Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

반노출 해저케이블의 국부 정련과정 및 영향인자에 대한 수치적 연구

Numerical Study of the Local Scouring Process and Influencing Factors of Semi-Exposed Submarine Cables

by Qishun Li,Yanpeng Hao *,Peng Zhang,Haotian Tan,Wanxing Tian,Linhao Chen andLin Yang

School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China

*Author to whom correspondence should be addressed.J. Mar. Sci. Eng.202311(7), 1349; https://doi.org/10.3390/jmse11071349

Received: 10 June 2023 / Revised: 19 June 2023 / Accepted: 27 June 2023 / Published: 1 July 2023(This article belongs to the Section Ocean Engineering)

일부 수식이 손상되어 표시될 수 있습니다. 이 경우 원문을 참조하시기 바랍니다.

Abstract

Local scouring might result in the spanning of submarine cables, endangering their mechanical and electrical properties. In this contribution, a three-dimensional computational fluid dynamics simulation model is developed using FLOW-3D, and the scouring process of semi-exposed submarine cables is investigated. The effects of the sediment critical Shields number, sediment density, and ocean current velocity on local scouring are discussed, and variation rules for the submarine cables’ spanning time are provided. The results indicate that three scouring holes are formed around the submarine cables. The location of the bottom of the holes corresponds to that of the maximum shear velocity. The continuous development of scouring holes at the wake position leads to the spanning of the submarine cables. The increase in the sediment’s critical Shields number and sediment density, as well as the decrease in the ocean current velocity, will extend the time for maintaining the stability of the upstream scouring hole and retard the development velocity of the wake position and downstream scouring holes. The spanning time has a cubic relationship with the sediment’s critical Shields number, a linear relationship with the sediment density, and an exponential relationship with the ocean current velocity. In this paper, the local scouring process of semi-exposed submarine cables is studied, which provides a theoretical basis for the operation and maintenance of submarine cables.

Keywords: 

submarine cablelocal scouringnumerical simulationcomputational fluid dynamics

1. Introduction

As a key piece of equipment in cross-sea power grids, submarine cables are widely used to connect autonomous power grids, supply power to islands or offshore platforms, and transmit electric power generated by marine renewable energy installations to onshore substations [1]. Once submarine cables break down due to natural disasters or human-made damage, the normal operation of other marine electric power equipment connected to them may be affected. These chain reactions will cause great economic losses and serious social impacts [2].

To protect submarine cables, they are usually buried 1 to 3 m below the seabed [3]. However, submarine cables are still confronted with potential threats from the complex subsea environment. Under the influence of fishing, anchor damage, ocean current scouring, and other factors, the sediment above submarine cables will always inevitably migrate. When a submarine cable is partially exposed, the scouring at this position will be exacerbated; eventually, it will cause the submarine cable to span. According to a field investigation of the 500 kV oil-filled submarine cable that is part of the Hainan networking system, the total length of the span is 49 m [4]. Under strong ocean currents, spanning submarine cables may experience vortex-induced vibrations. Fatigue stress caused by vortex-induced vibrations may lead to metal sheath rupture [5], which endangers the mechanical and electrical properties of submarine cables. Therefore, understanding the local scouring processes of partially exposed submarine cables is crucial for predicting scouring patterns. This is the basis for developing effective operation and maintenance strategies for submarine cables.

The mechanism and influencing factors of sediment erosion have been examined by researchers around the world. In 1988, Sumer [6] conducted experiments to show that the shedding vortex in the wake of a pipeline would increase the Shields parameter by 3–4 times, which would result in severe scouring. In 1991, Chiew [7] performed experiments to prove that the maximum scouring depth could be obtained when the pipeline was located on a flat bed and was scoured by a unidirectional water flow. Based on the test results, they provided a prediction formula for the maximum scouring depth. In 2003, Mastbergen [8] proposed a one-dimensional, steady-state numerical model of turbidity currents, which considered the negative pore pressures in the seabed. The calculated results of this model were basically consistent with the actual scouring of a submarine canyon. In 2007, Dey [9] presented a semitheoretical model for the computation of the maximum clear-water scour depth below underwater pipelines in uniform sediments under a steady flow, and the predicted scour depth in clear water satisfactorily agreed with the observed values. In 2008, Dey [10] conducted experiments on clear-water scour below underwater pipelines under a steady flow and obtained a variation pattern of the depth of the scouring hole. In 2008, Liang [11] used a two-dimensional numerical simulation to study the scouring process of a tube bundle under the action of currents and waves. They discovered that, compared with the scouring of a single tube, the scouring depth of the tube bundle was deeper, and the scouring time was longer. In 2012, Yang [12] found that placing rubber sheets under pipes can greatly accelerate their self-burial. The rubber sheets had the best performance when their length was about 1.5 times the size of the pipe. In 2020, Li [13] investigated the two-dimensional local scour beneath two submarine pipelines in tandem under wave-plus-current conditions via numerical simulation. They found that for conditions involving waves plus a low-strength current, the scour pattern beneath the two pipelines behaved like that in the pure-wave condition. Conversely, when the current had equal strength to the wave-induced flow, the scour pattern beneath the two pipelines resembled that in the pure-current condition. In 2020, Guan [14] studied and discussed the interactive coupling effects among a vibrating pipeline, flow field, and scour process through experiments, and the experimental data showed that the evolution of the scour hole had significant influences on the pipeline vibrations. In 2021, Liu [15] developed a two-dimensional finite element numerical model and researched the local scour around a vibrating pipeline. The numerical results showed that the maximum vibration amplitude of the pipeline could reach about 1.2 times diameter, and the maximum scour depth occurred on the wake side of the vibrating pipeline. In 2021, Huang [16] carried out two-dimensional numerical simulations to investigate the scour beneath a single pipeline and piggyback pipelines subjected to an oscillatory flow condition at a KC number of 11 and captured typical steady-streaming structures around the pipelines due to the oscillatory flow condition. In 2021, Cui [17] investigated the characteristics of the riverbed scour profile for a pipeline buried at different depths under the condition of riverbed sediments with different particle sizes. The results indicated that, in general, the equilibrium scour depth changed in a spoon shape with the gradual increase in the embedment ratio. In 2022, Li [18] used numerical simulation to study the influence of the burial depth of partially buried pipelines on the surrounding flow field, but they did not investigate the scour depth. In 2022, Zhu [19] performed experiments to prove that the scour hole propagation rate under a pipeline decreases with an increasing pipeline embedment ratio and rises with the KC number. In 2022, Najafzadeh [20] proposed equations for the prediction of the scouring propagation rate around pipelines due to currents based on a machine learning model, and the prediction results were consistent with the experimental data. In 2023, Ma [21] used the computational fluid dynamics coarse-grained discrete element method to simulate the scour process around a pipeline. The results showed that this method can effectively reduce the considerable need for computing resources and excessive computation time. In 2023, through numerical simulations, Hu [22] discovered that the water velocity and the pipeline diameter had a significant effect on the depth of scouring.

In the preceding works, the researchers investigated the mechanism of sediment scouring and the effect of various factors on the local scouring of submarine pipelines. However, submarine cables are buried beneath the seabed, while submarine pipelines are erected above the seabed. The difference in laying methods leads to a large discrepancy between their local scouring processes. Therefore, the conclusions of the above investigations are not applicable to the local scouring of submarine cables. Currently, there is no report on the research of the local scouring of partially exposed submarine cables.

In this paper, a three-dimensional computational fluid dynamics (CFD) finite element model, based on two-phase flow, is established using FLOW-3D. The local scouring process of semi-exposed submarine cables under steady-state ocean currents is studied, and the variation rules of the depth and the shape of the scouring holes, as well as the shear velocity with time, are obtained. By setting different critical Shields numbers of the sediment, different sediment densities, and different ocean current velocities, the change rule of the scouring holes’ development rate and the time required for the spanning of submarine cables are explored.

2. Sediment Scouring Model

In the sediment scouring model, the sediment is set as the dispersed particle, which is regarded as a kind of quasifluid. In this context, sediment scouring is considered as a two-phase flow process between the liquid phase and solid particle phase. The sediment in this process is further divided into two categories: one is suspended in the fluid, and the other is deposited on the bottom.When the local Shields number of sediment is greater than the critical Shields number, the deposited sediment will be transformed into the suspended sediment under the action of ocean currents. The calculation formulae of the local Shields numbers θ and the critical Shields numbers 

θcr of sediment is given as [23,24

]

𝜃=𝑈2𝑓(𝜌𝑠/𝜌𝑓−1)𝑔𝑑50,�=��2(��/��−1)��50,(1)

𝜃𝑐𝑟=0.31+1.2𝐷∗+0.055(1−𝑒−0.02𝐷∗),���=0.31+1.2�*+0.055(1−�−0.02�*),(2)

𝐷∗=𝑑50𝜌𝑓(𝜌𝑠−𝜌𝑓)𝑔/𝜇2−−−−−−−−−−−−−−√3,�*=�50��(��−��)�/�23,(3)where 

Uf is the shearing velocity of bed surface, 

ρs is the density of the sediment particle, 

ρf is the fluid density, g is the acceleration of gravity, d

50 is the median size of sediment, and μ is the dynamic viscosity of sediment.And each sediment particle suspended in the fluid obeys the equations for mass conservation and energy conservation

∂𝑐𝑠∂𝑡+∇⋅(𝑢𝑐𝑠)=0,∂��∂�+∇⋅(�¯��)=0,(4)

∂𝑢𝑠∂𝑡+𝑢⋅∇𝑢𝑠=−1𝜌𝑠∇𝑃+𝐹−𝐾𝑓𝑠𝜌𝑠𝑢𝑟,∂��∂�+�¯⋅∇��=−1��∇�+�−�������,(5)where 

cs is the concentration of the sediment particle, 

𝑢�¯ is the mean velocity vector of the fluid and the sediment particle, 

us is the velocity of the sediment particle, 

fs is the volume fraction of the sediment particle, P is the pressure, F is the volumetric and viscous force, K is the drag force, and 

ur is the relative velocity.

3. Numerical Setup and Modeling

In this paper, a three-dimensional submarine cable local scouring simulation model is established by FLOW-3D. Based on the numerical simulation, the process of the submarine cable, which gradually changes from semi-exposed to the spanning state under the steady-state ocean current, is studied. The geometric modeling, the mesh division, the physical field setup, and the grid independent test of CFD numerical model are as follows.

3.1. Geometric Modeling and Mesh Division

A three-dimensional (3D) numerical model of the local scouring of a semi-exposed submarine cable is established, which is shown in Figure 1. The dimensions of the model are marked in Figure 1. The inlet direction of the ocean current is defined as the upstream of the submarine cable (referred to as upstream), and the outlet direction of the ocean current is defined as the downstream of the submarine cable (referred to as downstream).

Jmse 11 01349 g001 550

Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

The submarine cable with a diameter of 0.2 m is positioned on sediment that is initially in a semi-exposed state. When the length of the span is short, the submarine cable will not show obvious deformation due to gravity or scouring from the ocean current. Therefore, the submarine cable surface is set as the fixed boundary. The model’s left boundary is set as the inlet, the right boundary is set as the outlet, the front and rear boundaries are set as symmetry, and the bottom boundary is set as the non-slip wall. Since the water depth above the submarine cable is more than 0.6 m in practice, the top boundary of the model is also set as symmetry. The sediment near the inlet and the outlet will be carried by ocean currents, which leads to the abnormal scouring terrain. At each end of the sediment, a baffle (thickness of 3 cm) is installed to ensure that the simulation results can reflect the real situation.

Due to the fact that the flow field around the semi-exposed submarine cable is not a simple two-dimensional symmetrical distribution, it should be solved by three-dimensional numerical simulation. Considering the accuracy and efficiency of the calculation, the size of mesh is set to 0.02 m. The total number of meshes after the dissection is 133,254.

3.2. Physical Field Setup

The CFD finite element model contains four physical field modules: sediment scouring module, gravity and non-inertial reference frame module, density evaluation module, and viscosity and turbulence module. In this paper, the renormalization group (RNG) kε turbulence model is used, which has high computational accuracy for turbulent vortices. Therefore, this turbulence model is suitable for calculating the sediment scouring process around the semi-exposed submarine cable [25]. The key parameters of the numerical simulation are referring to the survey results of submarine sediments in the Korean Peninsula [26], as listed in Table 1.Table 1. Key parameters of numerical simulation.

Table

3.3. Mesh Independent Test

In order to eliminate errors caused by the quantity of grids in the calculation process, two sizes of mesh are set on the validation model, and the scour profiles under different mesh sizes are compared. The validation model is shown in Figure 2, and the scouring terrain under different mesh size is given in Figure 3.

Jmse 11 01349 g002 550

Figure 2. Validation model.

Jmse 11 01349 g003 550

Figure 3. Scouring terrain under different mesh sizes.

It can be seen from Figure 3 that with the increase in the number of meshes, the scouring terrain of the verification model changes slightly, and the scouring depth is basically unchanged. Considering the accuracy of the numerical simulation and the calculation’s time cost, it is reasonable to consider setting the mesh size to 0.02 m.

4. Results and Analysis

4.1. Analysis of Local Scouring Process

Based on the CFD finite element numerical simulation, the local scouring process of the submarine cable under the steady-state ocean current is analyzed. The end time of the simulation is 9 h, the initial time step is 0.01 s, and the fluid velocity is 0.40 m/s. Simulation results are saved every minute. Figure 4 illustrates the scouring terrain around the semi-exposed submarine cable, which has been scoured by the steady-state current for 5 h.

Jmse 11 01349 g004 550

Figure 4. Scouring terrain around semi-exposed submarine cable (scour for 5 h).

As can be seen from Figure 4, three scouring holes were separately formed in the upstream wake position and downstream of the semi-exposed submarine cable. The scouring holes are labeled according to their locations. The variation of the scouring terrain around the semi-exposed submarine cable over time is given in Figure 5. The red circle in the picture corresponds to the position of the submarine cable, and the red box in the legend marks the time when the submarine cable is spanning.

Jmse 11 01349 g005 550

Figure 5. Variation of scouring terrain around semi-exposed submarine cable adapted to time.

From Figure 5, in the first hour of scouring, the upstream (−0.5 m to −0.1 m) and downstream (0.43 m to 1.5 m) scouring holes appeared. The upstream scouring hole was relatively flat with depth of 0.04 m. The depth of the downstream scouring hole increased with the increase in distance, and the maximum depth was 0.13 m. The scouring hole that developed at the wake position was very shallow, and its depth was only 0.007 m.

In the second hour of scouring, the upstream scouring hole’s depth remained nearly constant. The depth of the downstream scouring hole only increased by 0.002 m. The scouring hole at the wake position developed steadily, and its depth increased from 0.007 m to 0.014 m.

The upstream and downstream scouring holes did not continue to develop during the third to the sixth hour. Compared to the first two hours, the development of scouring holes at the wake position accelerated significantly, with an average growth rate of 0.028 m/h. The growth rate in the fifth hour of the scouring hole at the wake position was slightly faster than the other times. After 6 h of scouring, the sediment on the right side of the submarine cable had been hollowed out.

In the seventh and the eighth hour of scouring, the upstream scouring hole’s depth increased slightly, the downstream scouring hole still remained stable, and the depth of the scouring hole at wake position increased by 0.019 m. The sediment under the submarine cable was gradually eroded as well. By the end of the eighth hour, the lower right part of the submarine cable had been exposed to water as well.

At 8 h 21 min of the scouring, the submarine cable was completely spanned, and the scouring holes were connected to each other. Within the next 10 min, the development of the scouring holes sped up significantly, and the maximum depth of scouring holes increased greatly to 0.27 m.

In reference [17], researchers have studied the local scouring process of semi-buried pipelines in sandy riverbeds through experiments. The test results show that the scouring process can be divided into a start-up stage, micropore formation stage, extension stage, and equilibrium stage. In this paper, the first three stages are simulated, and the results are in good agreement with the experiment, which proves the accuracy of the present numerical model.

In this research, the velocity of ocean currents at the sediment surface is defined as the shear velocity, which plays an important role in the process of local scouring. Figure 6 provides visual data on how the shear velocity varies over time.

Jmse 11 01349 g006 550

Figure 6. Shear velocity changes in the scouring process.

The semi-exposed submarine cable protrudes from the seabed, which makes the shear velocity of its surface much higher than other locations. After the submarine cable is spanned, the shear velocity of the scouring hole surface below it is taken. This is the reason for the sudden change of shear velocity at the submarine cable’s location in Figure 6.The shear velocity in the initial state of the upstream scouring hole is obviously greater than in subsequent times. After 1 h of scouring, the shear velocity in the upstream scouring hole rapidly decreased from 1.1 × 10

−2 m/s to 3.98 × 10

−3 m/s and remained stable until the end of the sixth hour. This phenomenon explains why the upstream scouring hole developed rapidly in the first hour but remained stable for the following 5 h.The shear velocity in the downstream scouring hole reduced at first and then increased; its initial value was 1.41 × 10

−2 m/s. It took approximately 5 h for the shear velocity to stabilize, and the stable shear velocity was 2.26 × 10

−3 m/s. Therefore, compared with the upstream scouring hole, the downstream scouring hole was deeper and required more time to reach stability.The initial shear velocity in the scouring hole at the wake position was only 7.1 × 10

−3 m/s, which almost does not change in the first hour. This leads to a very slow development of the scouring hole at the wake position in the early stages. The maximum shear velocity in this scouring hole gradually increased to 1.05 × 10

−2 m/s from the second to the fifth hour, and then decreased to 6.61 × 10

−3 m/s by the end of the eighth hour. This is why the scouring hole at the wake position grows fastest around the fifth hour. Consistent with the pattern of change in the scouring hole’s terrain, the location of the maximal shear velocity also shifted to the right with time.

The shear velocity of all three scouring holes rose dramatically in the last hour. Combined with the terrain in Figure 5, this can be attributed to the complete spanning of the submarine cable.

From Equations (3)–(5), one can see the movement of the sediment is related directly with the sediment’s critical Shields number, sediment density, and ocean current velocity. Based on the parameters in Table 1, the influence of the above parameters on the local scouring process of semi-exposed submarine cables will be discussed.

4.2. Influence Factors

4.2.1. Sediment’s Critical Shields Number

The sediment’s critical Shields number 

θcr is set as 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07, and the variations of scouring terrain over time under each 

θcr are displayed in Figure 7.

Jmse 11 01349 g007 550

Figure 7. Influence of sediment’s critical Shields number 

θcr on local scouring around semi-exposed submarine cable: (a

θcr = 0.02; (b

θcr = 0.03; (c

θcr = 0.04; (d

θcr = 0.05; (e

θcr = 0.06; and (f

θcr = 0.07.From Figure 7, one can see that a change in 

θcr will affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position, but it will have no significant impact on the expansion of the downstream scouring hole.Under conditions of different 

θcr, the upstream scouring hole will reach a temporary plateau within 1 h, at which time the stable depth will be about 0.04 m. When 

θcr ≤ 0.05, the upstream scouring hole will continue to expand after a few hours. The stable time is obviously affected by 

θcr, which will gradually increase from 1 h to 11 h with the increase in 

θcr. The terrain of the upstream scouring hole will gradually convert to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of submarine cable spanning is studied emphatically. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in 

θcr, the development velocity of the scouring hole at the wake position will decrease considerably. Its average evolution velocity decreases from 3.88 cm/h to 1.62 cm/h, and its depth decreases from 21.9 cm to 18.8 cm. Under the condition of each 

θcr, the downstream scouring hole will stabilize within 1 h, and the stable depth will be basically unchanged (all about 13.5 cm).As 

θcr increases, so does the sediment’s ability to withstand shearing forces, which will cause it to become increasingly difficult to be eroded or carried away by ocean currents. This effect has been directly reflected in the depth of scouring holes (upstream and wake position). Due to the blocking effect of semi-exposed submarine cables, the wake is elongated, which is why the downstream scouring hole develops before the scouring hole at the wake position and quickly reaches a stable state. However, due to the high wake intensity, this process is not significantly affected by the change of 

θcr.

4.2.2. Sediment Density

The density of sediment 

ρs is set as 1550 kg/m

3, 1600 kg/m

3, 1650 kg/m

3, 1700 kg/m

3, 1750 kg/m

3, and 1800 kg/m

3, and the variation of scouring terrain over time under each 

ρs are displayed in Figure 8.

Jmse 11 01349 g008 550

Figure 8. Influence of sediment density 

ρs on local scouring around semi-exposed submarine cable: (a

ρs = 1550 kg/m

3; (bρs = 1600 kg/m

3; (cρs = 1650 kg/m

3; (dρs = 1700 kg/m

3; (eρs = 1750 kg/m

3; and (f

ρs = 1800 kg/m

3.From Figure 8, one can see that a change in 

ρs will also affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position. In addition, it can even have an impact on the downstream scouring hole depth.Under different 

ρs conditions, the upstream scouring hole will always reach a temporary stable state in 1 h, at which time the stable depth will be 0.04 m. When 

ρs ≤ 1750 kg/m

3, the upstream scouring hole will continue to expand after a few hours. The stabilization time of upstream scouring hole is more clearly affected by 

ρs, which will gradually increase from 3 h to 13 h with the increase in 

ρs. The terrain of the upstream scouring hole will gradually change to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of the submarine cable spanning is studied emphatically, too. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. When 

ρs is large, the development rate of scouring hole obviously decreased with time. With the increase in 

ρs, the development velocity of the scouring hole at the wake position reduces from 3.38 cm/h to 1.14 cm/h, and the depth of this scouring hole declines from 20 cm to 15 cm. As 

ρs increases, the stabilization time of the downstream scouring hole increases from less than 1 h to about 2 h, but the stabilization depth of the downstream scouring hole remains essentially the same (all around 13.5 cm).As can be seen from Equation (1), the increase in 

ρs will reduce the Shields number, thus weakening the shear action of the sediment by the ocean current, which explains the extension of the stability time of the upstream scouring hole. At the same time, with the increase in the depth of scouring hole at the wake position, its shear velocity will decreases. Therefore, under a larger 

ρs value, the development speed of scouring hole at the wake position will decrease significantly with time. Possibly for the same reason, 

ρs can affect the development rate of downstream scouring hole.

4.2.3. Ocean Current Velocity

The ocean current velocity v is set as 0.35 m/s, 0.40 m/s, 0.45 m/s, 0.50 m/s, 0.55 m/s, and 0.60 m/s. Figure 9 presents the variation in scouring terrain with time for each v.

Jmse 11 01349 g009 550

Figure 9. Influence of ocean current velocity v on local scouring around semi-exposed submarine cable: (av = 0.35 m/s; (bv = 0.40 m/s; (cv = 0.45 m/s; (dv = 0.50 m/s; (ev = 0.55 m/s; and (fv = 0.60 m/s.

Changes in v affect the depth of the upstream and downstream scouring holes, as well as the development velocity of the wake position and downstream scouring holes.

When v ≤ 0.45 m/s, the upstream scouring hole will reach a temporary stable state within 1 h, at which point the stable depth will be 0.04 m. The stabilization time of the upstream scouring hole is affected by v, which will gradually decrease from 15 h to 3 h with the increase in v. When v > 0.45 m/s, the upstream scouring hole is going to expand continuously. With the increase in v, its average development velocity increases from 6.68 cm/h to 8.66 cm/h, and its terrain changes to deep on the left and to shallow on the right. When the submarine cable is spanning, special attention should be paid to the depth of the scouring hole at the wake position. Throughout whole scouring process, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in v, the depth of scouring hole at the wake position will increase from 14 cm to 20 cm, and the average development velocity will increase from 0.91 cm/h to 10.43 cm/h. As v increases, the time required to stabilize the downstream scouring hole is shortened from 1to 2 h to less than 1 h, but the stable depth is remains nearly constant at 13.5 cm.

An increase in v will increase the shear velocity. Therefore, when the depth of the scouring hole increases, the shear velocity in the hole will also increase, which can deepen both the upstream and downstream scouring hole. According to Equation (1), the Shields number is proportional to the square of the shear velocity. The increase in shear velocity significantly intensifies local scouring, which increases the development rate of scouring holes at the wake position and downstream.

4.3. Variation Rule of Spanning Time

In this paper, the spanning time is defined as the time taken for a semi-exposed submarine cable (initial state) to become a spanning submarine cable. Figure 10 illustrates the effect of the above parameters on the spanning time of the semi-exposed submarine cable.

