. F., & Woodward, P. (1976). SLIC (Simple Line Interface Calculation).
Odabas, D. (2018). Effects of Load and Speed on Wear Rate of Abrasive Wear for
2014 Al Alloy. IOP Conference Series: Materials Science and Engineering,
295(1). https://doi.org/10.1088/1757-899X/295/1/012008
Pintaude, G. (s. d.). Characteristics of Abrasive Particles and Their Implications on
Wear. www.intechopen.com
Poullain, P. (2003). Étude comparative de l’écoulement d’un fluide viscoplastique
dans une maquette de malaxeur pour béton.
R. J. Cattolica. (2003). Experiment F2: Water Tunnel. In MAE171A/175A Mechanical
Engineering Laboratory Manual (Winter Quarter).
Raper, R. M. (1966). Drag force and pressure distribution on cylindrical
protuberances immersed in a turbulent channel flow.
RMCAO. (2013). CSA A23.2-5C: Concrete Basics Slump Test.
Roques, A., & School, H. (2006). High resolution seismic imaging applied to the
geometrical characterization of very high voltage electric pylons.
https://www.researchgate.net/publication/281566156
Roussel, N. (2006). Correlation between yield stress and slump: Comparison
between numerical simulations and concrete rheometers results. Materials and
Structures/Materiaux et Constructions, 39(4), 501-509.
https://doi.org/10.1617/s11527-005-9035-2
Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress
measurements: From slump to spreading flow. Journal of Rheology, 49(3),
705-718. https://doi.org/10.1122/1.1879041
Roussel, N., Geiker, M. R., Dufour, F., Thrane, L. N., & Szabo, P. (2007).
Computational modeling of concrete flow: General overview. Cement and
Concrete Research, 37(9), 1298-1307.
https://doi.org/10.1016/j.cemconres.2007.06.007
Schaer, N. (2019). Modélisation des écoulements à surface libre de fluides nonnewtoniens. https://theses.hal.science/tel-02166968

Schowalter, W. R., & Christensen, G. (1998). Toward a rationalization of the slump
test for fresh concrete: Comparisons of calculations and experiments. Journal
of Rheology, 42(4), 865-870. https://doi.org/10.1122/1.550905
Sofiane Amziane, Chiara F. Ferraris, & Eric P. Koehler. (2005). Measurement of
Workability of Fresh Concrete Using a Mixing Truck. Journal of Research of the
National Institute of Standards Technology, 55-56.
Sooraj, P., Agrawal, A., & Sharma, A. (2018). Measurement of Drag Coefficient for
an Elliptical Cylinder. Journal of Energy and Environmental Sustainability, 5,
1-7. https://doi.org/10.47469/jees.2018.v05.100050
Stachowiak G. (2006). Wear – Materials, Mechanisms and Pratice.
Stachowiak G.W. (1993). Tribology Series (Vol. 24, p. 557-612). Elsevier.
Tattersall, G., & Banfill, P. F. G. (1983). The rheology of fresh concrete.
The European Guidelines for Self-Compacting Concrete Specification, Production
and Use « The European Guidelines for Self Compacting Concrete ». (2005).
www.efnarc.org
University College London. (2010). Pressure around a cylinder and cylinder drag.
Van Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E. W. F., &
Souverein, L. J. (2007). Evaluation of integral forces and pressure fields from
planar velocimetry data for incompressible and compressible flows.
Experiments in Fluids, 43(2-3), 153-162. https://doi.org/10.1007/s00348-007-
0261-y
Vasilic, K., Gram, A., & Wallevik, J. E. (2019). Numerical simulation of fresh concrete
flow: Insight and challenges. RILEM Technical Letters, 4, 57-66.
https://doi.org/10.21809/rilemtechlett.2019.92
Viccione, G., Ferlisi, S., & Marra, E. (2010). A numerical investigation of the
interaction between debris flows and defense barriers.
http://www.unisa.it/docenti/giacomoviccione/en/index
Wallevik J. (2006). Relation between the Bingham parameters and slump.
Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump.
Cement and Concrete Research, 36(7), 1214-1221.
https://doi.org/10.1016/j.cemconres.2006.03.001

Wallevik, J. E., & Wallevik, O. H. (2020). Concrete mixing truck as a rheometer.
Cement and Concrete Research, 127.
https://doi.org/10.1016/j.cemconres.2019.105930

재사용 무인 우주비행체 고도화기술(ReUSV) 심포지엄 2023

재사용 무인 우주비행체 고도화기술(ReUSV) 심포지엄 안내

아래와 같이 재사용 무인 우주비행체 고도화기술(ReUSV) 특화연구센터 센터에서 금년 첫 회를 맞이하는 ReUSV 심포지엄을 개최한다고 합니다.

아래에 초대장 전문을 소개합니다.

재사용 무인 우주비행체 고도화기술(ReUSV) 심포지엄 2023
재사용 무인 우주비행체 고도화기술(ReUSV) 심포지엄 2023

안녕하신지요.

재사용 무인 우주비행체 고도화기술(ReUSV) 특화연구센터 센터장 김종암입니다.

2023 ReUSV 심포지엄을 11월 14 ~ 15일 양일간 국내외 산학연 항공우주 전문가들을 모시고 홍천 비발디파크에서 개최합니다. 

금년 첫 회를 맞이하는 ReUSV 심포지엄은 재사용 무인 우주비행체 고도화 기술 특화연구센터와 한국항공우주학회가 공동으로 주관하여, 국내 재사용 무인 우주비행체 분야의 기술현황과 연구성과를 공유하고 산학연 기술교류를 도모할 목적으로 구성하였습니다.

최근 저궤도 민간 우주수송에 대한 수요가 증가하고 있으며 군사적 측면에서도 미래 안보 환경으로서 우주방위의 중요성이 크게 부각되고 있습니다. 

ReUSV 특화연구센터는 미래 우주서비스 시장을 주도하고 우주안보 환경 변화에 대응할 수 있는 무인 우주 기동 플랫폼 개발을 위한 핵심 기초 기술 확보를 목적으로 설립된 방위사업청 지정 센터입니다. 

뉴스페이스 시대에 발맞춰 재사용 무인 우주비행체 기술의 최신 연구성과와 국내외 동향을 공유할 수 있는 뜻깊은 자리를 마련하였으니 국내 산학연 관계자 및 연구 실무자 분들의 많은 참여를 기대해봅니다.

올해 처음으로 개최되는 ReUSV 심포지엄이 우주비행체 분야에 관심있는 국내외 연구자들의 활발한 참여와 교류의 장이 되기를 기대합니다. 

이를 통해 본 센터가 핵심 기초 기술을 개발하고 공유하는 산학연 기술협력 허브로서의 기능을 충실히 할 수 있도록 지속적으로 노력하겠습니다. 

이번 심포지엄의 성공적인 개최를 위해 많은 도움을 주신 국내외 연사분들과 센터 관계자 분들께 진심으로 감사드리며, 산학연 연구자 분들의 지속적인 성원과 참여를 요청 드립니다.

감사합니다.

센터장 김종암 드림

Intrusion of fine sediments into river bed and its effect on river environment – a research review

미세한 퇴적물이 강바닥에 침투하고 하천 환경에 미치는 영향 – 연구 검토

Intrusion of fine sediments into river bed and its effect on river environment – a research review

Nilav Karna,K.S. Hari Prasad, Sanjay Giri & A.S. Lodhi

Abstract

Fine sediments enter into the river through various sources such as channel bed, bank, and catchment. It has been regarded as a type of pollution in river. Fine sediments present in a river have a significant effect on river health. Benthic micro-organism, plants, and large fishes, all are part of food chain of river biota. Any detrimental effect on any of these components of food chain misbalances the entire riverine ecosystem. Numerous studies have been carried out on the various environmental aspects of rivers considering the presence of fine sediment in river flow. The present paper critically reviews many of these aspects to understand the various environmental impacts of suspended sediment on river health, flora and fauna.

Keywords: 

  1. Introduction
    The existence of fine sediment in a river system is a natural phenomenon. But in many cases it is exacerbated by the manmade activities. The natural cause of fines being in flow generally keeps the whole system in equilibrium except during some calamites whereas anthropogenic activities leading to fines entering into the flow puts several adverse impacts on the entire river system and its ecology. Presence of fines in flow is considered as a type of pollution in water. In United States,
    the fine sediment in water along with other non point source pollution is considered as a major obstacle in providing quality water for fishes and recreation activities (Diplas and Parker 1985).
    Sediments in a river are broadly of two types, organic and inorganic, and they both move in two ways either along the bed of the channel called bed load or in suspension called suspended load and their movements depend upon fluid flow and sediment characteristics. Further many investigators have divided the materials in suspension into two different types.
    One which originates from channel bed and bank is called bed material suspended load and another that migrates from feeding catchment area is called wash load. A general perception is that wash loads are very fine materials like clay, silt but it may not always be true (Woo et al. 1986). In general, suspended materials are of size less than 2 mm. The impact of sand on the various aspects of river is comparatively less than that of silt and clay. The latter are chemically active and good carrier of many contaminants and nutrients such as dioxins, phosphorous, heavy and trace metals, polychlorinated biphenyl (PCBs), radionuclide, etc. (Foster and Charlesworth 1996; Horowitz et al. 1995; Owens et al. 2001; Salomons and Förstner 1984; Stone and Droppo 1994; Thoms 1987). Foy and Bailey-Watt (1998) reported that out of 129 lakes in England and Wales, 69% have phosphorous contamination. Ten percent lakes, rivers, and bays of United States have sediment contaminants with chemicals as reported by USEPA. Several field and experimental studies have been conducted
    considering, sand, silt, and clay as suspended material. Hence, the subject reported herein is based on considering the fine sediment size smaller than 2 mm.
    Fine sediments have the ability to alter the hydraulics of the flow. Presence of fines in flow can change the magnitude of turbulence, it can change the friction resistance to flow. Fines can change the mobility and permeability of the bed material. In some extreme cases, fines in flow may even change the morphology of the river (Doeg and Koehn 1994; Nuttall 1972; Wright and Berrie 1987). Fines in the flow adversely affect the producer by increasing the turbidity, hindering the
    photosynthesis process by limiting the light penetration. This is ultimately reflected in the entire food ecosystem of river (Davis-Colley et al. 1992; Van Niewenhuyre and Laparrieve 1986). In addition, abrasion due to flowing sediment kills the aquatic flora (Edwards 1969; Brookes 1986). Intrusion of fines into the pores of river bed reduces space for several invertebrates, affects the spawning process (Petts 1984; Richards and Bacon 1994; Schalchli 1992). There are several other direct
    or indirect, short-term or long-term impacts of fines in river.
    The present paper reports the physical/environmental significance of fines in river. The hydraulic significance of presence of fines in the river has been reviewed in another paper (Effect of fine sediments on river hydraulics – a research review – http://dx.doi.org/10.1080/09715010.2014.982001).

References

  • Adams, J.N., and Beschta, R.L. (1980). “Gravel bed composition in oregon coastal streams.” Can. J. Fish. Aquat.Sci., 37, 1514–1521.10.1139/f80-196  [Crossref][Web of Science ®][Google Scholar]
  • Alabaster, J.S., and Llyod, R.L. (1980). Water quality criteria for fresh water, Butterworth, London, 297. [Google Scholar]
  • Aldridge, D.W., Payne, B.S., and Miller, A.C. (1987). “The effects of intermittent exposure to suspended solids and turbulence on three species of freshwater mussels.” Environ. Pollution, 45, 17–28.10.1016/0269-7491(87)90013-3  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Barton, B.A. (1977). “Short-term effects of highway construction on the limnology of a small stream in southern Ontario.” Freshwater Biol., 7, 99–108.10.1111/fwb.1977.7.issue-2  [Crossref][Web of Science ®][Google Scholar]
  • Bash, J., Berman, C., and Bolton, S. (2001). Effects of turbidity and suspended solids on salmonids, Center for Streamside Studies, University of Washington, Seattle, WA. [Google Scholar]
  • Baxter, C.V., and Hauer, F.R. (2000). “Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confuentus).” Can. J. Fish. Aquat.Sci., 57, 1470–1481.10.1139/f00-056  [Crossref][Web of Science ®][Google Scholar]
  • Berkman, H.E., and Rabeni, C.F. (1987). “Effect of siltation on stream fish communities.” Environ. Biol. Fish., 18, 285–294.10.1007/BF00004881  [Crossref][Web of Science ®][Google Scholar]
  • Beschta, R.L., and Jackson, W.L. (1979). “The intrusion of fine sediments into a stable gravel bed.” J. Fish. Res. Board Can., 36, 204–210.10.1139/f79-030  [Crossref][Google Scholar]
  • Boon, P.J. (1988). “The impact of river regulation on invertebrate communities in the UK.” Reg. River Res. Manage., 2, 389–409.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Brookes, A. (1986). “Response of aquatic vegetation to sedimentation downstream from river channelization works in England and Wales.” Biol. Conserv., 38, 352–367. [Crossref][Web of Science ®][Google Scholar]
  • Bruton, M.N. (1985). “The effects of suspensoids on fish.” Hydrobiologia, 125, 221–241.10.1007/BF00045937  [Crossref][Web of Science ®][Google Scholar]
  • Carling, P.A. (1984). “Deposition of fine and coarse sand in an open-work gravel bed.” Can. J. Fish. Aquat. Sci., 41, 263–270.10.1139/f84-030  [Crossref][Web of Science ®][Google Scholar]
  • Carling, P.A., and McCahon, C.P. (1987). “Natural siltation of brown trout (Salmo trutta L.) spawning gravels during low-flow conditions.” Regulated streams, J.F. Craig and J.B. Kemper, eds., Plenum Press, New York, NY, 229–244.10.1007/978-1-4684-5392-8  [Crossref][Google Scholar]
  • Carter, J., Owens, P.N., Walling, D.E., and Leeks, G.J.L. (2003). “Fingerprinting suspended sediment sources in a large urban river system.” Sci. Total Environ., 314–316, 513–534.10.1016/S0048-9697(03)00071-8  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Chang, H.H. (1988). Fluvial processes in river engineering, Krieger, Malabar Florida, 432. [Google Scholar]
  • Chapman, D.W. (1988). “Critical review of variables used to define effects of fines in redds of large salmonids.” Trans. Am. Fish. Soc., 117, 1–21.10.1577/1548-8659(1988)117<0001:CROVUT>2.3.CO;2  [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Church, M.A., Mclean, D.G., and Wolcott, J.F. (1987). “River bed gravel sampling and analysis.” Sediment transport in gravel-bed rivers, C.R. Thorne, J.C. Bathrust, and R.D. Hey, eds., John Willey, Chichester, 43–79. [Google Scholar]
  • Cline, L.D., Short, R.A., and Ward, J.V. (1982). “The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream.” Hydrobiologia, 96, 149–159.10.1007/BF02185430  [Crossref][Web of Science ®][Google Scholar]
  • Collins, A.L., Walling, D.E., and Leeks, G.J.L. (1997). “Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type.” Geografiska Annaler, 79A, 239–254.10.1111/1468-0459.00020  [Crossref][Google Scholar]
  • Cordone, A.J., and Kelly, D.W. (1961). “The influence of inorganic sediment on the aquatic life of stream.” Calif. Fish Game, 47, 189–228. [Google Scholar]
  • Culp, J.M., Wrona, F.J., and Davies, R.W. (1985). “Response of stream benthos and drift to fine sediment depositionversus transport.” Can. J. Zool., 64, 1345–1351. [Crossref][Web of Science ®][Google Scholar]
  • Davies-Colley, R.J., Hickey, C.W., Quinn, J.M., and Ryan, P.A. (1992). “Effects of clay discharges on streams.” Hydrobiologia, 248, 215–234.10.1007/BF00006149  [Crossref][Web of Science ®][Google Scholar]
  • Dhamotharan, S., Wood, A., Parker, G., and Stefan, H. (1980). Bed load transport in a model gravel stream. Project Report No. 190. St. Anthony Falls Hydraulic Laboratory, University of Minnesota. [Google Scholar]
  • Diplas, P., and Parker, G. (1985). Pollution of gravel spawning grounds due to fine sediment. Project Report, No. 240. St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN. [Google Scholar]
  • Doeg, T.J., and Koehn, J.D. (1994). “Effects of draining and desilting a small weir on downstream fish and macroinvertebrates.” Reg. River Res. Manage., 9, 263–277.10.1002/(ISSN)1099-1646  [Crossref][Web of Science ®][Google Scholar]
  • Droppo, I.G. (2001). “Rethinking what constitutes suspended sediment.” Hydrol. Process., 15, 1551–1564.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Droppo, I.G., and Ongley, E.D. (1994). “Flocculation of suspended sediment in rivers of southeastern Canada.” Water Res., 28, 1799–1809.10.1016/0043-1354(94)90253-4  [Crossref][Web of Science ®][Google Scholar]
  • Einstein, H.A. (1968). “Deposition of suspended particles in a gravel bed.” J. Hydraul. Eng., 94, 1197–1205. [Google Scholar]
  • Erman, D.C., and Ligon, F.K. (1988). “Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility.” Environ. Manage., 12, 85–97.10.1007/BF01867380  [Crossref][Web of Science ®][Google Scholar]
  • Farnsworth, K.L., and Milliman, J.D. (2003). “Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example.” Global Planet. Change, 39, 53–64.10.1016/S0921-8181(03)00017-1  [Crossref][Web of Science ®][Google Scholar]
  • Foster, I.D.L., and Charlesworth, S.M. (1996). “Heavy metals in the hydrological cycle: trends and explanation.” Hydrol. Process., 10, 227–261.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Foy, R.H., and Bailey-Watts, A.E. (1998). “Observations on the spatial and temporal variation in the phosphorus status of lakes in the British Isles.” Soil Use Manage., 14, 131–138.10.1111/sum.1998.14.issue-s4  [Crossref][Web of Science ®][Google Scholar]
  • Frostick, L.E., Lucas, P.M., and Reid, I. (1984). “The infiltration of fine matrices into coarse-grained alluvial sediments and its implications for stratigraphical interpretation.” J. Geol. Soc. London, 141, 955–965.10.1144/gsjgs.141.6.0955  [Crossref][Web of Science ®][Google Scholar]
  • Gagnier, D.L., and Bailey, R.C. (1994). “Balancing loss of information and gains in efficiency in characterizing stream sediment samples.” J. North Am. Benthol. Soc., 13, 170–180.10.2307/1467236  [Crossref][Web of Science ®][Google Scholar]
  • Gammon, J.R. (1970). The effect of inorganic sediment on stream biota. Environmental Protection Agency, Water Pollution Control Research, Series, 18050 DWC 12/70. USGPO, Washington, DC. [Google Scholar]
  • Graham, A.A. (1990). “Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspention.” Hydrobiologia, 199, 107–115.10.1007/BF00005603  [Crossref][Web of Science ®][Google Scholar]
  • Greig, S.M., Sear, D.A., and Carling, P.A. (2005). “The impact of fine sediment accumulation on the survival of incubating salmon progeny: Implications for sediment management.” Sci. Total Environ., 344, 241–258.10.1016/j.scitotenv.2005.02.010  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Harrod, T.R., and Theurer, F.D. (2002). “Sediment.” Agriculture, hydrology and water quality, P.M. Haygarth and S.C. Jarvis, eds., CABI, Wallingford, 502. [Crossref][Google Scholar]
  • Horowitz, A.J., Elrick, K.A., Robbins, J.A., and Cook, R.B. (1995). “Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D’Alene, Idaho, USA part II: Subsurface sediments.” Hydrol. Process., 9, 35–54.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Hynes, H.B.N. (1970). The ecology of running waters, Liverpool University Press, Liverpool. [Google Scholar]
  • Khullar, N.K. (2002). “Effect of wash load on transport of uniform and nonuniform sediments.” Ph.D. thesis, Indian Institute of Technology Roorkee. [Google Scholar]
  • Kondolf, G.M. (1995). “Managing bedload sediment in regulated rivers: Examples from California, USA.” Geophys. Monograph, 89, 165–176. [Google Scholar]
  • Kondolf, G.M. (1997). “Hungry water: effects of dams and gravel mining on river channels.” Environ. Manage., 21, 533–551.10.1007/s002679900048  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Langer, O.E. (1980). “Effects of sedimentation on salmonid stream life.” Report on the Technical Workshop on Suspended Solids and the Aquatic Environment, K. Weagle, ed., Whitehorse. [Google Scholar]
  • Lemly, A.D. (1982). “Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment.” Hydrobiologia, 87, 229–245.10.1007/BF00007232  [Crossref][Web of Science ®][Google Scholar]
  • Levasseur, M., Bergeron, N.E., Lapointe, M.F., and Bérubé, F. (2006). “Effects of silt and very fine sand dynamics in Atlantic salmon (Salmo salar) redds on embryo hatching success.” Can. J. Fish. Aquat. Sci., 63, 1450–1459.10.1139/f06-050  [Crossref][Web of Science ®][Google Scholar]
  • Lewis, K. (1973a). “The effect of suspended coal particles on the life forms of the aquatic moss Eurhynchium riparioides (Hedw.).” Fresh Water Biol., 3, 251–257.10.1111/fwb.1973.3.issue-3  [Crossref][Google Scholar]
  • Lewis, K. (1973b). “The effect of suspended coal particles on the life forms of the aquatic moss Eurhynchium riparioides (Hedw.).” Fresh Water Biol., 3, 391–395.10.1111/fwb.1973.3.issue-4  [Crossref][Google Scholar]
  • Lisle, T. (1980). “Sedimentation of Spawning Areas during Storm Flows, Jacoby Creek, North Coastal California.” Presented at the fall meeting of the American Geophysical Union, San Francisco, CA. [Google Scholar]
  • Marchant, R. (1989). “Changes in the benthic invertebrate communities of the thomson river, southeastern Australia, after dam construction.” Reg. River Res. Manage., 4, 71–89.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • McNeil, W.J., and Ahnell, W.H. (1964). Success of pink salmon spawning relative to size of spawning bed material. US Fish and Wildlife Service. Special Scientific Report, Fisheries 469. Washington, DC. [Google Scholar]
  • Milhous, R.T. (1973). “Sediment transport in a gravel bottomed stream.” Ph.D. thesis, Oregon State University, Corvallis, OR. [Google Scholar]
  • Milliman, J.D., and Syvitski, J.P.M. (1992). “Geomorphic/tectonic control of sediment discharge to the oceans: the importance of small mountainous rivers.” J. Geol., 100, 525–544.10.1086/jg.1992.100.issue-5  [Crossref][Web of Science ®][Google Scholar]
  • Mohnakrishnan, A. (2001). Reservoir sedimentation, Seminar on Reservoir Sedimentation, Ooty. [Google Scholar]
  • Mohta, J.A., Wallbrink, P.J., Hairsine, P.B., and Grayson, R.B. (2003). “Determining the sources of suspended sediment in a forested catchment in southeastern Australia.” Water Resour. Res., 39, 1056. [Web of Science ®][Google Scholar]
  • Morris, G.L. (1993). “A global perspective of sediment control measures in reservoirs.” Notes on sediment management in reservoirs, S. Fan and G. Morris, eds., Water Resources Publications, Colorado, 13–44. [Google Scholar]
  • Morris, L.G., and Fan, J. (2010). Reservoir Sedimentation hand book – design and management of dams, reservoirs and watershed for sustainable use. McGraw-Hill, 440 and 499. [Google Scholar]
  • Newcombe, C.P., and Macdonald, D.D. (1991). “Effects of suspended sediments on aquatic ecosystems.” North Am. J. Fish. Manage., 11, 72–82.10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2  [Taylor & Francis Online][Google Scholar]
  • Nuttal, P.M. (1972). “The effects of sand deposition upon the macroinvertebrate fauna of the River Camel, Cornwall.” Freshwater Biol., 2, 181–186.10.1111/fwb.1972.2.issue-3  [Crossref][Google Scholar]
  • Olsson, T.I., and Petersen, B. (1986). “Effects of gravel size and peat material on embryo survival and alevin emergence of brown trout, Salmo trutta L.” Hydrobiologia, 135, 9–14.10.1007/BF00006453  [Crossref][Web of Science ®][Google Scholar]
  • Owens, P.N., Walling, D.E., and Leeks, G.J.L. (2000). “Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model.” Tracers in eomorphology, I.D.L. Foster, ed., Wiley, Chichester, 291–308. [Google Scholar]
  • Owens, P.N., Walling, D.E., Carton, J., Meharg, A.A., Wright, J., and Leeks, G.J.L. (2001). “Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and PCBs) in agricultural and industrialized drainage basins.” Sci. Total Environ., 266, 177–186.10.1016/S0048-9697(00)00729-4  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Petts, G.E. (1984). Impounded rivers: Perspectives for ecological management, Wiley, Chichester, 326. [Google Scholar]
  • Phillips, J.M., and Walling, D.E. (1995). “An assessment of the effects of sample collection, storage and resuspension on the representativeness of measurements of the effective particle size distribution of fluvial suspended sediment.” Water Res., 29, 2498–2508.10.1016/0043-1354(95)00087-2  [Crossref][Web of Science ®][Google Scholar]
  • Quinn, J.M., Davies-Coley, R.J., Hickey, C.W., Vickers, M.L., and Ryan, P.A. (1992). “Effects of clay discharges on streams.” Hydrobiologia, 248, 235–247.10.1007/BF00006150  [Crossref][Web of Science ®][Google Scholar]
  • Reiser, D.W., and White, R.G. (1990). “Effects of stream flow reduction on Chinook salmon egg incubation and fry quality.” Rivers, 1, 110–118. [Google Scholar]
  • Richards, C., and Bacon, K.L. (1994). “Influence of fine sediment on macroibvertebrates colonization of surface and hyporheic stream substrate.” Great Basin Nat., 54, 106–113. [Google Scholar]
  • Richards, C., Host, G.H., and Arthur, J.W. (1993). “Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment.” Freshwater Biol., 29, 285–294.10.1111/fwb.1993.29.issue-2  [Crossref][Web of Science ®][Google Scholar]
  • Rosenberg, D.M., and Wiens, A.P. (1978). “Effects of sediment addition on macrobenthic invertebrates in a Northern Canadian River.” Water Res., 12, 753–763.10.1016/0043-1354(78)90024-6  [Crossref][Web of Science ®][Google Scholar]
  • Ryan, P.A. (1991). “Environmental effects of sediment on New Zealand streams: A review.” New Zeal. J. Mar. Freshwater Res., 25, 207–221.10.1080/00288330.1991.9516472  [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Salomons, W., and Förstner, U. (1984). Metals in the hydrocycle, Sringer Verglag, New York, NY.10.1007/978-3-642-69325-0  [Crossref][Google Scholar]
  • Schalchli, U. (1992). “The clogging of coarse gravel river beds by fine sediment.” Hydrobiologia, 235–236, 189–197.10.1007/BF00026211  [Crossref][Web of Science ®][Google Scholar]
  • Scrivener, J.C., and Brownlee, M.J. (1989). “Effects of forest harvesting on spawning gravel and incubation survival of chum (Oncorhynchus keta) andcoho salmon (O. kisutch) in Carnation Creek, British Columbia.” Can. J. Fish. Aquat. Sci., 46, 681–696.10.1139/f89-087  [Crossref][Web of Science ®][Google Scholar]
  • Sear, D.A. (1993). “Fine sediment infiltration into gravel spawning beds within a regulated river experiencing floods: Ecological implications for salmonids.” Reg Rivers Res. Manage., 8, 373–390.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Soutar, R.G. (1989). “Afforestation and sediment yields in British fresh waters.” Soil Use Manage., 5, 82–86.10.1111/sum.1989.5.issue-2  [Crossref][Web of Science ®][Google Scholar]
  • Stone, M., and Droppo, I.G. (1994). “In-channel surficial fine-grained sediment laminae: Part II: Chemical characteristics and implications for contaminant transport in fluvial systems.” Hydrol. Process., 8, 113–124.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Thoms, M.C. (1987). “Channel sedimentation within the urbanized River Tame, UK.” Reg. Rivers Res. Manage., 1, 229–246.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Trimble, S.W. (1983). “A sediment budget for Coon Creek, Driftless area, Wisconsin, 1853–1977.” Am. J. Sci., 283, 454–474.10.2475/ajs.283.5.454  [Crossref][Web of Science ®][Google Scholar]
  • U.S. Department of Health, Education and Welfare. (1965). Environmental Health Practices in recreational Areas, Public Health Service, Publication No. 1195. [Google Scholar]
  • Van Nieuwenhuyse, E.E., and LaPerriere, J.D. (1986). “Effects of placer gold mining on primary production in subarctic streams of Alaska.” J. Am. Water Res. Assoc., 22, 91–99. [Crossref][Google Scholar]
  • Vörösmarty, C.J., Meybeck, M., Fekete, B., Sharma, K., Green, P., and Syvitski, J.P.M. (2003). “Anthropogenic sediment retention: major global impact from registered river impoundments.” Global Planet. Change, 39, 169–190.10.1016/S0921-8181(03)00023-7  [Crossref][Web of Science ®][Google Scholar]
  • Walling, D.E. (1995). “Suspended sediment yields in a changing environment.” Changing river channels, A. Gurnell and G. Petts, eds., Wiley, Chichester, 149–176. [Google Scholar]
  • Walling, D.E., and Moorehead, D.W. (1989). “The particle size characteristics of fluvial suspended sediment: an overview.” Hydrobiologia, 176–177, 125–149.10.1007/BF00026549  [Crossref][Web of Science ®][Google Scholar]
  • Walling, D.E., Owens, P.N., and Leeks, G.J.L. (1999). “Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK.” Hydrol. Process., 13, 955–975.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Walling, D.E., Owens, P.N., Waterfall, B.D., Leeks, G.J.L., and Wass, P.D. (2000). “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK.” Sci. Total Environ., 251–252, 205–222.10.1016/S0048-9697(00)00384-3  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Wilbur, C.G. (1983). Turbidity in the aquatic environment: an environmental factor in fresh and oceanic waters, Charles C. Thomas, Springfield, IL, 133. [Google Scholar]
  • Woo, H.S., Julien, P.Y., and Richardson, E.V. (1986). “Washload and fine sediment load.” J. Hydraul. Eng., 112, 541–545.10.1061/(ASCE)0733-9429(1986)112:6(541)  [Crossref][Google Scholar]
  • Wood, P.J., and Armitage, P.D. (1997). “Biological effects of fine sediment in the lotic environment.” Environ. Manage., 21, 203–217.10.1007/s002679900019  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Wooster, J.K., Dusterhoff, S.R., Cui, Y., Sklar, L.S., Dietrich, W.E., and Malko, M. (2008). “Sediment supply and relative size distribution effects on fine sediment infiltration into immobile gravels.” Water Res. Res., 44, 1–18. [Crossref][Web of Science ®][Google Scholar]
  • Wren, G.Daniel, Bennett, J.Sean, Barkdoll, D.Brian, and Khunle, A.Roger. (2000). Studies in suspended sediment and turbulence in open channel flows, USDA, Agriculture Research Service, Research Report No. 18. [Google Scholar]
  • Wright, J.F., and Berrie, A.D. (1987). “Ecological effects of groundwater pumping and a natural drought on the upper reaches of a chalk stream.” Reg. River Res. Manage., 1, 145–160.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Zhang, H., Xia, M., Chen, S.J., Li, Z., and Xia, H.B. (1976). “Regulation of sediments in some medium and small-sized reservoirs on heavily silt-laden streams in China.” 12th International Commission on Large Dams (ICOLD) Congress, Q. 47, R. 32, Mexico City, 1123–1243. [Google Scholar]
Fig. 1. Protection matt over the scour pit.

그물형 세굴방지매트를 사용한 수직말뚝의 흐름에 대한 수치적 연구

Numerical study of the flow at a vertical pile with net-like scour protection matt
Minxi Zhanga,b
, Hanyan Zhaoc
, Dongliang Zhao d, Shaolin Yuee
, Huan Zhoue
,
Xudong Zhaoa
, Carlo Gualtierif
, Guoliang Yua,b,∗
a SKLOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China b KLMIES, MOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China c Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China d CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China e CCCC Road & Bridge Special Engineering Co., Ltd, Wuhan 430071, China f Department of Structures for Engineering and Architecture, University of Naples Federico II, Italy

Abstract

현재 또는 파도 환경에서 말뚝 또는 부두의 국부 세굴은 전 세계적으로 상부 구조물의 안전을 위협합니다. 말뚝이나 부두에서 세굴 방지 덮개로 그물 모양의 매트를 적용하는 것이 제안되었습니다. 매트는 국부 세굴 구덩이의 흐름을 약화 및 확산시켜 국부 세굴을 줄이고 퇴적물 퇴적을 강화합니다. 매트로 덮힌 말뚝의 흐름을 조사하기 위해 수치 시뮬레이션을 수행했습니다. 시뮬레이션 결과는 매트의 두께 dt(2.6d95 ~ 17.9d95)와 개구부 크기 dn(7.7d95 ~ 28.2d95)을 최적화하는 데 사용되었습니다. 매트가 국부 속도를 상당히 감소시키고 말뚝에서 와류를 소멸시켜 국부 세굴 범위를 실질적으로 감소시키는 것으로 밝혀졌습니다. 매트의 개구부 크기가 작을수록 베드에서의 유동확산이 더 효과적이었으며 말뚝에서 더 작은 베드전단응력이 관찰되었다. 본 연구에서 고려한 유동 조건의 경우 상대 두께 T = 7.7 및 상대 개구 크기 S = 7.7인 매트가 세굴 방지에 효과적일 수 있습니다.

Fig. 1. Protection matt over the scour pit.
Fig. 26. Distribution of the turbulent kinetic energy on the y-z plane (X = 0.5) for various S
Fig. 26. Distribution of the turbulent kinetic energy on the y-z plane (X = 0.5) for various S

References

[1] C. He, Mod. Transp. Technol. 17 (3) (2020) 46–59 in Chinese.
[2] X. Wen, D. Zhang, J. Tianjin Univ. 54 (10) (2021) 998–1007 (Science and Technology)in Chinese.
[3] M. Zhang, H. Sun, W. Yao, G. Yu, Ocean Eng. 265 (2020) 112652, doi:10.1016/j.
oceaneng.2022.112652.
[4] K. Wardhana, F.C. Hadipriono, J. Perform. Constr. Fac. 17 (3) (2003) 144–150,
doi:10.1061/(ASCE)0887-3828(2003)17:3(144).
[5] R. Ettema, G. Constantinescu, B.W. Melville, J. Hydraul. Eng. 143 (9) (2017)
03117006, doi:10.1061/(ASCE)HY.1943-7900.0001330.
[6] C. Valela, C.D. Rennie, I. Nistor, Int. J. Sediment Res. 37 (1) (2021) 37–46,
doi:10.1016/j.ijsrc.2021.04.004.
[7] B.W. Melville, A.J. Sutherland, J. Hydraul. Eng. 114 (10) (1988) 1210–1226,
doi:10.1061/(ASCE)0733-9429(1988)114:10(1210).
[8] E.V. Richardson, S.R. Davis, Evaluating Scour At Bridges, 4th ed., United States
Department of Transportation, Federal Highway Administration, Washington,
DC., 2001.
[9] D.M. Sheppard, B. Melville, H. Demir, J. Hydraul. Eng. 140 (1) (2014) 14–23,
doi:10.1061/(ASCE)HY.1943-7900.0000800.
[10] A.O. Aksoy, G. Bombar, T. Arkis, M.S. Guney, J. Hydrol. Hydromech. 65 (1)
(2017) 26–34.
[11] D.T. Bui, A. Shirzadi, A. Amini, et al., Sustainability 12 (3) (2020) 1063, doi:10.
3390/su12031063.
[12] B.M. Sumer, J. Fredsoe, The Mechanics of Scour in Marine Environments. World
Advanced Series on Ocean Engineering, 17, World Scientific, Singapore, 2002.
[13] J. Unger, W.H. Hager, Exp. Fluids 42 (1) (2007) 1–19.
[14] G. Kirkil, S.G. Constantinescu, R. Ettema, J. Hydraul. Eng. 134 (5) (2008) 82–84,
doi:10.1061/(ASCE)0733-9429(2008)134:5(572).
[15] B. Dargahi, J. Hydraul. Eng. 116 (10) (1990) 1197–1214.
[16] A. Bestawy, T. Eltahawy, A. Alsaluli, M. Alqurashi, Water Supply 20 (3) (2020)
1006–1015, doi:10.2166/ws.2020.022.
[17] Y.M. Chiew, J. Hydraul. Eng. 118 (9) (1992) 1260–1269.
[18] D. Bertoldi, R. Kilgore, in: Hydraulic Engineering ’93, ASCE, San Francisco, California, United States, 1993, pp. 1385–1390.
[19] Y.M. Chiew, J. Hydraul. Eng. 121 (9) (1997) 635–642.
[20] C.S. Lauchlan, B.W. Melville, J. Hydraul. Eng. 127 (5) (2001) 412–418, doi:10.
1061/(ASCE)0733-9429(2001)127:5(412).
[21] P.F. Lagasse, P.E. Clopper, L.W. Zevenbergen, L.G. Girard, National Cooperative
Highway Research Program (NCHRPReport 593), Countermeasures to protect
bridge piers from scour, Washington, DC, NCHRP, 2007.
[22] S. Jiang, Z. Zhou, J. Ou, J. Sediment Res. (4) (2013) 63–67 in Chinese.
[23] A. Galan, G. Simarro, G. Sanchez-Serrano, J. Hydraul. Eng. 141 (6) (2015)
06015004, doi:10.1061/(ASCE)HY.1943-7900.0001003.
[24] Z. Zhang, H. Ding, J. Liu, Ocean Eng. 33 (2) (2015) 77–83 in Chinese.
[25] C. Valela, C.N. Whittaker, C.D. Rennie, I. Nistor, B.W. Melville, J. Hydraul. Eng.
148 (3) (2022) 04022002 10.1061/%28ASCE%29HY.1943-7900.0001967.
[26] B.W. Melville, A.C. Hadfield, J. Hydraul. Eng. 6 (2) (1999) 1221–1224, doi:10.
1061/(ASCE)0733-9429(1999)125:11(1221).
[27] V. Kumar, K.G. Rangaraju, N. Vittal, J. Hydraul. Eng. 125 (12) (1999) 1302–1305.
[28] A.M. Yasser, K.S. Yasser, M.A. Abdel-Azim, Alex. Eng. J. 54 (2) (2015) 197–203,
doi:10.1016/j.aej.2015.03.004.
[29] S. Khaple, P.R. Hanmaiahgari, R. Gaudio, S. Dey, Acta Geophys. 65 (2017) 957–
975, doi:10.1007/s11600-017-0084-z.
[30] C. Valela, I. Nistor, C.D. Rennie, in: Proceedings of the 6th International Disaster Mitigation Specialty Conference, Fredericton, Canada, Canadian Society for
Civil Engineering, 2018, pp. 235–244.
[31] A. Tafarojnoruz, R. Gaudio, F. Calomino, J. Hydraul. Eng. 138 (3) (2012) 297–
305, doi:10.1061/(ASCE)HY.1943-7900.0000512.
[32] H. Tang, S. Fang, Y. Zhou, K. Cai, Y.M. Chiew, S.Y. Lim, N.S. Cheng, in: Proceedings of the 2nd International Conference Scour and Erosion (ICSE-2), Singapore.
Singapore, Nanyang Technological University, 2004.
[33] W. Zhang, Y. Li, X. Wang, Z. Sun, J. Sichuan Univ. 06 (2005) 34–40 (Engineering
Science Edition)in Chinese.
[34] S. Yang, B. Shi, Trans. Oceanol. Limnol. 5 (2017) 43–47 in Chinese.
[35] H. Wang, F. Si, G. Lou, W. Yang, G. Yu, J. Waterw. Port Coast. Ocean Eng. 141
(1) (2015) 04014030, doi:10.1061/(ASCE)WW.1943-5460.0000270.
[36] L.D. Meyer, S.M. Dabney, W.C. Harmon, Trans. ASAE 38 (3) (1995) 809–815.
[37] G. Spyreas, B.W. Wilm, A.E. Plocher, D.M. Ketzner, J.W. Matthews, J.L. Ellis, E.J. Heske, Biol. Invasions 12 (5) (2010) 1253–1267, doi:10.1007/
s10530-009-9544-y.
[38] T. Lambrechts, S. François, S. Lutts, R. Muñoz-Carpena, C.L. Bielders, J. Hydrol.
511 (2014) 800–810, doi:10.1016/j.jhydrol.2014.02.030.
[39] G. Yu, Dynamic Embedded Anchor with High Frequency Micro Amplitude Vibrations. CN patent No: ZL200810038546.0, 2008.
[40] X. Chen, M. Zhang, G. Yu, Ocean Eng. 236 (2021) 109315, doi:10.1016/j.
oceaneng.2021.109315.
[41] F. Gumgum, M.S. Guney, in: Proceedings of the 6th International Conference
Engineering and Natural Sciences (ICENS), Serbia, Belgrade, 2020.
[42] H. Zhao, S. Yue, H. Zhou, M. Zhang, G. Yu, Ocean Eng. 40 (5) (2022) 111–120
in Chinese.
[43] B. Blocken, C. Gualtieri, Environ. Modell. Softw. 33 (2012) 1–22, doi:10.1016/j.
envsoft.2012.02.001.
[44] N.D. Bennett, B.F. Croke, G. Guariso, et al., Modell. Softw. 40 (2013) 1–20,
doi:10.1016/j.envsoft.2012.09.011.
[45] X. Zhao, Effectiveness and Mechanism of Lattice On Sedimentation and Anti-Erosion of Local Scour Hole At Piers, Shanghai Jiao Tong University, Shanghai, China, 2023.
[46] M. Zhang, G. Yu, Water Resour. Res. 53 (9) (2017) 7798–7815, doi:10.1002/
2017WR021066.

