Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

결론

결론은 다음과 같습니다.
계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다.
작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다.
D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다.
제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다.
실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다.
제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23].
논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다.
이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
Agitational Stresses

Agitational Stresses / 동요 스트레스

This article was contributed by Ge Bai, Scientist, MedImmune LLC.

Agitation instruments and glass vial

Agitation 연구는 생물 요법 발달에 있어 흔하고 중요한 부분이지만, 관련된 스트레스의 근본적인 특성과 단백질 안정성에 대한 영향은 완전히 이해되지 않았습니다. 동요된 스트레스 방법의 특성화는 단백질 분해 메커니즘이나 특정 민감도를 식별하는데 매우 중요합니다. 전단, 경계면, 캐비 테이션 또는 기타 유체 및 계면 장력에 의한 응력은 실험적 방법으로 측정하기 어렵거나 불가능합니다. 최근에는 다양한 주파수에서 회전 장치(Rotator), 궤도 셰이커, 자석 교반기, 와류 혼합기(그림 1참조)를 포함한 다양한 계측기를 사용하여 3-4S 유리 바이알에서 동요하는 액체의 유체 역학을 모델링하여 단백질 안정성에 잠재적으로 중요한 응력을 확인하고 정량화하였습니다. 25°C에서 물의 유동성 특성이 이러한 시뮬레이션에 사용되었습니다.

Gaining better understanding on agitational stresses applied to proteins for biopharmaceutical development

표준 FLOW3D코드는 최대 시스템 전단율, 볼륨 평균 전단률, 공기-액체 및 고체-액체 인터페이스 근처의 볼륨 평균 전단률, 총 전단, 고체-액체 인터페이스의 면적, 그리고 공기음 재생 인터페이스와 같은 단백질에 대한 잠재적으로 유해한 응력을 수치적으로 계산할 수 있도록 맞춤화하였다. 표준 소프트웨어 패키지의 추가 출력으로 표시됩니다. 시뮬레이션과 실험 사이에 바이알에 있는 유체의 자유 표면 형태를 비교하여 CFD모델을 검증하였습니다(그림 2).

Orbital schaker simulation
그림 2. CFD시뮬레이션과 300rpm정상 상태에서의(A)궤도 쉐이커와(B)35rpm, 55°위치에서의 회전 장치(Rotator)회전 장치(Rotator)에 대한 실험 사이의 유체 없는 표면 형태 비교.
Instantaneous shear rates
그림 3. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 경계면 부근에서의 순간 전단율.

응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 소수성 절 표면에 국소적으로 강한 전단을 제시하였다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

Air-liquid interface generation rates
그림 4. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 공기 액상 인터페이스 생성 속도.

우리는 설명한 각각의 동요된 방법에서 유리 용기 안의 액체에 복수의 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 저하 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

생명 공학 응용 분야

표준 FLOW-3D 코드는 시스템 전단 속도, 부피 평균 전단 속도, 공기-액체 및 고체-액체 계면 근처의 부피 평균 전단 속도, 총 전단, 고체 면적과 같은 단백질에 잠재적으로 유해한 응력이 발생하도록 맞춤화되었습니다. 액체 인터페이스 및 공기-액체 인터페이스 재생률을 수치적으로 계산하고, 표준 소프트웨어 패키지의 추가 출력과 비교할 수 있습니다. 시뮬레이션과 실험 사이에 VIAL에있는 유체의 자유 표면 모양을 비교하여 CFD 모델을 검증했습니다 (그림 2).

Orbital schaker simulation
Figure 2. Comparison of the shape of fluid free surface between CFD simulation and experiment for (A) orbital shaker at 300 rpm at steady state and (B) rotator at 35 rpm, 55° position.
Instantaneous shear rates
Figure 3. Instantaneous shear rates near interfaces at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있습니다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 hydrophobic stir bar 표면에 국소적으로 강한 전단을 제시합니다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

Air-liquid interface generation rates
Figure 4. Air-liquid interface generation rates at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

우리는 설명한 각각의 교반 방법에서 유리 용기 안의 액체에 여러가지 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 분해 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈습니다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

전동기 회전자 다이캐스팅 해석

동 회전자 주조방안 확립

본 자료는 (주)캐스트맨에서 전동기 동로터 개발을 수행한 자료의 요약자료입니다. 본 자료의 회전자 열유동 해석은 FLOW-3D 제품을 이용하여 해석을 수행하였습니다.

30kW급 동 회전자의 3차원 모델링 및 격자설계 그림이며, 이 3차원 모델링 및 격자를 바탕으로 주조방안설계를 위한 주조해석을 진행하였다.

동 회전자 열/유동해석

아래 그림은 30kW급 동 회전자의 유동해석 결과를 나타낸 그림이다. 산화물 거동 해석 결과 저속층류충진법에 의해 회전자의 엔드링 하단에서부터 슬롯을 거쳐 엔드링 상단까지 기포 및 결함 없이 균일하게 알루미늄 용탕이 충진되는 양상을 확인할 수 있으며, 회전자의 온도 또한 균일하게 분포되어 수축 등의 결함이 없는 것을 예측할 수 있다.

30kW급 동 회전자 금형 설계

위의 유동해석 결과를 바탕으로 3차원 금형 설계를 진행하였다.

30kW급 동 회전자 금형 제작 및 시사출

아래 그림은 금형제착 및 시사출이 완료된 30kW급 동 회전자의 그림이다. 또한, 내부의 기포결함 확인을 위해 엔드링 및 외경 가공을 실시하였다. 아래 그림은 회전자의 엔드링을 2mm 단위로 가공한 결과이며, 아래에는 내부 슬롯의 결함을 확인하기 위해 외경가공을 실시한 그림이다. 그림에서 보는바와 같이 엔드링 및 내부 슬롯 모두에 기포결함은 나타나지 않았으며, 양호한 상태를 나타내고 있다.

3차원 측정기를 사용하여 각 금형 부위를 측정한 결과 회전자에서 중요한 라미네이션 외경부(No. 원2, 원9), 엔드링 외경부(No. 원1, 원8) 및 엔드링 두께(No. 거리2, 거리6)의 치수공차값은 각각 목표치인 ±0.01범위 내에 있어 목표치를 달성한 것으로 나타났다.

전기전도도 측정 결과

30kW급 동 회전자의 전기전도도는 제품 가공 후 한국생산기술연구원에서 전기전도도 시험분석을 의뢰하여, 와전류 방식의 전기전도도 측정기를 이용하였다. 30kW급 알루미늄 회전자의 전기전도도는 평균 101.4%IACS로 목표치인 97%IACS를 만족하는 것으로 나타났다.




30kW급 동 회전자 전기전도도(%IACS) 평균값(101.4)

충진율 결과

30kW급 동 회전자의 충진율은 시사출된 시제품의 전체 질량에서 코어의 무게를 빼어 구한 동의 질량을 모델링상에서 도출된 동의 질량으로 나눈 후 100을 곱하여 백분율로 산출하였다. 총 5개의 시제품을 측정한 결과, 30kW급 동 회전자의 충진율은 평균 97.43%로 목표치인 95%를 만족하는 것으로 나타났다. 또한, 회전자 외경부를 기계가공하여 슬롯 내부의 충진 상태를 육안으로 확인한 결과, 미성형 및 기포 등의 결함이 발견되지 않았다.




30kW급 동 회전자의 충진율 확인