Jmse 11 01349 g010 550

Figure 10. Influence of different parameters on spanning time of the semi-exposed submarine cable: (a) Sediment critical Shields number; (b) Sediment density; and (c) Ocean current velocity.From Figure 10a, the spanning time monotonically increases with the increase in the critical Shields number of sediment. However, the slope of the curve decreases first and then increases, and the inflection point is at 

θcr = 4.59 × 10

−2. The relationship between spanning time t and sediment’s critical Shields number 

θcr can be formulated by a cubic function as shown in Equation (6):

𝑡=−2.98+6.76𝜃𝑐𝑟−1.45𝜃2𝑐𝑟+0.11𝜃3𝑐𝑟.�=−2.98+6.76���−1.45���2+0.11���3.(6)It can be seen from Figure 10b that with the increase in the sediment density, the spanning time increases monotonically and linearly. The relationship between the spanning time t and the sediment’s density 

ρs can be formulated by the first order function as shown in Equation (7):

𝑡=−41.59+30.54𝜌𝑠.�=−41.59+30.54��.(7)Figure 10c shows that with the increase in the ocean current velocity, the spanning time decreases monotonically. The slope of the curve increases with the increase in the ocean current velocity, so it can be considered that there is saturation of the ocean current velocity effect. The relationship between the spanning time t and the ocean current velocity v can be formulated by the exponential function

𝑡=0.15𝑣−4.38.�=0.15�−4.38.(8)

5. Conclusions

In this paper, a three-dimensional CFD finite element numerical simulation model is established, which is used to research the local scouring process of the semi-exposed submarine cable under the steady-state ocean current. The relationship between shear velocity and scouring terrain is discussed, the influence of sediment critical Shields number, sediment density and ocean current velocity on the local scouring process is analyzed, and the variation rules of the spanning time of the semi-exposed submarine cable is given. The conclusions are as follows:

  • Under the steady-state ocean currents, scouring holes will be formed at the upstream, wake position and downstream of the semi-exposed submarine cable. The upstream and downstream scouring holes develop faster, which will reach a temporary stable state at about 1 h after the start of the scouring. The scouring hole at the wake position will continue to expand at a slower rate and eventually lead to the spanning of the submarine cable.
  • There is a close relationship between the distribution of shear velocity and the scouring terrain. As the local scouring process occurs, the location of the maximum shear velocity within the scouring hole shifts and causes the bottom of the hole to move as well.
  • When the sediment’s critical Shields number and density are significantly large and ocean current velocity is sufficiently low, the duration of the stable state of the upstream scouring hole will be prolonged, and the average development velocity of the scouring holes at the wake position and downstream will be reduced.
  • The relationship between the spanning time and the critical Shields number θcr can be formulated as a cubic function, in which the curve’s inflection point is θcr = 4.59 × 10−2. The relationship between spanning time and sediment density can be formulated as a linear function. The relationship between spanning time and ocean current velocity can be formulated by exponential function.

Based on the conclusions of this paper, even when it is too late to take measures or when the exposed position of the submarine cable cannot be located, the degree of burial depth development still can be predicted. This prediction is important for the operation and maintenance of the submarine cable. However, the study still leaves something to be desired. Only the local scouring process under the steady-state ocean current was studied, which is an extreme condition. In practice, exposed submarine cables are more likely to be scoured by reciprocating ocean currents. In the future, we will investigate the local scouring of submarine cables under the reciprocating ocean current.

Author Contributions

Conceptualization, Y.H. and Q.L.; methodology, Q.L., P.Z. and H.T.; software, Q.L.; validation, Q.L., L.C. and W.T.; writing—original draft preparation, Q.L.; writing—review and editing, Y.H. and Q.L.; supervision, Y.H. and L.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the [Smart Grid Joint Fund Key Project between National Natural Science Foundation of China and State Grid Corporation] grant number [U1766220].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data supporting the reported results cannot be shared at this time, as they have been used in producing more publications on this research.

Acknowledgments

This work is supported by the Smart Grid Joint Fund Key Project of the National Natural Science Foundation of China and State Grid Corporation (Grant No. U1766220).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sust. Energ. Rev. 201896, 380–391. [Google Scholar] [CrossRef]
  2. Gulski, E.; Anders, G.J.; Jogen, R.A.; Parciak, J.; Siemiński, J.; Piesowicz, E.; Paszkiewicz, S.; Irska, I. Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability. Renew. Sust. Energ. Rev. 2021151, 111580. [Google Scholar] [CrossRef]
  3. Wang, W.; Yan, X.; Li, S.; Zhang, L.; Ouyang, J.; Ni, X. Failure of submarine cables used in high-voltage power transmission: Characteristics, mechanisms, key issues and prospects. IET Gener. Transm. Distrib. 202115, 1387–1402. [Google Scholar] [CrossRef]
  4. Chen, H.; Chen, Z.; Lu, H.; Wu, C.; Liang, J. Protection method for submarine cable detection and exposed suspension problem in Qiongzhou straits. Telecom Pow. Technol. 201936, 60–61+63. [Google Scholar]
  5. Zhu, J.; Ren, B.; Dong, P.; Chen, W. Vortex-induced vibrations of a free spanning submarine power cable. Ocean Eng. 2023272, 113792. [Google Scholar] [CrossRef]
  6. Sumer, B.M.; Jensen, H.R.; Mao, Y.; Fredsøe, J. Effect of lee-wake on scour below pipelines in current. J. Waterw. Port Coast. Ocean. Eng. 1988114, 599–614. [Google Scholar] [CrossRef]
  7. Chiew, Y.M. Prediction of maximum scour depth at submarine pipelines. J. Hydraul. Eng. 1991117, 452–466. [Google Scholar] [CrossRef]
  8. Mastbergen, D.R.; Vandenberg, J.H. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 200350, 625–637. [Google Scholar] [CrossRef]
  9. Dey, S.; Singh, N.P. Clear-water scour depth below underwater pipelines. J. Hydro-Env. Res. 20071, 157–162. [Google Scholar] [CrossRef]
  10. Dey, S.; Singh, N.P. Clear-water scour below underwater pipelines under steady flow. J. Hydraul. Eng. 2008134, 588–600. [Google Scholar] [CrossRef]
  11. Liang, D.; Cheng, L. Numerical study of scour around a pipeline bundle. Proc. Inst. Civil Eng. Mar. Eng. 2008161, 89–95. [Google Scholar] [CrossRef]
  12. Yang, L.; Guo, Y.; Shi, B.; Kuang, C.; Xu, W.; Cao, S. Study of scour around submarine pipeline with a rubber plate or rigid spoiler in wave conditions. J. Waterw. Port Coast. Ocean Eng. 2012138, 484–490. [Google Scholar] [CrossRef]
  13. Li, Y.; Ong, M.C.; Fuhrman, D.R.; Larsen, B.E. Numerical investigation of wave-plus-current induced scour beneath two submarine pipelines in tandem. Coast. Eng. 2020156, 103619. [Google Scholar] [CrossRef]
  14. Guan, D.; Hsieh, S.C.; Chiew, Y.M.; Low, Y.M.; Wei, M. Local scour and flow characteristics around pipeline subjected to vortex-induced vibrations. J. Hydraul. Eng. 2020146, 04019048. [Google Scholar] [CrossRef]
  15. Liu, M.M.; Jin, X.; Wang, L.; Yang, F.; Tang, J. Numerical investigation of local scour around a vibrating pipeline under steady currents. Ocean Eng. 2021221, 108546. [Google Scholar] [CrossRef]
  16. Huang, J.; Yin, G.; Ong, M.C.; Myrhaug, D.; Jia, X. Numerical investigation of scour beneath pipelines subjected to an oscillatory flow condition. J. Mar. Sci. Eng. 20219, 1102. [Google Scholar] [CrossRef]
  17. Cui, F.; Du, Y.; Hao, X.; Peng, S.; Bao, Z.; Peng, S. Experimental study on local scour and related mechanical effects at river-crossing underwater oil and gas pipelines. Adv. Civ. Eng. 20212021, 6689212. [Google Scholar] [CrossRef]
  18. Li, B.; Ma, H. Scouring mechanism of suspended and partially-buried pipelines under steady flow. Coast. Eng. 2022177, 104201. [Google Scholar] [CrossRef]
  19. Najafzadeh, M.; Oliveto, G. Scour propagation rates around offshore pipelines exposed to currents by applying data-driven models. Water 202214, 493. [Google Scholar] [CrossRef]
  20. Zhu, Y.; Xie, L.; Wong, T.; Su, T. Development of three-dimensional scour below pipelines in regular waves. J. Mar. Sci. Eng. 202210, 124. [Google Scholar] [CrossRef]
  21. Ma, H.; Li, B. CFD-CGDEM coupling model for scour process simulation of submarine pipelines. Ocean Eng. 2023271, 113789. [Google Scholar] [CrossRef]
  22. Hu, K.; Bai, X.; Vaz, M.A. Numerical simulation on the local scour processing and influencing factors of submarine pipeline. J. Mar. Sci. Eng. 202311, 234. [Google Scholar] [CrossRef]
  23. Yang, B.; Gao, F.; Wu, Y. Experimental study on local scour of sandy seabed under submarine pipeline in unidirectional currents. Eng. Mech. 200825, 206–210. [Google Scholar]
  24. Cheng, Y.; Wang, X.; Luo, W.; Huang, X.; Lyu, X. Experimental study of local scour around a downstream inclined pile under combined waves and current. Adv. Eng. Sci. 202153, 64–71. [Google Scholar]
  25. Lu, Y.; Zhou, L.; Shen, X. Different turbulence models for simulating a liquid-liquid hydro cyclone. J. Tsinghua Univ. 200141, 105–109. [Google Scholar]
  26. Yun, D.H.; Kim, Y.T. Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type. Geotext. Geomembr. 201846, 448–454. [Google Scholar] [CrossRef]
Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process

극저온 자체 가압 공정을 위한 인기 있는 액체-증기 상 변화 모델의 타당성 평가

액체-증기 상 변화 모델은 밀폐된 용기의 자체 가압 프로세스 시뮬레이션에 매우 큰 영향을 미칩니다. Hertz-Knudsen 관계, 에너지 점프 모델 및 그 파생물과 같은 널리 사용되는 액체-증기 상 변화 모델은 실온 유체를 기반으로 개발되었습니다. 액체-증기 전이를 통한 극저온 시뮬레이션에 널리 적용되었지만 각 모델의 성능은 극저온 조건에서 명시적으로 조사 및 비교되지 않았습니다. 본 연구에서는 171가지 일반적인 액체-증기 상 변화 모델을 통합한 통합 다상 솔버가 제안되었으며, 이를 통해 이러한 모델을 실험 데이터와 직접 비교할 수 있습니다. 증발 및 응축 모델의 예측 정확도와 계산 속도를 평가하기 위해 총 <>개의 자체 가압 시뮬레이션이 수행되었습니다. 압력 예측은 최적화 전략이 서로 다른 모델 계수에 크게 의존하는 것으로 나타났습니다. 에너지 점프 모델은 극저온 자체 가압 시뮬레이션에 적합하지 않은 것으로 나타났습니다. 평균 편차와 CPU 소비량에 따르면 Lee 모델과 Tanasawa 모델은 다른 모델보다 안정적이고 효율적인 것으로 입증되었습니다.

Elsevier

International Journal of Heat and Mass Transfer

Volume 181, December 2021, 121879

International Journal of Heat and Mass Transfer

Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process

Author links open overlay panelZhongqi Zuo, Jingyi Wu, Yonghua HuangShow moreAdd to MendeleyShareCite

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121879Get rights and content

Abstract

Liquid-vapor phase change models vitally influence the simulation of self-pressurization processes in closed containers. Popular liquid-vapor phase change models, such as the Hertz-Knudsen relation, energy jump model, and their derivations were developed based on room-temperature fluids. Although they had widely been applied in cryogenic simulations with liquid-vapor transitions, the performance of each model was not explicitly investigated and compared yet under cryogenic conditions. A unified multi-phase solver incorporating four typical liquid-vapor phase change models has been proposed in the present study, which enables direct comparison among those models against experimental data. A total number of 171 self-pressurization simulations were conducted to evaluate the evaporation and condensation models’ prediction accuracy and calculation speed. It was found that the pressure prediction highly depended on the model coefficients, whose optimization strategies differed from each other. The energy jump model was found inadequate for cryogenic self-pressurization simulations. According to the average deviation and CPU consumption, the Lee model and the Tanasawa model were proven to be more stable and more efficient than the others.

Introduction

The liquid-vapor phase change of cryogenic fluids is widely involved in industrial applications, such as the hydrogen transport vehicles [1], shipborne liquid natural gas (LNG) containers [2] and on-orbit cryogenic propellant tanks [3]. These applications require cryogenic fluids to be stored for weeks to months. Although high-performance insulation measures are adopted, heat inevitably enters the tank via radiation and conduction. The self-pressurization in the tank induced by the heat leakage eventually causes the venting loss of the cryogenic fluids and threatens the safety of the craft in long-term missions. To reduce the boil-off loss and extend the cryogenic storage duration, a more comprehensive understanding of the self-pressurization mechanism is needed.

Due to the difficulties and limitations in implementing cryogenic experiments, numerical modeling is a convenient and powerful way to study the self-pressurization process of cryogenic fluids. However, how the phase change models influence the mass and heat transfer under cryogenic conditions is still unsettled [4]. As concluded by Persad and Ward [5], a seemingly slight variation in the liquid-vapor phase change models can lead to erroneous predictions.

Among the liquid-vapor phase change models, the kinetic theory gas (KTG) based models and the energy jump model are the most popular ones used in recent self-pressurization simulations [6]. The KTG based models, also known as the Hertz-Knudsen relation models, were developed on the concept of the Maxwell-Boltzmann distribution of the gas molecular [7]. The Hertz-Knudsen relation has evolved to several models, including the Schrage model [8], the Tanasawa model [9], the Lee model [10] and the statistical rate theory (SRT) [11], which will be described in Section 2.2. Since the Schrage model and the Lee model are embedded and configured as the default ones in the commercial CFD solvers Flow-3D® and Ansys Fluent® respectively, they have been widely used in self-pressurization simulations for liquid nitrogen [12], [13] and liquid hydrogen [14], [15]. The major drawback of the KTG models lies in the difficulty of selecting model coefficients, which were reported in a considerably wide range spanning three magnitudes even for the same working fluid [16], [17], [18], [19], [20], [21]. Studies showed that the liquid level, pressure and mass transfer rate are directly influenced by the model coefficients [16], [22], [23], [24], [25]. Wrong coefficients will lead to deviation or even divergence of the results. The energy jump model is also known as the thermal limitation model. It assumes that the evaporation and condensation at the liquid-vapor interface are induced only by heat conduction. The model is widely adopted in lumped node simulations due to its simplicity [6], [26], [27]. To improve the accuracy of mass flux prediction, the energy jump model was modified by including the convection heat transfer [28], [29]. However, the convection correlations are empirical and developed mainly for room-temperature fluids. Whether the correlation itself can be precisely applied in cryogenic simulations still needs further investigation.

Fig. 1 summarizes the cryogenic simulations involving the modeling of evaporation and condensation processes in recent years. The publication has been increasing rapidly. However, the characteristics of each evaporation and condensation model are not explicitly revealed when simulating self-pressurization. A comparative study of the phase change models is highly needed for cryogenic fluids for a better simulation of the self-pressurization processes.

In the present paper, a unified multi-phase solver incorporating four typical liquid-vapor phase change models, namely the Tanasawa model, the Lee model, the energy jump model, and the modified energy jump model has been proposed, which enables direct comparison among different models. The models are used to simulate the pressure and temperature evolutions in an experimental liquid nitrogen tank in normal gravity, which helps to evaluate themselves in the aspects of accuracy, calculation speed and robustness.

Section snippets

Governing equations for the self-pressurization tank

In the present study, both the fluid domain and the solid wall of the tank are modeled and discretized. The heat transportation at the solid boundaries is considered to be irrelevant with the nearby fluid velocity. Consequently, two sets of the solid and the fluid governing equations can be decoupled and solved separately. The pressures in the cryogenic container are usually from 100 kPa to 300 kPa. Under these conditions, the Knudsen number is far smaller than 0.01, and the fluids are

Self-pressurization results and phase change model comparison

This section compares the simulation results by different phase change models. Section 3.1 compares the pressure and temperature outputs from two KTG based models, namely the Lee model and the Tanasawa model. Section 3.2 presents the pressure predictions from the energy transport models, namely the energy jump model and the modified energy jump model, and compares pressure prediction performances between the KTG based models and the energy transport models. Section 3.3 evaluates the four models 

Conclusion

A unified vapor-liquid-solid multi-phase numerical solver has been accomplished for the self pressurization simulation in cryogenic containers. Compared to the early fluid-only solver, the temperature prediction in the vicinity of the tank wall improves significantly. Four liquid-vapor phase change models were integrated into the solver, which enables fair and effective comparison for performances between each other. The pressure and temperature prediction accuracies, and the calculation speed

CRediT authorship contribution statement

Zhongqi Zuo: Data curation, Formal analysis, Writing – original draft, Validation. Jingyi Wu: Conceptualization, Writing – review & editing, Validation. Yonghua Huang: Conceptualization, Formal analysis, Writing – review & editing, Validation.

Declaration of Competing Interest

Authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process”.

Acknowledgement

This project is supported by the National Natural Science Foundation of China (No. 51936006).

References (40)

There are more references available in the full text version of this article.

Cited by (7)

Figure 4.2 Protrusion length investigation under R1 regime Q=1 m³/s with non-constrained BC elevation, 3 cm, 4 cm, 5 cm, 6cm & 7 cm from up to down respectively (grid M3 is employed).

Mathematical Modelling of Air-water flow Structure in Circular Dropshafts

Alternate title: Dairesel Düşülü Bacalarda Hava-Su Karışımının Matematiksel Modellemesi
Uçar, Muhammed.   Necmettin Erbakan University (Turkey) ProQuest Dissertations Publishing,  2021. 28840631.

Abstract

Citizens’ daily needs such as; transportation, communication, clean water and sewage are supplied with infrastructure systems. Horizontal and vertical expansion in the cities due to the increase in population leads to serious demand for infrastructural improvements. The infrastructure systems in developing cities are required to be designed in a satisfactory capacity to supply the increasing demand for residential and industrial constructions. The districts having insufficient infrastructure systems inevitably confront heavy traffic, flood, air pollution problems, and also having difficulties with the inadequacy of parking area, clear and potable water, communication. The problems may cause social and health problems over time. At this point, it is wished to emphasize that the primary factor of citycivilization development depends on infrastructural systems and it is meaningful to name the engineering field like civil engineering, literally leads civilization. Dropshafts, commonly used in the urban storm and sewage water systems produced generally circular are used for energy dissipation and flow direction control. Aeration is significant for the working principle of the flow in dropshaft and this study is made mainly for this two-phase (air-water) physics of dropshafts. Chanson showed that aeration and energy dissipation is directly linked to each other (2002), but the influencing factors and the action mechanisms of the factors on the phenomena are not discovered entirely. By the comprehension of the factors, more effective dropshafts will be able to design. This study aims to guide the more comprehensive investigation of design factors using Computational Fluid Dynamics-CFD programs. The reasons for the preference of the programs are the cost-effectiveness of material, workmanship and duration relative to hydraulic modelling. The competence of the inputs, outputs and solution system of the CFD code is validated by the comparison of previous hydraulic modelling results.

Keywords

CFD, Dropshaft, Sewer system, Storm Water System, Two-Phase Flow

Influence of crest geometric on discharge coefficient efficiency of labyrinth weirs

Influence of crest geometric on discharge coefficient efficiency of labyrinth weirs

Erick Mattos-Villarroel a, Jorge Flores-Velázquez b, Waldo Ojeda-Bustamante c, Carlos Díaz-Delgado d, Humberto Salinas-Tapia dShow moreAdd to MendeleyShareCite

aMexican Institute of Water Technology, Mexico
bPostgraduate College, Hydrosciences, Carr. Mex-Tex Km 36.5, Texcoco, Mexico State, 56230, Mexico
cAgricultural Engineering Graduate Program, University of Chapingo, Mexicod
Inter-American Institute of Water Science and Technology, Mexico

https://doi.org/10.1016/j.flowmeasinst.2021.102031Get rights and content

Highlights

  • •Optimizing the geometric design of weirs can improve hydraulic performance.
  • •Labyrinth type weirs allow the discharge capacity to be increased compared to linear weirs.
  • •Hydraulic heads with ratio HT/P > 0.5 generated sub-atmospheric pressures on the side walls of the weir.
  • •Numerical simulation it is a strong tool to analyze and get optimized the weir function.

Abstract

Labyrinth type weirs are structures that, due to their geometry, allow the discharge capacity to be increased compared to linear weirs. They are a favorable option for dam rehabilitation and upstream level control. There are various geometries of labyrinth type weirs such as trapezoidal, triangular or piano key as well as different types of crest profiles. Geometric changes are directly related to hydraulic efficiency. The objective of this work was to analyze the hydraulic performance of a labyrinth type weir, by simulating several geometries of the apex and of the crest using Computational Fluid Dynamics (CFD). For model validation, experimental studies reported in the literature were used. Tests were carried out with trapezoidal and circular apexes and four types of crest profiles: sharp-crest, half-round, quarter-round and Waterways Experiment Station (WES). The results revealed a determination coefficient of R2 = 0.984 between experimental and simulated data with CFD, which provides statistical agreement. Simulations showed that circular-apex weirs are more efficient than those with trapezoidal apex, because they have a higher discharge coefficient (4.7% higher). Of the four types of crest profiles analyzed, the half-round and the WES crest profiles had similar discharge coefficients and were generally greater than those of the sharp-crest and the quarter-round (5.26% y 8.5% higher) profiles. Nevertheless, to facilitate a practical construction process, it is recommended to use a half-round profile. For hydraulic heads with HT/P > 0.5 ratio, all profiles generated sub-atmospheric pressures on the side walls of the weir. However, when HT/P ≈ 0.8 ratio the half-round crest generated a higher negative pressure (−1500 Pa), while the sharp-crest profile managed to increase the pressure by 76% (−350 Pa), but with a greater area of negative pressure. On the other hand, the WES profile reduced the negative-pressure area by 50%.

Keywords

Labyrinth weir

Computational fluids dynamics (CFD)

Discharge coefficient

Apex shape

Crest profile

Figures (12)

  1. Fig. 1. Geometric parameters of a labyrinth weir
  2. Fig. 2. Crest profiles: (A) sharp-crest, (B) half-round, (C) quarter-round, (D) WES
  3. Fig. 3. Apex shapes
  4. Fig. 4. Weir and boundary conditions
  5. Fig. 5. Hydraulic head approach an asymptotic zero-grid spacing value
  6. Fig. 6. Percentage relative error of the discharge coefficient as a function of HT/P
  7. Fig. 7. Comparison of the discharge coefficients obtained numerically against the…
  8. Fig. 8. Pressure distribution in the downstream side walls of the labyrinth weir
  9. Fig. 9. Comparison of the discharge coefficient in trapezoidal apex labyrinth weirs
  10. Fig. 10. Comparison of the discharge coefficient in circular apex labyrinth weirs
  11. Fig. 11. Local drowning at the upstream apex
  12. Fig. 12. Ratio of the discharge coefficient of the circular apex weir with the…
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou1, Vassilios Stergiopoulos2
1Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University,
Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna,
Zieglergasse 53/1/24, 1070 Vienna, Austria).
2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators,
ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.
Received 4 Jan. 2021; Received in revised form 8 Aug. 2021; Accepted 8 Aug. 2021; Available online 14 Aug. 2021

Abstract

This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which
were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the
study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for
recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based
to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some
promising performances for such small hydropower systems harnessing the important unexploited
hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.

이 논문은 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시하며, 이는 “그리스에서 아르키메데스의 부활: 수리 역학 및 아르키메데스 달팽이관 물레방아의 유체역학적 거동 연구에 대한 기여”라는 제목의 최근 연구에서 수행되었습니다. 그리스 자연 및 기술 수로의 수력 잠재력”. Flow-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)에 관한 것이며 그리스의 자연 및 기술 수로의 중요한 미개발 수력 잠재력을 활용하는 이러한 TWh/년 및 수천 MW 범위의 총 설치 용량인 소규모 수력 발전 시스템에 대한 몇 가지 유망한 성능을 보여줍니다.
Copyright © 2021 International Energy and Environment Foundation – All rights reserved.

Keywords

CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

References.

[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of
screw hydro turbine, Ph.D. Thesis, NTUA, 2017.
[2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und
Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna,
2012.
[3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47
(5) (2009) 666-669.
[4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic
Engineering, 80 (2000) 72-80.
[5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean
spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for
Climate Change, Thessaloniki, 2009.
[6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new
Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE
Conference, Mykonos, June 21-26, 2009.
International Journal of Energy and Environment (IJEE), Volume 12, Issue 1, 2021, pp.19-30
[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece?
Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in:
Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010.
[8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition:
Archimedean screw hydropower development terra incognita, International Journal of Energy and
Development, v.6, Issue 6, pp. 627-536, 2015.
[9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head
innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6,
Issue 5, pp. 471-478, 2015.
[10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean
screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the
Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011.
[11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower
potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT
Volume 11, Issue 2, 2020 pp.137-144.
[14] Flow Science, FLOW-3D Manual, 2013.
[15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson,
2007.
[16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of
Computational Fluid dynamics, John Wiley & Sons, 2007.
[17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative
Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International
Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and
SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013.
[18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D
Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23-
No1, 2014.
[19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined
Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT),
Vol. 2 Issue 9, September – 2013, pp. 193-199.
[20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the
Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND
ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.