Figure 2: 3D (left) and 2D (right) views of wave elevation using case C

CFD 접근법을 사용하여 파도에서 하이드로포일의 SEAKEEPING 성능

SYAFIQ ZIKRYAND FITRIADHY*
Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala
Terengganu, Terengganu, Malaysia
*
Corresponding author: naoe.afit@gmail.com http://doi.org/10.46754/umtjur.2021.07.017

Abstract

수중익선은 일반적으로 열악한 환경 조건으로 인해 승객의 편안함에 영향을 미칠 수 있는 높은 저항과 과도한 수직 운동(히브 및 피치)을 경험합니다. 따라서 복잡한 유체역학적 현상이 존재하기 때문에 파랑에서 수중익선의 내항성능을 규명할 필요가 있다.

이를 위해 수중익선 운동에 대한 CFD(Computational Fluid Dynamic) 해석을 제안한다. Froude Number 및 포일 받음각과 같은 여러 매개변수가 고려되었습니다.

그 결과 Froude Number의 후속 증가는 히브 및 피치 운동에 반비례한다는 것이 밝혀졌습니다. 본질적으로 이것은 높은 응답 진폭 연산자(RAO)의 형태로 제공되는 수중익선 항해 성능의 업그레이드로 이어졌습니다.

또한 포일 선수의 증가하는 각도는 히브 운동에 비례하는 반면, 포일 선미는 7.5o에서 낮은 히브 운동을 보였고, 그 다음으로 5o, 10o 순으로 나타났다. 피치모션의 경우 포일 보우의 증가는 5o에서 더 낮았고, 그 다음이 10o, 7.5o 순이었다. 포일 선미의 증가는 수중익선에 의한 피치 모션 경험에 비례했습니다.

일반적으로 이 CFD 시뮬레이션은 앞서 언급한 설계 매개변수와 관련하여 공해 상태에서 수중익선 설계의 운영 효율성을 보장하는 데 매우 유용합니다.

Keywords

CFD, hydrofoil, foil angle of attack, heave, pitch.

Figure 1: Overall mesh block being used in simulation
Figure 1: Overall mesh block being used in simulation
Figure 2: 3D (left) and 2D (right) views of wave elevation using case C
Figure 2: 3D (left) and 2D (right) views of wave elevation using case C

References

Djavareshkian, M. H., & Esmaeili, A. (2014). Heuristic optimization of submerged hydrofoil
using ANFIS–PSO. Ocean Engineering, 92, 55-63.
Fitriadhy, A., & Adam, N. A. (2017). Heave and pitch motions performance of a monotricat ship in
head-seas. International Journal of Automotive and Mechanical Engineering, 14, 4243-4258.
Islam, M., Jahra, F., & Hiscock, S. (2016). Data analysis methodologies for hydrodynamic
experiments in waves. Journal of Naval Architecture and Marine Engineering, 13(1),
1-15.
Koutsourakis, N., Bartzis, J. G., & Markatos, N. C. (2012). Evaluation of Reynolds stress, k-ε and
RNG k-ε turbulence models in street canyon flows using various experimental datasets.
Environmental fluid mechanics, 1-25.
Manual, F. D. U. (2011). Flow3D User Manual, v9. 4.2, Flow Science. Inc., Santa Fe, NM. Matveev, K., & Duncan, R. (2005). Development
of the tool for predicting hydrofoil system performance and simulating motion of hydrofoil-assisted boats. Paper presented at the High Speed and High Performance Ship and Craft Symposium, Everett/WA: ASNE, USA.
Seif, M., Mehdigholi, H., & Najafi, A. (2014). Experimental and numerical modeling of the
high speed planing vessel motion. Journal of Marine Engineering & Technology, 13(2), 62-
72.
Sun, X., Yao, C., Xiong, Y., & Ye, Q. (2017). Numerical and experimental study on
seakeeping performance of a swath vehicle in head waves. Applied Ocean Research, 68, 262-
275.
Vakilabadi, K. A., Khedmati, M. R., & Seif, M.S. (2014). Experimental study on heave and
pitch motion characteristics of a wave-piercing trimaran. Transactions of FAMENA, 38(3), 13-
26.
Yakhot, A., Rakib, S., & Flannery, W. (1994). LowReynolds number approximation for turbulent
eddy viscosity. Journal of scientific computing, 9(3), 283-292.
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory.
Journal of scientific computing, 1(1), 3-51.

What’s New – FLOW-3D 2023R2

FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. 누락된 종속성을 보고하도록 Linux 설치 프로그램이 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 또한 워크플로를 자동화한 사용자를 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

확장된 PQ 2 분석

제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량-운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리한 단순화인 경우가 많습니다. 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 여전히 현실적인 결과를 제공합니다. 이것은 시뮬레이션 시간과 모델 복잡성의 감소로 해석됩니다.

FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2022R2 제품군 의 출시와 함께 Flow Science는 워크스테이션과 FLOW-3D 의 HPC 버전 을 통합하여 단일 노드 CPU 구성에서 다중 구성에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 구조 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성 요소 제어, 향상된 연행 공기 기능이 포함됩니다.

통합 솔버

FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여  로컬 워크스테이션 또는 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.

많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션에서 OpenMP/MPI 하이브리드 병렬화의 동일한 이점을 활용하여 워크스테이션 및 노트북에서 실행할 수 있습니다.

성능 확장의 예
점점 더 많은 수의 CPU 코어를 사용하는 성능 확장의 예
메쉬 분해의 예
OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

솔버 성능 개선

멀티 소켓 워크스테이션

멀티 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 통해 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있는 성능 이점을 볼 수 있습니다.

낮은 수준의 루틴으로 벡터화 및 메모리 액세스 개선

대부분의 테스트 사례에서 10%에서 20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 있었습니다.

정제된 체적 대류 안정성 한계

시간 단계 안정성 한계는 모델 런타임의 주요 동인입니다. 2022R2에서는 새로운 시간 단계 안정성 한계인 3D 대류 안정성 한계를 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 30% 정도의 일반적인 속도 향상을 보여주었습니다.

압력 솔버 프리 컨디셔너

경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 어려운 경우 2022R2에서는 모델이 너무 많이 반복될 때 FLOW-3D가 자동으로 새로운 프리 컨디셔너를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임이 1.9배에서 335배까지 빨라졌습니다!

점탄성 유체에 대한 로그 형태 텐서 방법

점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수치에 효과적입니다.

점탄성 흐름을 위한 개선된 솔루션
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수에서 개선된 솔루션의 예. Courtesy MF Tome, et al., J. Non-Newton. 체액. 기계 175-176 (2012) 44–54

활성 시뮬레이션 제어 확장

능동 시뮬레이션 제어 기능은 연속 주조 및 적층 제조 응용 프로그램과 주조 및 기타 여러 열 관리 응용 프로그램에 사용되는 냉각 채널에 일반적으로 사용되는 팬텀 개체를 포함하도록 확장되었습니다.

동적 열 제어의 예
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예
가상 물체 속도 제어의 예
산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예
동적 열 제어의 예
연속 주조 애플리케이션을 위한 팬텀 물체 속도 제어의 예

연행 공기 기능 개선

디퓨저 및 유사한 산업용 기포 흐름 응용 분야의 경우 이제 대량 공급원을 사용하여 물 기둥에 공기를 도입할 수 있습니다. 또한 혼입 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.

디퓨저 모델의 예
디퓨저 모델의 예: 질량원을 사용하여 물기둥에 공기를 도입할 수 있습니다.
Numerical Simulation of Local Scour Around Square Artificial Reef

사각 인공어초 주변 국지세굴 수치모의

Abstract

인공어초(Artificial Reef, ARs)는 연안 어업 자원을 복원하고 생태 환경을 복원하기 위한 핵심 인공 구조물 중 하나입니다. 그러나 많은 AR이 세굴로 인해 안정성과 기능을 상실한 것으로 밝혀졌다. 

AR의 기능적 효과를 보장하기 위해서는 서로 다른 흐름 조건에서 세굴로 인한 매장과 같은 AR의 불안정성을 연구하는 것이 매우 중요합니다.

FLOW-3D에 의해 확립된 3차원 수치 모델은 정상류에서 AR 주변의 국부 세굴 특성을 연구하는 데 사용됩니다. RNG k-ε 난류 모델로 닫힌 RANS 방정식은 하나의 AR 주변의 안정적인 유동장을 시뮬레이션하기 위해 설정됩니다. 

시뮬레이션 결과는 이전 실험 결과와 비교되었으며 좋은 일치를 보여줍니다. 그 다음에, 세굴 특성, 평형 세굴 깊이 및 최대 세굴 체적에 대한 AR의 개구수 및 입사각의 영향을 조사하였다. 결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 

또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 ​​영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다. 

본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 

입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 ​​영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 

결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 ​​영향을 미칠 것입니다. 

베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 ​​영향을 미칠 것입니다. 

베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 ​​영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다. 

본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다.

Numerical Simulation of Local Scour Around Square Artificial Reef
Numerical Simulation of Local Scour Around Square Artificial Reef

Artificial reefs (ARs) are one of the key man-made constructs to restore the offshore fishery resources and recover the ecological environment. However, it is found that many ARs lost their stability and function due to scour. In order to ensure the functional effect of ARs, it is of great significance to study the instability of ARs, like burying caused by scour in different flow conditions. The three-dimensional numerical model established by FLOW-3D is used to study the local scour characteristics around the AR in steady currents. The RANS equations, closed with the RNG k-ε turbulence model, are established for simulating a stable flow field around one AR. The simulation results are compared with previous experimental results and shows good agreement. Then, the effect of the opening number and the incident angles of ARs on the scour characteristics, the equilibrium scour depth and maximum scour volume are investigated. The results indicate that the scour depth and scour volume decrease with the increasing opening number. Moreover, the empirical equations of the effect of the opening number of the AR on the equilibrium scour depth and maximum scour volume are proposed based on the numerical results. The change of the incident angles will affect the change of bed shear stress at the most upstream corner of the AR. The greater bed shear stress results in a more intense scour. This study will provide theoretical support, and practical guidance for the optimized engineering design and construction of ARs.

Mingda Yang,Yanli Tang,Fenfang Zhao,Shiji Xu,Guangjie Fang

키워드:

인공 어초 수치 시뮬레이션 로컬 세굴 세굴 부피 개방 수 공격 각도,컴퓨터 시뮬레이션

Fig. 1 Oscillation of a free surface due to the step reduction of gravity acceleration from kzi ≈ 9.81 to kz ≈ 0

Reorientation of Cryogenic Fluids Upon Step Reduction of Gravity

단계적 중력 감소 시 극저온 유체의 방향 전환

Malte Stief∗, Jens Gerstmann∗∗, and Michael E. Dreyer∗∗∗
ZARM, Center of Applied Space Technology and Microgravity, University of Bremen, Am Fallturm, D-28359 Bremen
Experiments to observe the surface oscillation of cryogenic liquids have been performed with liquid nitrogen inside a 50 mm
diameter right circular cylinder. The surface oscillation is driven by the capillary force that becomes dominant after a sudden
reduction of the gravity acceleration acting on the liquid. The experiments show differences from the speculated behavior and
enables one to observe new features.

Introduction and motivation

최근 몇 년 동안 Bremen의 낙하탑에서 중력의 단계적 감소 시 방향 재지향 거동과 표면 진동을 조사하기 위해 수많은 실험이 수행되었습니다[1]. 이 실험의 원리는 그림 1에 나와 있습니다.

그림 1의 왼쪽에 표시된 것처럼 오른쪽 원형 원통형 용기에 테스트 액체를 레벨 h0까지 채웁니다. 처음에 액체는 정지 상태이며 중앙에서 평평한 인터페이스를 형성합니다.

초기 중력 가속도 kzi ≈ 9.81 [m/s2]와 결과적으로 높은 BOND 수(Bo = ρkziR2/σ)로 인해 실린더의 대칭축에서. 낙하탑에서 실험 캡슐의 방출에 의해 확립된 μ-중력 환경 kz ≈ 0 [m/s2]로의 갑작스러운 전환과 함께 자유 표면은 진동 운동으로 새로운 평형 구성을 찾기 시작합니다(그림의 오른쪽) 1). 이러한 움직임은 그림 1의 중앙에 스케치되어 있습니다.

표면 진동의 구동력은 접착력과 결합된 표면 장력이며, 댐핑은 액체의 점도에 의해 제어됩니다. 위치가 zw인 벽에서 접촉선의 이동은 접촉각 γ에 의해 제어됩니다. 접촉각이 작은 액체용 γ ≈ 0◦

In recent years numerous experiments have been carried out to investigate the reorientation behavior and surface oscillations upon step reduction of gravity at the drop tower in Bremen [1]. The principals of these experiments are shown in figure 1. A right circular cylindrical container is filled up to the level h0 with the test liquid, as shown on the left of figure 1. Initially the liquid is quiescent and forms a flat interface at the center, in the symmetry axis of the cylinder, due to the initial gravity acceleration kzi ≈ 9.81 [m/s2] and the resulting high BOND number (Bo = ρkziR2/σ). With the sudden transition to the µ-gravity environment kz ≈ 0 [m/s2], which is established by the release of the experiment capsular in the drop tower, the free surface is initiated to search its new equilibrium configuration (right side of figure 1) with an oscillatory motion. These movements are sketched in the center of figure 1. The driving force for the surface oscillation is the surface tension in combination with the adhesion force where the damping is controlled by the viscosity of the liquid. The movement of the contact line at the wall, with its position zw, is governed by the contact angle γ. For liquids with small contact angle γ ≈ 0◦

Fig. 1 Oscillation of a free surface due to the step reduction of gravity acceleration from kzi ≈ 9.81 to kz ≈ 0
Fig. 1 Oscillation of a free surface due to the step reduction of gravity acceleration from kzi ≈ 9.81 to kz ≈ 0
Fig. 2 Experiment picture-series showing the oscillation of the free surface at different times for a 50 mm diameter cylinder.
Fig. 2 Experiment picture-series showing the oscillation of the free surface at different times for a 50 mm diameter cylinder.

References

[1] M. Michaelis, Kapillarinduzierte Schwingungen freier Fl¨ussigkeitsoberfl¨achen, Dissertation Universit¨at Bremen, Fortschritt-Berichte
Nr. 454 (VDI Verlag, D¨usseldorf, 2003).

Fig. 6 LH2 isotherms at 1020 s.

액체-수소 탱크를 위한 결합된 열역학-유체-역학 솔루션

Coupled thermodynamic-fluid-dynamic solution for a liquid-hydrogen tank

G. D. Grayson

Published Online:23 May 2012 https://doi.org/10.2514/3.26706

Tools Share

Free first page

Introduction

ROPELLANT 열 성층화 및 외부 교란에 대한 유체 역학적 반응은 발사체와 우주선 모두에서 중요합니다. 과거에는 결합된 솔루션을 제공할 수 있는 충분한 계산 기술이 부족하여 이러한 문제를 개별적으로 해결했습니다.1

이로 인해 모델링 기술의 불확실성을 허용하기 위해 큰 안전 계수를 가진 시스템이 과도하게 설계되었습니다. 고중력 환경과 저중력 환경 모두에서 작동하도록 설계된 미래 시스템은 기술적으로나 재정적으로 실현 가능하도록 과잉 설계 및 안전 요소가 덜 필요합니다.

이러한 유체 시스템은 열역학 및 유체 역학이 모두 중요한 환경에서 모델의 기능을 광범위하게 검증한 후에만 고충실도 수치 모델을 기반으로 할 수 있습니다. 상용 컴퓨터 코드 FLOW-3D2는 유체 역학 및 열 모델링 모두에서 가능성을 보여주었으며,1 따라서 열역학-유체-역학 엔지니어링 문제에서 결합된 질량, 운동량 및 에너지 방정식을 푸는 데 적합함을 시사합니다.

발사체의 복잡한 액체 가스 시스템에 대한 포괄적인 솔루션을 달성하기 위한 첫 번째 단계로 액체 유체 역학과 열역학을 통합하는 제안된 상단 단계 액체-수소(Lit) 탱크의 간단한 모델이 여기에 제시됩니다. FLOW-3D FLOW-3D 프로그램은 Los Alamos Scientific Laboratory에서 시작되었으며 마커 및 셀 방법에서 파생된 것입니다.3 현재 상태로 가져오기 위해 수년에 걸쳐 광범위한 코드 수정이 이루어졌습니다.2

프로그램은 다음과 같습니다. 일반 Navier-Stokes 방정식을 풀기 위해 수치 근사의 중앙 유한 차분 방법을 사용하는 3차원 유체 역학 솔버입니다. 모멘텀 및 에너지 방정식의 섹션은 특정 응용 프로그램에 따라 활성화 또는 비활성화할 수 있습니다.

코드는 1994년 9월 13일 접수를 인용하기 위해 무액체 표면, 복잡한 용기 기하학, 여러 점성 모델, 표면 장력, 다공성 매체를 통한 흐름 및 응고와 함께 압축성 또는 비압축성 유동 가정을 제공합니다. 1995년 1월 15일에 받은 개정; 1995년 2월 17일 출판 승인.

ROPELLANT thermal stratification and fluid-dynamic response to external disturbances are of concern in both launch vehicles and spacecraft. In the past these problems have been addressed separately for want of sufficient computational technology to provide for coupled solutions.1 This has resulted in overdesigned systems with large safety factors to allow for the uncertainty in modeling techniques. Future systems designed to perform in both highand low-gravity environments will require less overdesign and safety factors to be technically and financially feasible. Such fluid systems can be based on high-fidelity numerical models only after extensive validation of the models’ capabilities in environments where both the thermodynamics and the fluid dynamics are important. The commercial computer code FLOW-3D2 has shown promise in both fluid-dynamic and thermal modeling,1 thus suggesting suitability for solving the coupled mass, momentum, and energy equations in thermodynamic-fluid-dynamic engineering problems. As a first step to achieving a comprehensive solution for complex liquidgas systems in a launch vehicle, a simple model of a proposed upper-stage liquid-hydrogen (Lit) tank incorporating the liquid fluid dynamics and thermodynamics is presented here. FLOW-3D The FLOW-3D program originated at the Los Alamos Scientific Laboratory and is a derivative of the marker-and-cell method.3 Extensive code modifications have been made over the years to bring it to its present state.2 The program is a three-dimensional fluiddynamic solver that uses a central finite-difference method of numerical approximation to solve the general Navier-Stokes equations. Sections of the momentum and energy equations can be enabled or disabled depending on the particular application. The code provides compressible or incompressible flow assumptions with liquid free surfaces, complex container geometries, several viscosity models, surface tension, flow though porous media, and solidification, to cite Received Sept. 13, 1994; revision received Jan. 15, 1995; accepted for publication Feb. 17, 1995. Copyright © 1995 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. *Engineer/Scientist, Propulsion Analysis and Hydraulics, Space Transportation Division, MS 13-3, 5301 Bolsa Avenue. Member AIAA. a few of the possibilities. Further information on FLOW-3D’s capabilities and details of the numerical algorithms can be found in Ref. 2

Fig. 1 Axial-acceleration history.
Fig. 1 Axial-acceleration history.
Fig. 2 Heat flux histories.
Fig. 2 Heat flux histories.
Fig. 3 LHi isotherms at 50 s.
Fig. 3 LHi isotherms at 50 s.
Fig. 4 LH2 isotherms at 300 s
Fig. 4 LH2 isotherms at 300 s
Fig. 5 LH2 isotherms at 880 s.
Fig. 5 LH2 isotherms at 880 s.
Fig. 6 LH2 isotherms at 1020 s.
Fig. 6 LH2 isotherms at 1020 s.
Fig. 7 Tank-outlet temperature history.
Fig. 7 Tank-outlet temperature history.
Figure 2. Different PKW Types.

A review of Piano Key Weir as a superior alternative for dam rehabilitation

댐 복구를 위한 우수한 대안으로서의 Piano Key Weir에 대한 검토

Amiya Abhash &

K. K. Pandey

Pages 541-551 | Received 03 Mar 2020, Accepted 07 May 2020, Published online: 21 May 2020

ABSTRACT

Dams fall in ‘installations containing dangerous forces’ because of their massive impact on the environment and civilian life and property as per International humanitarian law. As such, it becomes vital for hydraulic engineers to refurbish various solutions for dam rehabilitation. This paper presents a review of a new type of weir installation called Piano Key Weir (PKW), which is becoming popular around the world for its higher spillway capacity both for existing and new dam spillway installations. This paper reviews the geometry along with structural integrity, discharging capacity, economic aspects, aeration requirements, sediment transport and erosion aspects of Piano Key Weir (PKW) as compared with other traditional spillway structures and alternatives from literature. The comparison with other alternatives shows PKW to be an excellent alternative for dam risk mitigation owing to its high spillway capabilities and economy, along with its use in both existing and new hydraulic structures.

댐은 국제 인도법에 따라 환경과 민간인 생활 및 재산에 막대한 영향을 미치기 때문에 ‘위험한 힘을 포함하는 시설물’에 속합니다. 따라서 유압 엔지니어는 댐 복구를 위한 다양한 솔루션을 재정비해야 합니다.

이 백서에서는 PKW(Piano Key Weir)라는 새로운 유형의 둑 설치에 대한 검토를 제공합니다. PKW는 기존 및 신규 댐 방수로 설치 모두에서 더 높은 방수로 용량으로 전 세계적으로 인기를 얻고 있습니다.

이 백서에서는 구조적 무결성, 배출 용량, 경제적 측면, 폭기 요구 사항, 퇴적물 운반 및 PKW(Piano Key Weir)의 침식 측면과 함께 다른 전통적인 여수로 구조 및 문헌의 대안과 비교하여 기하학을 검토합니다.

다른 대안과의 비교는 PKW가 높은 여수로 기능과 경제성으로 인해 댐 위험 완화를 위한 탁월한 대안이며 기존 및 새로운 수력 구조물 모두에 사용됨을 보여줍니다.

KEYWORDS: 

Figure 2. Different PKW Types.
Figure 2. Different PKW Types.

References

  • Anderson, R., and Tullis, B. (2011). Influence of Piano Key Weir geometry on discharge. Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Anderson, R., and Tullis, B. (2012a). “Piano key weir hydraulics and labyrinth weir comparison”. J. Irrig. Drain. Eng., 139(3), 246–253. doi:https://doi.org/10.1061/(ASCE)IR.1943-4774.0000530 [Crossref][Web of Science ®][Google Scholar]
  • Anderson, R., and Tullis, B. (2012b). “Piano key weir: Reservoir versus channel application”. J. Irrig. Drain. Eng., 138(8), 773–776. doi:https://doi.org/10.1061/(ASCE)IR.1943-4774.0000464 [Crossref][Web of Science ®][Google Scholar]
  • Anderson, R.M. 2011. Piano key weir head discharge relationships, M.S. Thesis, Utah State University, Logan, Utah. [Google Scholar]
  • Bashiri, H., Dewals, B., Pirotton, M., Archambeau, P., and Erpicum, S. (2016). “Towards a new design equation for piano key weirs discharge capacity.” Proc. of the 6th International Symposium on Hydraulic Structures. Portland, USA. [Google Scholar]
  • Bianucci, S.P., Sordo Ward, Á.F., Pérez Díaz, J.I., García-Palacios, J.H., Mediero Orduña, L.J., and Garrote de Marcos, L. (2013). “Risk-based methodology for parameter calibration of a reservoir flood control model”. Natl. Hazard Earth Syst. Sci., 13(4), 965–981. doi:https://doi.org/10.5194/nhess-13-965-2013 [Crossref][Web of Science ®][Google Scholar]
  • Blancher, B., Montarros, F., and Laugier, F. (2011). Hydraulic comparison between Piano Key Weirs and labyrinth spillways. Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Botha, A., Fitz, I., Moore, A., Mulder, F., and Van Deventer, N. 2013. “Application of the Piano Key Weir spillway in the Republic of South Africa”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs, Chatou, Paris, France, 20–22, 185. [Crossref][Google Scholar]
  • Chahartaghi, M.K., Nazari, S., and Shooshtari, M.M. 2019. “Experimental and numerical simulation of arced trapezoidal Piano Key Weirs”. Flow Meas. Instrum., 68, 101576. doi:https://doi.org/10.1016/j.flowmeasinst.2019.101576 [Crossref][Web of Science ®][Google Scholar]
  • Chi Hien, T., Thanh Son, H., and Ho Ta Khanh, M. (2006). Results of some ‘piano keys’ weir hydraulic model tests in Vietnam. Proc., 22nd Int. Congress of Large Dams, Question 87, Response 39, International Commission on Large Dams (ICOLD). Barcelona, Spain. [Google Scholar]
  • Cicero, G., Barcouda, M., Luck, M., and Vettori, E. (2011). Study of a piano key morning glory to increase the spillway capacity of the Bage dam. Proc. Int. Conf. Labyrinth Piano Key Weirs-PKW2011, Taylor & Francis, London. [Crossref][Google Scholar]
  • Cicero, G., De Miranda, D., and Luck, M. (2012). “Assessment of the code Wolf 1D PKW for predicting the hydraulic behaviour of PK-Weirs.” Congrès SHF-33èmes journées de l’hydraulique “Grands aménagements hydrauliques 2012”, Paris, France. [Google Scholar]
  • Cicero, G., and Delisle, J. (2013). “Discharge characteristics of Piano Key weirs under submerged flow”. Labyrinth and Piano Key Weirs II–PKW 2013, 101–109. [Crossref][Google Scholar]
  • Cicero, G., Delisle, J., Lefebvre, V., and Vermeulen, J. (2013). “Experimental and numerical study of the hydraulic performance of a trapezoidal Piano Key weir.” Labyrinth and Piano Key Weirs II: Proceedings of the Second International Workshop on Labyrinth and Piano key weirs, Chatou, Paris, France, 20–22, 265. [Crossref][Google Scholar]
  • Cicéro, G., Guene, C., Luck, M., Pinchard, T., Lochu, A., and Brousse, P. (2010). “Experimental optimization of a Piano Key Weir to increase the spillway capacity of the Malarce dam.” 1st IAHR European Congress, Edinbourgh, Mai 4–6, 2010. [Google Scholar]
  • Crookston, B., Anderson, R., and Tullis, B. (2018). “Free-flow discharge estimation method for Piano Key weir geometries.” J. Hydro. Environ. Res., 19, 160–167. doi:https://doi.org/10.1016/j.jher.2017.10.003 [Crossref][Web of Science ®][Google Scholar]
  • Das Singhal, G., and Sharma, N. 2011. “Rehabilitation of Sawara Kuddu Hydroelectric Project–Model studies of Piano Key Weir in India”. Proc. Int. Workshop on Labyrinths and Piano Key Weirs PKW 2011. Taylor & Francis, London. [Crossref][Google Scholar]
  • Denys, F., Basson, G., and Strasheim, J. (2017). Fluid Structure Interaction of Piano Key Weirs. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Eichenberger, P. (2013). “The first commercial piano key weir in Switzerland.” Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 227. [Crossref][Google Scholar]
  • Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G.-M., and Schleiss, A.J. 2013. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, CRC Press. [Crossref][Google Scholar]
  • Erpicum, S., Machiels, O., Dewals, B., Pirotton, M., and Archambeau, P. (2012). “Numerical and physical hydraulic modelling of Piano Key Weirs.” Proceedings of the 4th Int. Conf. on Water Resources and Renewable Energy Development in Asia. Chiang Mai, Thailande. [Google Scholar]
  • Erpicum, S., Nagel, V., and Laugier, F. (2011). “Piano Key Weir design study at Raviege dam”. Labyrinth and Piano Key Weirs–PKW 2011, 43–50. [Crossref][Google Scholar]
  • Ervine, D., and Elsawy, E. (1975). “The effect of a falling nappe on river aeration.” Proc. 16th IAHR Congress, Sao Paulo, Brazil. [Google Scholar]
  • Falvey, H.T. 1980. “Air-water flow in hydraulic structures”. NASA STI/Recon Technical Report N, 81. [Google Scholar]
  • Gabriel-Martin, I., Sordo-Ward, A., Garrote, L., and Castillo, L.G. (2017). “Influence of initial reservoir level and gate failure in dam safety analysis. Stochastic approach.” J. Hydrol., 550, 669–684. doi:https://doi.org/10.1016/j.jhydrol.2017.05.032 [Crossref][Web of Science ®][Google Scholar]
  • Gebhardt, M., Herbst, J., Merkel, J., and Belzner, F. (2019). “Sedimentation at labyrinth weirs–an experimental study of the self-cleaning process”. J. Hydraulic Res., 57(4), 579–590. doi:https://doi.org/10.1080/00221686.2018.1494053 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Hu, H., Qian, Z., Yang, W., Hou, D., and Du, L. (2018). “Numerical study of characteristics and discharge capacity of piano key weirs.” Flow Meas. Instrum., 62, 27–32. doi:https://doi.org/10.1016/j.flowmeasinst.2018.05.004 [Crossref][Web of Science ®][Google Scholar]
  • Javaheri, A., and Kabiri-Samani, A. (2012). “Threshold submergence of flow over PK weirs”. Int. J. Civil Geol. Eng., 6, 46–49. [Google Scholar]
  • Jayatillake, H., and Perera, K. (2013). “Design of a Piano-Key Weir for Giritale Dam spillway in Sri Lanka.” Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 151. [Crossref][Google Scholar]
  • Jayatillake, H., and Perera, K. (2017). “Adoption of a type D Piano Key Weir spillway with tapered noses at Rambawa Tank, Sri Lanka.” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Jüstrich, S., Pfister, M., and Schleiss, A.J. (2016). “Mobile riverbed scour downstream of a Piano Key weir”. J. Hydraulic Eng., 142(11), 04016043. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0001189 [Crossref][Google Scholar]
  • Kabiri-Samani, A., and Javaheri, A. (2012). “Discharge coefficients for free and submerged flow over Piano Key weirs”. J. Hydraulic Res., 50(1), 114–120. doi:https://doi.org/10.1080/00221686.2011.647888 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Karimi, M., Attari, J., Saneie, M., and Jalili Ghazizadeh, M.R. (2018). “Side weir flow characteristics: comparison of piano key, labyrinth, and linear types”. J. Hydraulic Eng., 144(12), 04018075. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0001539 [Crossref][Google Scholar]
  • Karimi, M., Attari, J., Saneie, M., and Jalili-Ghazizadeh, M. (2017). “Experimental study of discharge coefficient of a piano key side weir.” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017). Proceedings of the Third International Workshop on Labyrinth and Piano key weirs 2017, Qui Nhon, Vietnam, 22–24. [Crossref][Google Scholar]
  • Khanh, M.H.T. (2013). “The Piano Key Weirs: 15 years of Research & Development–Prospect.” Labyrinth and piano key weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 3. [Crossref][Google Scholar]
  • Khanh, M.H.T. (2017). “History and development of Piano Key Weirs in Vietnam from 2004 to 2016.” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Google Scholar]
  • Khanh, M.H.T., Hien, T.C., and Hai, N.T. (2011). “Main results of the PK weir model tests in Vietnam (2004 to 2010).” Labyrinth and Piano Key Weirs, 191. Liège, Belgium. [Crossref][Google Scholar]
  • Khassaf, S.I., Aziz, L.J., and Elkatib, Z.A. (2016). “Hydraulic behavior of piano key weir type B under free flow conditions”. Int. J. Sci. Technol. Res., 5(3), 158–163. [Google Scholar]
  • Khassaf, S.I., and Al-Baghdadi, M.B. (2015). “Experimental study of non-rectangular piano key weir discharge coefficient”. J. Homepage, 6(5), 425–436. [Google Scholar]
  • Khassaf, S.I., and Al-Baghdadi, M.B.N. (2018). “Experimental investigation of submerged flow over piano key weir”. Int. J. Energy Environ., 9(3), 249–260. [Google Scholar]
  • Kwon, -H.-H., and Moon, Y.-I. (2006). “Improvement of overtopping risk evaluations using probabilistic concepts for existing dams”. Stochastic Environ. Res. Risk Assess., 20(4), 223. doi:https://doi.org/10.1007/s00477-005-0017-2 [Crossref][Web of Science ®][Google Scholar]
  • Laugier, F. (2007). “Design and construction of the first Piano Key Weir spillway at Goulours dam”. Int. J. Hydropower Dams, 14(5), 94. [Google Scholar]
  • Laugier, F., Lochu, A., Gille, C., Leite Ribeiro, M., and Boillat, J.-L. (2009). “Design and construction of a labyrinth PKW spillway at Saint-Marc dam, France”. Hydropower Dams, 16(LCH–ARTICLE–2009–023), 100–107. [Google Scholar]
  • Laugier, F., Pralong, J., and Blancher, B. (2011). “Influence of structural thickness of sidewalls on PKW spillway discharge capacity.” Proc. Intl Workshop on Labyrinths and Piano Key Weirs PKW 2011. Liège, Belgium. [Crossref][Google Scholar]
  • Le Blanc, M., Spinazzola, U., and Kocahan, H. (2011). “Labyrinth fusegate applications on free overflow spillways–Overview of recent projects.” Labyrinth and Piano Key Weirs, 261, Liège, Belgium. [Crossref][Google Scholar]
  • Leite Ribeiro, M., Bieri, M., Boillat, J.-L., Schleiss, A., Delorme, F., and Laugier, F. (2009). “Hydraulic capacity improvement of existing spillways–design of a piano key weirs.” Proc. (on CD) of the 23rd Congress of the Int. Commission on Large Dams CIGB-ICOLD. Brasilia, Brazil. [Google Scholar]
  • Leite Ribeiro, M., Bieri, M., Boillat, J.-L., Schleiss, A., Singhal, G., and Sharma, N. (2011). “Discharge capacity of piano key weirs”. J. Hydraulic Eng., 138(2), 199–203. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0000490 [Crossref][Google Scholar]
  • Lempérière, F., and Ouamane, A. (2003). “The Piano Keys weir: a new cost-effective solution for spillways”. Int. J. Hydropower Dams, 10(5), 144–149. [Google Scholar]
  • Lempérière, F., and Vigny, J. (2011). “General comments on labyrinth and Piano Keys Weirs–The future”. Labyrinth and Piano Key weirs–PKW 2011, 289–294. [Crossref][Google Scholar]
  • Lempérière, F., Vigny, J., and Ouamane, A. (2011). General comments on Labyrinth and Piano Key Weirs: The past and present. Proc. Intl. Conf. Labyrinth and Piano Key Weirs, Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Lewin, J., Ballard, G., and Bowles, D.S. (2003). “Spillway gate reliability in the context of overall dam failure risk.” USSD Annual Lecture, Charleston, South Carolina. [Google Scholar]
  • Lodomez, M., Pirotton, M., Dewals, B., Archambeau, P., and Erpicum, S. (2017). “Could piano key weirs be subject to nappe oscillations?” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam [Crossref][Google Scholar]
  • Machiels, O., Erpicum, S., Archambeau, P., Dewals, B., and Pirotton, M. (2009). “Large scale experimental study of piano key weirs.” Proc. 33rd IAHR Congress: Water Engineering for a Sustainable Environment, IAHR. Vancouver, Canada [Google Scholar]
  • Machiels, O., Erpicum, S., Archambeau, P., Dewals, B., and Pirotton, M. (2011a). “Piano Key Weir preliminary design method–Application to a new dam project.” Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Machiels, O., Erpicum, S., Dewals, B., Archambeau, P., and Pirotton, M. (2010). “Piano Key Weirs: The experimental study of an efficient solution for rehabilitation”. WIT Trans. Ecol., 133, 95–106. [Crossref][Google Scholar]
  • Machiels, O., Erpicum, S., Dewals, B.J., Archambeau, P., and Pirotton, M. (2011b). “Experimental observation of flow characteristics over a Piano Key Weir”. J Hydraulic Res, 49(3), 359–366. doi:https://doi.org/10.1080/00221686.2011.567761 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Machiels, O., Pirotton, M., Pierre, A., Dewals, B., and Erpicum, S. (2014). “Experimental parametric study and design of Piano Key Weirs”. J. Hydraulic Res., 52(3), 326–335. doi:https://doi.org/10.1080/00221686.2013.875070 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Mehboudi, A., Attari, J., and Hosseini, S. (2016). “Experimental study of discharge coefficient for trapezoidal piano key weirs.” Flow Meas. Instrum., 50, 65–72. doi:https://doi.org/10.1016/j.flowmeasinst.2016.06.005 [Crossref][Web of Science ®][Google Scholar]
  • Micovic, Z., Hartford, D.N., Schaefer, M.G., and Barker, B.L. (2016). “A non-traditional approach to the analysis of flood hazard for dams”. Stochastic Environ. Res. Risk Assess., 30(2), 559–581. doi:https://doi.org/10.1007/s00477-015-1052-2 [Crossref][Web of Science ®][Google Scholar]
  • Monjezi, R., Heidarnejad, M., Masjedi, A., Purmohammadi, M.H., and Kamanbedast, A. (2018). “Laboratory investigation of the discharge coefficient of flow in arced labyrinth weirs with triangular plans.” Flow Meas. Instrum., 64, 64–70. doi:https://doi.org/10.1016/j.flowmeasinst.2018.10.011 [Crossref][Web of Science ®][Google Scholar]
  • Noseda, M., Stojnic, I., Pfister, M., and Schleiss, A.J. (2019). “Upstream Erosion and sediment passage at piano key weirs”. J. Hydraulic Eng., 145(8), 04019029. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0001616 [Crossref][Google Scholar]
  • Oertel, M. (2015). “Discharge coefficients of piano key weirs from experimental and numerical modelS.” E= proceedings of the 36th IAHR world congress. 28 June – 3 July, The Hague, The Netherlands. [Google Scholar]
  • Ouamane, A. (2011). Nine years of study of the Piano Key Weir in the university laboratory of Biskra “lessons and reflections”. Proc. Int. Conf. Labyrinth Piano Key Weirs-PKW2011, Taylor & Francis, London. [Crossref][Google Scholar]
  • Ouamane, A., Debabeche, M., Lempérière, F., and Vigny, J. (2017). Twenty years of research in Biskra University for Labyrinths and Piano Key Weirs and associated fuse plugs. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Ouamane, A., and Lempérière, F. (2006). Design of a new economic shape of weir. Proc. Int. Symp. on Dams in the Societies of the 21st Century. Barcelona, Spain. [Crossref][Google Scholar]
  • Patev, R., and Putcha, C. (2005). “Development of fault trees for risk assessment of dam gates and associated operating equipment”. Int. J. Modell. Simul., 25(3), 190–201. doi:https://doi.org/10.1080/02286203.2005.11442336 [Taylor & Francis Online][Google Scholar]
  • Paxson, G., Tullis, B., and Hertel, D. 2013. “Comparison of Piano Key Weirs with labyrinth and gated spillways: Hydraulics, cost, constructability and operations”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 123–130. [Crossref][Google Scholar]
  • Pfister, M., Capobianco, D., Tullis, B., and Schleiss, A.J. (2013). “Debris-blocking sensitivity of piano key weirs under reservoir-type approach flow”. J. Hydraulic Eng., 139(11), 1134–1141. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0000780 [Crossref][Google Scholar]
  • Phillips, M., and Lesleighter, E. 2013. “Piano Key Weir spillway: Upgrade option for a major dam”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 159–168. [Crossref][Google Scholar]
  • Pinchard, T., Boutet, J., and Cicero, G. (2011). “Spillway capacity upgrade at Malarce dam: design of an additional Piano Key Weir spillway.” Proc. Int. Workshop on Labyrinths and Piano Key Weirs PKW. Liège, Belgium. [Crossref][Google Scholar]
  • Pralong, J., J. Vermeulen, B. Blancher, F. Laugier, S. Erpicum, O. Machiels, M. Pirotton, J.-L. Boillat, M. Leite Ribeiro and A. Schleiss (2011). “A naming convention for the piano key weirs geometrical parameters.” Labyrinth and piano key weirs, 271–278. [Crossref][Google Scholar]
  • Ribeiro, M.L., Boillat, J.-L., Schleiss, A., Laugier, F., and Albalat, C. (2007). “Rehabilitation of St-Marc dam.” Experimental optimization of a piano key weir. Proc. of 32nd Congress of IAHR, Vince, Italy. [Google Scholar]
  • Ribeiro, M.L., Pfister, M., and Schleiss, A.J. (2013). “Overview of Piano Key weir prototypes and scientific model investigations”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 273. [Crossref][Google Scholar]
  • Ribeiro, M.L., Pfister, M., Schleiss, A.J., and Boillat, J.-L. (2012). “Hydraulic design of A-type piano key weirs”. J. Hydraulic Res., 50(4), 400–408. doi:https://doi.org/10.1080/00221686.2012.695041 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Ribi, J., Spahni, B., Dorthe, D., and Pfister, M. (2017). Piano Key Weir as overflow on sedimentation basin of wastewater treatment plant. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam [Crossref][Google Scholar]
  • Schleiss, A. (2011). “From labyrinth to piano key weirs: a historical review.” Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Sharma, N., and Tiwari, H. (2013). “Experimental study on vertical velocity and submergence depth near Piano Key Weir.” Labyrinth and Piano Key Weirs II-PKW, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 93–100. [Crossref][Google Scholar]
  • Tiwari, H. (2016). Experimental Study of Turbulence Characteristics Near Piano Key Weir. PhD, Indian Institute of Technology Roorkee. [Google Scholar]
  • Tiwari, H., and Sharma, N. 2017. “Empirical and Mathematical Modeling of Head and Discharge Over Piano Key Weir”. Development of Water Resources in India. Springer, Cham. 341–354. https://doi.org/10.1007/978-3-319-55125-8_29 [Crossref][Google Scholar]
  • Valley, P., and Blancher, B. (2017). Construction and testing of two Piano Key Weirs at Charmines dam. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Vermeulen, J., Lassus, C., and Pinchard, T. (2017). Design of a Piano Key Weir aeration network. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), February 22- 24,2017, Qui Nhon, Vietnam, CRC Press. [Crossref][Google Scholar]
  • Vermeulen, J., Laugier, F., Faramond, L., and Gille, C. (2011). “Lessons learnt from design and construction of EDF first Piano Key Weirs”. Labyrinth and Piano Key weirs-PKW 2011, 215–224. [Crossref][Google Scholar]
Figure 4. Field gate discharge experiment.

FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures

하류 유압 구조물의 유동 특성 분석을 위한 FLOW-3D 모델 개발

Beom-Jin Kim 1, Jae-Hong Hwang 2 and Byunghyun Kim 3,*
1 Advanced Structures and Seismic Safety Research Division, Korea Atomic Energy Research Institute,
Daejeon 34057, Korea
2 Korea Water Resources Corporation (K-Water), Daejeon 34350, Korea
3 Department of Civil Engineering, Kyungpook National University, Daegu 41566, Korea

  • Correspondence: bhkimc@knu.ac.kr; Tel.: +82-53-950-7819

Abstract

Hydraulic structures installed in rivers inevitably create a water level difference between upstream and downstream regions. The potential energy due to this difference in water level is converted into kinetic energy, causing high-velocity flow and hydraulic jumps in the river. As a result, problems such as scouring and sloping downstream may occur around the hydraulic structures. In this study, a FLOW-3D model was constructed to perform a numerical analysis of the ChangnyeongHaman weir in the Republic of Korea. The constructed model was verified based on surface velocity measurements from a field gate operation experiment. In the simulation results, the flow discharge differed from the measured value by 9–15 m3/s, from which the accuracy was evaluated to be 82–87%. The flow velocity was evaluated with an accuracy of 92% from a difference of 0.01 to 0.16 m/s. Following this verification, a flow analysis of the hydraulic structures was performed according to boundary conditions and operation conditions for numerous scenarios. Since 2018, the ChangnyeongHaman weir gate has been fully opened due to the implementation of Korea’s eco-environmental policy; therefore, in this study, the actual gate operation history data prior to 2018 was applied and evaluated. The evaluation conditions were a 50% open gate condition and the flow discharge of two cases with a large difference in water level. As a result of the analysis, the actual operating conditions showed that the velocity and the Froude number were lower than the optimal conditions, confirming that the selected design was appropriate. It was also found that in the bed protection section, the average flow velocity was high when the water level difference was large, whereas the bottom velocity was high when the gate opening was large. Ultimately, through the reviewed status survey data in this study, the downstream flow characteristics of hydraulic structures along with adequacy verification techniques, optimal design techniques such as procedures for design, and important considerations were derived. Based on the current results, the constructed FLOW-3D-based model can be applied to creating or updating flow analysis guidelines for future repair and reinforcement measures as well as hydraulic structure design.

하천에 설치되는 수력구조물은 필연적으로 상류와 하류의 수위차를 발생시킨다. 이러한 수위차로 인한 위치에너지는 운동에너지로 변환되어 하천의 고속유동과 수압점프를 일으킨다. 그 결과 수력구조물 주변에서 하류의 세굴, 경사 등의 문제가 발생할 수 있다.

본 연구에서는 대한민국 창녕함안보의 수치해석을 위해 FLOW-3D 모델을 구축하였다. 구축된 모델은 현장 게이트 작동 실험에서 표면 속도 측정을 기반으로 검증되었습니다.

시뮬레이션 결과에서 유량은 측정값과 9~15 m3/s 차이가 나고 정확도는 82~87%로 평가되었다. 유속은 0.01~0.16m/s의 차이에서 92%의 정확도로 평가되었습니다.

검증 후 다양한 시나리오에 대한 경계조건 및 운전조건에 따른 수리구조물의 유동해석을 수행하였다. 2018년부터 창녕함안보 문은 한국의 친환경 정책 시행으로 전면 개방되었습니다.

따라서 본 연구에서는 2018년 이전의 실제 게이트 운영 이력 데이터를 적용하여 평가하였다. 평가조건은 50% open gate 조건과 수위차가 큰 2가지 경우의 유수방류로 하였다. 해석 결과 실제 운전조건은 속도와 Froude수가 최적조건보다 낮아 선정된 설계가 적합함을 확인하였다.

또한 베드보호구간에서는 수위차가 크면 평균유속이 높고, 수문개구가 크면 저저유속이 높은 것으로 나타났다. 최종적으로 본 연구에서 검토한 실태조사 자료를 통해 적정성 검증기법과 함께 수력구조물의 하류 유동특성, 설계절차 등 최적 설계기법 및 중요 고려사항을 도출하였다.

현재의 결과를 바탕으로 구축된 FLOW-3D 기반 모델은 수력구조 설계뿐만 아니라 향후 보수 및 보강 조치를 위한 유동해석 가이드라인 생성 또는 업데이트에 적용할 수 있습니다.

Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 2. Changnyeong-Haman weir depth survey results (June 2015)
Figure 2. Changnyeong-Haman weir depth survey results (June 2015)
Figure 4. Field gate discharge experiment.
Figure 4. Field gate discharge experiment.
Figure 16. Analysis results for Case 7 and Case 8
Figure 16. Analysis results for Case 7 and Case 8

References

  1. Wanoschek, R.; Hager, W.H. Hydraulic jump in trapezoidal channel. J. Hydraul. Res. 1989, 27, 429–446. [CrossRef]
  2. Bohr, T.; Dimon, P.; Putkaradze, V. Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 1993, 254, 635–648.
    [CrossRef]
  3. Chanson, H.; Brattberg, T. Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000, 26,
    583–607. [CrossRef]
  4. Dhamotharan, S.; Gulliver, J.S.; Stefan, H.G. Unsteady one-dimensional settling of suspended sediment. Water Resour. Res. 1981,
    17, 1125–1132. [CrossRef]
  5. Ziegler, C.K.; Nisbet, B.S. Long-term simulation of fine-grained sediment transport in large reservoir. J. Hydraul. Eng. 1995, 121,
    773–781. [CrossRef]
  6. Olsen, N.R.B. Two-dimensional numerical modelling of flushing processes in water reservoirs. J. Hydraul. Res. 1999, 37, 3–16.
    [CrossRef]
  7. Saad, N.Y.; Fattouh, E.M. Hydraulic characteristics of flow over weirs with circular openings. Ain Shams Eng. J. 2017, 8, 515–522.
    [CrossRef]
  8. Bagheri, S.; Kabiri-Samani, A.R. Hydraulic Characteristics of flow over the streamlined weirs. Modares Civ. Eng. J. 2018, 17, 29–42.
  9. Hussain, Z.; Khan, S.; Ullah, A.; Ayaz, M.; Ahmad, I.; Mashwani, W.K.; Chu, Y.-M. Extension of optimal homotopy asymptotic
    method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations. Open
    Phys. 2020, 18, 916–924. [CrossRef]
  10. Arifeen, S.U.; Haq, S.; Ghafoor, A.; Ullah, A.; Kumam, P.; Chaipanya, P. Numerical solutions of higher order boundary value
    problems via wavelet approach. Adv. Differ. Equ. 2021, 2021, 347. [CrossRef]
  11. Sharafati, A.; Haghbin, M.; Motta, D.; Yaseen, Z.M. The application of soft computing models and empirical formulations for
    hydraulic structure scouring depth simulation: A comprehensive review, assessment and possible future research direction. Arch.
    Comput. Methods Eng. 2021, 28, 423–447. [CrossRef]
  12. Khan, S.; Selim, M.M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ayaz, M.; Mashwani, W.K. On the analysis of the non-Newtonian
    fluid flow past a stretching/shrinking permeable surface with heat and mass transfer. Coatings 2021, 11, 566. [CrossRef]
  13. Khan, S.; Selim, M.M.; Gepreel, K.A.; Ullah, A.; Ayaz, M.; Mashwani, W.K.; Khan, E. An analytical investigation of the mixed
    convective Casson fluid flow past a yawed cylinder with heat transfer analysis. Open Phys. 2021, 19, 341–351. [CrossRef]
  14. Ullah, A.; Selim, M.M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A. A Magnetite–Water-Based Nanofluid Three-Dimensional
    Thin Film Flow on an Inclined Rotating Surface with Non-Linear Thermal Radiations and Couple Stress Effects. Energies 2021,
    14, 5531. [CrossRef]
  15. Aamir, M.; Ahmad, Z.; Pandey, M.; Khan, M.A.; Aldrees, A.; Mohamed, A. The Effect of Rough Rigid Apron on Scour Downstream
    of Sluice Gates. Water 2022, 14, 2223. [CrossRef]
  16. Gharebagh, B.A.; Bazargan, J.; Mohammadi, M. Experimental Investigation of Bed Scour Rate in Flood Conditions. Environ. Water
    Eng. 2022, in press. [CrossRef]
  17. Laishram, K.; Devi, T.T.; Singh, N.B. Experimental Comparison of Hydraulic Jump Characteristics and Energy Dissipation
    Between Sluice Gate and Radial Gate. In Innovative Trends in Hydrological and Environmental Systems; Springer: Berlin/Heidelberg,
    Germany, 2022; pp. 207–218.
  18. Varaki, M.E.; Sedaghati, M.; Sabet, B.S. Effect of apron length on local scour at the downstream of grade control structures with
    labyrinth planform. Arab. J. Geosci. 2022, 15, 1240. [CrossRef]
  19. Rizk, D.; Ullah, A.; Elattar, S.; Alharbi, K.A.M.; Sohail, M.; Khan, R.; Khan, A.; Mlaiki, N. Impact of the KKL Correlation Model on
    the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ ZnO+ Water) Flow through Permeable Vertically Rotating
    Surface. Energies 2022, 15, 2872. [CrossRef]
  20. Kim, K.H.; Choi, G.W.; Jo, J.B. An Experimental Study on the Stream Flow by Discharge Ratio. Korea Water Resour. Assoc. Acad.
    Conf. 2005, 05b, 377–382.
  21. Lee, D.S.; Yeo, H.G. An Experimental Study for Determination of the Material Diameter of Riprap Bed Protection Structure. Korea
    Water Resour. Assoc. Acad. Conf. 2005, 05b, 1036–1039.
  22. Choi, G.W.; Byeon, S.J.; Kim, Y.G.; Cho, S.U. The Flow Characteristic Variation by Installing a Movable Weir having Water
    Drainage Equipment on the Bottom. J. Korean Soc. Hazard Mitig. 2008, 8, 117–122.
  23. Jung, J.G. An Experimental Study for Estimation of Bed Protection Length. J. Korean Wetl. Soc. 2011, 13, 677–686.
  24. Kim, S.H.; Kim, W.; Lee, E.R.; Choi, G.H. Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River. J.
    Korean Water Resour. Assoc. 2005, 38, 401–413. [CrossRef]
  25. Kim, J.H.; Sim, M.P.; Choi, G.W.; Oh, J.M. Hydraulic Analysis of Air Entrainment by Weir Types. J. Korean Water Resour. Assoc.
    2003, 36, 971–984. [CrossRef]
  26. Jeong, S.; Yeo, C.G.; Yun, G.S.; Lee, S.O. Analysis of Characteristics for Bank Scour around Low Dam using 3D Numerical
    Simulation. Korean Soc. Hazard Mitig. Acad. Conf. 2011, 02a, 102.
  27. Son, A.R.; Kim, B.H.; Moon, B.R.; Han, G.Y. An Analysis of Bed Change Characteristics by Bed Protection Work. J. Korean Soc. Civ.
    Eng. 2015, 35, 821–834.
  28. French, R.H.; French, R.H. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1985; ISBN 0070221340.
Best Ultrabooks and Premium Laptops 2021

FLOW-3D 해석용 노트북 선택 가이드

2023년 01월 11일

본 자료는 IT WORLD에서 인용한 자료입니다.

일반적으로 수치해석을 주 업무로 사용하는 경우 노트북을 사용하는 경우는 그리 많지 않습니다. 그 이유는 CPU 성능을 100%로 사용하는 해석 프로그램의 특성상 발열과 부품의 성능 측면에서 데스크탑이나 HPC의 성능을 따라 가기는 어렵기 때문입니다.

그럼에도 불구하고, 이동 편의성이나 발표,  Demo 등의 업무 필요성이 자주 있는 경우, 또는 계산 시간이 짧은 경량 해석을 주로 하는 경우, 노트북이 주는 이점이 크기 때문에 수치해석용 노트북을 고려하기도 합니다.

보통 수치해석용 컴퓨터를 검토하는 경우 CPU의 Core수나 클럭, 메모리, 그래픽카드 등을 신중하게 검토하게 되는데 모든 것이 예산과 직결되어 있기 때문입니다.  따라서 해석용 컴퓨터 구매 시 어떤 것을 선정 우선순위에 두는지에 따라 사양이 달라지게 됩니다.

해석용으로 노트북을 고려하는 경우, 보통 CPU의 클럭은 비교적 선택 기준이 명확합니다. 메모리 또한 용량에 따라 가격이 정해지기 때문에 이것도 비교적 명확합니다. 나머지 가격에 가장 큰 영향을 주는 것이 그래픽카드인데, 이는 그래픽 카드의 경우 일반적인 게임용이나 포토샵으로 일반적인 이미지 처리 작업을 수행하는 그래픽카드와 3차원 CAD/CAE에 사용되는 업무용 그래픽 카드는 명확하게 분리되어 있고, 이는 가격 측면에서 매우 차이가 많이 납니다.

통상 게임용 그래픽카드는 수치해석의 경우 POST 작업시 문제가 발생하는 경우가 종종 발생하기 때문에 일반적으로 선택 우선 순위에서 충분한 확인을 한 후 구입하는 것이 좋습니다.

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 적합합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 NVIDIA의 Quadro K 시리즈와 AMD의 Fire Pro W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

MSI, CES 2023서 인텔 코어 i9-13980HX 탑재 노트북 벤치마크 공개

2023.01.11

Mark Hachman  | PCWorld

MSI가 새로운 노트북 CPU 벤치마크, 그리고 그 CPU가 내장돼 있는 신제품 노트북 제품군을 모두 CES 2023에서 공개했다. CES에서 인텔은 노트북용 13세대 코어 칩, 코드명 랩터 레이크와 핵심 제품인 코어 i9-13980HX를 발표했다.

ⓒ PCWorld

새로운 노트북용 13세대 코어 칩이 게임 플레이에서 12% 더 빠르다는 정도의 약간의 정보는 이미 알려져 있다. 사용자가 기다리는 것은 실제 CPU가 탑재된 노트북에서의 성능이지만 보통 벤치마크는 제품 출시가 임박해서야 공개되는 것이 보통이다. 올해는 다르다.

CES 2023에서 MSI는 인텔 최고급 제품군인 코어 i9-13980HX 프로세서가 탑재된 타이탄 GT77 HX과 레이더 GE78 HX를 공개했다. 이례적으로 여기에 더해 PCI 익스프레서 5 SSD의 실제 성능을 측정하는 크리스털디스크마크, 모바일 프로세서 실행 속도를 측정하는 시네벤치 벤치마크 점수도 함께 제공했다. 다음 영상의 결과부터 말하자면 인텔 최신 프로세서를 큰 폭으로 따돌릴 만한 수치다.

https://www.youtube.com/embed/3kvrOIEOUlw

ⓒ PCWorld

MSI는 레이더 GE78 HX 외에도 레이더 GE68 HX 그리고 게이밍 노트북 같지 않은 외관의 스텔스 16 스튜디오, 스텔스 14, 사이보그 14 등 2023년에 출시될 다른 노트북도 전시했다. 오래된 PC 애호가라면 MSI 노트북 전면을 장식한 화려한 복고풍의 라이트 브라이트(Lite Brite) LED를 반가워할지도 모른다. 바닥면 섀시가 투명한 플라스틱 소재로 MSI 로고가 새겨져 있는 제품도 있다. 상세한 가격, 출시일, 사양 등은 추후 공개 예정이다.
editor@itworld.co.kr 

원문보기:
https://www.itworld.co.kr/news/272199#csidx870364b15ea6aa28b53a990bc5c0697 

‘코어 i7 vs. 코어 i9’ 나에게 맞는 고성능 노트북 CP

2021.06.14

고성능 노트북을 구매할 때는 코어 i7과 코어 i9 사이에서 선택의 갈림길에 서게 된다. 코어 i7 CPU도 강력하지만 코어 i9는 최고의 성능을 위해 만들어진 CPU이며 보통 그에 상응하는 높은 가격대로 판매된다.

CPU에 초점을 둔다면 관건은 성능이다. 성능을 좌우하는 두 가지 주요소는 CPU의 동작 클록 속도(MHz), 그리고 탑재된 연산 코어의 수다. 그러나 노트북에서 한 가지 중요한 제약 요소는 냉각이다. 냉각이 제대로 되지 않으면 고성능도 쓸모가 없다. 가장 적합한 노트북 CPU를 결정하는 데 도움이 되도록 인텔의 지난 3개 세대 CPU의 코어 i7과 i9에 대한 정보를 모았다. 최신 세대부터 시작해 역순으로 살펴보자.

11세대: 코어 i9 vs. 코어 i7

인텔의 11세대 타이거 레이크(Tiger Lake) H는 한 가지 큰 이정표를 달성했다. 인텔이 2015년부터 H급 CPU에 사용해 온 14nm 공정을 마침내 최신 10nm 슈퍼핀(SuperFin) 공정으로 바꾼 것이다. 오랫동안 기다려온 변화다.

인텔이 자랑할 만한 10nm 고성능 칩을 내놓자 타이거 레이크 H를 장착한 노트북도 속속 발표됐다. 얇고 가볍고 예상외로 가격도 저렴한 에이서 프레데터 트라이톤(Acer Predator Triton) 300 SE를 포함해 일부는 벌써 매장에 출시됐다. 모든 타이거 레이크 H 칩이 8코어 CPU라는 점도 달라진 부분이다. 이전 세대의 경우 같은 제품군 내에서 코어 수에 차이를 둬 성능 기대치를 구분했다.

클록 차이도 크지 않다. 코어 i7-11800H의 최대 클록은 4.6GHz, 코어 i9-11980HK는 5GHz로, 클록 속도 증가폭은 약 8.6% 차이다. 나쁘지 않은 수치지만 둘 다 8코어 CPU임을 고려하면 대부분의 사용자에게 코어 i9는 큰 매력은 없다.

다만 코어 i9에 유리한 부분을 하나 더 꼽자면 코어 i9-11980HK가 65W의 열설계전력(TDP)을 옵션으로 제공한다는 점이다. 높은 TDP는 최상위 코어 i9에만 제공되는데, 이는 전력 및 냉각 요구사항을 충족하는 노트북에서는 코어 i7 버전보다 더 높은 지속 클록 속도를 제공할 수 있음을 의미한다.

대신 이런 노트북은 두껍고 크기도 클 가능성이 높다. 따라서 두 개의 얇은 랩톱 중에서(하나는 코어 i9, 하나는 코어 i7) 고민하는 사람에겐 열 및 전력 측면의 여유분은 두께와 크기를 희생할 만큼의 가치는 없을 것이다.

*11세대의 승자: 대부분의 사용자에게 코어 i7

10세대: 코어 i9 vs. 코어 i7

인텔은 10세대 코멧 레이크(Comet Lake) H 제품군에서 14nm를 고수했다. 그 대신 코어 i9 CPU 외에 코어 i7에도 8코어 CPU를 도입, 사용자가 비싼 최상위 CPU를 사지 않고도 더 뛰어난 성능을 누릴 수 있게 했다.

11세대 노트북이 나오기 시작했지만 10세대 CPU 제품 중에서도 아직 괜찮은 제품이 많다. 예를 들어 MSI GE76 게이밍 노트북은 빠른 CPU와 고성능 155W GPU를 탑재했고, 전면 모서리에는 RGB 라이트가 달려 있다.

11세대 칩과 마찬가지로 코어와 클록 속도의 차이가 크지 않으므로 대부분의 사용자에게 코어 i7과 코어 i9 간의 차이는 미미하다. 코어 i9-10980HK의 최대 부스트 클록은 5.3GHz, 코어 i7-10870H는 5GHz로, 두 칩의 차이는 약 6%다. PC를 최대 한계까지 사용해야 하는 경우가 아니라면 더 비싼 비용을 들여 10세대 코어 i9를 구매할 이유가 없다.

*10세대 승자: 대부분의 사용자에게 코어 i7

9세대: 코어 i9 대 코어 i7

인텔은 9세대 커피 레이크 리프레시(Coffee Lake Refresh) 노트북 H급 CPU에서 14nm 공정을 계속 유지했다. 코어 i9는 더 높은 클록 속도(최대 5GHz)를 제공하며 8개의 CPU 코어를 탑재했다. 물론 이 칩은 2년 전에 출시됐지만 인텔이 설계를 도운 XPG 제니아(Xenia) 15 등 아직 괜찮은 게이밍 노트북이 있다. 얇고 가볍고 빠르며 엔비디아 RTX GPU를 내장했다.

8코어 4.8GHz 코어 i9-9880HK와 4.6GHz 6코어 코어 i7-9850의 클록 속도 차이는 약 4%로, 실제 사용 시 유의미한 차이로 이어지는 경우는 극소수다. 두 CPU 모두 기업용 노트북에 많이 사용됐다. 대부분의 소비자용 노트북에는 8코어 5GHz 코어 i9-9880HK와 6코어 4.5GHz 코어 i7-9750H가 탑재됐다. 이 두 CPU의 클록 차이는 약 11%로, 이 정도면 유의미한 차이지만 마찬가지로 대부분의 경우 실제로 체감하기는 어렵다.

그러나 코어 수의 차이는 멀티 스레드 애플리케이션에서 큰 체감 효과로 이어지는 경우가 많다. 3D 모델링 테스트인 씨네벤치(Cinebench) R20에서 코어 i9-9980HK를 탑재한 구형 XPS 15의 점수는 코어 i7-9750H를 탑재한 게이밍 노트북보다 42% 더 높았다. 8코어 코어 i9의 발열을 심화하는 무거운 부하에서는 성능 차이가 약 7%로 줄어들었다. 여기에는 노트북의 설계가 큰 영향을 미칠 것이다. 어쨌든 일부 상황에서는 8코어가 6코어보다 유리하다.

또한 수치해석의 경우 결과를 분석하는 작업중의 많은 부분이 POST 작업으로 그래픽처리가 필요하다. 따라서 아래 영상편집을 위한 노트북에 대한 자료도 선택에 도움이 될것으로 보인다.

영상 편집을 위한 최고의 노트북 9선

Brad Chacos, Ashley Biancuzzo, Sam Singleton | PCWorld

2022.12.29

영상을 편집하다 보면 컴퓨터의 여러 리소스를 집약적으로 사용하기 마련이다. 그래서 영상 편집은 대부분 데스크톱 PC에서 하는 경우가 많지만, 노트북에서 영상을 편집하려 한다면 PC만큼 강력한 사양이 뒷받침되어야 한다. 

ⓒ Gordon Mah Ung / IDG

영상 편집용 노트북을 구매할 때 가장 비싼 제품을 선택할 필요는 없다. 사용 환경에 맞게 프로세서, 디스플레이의 품질, 포트 종류 등을 다양하게 고려해야 한다. 다음은 영상 편집에 최적화된 노트북 제품이다. 추천 제품을 확인한 후 영상 편집용 노트북을 테스트하는 팁도 참고하자. 

1. 영상 편집용 최고의 노트북, 델 XPS 17(2022)

ⓒ  IDG

장점
• 가격 대비 강력한 기능
• 밝고 풍부한 색채의 대형 디스플레이
• 썬더볼트 4 포트 4개 제공
• 긴 배터리 수명 
• 시중에서 가장 빠른 GPU인 RTX 3060

단점
• 무겁고 두꺼움
• 평범한 키보드
• USB-A, HDMI, 이더넷 미지원

델 XPS 17(2022)이야말로 콘텐츠 제작에 최적화된 노트북이다. 인텔 12세대 코어 i7-12700H 프로세서 및 엔비디아 지포스 RTX 3060는 편집을 위한 뛰어난 성능을 제공한다. 1TB SSD도 함께 지원되기에 데이터를 옮길 때도 편하다. 

XPS 17은 SD카드 리더, 여러 썬더볼트 4 포트, 3840×2400 해상도의 17인치 터치스크린 패널, 16:10 화면 비율과 같은 영상 편집자에게 필요한 기능을 포함한다. 무게도 2.5kg 대로 비교적 가볍다. 배터리 지속 시간은 한번 충전 시 11시간인데, 이전 XPS 17 버전보다 1시간 이상 늘어난 수치다. 

2. 영상 편집에 최적화된 스크린, 델 XPS 15 9520

ⓒ  IDG

장점
• 뛰어난 OLED 디스플레이
• 견고하고 멋진 섀시(Chassis)
• 강력한 오디오
• 넓은 키보드 및 터치패드

단점
• 다소 부족한 화면 크기
• 실망스러운 배터리 수명
• 시대에 뒤떨어진 웹캠
• 제한된 포트

델 XPS 15 9520은 놀라운 OLED 디스플레이를 갖추고 있으며, 최신 인텔 코어 i7-12700H CPU 및 지포스 RTX 3050 Ti 그래픽이 탑재되어 있다. 컨텐츠 제작 및 영상 편집용으로 가장 선호하는 제품이다. 시스템도 좋지만 투박하면서 금속 소재로 이루어진 외관이 특히 매력적이다. 

15인치 노트북이지만 매일 갖고 다니기에 다소 무거운 것은 단점이다. XPS 17 모델에서 제공되는 포트도 일부 없다. 그러나 멋진 OLED 디스플레이가 단연 돋보이며, 3456X2160 해상도, 16:10 화면 비율, 그리고 매우 선명하고 정확한 색상을 갖추고 있어 좋다. 

3. 최고의 듀얼 모니터 지원, 에이수스 젠북 프로 14 듀오 올레드

ⓒ IDG

장점
• 놀라운 기본 디스플레이와 보기 쉬운 보조 디스플레이 
• 탁월한 I/O 옵션 및 무선 연결
• 콘텐츠 제작에 알맞은 CPU 및 GPU 성능 

단점
• 생산성 노트북 치고는 부족한 배터리 수명
• 작고 어색하게 배치된 트랙패드
• 닿기 어려운 포트 위치

에이수스 젠북 프로 14 듀오(Asus Zenbook Pro 14 Duo OLED)는 일반적이지 않은 노트북이다. 일단 사양은 코어 i7 프로세서, 지포스 RTX 3050 그래픽, 16GB DDR5 메모리, 빠른 1TB NVMe SSD를 포함해 상당한 성능을 자랑한다. 또한 초광도의 547니트로 빛을 발하는 한편 DCI-P3 색영역의 100%를 커버하는 14.5인치 4K 터치 OLED 패널을 갖추고 있다. 사실상 콘텐츠 제작자를 위해 만들어진 제품이라 볼 수 있다.

가장 흥미로운 부분은 키보드 바로 위에 위치한 12.7인치 2880×864 스크린이다. 윈도우에서는 해당 모니터를 보조 모니터로 간주하며, 사용자는 번들로 제공된 에이수스 소프트웨어를 사용해 트랙패드로 사용하거나 어도비 앱을 위한 터치 제어 패널을 표시할 수 있다. 어떤 작업이든 유용하게 써먹을 수 있다.

젠북 프로 14 듀오 올레드는 기본적으로 휴대용이자 중간급 워크스테이션이다. 단, 배터리 수명은 평균 수준이기 때문에 중요한 작업 수행이 필요한 경우, 반드시 충전 케이블을 가지고 다녀야 한다. 그럼에도 불구하고 젠북 프로 14 듀오 올레드는 3D 렌더링 및 인코딩과 같은 작업에서 탁월한 성능을 보여 콘텐츠 제작자들에게 맞춤화 된 컴퓨터이다. 듀얼 스크린은 역대 최고의 기능이다.

4. 영상 편집하기 좋은 포터블 노트북, 레이저 블레이드 14(2021)

ⓒ IDG

장점
• AAA 게임에서 뛰어난 성능
• 훌륭한 QHD 패널
• 유난히 적은 소음 

단점
• 700g으로 무거운 AC 어댑터
• 비싼 가격
• 썬더볼트 4 미지원

휴대성이 핵심 고려 사항이라면, 레이저 블레이드 14(Razer Blade 14) (2021)를 선택해 보자. 노트북 두께는 1.5cm, 무게는 1.7kg에 불과해 비슷한 수준의 노트북보다 훨씬 가볍다. 사양은 AMD의 8-코어 라이젠 9 5900HX CPU, 엔비디아의 8GB 지포스 RTX 3080, 1TB NVMe SSD, 16GB 메모리를 탑재하고 있어 사양도 매우 좋다. 

그러나 휴대성을 대가로 몇 가지 이점을 포기해야 할 수 있다. 일단 14인치 IPS 등급 스크린은 공장에서 보정된 상태로 제공되지만, 최대 해상도는 2560×1440다. 또 풀 DCI-P3 색영역을 지원하지만 4K 영상 편집은 불가능하다. 거기에 레이저 블레이드 14는 SD 카드 슬롯도 없다. 다만 편집 및 렌더링을 위한 강력한 성능을 갖추고 있고 가방에 쉽게 넣을 수 있는 제품인 것은 분명하다. 