Study on Hydrodynamic Performance of Unsymmetrical Double Vertical Slotted Barriers

침수된 강성 식생을 갖는 개방 수로 흐름의 특성에 대한 3차원 수치 시뮬레이션

A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation

Journal of Hydrodynamics volume 33, pages833–843 (2021)Cite this article

Abstract

이 백서는 Flow-3D를 적용하여 다양한 흐름 배출 및 식생 시나리오가 흐름 속도(세로, 가로 및 수직 속도 포함)에 미치는 영향을 조사합니다.

실험적 측정을 통한 검증 후 식생직경, 식생높이, 유량방류량에 대한 민감도 분석을 수행하였다. 종방향 속도의 경우 흐름 구조에 가장 큰 영향을 미치는 것은 배출보다는 식생 직경에서 비롯됩니다.

그러나 식생 높이는 수직 분포의 변곡점을 결정합니다. 식생지 내 두 지점, 즉 상류와 하류의 횡속도를 비교하면 수심에 따른 대칭적인 패턴을 확인할 수 있다. 식생 지역의 가로 및 세로 유체 순환 패턴을 포함하여 흐름 또는 식생 시나리오와 관계없이 수직 속도에 대해서도 동일한 패턴이 관찰됩니다.

또한 식생의 직경이 클수록 이러한 패턴이 더 분명해집니다. 상부 순환은 초목 캐노피 근처에서 발생합니다. 식생지역의 가로방향과 세로방향의 순환에 관한 이러한 발견은 침수식생을 통한 3차원 유동구조를 밝혀준다.

This paper applies the Flow-3D to investigate the impacts of different flow discharge and vegetation scenarios on the flow velocity (including the longitudinal, transverse and vertical velocities). After the verification by using experimental measurements, a sensitivity analysis is conducted for the vegetation diameter, the vegetation height and the flow discharge. For the longitudinal velocity, the greatest impact on the flow structure originates from the vegetation diameter, rather than the discharge. The vegetation height, however, determines the inflection point of the vertical distribution. Comparing the transverse velocities at two positions in the vegetated area, i.e., the upstream and the downstream, a symmetric pattern is identified along the water depth. The same pattern is also observed for the vertical velocity regardless of the flow or vegetation scenario, including both transverse and vertical fluid circulation patterns in the vegetated area. Moreover, the larger the vegetation diameter is, the more evident these patterns become. The upper circulation occurs near the vegetation canopy. These findings regarding the circulations along the transverse and vertical directions in the vegetated region shed light on the 3-D flow structure through the submerged vegetation.

Key words

  • Submerged rigid vegetation
  • longitudinal velocity
  • transverse velocity
  • vertical velocity
  • open channel

References

  1. Angelina A., Jordanova C. S. J. Experimental study of bed load transport through emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(6): 474–478.Article Google Scholar 
  2. Li Y., Wang Y., Anim D. O. et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants [J]. Geomorphology, 2014, 204: 314–324.Article Google Scholar 
  3. Bai F., Yang Z., Huai W. et al. A depth-averaged two dimensional shallow water model to simulate flow-rigid vegetation interactions [J]. Procedia Engineering, 2016, 154: 482–489.Article Google Scholar 
  4. Huai W. X., Song S., Han J. et al. Prediction of velocity distribution in straight open-channel flow with partial vegetation by singular perturbation method [J]. Applied Mathematics and Mechanics (Engilsh Editon), 2016, 37(10): 1315–1324.Article MathSciNet Google Scholar 
  5. Wang P. F., Wang C. Numerical model for flow through submerged vegetation regions in a shallow lake [J]. Journal of Hydrodynamics, 2011, 23(2): 170–178.Article Google Scholar 
  6. Wang W. J., Cui X. Y., Dong F. et al. Predictions of bulk velocity for open channel flow through submerged vegetation [J]. Journal of Hydrodynamics, 2020, 32(4): 795–799.Article Google Scholar 
  7. Zhang M., Li C. W., Shen Y. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation [J]. Applied Mathematical Modelling, 2013, 37(1–2): 540–553.Article MathSciNet Google Scholar 
  8. Huai W., Wang W., Hu Y. et al. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation [J]. Advances in Water Resources, 2014, 69: 106–113.Article Google Scholar 
  9. Panigrahi K., Khatua K. K. Prediction of velocity distribution in straight channel with rigid vegetation [J]. Aquatic Procedia, 2015, 4: 819–825.Article Google Scholar 
  10. Huai W. X., Zeng Y. H., Xu Z. G. et al. Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation [J]. Advances in Water Resources, 2009, 32(4): 487–492.Article Google Scholar 
  11. Chen S. C., Kuo Y. M., Li Y. H. Flow characteristics within different configurations of submerged flexible vegetation [J]. Journal of Hydrology, 2011, 398(1–2): 124–134.Article Google Scholar 
  12. Yagci O., Tschiesche U., Kabdasli M. S. The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics [J]. Advances in Water Resources, 2010, 33(5): 601–614.Article Google Scholar 
  13. Wu F. S. Characteristics of flow resistance in open channels with non-submerged rigid vegetation [J]. Journal of Hydrodynamics, 2008, 20(2): 239–245.Article Google Scholar 
  14. Huai W., Hu Y., Zeng Y. et al. Velocity distribution for open channel flows with suspended vegetation [J]. Advances in Water Resources, 2012, 49: 56–61.Article Google Scholar 
  15. Pu J. H., Hussain A., Guo Y. K. et al. Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction [J]. Water Science and Engineering, 2019, 12(2): 121–128.Article Google Scholar 
  16. Zhang M. L., Li C. W., Shen Y. M. A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation [J]. Applied Mathematical Modelling, 2010, 34(4): 1021–1031.Article MathSciNet Google Scholar 
  17. Anjum N., Tanaka N. Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation [J]. Water Science and Engineering, 2019, 12(4): 319–329.Article Google Scholar 
  18. Wang W., Huai W. X., Gao M. Numerical investigation of flow through vegetated multi-stage compound channel [J]. Journal of Hydrodynamics, 2014, 26(3): 467–473.Article Google Scholar 
  19. Ghani U., Anjum N., Pasha G. A. et al. Numerical investigation of the flow characteristics through discontinuous and layered vegetation patches of finite width in an open channel [J]. Environmental Fluid Mechanics, 2019, 19(6): 1469–1495.Article Google Scholar 
  20. Aydin M. C., Emiroglu M. E. Determination of capacity of labyrinth side weir by CFD [J]. Flow Measurement and Instrumentation, 2013, 29: 1–8.Article Google Scholar 
  21. Hao W. L., Wu W. Q., Zhu C. J. et al. Experimental study on vertical distribution of flow velocity in vegetated river channel [J]. Water Resources and Power, 2015, 33(2): 85–88(in Chinese).Google Scholar 
  22. Pietri L., Petroff A., Amielh M. et al. Turbulent flows interacting with varying density canopies [J]. Mécanique and Industries, 2009, 10(3–4): 181–185.Article Google Scholar 
  23. Li Y., Du W., Yu Z. et al. Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment [J]. Journal of Hydro-environment Research, 2015, 9(3): 354–367.Article Google Scholar 
  24. Li W. Q., Wang D., Jiao J. L. et al. Effects of vegetation patch density on flow velocity characteristics in an open channel [J]. Journal of Hydrodynamics, 2018, 31(5): 1052–1059.Article Google Scholar 
  25. Langre E. D., Gutierrez A., Cossé J. On the scaling of drag reduction by reconfiguration in plants [J]. Comptes Rendus Mécanique, 2012, 340(1–2): 35–40.Article Google Scholar 
  26. Fathi-Maghadam M., Kouwen N. Nonrigid, nonsubmerged, vegetative roughness on floodplains [J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(1): 51–57.Article Google Scholar 
  27. Liang D., Wu X. A random walk simulation of scalar mixing in flows through submerged vegetations [J]. Journal of Hydrodynamics, 2014, 26(3): 343–350.Article MathSciNet Google Scholar 
  28. Ghisalberti M., Nepf H. Mass transport in vegetated shear flows [J]. Environmental Fluid Mechanics, 2005, 5(6): 527–551.Article Google Scholar 
Figure 4 Snapshots of the trimaran model during the tests. a Inboard side hulls in the Tri-1confguration, b Outboard side hulls in the Tri-4 confguration, c Symmetric side hulls in the Tri-4confguration

조파식 3동선의 선체측면대칭이 저항성능에 미치는 영향에 관한 실험적 연구

Abolfath Askarian KhoobAtabak FeiziAlireza MohamadiKarim Akbari VakilabadiAbbas Fazeliniai & Shahryar Moghaddampour

Abstract

이 논문은 비대칭 인보드, 비대칭 아웃보드 및 다양한 스태거/분리 위치에서의 대칭을 포함하는 세 가지 대안적인 측면 선체 형태를 가진 웨이브 피어싱 3동선의 저항 성능에 대한 실험적 조사 결과를 제시했습니다. 

모델 테스트는 0.225에서 0.60까지의 Froude 수에서 삼동선 축소 모형을 사용하여 National Iranian Marine Laboratory(NIMALA) 예인 탱크에서 수행되었습니다. 

결과는 측면 선체를 주 선체 트랜섬의 앞쪽으로 이동함으로써 삼동선의 총 저항 계수가 감소하는 것으로 나타났습니다. 

또한 조사 결과, 측면 선체의 대칭 형태가 3개의 측면 선체 형태 중 전체 저항에 대한 성능이 가장 우수한 것으로 나타났습니다. 본 연구의 결과는 저항 관점에서 측면 선체 구성을 선택하는 데 유용합니다.

Keywords

  • Resistance performance
  • Wave-piercing trimaran
  • Seakeeping characteristics
  • Side hull symmetry
  • Model test
  • Experimental study
Figure 4 Snapshots of the trimaran model during the tests. a Inboard side hulls in the Tri-1confguration, b Outboard side hulls in the Tri-4 confguration, c Symmetric side hulls in the Tri-4confguration
Figure 4 Snapshots of the trimaran model during the tests. a Inboard side hulls in the Tri-1confguration, b Outboard side hulls in the Tri-4 confguration, c Symmetric side hulls in the Tri-4confguration

References

  • Ackers BB, Thad JM, Tredennick OW, Landen CH, Miller EJ, Sodowsky JP, Hadler JB (1997) An investigation of the resistance characteristics of powered trimaran side-hull configurations. SNAME Transactions 105:349–373Google Scholar 
  • ASME (2005) Test uncertainty, The American society of mechanical engineers performance test code, American Society of Mechanical Engineers, No. PTC 19. 1–2005, New York
  • Chen Y, Yang L, Xie Y, Yu S (2016) The research on characteristic parameters and resistance chart of operation and maintenance trimaran in the sea. Polish Maritime Research 23(s1):20–24. https://doi.org/10.1515/pomr-2016-0041Article Google Scholar 
  • Claire M, Andrea M (2014) Resistance analysis for a trimaran. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 8(1):7–15Google Scholar 
  • Deng R, Li C, Huang D, Zhou G (2015) The effect of trimming and sinkage on the trimaran resistance calculation. Procedia Engineering 126:327–331. https://doi.org/10.1016/j.proeng.2015.11.199Article Google Scholar 
  • Doctors L, Scrace R (2003) The optimization of trimaran side hull position for minimum resistance. Seventh International Conference on Fast Transportation (FAST 2003), Ischia, Italy, 1–12
  • Du L, Hefazi H, Sahoo P (2019) Rapid resistance estimation method of non-Wigley trimarans. Ships and Offshore Structures 14(8):910–920. https://doi.org/10.1080/17445302.2019.1588499Article Google Scholar 
  • Ghadimi P, Nazemian A, Ghadimi A (2019) Numerical scrutiny of the influence of side hulls arrangement on the motion of a Trimaran vessel in regular waves through CFD analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(1):1–10. https://doi.org/10.1007/s40430-018-1505-xArticle Google Scholar 
  • Hafez K, El-Kot A-R (2011) Comparative analysis of the separation variation influence on the hydrodynamic performance of a high speed trimaran. Journal of Marine Science and Application 10(4):377–393. https://doi.org/10.1007/s11804-011-1083-0Article Google Scholar 
  • Hafez KA, El-Kot AA (2012) Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran. Alexandria Engineering Journal 51(3):153–169. https://doi.org/10.1016/j.aej.2012.02.002Article Google Scholar 
  • Hashimoto H, Amano S, Umeda N, Matsuda A (2011) Influence of side-hull positions on dynamic behaviors of a trimaran running in following and stern quartering seas. Proceedings of the 21th International Conference on Offshore and Polar Engineering, 573–580
  • Insel M, Molland AF (1991) An investigation into the resistance components of high speed displacement catamarans. Transactions of the Royal Institution of Naval Architects 134:1–20. https://doi.org/10.1007/s11804-013-1193-yArticle Google Scholar 
  • ITTC (2014) Testing and extrapolation methods in resistance towing tank tests, Recommended Procedures, 7.5–02–02–01
  • Iqbal M, Utama IKAP (2014) An investigation into the effect of water depth on the resistance components of trimaran configuration. Proceedings of the 9th International Conference on Marine Technology, Surabaya
  • Lewis EV (1988) Principles of Naval Architecture. The Society of Naval Architects and Marine Engineers III: 323–324
  • Luhulima RB, Utama I, Sulisetyono A (2016) Experimental investigation into the resistance components of displacement trimaran at various lateral spacing. International Journal of Engineering Research & Science (IJOER) 2:21–29Google Scholar 
  • Luhulima RB (2017) An Investigation into the resistance of displacement trimaran: a comparative analysis between experimental and CFD approaches. International Journal of Mechanical Engineering (IJME) 6:9–18Google Scholar 
  • Molland AF, Turnock SR, Hudson DA (2011) Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge University Press, 544.
  • Verna S, Khan K, Praveen PC (2012) Trimaran hull form optimization, using ship flow. International Journal of Innovative Research and Development 1(10):5–15
  • Yanuar Y, Gunawan G, Talahatu MA, Indrawati RT, Jamaluddin A (2013) Resistance analysis of unsymmetrical trimaran model with outboard side hulls configuration. Journal of Marine Science and Application 12(3):293–297Article Google Scholar 
  • Yanuar Y, Gunawan G, Talahatu MA, Indrawati RT, Jamaluddin A (2015a) Resistance reduction on trimaran ship model by biopolymer of eel slime. Journal of Naval Architecture and Marine Engineering 12(2):95–102. https://doi.org/10.3329/jname.v12i2.19549Article Google Scholar 
  • Yanuar Y, Gunawan G, Waskito KT, Jamaluddin A (2015b) Experimental study resistances of asymmetrical Pentamaran model with separation and staggered hull variation of inner side-hulls. International Journal of Fluid Mechanics Research 42(1):82–94. https://doi.org/10.1615/interjfluidmechres.v42.i1.60Article Google Scholar 
  • Zhang WP, Zong Z, Wang WH (2012) Special problems and solutions for numerical prediction on longitudinal motion of trimaran. Applied Mechanics and Materials 152-154: 1262–75. https://doi.org/10.4028/www.scientific.net/amm.152-154.1262
  • Zhang L, Zhang JN, Shang YC (2019) A potential flow theory and boundary layer theory based hybrid method for waterjet propulsion. Journal of Marine Science and Engineering 7(4):113–132. https://doi.org/10.3390/jmse7040113Article Google Scholar 
Thermo-fluid modeling of influence of attenuated laser beam intensity profile on melt pool behavior in laser-assisted powder-based direct energy deposition

레이저 보조 분말 기반 직접 에너지 증착에서 용융 풀 거동에 대한 감쇠 레이저 빔 강도 프로파일의 영향에 대한 열유체 모델링

Thermo-fluid modeling of influence of attenuated laser beam intensity profile on melt pool behavior in laser-assisted powder-based direct energy deposition

Mohammad Sattari, Amin Ebrahimi, Martin Luckabauer, Gert-willem R.B.E. Römer

Research output: Chapter in Book/Conference proceedings/Edited volume › Conference contribution › Professional

5Downloads (Pure)

Abstract

A numerical framework based on computational fluid dynamics (CFD), using the finite volume method (FVM) and volume of fluid (VOF) technique is presented to investigate the effect of the laser beam intensity profile on melt pool behavior in laser-assisted powder-based directed energy deposition (L-DED). L-DED is an additive manufacturing (AM) process that utilizes a laser beam to fuse metal powder particles. To assure high-fidelity modeling, it was found that it is crucial to accurately model the interaction between the powder stream and the laser beam in the gas region above the substrate. The proposed model considers various phenomena including laser energy attenuation and absorption, multiple reflections of the laser rays, powder particle stream, particle-fluid interaction, temperature-dependent properties, buoyancy effects, thermal expansion, solidification shrinkage and drag, and Marangoni flow. The latter is induced by temperature and element-dependent surface tension. The model is validated using experimental results and highlights the importance of considering laser energy attenuation. Furthermore, the study investigates how the laser beam intensity profile affects melt pool size and shape, influencing the solidification microstructure and mechanical properties of the deposited material. The proposed model has the potential to optimize the L-DED process for a variety of materials and provides insights into the capability of numerical modeling for additive manufacturing optimization.

Original languageEnglish
Title of host publicationFlow-3D World Users Conference
Publication statusPublished – 2023
EventFlow-3D World User Conference – Strasbourg, France
Duration: 5 Jun 2023 → 7 Jun 2023

Conference

ConferenceFlow-3D World User Conference
Country/TerritoryFrance
CityStrasbourg
Period5/06/23 → 7/06/23
Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Optimized Vegetation Density to Dissipate Energy of Flood Flow in Open Canals

열린 운하에서 홍수 흐름의 에너지를 분산시키기 위해 최적화된 식생 밀도

Mahdi Feizbahr,1Navid Tonekaboni,2Guang-Jun Jiang,3,4and Hong-Xia Chen3,4
Academic Editor: Mohammad Yazdi

Abstract

강을 따라 식생은 조도를 증가시키고 평균 유속을 감소시키며, 유동 에너지를 감소시키고 강 횡단면의 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받기 때문에 홍수시 유동저항에 큰 영향을 미친다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건과 식물에 따라 달라지므로 모델은 유속, 유속 깊이 및 수로를 따라 식생 유형의 영향을 고려하여 유속을 시뮬레이션해야 합니다. 총 48개의 모델을 시뮬레이션하여 근관의 거칠기 효과를 조사했습니다. 결과는 속도를 높임으로써 베드 속도를 감소시키는 식생의 영향이 무시할만하다는 것을 나타냅니다.

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).

Table 1 

The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 

The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 

Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 

Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.


(d)


(a)


(b)


(c)


(d)


(a)


(b)


(c)


(d)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)
  • (d)
    (d)

Figure 4 

Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 

Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 

Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 

Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 

Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.


(d)


(a)


(b)


(c)


(d)


(a)


(b)


(c)


(d)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)
  • (d)
    (d)

Figure 9 

Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 

Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 

Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 

Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 

Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.


(d)


(a)


(b)


(c)


(d)


(a)


(b)


(c)


(d)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)
  • (d)
    (d)

Figure 14 

Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 

Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 

Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 

Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 

Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.


(c)


(a)


(b)


(c)


(a)


(b)


(c)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)

Figure 19 

Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.


(c)


(a)


(b)


(c)


(a)


(b)


(c)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)

Figure 20 

Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].


(c)


(a)


(b)


(c)


(a)


(b)


(c)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)

Figure 21 

Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Numerical simulation on molten pool behavior of narrow gap gas tungsten arc welding

좁은 간격 가스 텅스텐 아크 용접의 용융 풀 거동에 대한 수치 시뮬레이션

Numerical simulation on molten pool behavior of narrow gap gas tungsten arc welding

The International Journal of Advanced Manufacturing Technology (2023)Cite this article

Abstract

As a highly efficient thick plate welding resolution, narrow gap gas tungsten arc welding (NG-GTAW) is in the face of a series of problems like inter-layer defects like pores, lack of fusion, inclusion of impurity, and the sensitivity to poor sidewall fusion, which is hard to be repaired after the welding process. This study employs numerical simulation to investigate the molten pool behavior in NG-GTAW root welding. A 3D numerical model was established, where a body-fitted coordinate system was applied to simulate the electromagnetic force, and a bridge transition model was developed to investigate the wire–feed root welding. The simulated results were validated experimentally. Results show that the molten pool behavior is dominated by electromagnetic force when the welding current is relatively high, and the dynamic change of the vortex actually determines the molten pool morphology. For self-fusion welding, there are two symmetric inward vortices in the cross-section and one clockwise vortex in the longitudinal section. With the increasing welding current, the vortices in the cross-section gradually move to the arc center with a decreasing range, while the vortex in the longitudinal section moves backward. With the increasing traveling speed, the vortices in the cross-section move toward the surface of the molten pool with a decreasing range, and the horizontal component of liquid metal velocity changes in the longitudinal section. For wire–feed welding, the filling metal strengthens the downward velocity component; as a result, the vortex formation is blocked in the cross-section and is strengthened in the longitudinal section.

This is a preview of subscription content, access via your institution.

Data availability

The raw/processed data required cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Wang X, Nan Y, Xie Z, Tsai Y, Yang J, Shang C (2017) Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel. Mater Sci Eng : A 702:196–205. https://doi.org/10.1016/j.msea.2017.06.081Article Google Scholar 
  2. Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Deep penetration fiber laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 256:216–228. https://doi.org/10.1016/j.jmatprotec.2018.02.026Article Google Scholar 
  3. Josefson BL, Karlsson CT (1989) FE-calculated stresses in a multi-pass butt-welded pipe-a simplified approach. Int J Pressure Vessels Pip 38:227–243. https://doi.org/10.1016/0308-0161(89)90017-3Article Google Scholar 
  4. Mitra A, Rajan Babu V, Puthiyavinayagam P, Varier NV, Ghosh M, Desai H, Chellapandi P, Chetal SC (2012) Design and development of thick plate concept for rotatable plugs and technology development for future Indian FBR. Nucl Eng Des 246:245–255. https://doi.org/10.1016/j.nucengdes.2012.01.008Article Google Scholar 
  5. Alemdar ASA, Jalal SR, Mulapeer MMS (2022) Influence of friction stir welding process on the mechanical characteristics of the hybrid joints aa2198-t8 to aa2024-t3. Adv Mater Sci Eng 2022:1–11. https://doi.org/10.1155/2022/7055446Article Google Scholar 
  6. Anant R, Ghosh PK (2017) Advancement in narrow gap GMA weld joint of thick section of austenitic stainless steel to HSLA steel. Mater Today: Proc 4:10169–10173. https://doi.org/10.1016/j.matpr.2017.06.342Article Google Scholar 
  7. Wang J, Zhu J, Fu P, Su R, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52:110–114. https://doi.org/10.2355/isijinternational.52.110Article Google Scholar 
  8. Jiang L, Shi L, Lu Y, Xiang Y, Zhang C, Gao M (2022) Effects of sidewall grain growth on pore formation in narrow gap oscillating laser welding. Optics Laser Technol 156:108483. https://doi.org/10.1016/j.optlastec.2022.108483Article Google Scholar 
  9. Ohnishi T, Kawahito Y, Mizutani M, Katayama S (2013) Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content. Sci Technol Welding Join 18:314–322. https://doi.org/10.1179/1362171813Y.0000000108Article Google Scholar 
  10. Cai C, Li L, Tai L (2017) Narrow-gap laser-MIG hybrid welding of thick-section steel with different shielding gas nozzles. Int J Adv Manuf Technol 92:909–916. https://doi.org/10.1007/s00170-017-0179-3Article Google Scholar 
  11. Yang T, Liu J, Zhuang Y, Sun K, Chen W (2020) Studies on the formation mechanism of incomplete fusion defects in ultra-narrow gap laser wire filling welding. Optics Laser Technol 129:106275. https://doi.org/10.1016/j.optlastec.2020.106275Article Google Scholar 
  12. Miao R, Shan Z, Zhou Q, Wu Y, Ge L, Zhang J, Hu H (2022) Real-time defect identification of narrow overlap welds and application based on convolutional neural networks. J Manuf Syst 62:800–810. https://doi.org/10.1016/j.jmsy.2021.01.012Article Google Scholar 
  13. Näsström J, Brueckner F, Kaplan AFH (2020) Imperfections in narrow gap multi-layer welding – potential causes and countermeasures. Optics Lasers Eng 129:106011. https://doi.org/10.1016/j.optlaseng.2020.106011Article Google Scholar 
  14. Li W, Yu R, Huang D, Wu J, Wang Y, Hu T, Wang J (2019) Numerical simulation of multi-layer rotating arc narrow gap MAG welding for medium steel plate. J Manuf Proc 45:460–471. https://doi.org/10.1016/j.jmapro.2019.07.035Article Google Scholar 
  15. Han S, Liu G, Tang X, Xu L, Cui H, Shao C (2022) Effect of molten pool behaviors on welding defects in tandem NG-GMAW based on CFD simulation. Int J Heat Mass Transf 195:123165. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123165Article Google Scholar 
  16. Mikihito H, Yoshito I (2016) A simplified Fe simulation method with shell element for welding deformation and residual stress generated by multi-pass butt welding. Int J Steel Struct 16:51–58. https://doi.org/10.1007/s13296-016-3005-0Article Google Scholar 
  17. Cai W, Saez M, Spicer P, Chakraborty D, Skurkis R, Carlson B, Okigami F, Robertson J (2023) Distortion simulation of gas metal arc welding (gmaw) processes for automotive body assembly. Weld World 67:109–139. https://doi.org/10.1007/s40194-022-01369-3Article Google Scholar 
  18. Pazilova UA, Il In AV, Kruglova AA, Motovilina GD, Khlusova EI (2015) Influence of the temperature and strain rate on the structure and fracture mode of high-strength steels upon the simulation of the thermal cycle of welding and post-welding tempering. Phys Metals Metallogr 116:606–614. https://doi.org/10.1134/S0031918X1506006XArticle Google Scholar 
  19. Zhang Z, Wu Q, Grujicic M et al (2016) Monte Carlo simulation of grain growth and welding zones in friction stir welding of aa6082-t6. J Mater Sci 51:1882–1895. https://doi.org/10.1007/s10853-015-9495-xArticle Google Scholar 
  20. Ikram A, Chung H (2021) Numerical simulation of arc, metal transfer and its impingement on weld pool in variable polarity gas metal arc welding. J Manuf Process 64:1529–1543. https://doi.org/10.1016/j.jmapro.2021.03.001Article Google Scholar 
  21. Zhao B, Chen J, Wu C, Shi L (2020) Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding. J Manuf Process 59:167–185. https://doi.org/10.1016/j.jmapro.2020.09.054Article Google Scholar 
  22. Zeng Z, Wang Z, Hu S, Wu S (2022) Dynamic molten pool behavior of pulsed gas tungsten arc welding with filler wire in horizontal position and its characterization based on arc voltage. J Manuf Proc 75:1–12. https://doi.org/10.1016/j.jmapro.2021.12.051Article Google Scholar 
  23. Zhu C, Cheon J, Tang X, Na S, Cui H (2018) Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy. Int J Heat Mass Transf 126:1206–1221. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.132Article Google Scholar 
  24. Gu H, Väistö T, Li L (2020) Numerical and experimental study on the molten pool dynamics and fusion zone formation in multi-pass narrow gap laser welding. Optics Laser Technol 126:106081. https://doi.org/10.1016/j.optlastec.2020.106081Article Google Scholar 
  25. Ma C, Chen B, Meng Z, Tan C, Song X, Li Y (2023) Characteristic of keyhole, molten pool and microstructure of oscillating laser TIG hybrid welding. Optics Laser Technol. https://doi.org/10.1016/j.optlastec.2023.109142.161:109142
  26. Ai Y, Liu X, Huang Y, Yu L (2020) Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding. Int J Heat Mass Trans 160:120103. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120103Article Google Scholar 
  27. Meng X, Artinov A, Bachmann M, Üstündağ Ö, Gumenyuk A, Rethmeier M (2022) The detrimental molten pool narrowing phenomenon in wire feed laser beam welding and its suppression by magnetohydrodynamic technique. Int J Heat Mass Transf 193:122913. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122913Article Google Scholar 
  28. Li X, Wei X, Zhang L, Lv Q (2023) Numerical simulation for the effect of scanning speed and in situ laser shock peening on molten pool and solidification characteristics. Int J Adv Manuf Technol 125:5031–5046. https://doi.org/10.1007/s00170-023-10897-1Article Google Scholar 
  29. Ye W, Bao J, Lei J Huang Y, Li Z, Li P, Zhang Y (2022) Multiphysics modeling of thermal behavior of commercial pure titanium powder during selective laser melting. Met Mater Int 28:282-296. https://doi.org/10.1007/s12540-021-01019-1.
  30. Cheng H, Kang L, Wang C, Li Q, Chang B, Chang B (2022) Dynamic behavior of molten pool backside during full-penetration laser welding of Ni-based superalloys. Int J Adv Manuf Technol 119:4587–4598. https://doi.org/10.1007/s00170-021-08187-9Article Google Scholar 
  31. Jeong H, Park K, Cho J (2016) Numerical analysis of variable polarity arc weld pool. J Mech Sci Technol 30:4307–4313. https://doi.org/10.1007/s12206-016-0845-7Article Google Scholar
Strain rate magnitude at the free surface, illustrating Kelvin-Helmoltz (KH) shear instabilities.

On the reef scale hydrodynamics at Sodwana Bay, South Africa

Environmental Fluid Mechanics (2022)Cite this article

Abstract

The hydrodynamics of coral reefs strongly influences their biological functioning, impacting processes such as nutrient availability and uptake, recruitment success and bleaching. For example, coral reefs located in oligotrophic regions depend on upwelling for nutrient supply. Coral reefs at Sodwana Bay, located on the east coast of South Africa, are an example of high latitude marginal reefs. These reefs are subjected to complex hydrodynamic forcings due to the interaction between the strong Agulhas current and the highly variable topography of the region. In this study, we explore the reef scale hydrodynamics resulting from the bathymetry for two steady current scenarios at Two-Mile Reef (TMR) using a combination of field data and numerical simulations. The influence of tides or waves was not considered for this study as well as reef-scale roughness. Tilt current meters with onboard temperature sensors were deployed at selected locations within TMR. We used field observations to identify the dominant flow conditions on the reef for numerical simulations that focused on the hydrodynamics driven by mean currents. During the field campaign, southerly currents were the predominant flow feature with occasional flow reversals to the north. Northerly currents were associated with greater variability towards the southern end of TMR. Numerical simulations showed that Jesser Point was central to the development of flow features for both the northerly and southerly current scenarios. High current variability in the south of TMR during reverse currents is related to the formation of Kelvin-Helmholtz type shear instabilities along the outer edge of an eddy formed north of Jesser Point. Furthermore, downward vertical velocities were computed along the offshore shelf at TMR during southerly currents. Current reversals caused a change in vertical velocities to an upward direction due to the orientation of the bathymetry relative to flow directions.

Highlights

  • A predominant southerly current was measured at Two-Mile Reef with occasional reversals towards the north.
  • Field observations indicated that northerly currents are spatially varied along Two-Mile Reef.
  • Simulation of reverse currents show the formation of a separated flow due to interaction with Jesser Point with Kelvin–Helmholtz type shear instabilities along the seaward edge.

지금까지 Sodwana Bay에서 자세한 암초 규모 유체 역학을 모델링하려는 시도는 없었습니다. 이러한 모델의 결과는 규모가 있는 산호초 사이의 흐름이 산호초 건강에 어떤 영향을 미치는지 탐색하는 데 사용할 수 있습니다. 이 연구에서는 Sodwana Bay의 유체역학을 탐색하는 데 사용할 수 있는 LES 모델을 개발하기 위한 단계별 접근 방식을 구현합니다. 여기서 우리는 이 초기 단계에서 파도와 조수의 영향을 배제하면서 Agulhas 해류의 유체역학에 초점을 맞춥니다. 이 접근법은 흐름의 첫 번째 LES를 제시하고 Sodwana Bay의 산호초에서 혼합함으로써 향후 연구의 기초를 제공합니다.

This is a preview of subscription content, access via your institution.

References

  1. Anarde K, Myres H, Figlus J (2016) Tilt current meter field validation in the surf zone. In: AGU fall meeting abstracts, vol 2016, pp EP23A—-0950
  2. Blocken B (2018) LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build Simul 11(5):821–870. https://doi.org/10.1007/s12273-018-0459-3Article Google Scholar 
  3. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res Ocean 104(C4):7649–7666. https://doi.org/10.1029/98JC02622Article Google Scholar 
  4. Bouffanais R (2010) Advances and challenges of applied large-eddy simulation. Comput Fluids 39:735–738. https://doi.org/10.1016/j.compfluid.2009.12.003Article Google Scholar 
  5. Celliers L, Schleyer MH (2002) Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa. Mar Pollut Bull 44:1380–1387Article Google Scholar 
  6. Celliers L, Schleyer MH (2008) Coral community structure and risk assessment of high-latitude reefs at Sodwana Bay, South Africa. Biodivers Conserv 17(13):3097–3117. https://doi.org/10.1007/s10531-007-9271-6Article Google Scholar 
  7. Chen SC (2018) Performance assessment of FLOW-3D and XFlow in the numerical modelling of fish-bone type fishway hydraulics https://doi.org/10.15142/T3HH1J
  8. Corbella S, Pringle J, Stretch DD (2015) Assimilation of ocean wave spectra and atmospheric circulation patterns to improve wave modelling. Coast Eng 100:1–10. https://doi.org/10.1016/j.coastaleng.2015.03.003Article Google Scholar 
  9. Davis KA, Pawlak G, Monismith SG (2021) Turbulence and coral reefs. Ann Rev Mar Sci. https://doi.org/10.1146/annurev-marine-042120-071823Article Google Scholar 
  10. Flow Science Inc (2018) FLOW-3D, Version 12.0 Users Manual. Santa Fe, NM, https://www.flow3d.com/
  11. Flow Science Inc (2019) FLOW-3D, Version 12.0 [Computer Software]. Santa Fe, NM, https://www.flow3d.com/
  12. Franco A, Moernaut J, Schneider-Muntau B, Strasser M, Gems B (2020) The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D. Nat Hazards Earth Syst Sci 20(8):2255–2279Article Google Scholar 
  13. Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model 14(3):139–173Article Google Scholar 
  14. Fringer OB, Dawson CN, He R, Ralston DK, Zhang YJ (2019) The future of coastal and estuarine modeling: findings from a workshop. Ocean Model 143(September):101458. https://doi.org/10.1016/j.ocemod.2019.101458Article Google Scholar 
  15. Glassom D, Celliers L, Schleyer MH (2006) Coral recruitment patterns at Sodwana Bay, South Africa. Coral Reefs 25(3):485–492. https://doi.org/10.1007/s00338-006-0117-6Article Google Scholar 
  16. Gomes A, Pinho JLS, Valente T, do Carmo JS, Hegde VA (2020) Performance assessment of a semi-circular breakwater through CFD modelling. J Mar Sci Eng. https://doi.org/10.3390/jmse8030226Article Google Scholar 
  17. Green RH, Lowe RJ, Buckley ML (2018) Hydrodynamics of a tidally forced coral reef atoll. J Geophys Res Oceans 123(10):7084–7101. https://doi.org/10.1029/2018JC013946Article Google Scholar 
  18. Hansen AB, Carstensen S, Christensen DF, Aagaard T (2017) Performance of a tilt current meter in the surf zone. Coastal dynamics
  19. Hench JL, Rosman JH (2013) Observations of spatial flow patterns at the coral colony scale on a shallow reef flat. J Geophys Res Ocean 118(3):1142–1156. https://doi.org/10.1002/jgrc.20105Article Google Scholar 
  20. Hirt CW (1993) Volume-fraction techniques: powerful tools for wind engineering. J Wind Eng Ind Aerodyn 46–47:327–338. https://doi.org/10.1016/0167-6105(93)90298-3Article Google Scholar 
  21. Hirt CW, Sicilian JM (1985) A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proceedings of 4th International Conference on Ship Hydrodynamics https://ci.nii.ac.jp/naid/10009570543/en/
  22. Hocker LO, Hruska MA (2004) Interleaving synchronous data and asynchronous data in a single data storage file
  23. Hossain MM, Staples AE (2020) Effects of coral colony morphology on turbulent flow dynamics. PLoS ONE 15(10):e0225676. https://doi.org/10.1371/journal.pone.0225676Article Google Scholar 
  24. Jacob B, Stanev EV (2021) Understanding the impact of bathymetric changes in the german bight on coastal hydrodynamics: one step toward realistic morphodynamic modeling. Front Mar Sci. https://doi.org/10.3389/fmars.2021.640214Article Google Scholar 
  25. Koehl MAR, Hadfield MG (2010) Hydrodynamics of larval settlement from a larva’s point of view. Integr Comp Biol 50(4):539–551. https://doi.org/10.1093/icb/icq101Article Google Scholar 
  26. Lim A, Wheeler AJ, Price DM, O’Reilly L, Harris K, Conti L (2020) Influence of benthic currents on cold-water coral habitats: a combined benthic monitoring and 3D photogrammetric investigation. Sci Rep 10(1):19433. https://doi.org/10.1038/s41598-020-76446-yArticle Google Scholar 
  27. Limer BD, Bloomberg J, Holstein DM (2020) The influence of eddies on coral larval retention in the flower garden banks. Front Mar Sci 7:372. https://doi.org/10.3389/fmars.2020.00372Article Google Scholar 
  28. Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39(1):37–55. https://doi.org/10.1146/annurev.fluid.38.050304.092125Article Google Scholar 
  29. Morris T (2009) Physical oceanography of Sodwana Bay and its effect on larval transport and coral bleaching. PhD thesis, Cape Peninsula University of Technology
  30. Morris T, Lamont T, Roberts MJ (2013) Effects of deep-sea eddies on the northern KwaZulu-Natal shelf, South Africa. Afr J Mar Sci 35(3):343–350. https://doi.org/10.2989/1814232X.2013.827991Article Google Scholar 
  31. Perry C, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432. https://doi.org/10.1007/s00338-003-0330-5Article Google Scholar 
  32. Pope SB (2001) Turbulent flows. Cambridge University Press, CambridgeGoogle Scholar 
  33. Porter SN (2009) Biogeography and potential factors regulating shallow subtidal reef communities in the Western Indian Ocean. PhD thesis, University of Cape Town
  34. Porter SN, Schleyer MH (2017) Long-term dynamics of a high-latitude coral reef community at Sodwana Bay, South Africa. Coral Reefs 36(2):369–382. https://doi.org/10.1007/s00338-016-1531-zArticle Google Scholar 
  35. Porter SN, Schleyer MH (2019) Environmental variation and how its spatial structure influences the cross-shelf distribution of high-latitude coral communities in South Africa. Diversity. https://doi.org/10.3390/d11040057Article Google Scholar 
  36. Ramsay PJ (1994) Marine geology of the Sodwana Bay shelf, southeast Africa. Mar Geol 120(3–4):225–247. https://doi.org/10.1016/0025-3227(94)90060-4Article Google Scholar 
  37. Ramsay PJ, Mason TR (1990) Development of a type zoning model for Zululand coral reefs, Sodwana Bay, South Africa. J Coastal Res 6(4):829–852Google Scholar 
  38. Reguero BG, Beck MW, Agostini VN, Kramer P, Hancock B (2018) Coral reefs for coastal protection: a new methodological approach and engineering case study in Grenada. J Environ Manag 210:146–161. https://doi.org/10.1016/j.jenvman.2018.01.024Article Google Scholar 
  39. Reidenbach M, Stocking J, Szczyrba L, Wendelken C (2021) Hydrodynamic interactions with coral topography and its impact on larval settlement. Coral Reefs 40:1–15. https://doi.org/10.1007/s00338-021-02069-yArticle Google Scholar 
  40. Reidenbach MA, Koseff JR, Koehl MAR (2009) Hydrodynamic forces on larvae affect their settlement on coral reefs in turbulent, wave-driven flow. Limnol Oceanogr 54(1):318–330. https://doi.org/10.4319/lo.2009.54.1.0318Article Google Scholar 
  41. Roberts H, Richardson J, Lagumbay R, Meselhe E, Ma Y (2013) Hydrodynamic and sediment transport modeling using FLOW-3D for siting and optimization of the LCA medium diversion at white ditch hydrodynamic and sediment transport modeling using FLOW-3D for siting and optimization of the LCA medium diversion at white D (December)
  42. Roberts MJ, Ribbink AJ, Morris T, Berg MAVD, Engelbrecht DC, Harding RT (2006) Oceanographic environment of the Sodwana Bay coelacanths (Latimeria chalumnae), South Africa: coelacanth research. South Afr J Sci 102(9):435–443Google Scholar 
  43. Rogers JS, Monismith SG, Feddersen F, Storlazzi CD (2013) Hydrodynamics of spur and groove formations on a coral reef. J Geophys Res Ocean 118(6):3059–3073. https://doi.org/10.1002/jgrc.20225Article Google Scholar 
  44. Rogers JS, Monismith SG, Koweek DA, Torres WI, Dunbar RB (2016) Thermodynamics and hydrodynamics in an atoll reef system and their influence on coral cover. Limnol Oceanogr 61(6):2191–2206. https://doi.org/10.1002/lno.10365Article Google Scholar 
  45. Schleyer MH, Celliers L (2003) Coral dominance at the reef-sediment interface in marginal coral communities at Sodwana Bay, South Africa. Mar Freshw Res 54(8):967–972. https://doi.org/10.1071/MF02049Article Google Scholar 
  46. Schleyer MH, Porter SN (2018) Chapter One – drivers of soft and stony coral community distribution on the high-latitude coral reefs of South Africa. advances in marine biology, vol 80, Academic Press, pp 1–55, https://doi.org/10.1016/bs.amb.2018.09.001
  47. Scott F, Antolinez JAA, McCall R, Storlazzi C, Reniers A, Pearson S (2020) Hydro-morphological characterization of coral reefs for wave runup prediction. Front Mar Sci 7:361. https://doi.org/10.3389/fmars.2020.00361Article Google Scholar 
  48. Sebens KP, Grace SP, Helmuth B, Maney EJ Jr, Miles JS (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar Biol 131(2):347–360Article Google Scholar 
  49. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164Article Google Scholar 
  50. Stocking J, Laforsch C, Sigl R, Reidenbach M (2018) The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals. J R Soc Interface 15:20180448. https://doi.org/10.1098/rsif.2018.0448Article Google Scholar 
  51. Van Leer B (1977) Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J Comput Phys 23(3):263–275. https://doi.org/10.1016/0021-9991(77)90094-8Article Google Scholar 
  52. Wells C, Pringle J, Stretch D (2021) Cold water temperature anomalies on the Sodwana reefs and their driving mechanisms. South Afr J Sci. https://doi.org/10.17159/sajs.2021/9304Article Google Scholar 
  53. Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130Article Google Scholar 
  54. Yao Y, He T, Deng Z, Chen L, Guo H (2019) Large eddy simulation modeling of tsunami-like solitary wave processes over fringing reefs. Nat Hazards Earth Syst Sci 19(6):1281–1295. https://doi.org/10.5194/nhess-19-1281-2019Article Google Scholar 
  55. Zhao Q, Tanimoto K (1998) Numerical simulation of breaking waves by large eddy simulation and vof method. Coastal Engineering Proceedings 1(26), 10.9753/icce.v26.%p, https://journals.tdl.org/icce/index.php/icce/article/view/5656

Text and image taken from Deoraj, et al. (2022), On the reef scale hydrodynamics at Sodwana Bay, South Africa. Preprint courtesy the authors.

Figure 2: 3D (left) and 2D (right) views of wave elevation using case C

CFD 접근법을 사용하여 파도에서 하이드로포일의 SEAKEEPING 성능

SYAFIQ ZIKRYAND FITRIADHY*
Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala
Terengganu, Terengganu, Malaysia
*
Corresponding author: naoe.afit@gmail.com http://doi.org/10.46754/umtjur.2021.07.017

Abstract

수중익선은 일반적으로 열악한 환경 조건으로 인해 승객의 편안함에 영향을 미칠 수 있는 높은 저항과 과도한 수직 운동(히브 및 피치)을 경험합니다. 따라서 복잡한 유체역학적 현상이 존재하기 때문에 파랑에서 수중익선의 내항성능을 규명할 필요가 있다.

이를 위해 수중익선 운동에 대한 CFD(Computational Fluid Dynamic) 해석을 제안한다. Froude Number 및 포일 받음각과 같은 여러 매개변수가 고려되었습니다.

그 결과 Froude Number의 후속 증가는 히브 및 피치 운동에 반비례한다는 것이 밝혀졌습니다. 본질적으로 이것은 높은 응답 진폭 연산자(RAO)의 형태로 제공되는 수중익선 항해 성능의 업그레이드로 이어졌습니다.

또한 포일 선수의 증가하는 각도는 히브 운동에 비례하는 반면, 포일 선미는 7.5o에서 낮은 히브 운동을 보였고, 그 다음으로 5o, 10o 순으로 나타났다. 피치모션의 경우 포일 보우의 증가는 5o에서 더 낮았고, 그 다음이 10o, 7.5o 순이었다. 포일 선미의 증가는 수중익선에 의한 피치 모션 경험에 비례했습니다.

일반적으로 이 CFD 시뮬레이션은 앞서 언급한 설계 매개변수와 관련하여 공해 상태에서 수중익선 설계의 운영 효율성을 보장하는 데 매우 유용합니다.

Keywords

CFD, hydrofoil, foil angle of attack, heave, pitch.

Figure 1: Overall mesh block being used in simulation
Figure 1: Overall mesh block being used in simulation
Figure 2: 3D (left) and 2D (right) views of wave elevation using case C
Figure 2: 3D (left) and 2D (right) views of wave elevation using case C

References

Djavareshkian, M. H., & Esmaeili, A. (2014). Heuristic optimization of submerged hydrofoil
using ANFIS–PSO. Ocean Engineering, 92, 55-63.
Fitriadhy, A., & Adam, N. A. (2017). Heave and pitch motions performance of a monotricat ship in
head-seas. International Journal of Automotive and Mechanical Engineering, 14, 4243-4258.
Islam, M., Jahra, F., & Hiscock, S. (2016). Data analysis methodologies for hydrodynamic
experiments in waves. Journal of Naval Architecture and Marine Engineering, 13(1),
1-15.
Koutsourakis, N., Bartzis, J. G., & Markatos, N. C. (2012). Evaluation of Reynolds stress, k-ε and
RNG k-ε turbulence models in street canyon flows using various experimental datasets.
Environmental fluid mechanics, 1-25.
Manual, F. D. U. (2011). Flow3D User Manual, v9. 4.2, Flow Science. Inc., Santa Fe, NM. Matveev, K., & Duncan, R. (2005). Development
of the tool for predicting hydrofoil system performance and simulating motion of hydrofoil-assisted boats. Paper presented at the High Speed and High Performance Ship and Craft Symposium, Everett/WA: ASNE, USA.
Seif, M., Mehdigholi, H., & Najafi, A. (2014). Experimental and numerical modeling of the
high speed planing vessel motion. Journal of Marine Engineering & Technology, 13(2), 62-
72.
Sun, X., Yao, C., Xiong, Y., & Ye, Q. (2017). Numerical and experimental study on
seakeeping performance of a swath vehicle in head waves. Applied Ocean Research, 68, 262-
275.
Vakilabadi, K. A., Khedmati, M. R., & Seif, M.S. (2014). Experimental study on heave and
pitch motion characteristics of a wave-piercing trimaran. Transactions of FAMENA, 38(3), 13-
26.
Yakhot, A., Rakib, S., & Flannery, W. (1994). LowReynolds number approximation for turbulent
eddy viscosity. Journal of scientific computing, 9(3), 283-292.
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory.
Journal of scientific computing, 1(1), 3-51.

Fig. 2. Design of the grate inlet types studied: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7 (source: based on geometries of Chaparro Andrade and Abaunza Tabares, 2021)

Three-dimensional Numerical Evaluation of Hydraulic Efficiency and Discharge Coefficient in Grate Inlets

쇠창살 격자 유입구의 수리효율 및 배출계수에 대한 3차원 수치적 평가

Melquisedec Cortés Zambrano*, Helmer Edgardo Monroy González,
Wilson Enrique Amaya Tequia
Faculty of Civil Engineering, Santo Tomas Tunja University. Address Av. Universitaria No. 45-202.
Tunja – Boyacá – Colombia

Abstract

홍수는 지반이동 및 이동의 원인 중 하나이며, 급속한 도시화 및 도시화로 인해 이전보다 빈번하게 발생할 수 있다. 도시 배수 시스템의 특성은 집수 요소가 결정적인 역할을 하는 범람의 발생 및 범위를 정의할 수 있습니다. 이 문서는 7가지 유형의 화격자 유입구의 수력 유입 효율 및 배출 계수에 대한 수치 조사를 제시합니다. FLOW-3D® 시뮬레이터는 Q = 24, 34.1, 44, 100, 200 및 300 L/s의 유속에서 풀 스케일로 격자를 테스트하는 데 사용되며 종방향 기울기가 1.0인 실험 프로토타입의 구성을 유지합니다. %, 1.5% 및 2.0% 및 고정 횡단 경사, 총 126개 모델. 그 결과를 바탕으로 종류별 및 종단경사 조건에 따른 수력유입구 효율곡선과 토출계수를 구성하였다. 결과는 다른 조사에서 제안된 경험적 공식으로 조정되어 프로토타입의 물리적 테스트 결과를 검증하는 역할을 합니다.

Floods are one of the causes of ground movement and displacement, and due to rapid urbanization and urban growth may occur more frequently than before. The characteristics of an urban drainage system can define the occurrence and extent of flooding, where catchment elements have a determining role. This document presents the numerical investigation of the hydraulic inlet efficiency and the discharge coefficient of seven types of grate inlets. The FLOW-3D® simulator is used to test the gratings at a full scale, under flow rates of Q = 24, 34.1, 44, 100, 200 and 300 L/s, preserving the configuration of the experimental prototype with longitudinal slopes of 1.0%, 1.5% and 2.0% and a fixed cross slope, for a total of 126 models. Based on the results, hydraulic inlet efficiency curves and discharge coefficients are constructed for each type and a longitudinal slope condition. The results are adjusted with empirical formulations proposed in other investigations, serving to verify the results of physical testing of prototypes.