5. 배터리 수명이 긴 노트북, 델 인스피론 16

ⓒ Dell

장점
• 넉넉한 16인치 16:10 디스플레이
• 긴 배터리 수명
• 경쟁력 있는 애플리케이션 성능 
• 편안한 키보드 및 거대한 터치패드 
• 쿼드 스피커(Quad speakers)

단점
• GPU 업그레이드 어려움
• 512GB SSD 초과 불가
• 태블릿 모드에서는 어색하게 느껴질 수 있는 큰 스크린 

긴 배터리 수명을 가장 최우선으로 고려한다면, 델 인스피론 16(Dell Inspiron 16)을 살펴보자. 콘텐츠 제작 작업을 하며테스트해보니, 인스피론 16은 한 번 충전으로 16.5시간 동안 이용할 수 있다. 외부에서 작업을 마음껏 편집할 수 있는 시간이다. 그러나 무거운 배터리로 인해 무게가 2.1 kg에 달하므로 갖고 다니기에 적합한 제품은 아니다. 

가격은 저렴한 편이나 몇 가지 단점이 있다. 일단 인텔 코어 i7-1260P CPU, 인텔 아이리스 Xe 그래픽, 16GB 램, 512GB SSD 스토리지를 탑재하고 있다. 이 정도 사양으로 영상 편집 프로젝트 대부분을 작업할 수 있으나, 스토리지 용량이 부족하기 때문에 영상 파일을 저장할 경우 외장 드라이브가 필요하다. 그러나 델 인스피론 16이 진정으로 빛을 발하는 부분은 단연 배터리 수명이다. 또한 강력한 쿼드 스피커 시스템도 사용해 보면 만족할 것이다. 포트의 경우, USB 타입-C 2개, USB-A 3.2 Gen 1 1개, HDMI 1개, SD 카드 리더 1개, 3.5mm 오디오 잭 1개가 제공된다. 

6. 게이밍과 영상 편집 모두에 적합한 노트북, MSI GE76 레이더

ⓒ MSI

장점
• 뛰어난 성능을 발휘하는 12세대 코어 i9-12900HK
• 팬 소음을 크게 줄이는 AI 성능 모드
• 1080p 웹캠과 훌륭한 마이크 및 오디오로 우수한 화상 회의 경험 제공

단점
• 동일한 유형의 세 번째 버전
• 어수선한 UI
• 비싼 가격 

사양이 제일 좋은 제품을 찾고 있을 경우, 크고 무거운 게이밍 노트북을 선택해 보자. MSI GE76 레이더(Raider)는 강력한 14-코어 인텔 코어 i9-12900HK 칩, 175와트의 엔비디아 RTX 3080 Ti가 탑재됐고, 충분한 내부 냉각 성능 덕분에 UL의 프로시온(Procyon) 벤치마크의 어도비 프리미어 테스트에서 다른 노트북보다 훨씬 뛰어난 성능을 보였다. MSI GE76 레이더는 심지어 고속 카드 전송을 위해 PCle 버스에 연결된 SD 익스프레스(SD Express) 카드 리더도 갖추고 있다.

동일한 제품의 작년 모델은 게이머 중심의 360Hz 1080p 디스플레이를 지원한다. 영상 편집 과정에서는 그닥 이상적이지 않은 사양이다. 그러나 2022년의 12UHS 고급 버전은 4K, 120Hz 패널을 추가했는데, 이 패널은 콘텐츠 생성에 맞춰 튜닝 되지는 않았으나 17.3인치의 넓은 스크린 크기이기에 영상 편집자에게 꽤 유용하다. 

7. 가성비 좋은 노트북, HP 엔비 14t-eb000(2021) 

ⓒ IDG

장점
• 높은 가격 대비 우수한 성능
• 환상적인 배터리 수명
• 성능 조절이 감지되지 않을 정도의 저소음 팬 
• 썬더볼트 4 지원

단점
• 약간 특이한 키보드 레이아웃
• 비효율적인 웹캠의 시그니처 기능

가장 빠른 영상 편집 및 렌더링을 원할 경우 하드웨어에 더 많은 비용을 들여야 하지만, 예산이 넉넉하지 않을 때가 있다. 이때 HP 엔비(Envy) 14 14t-eb000) (2021)를 이용해보면 좋다. 가격은 상대적으로 저렴한 편이고 견고한 기본 컨텐츠 제작에 유용하다. 

엔트리 레벨의 지포스 GTX 1650 Ti GPU 및 코어 i5-1135G7 프로세서는 그 자체로 업계 최고 제품은 아니다. 하지만 일반적인 편집 작업을 충분히 수행할 수 있는 사양이다. 분명 가성비 좋은 제품이다. 14인치 1900×1200 디스플레이는 16:10 화면 비율로 생산성을 향상하고, 공장 색 보정과 DCI-P3는 지원하지 않지만 100% sRGB 지원을 제공한다. 그뿐만 아니라, HP 엔비 14의 경우 중요한 SD 카드 및 썬더볼트 포트가 포함되며, 놀라울 정도로 조용하게 실행된다. 

8. 컨텐츠 제작에 알맞은 또다른 게이밍 노트북, 에이수스 ROG 제피러스 S17

장점
• 뛰어난 CPU 및 GPU 성능
• 강력하고 혁신적인 디자인
• 편안한 맞춤형 키보드

단점
• 약간의 압력이 필요한 트랙패드
• 상당히 높은 가격

에이수스 ROG 제피러스(Zephyrus) S17은 영상 편집자의 궁극적인 꿈이다. 이 노트북은 초고속 GPU 및 CPU 성능과 함께 120Hz 화면 재생률을 갖춘 놀라운 17.3인치 4K 디스플레이를 탑재하고 있다. 견고한 전면 금속 섀시, 6개의 스피커 사운드 시스템 및 맞춤형 키보드는 프리미엄급 경험을 더욱 향상한다. 거기다 SD 카드 슬롯 및 풍부한 썬더볼트 포트가 포함되어 있어 더욱 좋다. 그러나 이를 위해 상당한 비용을 지불해야 한다. 예산이 넉넉하고 최상의 제품을 원한다면 제피루스 S17을 선택하면 된다. 

9. 강력한 휴대성을 가진 노트북, XPG 제니아 15 KC 

ⓒ XPG 

장점
• 가벼운 무게
• 조용함
• 상대적으로 빠른 속도

단점
• 중간 수준 이하의 RGB
• 평범한 오디오 성능
• 느린 SD 카드 리더 

사양이 좋은 노트북의 경우, 대부분 부피가 크고 무거워서 종종 2.2kg 또는 2.7kg를 넘기도 한다. XPG 제니아 15 KC(XPG Xenia 15 KC)만은 예외다. XPG 제니아 15 KC의 무게는 1.8kg가 조금 넘는 수준으로, 타제품에 비해 상당히 가볍다. 또한 소음도 별로 없다. 원래 게이밍 노트북 자체가 소음이 크기에 비교해보면 큰 장점이 될 수 있다. 1440p 디스플레이와 상대적으로 느린 SD 카드 리더 성능으로 인해 일부 콘텐츠 제작자들이 구매를 주저할 수 있으나, 조용하고 휴대하기 좋은 제품을 찾고 있다면 제니아 15 KC가 좋은 선택지다. 

영상 편집 노트북 구매 시 고려 사항

영상 편집 노트북 구매 시 고려해야 할 가장 중요한 사항은 CPU 및 GPU다. 하드웨어가 빨라질수록 편집 속도도 빨라진다. 필자는 UL 프로시온 영상 편집 테스트(UL Procyon Video Editing Test)를 통해 속도를 테스트해보았다. 이 벤치마크는 2개의 서로 다른 영상 프로젝트를 가져와 색상 그레이딩 및 전환과 같은 시각적 효과를 적용한 다음, 1080p와 4K 모두에서 H.264, H.265를 사용해 내보내는 작업을 어도비 프리미어가 수행하도록 한다. 

ⓒ Gordon Mah Ung / IDG

성능은 인텔의 11세대 프로세서를 실행하는 크고 무거운 노트북에서 가장 높았고, AMD의 비피 라이젠 9(beefy Ryzen 9) 프로세서를 탑재한 노트북이 바로 뒤를 이었다. 10세대 인텔 칩은 여전히 상당한 점수를 기록하고 있다. 위의 차트에는 없으나 새로운 인텔 12세대 노트북은 더 빨리 실행된다. 최고 성능의 노트북은 모두 최신 인텔 CPU 및 엔비디아의 RTX 30 시리즈 GPU를 결합했는데, 두 기업 모두 어도비 성능 최적화에 많은 시간 및 리소스를 투자했기 때문에 놀라운 일은 아니다. 

GPU는 어도비 프리미어 프로에서 CPU보다 더 중요하지만, 매우 빠르게 수확체감 지점에 다다른다. 최고급 RTX 3080 그래픽을 사용하는 노트북은 RTX 3060 그래픽을 사용하는 노트북보다 영상 편집 속도가 더 빠르나, 속도 차이가 크지는 않다. 델 XPS 17 9710의 점수를 살펴보면, 지포스 RTX 3060 노트북 GPU는 MSI GE76 레이더의 가장 빠른 RTX 3080보다 14% 더 느릴 수 있다. 특히 GE76 레이더가 델 노트북에 비해 얼마나 더 크고 두꺼운지를 고려할 때 수치가 크지는 않다.

일반적으로 그래픽과 영상 편집을 위해 적어도 RTX 3060을 갖추는 것을 권장한다. 그러나 영상 편집은 워크플로에 크게 의존한다. 특정 작업 및 도구는 CPU 집약적이거나 프리미어보다 GPU에 더 의존할 수 있다. 이 경우 원하는 요소의 우선순위를 조정하길 바란다. 앞서 언급한 목록은 기본적으로 여러 요소를 종합적으로 고려해서 만든 내용이다.

인텔 및 엔비디아는 각각 퀵 싱크(Quick Sync) 및 쿠다(CUDA)와 같은 도구를 구축하는 데 수년을 보냈고, 이로 인해 많은 영상 편집 앱의 속도는 크게 향상될 수 있다. AMD 하드웨어는 영상 편집에 적합하나 특히 워크플로가 공급업체별 소프트웨어 최적화에 의존하는 경우, 특별한 이유가 없는 한 인텔 및 엔비디아를 사용하는 것을 추천한다. 

영상 촬영 ⓒ Gordon Mah Ung/IDG

그러나 내부 기능만 신경 써서는 안된다. PC월드의 영상 디렉터인 아담 패트릭 머레이는 “영상 편집에 이상적인 노트북에는 카메라로 촬영 중 영상 파일을 저장하는 SD 카드 리더가 포함되어 있다”라고 강조한다. 또한 머레이는 영상 편집에 이상적인 게임용 노트북에서 흔히 볼 수 있는 초고속 1080p 패널보다 4k, 60Hz 패널을 갖춘 노트북을 선택할 것을 추천한다.

4K 영상을 잘 편집하려면 4K 패널이 필요하며, 초고속 화면 재생률은 게임에서처럼 영상 편집에는 아무런 의미가 없다. 예를 들어, 개인 유튜브 채널용으로 일상적인 영상만 만드는 경우 색상 정확도가 중요하지 않을 수 있다. 그러나 색상 정확도가 중요할 경우, 델타 E < 2 색상 정확도와 더불어 DCI-P3 색 영역 지원은 필수적이다. 

게임용 노트북은 사양이 좋지만 콘텐츠 제작용으로는 조금 부족해 보일 수 있다. 게임용과 콘텐츠 제작용으로 함께 쓰는 노트북을 원한다면, 게임용으로 노트북 한 대를 구매하고, 색상을 정확히 파악하기 위한 모니터를 추가로 구매하는 것도 방법이다. 
editor@itworld.co.kr

원문보기:
https://www.itworld.co.kr/topnews/269913#csidxa12f167cd9eef5abfb1b6d099fb54ea 

그래픽 카드

AMD FirePro Naver Shopping 검색 결과

2021-12-15 기준

현재 NVIDIA Quadro pro graphic card : 네이버 쇼핑 (naver.com)

코어가 많은 그래픽카드의 경우 가격이 상상 이상으로 높습니다. 빠르면 빠를수록 좋겠지만 어디까지나 예산에 맞춰 구매를 해야 하는 현실을 감안할 수 밖에 없는 것 같습니다.

한가지 유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 모델에 따라 다르기는 하지만, 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상이어야 하고 1GB이상을 권장합니다.


2021-12-15 현재 그래픽카드의 성능 순위는 위와 다음과 같습니다.
출처: https://www.videocardbenchmark.net/high_end_gpus.html

주요 Notebook

출시된 모든 그래픽 카드가 노트북용으로 장착되어 출시되지는 않기 때문에, 현재 오픈마켓 검색서비스를 제공하는 네이버에서 Lenovo Quadro 그래픽카드를 사용하는 노트북을 검색하면 아래와 같습니다. 검색 시점에 따라 상위 그래픽카드를 장착한 노트북의 대략적인 가격을 볼 수 있을 것입니다.

<검색 방법>
네이버 쇼핑 검색 키워드 : 컴퓨터 제조사 + 그래픽카드 모델 + NoteBook 형태로 검색
Lenovo quadro notebook or HP quadro notebook 또는 Lenovo firepro notebook or HP firepro notebook


( 2021-12-15기준)

대부분 검색 시점에 따라 최신 CPU와 최신 그래픽카드를 선택하여 검색을 하면 예산에 적당한 노트북을 자신에게 맞는 최상의 노트북을 어렵지 않게 선택할 수 있습니다.

(주)에스티아이씨앤디 솔루션사업부

FLOW-3D 수치해석용 컴퓨터 선택 가이드 (update)

Hardware Selection for FLOW-3D Products – FLOW-3D

부분 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

개요

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2022년 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU 최신 뉴스

2024년 04월 01일 기준

CPU Benchmarks
이미지 출처 : https://www.cpubenchmark.net/high_end_cpus.html

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 Intel 과 AMD의 모델 번호와 사양을 이해하는 것이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

PassMark - CPU Mark
High End CPUs
Updated 31st of March 2024
PassMark – CPU Mark High End CPUs Updated 31st of March 2024

<출처>https://www.cpubenchmark.net/high_end_cpus.html

수치해석을 수행하는 CPU의 경우 예산에 따라 Core가 많지 않은 CPU를 구매해야 하는 경우도 있을 수 있습니다. 보통 Core가 많다고 해석 속도가 선형으로 증가하지는 않으며, 해석 케이스에 따라 적정 Core수가 있습니다. 이 경우 예산에 맞는 성능 대비 최상의 코어 수가 있을 수 있기 때문에 Single thread Performance 도 매우 중요합니다. 아래 성능 도표를 참조하여 예산에 맞는 최적 CPU를 찾는데 도움을 받을 수 있습니다.

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

PassMark - G3D Mark
High End Videocards
PassMark – G3D Mark High End Videocards

출처 : https://www.videocardbenchmark.net/high_end_gpus.html

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. POST Processor를 사용하여 후처리 작업을 할 경우 충분한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

PassMark – Disk Rating High End Drives

PassMark - Disk Rating
High End Drives
PassMark – Disk Rating High End Drives

출처 : https://www.harddrivebenchmark.net/high_end_drives.html

상기 벤치마크 테스트는 테스트 조건에 따라 그 성능 곡선이 달라질 수 있기 때문에 조건을 확인할 필요가 있습니다. 예를 들어 Windows7, windows8, windows10 , windows11 모두에서 테스트한 결과를 평균한 점수와 자신이 사용할 컴퓨터 O/S에서 테스트한 결과는 다를 수 있습니다. 상기 결과에 대한 테스트 환경에 대한 내용은 아래 사이트를 참고하시기 바랍니다.

참고 : 테스트 환경

페이지 보기

FLOW-3D World Users Conference 2023

FLOW-3D World Users Conference 2023

FLOW-3D World Users Conference 2023
FLOW-3D World Users Conference 2023

FLOW-3D World Users Conference 2023 에 전 세계 고객을 초대합니다 . 이 회의는 2023년 6월 5일부터 7일까지 프랑스 스트라스부르 의 Sofitel Strasbourg Grande Ile 에서 개최됩니다. 세계에서 가장 유명한 회사 및 기관의 동료 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하고 최신 소프트웨어 개발에 대해 알아보십시오. 이 회의에서는 응용 분야별 트랙, 고급 교육 세션, 고객의 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표하는 최신 제품 개발을 선보일 예정입니다. 회의는 XC Engineering 이 공동 주최합니다 . 

초록 요청

초록 모집은 2023년 3월 31일까지 가능합니다!

경험을 공유하고 성공 사례를 제시하며  FLOW-3D  사용자 커뮤니티 및 고위 기술 직원으로부터 귀중한 피드백을 얻으십시오. 초록에는 제목, 저자 및 200단어 이상의 설명이 포함되어야 하며 info@flow3d.com 으로 이메일을 보낼 수 있습니다 . 

소셜 이벤트

오프닝 리셉션

리셉션은 6월 5일 월요일 18:00-19:00 사이 Vineyard에 있는 Sofitel Strasbourg Grande Ile 컨퍼런스 호텔에서 열립니다 . 모든 컨퍼런스 참석자는 이 행사에 초대됩니다.

컨퍼런스 디너

회의 만찬은 6월 6일 화요일 저녁에 열릴 예정입니다. 모든 회의 참석자는 이 행사에 초대됩니다. 시간 및 장소는 미정입니다. 자세한 내용은 계속 지켜봐 주세요!

컨퍼런스 정보

중요한 날들

  • 2023년 3월 31일: 초록 마감일
  • 2023년 4월 7일: 초록 접수
  • 2023년 5월 26일: 프레젠테이션 마감일
  • 2023년 6월 5일: 고급 교육 세션
  • 2023년 6월 6일: 컨퍼런스 만찬

등록비

  • 컨퍼런스 1일차 및 2일차: 300 €
  • 컨퍼런스 첫째 날: 200 €
  • 컨퍼런스 2일차: 200 €
  • 게스트 요금(사교 행사만 해당): 50 €
  • 교육 세션: 무료!

고급 교육 세션

모든 교육 세션은 컨퍼런스 참석자에게 무료입니다!

교육 일정

2023년 6월 5일 월요일

  • 1:30-300:  FLOW-3D (x)
  • 3:00-3:30: 다과와 커피 브레이크
  • 3:30-4:00: 재조정 및 클라우드 컴퓨팅
  • 4:00-5:30: FLOW-3D POST 

FLOW-3D POST: 기본을 넘어 시뮬레이션 문제 해결 및 고급 장면 렌더링

FLOW-3D POST 는 사용자가 셀 수준 포인트 속성 조사에서 전체 장면 고급 렌더링까지 쉽게 초점을 변경할 수 있는 유연하고 강력한 후처리 도구입니다. 이 교육에서는 두 가지 일반적인 후처리 기능을 살펴봅니다. 먼저 문제 해결 또는 런타임 개선 목적으로 포인트 값 정보를 추출하는 방법을 배웁니다. 이 부분은 매우 기술적인 부분이지만 시뮬레이션이 수치적 어려움이나 비효율성에 직면할 수 있는 이유에 대한 통찰력을 제공하는 보상을 제공합니다. 두 번째 부분에서는 벡터, 광선 추적 및 이동 카메라 효과를 사용하여 고급 렌더링 효과를 활용하여 매력적인 이미지와 애니메이션을 만드는 방법을 배웁니다.

FLOW-3D (x): 자동화를 통한 효율성 및 개선된 시뮬레이션 통찰력

FLOW-3D (x) 는 FLOW-3D 툴킷에 추가된 강력한 기능으로 사용자가 CAD 매개변수 정의에서 자동화된 시뮬레이션 및 후처리 전체 주기 워크플로우를 통해 많은 시뮬레이션 요소를 쉽게 연결, 자동화 및 최적화할 수 있습니다. 이 교육에서 사용자는 견고한 시뮬레이션 환경을 만들기 위해 다른 소프트웨어 노드와 함께 FLOW-3D (x) 를 사용하는 방법을 배우게 됩니다.

참석자는 컨퍼런스 후 FLOW-3D (x) 의 3개월 무료 라이선스를 받게 됩니다 .

Rescale: FLOW-3D 사용자가 클라우드 기반 고성능 컴퓨팅(HPC) 리소스를 활용할 수 있는 새로운 플랫폼

Flow Science는 고객 이 다양한 원격 하드웨어에서 FLOW-3D 모델 을 실행할 수 있도록 새로운 클라우드 기반 리소스인 Rescale 을 제공하고 있습니다. 이 교육은 다음 세 가지 주제로 구성됩니다. 

  1. Rescale 계정 개설, 모델 실행 및 데이터 후처리 
  2. 명령줄 모드에서 Rescale에서 실행하는 것과 사용자 인터페이스 기반 환경에서 Rescale을 사용하는 것 비교. 그리고 
  3. Rescale에서 사용할 수 있는 다양한 유형의 하드웨어 아키텍처에 대한 자세한 벤치마킹을 통해 하드웨어 선택 및 HPC 배포 전략과 관련된 비용 성능 고려 사항을 명확히 합니다. 교육 세션이 끝나면 사용자는 Rescale 플랫폼에서 모델을 실행하는 비용과 실용성을 모두 명확하게 이해할 수 있습니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30분의 발언 시간을 갖습니다. 모든 프레젠테이션은 컨퍼런스 참석자와 컨퍼런스 후 웹사이트에 배포됩니다. 이 회의에는 전체 보고서가 필요하지 않습니다. 컨퍼런스에서 발표하는 것에 대해 질문이 있으시면 저희에게 연락해 주십시오 . XC Engineering은 Best Presentation Award를 후원합니다.

여행하다

컨퍼런스 호텔

소피텔 스트라스부르그 그란데 일

4 위 Saint Pierre le Jeune
67000 STRASBOURG 프랑스

GPS: 48.585184, 7.746356
전화:+33-3-88-15-49-00
팩스 +33 3 88 15 49 99
H0568@sofitel.com

기차 및 공항 정보 는 호텔 웹사이트 를 참조하십시오.

회의실 요금

회의실 블록은 2023년 1월 15일부터 4월 15일까지 운영됩니다.

  • 클래식룸: 1박당 195.00유로
  • 수페리어룸: 1박당 220.00유로
  • 발코니가 있는 수페리어룸: 1박당 250.00유로
  • 럭셔리룸: 1박당 250.00유로
  • 1인 조식 포함
  • 2인 숙박 시 추가 요금: 1박당 30.00유로
  • 지방세: 1인 1박당 3.30유로
  • 도착 7일 이전에 통보하는 경우 무료 취소가 가능합니다.
소피텔 스트라스부르
소피텔 스트라스부르 로비
소피텔 스트라스부르 테라스

Propagation of Landslide Surge in Curved River Channel and Its Interaction with Dam

굽은 강둑 산사태의 팽창 전파 및 댐과의 상호 작용, 곡선하천의 산사태 해일 전파 및 댐과의 상호작용

굽은 강둑 산사태의 팽창 전파 및 댐과의 상호 작용

펑후이, 황야지에    

  1. 수자원 보존 및 환경 학교, Three Gorges University, Yichang, Hubei 443000
  • 收稿日期:2021-08-19 修回日期:2021-09-30 发布日期:2022-10-13
  • 通讯作者: Huang Yajie (1993-), Shangqiu, Henan, 석사 학위, 그의 연구 방향은 수리 구조입니다. 이메일: master_hyj@163.com
  • 作者简介:Peng Hui(1976-)는 후베이성 ​​이창에서 태어나 교수, 의사, 박사 지도교수로 주로 수력 구조의 교육 및 연구에 종사했습니다. 이메일:hpeng1976@163.com
  • 基金资助:국가핵심연구개발사업(2018YFC1508801-4)

곡선하천의 산사태 해일 전파 및 댐과의 상호작용

PENG Hui, HUANG Ya-jie    

  1. 중국 삼협대학 수자원환경대학 이창 443000 중국
  • Received:2021-08-19 Revised:2021-09-30 Published:2022-10-13

Abstract

추상적인:저수지 제방 산사태는 일반적인 지질학적 위험으로, 제때에 미리 경고하지 않으면 하천에 해일파가 발생하여 하천 교통이나 인근 수자원 보호 시설의 안전을 위험에 빠뜨릴 수 있습니다. 저수지 제방 산사태로 인한 해일파 전파 전파 Flow-3D를 이용하여 하류 댐과의 상호작용을 시뮬레이션 하였다. 수리학적 물리적 모델 시험의 타당성과 정확성을 검증하기 위하여 3차원 산사태 해지 모델을 구축하였다. 수면 높이 변화와 서지의 전파 과정에 대한 수리학적 물리적 모델 테스트. 그 동안,가장 위험한 수심과 입사각 조건은 다양한 조건에서 댐과 산사태 해일 사이의 상호 작용을 분석하여 얻었습니다. 엔지니어링 사례는 최대 동적 수두가 해일 높이의 수두보다 작고 물을 따라 감소한다는 것을 보여주었습니다. 이 경우, 서지의 정적 최대 수두에 따라 계산된 댐의 응력은 안전합니다.

As a common geological hazard,reservoir bank landslide would most probably induce surge waves in river if not prewarned in time,endangering river traffic or the safety of nearby water conservancy facilities.The propagation of surge wave induced by the landslide of curved river bank in reservoir and its interaction with downstream dam were simulated by using Flow-3D.A three-dimensional landslide surge model was constructed to verify the validity and accuracy of hydraulic physical model test.The result of the three-dimensional numerical simulation was in good agreement with that of hydraulic physical model test in terms of the water surface height change and the propagation process of the surge.In the mean time,the most dangerous water depth and incident angle conditions were obtained by analyzing the interaction between the dam and the landslide surge under different conditions.Engineering examples demonstrated that the maximum dynamic water head was smaller than the water head of surge height,and reduced along the water depth direction.In such cases,the stress of the dam calculated according to the static maximum water head of the surge is safe.

Key words

슬라이드 서지, 곡선 수로형 저수지, 수치 시뮬레이션, 동적 수압, 중력 댐, slide surges, curved channel type reservoirs, numerical simulation, dynamic water pressure, gravity dam

The failure propagation of weakly stable sediment: A reason for the formation of high-velocity turbidity currents in submarine canyons

약한 안정 퇴적물의 실패 전파: 해저 협곡에서 고속 탁도 흐름이 형성되는 이유

Abstract

Abstract해저 협곡에서 탁도의 장거리 이동은 많은 양의 퇴적물을 심해 평원으로 운반할 수 있습니다. 이전 연구에서는 5.9~28.0m/s 범위의 다중 케이블 손상 이벤트에서 파생된 탁도 전류 속도와 0.15~7.2m/s 사이의 현장 관찰 결과에서 명백한 차이가 있음을 보여줍니다. 따라서 해저 환경의 탁한 유체가 해저 협곡을 고속으로 장거리로 흐를 수 있는지에 대한 질문이 남아 있습니다. 연구실 시험의 결합을 통해 해저협곡의 탁류의 고속 및 장거리 운동을 설명하기 위해 약안정 퇴적물 기반의 새로운 모델(약안정 퇴적물에 대한 파손 전파 모델 제안, 줄여서 WSS-PFP 모델)을 제안합니다. 및 수치 아날로그. 이 모델은 두 가지 메커니즘을 기반으로 합니다. 1) 원래 탁도류는 약하게 안정한 퇴적층의 불안정화를 촉발하고 연질 퇴적물의 불안정화 및 하류 방향으로의 이동을 촉진하고 2) 원래 탁도류가 협곡으로 이동할 때 형성되는 여기파가 불안정화로 이어진다. 하류 방향으로 약하게 안정한 퇴적물의 수송. 제안된 모델은 심해 퇴적, 오염 물질 이동 및 광 케이블 손상 연구를 위한 동적 프로세스 해석을 제공할 것입니다.

The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains. Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s. Therefore, questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed. A new model based on weakly stable sediment is proposed (proposed failure propagation model for weakly stable sediments, WSS-PFP model for short) to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs. The model is based on two mechanisms: 1) the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2) the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction. The proposed model will provide dynamic process interpretation for the study of deep-sea deposition, pollutant transport, and optical cable damage.

Keyword

  • turbidity current
  • excitation wave
  • dense basal layer
  • velocity
  • WSS-PFP model

References

Download references

Acknowledgment

We thank Hanru WU from Ocean University of China for his help in thesis writing, and Hao TIAN and Chenxi WANG from Ocean University of China for their helps in the preparation of the experimental materials. Guohui XU is responsible for the development of the initial concept, processing of test data, and management of coauthor contributions to the paper; Yupeng REN for the experiment setup and drafting of the paper; Yi ZHANG and Xingbei XU for the simulation part of the experiment; Houjie WANG for writing guidance; Zhiyuan CHEN for the experiment setup.

Author information

Authors and Affiliations

  1. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, ChinaYupeng Ren, Yi Zhang, Guohui Xu, Xingbei Xu & Zhiyuan Chen
  2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, ChinaYupeng Ren & Houjie Wang
  3. Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, ChinaYi Zhang, Guohui Xu, Xingbei Xu & Zhiyuan Chen

Corresponding author

Correspondence to Guohui Xu.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41976049, 41720104001) and the Taishan Scholar Project of Shandong Province (No. TS20190913), and the Fundamental Research Funds for the Central Universities (No. 202061028)

Data Availability Statement

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Reprints and Permissions

About this article

Cite this article

Ren, Y., Zhang, Y., Xu, G. et al. The failure propagation of weakly stable sediment: A reason for the formation of high-velocity turbidity currents in submarine canyons. J. Ocean. Limnol. (2022). https://doi.org/10.1007/s00343-022-1285-0

Figure 3. Comparison of water surface profiles over porous media with 12 mm particle diameter in laboratory measurements (symbols) and numerical results (lines).

다공층에 대한 돌발 댐 붕괴의 3차원 유동 수치해석 시뮬레이션

A. Safarzadeh1*, P. Mohsenzadeh2, S. Abbasi3
1 Professor of Civil Eng., Water Engineering and Mineral Waters Research Center, Univ. of Mohaghegh Ardabili,Ardabil, Iran
2 M.Sc., Graduated of Civil-Hydraulic Structures Eng., Faculty of Eng., Univ. of Mohaghegh Ardabili, Ardabil, Iran
3 M.Sc., Graduated of Civil -Hydraulic Structures Eng., Faculty of Eng., Univ. of Mohaghegh Ardabili, Ardabil, Iran Safarzadeh@uma.ac.ir

Highlights

유체 이동에 의해 생성된 RBF는 Ls-Dyna에서 Fluent, ICFD ALE 및 SPH 방법으로 시뮬레이션되었습니다.
RBF의 과예측은 유체가 메인 도메인에서 고속으로 분리될 때 발생합니다.
이 과잉 예측은 요소 크기, 시간 단계 크기 및 유체 모델에 따라 다릅니다.
유체 성능을 검증하려면 최대 RBF보다 임펄스가 권장됩니다.

Abstract

Dam break is a very important problem due to its effects on economy, security, human casualties and environmental consequences. In this study, 3D flow due to dam break over the porous substrate is numerically simulated and the effect of porosity, permeability and thickness of the porous bed and the water depth in the porous substrate are investigated. Classic models of dam break over a rigid bed and water infiltration through porous media were studied and results of the numerical simulations are compared with existing laboratory data. Validation of the results is performed by comparing the water surface profiles and wave front position with dam break on rigid and porous bed. Results showed that, due to the effect of dynamic wave in the initial stage of dam break, a local peak occurs in the flood hydrograph. The presence of porous bed reduces the acceleration of the flood wave relative to the flow over the solid bed and it decreases with the increase of the permeability of the bed. By increasing the permeability of the bed, the slope of the ascending limb of the flood hydrograph and the peak discharge drops. Furthermore, if the depth and permeability of the bed is such that the intrusive flow reaches the rigid substrate under the porous bed, saturation of the porous bed, results in a sharp increase in the slope of the flood hydrograph. The maximum values of the peak discharge at the end of the channel with porous bed occurred in saturated porous bed conditions.

댐 붕괴는 경제, 보안, 인명 피해 및 환경적 영향으로 인해 매우 중요한 문제입니다. 본 연구에서는 다공성 기재에 대한 댐 파괴로 인한 3차원 유동을 수치적으로 시뮬레이션하고 다공성 기재의 다공성, 투과도 및 다공성 층의 두께 및 수심의 영향을 조사합니다. 단단한 바닥에 대한 댐 파괴 및 다공성 매체를 통한 물 침투의 고전 모델을 연구하고 수치 시뮬레이션 결과를 기존 실험실 데이터와 비교합니다. 결과 검증은 강체 및 다공성 베드에서 댐 파단과 수면 프로파일 및 파면 위치를 비교하여 수행됩니다. 그 결과 댐파괴 초기의 동적파동의 영향으로 홍수수문곡선에서 국부첨두가 발생하는 것으로 나타났다. 다공성 베드의 존재는 고체 베드 위의 유동에 대한 홍수파의 가속을 감소시키고 베드의 투과성이 증가함에 따라 감소합니다. 베드의 투수성을 증가시켜 홍수 수문곡선의 오름차순 경사와 첨두방류량이 감소한다. 더욱이, 만약 층의 깊이와 투과성이 관입 유동이 다공성 층 아래의 단단한 기질에 도달하는 정도라면, 다공성 층의 포화는 홍수 수문곡선의 기울기의 급격한 증가를 초래합니다. 다공층이 있는 채널의 끝단에서 최대 방전 피크값은 포화 다공층 조건에서 발생하였다.

Keywords

Keywords: Dams Break, 3D modeling, Porous Bed, Permeability, Flood wave

Reference

[1] D.L. Fread, In: Maidment, D.R. (Ed.), Flow Routing in Handbook of Hydrology, McGraw-Hill Inc., New York, USA, pp. 10(1) (1993) 1-36.
[2] M. Morris, CADAM: Concerted Action on Dambreak Modeling – Final Report, Rep. SR 571. HR Wallingford, 2000.
[3] H. Chanson, The Hydraulics of Open Channel Flows: an Introduction, ButterworthHeinemann, Oxford, 2004.
[4] A. Ritter, Die Fortpflanzung der Wasserwellen (The Propagation of Water Waves), Zeitschrift Verein Deutscher Ingenieure, 36 (33) (1892) 947–954 [in German].
[5] B. Ghimire, Hydraulic Analysis of Free-Surface Flows into Highly Permeable Porous Media and its Applications, Phd. Thesis, Kyoto University, 2009.
[6] R. Dressler, Hydraulic Resistance Effect Upon the Dam-Break Function, Journal of Research of the National Bureau of Standards, 49 (3) 1952.
[7] G. Lauber, and W.H. Hager, Experiments to Dambreak Wave: horizontal channel, Journal of Hydraulic Research. 36 (3) (1998) 291–307.
[8] L.W. Tan, and V.H. Chu, Lagrangian Block Hydrodynamics of Macro Resistance in a River-Flow Model,
[9] L. Tan, V.H. Lauber and Hager’s Dam-Break Wave Data for Numerical Model Validation, Journal of Hydraulic Research, 47 (4) (2009) 524-528.
[10] S. Mambretti, E.D. Larcan, and D. Wrachien, 1D Modelling of Dam-Break Surges with Floating Debris, J. of Biosystems engineering, 100 (2) (2008) 297-308.
[11] M. Pilotti, M. Tomirotti, G. Valerio, and B. Bacchi, Simplified Method for the Characterization of the Hydrograph Following a Sudden Partial Dam Break, Journal of Hydraulic Engineering, 136 (10) (2010) 693-704.
[12] T.J. Chang, H.M. Kao, K.H. Chang, and Mi.H. Hsu, Numerical Simulation of ShallowWater Dam Break Flows in Open Channels Using Smoothed Particle Hydrodynamics, J. Hydraul. Eng., 408 (78–90) 2011.
[13] T. Tawatchai, and W. Rattanapitikon, 2-D Modelling of Dambreak Wave Propagation on Initially Dry Bed, Thammasat Int. J. Sc. 4 (3) 1999.
[14] Y.F. Le, Experimental Study of landslide Dam-Break Flood over Erodible Bed in open Channels. Journal of Hydrodynamics, Ser. B, 21 (5) 2006.
[15] O. Castro-Orgaz, & H. Chanson, Ritter’s Dry-Bed Dam-Break Flows: Positive and Negative Wave Dynamics, J. of Environmental Fluid Mechanics, 17 (4) (2017) 665-694.
[16] A. Jozdani, A.R. Kabiri-Samani, Application of Image Processing Method to Analysis of Flood Behavior Due to Dam Break, 9th Iranian Hydraulic Conference. Univ. of Tarbiat Moddares, 2011.(in persian)
[17] A. Safarzadeh, Three Dimensional Hydrodynamics of Sudden Dam Break in Curved Channels, Journal of Modares Civil Engineering, 17(3) (2017) 77-86. (in persian)
[18] P. C. Carman, Fluid Flow Through Granular Beds, Transactions, Institution of Chem. Eng. Res. Des. 75 (Dec): S32–S48, London, 15, (1937) 150-166.
[19] P. Forchheimer, Wasserbewegung Durch Boden. Z. Ver. Deutsch. Ing. 45 (1901) 1782– 1788.
[20] S. Ergun, Fluid Flow through Packed Columns. Chemical Engineering Progress, 48(2) (1952) 89-93.
[21] A. Parsaei, S. Dehdar-Behbahani, Numerical Modeling of Cavitation on Spillway’s Flip Bucket, Frontiers of Structural and Civil Engineering, 10 (4) (2016) 438-444.
[22] S. Dehdar-Behbahani, A. Parsaei, Numerical Modeling of Flow Pattern in Dam Spillway’s Guide Wall. Case study: Balaroud dam, Iran, Alexandria Engineering Journal, 55(1) (2016) 467-473.
[23] A. Parsaei, AH. Haghiabi, A. Moradnejad, CFD Modeling of Flow Pattern in Spillway’s ACCEPTED MANUSCRIPT 19 Approach Channel, Sustainable Water Resources Management, 1(3) (2015) 245-251.
[24] SH. Najafian, H. Yonesi, A. Parsaei, PH. Torabi, Physical and Numerical Modeling of Flow in Heterogeneous Roughness Non-Prismatic Compound Open Channel, Irrigation and Drainage Structures Engineering Research, 17(66) (2016) 87-104.
[25] SH. Najafian, H. Yonesi, A. Parsaei, PH. Torabi, Physical and Numerical Modeling of Flow Properties in Prismatic Compound Open Channel with Heterogeneous Roughness, Irrigation and Drainage Structures Engineering Research, 18(68) (2017) 1-16.
[26] A. Safarzadeh, S.H. Mohajeri, Hydrodynamics of Rectangular Broad-Crested Porous Weirs, Journal of Irrig. & Drain. Eng., 144(10) (2018) 1-12.
[27] M. Fathi-moghaddam, M.T. Sadrabadi, M, Rahamnshahi, Numerical Simulation of the Hydraulic Performance of Triangular and Trapezoidal Gabion Weirs in Free Flow Condition, Journal of Flow Measurement & Instrumentation, 62 (2018) 93-104.
[28] A. Parsaei, A. Moradnejad, Numerical Modeling of Flow Pattern in Spillway Approach Channel, Jordan Journal of Civil Engineering, 12(1) (2018) 1-9.