Keywords

grate inlet, inlet efficiency, discharge coefficient, computational fluid dynamic, 3D modelling.

Fig. 1. Physical model of the experimental campaign (source: Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 1. Physical model of the experimental campaign (source: Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 2. Design of the grate inlet types studied: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7 (source: based on geometries of Chaparro Andrade
and Abaunza Tabares, 2021)
Fig. 2. Design of the grate inlet types studied: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7 (source: based on geometries of Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 4. Comparison between the results obtained during physical experimentation in prototype 7 and simulation results with FLOW-3D® (source:
made with FlowSight® and photographic record by Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 4. Comparison between the results obtained during physical experimentation in prototype 7 and simulation results with FLOW-3D® (source: made with FlowSight® and photographic record by Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 6. Example of the results of flow depth and velocity vectors in the xy plane, for a stable flow condition in a grate inlet type and free surface
configuration and flow regime, of some grating types (source: produced with FlowSight®)
Fig. 6. Example of the results of flow depth and velocity vectors in the xy plane, for a stable flow condition in a grate inlet type and free surface configuration and flow regime, of some grating types (source: produced with FlowSight®)

References

Alia Md., S., and Sabtu, N. (2020). Comparison of Different Methodologies for Determining the Efficiency of Gully Inlets. In F. M.
Nazri (Ed.), Proceedings of AICCE‘19: Transforming the Nation
for a Sustainable Tomorrow (Vol. 53, pp. 1275-1284). Springer
Nature Switzerland AG. https://doi.org/10.1007/978-3-030-
32816-0_99
Antunes do Carmo, J. S. (2020). Physical Modelling vs. Numerical Modelling: Complementarity and Learning. July. https://doi.
org/10.20944/preprints202007.0753.v1
Aragón-Hernández, J. L. (2013). Modelación numérica integrada de los procesos hidráulicos en el drenaje urbano [Universidad Politécnica de Cataluña]. In Doctoral Tesis. https://
upcommons.upc.edu/handle/2117/95059?locale-attribute=es
Argue, J. R., and Pezzaniti, D. (1996). How reliable are inlet
(hydraulic) models at representing stormwater flow? Science
of the Total Environment, 189-190, 355-359. https://doi.org/10.1016/0048-9697(96)05231-X
Banco Mundial, O. (2019). Agua: Panorama general. https://
www.bancomundial.org/es/topic/water/overview
Cárdenas-Quintero, M., Carvajal-Serna, L. F., and Marbello-Pérez, R. (2018). Evaluación numérica tridimensional de un
sumidero de reja de fondo (Three-Dimensional Numerical Assessment of Grate Inlet). SSRN Electronic Journal, November.
https://doi.org/10.2139/ssrn.3112980
Carvalho, R. F., Lopes, P., Leandro, J., and David, L. M. (2019).
Numerical Research of Flows into Gullies with Different Outlet Locations. Water, 11(2), 794. https://doi.org/10.3390/
w11040794
Chaparro Andrade, F. G., and Abaunza Tabares, K. V. (2021). Importancia de los sumideros, su funcionamiento y diseño en redes de alcantarillado caso de estudio sector nororiental Tunja.
Universidad Santo Tomás.
Cortés Zambrano, M., Amaya Tequia, W. E., and Gamba Fernández, D. S. (2020). Implementation of the hydraulic modelling of
urban drainage in the northeast sector, Tunja, Boyacá. Revista
Facultad de Ingeniería Universidad de Antioquia. https://doi.
org/10.17533/udea.redin.20200578
Cosco, C., Gómez, M., Russo, B., Tellez-Alvarez, J., Macchione, F., Costabile, P., and Costanzo, C. (2020). Discharge coefficients for specific grated inlets. Influence of the Froude
number. Urban Water Journal, 17(7), 656-668. https://doi.org/10.1080/1573062X.2020.1811881
Despotovic, J., Plavsic, J., Stefanovic, N., and Pavlovic, D. (2005).
Inefficiency of storm water inlets as a source of urban floods.
Water Science and Technology, 51(2), 139-145. https://doi.
org/10.2166/wst.2005.0041
Ellis, J. B., and Marsalek, J. (1996). Overview of urban drainage:
Environmental impacts and concerns, means of mitigation and
implementation policies. Journal of Hydraulic Research, 34(6),
723-732. https://doi.org/10.1080/00221689609498446
Fang, X., Jiang, S., and Alam, S. R. (2010). Numerical simulations of efficiency of curb-opening inlets. Journal of Hydraulic
Engineering, 136(1), 62-66. https://doi.org/10.1061/(ASCE)
HY.1943-7900.0000131
Faram, M. G., and Harwood, R. (2000). CFD for the Water Industry; The Role of CFD as a Tool for the Development of Wastewater Treatment Systems. Hydro International, 21-22.
Faram, M. G., and Harwood, R. (2002). Assessment of the
effectiveness of stormwater treatment chambers using
computational fluid dynamics. Global Solutions for Urban Drainage, 40644(September 2002), 1-14. https://doi.
org/10.1061/40644(2002)7
Flow Science, I. (2018). FLOW-3D® Version 12.0 Users Manual.
In FLOW-3D [Computer software]. https://www.flow3d.com
Flow Science, I. (2019). FLOW-3D® Version 12.0 [Computer software] (No. 12). https://www.flow3d.com
Ghanbari, R., and Heidarnejad, M. (2020). Experimental and numerical analysis of flow hydraulics in triangular and rectangular
piano key weirs. Water Science, 00(00), 1-7. https://doi.org/10.
1080/11104929.2020.1724649

Gómez, M., and Russo, B. (2005a). Comparative study of methodologies to determine inlet efficiency from test data. HEC-12
methodology vs UPC method. Water Resources Management,
Algarve, Portugal., 80(October 2014), 623-632. https://doi.
org/10.2495/WRM050621
Gómez, M., and Russo, B. (2005b). Comparative study among
different methodologies to determine storm sewer inlet efficiency from test data. 10th International Conference on Urban
Drainage, August, 21-26. https://www.researchgate.net/publication/255602448_Comparative_study_among_different_methodologies_to_determine_storm_sewer_inlet_efficiency_
from_test_data
Gómez, M., Recasens, J., Russo, B., and Martínez-Gomariz, E.
(2016). Assessment of inlet efficiency through a 3D simulation: Numerical and experimental comparison. Water Science
and Technology, 74(8), 1926-1935. https://doi.org/10.2166/
wst.2016.326
Gómez, M., and Russo, B. (2011). Methodology to estimate hydraulic efficiency of drain inlets. Proceedings of the Institution of
Civil Engineers: Water Management, 164(2), 81-90. https://doi.
org/10.1680/wama.900070
Gómez Valentin, M. (2007). Hidrología urbana. In Hidrología Urbana (pp. 135-147). Instituto Flumen.
Jakeman, A. J., Letcher, R. A., and Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental
models. Environmental Modelling and Software, 21, 602-614.
https://doi.org/10.1016/j.envsoft.2006.01.004
Jang, J. H., Hsieh, C. T., and Chang, T. H. (2019). The importance of gully flow modelling to urban flood simulation. Urban Water Journal, 16(5), 377-388. https://doi.org/10.1080/1573062X.2019.1669198
Kaushal, D. R., Thinglas, T., Tomita, Y., Kuchii, S., and Tsukamoto, H. (2012). Experimental investigation on optimization of
invert trap configuration for sewer solid management. Powder Technology, 215-216, 1-14. https://doi.org/10.1016/j.powtec.2011.08.029
Khazaee, I., and Mohammadiun, M. (2010). Effects of flow field
on open channel flow properties using numerical investigation
and experimental comparison. International Journal of Energy
and Environment, 1(6), 1083-1096. https://doi.org/10.1016/
S0031-9384(10)00122-8
Kleidorfer, M., Tscheikner-Gratl, F., Vonach, T., and Rauch, W.
(2018). What can we learn from a 500-year event? Experiences
from urban drainage in Austria. Water Science and Technology,
77(8), 2146-2154. https://doi.org/10.2166/wst.2018.138
Leitão, J. P., Simões, N. E., Pina, R. D., Ochoa-Rodriguez, S.,
Onof, C., and Sá Marques, A. (2017). Stochastic evaluation of
the impact of sewer inlets‘ hydraulic capacity on urban pluvial
flooding. Stochastic Environmental Research and Risk Assessment, 31(8), 1907-1922. https://doi.org/10.1007/s00477-016-
1283-x
Lopes, P., Leandro, J., Carvalho, R. F., Russo, B., and Gómez, M.
(2016). Assessment of the ability of a volume of fluid model to
reproduce the efficiency of a continuous transverse gully with
grate. Journal of Irrigation and Drainage Engineering, 142(10),
1-9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001058
Mohsin, M., and Kaushal, D. R. (2016). 3D CFD validation of invert trap efficiency for sewer solid management using VOF model. Water Science and Engineering, 9(2), 106-114. https://doi.
org/10.1016/j.wse.2016.06.006
Palla, A., Colli, M., Candela, A., Aronica, G. T., and Lanza, L.
G. (2018). Pluvial flooding in urban areas: the role of surface
drainage efficiency. Journal of Flood Risk Management, 11,
S663-S676. https://doi.org/10.1111/jfr3.12246
Russo, B. (2010). Design of surface drainage systems according
to hazard criteria related to flooding of urban areas [Universitat
Politècnica de Catalunya]. https://dialnet.unirioja.es/servlet/
tesis?codigo=258828
Sedano-Cruz, K., Carvajal-Escoar, Y., and Ávila Díaz, A. J. (2013).
ANÁLISIS DE ASPECTOS QUE INCREMENTAN EL RIESGO
DE INUNDACIONES EN COLOMBIA. Luna Azul, 37, 219-218.
https://www.redalyc.org/articulo.oa?id=321729206014
Spaliviero, F., May, R. W. P., Escarameia, M. (2000). Spacing of road gullies. Hydraulic performance of BS EN 124 gully gratings. HR Walingford, 44(0). https://doi.org/10.13140/
RG.2.1.1344.0889
Téllez-Álvarez, J., Gómez, M., and Russo, B. (2020). Quantification of energy loss in two grated inlets under pressure. Water
(Switzerland), 12(6). https://doi.org/10.3390/w12061601
Téllez Álvarez, J., Gómez, V., Russo, B., and Redondo, J. M.
(2003). Performance assessment of numerical modelling
for hydraulic efficiency of a grated inlet. 1, 6-8. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004
Téllez Álvarez, J., Gómez Valentin, M., Paindelli, A., and Russo,
B. (2017). ACTIVIDAD EXPERIMENTAL DE I+D+i EN INGENIERÍA
HIDRÁULICA EN ESPAÑA. In L. J. Balairón Pérez and D. López
Gómez (Eds.), Seminario 2017, Comunicaciones de las líneas prioritarias (pp. 41-43). Universitat Politècnica de València.
https://doi.org/10.1017/CBO9781107415324.004
Téllez Álvarez, J., Gómez Valentin, M., and Russo, B. (2019).
Modelling of Surcharge Flow Through Grated Inlet. In P. Gourbesville and G. Caignaert (Eds.), Advances in Hydroinformati-

cs. Springer, Singapore. https://doi.org/10.1007/978-981-
4451-42-0
UNDRR, I., and CRED, I. (2018). Pérdidas económicas, pobreza y
Desastres 1998 – 2017 (Vol. 6, Issue 1). https://doi.org/10.12962/
j23373520.v6i1.22451
Vyzikas, T., and Greaves, D. (2018). Numerial Modelling.
In D. Greaves and G. Iglesias (Eds.), Wave and Tidal Energy (pp. 289-363). John Wiley and Sons Ltd. https://doi.
org/10.1002/9781119014492
Yakhot, V., and Orszag, S. A. (1986). Renormalization Group Analysis of Turbulence. I . Basic Theory. Journal of Scientific Computing, 1(1), 3-51. https://doi.org/10.1007/BF01061452
Yakhot, V., and Smith, L. M. (1992). The renormalization group,
the ɛ-expansion and derivation of turbulence models. Journal
of Scientific Computing, 7(l), 35-61. https://doi.org/10.1007/
BF01060210
Yazdanfar, Z., and Sharma, A. (2015). Urban drainage system
planning and design – Challenges with climate change and urbanization: A review. Water Science and Technology, 72(2), 165-https://doi.org/10.2166/wst.2015.207

Experiments and analysis of dynamic characteristics of liquid sloshing in horizontal Cassini tank

수평 Cassini 탱크에서 액체 슬로싱의 동적 특성에 대한 실험 및 분석

Experiments and analysis of dynamic characteristics of liquid sloshing in horizontal Cassini tank

Houlin Luo1, Wenjun Wu2, Bingchao Jiang3, Shouyi Guo3, Libing Huang3 and Baozeng Yue4

Accepted Manuscript online 23 May 2023 • © 2023 IOP Publishing Ltd

What is an Accepted Manuscript?DOI 10.1088/1402-4896/acd81a

Abstract

In this study, the sloshing behaviors and dynamic characteristics of liquid sloshing in a horizontal Cassini tank were studied. The forces and torques generated by the liquid sloshing in non-equilibrium states were experimentally measured with force transducers which have been mounted on the experiment platform. In small-amplitude rotational and translational nonlinear sloshing cases, the CFD simulations were in good agreement with the experimental data. However, as the dynamic ratio of longitudinal and transversal sloshing force became large, errors occurred and became obvious in CFD simulations. Further experiments on the sloshing forces and torques in the rotating sloshing state were performed.The effects of the magnitude and frequency of the external excitations and the tank-filling ratio son the sloshing characteristics were also studied. The experiments results show that the liquid sloshing in the Cassini tank is highly correlated with the excitation frequency where small variation in the frequency leads to complex changes in the liquid sloshing characteristics. In the cases with low liquid-filling ratio, in resonance state, the rotational sloshing is easier to be excited, however, in the stable-state the amplitudes of longitudinal sloshing force and torque are more significant than those of other sloshing conditions. The transversal sloshing force and torque are very small in both, rotational and translational nonlinear sloshing of small amplitude.

본 연구에서는 수평 카시니 수조에서 액체 슬로싱의 슬로싱 거동과 동적 특성을 연구하였다. 비평형 상태에서 액체 슬로싱에 의해 생성된 힘과 토크는 실험 플랫폼에 장착된 힘 변환기로 실험적으로 측정 되었습니다.

진폭이 작은 회전 및 병진 비선형 슬로싱 사례에서 CFD 시뮬레이션은 실험 데이터와 잘 일치했습니다. 그러나 종방향 슬로싱력과 횡방향 슬로싱력의 동적 비율이 커짐에 따라 오류가 발생하고 CFD 시뮬레이션에서 명백해졌습니다.

회전 슬로싱 상태에서 슬로싱 힘과 토크에 대한 추가 실험이 수행되었습니다. 외부 가진의 크기와 빈도 및 슬로싱 특성에 따른 탱크 충전 비율의 영향도 연구되었습니다.

실험 결과는 카시니 탱크의 액체 슬로싱이 여기 주파수와 높은 상관 관계가 있음을 보여줍니다. 여기 주파수의 작은 변화가 액체 슬로싱 특성의 복잡한 변화로 이어집니다. 액체 충전율이 낮은 경우에는 공진 상태에서 회전 슬로싱이 들기 쉽지만 안정 상태에서는 종방향 슬로싱 힘과 토크의 진폭이 다른 슬로싱 조건보다 더 중요합니다.

횡방향 슬로싱 힘과 토크는 작은 진폭의 회전 및 병진 비선형 슬로싱 모두에서 매우 작습니다.

Figure 1 | Laboratory channel dimensions.

강화된 조도 계수 및 인버트 레벨 변화가 있는 90도 측면 턴아웃에서의 유동에 대한 실험적 및 수치적 연구

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. Md. Azamathulla d,*
and C. Venkata Siva Rama Prasade
a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran
b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran
d Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad
e Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India
*Corresponding author. E-mail: azmatheditor@gmail.com

ABSTRACT

측면 분기기(흡입구)의 상류측에서 유동 분리는 분기기 입구에서 맴돌이 전류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 분기 용량 및 효율성을 감소시킵니다. 따라서 분리구역의 크기를 파악하고 그 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

본 연구에서는 분리 구역의 크기를 줄이기 위한 방법으로 분출구 입구에 7가지 유형의 조면화 요소와 4가지 다른 방류가 있는 3가지 다른 베드 인버트 레벨의 설치(총 84회 실험)를 조사했습니다. 또한 3D 전산 유체 역학(CFD) 모델을 사용하여 분리 구역의 흐름 패턴과 치수를 평가했습니다.

결과는 조도 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 조도 계수에 따라 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 방법을 결합하면 분리 구역 치수를 최대 63%까지 줄일 수 있습니다.

Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions.

Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone.

Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

Key words

discharge ratio, flow separation zone, intake, three dimensional simulation

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced
roughness coefficient and invert level changes
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
Figure 1 | Laboratory channel dimensions.
Figure 1 | Laboratory channel dimensions.
Figure 2 | Roughness plates.
Figure 2 | Roughness plates.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 10 | Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).
Figure 10 | Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).
Figure 11 | Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.
Figure 11 | Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.
Figure 12 | Velocity vector for flow condition Q¼22 l/s, near surface.
Figure 12 | Velocity vector for flow condition Q¼22 l/s, near surface.

REFERENCES

Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at
lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).
Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).
Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.
Chow, V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.
Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern.
Iranian Water Research Journal 5 (9), 1–10. (In Persian).
Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intake entrance using submerged
vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.
Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge.
In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).
Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and
submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering
113 (4), 543–548.
Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.
https://doi.org/10.1002/ird.207.
Kirkgöz, M. S. & Ardiçlioğ
lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering
1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).
Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).
Neary, V. S. & Odgaard, J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119
(11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).
Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90°
openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://
civilica.com/doc/120494.
Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.

Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic
Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).
Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using
variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian).
Available from: https://civilica.com/doc/56251.
Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.
International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.
Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2021 Migration of sand mining pit in rivers: an experimental,
numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944

Figure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1

Flow-3D에서 CFD 시뮬레이션을 사용한 선박 저항 분석

Ship resistance analysis using CFD simulations in Flow-3D

Author

Deshpande, SujaySundsbø, Per-ArneDas, Subhashis

Abstract

선박의 동력 요구 사항을 설계할 때 고려해야 할 가장 중요한 요소는 선박 저항 또는 선박에 작용하는 항력입니다. 항력을 극복하는 데 필요한 동력이 추진 시스템의 ‘손실’에 기여하기 때문에 추진 시스템을 설계하는 동안 선박 저항을 추정하는 것이 중요합니다. 선박 저항을 계산하는 세 가지 주요 방법이 있습니다:

Holtrop-Mennen(HM) 방법과 같은 통계적 방법, 수치 분석 또는 CFD(전산 유체 역학) 시뮬레이션 및 모델 테스트, 즉 예인 탱크에서 축소된 모델 테스트. 설계 단계 초기에는 기본 선박 매개변수만 사용할 수 있을 때 HM 방법과 같은 통계 모델만 사용할 수 있습니다.

수치 해석/CFD 시뮬레이션 및 모델 테스트는 선박의 완전한 3D 설계가 완료된 경우에만 수행할 수 있습니다. 본 논문은 Flow-3D 소프트웨어 패키지를 사용하여 CFD 시뮬레이션을 사용하여 잔잔한 수상 선박 저항을 예측하는 것을 목표로 합니다.

롤온/롤오프 승객(RoPax) 페리에 대한 사례 연구를 조사했습니다. 선박 저항은 다양한 선박 속도에서 계산되었습니다. 메쉬는 모든 CFD 시뮬레이션의 결과에 영향을 미치기 때문에 메쉬 민감도를 확인하기 위해 여러 개의 메쉬가 사용되었습니다. 시뮬레이션의 결과를 HM 방법의 추정치와 비교했습니다.

시뮬레이션 결과는 낮은 선박 속도에 대한 HM 방법과 잘 일치했습니다. 더 높은 선속을 위한 HM 방법에 비해 결과의 차이가 상당히 컸다. 선박 저항 분석을 수행하는 Flow-3D의 기능이 시연되었습니다.

While designing the power requirements of a ship, the most important factor to be considered is the ship resistance, or the sea drag forces acting on the ship. It is important to have an estimate of the ship resistance while designing the propulsion system since the power required to overcome the sea drag forces contribute to ‘losses’ in the propulsion system. There are three main methods to calculate ship resistance: Statistical methods like the Holtrop-Mennen (HM) method, numerical analysis or CFD (Computational Fluid Dynamics) simulations, and model testing, i.e. scaled model tests in towing tanks. At the start of the design stage, when only basic ship parameters are available, only statistical models like the HM method can be used. Numerical analysis/ CFD simulations and model tests can be performed only when the complete 3D design of the ship is completed. The present paper aims at predicting the calm water ship resistance using CFD simulations, using the Flow-3D software package. A case study of a roll-on/roll-off passenger (RoPax) ferry was investigated. Ship resistance was calculated at various ship speeds. Since the mesh affects the results in any CFD simulation, multiple meshes were used to check the mesh sensitivity. The results from the simulations were compared with the estimate from the HM method. The results from simulations agreed well with the HM method for low ship speeds. The difference in the results was considerably high compared to the HM method for higher ship speeds. The capability of Flow-3D to perform ship resistance analysis was demonstrated.

Figure 1: Simplified ship geometry
Figure 1: Simplified ship geometry
Figure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1
Figure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1
Figure 4: Ship Resistance (kN) vs Ship Speed (knots)
Figure 4: Ship Resistance (kN) vs Ship Speed (knots)

Publisher

International Society of Multiphysics

Citation

Deshpande SR, Sundsbø P, Das S. Ship resistance analysis using CFD simulations in Flow-3D. The International Journal of Multiphysics. 2020;14(3):227-236

REFERENCES

[1] K. Min and S. Kang, “Study on the form factor and full-scale ship resistance prediction
method,” Journal of Marine Science and Technology, vol. 15, pp. 108-118, June 2010.
[2] A. Molland, S. Turnock and D. Hudson, “Ship Resistance and Propulsion” Second
Edition. In Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive
Power (pp. 12-69), August 2017, Cambridge University Press.
[3] K. Niklas and H. Pruszko, “Full-scale CFD simulations for the determination of ship
resistance as a rational, alternative method to towing tank experiments,” Ocean
Engineering, vol. 190, October 2019.
[4] A. Elkafas, M. Elgohary and A. Zeid, “Numerical study on the hydrodynamic drag force
of a container ship model,” Alexandria Engineering Journal, vol. 58, no. 3, pp. 849-859,
September 2019.
[5] J. Holtrop and G. Mennen, “An approximate power prediction method,” International
Shipbuilding Progress, vol. 29, no. 335, pp. 166-170, July 1982.
[6] E. Bøckmann and S. Steen, “Model test and simulation of a ship with wavefoils,” Applied
Ocean research, vol. 57, pp. 8-18, April 2016.
[7] K. Atreyapurapu, B. Tallapragada and K. Voonna, “Simulation of a Free Surface Flow
over a Container Vessel Using CFD,” International Journal of Engineering Trends and
Technology (IJETT), vol. 18, no. 7, pp. 334-339, December 2014.
[8] J. Petersen, D. Jacobsen and O. Winther, “Statistical modelling for ship propulsion
efficiency,” Journal of Marine Science and Technology, vol. 17, pp. 30-39, December
2011.
[9] H. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the
finite volume method (second edition), Harlow, England: Pearson Education Ltd, 2007.
[10]C. Hirth and B. Nichols, “Volume of fluid (VOF) method for the dynamics of free
boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, January 1981.
[11] A. Nordli and H. Khawaja, “Comparison of Explicit Method of Solution for CFD Euler
Problems using MATLAB® and FORTRAN 77,” International Journal of Multiphysics,
vol. 13, no. 2, 2019.
[12] FLOW-3D® Version 12.0 User’s Manual (2018). FLOW-3D [Computer software]. Santa
Fe, NM: Flow Science, Inc. https://www.flow3d.com.
[13] D. McCluskey and A. Holdø, “Optimizing the hydrocyclone for ballast water treatment
using computational fluid dynamics,” International Journal of Multiphysics, vol. 3, no. 3,
2009.
[14]M. Breuer, D. Lakehal and W. Rodi, “Flow around a Surface Mounted Cubical Obstacle:
Comparison of Les and Rans-Results,” Computation of Three-Dimensional Complex
Flows. Notes on Numerical Fluid Mechanics, vol. 49, p. 1996.
[15] G. Wei, “A Fixed-Mesh Method for General Moving Objects in Fluid Flow”, Modern
Physics Letters B, vol. 19, no. 28, pp. 1719-1722, 2005.
[16]J. Michell, “The wave-resistance of a ship,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, Vols. 45, 1898, no. 272, pp. 106-123,
May 2009.

Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou 1, Vassilios Stergiopoulos 2
1 Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University, Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna, Zieglergasse 53/1/24, 1070 Vienna, Austria).2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators, ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.

Abstract

이 논문은 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시하며, 이는 “그리스에서 아르키메데스의 부활: 수리 역학 및 아르키메데스 달팽이관 물레방아의 유체역학적 거동 연구에 대한 기여”라는 제목의 최근 연구에서 수행되었습니다.
그리스 자연 및 기술 수로의 수력 잠재력”. Flow-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)와 관련이 있으며 몇 TWh 정도의 그리스 자연 및 기술 수로의 중요한 미개발 수력 잠재력을 활용하는 연간 및 수천 MW 범위의 총 설치 용량인 소규모 수력 발전 시스템에 대한 몇 가지 유망한 성능을 보여줍니다.

This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some promising performances for such small hydropower systems harnessing the important unexploited hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.

Keywords

CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 3. The spectrum of all the screw axis orientation cases.
Figure 3. The spectrum of all the screw axis orientation cases.
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks
Figure 6. “Meshing & Geometry” tab Operations (Flow 3-D).
Figure 6. “Meshing & Geometry” tab Operations (Flow 3-D).
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3
/s and 0.30m3
/s
and angles of orientation 22ο & 32ο
.
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque,
Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3
/s and an angle of
orientation θ = 32ο
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque, Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3 /s and an angle of orientation θ = 32ο

References

[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of
screw hydro turbine, Ph.D. Thesis, NTUA, 2017.
[2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und
Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna,
2012.
[3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47
(5) (2009) 666-669.
[4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic
Engineering, 80 (2000) 72-80.
[5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean
spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for
Climate Change, Thessaloniki, 2009.
[6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new
Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE
Conference, Mykonos, June 21-26, 2009.

[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece?
Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in:
Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010.
[8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition:
Archimedean screw hydropower development terra incognita, International Journal of Energy and
Development, v.6, Issue 6, pp. 627-536, 2015.
[9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head
innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6,
Issue 5, pp. 471-478, 2015.
[10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean
screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the
Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011.
[11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower
potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT
Volume 11, Issue 2, 2020 pp.137-144.
[14] Flow Science, FLOW-3D Manual, 2013.
[15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson,
2007.
[16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of
Computational Fluid dynamics, John Wiley & Sons, 2007.
[17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative
Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International
Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and
SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013.
[18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D
Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23-
No1, 2014.
[19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined
Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT),
Vol. 2 Issue 9, September – 2013, pp. 193-199.
[20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the
Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND
ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.

Figure 5. Schematic view of flap and support structure [32]

Design Optimization of Ocean Renewable Energy Converter Using a Combined Bi-level Metaheuristic Approach

결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화

Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i

Abstract

In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.

Keywords

Wave Energy Converter

OSWEC

Hydrodynamic Effects

Geometric Design

Metaheuristic Optimization

Multi-Verse Optimizer

1Introduction

The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1][2][3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4][5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6][7][8][9][10][11][12][13][14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].

In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19][20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10][13][12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21][22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15][23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].

Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26][27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28][29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].

Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.

This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.

2. Numerical Methods

In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.

2.1Model Setup

FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.

In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.

2.2Verification

In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).

Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.

Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32][39]:(1)

where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:

(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.

�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1 [40].Table 2.

Table 1. Constant coefficients in RNGK- model

Factors�0�1�2������
Quantity0.0124.381.421.681.391.390.084

Table 2. Flap properties

Joint height (m)0.476
Height of the center of mass (m)0.53
Weight (Kg)10.77

It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42][34][43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.

According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.

Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.

According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.

To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.

As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.

3Sensitivity Analysis

Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.

In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.

According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.

As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.

Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.

Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.

Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.

4Design Optimization

We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.

4.1. Metaheuristic Approaches

As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:

  • •It takes different values to converge moth in any point around the flame.
  • •Distance to the flame is lowered to be eventually minimized.
  • •When the position gets closer to the flame, the updated positions around the flame become more frequent.

As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:

  • •The possibility of having white hole increases with the inflation rate.
  • •The possibility of having black hole decreases with the inflation rate.
  • •Objects tend to pass through black holes more frequently in universes with lower inflation rates.
  • •Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]

Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:

Assume that

(16)���=����1<��(��)����1≥��(��)

Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1][54].

Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56][55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)

Where:(19)�′→=|�∗→(�)-�→(�)|

X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1, 1], and dot (.) is an element-by-element multiplication [55].

Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.

4.2. HCMVO Bi-level Approach

Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.

Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).

5. Conclusion

The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.

To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:�=30,�=5▹���������������������������������
03:�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:��=����(��)
06:��=Normalize the inflation rate��
07:for iter in[1,⋯,���iter]do
08:for�in[1,⋯,�]do
09:Update�EP,�DR,Black����Index=�
10:for���[1,⋯,�]��
11:�1=����()
12:if�1≤��(��)then
13:White HoleIndex=Roulette�heelSelection(-��)
14:�(Black HoleIndex,�)=��(White HoleIndex,�)
15:end if
16:�2=����([0,�])
17:if�2≤�EPthen
18:�3=����(),�4=����()
19:if�3<0.5then
20:�1=((��(�)-��(�))�4+��(�))
21:�(�,�)=Best�(�)+�DR�
22:else
23:�(�,�)=Best�(�)-�DR�
24:end if
25:end if
26:end for
27:end for
28:�HD=����([�1,�2,⋯,�Np])
29:Bes�TH�itr=����HD
30:ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:ifΔBestTHD<��then▹Perform hill climbing local search
32:BestTHD=����-�lim��������THD
33:end if
34:end for
35:return�,BestTHD▹Final configuration
36:end procedure

The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.

Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.

Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:Initialization
03:Initialize the constraints��1�,��1�
04:�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
05:So�1=〈�,�,�,�,�〉▹���������������
06:�������1=����So�1▹���������ℎ���������
07:Main loop
08:for iter≤���ita=do
09:���=���±��
10:while�≤���(Sol1)do
11:���=���+�,▹����ℎ���ℎ��������ℎ
12:fitness��iter=�������
13:t = t+1
14:end while
15:〈�����,������max〉=����������
16:���itev=���Inde�max▹�������ℎ�������������������������������ℎ�������
17:��=��-����Max��+1▹�����������������
18:end for
19:return���iter,����
20:end procedure

were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.

The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.

In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.

CRediT authorship contribution statement

Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.

Data availability

Data will be made available on request.

References

Transactions of the Chinese Society of Agricultural Engineering

사다리꼴 채널용 날개형 휴대용 수로의 수리 성능.

用于梯形渠道的仿翼形便携式量水槽水力性能.

  • Source: Transactions of the Chinese Society of Agricultural Engineering . 2023, Vol. 39 Issue 3, p76-83. 8p.
  • Author(s):王蒙; 张宽地; 王文娥; 张鸿洋; 吕宏兴
  • 추상적인:에어로포일의 유동설비는 우수한 수압조건과 높은 유량측정 정확도를 보여주고 있습니다. 그러나 에어로포일의 복잡한 곡선은 수위측정설비의 추진에 제약을 줄 수 있다. 본 연구는 최종 사다리꼴 채널에서의 적용 가능성을 탐색하기 위해 간단한 구조의 휴대용 모조 에어로포일 측정 수로를 기반으로 한다. 그 중 1/4 타원곡선과 호곡선을 결합하여 복잡한 에어로포일곡선을 근사화하였다. 수압시험은 2022년 중국 산시성 Northwest A&F University의 수력공학 및 수력학 연구실에서 수행되었다. 콘크리트 사다리꼴 채널이 준비되었다(평평한 경사, 바닥 너비 = 30cm, 채널 깊이 = 30cm , 상단 너비 = 90cm, 측면 경사 계수 m = 1). 
  • 에어로포일을 모방한 휴대용 물 측정 플룸은 모두 속이 빈 나무 재료로 만들어졌습니다. 1세트의 에어로포일 코드 길이, 5세트의 수축비 및 7세트의 유동 배출을 포함하여 총 35개의 시험 계획이 설계되었습니다. 실험실 실험은 일부 특정 유압 매개변수를 측정하는 데만 사용된 반면 전산유체역학(CFD) 플랫폼은 내부 유동장을 시뮬레이션하는 데 사용되었습니다. 
  • 또한, 수력 시험 후 FLOW-3D 소프트웨어를 통해 에어로포일 플룸과 모방 사이의 수력 성능을 비교했습니다. 모조 에어로포일 플룸의 수력학적 성능에 대한 수축률과 유속의 영향을 명확히 하기 위해 체계적인 분석이 이루어졌습니다. 결과는 수치 시뮬레이션이 실험과 더 잘 일치하는 것으로 나타났습니다. 4.91% 미만의 오차로 정확하고 신뢰할 수 있는 모델링을 나타냅니다. 
  • 더 중요한 것은 에어로포일 측정 수로가 단순화 후에도 부드러운 흐름과 작은 역류의 깊이를 유지했다는 것입니다. 흐름 패턴도 수치 시뮬레이션 후에 얻었습니다. 수로의 상류에서는 수위가 안정한 반면, 유속이 높을수록 수면의 변동이 심한 목의 하류에서는 수위가 더 빨리 떨어졌다. 물 흐름의 일부는 횡방향 속도의 작용으로 측벽 근처에서 약간의 와류를 생성했습니다. 
  • 상류 Froude 수는 모든 작업 조건에서 0.5 미만이었고 역류 깊이는 7.6cm 미만으로 유량 측정 및 채널 안전 요구 사항을 완전히 충족했습니다. 0.60~0.64의 수축비에서 최고의 수압성능을 발휘하였다. 에너지 방정식과 임계유동원리를 이용한 유동식의 높은 정확도 역시 관찰되었으며, 평균 유량 측정오차는 2.75%로 나타났다. 이와 같이 모조 에어로포일은 원래 에어로포일의 우수한 수압 성능을 유지했습니다. 
  • 결과적으로 유량 측정의 높은 정확도와 보다 단순화된 곡선은 관개 구역의 마지막 작은 단면 사다리꼴 채널에서 휴대용 수로를 쉽게 홍보할 수 있을 것으로 기대할 수 있습니다. 모조 에어로포일은 원래 에어로포일의 우수한 유압 성능을 유지했습니다. 결과적으로 유량 측정의 높은 정확도와 보다 단순화된 곡선은 관개 구역의 마지막 작은 단면 사다리꼴 채널에서 휴대용 수로를 쉽게 홍보할 수 있을 것으로 기대할 수 있습니다. 
  • 모조 에어로포일은 원래 에어로포일의 우수한 유압 성능을 유지했습니다. 결과적으로 유량 측정의 높은 정확도와 보다 단순화된 곡선은 관개 구역의 마지막 작은 단면 사다리꼴 채널에서 휴대용 수로를 쉽게 홍보할 수 있을 것으로 기대할 수 있습니다.
  • (Chinese). (English) Copyright of Transactions of the Chinese Society of Agricultural Engineering is the property of Chinese Society of Agricultural Engineering and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder’s express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.
  • For access to this entire article and additional high quality information, please check with your college/university library, local public library, or affiliated institution.
횡월류 위어 유입각 변화에 따른 유량계수 추정 기초 연구

횡월류 위어 유입각 변화에 따른 유량계수 추정 기초 연구

국문초록

최근 이상기후의 영향으로 전 지구적 온난화 및 도시화로 인해 세계적으로 기상이변이 늘어나고 있다. 도시화 및 난개발로 인한 불투수 면적의 증가 같은 문제로 홍수량이 증가함에 따라 홍수피해를 줄이기 위한 다양한 방안이 제시되고 있다. 본 연구에서는 사행하천구간에 설치되는 횡월류 위어 유입각의 변화에 따라 3차원 CFD 모형인 FLOW-3D를 이용하여 흐름 특성과 월류량을 분석하여 횡월류 위어 유입각에 대한 수공구조물의 월류능력 평가 및 유량계수 산정을 위한 기초 연구를 수행하였다. 분석 결과, 횡월류 위어 유입각이 작을수록 횡월류부 통과 후 주수로 흐름의 수위가 감소하고 유속이 증가하였으며, 유입각이 증가할수록 수위가 상승하였고, 유속이 감소하는 경향을 보였다. 또한, 횡월류 위어 유입각이 40° 이상인 경우 직하류 유속이 상류 유속과 비교하여 감소하는 것을 확인할 수 있었다.

영문초록

Recently, due to global warming and urbanization due to the influence of abnormal weather, weather changes are increasing worldwide. Various measures have been proposed to reduce flood damage as flood volume increases due to problems such as an increase in impermeable area due to urbanization and reckless development. In this study, flow characteristics and overflow volume were analyzed using FLOW-3D, a three-dimensional CFD model, in accordance with changes in the cross-flow weir inlet angle installed in the meandering river section, and a basic study was conducted to evaluate the overflow capacity and calculate the flow coefficient. As a result of the analysis, the smaller the inflow angle of the transverse overflow, the lower the water level and flow rate of the main water flow after passing the transverse overflow, and the higher the inflow angle, the higher the water level and the flow rate. In addition, it was confirmed that the direct downstream flow rate decreased compared to the upstream flow rate when the inflow angle of the transverse overflow was 40° or higher.

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment

by Hongbo Mi 1,2, Chuan Wang 1,3, Xuanwen Jia 3,*, Bo Hu 2, Hongliang Wang 4, Hui Wang 3 and Yong Zhu 5

1College of Mechatronics Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China

2Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

4School of Aerospace and Mechanical Engineering/Flight College, Changzhou Institute of Technology, Changzhou 213032, China

5National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

*Author to whom correspondence should be addressed.Sustainability202315(6), 5159; https://doi.org/10.3390/su15065159

Received: 30 January 2023 / Revised: 4 March 2023 / Accepted: 10 March 2023 / Published: 14 March 2023(This article belongs to the Special Issue Advanced Technologies of Renewable Energy and Water Management for Sustainable Environment

Abstract

Due to their high efficiency, low heat loss and associated sustainability advantages, impinging jets have been used extensively in marine engineering, geotechnical engineering and other engineering practices. In this paper, the flow structure and impact characteristics of impinging jets with different Reynolds numbers and impact distances are systematically studied by Flow-3D based on PIV experiments. In the study, the relevant state parameters of the jets are dimensionlessly treated, obtaining not only the linear relationship between the length of the potential nucleation zone and the impinging distance, but also the linear relationship between the axial velocity and the axial distance in the impinging zone. In addition, after the jet impinges on the flat plate, the vortex action range caused by the wall-attached flow of the jet gradually decreases inward with the increase of the impinging distance. By examining the effect of Reynolds number Re on the hydraulic characteristics of the submerged impact jet, it can be found that the structure of the continuous submerged impact jet is relatively independent of the Reynolds number. At the same time, the final simulation results demonstrate the applicability of the linear relationship between the length of the potential core region and the impact distance. This study provides methodological guidance and theoretical support for relevant engineering practice and subsequent research on impinging jets, which has strong theoretical and practical significance.

Keywords: 

PIVFlow-3Dimpinging jethydraulic characteristicsimpinging distance

Sustainability 15 05159 g001 550

Figure 1. Geometric model.

Sustainability 15 05159 g002 550

Figure 2. Model grid schematic.

Sustainability 15 05159 g003 550

Figure 3. (a) Schematic diagram of the experimental setup; (b) PIV images of vertical impinging jets with velocity fields.

Sustainability 15 05159 g004 550

Figure 4. (a) Velocity distribution verification at the outlet of the jet pipe; (b) Distribution of flow angle in the mid-axis of the jet [39].

Sustainability 15 05159 g005 550

Figure 5. Along-range distribution of the dimensionless axial velocity of the jet at different impact distances.Figure 6 shows the variation of H

Sustainability 15 05159 g006 550

Figure 6. Relationship between the distribution of potential core region and the impact height H/D.

Sustainability 15 05159 g007 550

Figure 7. The relationship between the potential core length 

Sustainability 15 05159 g008 550

Figure 8. Along-range distribution of the flow angle φ of the jet at different impact distances.

Sustainability 15 05159 g009 550

Figure 9. Velocity distribution along the axis of the jet at different impinging regions.

Sustainability 15 05159 g010 550

Figure 10. The absolute value distribution of slope under different impact distances.

Sustainability 15 05159 g011a 550
Sustainability 15 05159 g011b 550

Figure 11. Velocity distribution of impinging jet on wall under different impinging distances.

Sustainability 15 05159 g012 550

Figure 12. Along-range distribution of the dimensionless axial velocity of the jet at different Reynolds numbers.

Sustainability 15 05159 g013 550

Figure 13. Along-range distribution of the flow angle φ of the jet at different Reynolds numbers.

Sustainability 15 05159 g014 550

Figure 14. Velocity distribution along the jet axis at different Reynolds numbers.

Sustainability 15 05159 g015 550

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

References

  1. Zhang, J.; Li, Y.; Zhang, Y.; Yang, F.; Liang, C.; Tan, S. Using a high-pressure water jet-assisted tunnel boring machine to break rock. Adv. Mech. Eng. 202012, 1687814020962290. [Google Scholar] [CrossRef]
  2. Shi, X.; Zhang, G.; Xu, G.; Ma, Y.; Wu, X. Inactivating Microorganism on Medical Instrument Using Plasma Jet. High Volt. Eng. 200935, 632–635. [Google Scholar]
  3. Gao, Y.; Han, P.; Wang, F.; Cao, J.; Zhang, S. Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole. Sustainability 202214, 8258. [Google Scholar] [CrossRef]
  4. Xu, W.; Wang, C.; Zhang, L.; Ge, J.; Zhang, D.; Gao, Z. Numerical study of continuous jet impinging on a rotating wall based on Wray—Agarwal turbulence model. J. Braz. Soc. Mech. Sci. Eng. 202244, 433. [Google Scholar] [CrossRef]
  5. Hu, B.; Wang, C.; Wang, H.; Yu, Q.; Liu, J.; Zhu, Y.; Ge, J.; Chen, X.; Yang, Y. Numerical Simulation Study of the Horizontal Submerged Jet Based on the Wray—Agarwal Turbulence Model. J. Mar. Sci. Eng. 202210, 1217. [Google Scholar] [CrossRef]
  6. Dahiya, A.K.; Bhuyan, B.K.; Kumar, S. Perspective study of abrasive water jet machining of composites—A review. J. Mech. Sci. Technol. 202236, 213–224. [Google Scholar] [CrossRef]
  7. Abushanab, W.S.; Moustafa, E.B.; Harish, M.; Shanmugan, S.; Elsheikh, A.H. Experimental investigation on surface characteristics of Ti6Al4V alloy during abrasive water jet machining process. Alex. Eng. J. 202261, 7529–7539. [Google Scholar] [CrossRef]
  8. Hu, B.; Wang, H.; Liu, J.; Zhu, Y.; Wang, C.; Ge, J.; Zhang, Y. A numerical study of a submerged water jet impinging on a stationary wall. J. Mar. Sci. Eng. 202210, 228. [Google Scholar] [CrossRef]
  9. Peng, J.; Shen, H.; Xie, W.; Zhai, S.; Xi, G. Influence of flow fluctuation characteristics on flow and heat transfer in different regions. J. Drain. Irrig. Mach. Eng. 202240, 826–833. [Google Scholar]
  10. Zhai, S.; Xie, F.; Yin, G.; Xi, G. Effect of gap ratio on vortex-induced vibration characteristics of different blunt bodies near-wall. J. Drain. Irrig. Mach. Eng. 202139, 1132–1138. [Google Scholar]
  11. Lin, W.; Zhou, Y.; Wang, L.; Tao, L. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller. J. Drain. Irrig. Mach. Eng. 202139, 158–164. [Google Scholar]
  12. Han, B.; Yao, Z.; Tang, R.; Xu, H. On the supersonic impinging jet by laser Doppler velocimetry. Exp. Meas. Fluid Mech. 200216, 99–103. [Google Scholar]
  13. Darisse, A.; Lemay, J.; Benaissa, A. LDV measurements of well converged third order moments in the far field of a free turbulent round jet. Exp. Therm. Fluid Sci. 201344, 825–833. [Google Scholar] [CrossRef]
  14. Kumar, S.; Kumar, A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021235, 6177–6190. [Google Scholar] [CrossRef]
  15. Tao, D.; Zhang, R.; Ying, C. Development and application of the pollutant diffusion testing apparatus based on the image analysis. J. Saf. Environ. 201616, 247–251. [Google Scholar]
  16. Seo, H.; Kim, K.C. Experimental study on flow and turbulence characteristics of bubbly jet with low void fraction. Int. J. Multiph. Flow 2021142, 103738. [Google Scholar] [CrossRef]
  17. Wen, Q.; Sha, J.; Liu, Y. TR-PIV measurement of the turbulent submerged jet and POB analysis of the dynamic structure. J. Exp. Fluid Mech. 20144, 16–24. [Google Scholar]
  18. Yang, Y.; Zhou, L.; Shi, W.; He, Z.; Han, Y.; Xiao, Y. Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J. Petrol. Sci. Eng. 2021196, 107653. [Google Scholar] [CrossRef]
  19. Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 202150, 101406. [Google Scholar] [CrossRef]
  20. Han, Y.; Song, X.; Li, K.; Yan, X. Hybrid modeling for submergence depth of the pumping well using stochastic configuration networks with random sampling. J. Petrol. Sci. Eng. 2022208, 109423. [Google Scholar] [CrossRef]
  21. Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform. 202252, 101554. [Google Scholar] [CrossRef]
  22. Long, J.; Song, X.; Shi, J.; Chen, J. Optimization and CFD Analysis on Nozzle Exit Position of Two-phase Ejector. J. Refrig. 202243, 39–45. [Google Scholar]
  23. Ni, Q.; Ruan, W. Optimization design of desilting jet pump parameters based on response surface model. J. Ship Mech. 202226, 365–374. [Google Scholar]
  24. Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Therm. Eng. 2017126, 594–601. [Google Scholar] [CrossRef]
  25. Fu, W.; Liu, Z.; Li, Y.; Wu, H.; Tang, Y. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int. J. Therm. Sci. 2018132, 509–516. [Google Scholar] [CrossRef]
  26. Lucas, C.; Rusche, H.; Schroeder, A.; Koehler, J. Numerical investigation of a two-phase CO2 ejector. Int. J. Refrigeration 201443, 154–166. [Google Scholar] [CrossRef]
  27. Ma, X.; Zhu, T.; Fu, Y.; Yan, Y.; Chen, W. Numerical simulation of rock breaking by abrasive water jet. J. Coast. Res. 201993, 274–283. [Google Scholar] [CrossRef]
  28. He, L.; Liu, Y.; Shen, K.; Yang, X.; Ba, Q.; Xiong, W. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets. J. Pet. Sci. Eng. 2021207, 109145. [Google Scholar] [CrossRef]
  29. Yu, Z.; Wang, Z.; Lei, C.; Zhou, Y.; Qiu, X. Numerical Simulation on Internal Flow Field of a Self-excited Oscillation Pulsed Jet Nozzle with Back-flow. Mech. Sci. Technol. Aerosp. Eng. 202241, 998–1002. [Google Scholar]
  30. Huang, J.; Ni, F.; Gu, L. Numerical method of FLOW-3D for sediment erosion simulation. China Harb. Eng. 201939, 6–11. [Google Scholar]
  31. Al Shaikhli, H.I.; Khassaf, S.I. Using of flow 3d as CFD materials approach in waves generation. Mater. Today Proc. 202249, 2907–2911. [Google Scholar] [CrossRef]
  32. Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison Between Numerical Flow3d Software and Laboratory Data, For Sediment Incipient Motion. IOP Conf. Ser. Earth Environ. Sci. 2022961, 012031. [Google Scholar] [CrossRef]
  33. Du, C.; Liu, X.; Zhang, J.; Wang, B.; Chen, X.; Yu, X. Long-distance water hammer protection of pipeline after pump being first lowered and then rasied. J. Drain. Irrig. Mach. Eng. 202240, 1248–1253, 1267. [Google Scholar]
  34. Gao, F.; Li, X.; Gao, Q. Experiment and numerical simulation on hydraulic characteristics of novel trapezoidal measuring weir. J. Drain. Irrig. Mach. Eng. 202240, 1104–1111. [Google Scholar]
  35. Tu, A.; Nie, X.; Li, Y.; Li, H. Experimental and simulation study on water infiltration characteristics of layered red soil. J. Drain. Irrig. Mach. Eng. 202139, 1243–1249. [Google Scholar]
  36. Chen, J.; Zeng, B.; Liu, L.; Tao, K.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Investigating the anchorage performance of full-grouted anchor bolts with a modified numerical simulation method. Eng. Fail. Anal. 2022141, 106640. [Google Scholar] [CrossRef]
  37. Hu, B.; Yao, Y.; Wang, M.; Wang, C.; Liu, Y. Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation. Machines 202311, 68. [Google Scholar] [CrossRef]
  38. Yao, J.; Wang, X.; Zhang, S.; Xu, S.; Jin, B.; Ding, S. Orthogonal test of important parameters affecting hydraulic performance of negative pressure feedback jet sprinkler. J. Drain. Irrig. Mach. Eng. 202139, 966–972. [Google Scholar]
  39. Wang, C.; Wang, X.; Shi, W.; Lu, W.; Tan, S.K.; Zhou, L. Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers. Exp. Therm. Fluid Sci. 201789, 189–198. [Google Scholar] [CrossRef]
  40. Speziale, C.G.; Thangam, S. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 199230, 1379–1388. [Google Scholar] [CrossRef]
  41. El Hassan, M.; Assoum, H.H.; Sobolik, V.; Vétel, J.; Abed-Meraim, K.; Garon, A.; Sakout, A. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 201252, 1475–1489. [Google Scholar] [CrossRef]
  42. Fairweather, M.; Hargrave, G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp. Fluids 200233, 464–471. [Google Scholar] [CrossRef]
  43. Ashforth-Frost, S.; Jambunathan, K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf. 199623, 155–162. [Google Scholar] [CrossRef]
  44. Chen, M.; Huang, H.; Wang, D.; Lv, S.; Chen, Y. PIV tests for flow characteristics of impinging jet in a semi-closed circular pipe. J. Vib. Shock 202140, 90–97, 113. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

      

MDPI and ACS Style

Mi, H.; Wang, C.; Jia, X.; Hu, B.; Wang, H.; Wang, H.; Zhu, Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability 202315, 5159. https://doi.org/10.3390/su15065159

AMA Style

Mi H, Wang C, Jia X, Hu B, Wang H, Wang H, Zhu Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability. 2023; 15(6):5159. https://doi.org/10.3390/su15065159Chicago/Turabian Style

Mi, Hongbo, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, and Yong Zhu. 2023. “Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment” Sustainability 15, no. 6: 5159. https://doi.org/10.3390/su15065159

Temperature contours& velocity vectors just after spray off

NASA Perspectives on Cryo H2 Storage

Cryo H2 저장에 대한 NASA의 관점

DOE Hydrogen Storage Workshop
Marriott Crystal Gateway
Arlington, VA
February 15, 2011
David J. Chato
NASA Glenn Research Center
Michael P. Doherty
NASA Glenn Research Center

Objectives

Purposes of this Presentation
• To show the role of Cryogenics in NASA prior missions
• To show recent NASA accomplishments in cryogenic fluid management technology
• To highlight the importance of long term cryogenic storage to future NASA missions (especially Human Space flight)

What is Cryogenic Fluid Management?