Fig. 6. Experiment of waves passing through a single block of porous medium.

Generalization of a three-layer model for wave attenuation in n-block submerged porous breakwater

NadhiraKarimaaIkhaMagdalenaabIndrianaMarcelaaMohammadFaridbaFaculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 40132, IndonesiabCenter for Coastal and Marine Development, Bandung Institute of Technology, Indonesia

Highlights

•A new three-layer model for n-block submerged porous breakwaters is developed.

•New analytical approach in finding the wave transmission coefficient is presented.

•A finite volume method successfully simulates the wave attenuation process.

•Porous media blocks characteristics and configuration can optimize wave reduction.

Abstract

높은 파도 진폭은 해안선에 위험한 영향을 미치고 해안 복원력을 약화시킬 수 있습니다. 그러나 다중 다공성 매체는 해양 생태계의 환경 친화적인 해안 보호 역할을 할 수 있습니다.

이 논문에서 우리는 n개의 잠긴 다공성 미디어 블록이 있는 영역에서 파동 진폭 감소를 계산하기 위해 3층 깊이 통합 방정식을 사용합니다. 수학적 모델은 파동 전달 계수를 얻기 위해 여러 행렬 방정식을 포함하는 변수 분리 방법을 사용하여 해석적으로 해결됩니다.

이 계수는 진폭 감소의 크기에 대한 정보를 제공합니다. 또한 모델을 수치적으로 풀기 위해 지그재그 유한 체적 방법이 적용됩니다.

수치 시뮬레이션을 통해 다공성 매질 블록의 구성과 특성이 투과파 진폭을 줄이는 데 중요하다는 결론을 내렸습니다.

High wave amplitudes may cause dangerous effects on the shoreline and weaken coastal resilience. However, multiple porous media can act as environmental friendly coastal protectors of the marine ecosystem. In this paper, we use three-layer depth-integrated equations to calculate wave amplitude reduction in a domain with n submerged porous media blocks. The mathematical model is solved analytically using the separation of variables method involving several matrix equations to obtain the wave transmission coefficient. This coefficient provides information about the magnitude of amplitude reduction. Additionally, a staggered finite volume method is applied to solve the model numerically. By conducting numerical simulations, we conclude that porous media blocks’ configuration and characteristics are crucial in reducing transmitted wave amplitude.

Keywords

Three-layer equations, Submerged porous media, Wave transmission coefficient, Finite volume method

Fig. 1. Sketch of the problem configuration.
Fig. 1. Sketch of the problem configuration.
Fig. 6. Experiment of waves passing through a single block of porous medium.
Fig. 6. Experiment of waves passing through a single block of porous medium.

References

[1]M. Beck, G. Lange, Managing Coasts with Natural Solutions: Guidelines for Measuring and Valuing the Coastal Protection Services of Mangroves and Coral Reefs.

Google Scholar[2]

Y. Zhao, Y. Liu, H. Li, A. Chang

Oblique wave motion over multiple submerged porous bars near a vertical wall

J. Ocean Univ. China, 16 (2017), pp. 568-574, 10.1007/s11802-017-3333-5 View PDF

View Record in ScopusGoogle Scholar[3]C. K. Sollitt, R. H. Cross, Wave transmission through permeable breakwaters, Coast. Eng..

Google Scholar[4]J.-F. Lee, L.-F. Tu, C.-C. Liu, Nonlinear wave evolution above rectangular submerged structures, J. Mar. Sci. Technol. 22. doi:10.6119/JMST-013-0503-3.

Google Scholar[5]

Y.T. Wu, C.L. Yeh, S.-C. Hsiao

Three-dimensional numerical simulation on the interaction of solitary waves and porous breakwaters

Coast. Eng., 85 (2014), pp. 12-29

ArticleDownload PDFView Record in ScopusGoogle Scholar[6]

Y. feng Xu, X. he Xia, J. hua Wang, J. jian Chen

Numerical analysis on cnoidal wave induced response of porous seabed with definite thickness

J. Shanghai Jiao Tong Univ. (Sci.), 18 (2013), pp. 650-654, 10.1007/s12204-013-1446-6 View PDF

Google Scholar[7]

D.M. Pérez-Romero, M. Ortega-Sánchez, A. Moñino, M.A. Losada

Characteristic friction coefficient and scale effects in oscillatory porous flow

Coast. Eng., 56 (9) (2009), pp. 931-939, 10.1016/j.coastaleng.2009.05.002

ArticleDownload PDFView Record in ScopusGoogle Scholar[8]

A. Torres-Freyermuth, M. Brocchini, S. Corvaro, J.C. Pintado-Patiño

Wave attenuation over porous seabeds: a numerical study

Ocean Model., 117 (2017), pp. 28-40, 10.1016/j.ocemod.2017.07.004

ArticleDownload PDFView Record in ScopusGoogle Scholar[9]F. Hajivalie, S. M. Mahmoudof, Experimental study of energy dissipation at rectangular submerged breakwater, Proceedings of the 8th International Conference on Fluid Mechanics.

Google Scholar[10]G. T. Klonaris, A. S. Metallinos, C. D. Memos, K. A. Galani, Experimental and numerical investigation of bed morphology in the lee of porous submerged breakwaters, Coast. Eng. 155.

Google Scholar[11]

A. Kubowicz-Grajewska

Experimental investigation into wave interaction with a rubble-mound submerged breakwater (case study)

J. Mar. Sci. Technol., 22 (2) (2017), pp. 313-326 View PDF

CrossRefView Record in ScopusGoogle Scholar[12]

S.M. Mahmoudof, F. Hajivalie

Experimental study of hydraulic response of smooth submerged breakwaters to irregular waves

Oceanologia, 63 (4) (2021), pp. 448-462

ArticleDownload PDFView Record in ScopusGoogle Scholar[13]

C. Tsai, H. Chen, F. Lee

Wave transformation over submerged permeable breakwater on porous bottom

Ocean Eng., 33 (2006), pp. 1623-1643, 10.1016/j.oceaneng.2005.09.006

ArticleDownload PDFView Record in ScopusGoogle Scholar[14]

S. Rojanakamthorn, M. Isobe, A. Watanabe

A mathematical model of wave transformation over a submerged breakwater

Coastal Engineering in Japan, 31 (1989), pp. 209-234, 10.1080/05785634.1989.11924515 View PDF

View Record in ScopusGoogle Scholar[15]

Q. Lin, Q.r. Meng, D.q. Lu

Waves propagating over a two-layer porous barrier on a seabed

J. Hydrodyn., 30 (3) (2018), pp. 453-462 View PDF

CrossRefView Record in ScopusGoogle Scholar[16]X. Yu, A. T. Chwang, Wave motion through porous structures, J. Eng. Mech. 120. doi:10.1061/(ASCE)0733-9399(1994)120:5(989).

Google Scholar[17]

K.G. Vijay, V. Venkateswarlu, D. Karmakar

Scattering of gravity waves by multiple submerged rubble-mound breakwaters

Arabian J. Sci. Eng., 45 (10) (2020), pp. 8529-8550 View PDF

CrossRefView Record in ScopusGoogle Scholar[18]

I. Magdalena, G. Jonathan

Water waves resonance and its interaction with submerged breakwater

Results in Engineering, 13 (2022), Article 100343, 10.1016/j.rineng.2022.100343

ArticleDownload PDFView Record in ScopusGoogle Scholar[19]

I. Magdalena, K. Firdaus, D. Jayadi

Analytical and numerical studies for wave generated by submarine landslide

Alex. Eng. J., 61 (9) (2022), pp. 7303-7313, 10.1016/j.aej.2021.12.069

ArticleDownload PDFView Record in ScopusGoogle Scholar[20]

L. Arpaia, M. Ricchiuto, A.G. Filippini, R. Pedreros

An efficient covariant frame for the spherical shallow water equations: well balanced dg approximation and application to tsunami and storm surge

Ocean Model., 169 (2022), Article 101915, 10.1016/j.ocemod.2021.101915

ArticleDownload PDFView Record in ScopusGoogle Scholar[21]

M. Briani, G. Puppo, M. Ribot

Angle dependence in coupling conditions for shallow water equations at channel junctions

Comput. Math. Appl., 108 (2022), pp. 49-65, 10.1016/j.camwa.2021.12.021

ArticleDownload PDFView Record in ScopusGoogle Scholar[22]

I. Magdalena, G.R. Andadari, D.E. Reeve

An integrated study of wave attenuation by vegetation

Wave Motion, 110 (2022), Article 102878, 10.1016/j.wavemoti.2021.102878

ArticleDownload PDFView Record in ScopusGoogle Scholar[23]

I. Magdalena, R. La’lang, R. Mendoza

Quantification of wave attenuation in mangroves in manila bay using nonlinear shallow water equations

Results in Applied Mathematics, 12 (2021), Article 100191, 10.1016/j.rinam.2021.100191

ArticleDownload PDFView Record in ScopusGoogle Scholar[24]

K.T. Mandli

A numerical method for the two layer shallow water equations with dry states

Ocean Model., 72 (2013), pp. 80-91, 10.1016/j.ocemod.2013.08.001

ArticleDownload PDFView Record in ScopusGoogle Scholar[25]

M. Farhan, Z. Omar, F. Mebarek-Oudina, J. Raza, Z. Shah, R.V. Choudhari, O.D. Makinde

Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator

Comput. Math. Model., 31 (2020), pp. 116-132, 10.1007/s10598-020-09480-0 View PDF

View Record in ScopusGoogle Scholar[26]

R. Djebali, F. Mebarek-Oudina, C. Rajashekhar

Similarity solution analysis of dynamic and thermal boundary layers: further formulation along a vertical flat plate

Phys. Scripta, 96 (8) (2021), Article 085206, 10.1088/1402-4896/abfe31 View PDF

View Record in ScopusGoogle Scholar[27]

M. Alkasassbeh, O. Zurni, F. Mebarek-Oudina, J. Raza

Heat transfer study of convective fin with temperature,Äêdependent internal heat generation by hybrid block method

Heat Tran. Asian Res., 48 (2019), pp. 1225-1244, 10.1002/htj.21428 View PDF

View Record in ScopusGoogle Scholar[28]

I. Magdalena, M.F. Eka Pebriansyah

Numerical treatment of finite difference method for solving dam break model on a wet-dry bed with an obstacle

Results in Engineering, 14 (2022), Article 100382, 10.1016/j.rineng.2022.100382

ArticleDownload PDFView Record in ScopusGoogle Scholar[29]

M. Uddin, S. Rasel, J.K. Adewole, K.S. Al Kalbani

Finite element simulation on the convective double diffusive water-based copper oxide nanofluid flow in a square cavity having vertical wavy surfaces in presence of hydro-magnetic field

Results in Engineering, 13 (2022), Article 100364, 10.1016/j.rineng.2022.100364

ArticleDownload PDFView Record in ScopusGoogle Scholar[30]

E.H.H. Al-Qadami, A.S. Abdurrasheed, Z. Mustaffa, K.W. Yusof, M. Malek, A.A. Ghani

Numerical modelling of flow characteristics over sharp crested triangular hump

Results in Engineering, 4 (2019), Article 100052, 10.1016/j.rineng.2019.100052

ArticleDownload PDFView Record in ScopusGoogle Scholar[31]

I. Magdalena, V. Kusnowo, M.I. Azis

Widowati, 1d-2d numerical model for wave attenuation by mangroves as a porous structure

Computation, 9 (6) (2021), pp. 1-21

Google Scholar[32]

I. Magdalena, M.F. Atras, L. Sembiring, M.A. Nugroho, R.S.B. Labay, M.P. Roque

Wave transmission by rectangular submerged breakwaters

Computation, 8 (2) (2020), pp. 1-18 View PDF

View Record in ScopusGoogle Scholar[33]

I. Magdalena, S.R. Pudjaprasetya

Numerical modeling for gravity waves over submerged porous media

Australian Journal of Basic and Applied Sciences, 9 (28) (2015), pp. 124-130

View Record in ScopusGoogle Scholar[34]

I. Magdalena, A. Hariz, M. Farid, M.S.B. Kusuma

Numerical studies using staggered finite volume for dam break flow with an obstacle through different geometries

Results in Applied Mathematics, 12 (2021), Article 100193, 10.1016/j.rinam.2021.100193

ArticleDownload PDFView Record in ScopusGoogle Scholar[35]

R. Walters, E. Hanert, J. Pietrzak, D. Le Roux

Comparison of unstructured, staggered grid methods for the shallow water equations

Ocean Model., 28 (1) (2009), pp. 106-117, 10.1016/j.ocemod.2008.12.004

the Sixth International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows

ArticleDownload PDFView Record in ScopusGoogle Scholar[36]

F. Mebarek-Oudina

Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engineering Science and Technology

Int. J., 20 (4) (2017), pp. 1324-1333, 10.1016/j.jestch.2017.08.003

ArticleDownload PDFView Record in ScopusGoogle Scholar[37]

S. Pudjaprasetya, I. Magdalena

Numerical modeling for gravity waves over submerged porous media

Australian Journal of Basic and Applied Sciences, 9 (2015), pp. 124-130

Google Scholar

하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

Hyung Ju Yoo1, Sung Sik Joo2, Beom Jae Kwon3, Seung Oh Lee4*

유 형주1, 주 성식2, 권 범재3, 이 승오4*

1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University
2Director, Water Resources & Environment Department, HECOREA
3Director, Water Resources Department, ISAN
4Professor, Dept. of Civil & Environmental Engineering, Hongik University

1홍익대학교 건설환경공학과 박사과정
2㈜헥코리아 수자원환경사업부 이사
3㈜이산 수자원부 이사
4홍익대학교 건설환경공학과 교수

ABSTRACT

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다. 그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다. 이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다. 수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다. 따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다. 이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다. 그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

키워드 : 보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

1. 서 론

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

2. 본 론

2.1 이론적 배경

2.1.1 3차원 수치모형의 기본이론

FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

2.1.2 유동해석의 지배방정식

1) 연속 방정식(Continuity Equation)

FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

(1)

∇·v=0

(2)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

2) 운동량 방정식(Momentum Equation)

각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

(3)

∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

(4)

∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

(5)

∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

2.1.3 소류력 산정

호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

1) Schoklitsch 공식

Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

(6)

τ=γRI=γC2V2

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

2) Manning 조도계수를 고려한 공식

Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

(7)

τ=γn2V2R1/3

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

2.2 하천호안 설계기준

하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

Table 1.

Standard of Permissible Velocity and Shear on Revetment

Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
KoreaRiver Construction Design Practice Guidelines
(MOLIT, 2016)
Vegetated5.00.50
Stone5.00.80
USAASTM D’6460Vegetated6.10.81
Unvegetated5.00.28
JAPANDynamic Design Method of Revetment5.0

2.3. 보조여수로 운영에 따른 하류하천 영향 분석

2.3.1 모형의 구축 및 경계조건

본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

(8)

n=ks1/68.1g1/2

여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

Table 2.

Mesh sizes and numerical conditions

MeshNumbers49,102,500 EA
Increment (m)DirectionExisting SpillwayAuxiliary Spillway
∆X0.99 ~ 4.301.00 ~ 4.30
∆Y0.99 ~ 8.161.00 ~ 5.90
∆Z0.50 ~ 1.220.50 ~ 2.00
Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
Xmax, Ymin, Zmin / ZmaxWall / Symmetry
Turbulence ModelRNG model
Table 3.

Case of numerical simulation (Qp : Design flood discharge)

CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
1Qp0Reference case
20Qp
300.58QpReview of discharge capacity on
auxiliary spillway
400.48Qp
500.45Qp
600.32Qp
70.50Qp0.50QpDetermination of optimal division
ratio on Spillways
80.61Qp0.39Qp
90.39Qp0.61Qp
100.42Qp0.58Qp
110.32Qp0.45QpDetermination of permissible
division on Spillways
120.35Qp0.48Qp
130.38Qp0.53Qp
140.41Qp0.56Qp
Table 4.

Roughness coefficient and roughness height

CriteriaRoughness coefficient (n)Roughness height (ks, m)
Structure (Concrete)0.0140.00061
River0.0330.10496
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
Fig. 1

Layout of spillway and river in this study

2.3.2 보조 여수로의 방류능 검토

본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
Fig. 2

Region of interest in this study

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
Fig. 3

Maximum velocity and location of Vmax according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
Fig. 4

Maximum shear according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
Fig. 5

Maximum water surface elevation and location of ηmax according to Qa

Table 5.

Numerical results for each cases (Case 1 ~ Case 6)

CaseMaximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation
in terms of Vp
Evaluation
in terms of τp
1
(Qa = 0)
9.150.54No GoodNo Good
2
(Qa = Qp)
8.870.56No GoodNo Good
3
(Qa = 0.58Qp)
6.530.40No GoodNo Good
4
(Qa = 0.48Qp)
6.220.36No GoodNo Good
5
(Qa = 0.45Qp)
4.220.12AccpetAccpet
6
(Qa = 0.32Qp)
4.040.14AccpetAccpet

2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
Fig. 6

Maximum velocity on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
Fig. 7

Maximum shear on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
Fig. 8

Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
Fig. 9

Maximum water surface elevation on section 1 & 2 according to Qa

Table 6.

Numerical results for each cases (Case 7 ~ Case 10)

Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
7
Qe : 0.50QpQa : 0.50Qp
8.106.230.640.30No GoodNo GoodNo GoodNo Good
8
Qe : 0.61QpQa : 0.39Qp
8.886.410.610.34No GoodNo GoodNo GoodNo Good
9
Qe : 0.39QpQa : 0.61Qp
6.227.330.240.35No GoodNo GoodAcceptNo Good
10
Qe : 0.42QpQa : 0.58Qp
6.394.790.300.19No GoodAcceptNo GoodAccept

2.3.4 방류량 배분 비율의 허용 방류량 검토

계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

Table 7.

Numerical results for each cases (Case 11 ~ Case 14)

Case (Qe &amp; Qa)Maximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
11
Qe : 0.32QpQa : 0.45Qp
3.634.530.090.26AcceptAcceptAcceptAccept
12
Qe : 0.35QpQa : 0.48Qp
5.745.180.230.22No GoodNo GoodAcceptAccept
13
Qe : 0.38QpQa : 0.53Qp
6.704.210.280.11No GoodAcceptAcceptAccept
14
Qe : 0.41QpQa : 0.56Qp
6.545.240.280.24No GoodNo GoodAcceptAccept
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
Fig. 10

Maximum velocity on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
Fig. 11

Maximum shear on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
Fig. 12

Maximum water surface elevation on section 1 & 2 according to total outflow

3. 결 론

본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

Acknowledgements

본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

References

1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.

2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.

3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.

4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.

5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.

6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.

7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537

8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.

9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.

10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593

11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279

12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.

13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.

14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.

15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.

16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230

17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

Korean References Translated from the English

1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.

2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.

3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.

4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.

5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.

6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537

7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.

8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.

9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.

10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).

Application of Computational Fluid Dynamics in Chlorine-Dynamics Modeling of In-Situ Chlorination Systems for Cooling Systems

Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*

Abstract

염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는​​데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.

Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.

Keywords

computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination

Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.
Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.

References

  1. Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
  2. Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
  3. Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.;
    Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
  4. World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
  5. Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
  6. Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
  7. Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
  8. Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
  9. Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
  10. Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
  11. Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
  12. Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
  13. European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
  14. Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
  15. Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
  16. Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
  17. Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
  18. Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
  19. Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
  20. Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
  21. Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
  22. Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
  23. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
  24. Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
  25. Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
  26. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
  27. Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
  28. Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
  29. Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
  30. Jonkergouw, P.M.; Khu, S.-T.; Savic, D.A.; Zhong, D.; Hou, X.Q.; Zhao, H.-B. A variable rate coefficient chlorine decay model. Environ. Sci. Technol. 2009, 43, 408–414.
  31. Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
  32. Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
  33. Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
  34. Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
  35. Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
  36. United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
  37. Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
  38. Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
  39. Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
  40. Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
  41. Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
Fig. 2- Experimental setup (Shamloo et al., 2012)

2상 유동 해석을 통한 슈트 폭기 시스템 효율에 대한 램프 각도의 영향 조사

1 Associate Professor, Civil Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran

2 Instructor in Civil Engineering Department Jundi-Shapur University of Technology, Dezful,Iran.

 10.22055/JISE.2021.37743.1980

Abstract

슈트 여수로의 흐름 폭기는 캐비테이션 손상을 방지하는 가장 효과적이고 경제적인 방법 중 하나입니다. 수중 프리즘에 아주 작은 양의 공기가 흩어지면 표면 손상이 크게 줄어듭니다. 이를 위해 폭기 장치로 알려진 구조를 사용할 수 있습니다. 또한, 램프 각도는 폭기 효율에 영향을 미치는 요인 중 하나입니다. 이 연구에서는 Flow-3D 소프트웨어를 사용하여 3가지 다른 시나리오인 6, 8 및 10도의 램프 각도에서 Jarreh 댐의 방수로를 통해 흐름을 동반하는 공기의 값을 시뮬레이션했습니다. 6도의 경사각에서 유동 유체로 유입되는 공기의 결과를 검증하기 위해이란 TAMAB Company의 실험실에서 댐 방수로 물리적 모델의 관찰 결과를 사용했습니다. 결과에 따르면 램프 각도를 높이면 워터제트 기저귀로 유입되는 공기가 증가하고 10도 램프 각도는 최고의 폭기 효율을 제공합니다. Flow-3D 모델은 결과에 따라 여수로의 2단계 물-공기 흐름을 시뮬레이션할 수도 있습니다.

Flow aeration in chute spillway is one of the most effective and economic ways to prevent cavitation damage. Surface damage is significantly reduced when very small values of air are scattered in a water prism. A structure known as an aerator may be used for this purpose. Besides, ramp angle is one of the factors influencing aerator efficiency. In this research, the value of air entraining the flow through the Jarreh Dam’s spillway at the ramp angles of 6, 8 and 10 degrees, as three different scenarios, was simulated using the Flow-3D software. In order to validate the results of the inlet air into the flowing fluid at a ramp angle of 6 degrees, the observational results of the dam spillway physical model from the laboratory of TAMAB Company in Iran were used. According to the results, raising the ramp angle increases the inlet air to the water jet nappe, and a ten-degree ramp angle provides the best aeration efficiency. The Flow-3D model can also simulate the two-phase water-air flow on spillways, according to the results.

Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
Fig. 2- Experimental setup (Shamloo et al., 2012)
Fig. 2- Experimental setup (Shamloo et al., 2012)
Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity, and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp angle
Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity, and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp angle
Fig. 4- Location of data extraction stations after aeration on a scale model of 1:50
Fig. 4- Location of data extraction stations after aeration on a scale model of 1:50
Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees, b) 8 degrees and c) 10 degrees
Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees, b) 8 degrees and c) 10 degrees

Keywords

Aeration system Ramp angle Aeration coefficient Two-phase flow Flow-3D model

참고문헌

  • Baharvand, S., & Lashkar-Ara, B. (2021). 실험 모델과 CFD 모델을 결합한 수정 사행 C형 어로의 수력학적 설계기준. 생태 공학 , 164 . https://doi.org/10.1016/j.ecoleng.2021.106207

2- Bayon, A., Toro, JP, Bombardelli, FA, Matos, J., & López-Jiménez, PA(2018). VOF 기술, 난류 모델 및 이산화 방식이 계단식 배수로에서 폭기되지 않은 스키밍 흐름의 수치 시뮬레이션에 미치는 영향. 수력 환경 연구 저널 , 19 , 137–149. https://doi.org/10.1016/j.jher.2017.10.002

3- Brethour, JM, & Hirt, CW (2009). 2성분 흐름에 대한 드리프트 모델. Flow Science, Inc. , FSI – 09 – TN83Rev , 1–7.

4- Chanson, H. (1989). 공기 유입 및 폭기 장치 연구. 수력학 연구 저널 , 27 (3), 301–319. https://doi.org/10.1080/00221688909499166

5- Dong, Z., Wang, J., Vetsch, DF, Boes, RM, & Tan, G. (2019). 매우 높은 단위 배출에서 X자형 플레어링 게이트 교각 뒤의 계단식 배수로에서 공기-물 2상 흐름의 수치 시뮬레이션. 물(스위스) , 11 (10). https://doi.org/10.3390/w11101956

6- Flow-3D, V. 11. 2. (2017). 사용자 매뉴얼. Flow Science Inc.: Santa Fe, NM, USA;

7- Hirt, CW (2003). 자유 표면에서 공기의 난류 동반 모델링. Flow Science, Inc. , FSI – 03 – TN6 , 1–9.

8- Hirt, CW (2016). 드리프트 플럭스에 대한 동적 액적 크기. Flow Science, Inc. , 1–10.

9- Hirt, CW, & Nichols, BD (1981). 자유 경계의 역학에 대한 VOF(유체 체적) 방법. 전산 물리학 저널 , 39 (1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5

10- Kherbache, K., Chesneau, X., Zeghmati, B., Abide, S., & Benmamar, S. (2017). 계단식 배수로의 물 흐름에 대한 계단식 경사 및 공기 주입의 영향: 수치 연구. 유체 역학 저널 , 29 (2), 322–331. https://doi.org/10.1016/S1001-6058(16)60742-4

11- Kramer, M., & Chanson, H. (2019). 폭기된 여수로 흐름에서 광학 흐름 추정: 샘플링 매개변수에 대한 필터링 및 논의. 실험적 열 및 유체 과학 , 103 , 318–328. https://doi.org/10.1016/j.expthermflusci.2018.12.002

12- Mahmoudian, Z., Baharvand, S., & Lashkarara, B. (2019). Baffle Fishway Denil Type의 흐름 패턴 조사. 관개 과학 및 공학(JISE) , 42 (3), 179–196.

13- Meireles, IC, Bombardelli, FA 및 Matos, J. (2014). 가파른 계단식 배수로의 스키밍 흐름에서 공기 유입 시작: 분석. 수력학 연구 저널 , 52 (3). https://doi.org/10.1080/00221686.2013.878401

14- Parsaie, A., & Haghiabi, AH (2019). 1/4 원형 볏이 있는 계단식 배수로에서 흐름 폭기의 시작 지점. 유량 측정 및 계측 , 69 . https://doi.org/10.1016/j.flowmeasinst.2019.101618

15- Richardson, JF, & Zaki W N. (1979). 침전 및 유동화. 파트 1. 트랜스. Inst. 화학 영어 , 32 , 35–53.

16- Shamloo, H., Hoseini Ghafari, S., & Kavianpour, M. (2012). 슈트 여수로의 폭기에 대한 유입구 흐름의 영향에 대한 실험적 연구(사례 연구: 이란 Jare Dam). 제10차 토목 공학 발전에 관한 국제 회의, 중동 기술 대학, 앙카라, 터키 .

17- Wang, SY, Hou, DM, & Wang, CH (2012). Murum 수력 발전소의 계단식 슈트의 폭기 장치. 프로시디아 엔지니어링 , 28 , 803–807. https://doi.org/10.1016/j.proeng.2012.01.813.

18- Wei, W., Deng, J., & Zhang, F. (2016). 초임계 슈트 흐름에 대한 자체 폭기 공정 개발. 다상 흐름의 국제 저널 , 79 , 172–180. https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.003

19- Wu, J., QIAN, S., & MA, F. (2016). 스키점프 스텝 배수로의 새로운 디자인. 유체 역학 저널 , 05 , 914–917.

20- Xu, Y., Wang, W., Yong, H., & Zhao, W. (2012). 슈트 폭기 장치에서 제트 흐름의 공동 역류에 대한 조사. 프로시디아 엔지니어링 , 31 , 51–56. https://doi.org/10.1016/j.proeng.2012.01.989

21- Yakhot, V., & Orszag, SA (1986). 난류의 재정규화 그룹 분석. I. 기본 이론. 과학 컴퓨팅 저널 , 1 (1), 3–51. https://doi.org/10.1007/BF01061452

22- Yang, J., Teng, P., & Lin, C. (2019). 넓은 여수로 폭기장치의 통풍구 배치 및 물-기류 거동. Theoretical and Applied Mechanics Letters , 9 (2), 130–143. https://doi.org/10.1016/j.taml.2019.02.009

23- Zhang, G., & Chanson, H. (2016). 자유 표면 폭기와 계단식 슈트의 총 압력 사이의 상호 작용. 실험적 열 및 유체 과학 , 74 , 368–381. https://doi.org/10.1016/j.expthermflusci.2015.12.011

Computational Fluid Dynamics, 온실

CFD 사용: 유압 구조 및 농업에서의 응용

USO DE CFD COMO HERRAMIENTA PARA LA MODELACIÓN Y  PREDICCIÓN NUMÉRICA DE LOS FLUIDOS: APLICACIONES EN  ESTRUCTURAS HIDRÁULICAS Y AGRICULTURA

Cruz Ernesto Aguilar-Rodriguez1*; Candido Ramirez-Ruiz2; Erick Dante Mattos Villarroel3 

1Tecnológico Nacional de México/ITS de Los Reyes. Carretera Los Reyes-Jacona, Col. Libertad. 60300.  Los Reyes de Salgado, Michoacán. México. 

ernesto.ar@losreyes.tecnm.mx – 3541013901 (*Autor de correspondencia) 

2Instituto de Ciencias Aplicadas y Tecnología, UNAM. Cto. Exterior S/N, C.U., Coyoacán, 04510, Ciudad  de México. México.  3Riego y Drenaje. Instituto Mexicano de Tecnología del Agua. Paseo Cuauhnáhuac 8532, Progreso,  Jiutepec, Morelos, C.P. 62550. México.

Abstract

공학에서 유체의 거동은 설명하기에 광범위하고 복잡한 과정이며, 유체역학은 유체의 거동을 지배하는 방정식을 통해 유체 역학 현상을 분석할 수 있는 과학 분야이지만 이러한 방정식에는 전체 솔루션이 없습니다. . 전산유체역학(Computational Fluid Dynamics, 이하 CFD)은 수치적 기법을 통해 방정식의 해에 접근할 수 있는 도구로, 신뢰할 수 있는 계산 모델을 얻기 위해서는 물리적 모델의 실험 데이터로 평가해야 합니다. 수력구조물에서 선형 및 미로형 여수로에서 시뮬레이션을 수행하고 배출 시트의 거동과 현재의 폭기 조건을 분석했습니다. 침강기에서 유체의 특성화를 수행하고 필요한 특성에 따라 사체적, 피스톤 또는 혼합의 분수를 수정하는 것이 가능합니다. 농업에서는 온실 환경을 특성화하고 환경에 대한 재료의 디자인, 방향 및 유형 간의 관계를 찾는 데 사용할 수 있습니다. 발견된 가장 중요한 결과 중 온실의 길이와 설계가 환기율에 미칠 수 있는 영향으로 온실의 길이는 높이의 6배 미만인 것이 권장됩니다.

키워드: Computational Fluid Dynamics, 온실,

Spillway, Settler 기사: COMEII-21048 소개 

CFD는 유체 운동 문제에 대한 수치적 솔루션을 얻어 수리학적 현상을 더 잘 이해할 수 있게 함으로써 공간 시각화를 가능하게 하는 수치 도구입니다. 예를 들어, 수력 공학에서 벤츄리(Xu, Gao, Zhao, & Wang, 2014) 워터 펌핑(ȘCHEAUA, 2016) 또는 개방 채널 적용( Wu et 알., 2000). 

문헌 검토는 실험 연구에서 검증된 배수로의 흐름 거동에 대한 수리학적 분석을 위한 CFD 도구의 효율성을 보여줍니다. 이 검토는 둑의 흐름 거동에 대한 수리학적 분석을 위한 CFD의 효율성을 보여줍니다. Crookston et al. (2012)는 미로 여수로에 대해 Flow 3D로 테스트를 수행했으며, 배출 계수의 결과는 3%에서 7%까지 다양한 오류로 실험적으로 얻은 결과로 허용 가능했으며 연구 결과 측면에 저압 영역이 있음을 발견했습니다. 익사 방식으로 작업할 때 위어의 벽. Zuhair(2013)는 수치 모델링 결과를 Mandali weir 원형의 실험 데이터와 비교했습니다.  

최근 연구에서는 다양한 난류 모델을 사용하여 CFD를 적용할 가능성이 있음을 보여주었습니다. 그리고 일부만이 음용수 처리를 위한 침적자의 사례 연구를 제시했으며, 다른 설계 변수 중에서 기하학적인 대안, 수온 변화 등을 제안했습니다. 따라서 기술 개발로 인해 설계 엔지니어가 유체 거동을 분석하는 데 CFD 도구를 점점 더 많이 사용하게 되었습니다. 

보호 농업에서 CFD는 온실 환경을 모델링하고 보조 냉방 또는 난방 시스템을 통해 온실의 미기후 관리를 위한 전략을 제안하는 데 사용되는 기술이었습니다(Aguilar Rodríguez et al., 2020).  

2D 및 3D CFD 모델을 사용한 본격적인 온실 시뮬레이션은 태양 복사 모델과 현열 및 잠열 교환 하위 모델의 통합을 통해 온실의 미기후 분포를 연구하는 데 사용되었습니다(Majdoubi, Boulard, Fatnassi, & Bouirden, 2009). 마찬가지로 이 모델을 사용하여 온실 설계(Sethi, 2009), 덮개 재료(Baxevanou, Fidaros, Bartzanas, & Kittas, 2018), 시간, 연중 계절( Tong, Christopher, Li, & Wang, 2013), 환기 유형 및 구성(Bartzanas, Boulard, & Kittas, 2004). 

CFD 거래 프로그램은 사용자 친화적인 플랫폼으로 설계되어 결과를 쉽게 관리하고 이해할 수 있습니다.  

Figura 1. Distribución de presiones y velocidades en un vertedor de pared delgada.
Figura 2. Perfiles de velocidad y presión en la cresta vertedora.
Figura 3. Condiciones de aireación en vertedor tipo laberinto. (A)lámina adherida a la pared del
vertedor, (B) aireado, (C) parcialmente aireado, (D) ahogado.
Figura 4. Realización de prueba de riego.
Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario  (Ramirez-Ruiz, 2019).
Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario (Ramirez-Ruiz, 2019).

Referencias Bibliográficas

Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Ojeda-Bustamante, W.; Rojano, F.; Iñiguez-
Covarrubias, M. 2020. Valuation of the energyperformance of a greenhouse with

an electric heater using numerical simulations. Processes, 8, 600.

Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Rojano, F.; Ojeda-Bustamante, W.; Iñiguez-
Covarrubias, M. 2020. Estimación del ciclo de cultivo de tomate (Solanum

lycopersicum L.) en invernadero, con base en grados días calor (GDC) simulados
con CFD. Tecnología y ciencias del agua, ISSN 2007-2422, 11(4), 27-57.
Al-Sammarraee, M., y Chan, A. (2009). Large-eddy simulations of particle sedimentation
in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects
of baffles. Chemical Engineering Journal, 152(2-3), 315-321.
doi:https://doi.org/10.1016/j.cej.2009.01.052.
Bartzanas, T.; Boulard, T.; Kittas, C. 2004. Effect of vent arrangement on windward
ventilation of a tunnel greenhouse. Biosystems Engineering, 88(4).
Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. 2018. Yearly numerical evaluation of
greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–

  1. DOI: https://doi.org/10.1016/j.compag.2017.12.006.
    Crookston, B. M., & Tullis, B. P. 2012. Labyrinth weirs: Nappe interference and local
    submergence. Journal of Irrigation and Drainage Engineering, 138(8), 757-765.
    Fernández, J. M. 2012. Técnicas numéricas en Ingeniería de Fluidos: Introducción a la
    Dinámica de Fluidos Computacional (CFD) por el Método de Volumen Finito;
    Reverté, Barcelona, pp. 98-294.
    Goula, A., Kostoglou, M., Karapantsios, T., y Zouboulis, A. (2008). The effect of influent
    temperature variations in a sedimentation tank for potable water treatment— A
    computational fluid dynamics study. Water Research, 42(13), 3405-3414.
    doi://doi.org/10.1016/j.watres.2008.05.002.
    Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. 2009. Airflow and microclimate
    patterns in a one-hectare Canary type greenhouse: an experimental and CFD
    assisted study. Agricultural and Forest Meteorology, 149(6-7), 1050-1062.
    Ramirez-Ruiz Candido (2019). Estudio hidrodinámico de sedimentadores de alta tasa en
    plantas potabilizadoras utilizando dinámica de fluidos computacional (CFD).
    Universidad Nacional Autónoma de México. Tesis de maestría.
    Sánchez, J. M. C., & Elsitdié, L. G. C. 2011. Consideraciones del mallado aplicadas al
    cálculo de flujos bifásicos con las técnicas de dinámica de fluidos computacional.
    J. Introd. Inv. UPCT., 4, 33-35.
    Sethi, V.P. 2009. On the selection of shape and orientation of a greenhouse: Thermal
    modeling and experimental validation, Sol. Energy, 83, 21–38.
    ȘCHEAUA, F. 2016. AGRICULTURAL FIELD IRRIGATION SOLUTION BASED ON
    VENTURI NOZZLE γ 2 g γ 2 g. JOURNAL OF INDUSTRIAL DESIGN AND
    ENGINEERING GRAPHICS, 2(1), 31–35.