The Cartoon Guide to Cryogenic Fluid Management Illustrating Key Concepts in Iconic Form

GRC Cryogenic Fluid Management Accomplishments

Baseline CFD Models Validated Against K-Site, MHTB, and S-IVB Data

Objective:
Perform model development and validation of the baseline computational fluid
dynamics (CFD) codes Flow-3D (with point source spray model) and Fluent (with
lumped-ullage model) for three self-pressurization experiments and one set of spray bar
thermodynamic vent system (TVS) experiments. Accuracy of CFD codes assessed by
comparing experimental data and CFD predictions for ullage pressure versus time.

Key Accomplishment/Deliverable/Milestone:
• Develop lumped-ullage model (non-moving zero-thickness interface) enabling
reduced simulations times compared to Flow-3D, but with limitations on accuracy and
applicability to situations with significant interface movement.
• Lumped-ullage with spray model development completed, but not tested and
validated due to loss of key researcher in June 2009. New person identified to
complete this work by end of FY10. (Updated milestone report will be issued).

Flow-3D Volume of Fluid (VOF) and Fluent lumped-ullage models
validated against 2 ground-based and 1 flight experiment for LH2 selfpressurization with relative error in ullage pressure generally within 5%,
reaching 8-12% at higher liquid fill levels, and up to 18% for the Fluent
lumped-ullage simulations of the flight test (S-IVB AS 203)
• Flow-3D point source spray model developed and validated against
MHTB LH2 spray bar pressure control 1g experiment with ullage
pressure errors up to 26% for pressure rise and 47% for pressure decay

Significance:
• Two CFD models have been developed with errors quantified for selfpressurization and pressure control of cryogenic storage tanks.
• Baseline CFD models are now available Exploration mission
applications (including in-space low gravity applications) and
design/post-analysis of current CFM experimental work. Applications to
Altair and EDS tanks have already occurred and/or are underway.

Temperature contours& velocity
vectors just after spray off
Temperature contours& velocity vectors just after spray off
Flow-3D results: MHTB LH2 1g test, 50% fill
Flow-3D results: MHTB LH2 1g test, 50% fill

Nerva-derived reactor coolant channel model for Mars mission applications

화성 임무 적용을 위한 Nerva 파생 원자로 냉각수 채널 모델

Edward W PortaUniversity of Nevada, Las Vegas

Abstract

화성 미션 애플리케이션을 위한 NERVA 파생 원자로 냉각수 채널 모델은 1.3m NERVA 파생 원자로(NDR) 냉각수 채널의 전산유체역학(CFD) 연구 결과를 제시합니다. CFD 코드 FLOW-3D는 NDR 코어를 통과하는 기체 수소의 흐름을 모델링하는 데 사용되었습니다. 수소는 냉각제 채널을 통해 노심을 통과하여 원자로의 냉각제 및 로켓의 추진제 역할을 합니다. 수소는 고밀도/저온 상태로 채널에 들어가고 저밀도/고온 상태로 빠져나오므로 압축성 모델을 사용해야 합니다. 기술 문서의 설계 사양이 모델에 사용되었습니다. 채널 길이에 걸친 압력 강하가 이전에 추정한 것(0.9MPa)보다 높은 것으로 확인되었으며, 이는 더 강력한 냉각수 펌프가 필요하고 설계 사양을 재평가해야 함을 나타냅니다.

NERVA-Derived Reactor Coolant Channel Model for Mars Mission Applications presents the results of a computational fluid dynamics (CFD) study of a 1.3m NERVA-Derived Reactor (NDR) coolant channel; The CFD code FLOW-3D was used to model the flow of gaseous hydrogen through the core of a NDR. Hydrogen passes through the core by way of coolant channels, acting as the coolant for the reactor as well as the propellant for the rocket. Hydrogen enters the channel in a high density/low temperature state and exits in a low density/high temperature state necessitating the use of a compressible model. Design specifications from a technical paper were used for the model; It was determined that the pressure drop across the length of the channel was higher than previously estimated (0.9 MPa), indicating the possible need for more powerful coolant pumps and a re-evaluation of the design specifications.

Keywords

Application; Channel; Coolant; Derived; Mars; Mission; Model; Nerva; Reactor

Figure 1 Nuclear Rocket Schematic Diagram
Figure 1 Nuclear Rocket Schematic Diagram
Figure 2 Fuel Element - Tip View
Figure 2 Fuel Element – Tip View
Figure 3 Fuel Element - Tie-Tube Structure (Tie-tubes are black)
Figure 3 Fuel Element – Tie-Tube Structure (Tie-tubes are black)
Figure 5 Three-Dimensional Coolant Channel Model
Figure 5 Three-Dimensional Coolant Channel Model
Figure 6 Two-Dimensional Coolant Channel Model
Figure 6 Two-Dimensional Coolant Channel Model

REFERENCES

Anderson, J. D., Jr., (1990) Modern Compressible Flow, 2d ed., McGraw-Hill, New
York.
Avallone E. A. and T. Baumeister III, eds., (1987) Mark’s Standard Handbookfor
Mechanical Engineers, 9th ed., McGraw-Hill, New York.
Bennett, G. L. and T. J. Miller (1992) “Nuclear Propulsion: A Key Transportation
Technology for the Exploration of Mars,” Proceedings o f the 9th Symposium on
Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M. D. Hoover,
eds., American Institute of Physics, New York, AIP Conference Proceedings No.
246, 2: 383-388.
Black, D. L., and S. V. Gunn (1991) “A Technical Summary of Engine and Reactor
Subsystem Design Performance during the NERVA Program,” AIAA-91-3450,
American Institute of Aeronautics and Astronautics, Washington, D. C.
Borowski, S. K., et al. (1992) “Nuclear Thermal Rockets: Key to Moon-Mars
Exploration,” Aerospace America, July 1992, pp. 34(5).
Borowski, S. K., et al. (1993) “ Nuclear Thermal Rocket/Vehicle Design Options for
Future NASA Missions to the Moon and Mars,” AIAA-93-4170, American Institute
of Aeronautics and Astronautics, Washington, D. C.
Borowski, S. K., et al. (1994) “Nuclear Thermal Rocket/Stage Technology Options for
NASA’s Future Human Exploration Missions to the Moon and Mars,” Proceedings
o f the 11th Symposium on Space Nuclear Power and Propulsion, CONF-940101, M.
S. El-Genk and M. D. Hoover, eds., American Institute of Physics, New York, NY,
AIP Conference Proceedings No. 301, 2: 745 – 758.
Burmeister, L. C. (1993) Convective Heat Transfer, 2d ed., John Wiley & Sons, New
York.
Chi, J., R. Holman, and B. Pierce (1989) “Nerva Derivative Reactors for Thermal and
Electrical Propulsion,” AIAA-89-2770, American Institute of Aeronautics and
Astronautics, Washington, D. C.
FIDAP (1993) FIDAP 7.0 User’s Manual, Fluid Dynamics International, Inc.
FL0W-3D (1994) FL0W-3D Version 6.0 Quick Reference Guide, Flow Science, Inc.,
Los Alamos, NM.
Hill, P. G. and C. R. Peterson (1970) Mechanics and Thermodynamics o f Propulsion,
Addison-Wesley, Reading, MA.
Lamarsh, J. R. (1983) Introduction to Nuclear Engineering, 2d ed., Addison-Wesley,
Reading, MA.
Nassersharif, B. (1991) Notes from a Nuclear Propulsion Short Course, 3-5 January
1991, American Institute of Physics.
Nassersharif, B., E. Porta, and D. Hailes (1994) “A Proposal Entitled: Scenario Based
Design of Nuclear Propulsion for Manned Mars Mission,” NSCEE, Las Vegas, NV.
Shepard, K., et al. (1992) “A Split Sprint Mission to Mars,” Proceedings o f the 9th
Symposium on Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M.
D. Hoover, eds., American Institute of Physics, New York, AIP Conference
Proceedings No. 246, 1: 58 – 63.
Sutton, G. P. (1986) Rocket Propulsion Elements: An Introduction to the Engineering
o f Rockets, 5th ed., John Wiley & Sons, New York.
U.S. President (1989) “Remarks on the 20th Anniversary of the Apollo 11 Moon
Landing July 20, 1989,” Administration o f George Bush, Office of the Federal
Register. National Archives and Records Service, 1989, Washington D. C., George
Bush, 1989, p. 992.
VSAERO (1994) VSAERO User’s Manual E.5, Analytical Methods, Inc., Redmond,
WA.
White, F. M. (1991) Viscous Fluid Flow, 2d ed., McGraw-Hill, Inc., New York.
Zweig, H. R. and M. H. Cooper (1993) “NERVA-Derived Rocket Module for Solar
System Exploration,” AIAA-93-2110, American Institute of Aeronautics and
Astronautics, Washington, D. C.

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

Abstract

Flow hydrodynamics in the main channel due to floodplain sand mining is important for a better understanding of maintaining the natural habitat or the reliance between the flood plain and the main channel for the river’s long-term survival and also facilitates more effective river restoration engineering. Day by day anthropogenic stresses are increasing in the river corridor system, indiscriminate sand mining is one of them. In this study, a computational fluid dynamics (CFD)-based software Flow-3D hydro (renormalized group K-ε turbulence model used) is used to study the flow hydrodynamics of sinuous (sinuosity index = 1.25) channel 18 m long, 1 m width, and 0.3 m height with floodplain sand mining pit. Sand mining additionally increases the secondary current near the outer bank of the channel, therefore leading to scouring or erosion at the outer bank, as a result, rivers migrate laterally. The turbulence kinetic energy (TKE) is concentrated in the mining pit and near the inner bank. This study result can be used to understand the flow hydrodynamic of the river system due to the series of sand mining.

Keywords

  • Flow hydrodynamics
  • Turbulence modeling
  • Flow-3D
  • Sinuosity
  • Sand mining

References

  1. Best, J.: Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7–21 (2019)CrossRef CAS Google Scholar 
  2. Bagnold, R.A.: Some Aspects of the Shape of River Meanders. US Government Printing Office (1960)Google Scholar 
  3. Kondolf, G.M.: Freshwater Gravel Mining and Dredging Issues: White Paper. Washington Department of Fish and Wildlife (2002)Google Scholar 
  4. Molnár, P., Ramírez, J.A.: Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 34(7), 1809–1818 (1998)CrossRef Google Scholar 
  5. Padmalal, D., Maya, K.: Sand Mining: Environmental Impacts and Selected Case Studies. Springer (2014)Google Scholar 
  6. Hübler, M., Pothen, F.: Can smart policies solve the sand mining problem? PLoS ONE 16(4), e0248882 (2021)CrossRef Google Scholar 
  7. Khan, S., Sugie, A.: Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J. Urban Reg. Stud. Contemp. India 2(1), 1–11 (2015)Google Scholar 
  8. Daneshfaraz, R. et al.: The experimental study of the effects of river mining holes on the bridge piers. Iranian J. Soil Water Res. 50(7), 1619–1633 (2019)Google Scholar 
  9. Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., … & Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3(3), 217–225 (2020)Google Scholar 
  10. Callander, R.A.: River meandering. Annu. Rev. Fluid Mech. 10(1), 129–158 (1978)CrossRef Google Scholar 
  11. Koehnken, L., Rintoul, M.: Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International (2018)Google Scholar 
  12. Gavriletea, M.D.: Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7), 1118 (2017)Google Scholar 
  13. Koehnken, L., et al.: Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36(3), 362–370 (2020)Google Scholar 
  14. Myers, W.R.C.: Momentum transfer in a compound channel. J. Hydraul. Res. 16(2), 139–150 (1978)CrossRef Google Scholar 
  15. Rajaratnam, N., Ahmadi, R.M.: Interaction between main channel and flood-plain flows. J. Hydraul. Div. 105(5), 573–588 (1979)CrossRef Google Scholar 
  16. Sellin, R.H.J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7, 793–802 (1964)CrossRef Google Scholar 
  17. Karami, H., et al.: Verification of numerical study of scour around spur dikes using experimental data. Water Environ. J. 28(1), 124–134 (2014)Google Scholar 
  18. Bathurst, J.C., et al.: Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surf. Proc. Land. 27(6), 659–665 (2002)CrossRef Google Scholar 
  19. Xu, D., Bai, Y.: Experimental study on the bed topography evolution in alluvial meandering rivers with various sinuousnesses. J. Hydro-Environ. Res. 7(2), 92–102 (2013)CrossRef Google Scholar 
  20. Priego-Hernández, G.A., Rivera-Trejo, F.: Secondary currents: measurement and analysis. Atmósfera 29(1), 23–34 (2016)Google Scholar 
  21. Alshamani, K.M.M.: Correlations among turbulent shear stress, turbulent kinetic energy, and axial turbulence intensity. AIAA J. 16(8), 859–861 (1978)CrossRef Google Scholar 
  22. Biron, P.M., et al.: Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Process. Landforms: J. British Geomorphol. Res. Group 29(11), 1403–1415 (2004)Google Scholar 
  23. Clark, L.A., Theresa, M.W.: Boundary Shear Stress Along Vegetated Streambanks (2007)Google Scholar 
  24. Kim, S.-C., et al.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J. Hydraul. Eng. 126(6), 399–406 (2000)CrossRef Google Scholar 

  1. Home  
  2. Sustainable Environment  
  3. Conference paper

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

  • 14 Accesses

Abstract

Flow hydrodynamics in the main channel due to floodplain sand mining is important for a better understanding of maintaining the natural habitat or the reliance between the flood plain and the main channel for the river’s long-term survival and also facilitates more effective river restoration engineering. Day by day anthropogenic stresses are increasing in the river corridor system, indiscriminate sand mining is one of them. In this study, a computational fluid dynamics (CFD)-based software Flow-3D hydro (renormalized group K-ε turbulence model used) is used to study the flow hydrodynamics of sinuous (sinuosity index = 1.25) channel 18 m long, 1 m width, and 0.3 m height with floodplain sand mining pit. Sand mining additionally increases the secondary current near the outer bank of the channel, therefore leading to scouring or erosion at the outer bank, as a result, rivers migrate laterally. The turbulence kinetic energy (TKE) is concentrated in the mining pit and near the inner bank. This study result can be used to understand the flow hydrodynamic of the river system due to the series of sand mining.

Keywords

  • Flow hydrodynamics
  • Turbulence modeling
  • Flow-3D
  • Sinuosity
  • Sand mining

This is a preview of subscription content, access via your institution.

References

  1. Best, J.: Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7–21 (2019)CrossRef CAS Google Scholar 
  2. Bagnold, R.A.: Some Aspects of the Shape of River Meanders. US Government Printing Office (1960)Google Scholar 
  3. Kondolf, G.M.: Freshwater Gravel Mining and Dredging Issues: White Paper. Washington Department of Fish and Wildlife (2002)Google Scholar 
  4. Molnár, P., Ramírez, J.A.: Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 34(7), 1809–1818 (1998)CrossRef Google Scholar 
  5. Padmalal, D., Maya, K.: Sand Mining: Environmental Impacts and Selected Case Studies. Springer (2014)Google Scholar 
  6. Hübler, M., Pothen, F.: Can smart policies solve the sand mining problem? PLoS ONE 16(4), e0248882 (2021)CrossRef Google Scholar 
  7. Khan, S., Sugie, A.: Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J. Urban Reg. Stud. Contemp. India 2(1), 1–11 (2015)Google Scholar 
  8. Daneshfaraz, R. et al.: The experimental study of the effects of river mining holes on the bridge piers. Iranian J. Soil Water Res. 50(7), 1619–1633 (2019)Google Scholar 
  9. Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., … & Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3(3), 217–225 (2020)Google Scholar 
  10. Callander, R.A.: River meandering. Annu. Rev. Fluid Mech. 10(1), 129–158 (1978)CrossRef Google Scholar 
  11. Koehnken, L., Rintoul, M.: Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International (2018)Google Scholar 
  12. Gavriletea, M.D.: Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7), 1118 (2017)Google Scholar 
  13. Koehnken, L., et al.: Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36(3), 362–370 (2020)Google Scholar 
  14. Myers, W.R.C.: Momentum transfer in a compound channel. J. Hydraul. Res. 16(2), 139–150 (1978)CrossRef Google Scholar 
  15. Rajaratnam, N., Ahmadi, R.M.: Interaction between main channel and flood-plain flows. J. Hydraul. Div. 105(5), 573–588 (1979)CrossRef Google Scholar 
  16. Sellin, R.H.J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7, 793–802 (1964)CrossRef Google Scholar 
  17. Karami, H., et al.: Verification of numerical study of scour around spur dikes using experimental data. Water Environ. J. 28(1), 124–134 (2014)Google Scholar 
  18. Bathurst, J.C., et al.: Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surf. Proc. Land. 27(6), 659–665 (2002)CrossRef Google Scholar 
  19. Xu, D., Bai, Y.: Experimental study on the bed topography evolution in alluvial meandering rivers with various sinuousnesses. J. Hydro-Environ. Res. 7(2), 92–102 (2013)CrossRef Google Scholar 
  20. Priego-Hernández, G.A., Rivera-Trejo, F.: Secondary currents: measurement and analysis. Atmósfera 29(1), 23–34 (2016)Google Scholar 
  21. Alshamani, K.M.M.: Correlations among turbulent shear stress, turbulent kinetic energy, and axial turbulence intensity. AIAA J. 16(8), 859–861 (1978)CrossRef Google Scholar 
  22. Biron, P.M., et al.: Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Process. Landforms: J. British Geomorphol. Res. Group 29(11), 1403–1415 (2004)Google Scholar 
  23. Clark, L.A., Theresa, M.W.: Boundary Shear Stress Along Vegetated Streambanks (2007)Google Scholar 
  24. Kim, S.-C., et al.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J. Hydraul. Eng. 126(6), 399–406 (2000)CrossRef Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, IndiaO. P. Maurya, K. K. Nandi, S. Modalavalasa & S. Dutta

Corresponding author

Correspondence to O. P. Maurya .

Editor information

Editors and Affiliations

  1. Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, IndiaDeepmoni Deka
  2. Department of Chemical engineering, Indian Institute of Technology Guwahati, Guwahati, IndiaSubrata Kumar Majumder
  3. Department of Chemical engineering, Indian Institute of Technology Guwahati, Guwahati, IndiaMihir Kumar Purkait
Figure 5 A schematic of the water model of reactor URO 200.

Physical and Numerical Modeling of the Impeller Construction Impact on the Aluminum Degassing Process

알루미늄 탈기 공정에 미치는 임펠러 구성의 물리적 및 수치적 모델링

Kamil Kuglin,1 Michał Szucki,2 Jacek Pieprzyca,3 Simon Genthe,2 Tomasz Merder,3 and Dorota Kalisz1,*

Mikael Ersson, Academic Editor

Author information Article notes Copyright and License information Disclaimer

Associated Data

Data Availability Statement

Go to:

Abstract

This paper presents the results of tests on the suitability of designed heads (impellers) for aluminum refining. The research was carried out on a physical model of the URO-200, followed by numerical simulations in the FLOW 3D program. Four design variants of impellers were used in the study. The degree of dispersion of the gas phase in the model liquid was used as a criterion for evaluating the performance of each solution using different process parameters, i.e., gas flow rate and impeller speed. Afterward, numerical simulations in Flow 3D software were conducted for the best solution. These simulations confirmed the results obtained with the water model and verified them.

Keywords: aluminum, impeller construction, degassing process, numerical modeling, physical modeling

Go to:

1. Introduction

Constantly increasing requirements concerning metallurgical purity in terms of hydrogen content and nonmetallic inclusions make casting manufacturers use effective refining techniques. The answer to this demand is the implementation of the aluminum refining technique making use of a rotor with an original design guaranteeing efficient refining [1,2,3,4]. The main task of the impeller (rotor) is to reduce the contamination of liquid metal (primary and recycled aluminum) with hydrogen and nonmetallic inclusions. An inert gas, mainly argon or a mixture of gases, is introduced through the rotor into the liquid metal to bring both hydrogen and nonmetallic inclusions to the metal surface through the flotation process. Appropriately and uniformly distributed gas bubbles in the liquid metal guarantee achieving the assumed level of contaminant removal economically. A very important factor in deciding about the obtained degassing effect is the optimal rotor design [5,6,7,8]. Thanks to the appropriate geometry of the rotor, gas bubbles introduced into the liquid metal are split into smaller ones, and the spinning movement of the rotor distributes them throughout the volume of the liquid metal bath. In this solution impurities in the liquid metal are removed both in the volume and from the upper surface of the metal. With a well-designed impeller, the costs of refining aluminum and its alloys can be lowered thanks to the reduced inert gas and energy consumption (optimal selection of rotor rotational speed). Shorter processing time and a high degree of dehydrogenation decrease the formation of dross on the metal surface (waste). A bigger produced dross leads to bigger process losses. Consequently, this means that the choice of rotor geometry has an indirect impact on the degree to which the generated waste is reduced [9,10].

Another equally important factor is the selection of process parameters such as gas flow rate and rotor speed [11,12]. A well-designed gas injection system for liquid metal meets two key requirements; it causes rapid mixing of the liquid metal to maintain a uniform temperature throughout the volume and during the entire process, to produce a chemically homogeneous metal composition. This solution ensures effective degassing of the metal bath. Therefore, the shape of the rotor, the arrangement of the nozzles, and their number are significant design parameters that guarantee the optimum course of the refining process. It is equally important to complete the mixing of the metal bath in a relatively short time, as this considerably shortens the refining process and, consequently, reduces the process costs. Another important criterion conditioning the implementation of the developed rotor is the generation of fine diffused gas bubbles which are distributed throughout the metal volume, and whose residence time will be sufficient for the bubbles to collide and adsorb the contaminants. The process of bubble formation by the spinning rotors differs from that in the nozzles or porous molders. In the case of a spinning rotor, the shear force generated by the rotor motion splits the bubbles into smaller ones. Here, the rotational speed, mixing force, surface tension, and fluid density have a key effect on the bubble size. The velocity of the bubbles, which depends mainly on their size and shape, determines their residence time in the reactor and is, therefore, very important for the refining process, especially since gas bubbles in liquid aluminum may remain steady only below a certain size [13,14,15].

The impeller designs presented in the article were developed to improve the efficiency of the process and reduce its costs. The impellers used so far have a complicated structure and are very pricey. The success of the conducted research will allow small companies to become independent of external supplies through the possibility of making simple and effective impellers on their own. The developed structures were tested on the water model. The results of this study can be considered as pilot.

Go to:

2. Materials and Methods

Rotors were realized with the SolidWorks computer design technique and a 3D printer. The developed designs were tested on a water model. Afterward, the solution with the most advantageous refining parameters was selected and subjected to calculations with the Flow3D package. As a result, an impeller was designed for aluminum refining. Its principal lies in an even distribution of gas bubbles in the entire volume of liquid metal, with the largest possible participation of the bubble surface, without disturbing the metal surface. This procedure guarantees the removal of gaseous, as well as metallic and nonmetallic, impurities.