Tong, G.; Christopher, D.; Li, T.; Wang, T. 2013. Passive solar energy utilization: a review
of cross-section building parameter selection for Chinese solar greenhouses.
Renewable and Sustainable Energy Reviews, 26, 540-548.

Xu, Y., Gao, L., Zhao, Y., & Wang, H. 2014. Wet gas overreading characteristics of a long-
throat Venturi at high pressure based on CFD. Flow Measurement and

Instrumentation, 40, 247–255. https://doi.org/10.1016/j.flowmeasinst.2014.09.004
Wu, W., Rodi, W y Wenka, T. 2000. 3D numerical modeling of flow and sediment transport
in open channels. ASCE Journal of Hydraulic Engineering. Vol 126 Num 1.
Zuhair al zubaidy, Riyadh. 2013. Numerical Simulation of Two-Phase Flow.
En:International Journal of Structural and Civil Engineering Research. Vol 2, No 3;
13p

Numerical study of the effect of flow velocity and flood roughness components on hydraulic flow performance in composite sections with converging floodplains

Numerical study of the effect of flow velocity and flood roughness components on hydraulic flow performance in composite sections with converging floodplains

Authors

1 Civil Enigneering Department, Lahijan Branch.Islamic Azad University.Lahijan.Iran

2 Department of Civil Engnieering, University of Qom,Qom,Iran

3 Civil Engineering Department, Lahijan Branch,Islamic Azad Univeristy,Lahijan,Iran

Abstract

홍수와 그 위험을 통제해야 할 필요성은 누구에게도 숨겨져 있지 않습니다. 또한 이 현상으로 인해 다양한 경제, 사회 및 환경 문제가 영향을 받습니다. 홍수 제어 방법의 설계 및 최적 관리의 첫 번째 단계는 홍수 중 하천 거동을 올바르게 식별하는 것입니다.

홍수 경로 지정, 하상 및 하천 면적 결정 등과 같은 대부분의 하천 엔지니어링 프로젝트에서 하천 단면의 수리학적 매개변수의 평균값을 계산하는 것으로 충분합니다. 오늘날 유체 환경 연구에서 수치 및 분석 방법의 사용이 성장하고 발전했습니다.

신뢰할 수 있는 결과 생성으로 인해 물리적 모델에 대한 좋은 대안이 될 수 있었습니다. 오늘날 수치 모델의 급속한 발전과 컴퓨터 계산 속도의 증가로 인해 3D 수치 모델의 사용이 선호되며 또한 강의 속도 분포 및 전단 응력을 측정하는 데 시간이 많이 걸리고 비용이 많이 들기 때문에 결과 3D 수치 모델의 가치가 있을 것입니다.

한편, 본 연구에서는 복합단면에 대해 FLOW-3D 모델을 이용한 종합적인 수치연구가 이루어지지 않았음을 보여주고 있어 적절한 연구기반을 제공하고 있습니다.

따라서 본 연구의 혁신은 발산 및 수렴 범람원을 동반하는 비 각형 복합 단면에서 흐름의 상태 및 수리 성능에 대한 거칠기와 같은 매개 변수의 영향에 대한 수치 연구입니다.

수치해석 결과를 검증하기 위해 Younesi(2013) 연구를 이용하였습니다. 이 실험에서는 먼저 고정층이 있는 복합 프리즘 및 비 프리즘 단면의 수리 흐름을 조사한 다음 조건을 유지하면서 프리즘 및 비 프리즘 모드에서 퇴적물 이동 실험을 수행했습니다.

실험은 15미터 길이의 연구 채널에서 수행되었습니다. 이 운하는 초당 250리터의 시스템에서 재순환을 위해 제공될 수 있는 유속과 0.0088 000의 종경사를 가진 폭 400mm의 두 개의 대칭 범람원이 있는 합성 운하입니다. 범람원의 가장자리는 0.18미터와 같고 주요 운하의 너비는 0.4미터와 같습니다(그림 1).

본수로의 바닥과 벽을 거칠게 하기 위해 평균직경 0.65mm의 퇴적물을 사용하였으며, 각 단계에서 범람원의 벽과 바닥은 평균직경 0.65, 1.3, 1.78의 퇴적물로 거칠게 하였습다. (mm). 삼각형 오버플로는 운하 상류에서 운하로의 유입량을 측정하는 데 사용됩니다.

상대깊이 0.15와 0.25, 직경 14mm의 마이크로몰리나 실험과 상대깊이 0.35의 실험에서는 유속을 측정하기 위해 3차원 속도계(ADV)를 사용하였습니다. 수위는 0.1mm의 정확도로 깊이 게이지로 측정 되었습니다.

본 연구에서는 수면 프로파일의 수치적 모델을 검증하기 위해 실험 0.25-2에서 발산대의 시작, 중간 및 끝에서 세 단면의 평균 깊이 속도 분포 및 경계 전단 응력) -11.3-NP 및 0.25-2-5.7-NP 및 또한 각형 복합 단면의 0.25-2-2 P 테스트가 평가되었습니다.

각형 합성 단면의 P.20-2-2-P 테스트와 관련된 RMSE 및 NRMSE 지수 값 및 표 (2) 실험 11.3에서 RMSE 및 NRMSE 지수 값 -2-0.25-NP 및 -0.25. 2-5.7-NP가 제공됩니다. 실험 0.25-2-5.7-NP-11.3-2-0.25, NP 및 P.2.0-2-2-P의 평균 깊이 속도의 검증과 관련된 결과가 표시됩니다. 0.25-2-5.7-NP 실험에서 초, 중, 기말 NRMSE의 양은 각각 5.7, 11.8, 10.3%로 계산되었으며, 이는 초급이 우수, 중급이 양호, 최종 성적. 배치. 보시다시피, RMSE 값은 각각 0.026, 0.037 및 0.026으로 계산됩니다.

실험 11.3-2-0.25, NP에서 초급, 중급 및 최종 수준의 NRMSE 값은 각각 7, 11.2 및 15.4%로 계산되었으며, 이는 초급에서 우수 범주 및 우수 범주에서 중간 및 최종 수준. 가져 가다. 보시다시피, RMSE 값은 각각 0.032, 0.038, 0.04로 계산됩니다. 0.25-2-P 실험에서 NRMSE 값은 1.7%로 계산되어 우수 범주에 속한다. 보시다시피 RMSE 값도 0.004로 계산됩니다. 중간 깊이의 속도 분포와 관련하여 수치 모델은 실험실 결과에 적합하며 접합 영역에 작은 오류만 입력되었다고 말할 수 있습니다. 이는 2차 전지의 이동 결과로 간주될 수 있습니다. 모서리를 향해.
결론: 본 연구에서는 3차원 유동 해석이 가능한 Flow 3D 소프트웨어를 사용하여 각형 및 비각형 단면이 복합된 수로의 유동 패턴을 조사했습니다. 3개의 다른 상대 거칠기(1, 2 및 2.74)와 3개의 상대 깊이(0.15, 0.25 및 0.35) 및 5.7 및 11.3도의 발산 각도에 대해 속도의 세로 성분 변화, 평균 깊이 속도 분포, 경계 범람원에 의해 전달되는 유속뿐만 아니라 전단 응력 분포를 조사했습니다.

결과는 수로를 따라 범람원의 폭이 증가함에 따라 유속량이 감소함을 보여주었다. 또한 조도가 유동패턴에 미치는 영향에 대한 연구는 일반적으로 벽의 거칠기에 따라 모든 구간에서 유속량이 감소하는 것으로 나타났으며, 또한 본관과 범람원의 교차점에서의 유동패턴은 벽의 거칠기 영향을 더 많이 받는 것으로 나타났습니다. 결과는 또한 상대 깊이가 증가하거나 상대 거칠기가 감소함에 따라 주 수로와 범람원 사이의 속도 구배가 감소함을 보여주었습니다.

Intrpduction: The need to control floods and their dangers is not hidden from anyone. In addition, a wide range of economic, social and environmental issues are affected by this phenomenon. The first step in the design and optimal management of flood control methods is the correct identification of river behavior during floods. In most river engineering projects such as flood routing, determining the bed and river area, etc., calculating the average values of hydraulic parameters of the river section is sufficient. Today, the use of numerical and analytical methods in the study of fluid environment have grown and developed. Due to the production of reliable results, they have been able to be a good alternative to physical models. Today, with the rapid development of numerical models and increasing the speed of computer calculations, the use of 3D numerical models is preferred and also due to the fact that measuring the velocity distribution and shear stress in rivers is very time consuming and expensive, the results of 3D numerical models It will be valuable. On the other hand, the present studies show that comprehensive numerical research using FLOW-3D model has not been performed on composite sections, so a suitable ground for research is provided. Therefore, the innovation of the present study is the numerical study of the effects of parameters such as roughness on the status and hydraulic performance of the flow in non-prismatic composite sections, which are accompanied by divergent and convergent floodplains, which have received less attention numerically.

Methodology: Younesi (2013) research has been used to validate the results of numerical simulation. In these experiments, first the hydraulic flow in composite prismatic and non-prismatic sections with fixed bed was examined and then, while maintaining the conditions, sediment transfer experiments were performed in prismatic and non-prismatic mode. The experiments were performed in a research channel 15 meters long. This canal is a composite canal with two symmetrical floodplains with a width of 400 mm with a flow rate that can be provided for recirculation in the system of 250 liters per second and a longitudinal slope of 0.0088 000. The depth of the main canal to the edge of the floodplain is equal to 0.18 meters and the width of the main canal is equal to 0.4 meters (Figure 1). In order to roughen the bed and walls of the main canal, sediments with an average diameter of 0.65 mm have been used and at each stage, the walls and bed of floodplains have been roughened by sediments with an average diameter of 0.65, 1.3 and 1.78 (mm). A triangular overflow is used to measure the inflow to the canal, upstream of the canal. In order to measure the flow velocity in experiments with relative depth of 0.15 and 0.25, a micromolina with a diameter of 14 mm and in experiments with relative depth of 0.35, a three-dimensional speedometer (ADV) was used. The water level was also taken by depth gauges with an accuracy of 0.1 mm.
Result and Diccussion: In the present study, in order to validate the numerical model of water surface profile, average depth velocity distribution and boundary shear stress in the three sections at the beginning, middle and end of the divergence zone) in experiments 0.25-2-11.3-NP and 0.25-2-5.7-NP and Also, the 0.25-2-2 P test of the prismatic composite section has been evaluated. In Table (1) the values of RMSE and NRMSE indices related to the P.20-2-2-P test of the prismatic composite section, and also in Table (2) the values of the RMSE and NRMSE indices in the experiments 11.3-2-0.25-NP and -0.25. 2-5.7-NP is provided. The results related to the validation of the average depth velocity of the experiments 0.25-2-5.7- NP-11.3-2-0.25, NP and P.2.0-2-2-P are shown. In 0.25-2-5.7-NP experiment, the amount of NRMSE in elementary, middle and final grades was calculated to be 5.7, 11.8 and 10.3%, respectively, which is in the excellent grade in the elementary grade and good in the middle and final grades. Placed. As can be seen, the RMSE values are calculated as 0.026, 0.037 and 0.026, respectively. In the experiment 11.3-2-0.25, NP, the NRMSE values in the primary, middle and final levels were calculated as 7, 11.2 and 15.4%, respectively, which are in the excellent category in the primary level and in the good category in the middle and final levels. Take. As can be seen, the RMSE values are calculated as 0.032, 0.038 and 0.04, respectively. In the 0.25-2-P experiment, the NRMSE value was calculated to be 1.7%, which is in the excellent category. As can be seen, the RMSE value is also calculated to be 0.004. Regarding the medium-depth velocity distribution, it can be said that the numerical model has an acceptable compliance with the laboratory results and only a small error has been entered in the junction area, which can be considered as a result of the movement of secondary cells towards the corners.
Conclusion: in this research The flow pattern in waterways with composite prismatic and non-prismatic sections was investigated using Flow 3D software that is capable of three-dimensional flow analysis. For three different relative roughnesses (1, 2 and 2.74) as well as three relative depths (0.15, 0.25 and 0.35) and divergence angles of 5.7 and 11.3 degrees, changes in the longitudinal component of velocity, The average depth velocity distribution, the boundary shear stress distribution as well as the flow rate transmitted by the floodplains were investigated. The results showed that with increasing the width of floodplains along the canal, the amount of velocity decreases. Also, the study of the effect of roughness on the flow pattern showed that in general, with wall roughness, the amount of velocity has decreased in all sections and also the flow pattern at the junction of the main canal and floodplain is more affected by wall roughness. The results also showed that with increasing relative depth or decreasing relative roughness, the velocity gradient between the main channel and floodplains decreases

Keywords

Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-Chip Fabrication and In-Flow 3D-Printing of Cell-Laden Microgel Constructs: From Chip to Scaffold Materials in One Integral Process

세포가 함유된 마이크로겔의 온칩 제작 및 인-플로우 3D 프린팅
구성:하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지

Vollmer, Gültekin Tamgüney, Aldo Boccacini
Submitted date: 10/05/2021 • Posted date: 11/05/2021
Licence: CC BY-NC-ND 4.0

바이오프린팅은 세포가 실린 스캐폴드의 제조를 위한 유력한 기술로 발전했습니다. 바이오잉크는 바이오프린팅의 가장 중요한 구성요소입니다. 최근 마이크로겔은 세포 보호 및 세포 미세 환경 제어를 가능하게 하는 매우 유망한 바이오 잉크로 도입되었습니다. 그러나 이들의 미세유체 제작은 본질적으로 한계가 있는 것으로 보입니다.

여기에서 우리는 안정적인 스캐폴드에 직접 유입되는 바이오프린팅과 함께 세포가 실린 마이크로겔의 미세유체 생산을 위한 미세유체 및 3D 인쇄의 직접 결합을 소개합니다. 방법론은 세포를 단분산 미세 방울로 연속 온칩 캡슐화하여 후속 유입 교차 연결을 통해 세포가 함유된 마이크로겔을 생성할 수 있으며, 이는 미세관을 종료한 후 자동으로 얇은 연속 마이크로겔 필라멘트로 끼이게 됩니다.

3D 프린트 헤드로의 통합으로 독립형 3차원 스캐폴드에 필라멘트를 직접 유입 인쇄할 수 있습니다. 이 방법은 다양한 교차 연결 방법 및 세포주에 대해 설명됩니다. 이러한 발전으로 미세유체학은 더 이상 바이오 제조의 병목을 초래하는 현상이 아닙니다.

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication.

Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.
Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.
Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.

Keywords

biomaterials, microgels, microfluidics, 3D printing, bioprinting

References

  1. A. Atala, Chem. Rev. 2020, 120, 10545-10546.
  2. J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A
    Mironov, K. Nakayama, A. Ovisanikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield,
    Biofabrication 2019, 11, 013001.
  3. W. Sun, B. Starly, A. C. Daly, J. A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara,
    M. Nishikawa, J. Jang, D.-W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R. D. Kamm,
    V. Mironov, L. Moroni, I. T. Ozbolat, Biofabrication 2020, 12, 022002.
  4. R. Levato, T. Juengst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
  5. C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick, Adv. Sci. 2019, 6, 1801076.
  6. D. Velasco, E. Tumarkin, E. Kumacheva, Small 2012, 8, 1633-1642.
  7. W. Jiang, M. Li, Z. Chen, K. W. Leong, Lab Chip 2016, 16, 4482-4506.
  8. A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. 2020, 5, 20-43.
  9. A. S. Mao, B. Özkale, N. J. Shah, K. H. Vining, T. Descombes, L. Zhang, C. M. Tringides, S.-W.
    Wong, J.-W. Shin, D. T. Scadden, D. A. Weitz, D. J. Mooney, Proc. Natl. Acad. Sci. 2019, 116, 15392-15397.
  10. S. R. Pajoumshariati, M. Azizi, D. Wesner, P. G. Miller, M. L. Shuler, A. Abbaspourrad, ACS Appl.
    Mater. Interfaces 2018, 10, 9235-9246.
  11. A. S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun, W. Li, M. Cooper, Y. Hu, L. Zhang, D. A.
    Weitz, D. J. Mooney, Nat. Mater. 2017, 16, 236-243.
  12. P. S. Lienemann, T. Rossow, A. S. Mao, Q. Vallmajo-Martin, M. Ehrbar, D. J. Mooney, Lab Chip, 2017, 17, 727.
  13. F. Chen, J. Xue, J. Zhang, M. Bai, X. Yu, X.; C. Fan, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 2889-2896.
  14. Q. Feng, Q. Li, H. Wen, J. Chen, M. Liang, H. Huang, D. Lan, H. Dong, X. Cao, Adv. Funct. Mater.,
    2019, 29, 1096690.
  15. L. P. B. Guerzoni, T. Yoshinari, D. B. Gehlen, D. Rommel, T. Haraszti, M. Akashi, L. De Laporte,
    Biomacromolecules 2019, 20, 3746-3754
  16. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J. Am.
    Chem. Soc. 2012, 134, 4983-4989.
  17. E. Kapourani, F. Neumann, K. Achazi, J. Dernedde, R. Haag, Macromol. Bioscience 2018, 18,1800116
  18. H. Wang, H. Liu, H. Liu, W. Su, W. Chen, J. Qin, Adv. Mater. Technol. 2019, 4, 1800632.
  19. C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng, X. Liu, P. Suna, D.-A. Wang, Mater. Sci. Eng. C 2019, 108, 110399.
  20. A. M. Compaan, K. Song, W. Chai, Y. Huang, ACS Appl. Mater. Interfaces 2020, 12, 7855-7868.
  21. S. L. Anna, H. C. Mayer, Phys. Fluids 2006, 18, 121512.
  22. T. Ward, M. Faivre, M. Abkarian, H. A. Stone, Electrophoresis 2005, 26, 3716-3724.
  23. F. Lapierre, N. Wu, Y. Zhu, Proc. SPIE 2011, 8204, 82040H-1.
  24. C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Anal. Chem. 2009, 81, 2399-2402.
  25. J. Tan, J. H. Xu, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 136, 306-311.
  26. R.-C. Luo, C.-H. Chen, Soft 2012, 1, 1-23.
  27. C. H. Choi, J. H. Jung, T. S. Hwang, C. S. Lee, Macromol. Res. 2009, 17, 163-167.
  28. A. J. D. Krüger, O. Bakirman, P. B. Guerzoni, A. Jans, D. B. Gehlen, D. Rommel, T. Haraszti, A. J.
    C. Kuehne, L. De Laporte, Adv. Mater. 2019, 31, 1903668.
  29. D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. 2016, 113, 3179-3184
  30. A. K. Miri, I. Mirzaee, S. Hassan, S. M. Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, Lab Chip 2019, 19, 2019.
  31. F. A. Plamper, W. Richtering Acc. Chem. Res. 2017, 50, 131-140.
  32. S. Sun, M. Li, A. Liu, Int. J. Adhesion Adhesives 2013, 41, 98-106.
Fig. 2. Schematic indication of the separate parts comprising the rotary kiln model, together with the energy fluxes from Eq. (1).

화염 모델링, 열 전달 및 클링커 화학을 포함한 시멘트 가마에 대한 CFD 예측

E Mastorakos Massias 1C.D Tsakiroglou D.A Goussis V.N Burganos A.C Payatakes 2

Abstract

실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.

키워드

산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer

1 . 소개

시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3  →  CaO  +  CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.

최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.

내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.

최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.

화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.

본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.

이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.

2 . 모델 공식화

2.1 . 개요

Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .

석탄 연소에 의해 방출되는 에너지(단위 시간당)( 석탄 )는 배기 가스(Δ 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( rad ) 및 대류( conv )됩니다. 공급 및 배기 덕트( rad,1  + rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( rad ) 및 대류( conv )에 의해 가스로부터 에너지(Δ cl )를 흡수 하고 주변으로 열을 잃습니다( Q 손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.

2.2 . CFD 코드

가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.

2.2.1 . 석탄 연소

Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .

2.2.2 . 복사와 대류

가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1  ×  1.0 m와 0.2  ×  5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.

최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.

2.2.3 . 그리드

반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.

2.2.4 . 경계 조건

벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .

내벽 온도 w ( in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다.  의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.

고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.

2.3 . 가마 온도

내부 소성로 표면 온도 w ( in , x , ϕ )는 Eq. 에서 필요합니다 (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.

전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 sh = w ( out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .

위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 가스 ( r , x ) 및 로컬 w ( in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 (2) , 결과적인 rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.

소성로와 장입물 사이의 열전달 계수 w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값  K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 w ( r , x , ϕ ) 및 RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.

식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.

2.4 . 수갑

가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 cl 은 속도 cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 gcl =2 in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , WCL = Θ 에서는 , SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl cl cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .

(나)CaCO3→높은+무엇2k = 108특급(−175728/RT)
(Ⅱ)높은+2SiO2→C2Sk = 107특급(−240000/RT)
(Ⅲ)높은+C2S→C3Sk = 109특급(−420000/RT)
(IV)3높은+로2그만큼3→C3Ak = 108특급(−310000/RT)
(V)4높은+로2그만큼3+철2그만큼3→Q4AFk = 108특급(−330000/RT)

상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.

클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.

상미분 방정식, , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 w–cl ( x , ϕ ).

2.5 . 최종 커플링

전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. RAD 의 균일한 분포에서 시작 하여 기체상은 rad ( x ) 및 conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., 그 솔루션의 새로운 추정 결과 RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 RAD ( x ) 의 수렴 이력을 보여줍니다 .

2.6 . 가마 조건

사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.

표 1 . 공기 및 석탄 입자 입구 조건

수송소용돌이중고등 학년석탄
m (kg/s)2.2531.7592.91045.9304.0
 (m/s)77.136.576.112.7336.5
V (m/s)−20.7063.900
W (m/s)00112.800
 (케이)3183833181273383

표 2 . 클링커 조성(질량 분율)

밀가루가마 입구가마 출구
m (kg/s)50.37439.81532.775
 (케이)11001785
CACO 30.79470.402180
높은00.338010.0229
그런가 20.14340.181430
알 2 O 30.03490.04420
철 2 O 30.02700.034160
C2S000.1808
C3S000.5981
C3A000.0731
Q4AF000.1242
소성 인자00.61.0

소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.

표 3 . 재료 속성 및 기타 매개변수

ω (래드/초)0.5
V의 CL (m / s)0.035
 (K)300
sh (W/m 2 K)30
w–cl (W/m 2 K)500
ε w , ε cl0.9
ε 0.8
C의 P (클링커) (킬로 / kg K)1.5
ϱ cl (kg/m 3 )1200
fus (kJ/kg)418.4
p (벽) (kJ/kg K)1.5
ϱ w (kg/m 3 )1600–3000
k는 w (W / m K)0.6–3.0
석탄 열 방출(kJ/kg)25475

3 . 결과 및 토론

이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.

3.1 . 화염 구조

그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.

버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.

3.2 . 가마 온도 분포

중심선에서 계산된 가스 온도, 온도 RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를  합니다. 이 관찰의 중요성은 나중에 논의됩니다.

대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.

예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을  습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 ,        x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0  < ϕ 범위에서 발생 < π /2).   

그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.

마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .

이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x  >  15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x  >  15 m 에서 열을 흡수 하고 0  < x < 15 m 에서 일부를 가스로 되돌려 줍니다.   

이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.

3.3 . 클링커 온도 및 조성

클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.

3.4 . 글로벌 에너지 균형

전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( rad  + conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.

표 4 . CFD 그리드 및 가마-클링커 조합에 대한 글로벌 에너지 균형

가스(MW)
라드 , 1−2.47
라드 , 2−2.72
큐 라드−57.12
전환0.04
석탄101.2
Δ 가스41.25
균형2.32
가마 클링커
큐 라드57.12
전환−0.04
손실−10.45
Δ H의 CL40.99
균형5.64

에너지 흐름의 정의는 그림 2 를 참조하십시오 .

시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.

3.5 . 논의

여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.

우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학.

실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.

더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.

이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.

4 . 결론

실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.

결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.

감사의 말

이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.

References
1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996
Google Scholar
2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993
Google Scholar
3 Basel Convention, UNEP Document No. 93-7758, 1993
Google Scholar
4 N.C Markatos
Mathematical modelling of single and two-phase flow problems in the process industries
Revue de l’Institut Français du Pétrole, 48 (1993), p. 631
View PDFCrossRefView Record in ScopusGoogle Scholar
5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767
Google Scholar
6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995
Google Scholar
7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503
Google Scholar
8 P.V Barr, J.K Brimacombe, A.P Watkinson
A heat-transfer model for the rotary kiln: Part II, development of the cross-section model
Metallurgical Transactions B, 20B (1989), p. 403
View Record in ScopusGoogle Scholar
9 V Frisch, R Jeschar
Possibilities for optimizing the burning process in rotary cement kilns
Zement-Kalk-Gips, 36 (1983), p. 549
View Record in ScopusGoogle Scholar
10 A.A Boateng, P.V Barr
A thermal model for the rotary kiln including heat transfer within the bed
Int. J. Heat Mass Transfer, 39 (1996), p. 2131
ArticleDownload PDFView Record in ScopusGoogle Scholar
11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146
Google Scholar
12 H.A Spang
A dynamic model of a cement kiln
Automatica, 8 (1972), p. 309
ArticleDownload PDFView Record in ScopusGoogle Scholar
13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK
Google Scholar
14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor
The origin of turbulence acquired by heavy particles in a round, turbulent jet
Part. Part. Syst. Charact., 7 (1990), p. 203
View PDFCrossRefView Record in ScopusGoogle Scholar
15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996
Google Scholar
16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar
Investigation on the kinetics of thermal decomposition of calcium carbonate
Chem. Eng. Sci., 49 (1996), p. 2198
Google Scholar
17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993
Google Scholar
1 Also at Department of Mechanical Engineering, University of Patras, Greece.

2 Also at Department of Chemical Engineering, University of Patras, Greece.

View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald

Thames Tideway Tunnel – East Contract – Hydraulic Modelling

수력 구조물의 수력 설계 및 모델링 경험 (Experiences in the hydraulic design and modelling of the hydraulic structures)

CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

템스 타이드웨이 터널은 주로 템스 강 아래 런던 중심부를 통과하는 새로운 저장 및 이송 터널입니다. 최대 지름 7.2m의 길이약 25km에 달하는 주요 터널은 서쪽액톤에서 동쪽의 수도원 밀스까지 운행됩니다. 이 프로젝트의 목적은 템스 강에 도달하기 전에 결합된 하수 흐름을 가로채고 저장하여 가장 오염이 많은 복합 하수 오버플로(CSOS)의 34개 를 제어하는 것입니다. 템스 타이드웨이 터널은 베크턴 하수 처리 작업에서 치료를 위해 흐름을 수송할 수도원 밀스의 리 터널에 연결됩니다. CSO 현장에서는 소용돌이 낙하 샤프트와 같은 가로채기 및 전환 구조물이 근처 표면 하수 네트워크에서 깊은 저장 터널로 결합된 하수 흐름을 수송합니다.

East main works

터널을 납품하는 회사인 Tideway는 프로젝트를 세 부분으로 분리했습니다. 동쪽 구간은 프로젝트의 가장 깊은 부분이며, 65m 깊이에 도달합니다. 버몬드시의 챔버 부두는 애비 밀스 (Abbey Mills)에 이르는이 5.5km 터널 섹션의 주요 드라이브 사이트입니다. 동부 개발에는 그리니치 펌핑 스테이션에서 챔버 스워프의 주요 터널까지 약 4.5km의 5m 내부 직경 연결 터널이 포함되어 있습니다.

4개의 드롭 샤프트가 현재 설계 및 제작 중입니다. 이들은 24-36m 3/s 범위의 설계 흐름을 가지며 차단 및 전환 구조, 터널 격리 게이트 및 플랩 밸브가 있는 밸브 챔버, 와류 발생기 입구 구조, 와류 드롭 튜브 및 에너지 소산 및 탈기 챔버를 포함한 유압 구조로 구성됩니다.

The challenge/ hydraulic modelling

이러한 새로운 구조의 설계는 수많은 엔지니어링 문제에 직면해 있습니다. 최대 36m3/s의 대규모 설계 유량은 기존 네트워크에 부정적인 영향을 미치거나 기존 CSO를 통해 유출되지 않고 완전히 캡처되어 터널로 안전하게 전달되어야 합니다.

또한 복잡한 흐름 패턴이 발생하는 수축된 설계와 시스템의 올바른 작동을 위해 필요하고 불리한 유체 역학 조건으로부터 보호해야 하는 기계 플랜트의 필요성을 초래하는 공간 제약이 있습니다. 또한, 소용돌이 낙하 샤프트 내부에 최대 50m까지 떨어지는 흐름에 의해 생성되는 많은 양의 에너지는 터널로 전달하기 전에 안전하게 소멸되고 유동을 제거해야합니다.

이러한 과제를 해결하기 위해 프로젝트 팀은 물리적 스케일 모델링과 함께 CFD(계산 유체 역학) 모델링을 광범위하게 사용했습니다.

CFD 모델링: 얼 펌핑 스테이션 소용돌이 드롭 샤프트 및 저장 터널 의 보기 - Courtesy of Mott MacDonald
CFD 모델링: arl Pumping Station 소용돌이 드롭 샤프트 및 저장 터널 의 보기 – Courtesy of Mott MacDonald

전산 유체 역학 모델링

CFD는 초기 설계 단계에서 사용되는 주요 유압 모델링 도구로, 모든 유압 구조를 모델링하고, 설계 수정을 통합하고, 결과를 신속하게 시각화 및 분석하고, 성능을 마무리할 수 있는 기능을 제공했습니다.

제안된 설계의 3D 건물 정보 모델링(BIM) 형상을 CFD 소프트웨어로 전송하여 CFD 유체 도메인에 대한 형상을 생성하는 데 필요한 시간을 줄였습니다.

FlowScience Inc에서 개발한 Flow 3D가 주요 모델링 플랫폼으로 활용되었습니다. 이 소프트웨어는 공기-물 인터페이스를 추적하기 위해 유체 체적 방법을 적용하여 자유 표면 흐름을 정확하게 모델링하는 기능이 있습니다.

입방 격자를 사용한 3D 구조형 메쉬를 사용하였고, 레이놀즈평균 Navier-Stokes 접근법을 표준 k-omega 난기류 모델로 사용하여 난류를 해석하였습니다.

View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

메쉬 해상도에 대한 민감도 분석이 수행되었고 계산 메쉬의 적합성에 대한 추론을 허용하기 위해 이전 개념 단계 구조의 물리적 스케일 모델링에서 사용 가능한 결과와 비교되었습니다. 와류 발생기 및 드롭 튜브의 목과 같이 급격한 기울기가 발생하는 영역의 메쉬에 특별한 주의를 기울였습니다.

전체 메쉬 해상도와 계산 효율성 간의 균형은 설계 목적을 위해 충분히 정확하지만 설계 프로그램 목표를 충족하는 시간 척도 내에서 결정적으로 중요한 솔루션을 생성하는 데 필요했습니다.

CFD 모델이 수렴되면 결과가 시각화되었습니다. 주요 산출물에는 구조 전체에 걸친 상세한 수위, 크기와 벡터, 흐름 유선이 있는 속도 플롯이 포함되었습니다. CFD 모델에 의해 생성된 데이터는 유동장의 거동을 이해하는 데 매우 유용했으며 이러한 결과를 분석하여 설계가 어떻게 수행되고 있는지에 대한 결론을 내릴 수 있었습니다.

View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber - Courtesy of Mott MacDonald
View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber – Courtesy of Mott MacDonald

물리적 스케일 유압 모델링

물리적 규모의 수력학적 모델링은 작동 조건의 전체 범위에 걸쳐 설계의 수력학적 성능을 종합적으로 평가하고 설계 개선 사항을 알리고 테스트하는 데 사용되었습니다.

프로그램의 효율성을 위해 수력구조물의 설계가 잘 진행된 단계에서 물리적인 규모의 모델링을 수행하였다. CFD 모델링은 이미 수행되어 설계의 전체 성능에 대한 확신을 제공했습니다. 주요 구조 부재도 MEICA 공장을 위해 크기가 조정되었고 설계 공간이 확보되었습니다.

설계 개발의 이 단계에서 물리적 모델링을 수행하는 것은 시간이 많이 소요되는 물리적 모델에 필요한 주요 변경의 위험을 줄이는 것을 목표로 했습니다. 또한 모델 테스트가 수력 구조의 최종 의도 설계를 가능한 한 가깝게 반영하도록 했습니다.

물리적 모델링을 위해 두 개의 사이트가 선택되었으며, 주로 공간 제약으로 인해 유압 구조의 설계가 더 복잡했습니다. 이러한 사이트는 다음과 같은 사이트였습니다.

  • 그리니치 펌핑 스테이션은 1:10 규모의 전체 작업 현장 모델이 건설되었습니다.
  • CSO 차단 구조의 모델이 수행된 King Edward Memorial Park 및 Foreshore는 1:10 축척으로, 드롭 샤프트 에너지 소산 및 탈기 챔버의 별도 모델은 1:12 축척으로 구축되었습니다.

모델은 실험실 시설에서 전문 하청 업체 BHR 그룹에 의해 구축 및 테스트되었습니다. 모델은 최신 디자인 BIM 모델에서 생성된 모델 도면을 사용하여 주로 퍼스펙스와 합판으로 구축되었다. 모델 시공승인을 받기 전에 도면은 실험실에서 유압 구조물의 정확한 복제본을 보장하기 위해 BIM 모델에 대한 엄격한 치수 검사를 받았습니다.

Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation - Courtesy of Mott MacDonald & BHR Group
Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation – Courtesy of Mott MacDonald & BHR Group

중력의 힘이 이러한 구조에서 개방 채널 유체 흐름을 지배하기 때문에 유사성을 보장하기 위해 프로토타입(전체 규모 설계) 및 축소된 축소 모델에서 Froude 수를 동일하게 유지하는 것이 중요합니다. 따라서 Froude 수의 동일성을 유지하기 위해 모델을 유속으로 작동했습니다. 규모는 또한 모든 흐름 조건에서 흐름이 완전히 난류임을 보장할 수 있을 만큼 충분히 커야 했으며 이는 모델의 다른 부분에서 흐름의 레이놀즈 수를 추정하여 확인했습니다.

축소된 물리적 모델에서는 모든 스케일 효과를 제거할 수 없습니다. 표면 장력은 비례하지 않기 때문에 프로토타입과 모델의 Weber 수(초기 힘과 표면 장력 사이의 비율을 나타냄)가 다르고 둘 사이의 액체 상태에 포함된 공기의 양도 다릅니다. 이것은 방법의 한계로 인식되고 이해되며 공기 동반 결과에 스케일링 계수를 적용하여 해결되었습니다.

이 모델은 작동 사례를 설정하는 미리 정의된 테스트 매트릭스에 따라 테스트를 거쳤습니다. 여기에는 다양한 흐름 사례와 저장 터널 꼬리 수위가 포함됩니다. 유량은 보정된 기기로 엄격하게 제어되었으며, 필요한 경우 모델로의 유량은 관심 영역의 유량이 유입구 조건에 의해 인위적으로 영향을 받지 않도록 조절되었습니다.

흐름의 동작을 관찰하고 기록했습니다.

  • 수위는 압력 태핑을 통해 또는 모델 측벽의 수직 눈금을 통해 시각적으로 기록되었습니다.
  • 플로우 패턴은 염료 추적기의 도움을 받아 시각적으로 기록되었습니다.

특히 관심의 한 측면은 소용돌이 흐름이었다. 소용돌이 발생기및 소용돌이 낙하튜브를 통한 흐름에 대한 상세한 관찰은 흐름이 안정적이고, 맥동과 도미 효과가 없는지, 그리고 흐름 범위 전반특히 관심의 한 측면은 소용돌이 흐름이었습니다. 와류 발생기 및 와류 드롭 튜브를 통한 흐름에 대한 자세한 관찰은 흐름이 안정적이고 맥동 과도 효과가 없으며 와류 흐름이 드롭 튜브에서 잘 형성되어 흐름 범위 전체에 걸쳐 안정적인 공기 코어를 유지하면서 관찰되었습니다.

(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft - Courtesy of Mott MacDonald and BHR Group
(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft – Courtesy of Mott MacDonald and BHR Group

와류 발생기에서 임계유량이 발생하기 때문에 확실한 수두-방전 관계가 설정되어 수위를 판독하여 유량을 측정할 수 있는 기회를 제공합니다. 와류 발생기에 대한 접근 암거에 위치한 압력 탭핑은 유속 범위에 걸쳐 수심 값을 기록하여 각 방울 구조에 대해 수두 방출 곡선을 도출할 수 있도록 했습니다. 프로토타입에서 이 지점에서 수집된 레벨 신호는 흐름을 계산하고 격리 게이트를 제어하는 ​​데 사용됩니다.

흐름이 와류 드롭 튜브 아래로 수 미터 떨어지고 드롭 샤프트의 바닥에 있는 물 풀로 충돌할 때 공기가 물 속으로 동반됩니다. 터널 시스템에서 발생하는 압축 공기 주머니와 저장 용량 감소 문제를 피하기 위해 드롭 샤프트에서 저장 터널로 전달되는 공기의 양을 최소화하는 것이 중요합니다. 이 목적을 달성하기 위해, 드롭 샤프트의 베이스가 흐름의 에너지 소산 및 탈기 기능을 수행하는 것이 매우 중요합니다. 이것은 충분한 체적을 제공하도록 샤프트의 크기를 조정하고 다음과 같은 흐름을 조절하기 위해 샤프트 내부 벽을 설계함으로써 달성되었습니다.

  • 플런지 풀이 형성되었습니다.
  • 샤프트의 흐름 경로/유지 시간은 가능한 한 오래 지속됩니다.
  • 샤프트 의 베이스의 특정 영역은 위쪽 흐름 경로를 촉진합니다.

이러한 조치는 떨어지는 물의 에너지가 소멸되고 공기가 가능한 한 흐름에서 분리되도록 하는 것을 목표로 하고 저장 터널로 전달됩니다.

에너지 소산 및 탈기 구조의 성능을 평가하기 위해 드롭 샤프트에서 저장 터널을 통과하는 공기 흐름을 물 변위 방법으로 측정했습니다. 흐름에 혼입된 정확한 양의 공기를 보장하기 위해 모델은 와류 드롭 튜브의 전체 높이를 통합했습니다. 설계의 허용 기준에 대해 최대 기류는 최대 설계 수류의 백분율로 정의된 미리 정의된 값으로 제한되었습니다. 스케일 효과를 설명하기 위해 모델에서 허용 가능한 최대 기류량은 프로토타입에 비해 약 6배 감소했습니다.

hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel - Courtesy of Mott MacDonald and BHR Group
hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel – Courtesy of Mott MacDonald and BHR Group

물리적 규모 모델링은 또한 구조물을 통한 퇴적물의 이동성을 테스트했습니다. 이는 하수 네트워크에서 발생하는 예상 입자 크기 분포와 일치하도록 조정된 모의물의 양으로 모델에 투여함으로써 달성되었습니다.

모델의 설계 개선은 주로 탈기 성능을 개선하기 위한 샤프트 내부 구조의 조정, 퇴적물 이동성을 돕기 위한 벤치 및 기타 조치의 포함으로 구성되었습니다. 이러한 개선 사항은 재테스트를 통해 확인된 다음 설계에 통합되었습니다. 물리적 모델링의 데이터는 관찰된 좋은 일치와 함께 CFD 모델링의 결과와 비교되었습니다.

최종 모델링 결과는 흐름이 기존 하수 네트워크에서 전환되는 위치 근처에서 큰 난류가 발생하는 반면 차단 챔버는 이 에너지를 부분적으로 소산할 수 있을 만큼 충분히 크기가 지정되었으며 특정 수력 설계 요소를 포함하면 문제가 있는 유압 거동이 기계 장비 근처에서 관찰되었습니다. 더 높은 유속에서 일부 공기 동반 와류는 유체의 대부분에 형성됩니다. 그러나 이러한 높은 폭풍 유속의 간헐적인 특성을 고려할 때 콘크리트 구조물의 열화를 일으킬 것으로 예상되지는 않았습니다. 결과는 또한 구조가 최대 설계 흐름을 Thames Tideway Tunnel로 전환하여 기존 보유 CSO를 통한 유출을 방지할 수 있음을 나타냅니다. 차단실과 와류 낙하축을 연결하는 선형 연결 암거는 흐름 조절에 긍정적인 영향을 미쳤고 소용돌이 낙하 튜브의 작동은 흐름 범위에 걸쳐 안정적인 것으로 관찰되었습니다.

Conclusions

Thames Tideway Tunnel의 수력 구조물 설계에는 복잡한 3D 난류 유동 거동이 포함되며 설계 단계에서 고급 수력 모델링 도구를 사용해야 합니다. CFD 모델링을 통해 제안된 설계를 테스트하고 수정할 수 있으므로 설계 흐름이 필요한 성능 매개변수 내에서 안전하게 수용됩니다.

이 프로젝트에서 CFD를 활용한 주요 이점은 비교적 짧은 시간에 수력학적 모델링을 수행할 수 있는 능력, 생성된 데이터의 유용성 및 시각화할 수 있는 능력이었습니다. 이는 설계를 알리고 확인하는 데 도움이 되었습니다. CFD 모델링은 제한된 도시 환경 내에서 설정된 이러한 수력학적 구조를 설계하는 데 유용한 도구였습니다.

Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber - Courtesy of Mott MacDonald and BHR Group
Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber – Courtesy of Mott MacDonald and BHR Group

구조의 중요성으로 인해 물리적 모델링이 수행되어 결과에 대한 신뢰도를 높이고 CFD가 한계를 나타내는 수력 성능 측면을 추가로 연구했습니다. 물리적 모델은 이해 관계자에게 구조 내부에서 흐름이 어떻게 수행되고 있는지 정확히 보여주기 위해 유용한 것으로 입증되었습니다. 또한, 모델 테스트가 대부분 최종 설계를 반영한다는 점을 감안할 때 구조물의 수력 성능에 대한 기록이 유지됩니다.

Timescale

5개 샤프트 중 4개에 대한 굴착이 진행 중이거나 완료되었으며 1차 기초 슬래브와 2차 라이닝이 올해 말 전에 샤프트에 부어질 것입니다. 주 터널인 Selina의 TBM은 2020년 터널링이 시작되어 연말에 현장으로의 마지막 여정을 시작할 것입니다.

The editor and publishers thank Ricardo Telo, Senior Hydraulic Engineer, and Tejal Shah, Senior Mechanical Engineer, both with Mott MacDonald, for providing the above article for publication.

첨부 파일

Intel CPU i9

해석용 컴퓨터 CPU에 대한 이해 및 선택 방법

last update : 2021-12-15

자료출처 : 본 기사는 PCWorld Australia의 내용과 www.itworld.co.kr의 기사를 기반으로 일부 가필하여 게재한 내용입니다.

해석용 컴퓨터를 선정하기 위해서는 가장 먼저 선택해야 하는 것이 있다. AMD인가, 인텔인가? 두 업체는 CPU 시장의 양대산맥과도 같다. 인텔이 새롭게 출시한 12세대 앨더 레이크 CPU 시리즈가 벤치마크 기록을 깼지만, 지난해 출시된 AMD의 라이젠 5000 아키텍처를 고수하거나, 다른 신제품을 기다릴만한 이유도 있다. 인텔과 AMD CPU를 자세히 살펴보자.

ⓒ Gordon Mah Ung


비교 대상 제품 

2021.11.09

PC 조립 부품을 예산 기준으로 결정하고, 반도체 수급난에서 CPU를 정가에 구매할 수 있다고 가정했을 때, 인텔과 AMD 제품 선택지를 몇 가지로 압축할 수 있다.

인텔성능/효율 코어쓰레드가격
Core i9 12900K/KF8/824590달러/570달러
Core i7 12700K/KF8/420410달러/390달러
Core i5 12600K/KF6/416290달러/270달러
AMD  성능 코어 쓰레드    가격   
Ryzen 9 5950X1632800달러
Ryzen 9 5900X1224550달러
Ryzen 7 5800X816450달러
Ryzen 5 5600X612300달러

비교적 저렴한 인텔 CPU인 F 시리즈는 통합 그래픽카드가 없어 별도의 GPU가 필요하다. 라이젠 프로세서는 외장 그래픽카드와 짝을 이루어야 한다. 인텔이 ‘한 방’을 노리고 있기 때문에 이 비교에서는 최상급인 16코어 라이젠 9 5950X도 함께 살펴볼 예정이다. 12900KF가 최대 8코어이기 때문에 라이젠 9 5950X와 직접적인 비교 대상은 아니지만, 인텔은 AMD와 꽤 대등하게 싸우고 있다. CPU에만 80만원을 지출할 계획이라면 더 큰 파워 서플라이가 필요하다.

인텔 코어 CPU 에 대한 이해

인텔 코어 CPU에 대한 자료를 찾아보면 쿼드(Quad) 코어, 하이퍼-스레딩(Hyper-Threading), 터보-부스팅(Turbo-Boosting), 캐시(Cache) 크기 같은 용어를 많이 볼 수 있다.
인텔 코어 i3, i5, i7, i9는 각각 어떻게 다를까?
칩셋에는 세대가 있는데, 세대의 의미와 차이는 무엇일까?
하이퍼-스레딩은 무엇이고 클럭 속도는 어느 정도가 적합할까?

새 프로세서를 구입하기 전에 먼저 현재 사용하고 있는 인텔 CPU를 이해해보자.
지금 내 PC 성능이 어느 정도인지 알기 위해서이다.
가장 빠른 방법은 제어판 > 시스템 및 보안 항목에서 시스템을 선택하는 것이다.

여기에서 현재 PC에 설치된 CPU, RAM, 운영체제 정보를 확인할 수 있다.
프로세서 아래에 현재 설치된 인텔 CPU가 무엇인지, 인텔 코어 i7-4790, 인텔 코어 i7-8500U 같은 모델명을 확인할 수 있을 것이다. 또 Ghz가 단위인 CPU 클럭 속도를 알 수 있다. 나중에 이와 관련해 더 자세히 설명을 하겠다.

일단 CPU부터 알아보자.
CPU 모델명에는 숫자가 많아 어려워 보이지만, 이 숫자가 무슨 의미인지 이해하는 것은 어려운 일이 아니다.

모델명의 앞 부분인 “인텔 코어”는 인텔이 만든 코어 시리즈 프로세스 중 하나라는 의미다. 코어는 인텔에서 가장 크고, 인기있는 제품군이다. 따라서 많은 인텔 제품 데스크톱과 노트북 컴퓨터에서 인텔 코어라는 표기를 발견할 수 있다.

참고 : 인텔은 셀룰론(Celeron), 펜티엄(Pentium), 제온(Xeon) 등 다양한 프로세스 제품군을 판매하고 있지만, 이 기사는 인텔 코어 프로세스에 초점을 맞춘다.

그 다음 “i7”은 CPU 내부 마이크로 아키텍처 디자인의 종류이다.
자동차가 클래스와 엔진 종류로 나눠지는 것과 비슷하다. 이들 ‘엔진’이 하는 일은 동일하다. 그러나 차량 브랜드에 따라 일을 하는 방법이 다르다.
인텔의 경우 코어 브랜드 CPU의 클래스인 i3, i5, i7이 각각 사양이 다르다. 여기서 사양이란 코어의 수, 클럭 속도, 캐시 크기, 터보 부스트 2.0과 하이퍼스레딩 같은 고급 기능 지원 여부를 말한다.
코어 i5와 i7 데스크톱 프로세서는 통상 쿼드 코어(코어가 4개)이고, 로우엔드(저가) 코어 i3 데스크톱 프로세스는 듀얼 코어(코어가 2개)다.

이제 SKU와 세대에 대해 알아보자. 앞서 예로 들은 “4790”으로 설명하겠다.
첫 번째 숫자인 “4”는 CPU의 세대이고, “790”는 일종의 일련번호, 또는 ID 번호이다. 즉 인텔 코어 i7이 4세대 CPU라는 이야기이다.

그런데 ‘접미사’가 붙는 경우가 있다. 위에서 예로 든 모델에는 접미사가 없지만 “Intel Core i7-8650U” 같이 끝에 접미사가 붙은 모델이 있다. 여기에서 “U”는 “Ultra Low Power(초저전력)”를 의미한다.
인텔은 모델명에 다양한 접미사를 사용하는데 세대에 따라 의미가 바뀌는 경우가 있다. 따라서 현재 사용하고 있는 CPU 모델을 정확히 해석하려면 링크된 인텔의 ‘접미사 목록’ 페이지를 참고하자.

CPU의 세대는 중요할까?

꽤 중요하다. 간단히 말해, 그리고 일반적으로 세대가 높을 수록, 즉 새로울 수록 더 좋다. 하지만 세대별로 개선된 정도는 각기 다르다.

인텔에 따르면, 최신 8세대 인텔 코어 프로세스는 7세대보다 최대 40%까지 성능이 향상됐다. 물론 비교 대상에 따라 성능 향상치가 크게 다르다. SKU가 세대별로 다를 수 있기 때문이다. 예를 들어, 인텔 코어 i7-8850U는 있지만 인텔 코어 i7-7850U는 없다.

세대가 높을 수록 최신 프로세서라는 것이 기본 원칙이다. 더 발전한 기술과 설계의 이점을 누릴 수 있다는 의미이며, PC 성능도 따라서 향상될 것이다.

코어가 많을 수록 좋을까?
간단히 대답하면, 일반적으로 코어 수가 적은 것보다 많은 것이 좋다. 코어가 1개인 프로세서는 한 번에 스레드 1개만 처리할 수 있다. 그리고 코어가 2개인 프로세서는 2개를, 코어가 4개인 쿼드 코어 프로세서는 4개를 처리할 수 있다.

그렇다면 스레드(Thread)는 무엇일까? 아주 간단히 설명하면, 스레드는 특정 프로그램에서 나와 프로세서를 통과하는 연속된 데이터 데이터 흐름을 말한다. PC의 모든 것은 프로세서를 통과하는 스레드로 귀결된다.

즉, 논리적으로 코어가 많을 수록 한 번에 처리할 수 있는 스레드가 많다. PC가 더 빠르고 효율적으로 데이터를 처리하고 명령을 실행할 수 있다는 이야기이다. 그러나 새 CPU를 조사하면서 코어 수에만 초점을 맞추면 자칫 코어 수만큼 중요한 수치인 클럭 속도를 무시할 위험이 있다.

CPU의 각 코어에는 Ghz가 단위인 클럭 속도가 있다. 클럭 속도는 CPU 실행 속도다. 클럭 속도가 빠를 수록, CPU가 한 번에 처리 및 실행할 수 있는 명령이 많다.

클럭 속도는 통상 높을 수록 더 좋다. 그러나 발열과 관련된 제약 때문에 프로세서의 코어 수가 많을 수록 클럭 속도가 낮은 경향이 있다. 이런 이유로 코어 수가 많은 PC가 최고의 성능을 발휘하지 못하는 경우도 있다.
그렇다면 가장 알맞은 클럭 속도는 어느 정도일까?


클럭 속도는 PC로 하려는 일에 따라 달라진다. 일부 애플리케이션은 싱글스레드로 실행된다. 반면, 여러 스레드를 활용하도록 만들어진 애플리케이션도 있다. 비디오 렌더링이나 일부 게임 환경이 여기에 해당된다. 이 경우, 코어 수가 많은 프로세서가 클럭 속도가 높지만 코어가 하나인 프로세스보다 성능이 훨씬 더 높다.
수치해석의 경우는 계산량이 많은 큰 해석의 경우 멀티코어가 훨씬 유리하다.

웹 브라우징 같은 일상적인 작업에서는 클럭 속도가 높은 i5 프로세서가 i7보다 가격 대비 성능이 훨씬 더 높다는 의미이다. 즉, 코어 수가 많은 프로세서보다 클럭 속도는 높고 코어 수가 적은 프로세서를 구입하는 것이 훨씬 경제적인 대안이 될 수도 있다.

하이퍼-스레딩이란?

앞서 언급했듯, 일반적으로 프로세서 코어 하나가 한 번에 하나의 스레드만 처리할 수 있다. 즉, CPU가 듀얼 코어라면 동시에 처리할 수 있는 스레드가 2개다. 그러나 인텔은 하이퍼-스레딩이라는 기술을 개발해 도입했다. 가상으로 운영체제가 인식하는 코어를 2배 증가시키는 방법으로 하나의 코어가 동시에 여러 스레드를 처리할 수 있는 기술이다.

즉 i5의 물리적 코어 수는 4개이지만, 여러 스레드를 지원하는 애플리케이션을 실행시키면 하이퍼-스레딩이 코어 수를 가상으로 2배 늘려서 성능을 크게 향상하는 방법이다.

터보 부스트(Turbo Boost)란?

인텔의 터보 부스트는 프로세서가 필요한 경우 동적으로 클럭 속도를 높이는 기능이다. 터부 부스트로 높을 수 있는 최대 클럭 속도는 활성 코어의 수, 추정되는 전류 및 전력 소모량, 프로세서 온도에 따라 달라진다.

알기 쉽게 설명하면, 인텔 터보 부스트 기술은 사용자의 프로세서 사용 현황을 모니터링, 프로세서가 ‘열 설계 전력’의 최대치에 얼마나 가까이 도달했는지 판단한 후 적절한 수준으로 클럭 속도를 높인다. 기본적으로 가장 적절하고 우수한 클럭 속도와 코어 수를 제공한다.

현재 터보 부스트 테크놀로지 2.0 버전이 사용되고 있으며, 여러 다양한 7세대 및 8세대 인텔 코어 i7과 i5 CPU에서 이를 지원한다.

i3, i5, i7, i9 프로세서 중 하나를 선택하기 전에 클럭 속도, 코어 수와 함께 기억해야 할 한 가지가 또 있다.

캐시 크기

CPU가 동일한 데이터를 계속 사용하는 경우, CPU는 이 데이터를 프로세서의 일부분인 캐시라는 곳에 저장된다. 캐시는 RAM과 비슷하다. 그러나 메인보드가 아닌 CPU에 구축되어 있어 훨씬 더 빠르다.
캐시 크기가 크면 더 빨리 더 많은 데이터에 액세스 할 수 있다. 클럭 속도 및 코어 수와 다르게, 캐시 크기는 무조건 클 수록 더 좋다. 메모리가 많을 수록 CPU 성능이 향상된다.

7세대 코어 i3 및 코어 i5 프로세서 U 및 Y 시리즈 캐시 크기는 3MB, 4MB이다. 코어 i7의 캐시 크기는 4MB이다. 현재 8세대 프로세서의 캐시 메모리는 6MB, 8MB, 9MB, 12MB이다.

코어 i3, i5, i7, i9의 차이점은 무엇일까?
일반적으로 코어 i7은 코어 i5, 코어 i5는 코어 i3보다 나은 프로세서이다. 코어 i7의 코어 수는 7개가 아니다. 코어 i3 역시 코어 수가 3개가 아니다. 코어 수나 클럭 속도가 아닌 상대적인 연산력의 차이를 알려주는 수치다.

2017년 출시된 코어 i9 시리즈는 고가의 고성능 프로세서이다. 최상급인 코어 i9-7980X의 코어 수와 클럭 속도는 18개와 2.6GHz, 한 번에 처리할 수 있는 스레드는 32개이다. 가장 저렴한 코어 i9-7900X의 경우 각각 10코어, 3.3GHz(기본 클럭 속도), 20 스레드이다.

수치해석 측면에서 구입해야 할 컴퓨터를 고려한다면 CPU 성능은 현재 최신코어인 i7과 i9을 구입하는 것이 원하는 성능을 정확히 제공하는 CPU를 선택하는 방법이지만 예산과 성능이라는 선택의 문제가 존재한다.

editor@itworld.co.kr


AMD CPU 에 대한 이해

썸네일
썸네일

AMD CPU 이름 규칙 및 코드명, 종류, 세대, 소켓 알아보기

AMD 1600, AMD 2400G, Athlon 240GE, AMD 3990X 등 AMD에 다양한 종류의, 다양한 모델명을 가진 cpu들이 있습니다. AMD cpu, apu의 종류와 세대, 소켓에 대해서 알아보도록 하며 이 글에서는 2017년 3월 3일 이후 나온 ‘라이젠’ 시리즈의 cpu, apu에 대해서만 다루도록 하겠습니다.

AMD 라이젠 시리즈는 현재 3세대까지 출시되었으며, 크게 일반 cpu, 하이엔드 cpu(스레드리퍼), 일반 APU, 모바일 APU으로 나뉩니다. 또한 소켓은 현재까지 나온 cpu 중 하이엔드 cpu를 제외한 cpu는 모두 am4소켓입니다.

AMD CPU 이름 규칙

이름 규칙

 

이름 규칙

AMD 라이젠 시리즈는 ‘AMD 라이젠 7 1700X’를 예로 들면, 앞의 ‘AMD’는 회사 이름을 나타내며

뒤에 ‘라이젠 7’은 성능을 나타냅니다.
‘라이젠 3’은 메인스트림,
‘라이젠 5’는 고성능,
‘라이젠 7’은 최고 성능입니다.

그리고 뒤에 ‘1’은 세대를 나타냅니다.
‘1700’은 Zen 1세대이며,
‘AMD 라이젠 5 2400G’와 같이 APU는 기존 세대에 비해 조금 개선되긴 했지만, 다음 세대 정도까지에 개선은 아니라서 세대는 같지만, ‘400G’앞에 붙는 숫자는 1이 더해져서 나옵니다.

그리고 두번째 자리 ‘7’은 성능을 나타냅니다.
‘2,3’은 메인스트림,
‘4,5,6’은 고성능,
‘7,8’은 최고 성능입니다.

그리고 세네번째 자리는 세세한 기능의, 세세한 성능의 변화 정도로 생각하시면 됩니다.

출처: https://minikupa.com/52 [미니쿠파]

 

인텔 코어 i9-12900K 리뷰 | 왕좌 탈환 노리는 ‘인텔의 귀환’

2021.11.09

Gordon Mah Ung | PCWorld구원 서사를 좋아하지 않는 사람은 없다. 인텔 12세대 코어 i9-12900K는 오랫동안 회자될 귀환 이야기의 주인공이다. 한때 강력하고 득의양양했던 챔피언은 수 년 전 부활한 AMD 라이젠 프로세서의 손에 굴욕적인 패배를 겪었고 어떻게 해서든 다시 한번 싸울 방법을 찾아 마침내 승리를 외치려고 한다. 이제 카메라가 페이드아웃 되면서 엔딩 크레딧으로 넘어간 셈이다.

인생이나 기술은 그런 헐리우드식 결말을 맺기 어렵지만, 인텔 코어 i9-12900K는 그런 드라마의 주인공 역할을 상당히 잘 해낸 것 같다. 지난 몇 년 동안 AMD 프로세서에 두들겨 맞은 후 태어난 12900K는 경쟁 제품인 라이젠 9 5950X보다 훨씬 더 나은 CPU로 더 많은 사용자에게 활용 가능성을 안겼다. 화끈한 KO 승리를 거둔 것은 전혀 아니지만, 인텔 12세대 앨더 레이크 프로세서의 뛰어난 장점과 기능을 고려할 때 바로 오늘 구입할 수 있는 하이엔드 데스크톱 프로세서다. 

ⓒ Gordon Mah Ung


12세대 앨더 레이크는 어떤 CPU?

인텔 12세대 앨더 레이크는 근본적으로 인텔 7 공정을 기반으로 만들어진 하이브리드 CPU 설계다. 사실 이것만으로도 엄청난 일이다. 14나노 트랜지스터 기술에 5년 이상을 허비한 끝에, 앨더 레이크는 마침내 하나의 노드를 뛰어넘었다. (기존 10나노 공정이 리브랜드된 후 인텔 7이라는 이름으로 불린다.)

새롭게 설계된 고성능 CPU 코어와 더 작아진 효율 코어를 혼합하여 성능 대 전력 비율의 균형을 최적화했다. 완전히 재설계된 큰 코어를 가진 인텔의 첫 번째 인텔 7 프로세스 데스크톱 CPU라고 이해하는 것이 가장 쉽다. 그리고 여기에 더해 여러 개의 나머지 효율성 코어 성능이 이전 10세대 코어만큼 우수하다. 또한, 12세대 앨더 레이크는 PCIe 5.0, DDR5 메모리, LGA1700 소켓을 비롯해 새로운 표준을 다수 지원한다.

ⓒ Intel

CPU 렌더링 성능

인텔의 전통점 강점이 아니었던 3D 렌더링과 모델링부터 시작하자. 지금까지는 PC에서 3D 모델링 애플리케이션 실사용자가 많지 않아서, 이들 전문 애플리케이션의 실행 성능에 큰 의미를 두지 않았다는 것이 인텔의 주장이었다. 라이젠 CPU의 눈부신 성능에 뒤지는 경우에만 렌더링 성능에서 피벗을 뺐다는 점에 주목하는 사람도 많다.

맥슨 시네벤치 R23부터 시작한다. 맥슨 시네마4D 애플리케이션에 사용되는 렌더링 엔진 테스트이며, 같은 렌더링 엔진이 일부 어도비 애플리케이션에도 내장되어 있다.

최신 버전은 10분 쓰로틀링 테스트를 기본값으로 제안한다. 인텔 10세대, 11세대 칩과 윈도우 11 환경을 테스트한 결과는 없지만, 윈도우 10과 10코어 코어 i9-10900K가 1만 4,336점을 받았고 8코어 코어 i9-11900K는 1만 6,264점을 받았다. 사실 둘 다 2만 2,168점을 받은 AMD 12코어 라이젠 9 5900X과는 상대가 되지 않는다. 그래서 굳이 16코어 라이젠 9 5950X와 비교할 필요가 없었다.

눈길을 끄는 것은 코어 i9-12900K의 긴 파란 막대다. 인텔이 앨더 레이크에서 추구한 하이브리드 설계를 추구하는 것에 여러 가지 말이 많았지만, 12900K는 오랫동안 라이젠의 홈그라운드였던 렌더링 벤치마크에서 AMD의 1, 2위 CPU를 아주 약간이나마 능가해 호사가의 입을 단속한다.

ⓒ IDG

하지만 인텔이 옳다. 모든 CPU 코어와 쓰레드를 다 쓰는 애플리케이션을 사용하는 사람은 그다지 많지 않다. 따라서 시네벤치로 단일 쓰레드 성능을 살펴보는 것도 중요하다. 시네벤치 멀티코어 성능은 라이트룸 클래식 올코어 영상 인코딩이나 사진 내보내기 성능을 알려주고, 시네벤치 R23 단일 쓰레드 성능은 그보다는 오피스나 포토샵 실행에 조금 더 가깝다. 다시 한번 강조하지만, 코어 i9-10900K와 윈도우 11 결과는 없지만, 10세대 제품의 기존 점수는 1,325점, 11세대 제품은 1,640점을 기록한 AMD 라이젠과 비슷한 수준이다.

그러나 인텔 최신 성능 코어는 라이젠 9 5950X보다 성능이 19% 높고, 구형 10세대 칩보다 31%나 나아져 당혹스러울 정도였다. 맥북 프로 M1 맥스와 앨더 레이크를 비교하면 어떨지를 궁금해 하는 이에게 알려주자면, 앨더 레이크가 우세하다. 모바일 칩과 데스크톱 칩을 비교하는 단일 쓰레드 성능 테스트에서 12세대 앨더 레이크 CPU는 애플 최신 M1 칩보다 약 20%나 더 빨랐다. 물론 인텔 제품은 노트북용 칩이 아니었지만, 인텔 12세대 CPU를 탑재한 노트북이 출시되면 충분히 맥북 프로의 경쟁자가 될 것이다.

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

압축 성능

CPU의 압축 성능은 인기있고 무료인 7-Zip 내부 벤치마크로 측정했다. 벤치마크는 CPU 쓰레드 수를 살펴보고 테스트하면서 자체적으로 여러 번 스풀링을 반복한다. 압축 테스트에서는 코어를 전부 사용하는 경우 압축 성능에서 24%, 압축 해제 성능에서 35% 더 높은 수치를 보여준 라이젠이 가장 큰 승자다.

7-cpu.com에 따르면, 압축 측면에서는 메모리 지연 시간, 데이터 캐시의 크기 및 TLB(translation look ahead buffer)가 중요한 반면, 압축을 풀 때는 정수 및 분기 예측 실패 패널티(branch misprediction penalties)가 중요하다. 결국, 실제 애플리케이션으로 파일 압축하거나 압축을 푸는 것은 보통 단일 쓰레드에 의존하기 때문에 멀티 쓰레드 성능과의 상관 관계는 이론에 그친다고 할 수 있다.

12세대 코어 i9의 문제는 심지어 압축 성능도 화려하지 않다는 것이다. 실제로 11세대 코어 i9은 윈도우 10 단일 쓰레드 성능에서 7,916으로 약간 더 빠르다. 간단히 요약하면 라이젠 9이 7-zip 테스트에서 압축 성능 우위를 유지했다. 이견은 있을 수 없다. 일부는 초기 DDR5 메모리의 지연 시간과 7-Zip이 특별한 명령을 사용하지 않는 이유도 있겠지만, 어쨌든 압축 테스트에서는 라이젠이 승리했다.

ⓒ IDG

인코딩 성능

CPU 인코딩 테스트는 무료이자 오픈소스인 핸드브레이크 트랜스코더/인코더를 사용하여 무료이자 오픈소스인 4K 티어스 오브 스틸(Tears of Steel) 영상을 H.265 코덱과 1080p 해상도로 변환하는 작업을 수행한다. 라이젠 9은 인코딩을 약 6% 더 빨리 끝내면서 다시 1위를 차지했다. 압도적인 승리는 아니지만 어쨌거나 1등이다. 

ⓒ IDG

합성 테스트

이제 긱벤치 5로 옮겨간다. 이 테스트는 21개의 작은 개별 루프로 구성된 합성 벤치마크인데, 개발자인 프라이메이트 랩스(Primate Labs)는 텍스트 렌더링에서 HDR, 기계 언어 및 암호화 성능에 이르기까지 모든 분야에서 인기있는 애플리케이션을 모델링했다고 한다. 긱벤치는 과거 논란의 중심에 있었지만, 여전히 인기가 높은 벤치마크다. 3D 렌더링과 압축, 인코딩 등에서 순위가 오르내렸던 코어 i9-12900K는 라이젠 9 5950X보다 8%가량 

긱벤치 벤치마크는 과거에 논란의 대상이 되었지만, 오늘날에는 비난받지 않고서 어떤 테스트를 유지하는 것이 어렵다. 하지만 이 제품은 어리석게도 인기가 있고, 당신이 긱벤치 5에 대해 어떻게 생각하든 간에, 사람들은 CPU가 거기에서 어떻게 작동하는지 보고 싶어한다. 3D 렌더링, 압축 및 인코딩을 어느 정도 반복한 결과, 인텔 코어 i9-12900K가 라이젠 9 5950X보다 약 8% 앞서는 것으로 나타났다.

ⓒ IDG
ⓒ IDG

콘텐츠 제작 성능 

전체 점수는 코어 i9-12900K가 라이젠 9 59050X에 비해 4% 더 앞선다. 프로시언 2.0은 이미지 보정(retouch)와 일괄 내보내기라는 2가지 방식으로 결과를 나눈다. 프로시언에 따르면, 이미지 보정에서는 기본적으로 12세대 코어 i9과 라이젠 9이 동점이었다. 주로 라이트룸 클래식 사진 내보내기 성능을 시험한 일괄 처리에서는 코어 i9가 최대 5%까지 앞섰다. 라이트룸 사진 내보내기가 멀티코어 성능에 의존하는 경향이 크기 때문에 마지막 결과에 놀랐다. 라이젠 9의 승리를 예상했기 때문이다. 결과는 그렇지 않았다. 

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

AI 성능

ⓒ IDG
ⓒ IDG

실생활 성능

비싼 컴퓨터로 인디 영화를 위한 특수 효과를 만들거나 이국적인 여행에서 찍은 사진을 편집하는 것을 상상하기 쉽지만, 세상 일의 대다수는 청구서를 지불하는 지루한 작업과 더 연관이 깊다. 따라서 마이크로소프트 오피스 성능을 UL의 프로시언 2.0 오피스 생산성 테스트를로 측정했다. 어도비와 마찬가지로, 다루는 마이크로소프트 워드, 엑셀, 파워포인트 및 아웃룩에서 고품질 미디어를 많이 다루는 작업을 대상으로 한다. 현실이 지루한 것처럼, 이런 작업이 가장 현실적이라고 할 수 있을 것이다.

오피스나 사무적이고 딱딱한 아웃룩 성능에 열광하는 사람에게는 라이젠보다 16% 빠른 코어 i9-12900K가 유리한 것으로 나타났다. 개별 애플리케이션을 결과에 따르면 12세대 코어 i9는 워드에서 14%, 엑셀에서 19%, 파워포인트에서 10%, 아웃룩에서 19% 더 빠르다. 

ⓒ IDG
ⓒ IDG

게이밍 성능

첫 번째 차트의 수직 축 눈금은 60와트에서 340와트까지를 표시하며, 0은 시간 수평 축을 의미한다. 먼저 모든 코어를 사용하여 시네벤치 R20을 실행했는데, 12900K(빨간색) 막대가 320와트의 총소비량까지 올라간 것을 볼 수 있다. 이것은 거의 라이젠 9 5950X(보라색)의 최대치보다 거의 100와트 더 많다. 약 45% 더 많은 양이다. 일단 모든 코어에 대해 두 칩 모두 시네벤치를 완료하면, 단일 코어나 쓰레드를 사용하여 칩을 실행한다. 이제 115와트 범위의 12세대 코어 i9의 총 시스템 전력을 볼 수 있는데, 라이젠 9가 약 10와트를 더 소비한다. 코어 i9가 테스트를 더 빨리 끝내고 라이젠 9 시스템보다 더 적은 전력을 사용한 것도 확인할 수 있다. 

ⓒ IDG

전력 소비

ⓒ IDG
ⓒ IDG

쓰레드 스케일링

인텔의 11세대부터 12세대까지의 세대별 성능 변화는 경이롭다. 단일 쓰레드를 사용함으로써 코어 i9-12900K는 이전 제품보다 42% 더 빠르며 그 속도에서 조금 올라간다. 8개 쓰레드에서 최신 세대의 코어 i9 최대치를 기록할 때 12세대 코어 i9은 놀랍게도 82% 더 빠르다. 지난 3월 출시된 11세대 칩과 비교하면 완전히 놀라운 변화다. 직접 전력 양을 추적해보지는 않았지만, 이전 11세대 코어 i9-11900K는 시네벤치 R20 실행에 거의 380와트 가까이를 사용한 반면, 12세대 코어 i9는 약 320와트를 사용했다. 따라서, 12세대 코어는 훨씬 적은 전력을 사용하면서도 훨씬 더 빠르다.

ⓒ IDG
ⓒ IDG

인텔 코어 i9-12900K, 결론

조금 의외일지도 모르겠다. 최고의 CPU라는 것은 존재하지 않는다는 것이 결론이다.

그보다는 특정 요구에 가장 적합한 CPU가 곧 최고의 CPU다. 이 긴 벤치마크는 각 요구사항을 6개 부문으로 나눠 각 분야에서 어떤 칩이 승리했는지를 확인했다. 인텔에 좋은 소식은 거의 모든 부문에서 좋은 위치를 차지하고 있다는 것이다.

렌더링 / 하이쓰레드 카운트 
하이 쓰레드 카운트 애플리케이션 및 렌더링에서 코어 i9-12900K는 시네벤치 R23 테스트에서 가까스로 승리라는 결과를 냈지만, 다른 CPU 렌더링 테스트에서는 훨씬 미묘한 결과가 나왔다. 솔직히 90% 렌더링 PC용 칩을 선택한다면, 라이젠 9 5950X가 아마 더 나은 선택일 것이다. 
승리 : 라이젠 9 5950X.

콘텐츠 제작
앞서 살펴본 바와 같이, 콘텐츠 제작은 단순히 쓰레드가 제일 많기만 하면 되는 작업이 아니고, 12세대 코어 i9은 라이젠 9 5950X보다 더 많은 역량을 증명했다. 포토샵, 라이트룸 클래식, 프리미어 프로를 주로 다룬다면 인텔이 더 나은 선택이 될 것이다. 
승리 : 코어 i9-12900K.

실생활
오피스 생산성과 크롬의 벤치마크를 통해 반응성이 더 높은 것이 인텔 CPU라는 점을 확인했다. 물론 결과에 동의하지만 동시에 라이젠 9 5950X도 두 사용례를 모두 잘 처리할 수 있다고도 믿는다. 아웃룩, 워드 실행이나 인터넷 검색이 주 작업인 하이엔드 데스크톱을 조립할 경우 약간 등급을 낮춰도 될 것 같다.
승리: 코어 i9-12900K.

게이밍
실제 게임 플레이에서 차이를 보려면 CPU보다 GPU에 더 집중해야 한다. 그렇지만 게임 테스트에서 인텔 12세대 코어 i9은 분명히 라이젠보다 점수가 높거나 거의 동점이었다. 의심의 여지없이 최고의 게임용 CPU다. 하지만 어느 쪽을 택해도 좋은 선택이다.
승리 : 코어 i9-12900K.

기능
인텔 12세대 플랫폼은 PCIe 5.0 및 DDR5 메모리라는 새로운 세계를 열었다. 또한, 필요한 경우 썬더볼트를 사용할 수 있고 와이파이 6E까지도 통합되어 있다. 물론, DDR5의 가치가 없다고 말하는 이들도 있고 그런 주장에도 이유가 있겠지만, 인텔로서는 충분히 새로운 점이 있다. 
승리 : 코어 i9-12900K.

가치
아직도 AMD 라이젠 9 5950X가 그리 대단한 가치가 없다고 생각하는 사람도 있고, 그 전 해에 2,000달러나 했던 CPU와 성능이 동등한데도 가격이 750달러에 불과한 것을 칭찬하는 사람도 있다. 만약 라이젠 9의 가격이 터무니없이 저렴하다고 생각하는 쪽이라면, 589달러라는 코어 i9-12900K의 공격적인 가격표를 보고 당장 구매하겠다고 소리칠 것이다. 하지만 이 가격은 대량 구매시 적용되는 값이다. 그렇지만 전통적으로 대량구매 가격은 초기 수요가 확정되면 시중가와 몇 달러 차이 나지 않는다. 그렇다. 여기서 가격 대비 가치가 높은 제품은 인텔이다. 그야말로 해가 서쪽에서 뜰 기세다.
승리 : 코어 i9-12900K.

코어 i9-12900K는 위대한 과거 명성을 회복하고 다시 왕좌를 탈환하려고 나섰다. 앨더 레이크는 기다릴 가치가 충분했다. 인텔에게 박수를 보낸다, 브라보. editor@itworld.co.kr 

Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China

Barrier Lake의 홍수 침수 진행 및 평가지역 생태 시공간 반응 사례 연구 (쓰촨-티베트 지역)

Flood Inundation Evolution of Barrier Lake and Evaluation of Regional Ecological Spatiotemporal Response — A Case Study of Sichuan-Tibet Region

Abstract

중국 쓰촨-티베트 지역은 댐 호수의 발생과 붕괴를 동반한 지진 재해가 빈번한 지역이었습니다. 댐 호수의 붕괴는 하류 직원의 생명과 재산 안전을 심각하게 위협합니다.

동시에 국내외 학자들은 주변의 댐 호수에 대해 우려하고 있으며 호수에 대한 생태 연구는 거의 없으며 댐 호수가 생태에 미치는 영향은 우리 호수 건설 프로젝트에서 매우 중요한 계몽 의의를 가지고 있습니다.

이 기사의 목적은 방벽호의 댐 붕괴 위험을 과학적으로 예측하고 생태 환경에 대한 영향을 조사하며 통제 조치를 제시하는 것입니다. 본 논문은 쓰촨-티베트 지역의 Diexihaizi, Tangjiashan 댐호, Hongshihe 댐의 4대 댐 호수 사건을 기반으로 원격 감지 이미지에서 수역을 추출하고 HEC-RAS 모델을 사용하여 위험이 있는지 여부를 결정합니다.

댐 파손 여부 및 댐의 경로 예측; InVEST 모델을 이용하여 1990년부터 2020년까지 가장 작은 행정 구역(군/구)이 위치한 서식지를 평가 및 분석하고, 홍수 침수 결과를 기반으로 평가합니다. 결과는 공학적 처리 후 안정적인 댐 호수(Diexi Haizi)가 서식지 품질 지수에 안정화 효과가 있음을 보여줍니다.

댐 호수의 형성은 인근 토지 이용 유형과 지역 경관 생태 패턴을 변화 시켰습니다. 서식지 품질 지수는 사이 호수 주변 1km 지역에서 약간 감소하지만 3km 지역과 5km 지역에서 서식지 품질이 향상됩니다. 인공 홍수 방류 및 장벽 호수의 공학적 보강이 필요합니다.

이 논문에서 인간의 통제가 강한 지역은 다른 지역의 서식지 질 지수보다 더 잘 회복될 것입니다.

The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel.

At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures.

Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation.

The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern.

The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions’ habitat quality index.

Fengshan Jiang (  florachaing@mail.ynu.edu.cn )
Yunnan University https://orcid.org/0000-0001-6231-6180
Xiaoai Dai
Chengdu University of Technology https://orcid.org/0000-0003-1342-6417
Zhiqiang Xie
Yunnan University
Tong Xu
Yunnan University
Siqiao Yin
Yunnan University
Ge Qu
Chengdu University of Technology
Shouquan Yang
Yunnan University
Yangbin Zhang
Yunnan University
Zhibing Yang
Yunnan University
Jiarui Xu
Yunnan University
Zhiqun Hou
Kunming institute of surveying and mapping

Keywords

dammed lake, regional ecology, flood simulation, habitat quality

Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China
Figure 8 Habitat quality changes in Maoxian County
Figure 8 Habitat quality changes in Maoxian County
Figure 9 Habitat quality changes in Beichuan County
Figure 9 Habitat quality changes in Beichuan County
Figure 10 Habitat quality change map of Qingchuan County
Figure 10 Habitat quality change map of Qingchuan County

References

  1. Chaoying Hu H S, Tianming Zhang. 2017. Environmental impact assessment of barrier lake treatment project based on
    ecological footprint[J]. People’s Yangtze River, 48: 30-32
  2. Dai F C, Lee C F, Deng J H, et al. 2004. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on
    the Dadu River, southwestern China[J]. Geomorphology, 65.
  3. Dongjing Chen Z X 2002. Research on Ecological Security Evaluation of Inland River Basin in Northwest China——A Case
    Study of Zhangye Region in the Middle Reaches of Heihe River Basin[J]. Arid zone geography: 219-224
  4. Dongsheng Chang L Z, Yao Xu, Runqiu Huang. 2009. Risk Assessment of Overtopping Dam Burst in Hongshi River Barrier
    Lake[J]. Journal of Engineering Geology, 17: 50-55
  5. Fan X, Yunus Ali P, Jansen John D, et al. 2019. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi
    area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27–42[J].
    Geomorphology.
  6. Feng Yu X L, Hong Wang, Hongjing Yu. 2006. Land Use Change and Ecological Security Evaluation in Huangfuchuan
    Watershed[J]. Acta Geographica Sinica: 645-653.
  7. Hafiyyan Q, Adityawan M B, Harlan D, et al. 2021. Comparison of Taylor Galerkin and FTCS models for dam-break
    simulation[J]. IOP Conference Series: Earth and Environmental Science, 737.
  8. Haiwen Li X B 2020. Comprehensive Evaluation of the Restoration Status of Damaged Ecological Space along the
    Plateau Fragile Area of the Sichuan-Tibet Railway[J]. Journal of Railway Science and Engineering, 17: 2412-2422.
  9. Haohao Li X R, Huabin Yang. 2008. Rescue construction and thinking of Hongshihe dammed lake in Qingchuan
    County[J]. Water Conservancy and Hydropower Technology (Chinese and English): 50-51+62
  10. Hejun Chai, Runqiu Huang, Hanchao Liu I O E G, Chengdu University of Technology 1997. Analysis and Evaluation of the
    Dangerous Degree of Landslide Blocking the River[J]. Chinese Journal of Geological Hazard and Control: 2-8+16
  11. Hong Wang Y L, Lili Song, Yun Chen. 2020. Comparison of characteristics of thunderstorm and gale activity and
    environmental factors in Sichuan-Tibet area[J]. Journal of Applied Meteorology, 31: 435-446.
  1. Hongyan X, Xu H, Jiang H, et al. 2020. Potential pollen evidence for the 1933 M 7.5 Diexi earthquake and implications for
    post-seismic landscape recovery[J]. Environmental Research Letters, 15.
  2. Hui Xu J C, Zhijiu Cui, Pei Guo. 2019. Analysis of Grain Size Characteristics of Sediment in Dammed Lake——Taking Diexi
    Ancient Dammed Lake in the Upper Minjiang River as an Example[J]. Acta Sedimentologica Sinica, 37: 51-61
  3. Jian Yang B P, Min Zhao. 2014. Research on Ecological Restoration Technology in Wenchuan Earthquake-Stricken Area
    ——Taking Tangjiashan Barrier Lake Area as an Example[J]. Sichuan Building Science Research, 40: 164-167.
  4. Jian Yang B P 2017. Evaluation of Ecological Quality of Tangjiashan Dammed Lake Region in Beichuan County[J].
    People’s Yangtze River, 48: 27-32
  5. Jianfeng Chen Y W, Yang Li. 2006. Application of HEC-RAS model in flood simulation[J]. Northeast Water Resources and
    Hydropower: 12-13+42+71.
  6. Jiankang Liu Z C, Tao Yu. 2016. Dam failure risk and its impact of Hongshiyan dammed lake in Ludian, Yunnan[J].
    Journal of Mountain Science, 34: 208-215
  7. Jianrong Fan B T, Genwei Cheng, Heping Tao, Jianqiang Zhang,Dong Yan, Fenghuan Su. 2008. Information extraction of
    dammed bodies induced by the May 12 Wenchuan earthquake based on multi-source remote sensing data[J]. Journal of
    Mountain Science: 257-262.
  8. Jinghuan Tian K Z, Meng Chen, Fuxin Chai. 2012. Research on the application of HEC-RAS model in flood risk analysis
    and assessment[J]. Hydropower Energy Science, 30: 23-25
  9. Juan He X W 2015. Dam-break flood analysis based on HEC-RAS and HEC-GeoRAS[J]. Journal of Water Resources and
    Water Transport Engineering: 112-116
  10. Junwei Gan L Y, Jinjun Li. 2017. Research on the Influencing Factors of Sichuan-Tibet Tourism Industry Competitiveness
    Based on DEMATEL[J]. Arid Land Resources and Environment, 31: 197-202
  11. Lansheng Wang L Y, Xiaoqun Wang, Liping Duan 2005. Discovery of the ancient dammed lake in Diexi, Minjiang River[J].
    Journal of Chengdu University of Technology (Natural Science Edition): 1-11
  12. Ma S, Zhu J, Ya. H. Year. Construction of Risk Assessment System of Dam-break in Barrier Lake Based on Collaborative
    Workflow: 9.
  13. Ming Zeng Y C, Bingyu Zou. 2019. Discussion on the Method of Forecasting the Flood Evolution of Barrier Lake Burst——
    Taking “11·3” Jinsha River Baige Barrier Lake as an Example[J]. Water Resources and Hydropower Express, 40: 11-14
  14. Ouyang C, An H, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at
    Baige village along the Jinsha River, China Landslides[J]. 16.
  15. Peng M, Zhang L M 2012. Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian
    networks[J]. Natural Hazards, 64.
  16. Qianfeng Li Y L, Gang Liu, Zhiyun Ouyang, Hua Zheng. 2013. The Impact of Land Use Change on Ecosystem Service
    Function——Taking Miyun Reservoir Watershed as an Example[J]. Acta Ecologica Sinica, 33: 726-736.
  17. Qiang Xu G Z, Weile Li, Zhaoyang He, Xiujun Dong, Chen Guo, Wenkai Feng. 2018. Analysis and study of two landslides
    and dams blocking the river in Baige on the Jinsha River in October and November 2018[J]. Journal of Engineering
    Geology, 26: 1534-1551
  18. Qin Ji J Y, Hongju Chen, Man Li. 2019. Analysis of Economic Differences Along the Sichuan-Tibet Railway from the
    Perspective of Spatial and Industrial Decomposition[J]. Glacier permafrost: 1-14
  19. Qingchun Li Y H, Yubing Shi. 2020. Study on the stability of the residual dam in Tangjiashan dammed lake[J]. Journal of
    Underground Space and Engineering, 16: 993-998
  20. Qiwen Xiang J P, Guangze Zhang, Zhengxuan Xu, Dingkai Zhang, Wenli Tu. 2020. Monitoring and Analysis of Surface
    Deformation in Zheduo Mountain Area of Sichuan-Tibet Railway Based on SBAS Technology[J]. Surveying Engineering,
    29: 48-54+59
  1. Shangfu Kuang X W, Jinchi Huang, Yinqi Wei 2008. Analysis and Evaluation of Dam-Break Risk of Barred Lake and Its
    Influence[J]. China Water Resources: 17-21.
  2. Sheng-Hsueh Y, Yii-Wen P, Jia-Jyun D, et al. 2013. A systematic approach for the assessment of flooding hazard and risk
    associated with a landslide dam[J]. Natural Hazards, 65.
  3. Sun L 2021. Research on Fast Perception and Simulation Calculation Method of Landslide Dam in Alpine and Gorge
    Area: Taking Baige Dammed Lake as an Example[J]. Water Conservancy and Hydropower Technology (Chinese and
    English), 52: 44-52
  4. Tamiru H, O. D M 2021. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River
    Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 36.
  5. Tao Pan S W, Erfu Dai, Yujie Liu. 2013. Spatio-temporal changes of water supply services in the ecosystem of the Three
    Rivers Source Region based on InVEST model[J]. Journal of Applied Ecology, 24: 183-189
  6. Vera K, Sergey C, Inna K, et al. 2017. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment
    in the downstream valley[J]. Frontiers of Earth Science, 11.
  7. Wang Z 1985. Preliminary Discussion on the Evaluation of Ecological Environment Quality in Minjiang River Basin[J].
    Journal of ecology: 29-32
  8. Wei Chen Z S, Hui Guo,Hao Wang, Ting Wei, Nan Li, Kaiyi Zhang Shuxiang Yang, Kaijia Dai. 2007. Analysis of Bird
    Resources and Habitats in Wuhan Urban Lakes and Urban Wetlands in Winter[J]. Forestry Investigation and Planning: 46-
    50
  9. Wei G, Gaohong X, Jun S, et al. 2020. Simulation of Flood Process Based on the Model of Improved Barrier Lake’s
    Gradual Dam Break Model %J Journal of Coastal Research[J]. 104.
  10. Wei X, Jiang H, Xu H, et al. 2021. Response of sedimentary and pollen records to the 1933 Diexi earthquake on the
    eastern Tibetan Plateau[J]. Ecological Indicators, 129.
  11. Wei Xu M L, Jie Yang, Chunzhi Li, Xiaojuan Shang. 2011. Risk Analysis of Flood Overflow in Huainan Section of Huaihe
    River Based on HEC-RAS[J]. Journal of Yangtze River Scientific Research Institute, 28: 13-18
  12. Weiwei Zhan R H, Xiangjun Pei, Weile Li. 2017. Research on empirical prediction model of channel type landslide-debris
    flow movement distance[J]. Journal of Engineering Geology, 25: 154-163
  13. Xianju Zheng H L, Wenhai Huang. 2015. Numerical Simulation of Reconstruction of Natural Dams Induced by Heavy Rain
    ——An Example of Tangjiashan Dammed Lake[J]. Business story: 62-63
  14. Xiao-Qun W, Xin H, Man S, et al. 2020. Possible relatedness between the outburst of the Diexi ancient dammed lake and
    ancient Chengdu’s cultural change[J]. Journal of Mountain Science, 17: 2497-2511.
  15. Xingbo Zhou X D, Yu Yao. 2019. Analysis of the dam-break flood of the Baige dammed lake on the Jinsha River[J].
    Hydroelectric Power, 45: 8-12+32
  16. Xinhua Zhang R X, Ming Wang, Zhiqiu Yu, Bingdong Li, Bo Wang. 2020. Investigation and analysis of flood disaster
    caused by dam break of Baige landslide on Jinsha River[J]. Engineering Science and Technology, 52: 89-100
  17. Xinxiao Yu B Z, Xizhi Lv, Zhige Yang. 2012. Evaluation of Forest Water Conservation Function of Beijing Mountainous
    Area Based on InVEST Model[J]. Forestry Science, 48: 1-5
  18. Xu J, Guo J, Zhang J, et al. 2021. Route choice model based on cellular automata and cumulative prospect theory: Case
    analysis of transportation network in Sichuan-Tibet region[J]. Journal of Intelligent & Fuzzy Systems, 40.
  19. Xuan Liang Z Z 2021. Research on the Influence of Numerical Simulation of Tailings Pond Based on FLOW-3D on
    Downstream[J]. Jiangxi Water Conservancy Science and Technology, 47: 11-20
  20. Yu Zheng P Z, Feng Tang, Li Zhao, Xu Zhao. 2018. Research on the Impact of Land Use Change on Habitat Quality in
    Changli County Based on InVEST Model[J]. China’s Agricultural Resources and Regionalization, 39: 121-128
  21. Yuanyuan Yang E D, Hua Fu. 2012. Research Framework of Value Evaluation of Ecosystem Service Function Based on
    InVEST Model[J]. Journal of Capital Normal University (Natural Science Edition), 33: 41-47
  1. Yunfei Ma T L, Jinbiao Xiong. 2021. Numerical simulation of dam-break flow based on VOF method and DFBI model[J].
    Applied Technology, 48: 23-28
  2. Zhe Wu X C, Beibei Liu, Jinfeng Chu, Lixu Peng. 2013. Research progress of InVEST model and its application[J]. Tropical
    Agriculture Science, 33: 58-62
  3. Zhengpeng Li Y H, Yilun Li, Yuehong Ying, Zehua Huangfu. 2021. Numerical simulation of dam-break flood in Qianping
    Reservoir based on BIM+GIS technology[J]. People’s Yellow River, 43: 160-164
  4. Zhenming Shi X X, Ming Peng, Minglang Lin. 2015. Analysis of Seepage Stability of Barrier Dam with High Permeability
    Area——Taking Hongshihe Barrier Dam as an Example[J]. Journal of Hydraulic Engineering, 46: 1162-1171.
  5. Zhu J, Qi H, Hu Y, et al. 2012. A DVGE service system for risk assessment of dam-break in barrier lake[J]. International
    Conference on Automatic Control and Artificial Intelligence (ACAI 2012).
  6. Zhu Y, Peng M, Cai S, et al. 2021. Risk-Based Warning Decision Making of Cascade Breaching of the Tangjiashan
    Landslide Dam and Two Smaller Downstream Landslide Dams[J]. Frontiers in Earth Science.
  7. Zuyu Chen G H, Qiang Zhang, Shuaifeng Wu. 2020. Disaster Mitigation Analysis of Cascade Hydropower Stations on the
    Jinsha River in “11.03” Baige Barrier Lake Emergency Treatment[J]. Hydropower, 46: 59-63
  8. Zuyu Chen S C, Lin Wang, Qiming Zhong, Qiang Zhang, Songli Jin. 2020. Inversion analysis of the “11.03” Baige barrier
    lake burst flood in the upper reaches of the Jinsha River[J]. Science in China: Technological Science, 50: 763-774.
여수로 방류에 따른 여수로 바닥 슬래브의 손상 메커니즘 검토

여수로 방류에 따른 여수로 바닥 슬래브의 손상 메커니즘 검토

Examinations of Damage Mechanism on the Chuteway Slabs of Spillway under Various Flow Conditions

  • Yoo, Hyung Ju ;
  • Shin, Dong-Hoon ;
  • Lee, Seung Oh
  • 유형주 (홍익대학교 공과대학 건설환경공학과) ;
  • 신동훈 (K-water연구원 물인프라안전연구소) ;
  • 이승오 (홍익대학교 공과대학 건설환경공학과)
  • Published : 2021.06.03

Abstract

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로의 유입량이 설계 당시보다 증가하여 댐의 안전성 확보가 필요하다(감사원, 2003). 이에 건설교통부(2003)는 기후변화와 댐 노후화에 대비하여 치수능력증대사업을 추진하여 댐의 홍수배제능력을 확보하였고, 환경부(2020)에서는 40년 이상 경과된 댐을 대상으로 스마트 안전관리체계 구축을 통한 선제적 보수보강, 성능개선 및 자산관리로 댐의 장수명화를 목적으로 댐의 국가안전대진단을 추진하고 있다. 이에 본 연구에서는 댐 시설(여수로)의 노후도 평가 시 활용 될 수 있는 여수로 표면손상 원인규명에 대하여 3차원 수치모형(FLOW-3D 및 COMSOL Multiphysics)을 통해 검토하고자 한다. 연구대상 댐은 𐩒𐩒댐으로 지형 및 여수로를 구축하였으며, 계획방류량(200년 빈도) 및 최대방류량(PMF) 조건에서 모의를 수행하였다. 수치모의 계산의 정확도 검토를 위하여 Baffle의 설치를 통하여 시간에 따른 유량의 변화를 설계 값과 비교하였고 오차가 1.0% 이내를 만족하는 것을 확인하였다. 여수로 표면손상의 다양한 원인 중 기존연구(USBR, 2019)를 통하여 공동침식(Cavitation Erosion) 및 수력잭킹(Hydraulic Jacking)에 초점을 두었으며 방류조건 별 공동지수(Cavitation Index)산정을 통하여 공동침식 위험 구간을 확인하였다. 이음부의 균열 및 공동으로 인한 표층부 콘크리트의 탈락현상을 가속화시키는 수력잭킹 검토를 위하여 국부모형을 구축하였고 음압력(Negative Pressure), 정체압력(Stagnation Pressure), 양압력(Uplift Pressure)의 분포를 확인하였다. 최종적으로 COMSOL Multiphysics를 통하여 압력분포에 따른 구조해석을 수행하여 폰 미세스(Von Mises) 등가응력 및 변위를 검토하여 콘크리트의 탈락가능성을 확인하였다. 본 연구는 여수로 공동부 및 균열부에서의 손상메커니즘을 확인할 수 있는 기초적인 연구이지만 향후에는 다양한 지형조건 및 흐름조건에서의 압력분포 분석 및 유체-구조물 상호작용(Fluid-Structure Interaction, FSI)모의를 수행한다면 구조물 노후도 및 잔존수명 평가에 필요한 손상한계함수 도출이 가능할 것으로 기대된다.

Keywords

Figure 15. Localized deformations on revetment due to run-down and sliding of armor from body laboratory model (left) and numerical modeling (right).

지속 가능한 해안 보호 구조로서 굴절식 콘크리트 블록 매트리스의 손상 메커니즘의 수치적 모델링

Numerical Modeling of Failure Mechanisms in Articulated Concrete Block Mattress as a Sustainable Coastal Protection Structure

Author

Ramin Safari Ghaleh(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

Omid Aminoroayaie Yamini(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

S. Hooman Mousavi(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

Mohammad Reza Kavianpour(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

Abstract

해안선 보호는 전 세계적인 우선 순위로 남아 있습니다. 일반적으로 해안 지역은 석회암과 같은 단단하고 비자연적이며 지속 불가능한 재료로 보호됩니다. 시공 속도와 환경 친화성을 높이고 개별 콘크리트 블록 및 보강재의 중량을 줄이기 위해 콘크리트 블록을 ACB 매트(Articulated Concrete Block Mattress)로 설계 및 구현할 수 있습니다. 이 구조물은 필수적인 부분으로 작용하며 방파제 또는 해안선 보호의 둑으로 사용할 수 있습니다. 물리적 모델은 해안 구조물의 현상을 추정하고 조사하는 핵심 도구 중 하나입니다. 그러나 한계와 장애물이 있습니다. 결과적으로, 본 연구에서는 이러한 구조물에 대한 파도의 수치 모델링을 활용하여 방파제에서의 파도 전파를 시뮬레이션하고, VOF가 있는 Flow-3D 소프트웨어를 통해 ACB Mat의 불안정성에 영향을 미치는 요인으로는 파괴파동, 옹벽의 흔들림, 파손으로 인한 인양력으로 인한 장갑의 변위 등이 있다. 본 연구의 가장 중요한 목적은 수치 Flow-3D 모델이 연안 호안의 유체역학적 매개변수를 모사하는 능력을 조사하는 것입니다. 콘크리트 블록 장갑에 대한 파동의 상승 값은 파단 매개변수( 0.5 < ξ m – 1 , 0 < 3.3 )가 증가할 때까지(R u 2 % H m 0 = 1.6) ) 최대값에 도달합니다. 따라서 차단파라미터를 증가시키고 파괴파(ξ m − 1 , 0 > 3.3 ) 유형을 붕괴파/해일파로 변경함으로써 콘크리트 블록 호안의 상대파 상승 변화 경향이 점차 증가합니다. 파동(0.5 < ξ m − 1 , 0 < 3.3 )의 경우 차단기 지수(표면 유사성 매개변수)를 높이면 상대파 런다운의 낮은 값이 크게 감소합니다. 또한, 천이영역에서는 파단파동이 쇄도파에서 붕괴/서징으로의 변화( 3.3 < ξ m – 1 , 0 < 5.0 )에서 상대적 런다운 과정이 더 적은 강도로 발생합니다.

Shoreline protection remains a global priority. Typically, coastal areas are protected by armoring them with hard, non-native, and non-sustainable materials such as limestone. To increase the execution speed and environmental friendliness and reduce the weight of individual concrete blocks and reinforcements, concrete blocks can be designed and implemented as Articulated Concrete Block Mattress (ACB Mat). These structures act as an integral part and can be used as a revetment on the breakwater body or shoreline protection. Physical models are one of the key tools for estimating and investigating the phenomena in coastal structures. However, it does have limitations and obstacles; consequently, in this study, numerical modeling of waves on these structures has been utilized to simulate wave propagation on the breakwater, via Flow-3D software with VOF. Among the factors affecting the instability of ACB Mat are breaking waves as well as the shaking of the revetment and the displacement of the armor due to the uplift force resulting from the failure. The most important purpose of the present study is to investigate the ability of numerical Flow-3D model to simulate hydrodynamic parameters in coastal revetment. The run-up values of the waves on the concrete block armoring will multiply with increasing break parameter ( 0.5 < ξ m − 1 , 0 < 3.3 ) due to the existence of plunging waves until it ( R u 2 % H m 0 = 1.6 ) reaches maximum. Hence, by increasing the breaker parameter and changing breaking waves ( ξ m − 1 , 0 > 3.3 ) type to collapsing waves/surging waves, the trend of relative wave run-up changes on concrete block revetment increases gradually. By increasing the breaker index (surf similarity parameter) in the case of plunging waves ( 0.5 < ξ m − 1 , 0 < 3.3 ), the low values on the relative wave run-down are greatly reduced. Additionally, in the transition region, the change of breaking waves from plunging waves to collapsing/surging ( 3.3 < ξ m − 1 , 0 < 5.0 ), the relative run-down process occurs with less intensity.

Figure 1.  Armor  geometric  characteristics  and  drawing  three-dimensional  geometry  of  a  breakwater section  in SolidWorks software.
Figure 1. Armor geometric characteristics and drawing three-dimensional geometry of a breakwater section in SolidWorks software.
Figure  5.  Wave  overtopping on  concrete block  mattress in (a)  laboratory  and (b)  numerical  model.
Figure 5. Wave overtopping on concrete block mattress in (a) laboratory and (b) numerical model.
Figure  7.  Mesh  block  for  calibrated  numerical  model  with  686,625  cells  and  utilization  of  FAVOR  tab to assess figure geometry.
Figure 7. Mesh block for calibrated numerical model with 686,625 cells and utilization of FAVOR tab to assess figure geometry.
Figure  10.  How to place different layers  (core, filter,  and revetment)  of the structure on slope.
Figure 10. How to place different layers (core, filter, and revetment) of the structure on slope.

Suggested Citation

Figure 11. Wave run-up on ACB Mat blocks in (a) laboratory model and (b) numerical modeling.
Figure 11. Wave run-up on ACB Mat blocks in (a) laboratory model and (b) numerical modeling.
Figure  15.  Localized  deformations  on  revetment  due  to  run-down  and  sliding  of  armor  from  body  laboratory  model  (left) and  numerical  modeling (right).
Figure 15. Localized deformations on revetment due to run-down and sliding of armor from body laboratory model (left) and numerical modeling (right).

References

  1. Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-Mechanical Effects of Several Riparian Vegetation Combinations on the Streambank Stability—A Benchmark Case in Southeastern Norway. Sustainability 2021, 13, 4046. [CrossRef]
  2. MarCom Working Group 113. PIANC Report No 113: The Application of Geosynthetics in Waterfront Areas; PIANC: Brussels, Belgium, 2011; p. 113, ISBN 978-2-87223-188-1.
  3. Hunt, W.F.; Collins, K.A.; Hathaway, J.M. Hydrologic and Water Quality Evaluation of Four Permeable Pavements in North Carolina, USA. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
  4. Kirkpatrick, R.; Campbell, R.; Smyth, J.; Murtagh, J.; Knapton, J. Improvement of Water Quality by Coarse Graded Aggregates in Permeable Pavements. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
  5. Chinowsky, P.; Helman, J. Protecting Infrastructure and Public Buildings against Sea Level Rise and Storm Surge. Sustainability 2021, 13, 10538. [CrossRef]
  6. Breteler, M.K.; Pilarczyk, K.W.; Stoutjesdijk, T. Design of alternative revetments. Coast. Eng. 1998 1999, 1587–1600. [CrossRef]
  7. Pilarczyk, K.W. Design of Revetments; Dutch Public Works Department (Rws), Hydraulic Engineering Division: Delft, The Netherlands, 2003.
  8. Hughes, S.A. Combined Wave and Surge Overtopping of Levees: Flow Hydrodynamics and Articulated Concrete Mat Stability; Engineer Research and Development Center Vicksburg Ms Coastal and Hydraulics Lab: Vicksburg, MS, USA, 2008.
  9. Gier, F.; Schüttrumpf, H.; Mönnich, J.; Van Der Meer, J.; Kudella, M.; Rubin, H. Stability of Interlocked Pattern Placed Block Revetments. Coast. Eng. Proc. 2012, 1, Structures-46. [CrossRef]
  10. Najafi, J.A.; Monshizadeh, M. Laboratory Investigations on Wave Run-up and Transmission over Breakwaters Covered by Antifer Units; Scientia Iranica: Tehran, Iran, 2010.
  11. Oumeraci, H.; Staal, T.; Pförtner, S.; Ludwigs, G.; Kudella, M. Hydraulic Performance, Wave Loading and Response of Elastocoast Revetments and their Foundation—A Large Scale Model Study; Leichtweiß Institut für Wasserbau: Braunschweig, Germany, 2010.
  12. Tripathy, S.K. Significance of Traditional and Advanced Morphometry to Fishery Science. J. Hum. Earth Future 2020, 1, 153–166. [CrossRef]
  13. Nut, N.; Mihara, M.; Jeong, J.; Ngo, B.; Sigua, G.; Prasad, P.V.V.; Reyes, M.R. Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia. Sustainability 2021, 13, 9276. [CrossRef]
  14. Xu, C.; Pu, L.; Kong, F.; Li, B. Spatio-Temporal Change of Land Use in a Coastal Reclamation Area: A Complex Network Approach. Sustainability 2021, 13, 8690. [CrossRef]
  15. Mousavi, S.; Kavianpour, H.M.R.; Yamini, O.A. Experimental analysis of breakwater stability with antifer concrete block. Mar. Georesour. Geotechnol. 2017, 35, 426–434. [CrossRef]
  16. Yamini, O.; Aminoroayaie, S.; Mousavi, H.; Kavianpour, M.R. Experimental Investigation of Using Geo-Textile Filter Layer In Articulated Concrete Block Mattress Revetment On Coastal Embankment. J. Ocean Eng. Mar. Energy 2019, 5, 119–133. [CrossRef]
  17. Ghasemi, A.; Far, M.S.; Panahi, R. Numerical Simulation of Wave Overtopping From Armour Breakwater by Considering Porous Effect. J. Mar. Eng. 2015, 11, 51–60. Available online: http://dorl.net/dor/20.1001.1.17357608.1394.11.22.8.4 (accessed on 21 October 2021).
  18. Nourani, O.; Askar, M.B. Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters. Open J. Mar. Sci. 2017, 7, 472–484. [CrossRef]
  19. Aminoroaya, A.O.; Kavianpour, M.R.; Movahedi, A. Performance of Hydrodynamics Flow on Flip Buckets Spillway for Flood Control in Large Dam Reservoirs. J. Hum. Earth Future 2020, 1, 39–47.
  20. Milanian, F.; Niri, M.Z.; Najafi-Jilani, A. Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 282–291. [CrossRef]
  21. Yamini, O.A.; Kavianpour, M.R.; Mousavi, S.H. Experimental investigation of parameters affecting the stability of articulated concrete block mattress under wave attack. Appl. Ocean Res. 2017, 64, 184–202. [CrossRef]
  22. Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 1992, 4, 1510–1520. [CrossRef]
  23. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  24. Jin, J.; Meng, B. Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng. 2011, 38, 2185–2200. [CrossRef]
  25. Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam-break wave. Ocean Eng. 2018, 159, 358–371. [CrossRef]
  26. Ersoy, H.; Karahan, M.; Geli¸sli, K.; Akgün, A.; Anılan, T.; Sünnetci, M.O.; Yah¸si, B.K. Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng. Geol. 2019, 249, 112–128. [CrossRef]
  27. Zhan, J.M.; Dong, Z.; Jiang, W.; Li, Y.S. Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models. Ocean Eng. 2010, 37, 1261–1272. [CrossRef]
  28. Owen, M.W. The Hydroulic Design of Seawall Profiles, Proceedings Conference on Shoreline Protection; ICE: London, UK, 1980; pp. 185–192.
  29. Pilarczyk, K.W. Geosythetics and Geosystems in Hydraulic and Coastal Engineering; CRC Press: Balkema, FL, USA, 2000; p. 913, ISBN 90.5809.302.6.
  30. Van der Meer, J.W.; Allsop, N.W.H.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. (Eds.) Manual on Wave Overtopping of Sea Defences and Related Structures–Assessment Manual; EurOtop.: London, UK, 2016; Available online: www.Overtopping-manual.com (accessed on 21 October 2021).
  31. Battjes, J.A. Computation of Set-up, Longshore Currents, Run-up and Overtopping Due to Wind-Generated Waves; TU Delft Library: Delft, The Netherlands, 1974.
  32. Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; Delft Hydraulics: Delft, The Netherlands, 1988.
  33. Ten Oever, E. Theoretical and Experimental Study on the Placement of Xbloc; Delft Hydraulics: Delft, The Netherlands, 2006.
  34. Flow Science, Inc. FLOW-3D User Manual Version 9.3; Flow Science, Inc.: Santa Fe, NM, USA, 2008.
  35. Lebaron, J.W. Stability of A-Jacksarmored Rubble-Mound Break Waters Subjected to Breaking and Non-Breaking Waves with No Overtopping; Master of Science in Civil Engineering, Oregon State University: Corvallis, OR, USA, 1999.
  36. McLaren RW, G.; Chin, C.; Weber, J.; Binns, J.; McInerney, J.; Allen, M. Articulated Concrete Mattress block size stability comparison in omni-directional current. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [CrossRef]
해양 플랫폼에 대한 파도 영향 시뮬레이션

Offshore Structures

Offshore Structures

해양 연안 구조물에 걸리는 하중은 크게 임의의(random) 바다 상태에서 파와 구조물의 상호 작용의 세부 사항에 의해 결정됩니다. FLOW-3D는 사용자로 하여금 다양한 파형 아래에서 부유체와 바다의 스펙트럼(JONSWAP, Pierson Moskowitz, User Defined Function등)사이의 비선형 상호 작용을 모델링 할 수 있게 합니다. 또한 FLOW-3D는 파-구조물- 계류계 안에서 구조 등답 해석뿐 아니라 갑판에서의 물 분석, 충격 하중, 완전 비선형 파형 전달 해석을 제공합니다.

해양 플랫폼 갑판 아래에 있는 고요한 물 에어 갭(Air gap)은 중요한 설계인자이며, 극한 설계 조건에 필요한 최소한의 에어 갭에 의해 결정된다. FLOW-3D는 해양플랫폼, tension leg platform, semi-submersible 등의 에어갭, 파충격 하중, 효과적으로 예측하는데 사용될 수 있습니다.

 

FLOW-3D는 고정말뚝 구조물 외에  여기에 표시된 도크와 같은 부유 구조물에 대한 힘을 시뮬레이션하는 데 사용할 수 있습니다. 계류선 모델을 이용하여 도크의 움직임을 안정화 시켰고, 수위가 꾸준히 증가함에 따른 도크의 역동성을 영상에서 확인할 수 있습니다.

해양 플랫폼에 대한 파도 영향 시뮬레이션

연안 플랫폼 데크 아래의 잔잔한 수중 공극은 중요한 설계 매개변수이며 극한의 설계 조건에서 요구되는 최소 공극에 의해 결정됩니다. FLOW-3D 는 해양 플랫폼, 텐션 레그 플랫폼 및 반잠수정의 공극 및 파도 충격 하중을 효과적으로 예측하는 데 사용할 수 있습니다. FLOW-3D  는 수치적 환경에서 전체 규모의 문제를 모델링함으로써  엔지니어가 축소된 규모의 모델 물리적 유역 테스트와 관련된 종종 섬세한 스케일링 문제를 우회할 수 있도록 합니다.

Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

Effect of carrier gases on the entrainment defects within AZ91 alloy castings

Tian Liab J.M.T.Daviesa Xiangzhen Zhuc
aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom
cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom

Abstract

An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.

Keywords

Magnesium alloyCastingOxide film, Bifilm, Entrainment defect, Reproducibility

연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.

키워드

마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성

1 . 소개

지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 56] .

Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.

연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.

Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.

Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.

SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)

단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)

이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)

트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)

산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.

Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.

그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.

또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.

여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.

2 . 실험

2.1 . 용융 및 주조

3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.

표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).

아연미네소타마그네슘
9.40.610.150.020.0050.0017잔여

그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).

그림 1

수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.

모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.

2.2 . 산화 세포

전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.

도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 ​​접촉하지 않았습니다).

그림 2

실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.

3 . 결과

3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성

0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.

그림 3

그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.

그림 4

도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.

그림 5

무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.

Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .

그림 6

표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).

영형마그네슘NS아연NSNS
그림 6 (b)의 어두운 영역3.481.3279.130.4713.630.570.080.73
그림 6 (b)의 밝은 영역3.5884.4811.250.68

도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .

3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성

SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).

그림 7

Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰(  8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.

그림 8

산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 5 및 7 .

그림 9

연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.

표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).

영형마그네슘NS아연NSNS
그림 8 (a)의 어두운 영역7.253.6469.823.827.030.86
그림 8 (a)의 밝은 영역2.100.4482.8313.261.36

테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.

3.3 . 산화 전지에서 산화막의 진화

섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47][48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.

.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .

그림 10

10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .

도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.

이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .

SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).

그림 11

4 . 논의

4.1 . SF 6 /air 에서 형성된 연행 결함의 진화

Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.

실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7  약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6  0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8  kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .

그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15  kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10  kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.

그림 12

이 반응 과정은 3단계로 나눌 수 있다.

1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지  않았을 수 있습니다(  MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .

2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12  kmol의 ZnO, 1.38 × 10 -14  kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10  kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9  kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.

단계 1-2는 도 10 에 도시 된 다층 구조의 형성 과정을 이론적으로 검증하였다 .

산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)

Al 2 O 3  + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)

Mg + MgAl 2 O 4  = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.

3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)

Mg 3 N 2  + 6H 2 O = 3Mg(OH) 2  + 2NH 3 ↑(4)

AlN+ 3H 2 O = Al(OH) 3  + NH 3 ↑

또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.

4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화

도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.

그림 13

1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지  않았습니다( 2.67 x 10 -10  kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.

2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.

커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .

3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .

요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.

4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향

SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2  에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).

동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).

연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지