2.1. Rotor Designs

The developed impeller constructions, shown in Figure 1Figure 2Figure 3 and Figure 4, were printed on a 3D printer using the PLA (polylactide) material. The impeller design models differ in their shape and the number of holes through which the inert gas flows. Figure 1Figure 2 and Figure 3 show the same impeller model but with a different number of gas outlets. The arrangement of four, eight, and 12 outlet holes was adopted in the developed design. A triangle-shaped structure equipped with three gas outlet holes is presented in Figure 4.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g001.jpg

Figure 1

A 3D model—impeller with four holes—variant B4.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g002.jpg

Figure 2

A 3D model—impeller with eight holes—variant B8.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g003.jpg

Figure 3

A 3D model—impeller with twelve holes—variant B12.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g004.jpg

Figure 4

A 3D model—‘red triangle’ impeller with three holes—variant RT3.

2.2. Physical Models

Investigations were carried out on a water model of the URO 200 reactor of the barbotage refining process (see Figure 5).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g005.jpg

Figure 5

A schematic of the water model of reactor URO 200.

The URO 200 reactor can be classified as a cyclic reactor. The main element of the device is a rotor, which ends the impeller. The whole system is attached to a shaft via which the refining gas is supplied. Then, the shaft with the rotor is immersed in the liquid metal in the melting pot or the furnace chamber. In URO 200 reactors, the refining process lasts 600 s (10 min), the gas flow rate that can be obtained ranges from 5 to 20 dm3·min−1, and the speed at which the rotor can move is 0 to 400 rpm. The permissible quantity of liquid metal for barbotage refining is 300 kg or 700 kg [8,16,17]. The URO 200 has several design solutions which improve operation and can be adapted to the existing equipment in the foundry. These solutions include the following [8,16]:

  • URO-200XR—used for small crucible furnaces, the capacity of which does not exceed 250 kg, with no control system and no control of the refining process.
  • URO-200SA—used to service several crucible furnaces of capacity from 250 kg to 700 kg, fully automated and equipped with a mechanical rotor lift.
  • URO-200KA—used for refining processes in crucible furnaces and allows refining in a ladle. The process is fully automated, with a hydraulic rotor lift.
  • URO-200KX—a combination of the XR and KA models, designed for the ladle refining process. Additionally, refining in heated crucibles is possible. The unit is equipped with a manual hydraulic rotor lift.
  • URO-200PA—designed to cooperate with induction or crucible furnaces or intermediate chambers, the capacity of which does not exceed one ton. This unit is an integral part of the furnace. The rotor lift is equipped with a screw drive.

Studies making use of a physical model can be associated with the observation of the flow and circulation of gas bubbles. They require meeting several criteria regarding the similarity of the process and the object characteristics. The similarity conditions mainly include geometric, mechanical, chemical, thermal, and kinetic parameters. During simulation of aluminum refining with inert gas, it is necessary to maintain the geometric similarity between the model and the real object, as well as the similarity related to the flow of liquid metal and gas (hydrodynamic similarity). These quantities are characterized by the Reynolds, Weber, and Froude numbers. The Froude number is the most important parameter characterizing the process, its magnitude is the same for the physical model and the real object. Water was used as the medium in the physical modeling. The factors influencing the choice of water are its availability, relatively low cost, and kinematic viscosity at room temperature, which is very close to that of liquid aluminum.

The physical model studies focused on the flow of inert gas in the form of gas bubbles with varying degrees of dispersion, particularly with respect to some flow patterns such as flow in columns and geysers, as well as disturbance of the metal surface. The most important refining parameters are gas flow rate and rotor speed. The barbotage refining studies for the developed impeller (variants B4, B8, B12, and RT3) designs were conducted for the following process parameters:

  • Rotor speed: 200, 300, 400, and 500 rpm,
  • Ideal gas flow: 10, 20, and 30 dm3·min−1,
  • Temperature: 293 K (20 °C).

These studies were aimed at determining the most favorable variants of impellers, which were then verified using the numerical modeling methods in the Flow-3D program.

2.3. Numerical Simulations with Flow-3D Program

Testing different rotor impellers using a physical model allows for observing the phenomena taking place while refining. This is a very important step when testing new design solutions without using expensive industrial trials. Another solution is modeling by means of commercial simulation programs such as ANSYS Fluent or Flow-3D [18,19]. Unlike studies on a physical model, in a computer program, the parameters of the refining process and the object itself, including the impeller design, can be easily modified. The simulations were performed with the Flow-3D program version 12.03.02. A three-dimensional system with the same dimensions as in the physical modeling was used in the calculations. The isothermal flow of liquid–gas bubbles was analyzed. As in the physical model, three speeds were adopted in the numerical tests: 200, 300, and 500 rpm. During the initial phase of the simulations, the velocity field around the rotor generated an appropriate direction of motion for the newly produced bubbles. When the required speed was reached, the generation of randomly distributed bubbles around the rotor was started at a rate of 2000 per second. Table 1 lists the most important simulation parameters.

Table 1

Values of parameters used in the calculations.

ParameterValueUnit
Maximum number of gas particles1,000,000
Rate of particle generation20001·s−1
Specific gas constant287.058J·kg−1·K−1
Atmospheric pressure1.013 × 105Pa
Water density1000kg·m−3
Water viscosity0.001kg·m−1·s−1
Boundary condition on the wallsNo-slip
Size of computational cell0.0034m

Open in a separate window

In the case of the CFD analysis, the numerical solutions require great care when generating the computational mesh. Therefore, computational mesh tests were performed prior to the CFD calculations. The effect of mesh density was evaluated by taking into account the velocity of water in the tested object on the measurement line A (height of 0.065 m from the bottom) in a characteristic cross-section passing through the object axis (see Figure 6). The mesh contained 3,207,600, 6,311,981, 7,889,512, 11,569,230, and 14,115,049 cells.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g006.jpg

Figure 6

The velocity of the water depending on the size of the computational grid.

The quality of the generated computational meshes was checked using the criterion skewness angle QEAS [18]. This criterion is described by the following relationship:

QEAS=max{βmax−βeq180−βeq,βeq−βminβeq},

(1)

where βmaxβmin are the maximal and minimal angles (in degrees) between the edges of the cell, and βeq is the angle corresponding to an ideal cell, which for cubic cells is 90°.

Normalized in the interval [0;1], the value of QEAS should not exceed 0.75, which identifies the permissible skewness angle of the generated mesh. For the computed meshes, this value was equal to 0.55–0.65.

Moreover, when generating the computational grids in the studied facility, they were compacted in the areas of the highest gradients of the calculated values, where higher turbulence is to be expected (near the impeller). The obtained results of water velocity in the studied object at constant gas flow rate are shown in Figure 6.

The analysis of the obtained water velocity distributions (see Figure 6) along the line inside the object revealed that, with the density of the grid of nodal points, the velocity changed and its changes for the test cases of 7,889,512, 11,569,230, and 14,115,049 were insignificant. Therefore, it was assumed that a grid containing not less than 7,900,000 (7,889,512) cells would not affect the result of CFD calculations.

A single-block mesh of regular cells with a size of 0.0034 m was used in the numerical calculations. The total number of cells was approximately 7,900,000 (7,889,512). This grid resolution (see Figure 7) allowed the geometry of the system to be properly represented, maintaining acceptable computation time (about 3 days on a workstation with 2× CPU and 12 computing cores).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g007.jpg

Figure 7

Structured equidistant mesh used in numerical calculations: (a) mesh with smoothed, surface cells (the so-called FAVOR method) used in Flow-3D; (b) visualization of the applied mesh resolution.

The calculations were conducted with an explicit scheme. The timestep was selected by the program automatically and controlled by stability and convergence. From the moment of the initial velocity field generation (start of particle generation), it was 0.0001 s.

When modeling the degassing process, three fluids are present in the system: water, gas supplied through the rotor head (impeller), and the surrounding air. Modeling such a multiphase flow is a numerically very complex issue. The necessity to overcome the liquid backpressure by the gas flowing out from the impeller leads to the formation of numerical instabilities in the volume of fluid (VOF)-based approach used by Flow-3D software. Therefore, a mixed description of the analyzed flow was used here. In this case, water was treated as a continuous medium, while, in the case of gas bubbles, the discrete phase model (DPM) model was applied. The way in which the air surrounding the system was taken into account is later described in detail.

The following additional assumptions were made in the modeling:

  • —The liquid phase was considered as an incompressible Newtonian fluid.
  • —The effect of chemical reactions during the refining process was neglected.
  • —The composition of each phase (gas and liquid) was considered homogeneous; therefore, the viscosity and surface tension were set as constants.
  • —Only full turbulence existed in the liquid, and the effect of molecular viscosity was neglected.
  • —The gas bubbles were shaped as perfect spheres.
  • —The mutual interaction between gas bubbles (particles) was neglected.

2.3.1. Modeling of Liquid Flow 

The motion of the real fluid (continuous medium) is described by the Navier–Stokes Equation [20].

dudt=−1ρ∇p+ν∇2u+13ν∇(∇⋅ u)+F,

(2)

where du/dt is the time derivative, u is the velocity vector, t is the time, and F is the term accounting for external forces including gravity (unit components denoted by XYZ).

In the simulations, the fluid flow was assumed to be incompressible, in which case the following equation is applicable:

∂u∂t+(u⋅∇)u=−1ρ∇p+ν∇2u+F.

(3)

Due to the large range of liquid velocities during flows, the turbulence formation process was included in the modeling. For this purpose, the k–ε model turbulence kinetic energy k and turbulence dissipation ε were the target parameters, as expressed by the following equations [21]:

∂(ρk)∂t+∂(ρkvi)∂xi=∂∂xj[(μ+μtσk)⋅∂k∂xi]+Gk+Gb−ρε−Ym+Sk,

(4)

∂(ρε)∂t+∂(ρεui)∂xi=∂∂xj[(μ+μtσε)⋅∂k∂xi]+C1εεk(Gk+G3εGb)+C2ερε2k+Sε,

(5)

where ρ is the gas density, σκ and σε are the Prandtl turbulence numbers, k and ε are constants of 1.0 and 1.3, and Gk and Gb are the kinetic energy of turbulence generated by the average velocity and buoyancy, respectively.

As mentioned earlier, there are two gas phases in the considered problem. In addition to the gas bubbles, which are treated here as particles, there is also air, which surrounds the system. The boundary of phase separation is in this case the free surface of the water. The shape of the free surface can change as a result of the forming velocity field in the liquid. Therefore, it is necessary to use an appropriate approach to free surface tracking. The most commonly used concept in liquid–gas flow modeling is the volume of fluid (VOF) method [22,23], and Flow-3D uses a modified version of this method called TrueVOF. It introduces the concept of the volume fraction of the liquid phase fl. This parameter can be used for classifying the cells of a discrete grid into areas filled with liquid phase (fl = 1), gaseous phase, or empty cells (fl = 0) and those through which the phase separation boundary (fl ∈ (0, 1)) passes (free surface). To determine the local variations of the liquid phase fraction, it is necessary to solve the following continuity equation:

dfldt=0.

(6)

Then, the fluid parameters in the region of coexistence of the two phases (the so-called interface) depend on the volume fraction of each phase.

ρ=flρl+(1−fl)ρg,

(7)

ν=flνl+(1−fl)νg,

(8)

where indices l and g refer to the liquid and gaseous phases, respectively.

The parameter of fluid velocity in cells containing both phases is also determined in the same way.

u=flul+(1−fl)ug.

(9)

Since the processes taking place in the surrounding air can be omitted, to speed up the calculations, a single-phase, free-surface model was used. This means that no calculations were performed in the gas cells (they were treated as empty cells). The liquid could fill them freely, and the air surrounding the system was considered by the atmospheric pressure exerted on the free surface. This approach is often used in modeling foundry and metallurgical processes [24].

2.3.2. Modeling of Gas Bubble Flow 

As stated, a particle model was used to model bubble flow. Spherical particles (gas bubbles) of a given size were randomly generated in the area marked with green in Figure 7b. In the simulations, the gas bubbles were assumed to have diameters of 0.016 and 0.02 m corresponding to the gas flow rates of 10 and 30 dm3·min−1, respectively.

Experimental studies have shown that, as a result of turbulent fluid motion, some of the bubbles may burst, leading to the formation of smaller bubbles, although merging of bubbles into larger groupings may also occur. Therefore, to be able to observe the behavior of bubbles of different sizes (diameter), the calculations generated two additional particle types with diameters twice smaller and twice larger, respectively. The proportion of each species in the system was set to 33.33% (Table 2).

Table 2

Data assumed for calculations.

NoRotor Speed (Rotational Speed)
rpm
Bubbles Diameter
m
Corresponding Gas Flow Rate
dm3·min−1
NoRotor Speed (Rotational Speed)
rpm
Bubbles Diameter
m
Corresponding Gas Flow Rate
dm3·min−1
A2000.01610D2000.0230
0.0080.01
0.0320.04
B3000.01610E3000.0230
0.0080.01
0.0320.04
C5000.01610F5000.0230
0.0080.01
0.0320.04

Open in a separate window

The velocity of the particle results from the generated velocity field (calculated from Equation (3) in the liquid ul around it and its velocity resulting from the buoyancy force ub. The effect of particle radius r on the terminal velocity associated with buoyancy force can be determined according to Stokes’ law.

ub=29 (ρg−ρl)μlgr2,

(10)

where g is the acceleration (9.81).

The DPM model was used for modeling the two-phase (water–air) flow. In this model, the fluid (water) is treated as a continuous phase and described by the Navier–Stokes equation, while gas bubbles are particles flowing in the model fluid (discrete phase). The trajectories of each bubble in the DPM system are calculated at each timestep taking into account the mass forces acting on it. Table 3 characterizes the DPM model used in our own research [18].

Table 3

Characteristic of the DPM model.

MethodEquations
Euler–LagrangeBalance equation:
dugdt=FD(u−ug)+g(ϱg−ϱ)ϱg+F.
FD (u − up) denotes the drag forces per mass unit of a bubble, and the expression for the drag coefficient FD is of the form
FD=18μCDReϱ⋅gd2g24.
The relative Reynolds number has the form
Re≡ρdg|ug−u|μ.
On the other hand, the force resulting from the additional acceleration of the model fluid has the form
F=12dρdtρg(u−ug),
where ug is the gas bubble velocity, u is the liquid velocity, dg is the bubble diameter, and CD is the drag coefficient.

Open in a separate window

Go to:

3. Results and Discussion

3.1. Calculations of Power and Mixing Time by the Flowing Gas Bubbles

One of the most important parameters of refining with a rotor is the mixing power induced by the spinning rotor and the outflowing gas bubbles (via impeller). The mixing power of liquid metal in a ladle of height (h) by gas injection can be determined from the following relation [15]:

pgVm=ρ⋅g⋅uB,

(11)

where pg is the mixing power, Vm is the volume of liquid metal in the reactor, ρ is the density of liquid aluminum, and uB is the average speed of bubbles, given below.

uB=n⋅R⋅TAc⋅Pm⋅t,

(12)

where n is the number of gas moles, R is the gas constant (8.314), Ac is the cross-sectional area of the reactor vessel, T is the temperature of liquid aluminum in the reactor, and Pm is the pressure at the middle tank level. The pressure at the middle level of the tank is calculated by a function of the mean logarithmic difference.

Pm=(Pa+ρ⋅g⋅h)−Paln(Pa+ρ⋅g⋅h)Pa,

(13)

where Pa is the atmospheric pressure, and h is the the height of metal in the reactor.

Themelis and Goyal [25] developed a model for calculating mixing power delivered by gas injection.

pg=2Q⋅R⋅T⋅ln(1+m⋅ρ⋅g⋅hP),

(14)

where Q is the gas flow, and m is the mass of liquid metal.

Zhang [26] proposed a model taking into account the temperature difference between gas and alloy (metal).

pg=QRTgVm[ln(1+ρ⋅g⋅hPa)+(1−TTg)],

(15)

where Tg is the gas temperature at the entry point.

Data for calculating the mixing power resulting from inert gas injection into liquid aluminum are given below in Table 4. The design parameters were adopted for the model, the parameters of which are shown in Figure 5.

Table 4

Data for calculating mixing power introduced by an inert gas.

ParameterValueUnit
Height of metal column0.7m
Density of aluminum2375kg·m−3
Process duration20s
Gas temperature at the injection site940K
Cross-sectional area of ladle0.448m2
Mass of liquid aluminum546.25kg
Volume of ladle0.23M3
Temperature of liquid aluminum941.15K

Open in a separate window

Table 5 presents the results of mixing power calculations according to the models of Themelis and Goyal and of Zhang for inert gas flows of 10, 20, and 30 dm3·min−1. The obtained calculation results significantly differed from each other. The difference was an order of magnitude, which indicates that the model is highly inaccurate without considering the temperature of the injected gas. Moreover, the calculations apply to the case when the mixing was performed only by the flowing gas bubbles, without using a rotor, which is a great simplification of the phenomenon.

Table 5

Mixing power calculated from mathematical models.

Mathematical ModelMixing Power (W·t−1)
for a Given Inert Gas Flow (dm3·min−1)
102030
Themelis and Goyal11.4923.3335.03
Zhang0.821.662.49

Open in a separate window

The mixing time is defined as the time required to achieve 95% complete mixing of liquid metal in the ladle [27,28,29,30]. Table 6 groups together equations for the mixing time according to the models.

Table 6

Models for calculating mixing time.

AuthorsModelRemarks
Szekely [31]τ=800ε−0.4ε—W·t−1
Chiti and Paglianti [27]τ=CVQlV—volume of reactor, m3
Ql—flow intensity, m3·s−1
Iguchi and Nakamura [32]τ=1200⋅Q−0.4D1.97h−1.0υ0.47υ—kinematic viscosity, m2·s−1
D—diameter of ladle, m
h—height of metal column, m
Q—liquid flow intensity, m3·s−1

Open in a separate window

Figure 8 and Figure 9 show the mixing time as a function of gas flow rate for various heights of the liquid column in the ladle and mixing power values.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g008.jpg

Figure 8

Mixing time as a function of gas flow rate for various heights of the metal column (Iguchi and Nakamura model).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g009.jpg

Figure 9

Mixing time as a function of mixing power (Szekly model).

3.2. Determining the Bubble Size

The mechanisms controlling bubble size and mass transfer in an alloy undergoing refining are complex. Strong mixing conditions in the reactor promote impurity mass transfer. In the case of a spinning rotor, the shear force generated by the rotor motion separates the bubbles into smaller bubbles. Rotational speed, mixing force, surface tension, and liquid density have a strong influence on the bubble size. To characterize the kinetic state of the refining process, parameters k and A were introduced. Parameters kA, and uB can be calculated using the below equations [33].

k=2D⋅uBdB⋅π−−−−−−√,

(16)

A=6Q⋅hdB⋅uB,

(17)

uB=1.02g⋅dB,−−−−−√

(18)

where D is the diffusion coefficient, and dB is the bubble diameter.

After substituting appropriate values, we get

dB=3.03×104(πD)−2/5g−1/5h4/5Q0.344N−1.48.

(19)

According to the last equation, the size of the gas bubble decreases with the increasing rotational speed (see Figure 10).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g010.jpg

Figure 10

Effect of rotational speed on the bubble diameter.

In a flow of given turbulence intensity, the diameter of the bubble does not exceed the maximum size dmax, which is inversely proportional to the rate of kinetic energy dissipation in a viscous flow ε. The size of the gas bubble diameter as a function of the mixing energy, also considering the Weber number and the mixing energy in the negative power, can be determined from the following equations [31,34]:

  • —Sevik and Park:

dBmax=We0.6kr⋅(σ⋅103ρ⋅10−3)0.6⋅(10⋅ε)−0.4⋅10−2.

(20)

  • —Evans:

dBmax=⎡⎣Wekr⋅σ⋅1032⋅(ρ⋅10−3)13⎤⎦35 ⋅(10⋅ε)−25⋅10−2.

(21)

The results of calculating the maximum diameter of the bubble dBmax determined from Equation (21) are given in Table 7.

Table 7

The results of calculating the maximum diameter of the bubble using Equation (21).

ModelMixing Energy
ĺ (m2·s−3)
Weber Number (Wekr)
0.591.01.2
Zhang and Taniguchi
dmax
0.10.01670.02300.026
0.50.00880.01210.013
1.00.00670.00910.010
1.50.00570.00780.009
Sevik and Park
dBmax
0.10.2650.360.41
0.50.1390.190.21
1.00.1060.140.16
1.50.0900.120.14
Evans
dBmax
0.10.2470.3400.38
0.50.1300.1780.20
1.00.0980.1350.15
1.50.0840.1150.13

Open in a separate window

3.3. Physical Modeling

The first stage of experiments (using the URO-200 water model) included conducting experiments with impellers equipped with four, eight, and 12 gas outlets (variants B4, B8, B12). The tests were carried out for different process parameters. Selected results for these experiments are presented in Figure 11Figure 12Figure 13 and Figure 14.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g011.jpg

Figure 11

Impeller variant B4—gas bubbles dispersion registered for a gas flow rate of 10 dm3·min−1 and rotor speed of (a) 200, (b) 300, (c) 400, and (d) 500 rpm.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g012.jpg

Figure 12

Impeller variant B8—gas bubbles dispersion registered for a gas flow rate of 10 dm3·min−1 and rotor speed of (a) 200, (b) 300, (c) 400, and (d) 500 rpm.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g013.jpg

Figure 13

Gas bubble dispersion registered for different processing parameters (impeller variant B12).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g014.jpg

Figure 14

Gas bubble dispersion registered for different processing parameters (impeller variant RT3).

The analysis of the refining variants presented in Figure 11Figure 12Figure 13 and Figure 14 reveals that the proposed impellers design model is not useful for the aluminum refining process. The number of gas outlet orifices, rotational speed, and flow did not affect the refining efficiency. In all the variants shown in the figures, very poor dispersion of gas bubbles was observed in the object. The gas bubble flow had a columnar character, and so-called dead zones, i.e., areas where no inert gas bubbles are present, were visible in the analyzed object. Such dead zones were located in the bottom and side zones of the ladle, while the flow of bubbles occurred near the turning rotor. Another negative phenomenon observed was a significant agitation of the water surface due to excessive (rotational) rotor speed and gas flow (see Figure 13, cases 20; 400, 30; 300, 30; 400, and 30; 500).

Research results for a ‘red triangle’ impeller equipped with three gas supply orifices (variant RT3) are presented in Figure 14.

In this impeller design, a uniform degree of bubble dispersion in the entire volume of the modeling fluid was achieved for most cases presented (see Figure 14). In all tested variants, single bubbles were observed in the area of the water surface in the vessel. For variants 20; 200, 30; 200, and 20; 300 shown in Figure 14, the bubble dispersion results were the worst as the so-called dead zones were identified in the area near the bottom and sidewalls of the vessel, which disqualifies these work parameters for further applications. Interestingly, areas where swirls and gas bubble chains formed were identified only for the inert gas flows of 20 and 30 dm3·min−1 and 200 rpm in the analyzed model. This means that the presented model had the best performance in terms of dispersion of gas bubbles in the model liquid. Its design with sharp edges also differed from previously analyzed models, which is beneficial for gas bubble dispersion, but may interfere with its suitability in industrial conditions due to possible premature wear.

3.4. Qualitative Comparison of Research Results (CFD and Physical Model)

The analysis (physical modeling) revealed that the best mixing efficiency results were obtained with the RT3 impeller variant. Therefore, numerical calculations were carried out for the impeller model with three outlet orifices (variant RT3). The CFD results are presented in Figure 15 and Figure 16.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g015.jpg

Figure 15

Simulation results of the impeller RT3, for given flows and rotational speeds after a time of 1 s: simulation variants (a) A, (b) B, (c) C, (d) D, (e) E, and (f) F.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g016.jpg

Figure 16

Simulation results of the impeller RT3, for given flows and rotational speeds after a time of 5.4 s.: simulation variants (a) A, (b) B, (c) C, (d) D, (e) E, and (f) F.

CFD results are presented for all analyzed variants (impeller RT3) at two selected calculation timesteps of 1 and 5.40 s. They show the velocity field of the medium (water) and the dispersion of gas bubbles.

Figure 15 shows the initial refining phase after 1 s of the process. In this case, the gas bubble formation and flow were observed in an area close to contact with the rotor. Figure 16 shows the phase when the dispersion and flow of gas bubbles were advanced in the reactor area of the URO-200 model.

The quantitative evaluation of the obtained results of physical and numerical model tests was based on the comparison of the degree of gas dispersion in the model liquid. The degree of gas bubble dispersion in the volume of the model liquid and the areas of strong turbulent zones formation were evaluated during the analysis of the results of visualization and numerical simulations. These two effects sufficiently characterize the required course of the process from the physical point of view. The known scheme of the below description was adopted as a basic criterion for the evaluation of the degree of dispersion of gas bubbles in the model liquid.

  • Minimal dispersion—single bubbles ascending in the region of their formation along the ladle axis; lack of mixing in the whole bath volume.
  • Accurate dispersion—single and well-mixed bubbles ascending toward the bath mirror in the region of the ladle axis; no dispersion near the walls and in the lower part of the ladle.
  • Uniform dispersion—most desirable; very good mixing of fine bubbles with model liquid.
  • Excessive dispersion—bubbles join together to form chains; large turbulence zones; uneven flow of gas.

The numerical simulation results give a good agreement with the experiments performed with the physical model. For all studied variants (used process parameters), the single bubbles were observed in the area of water surface in the vessel. For variants presented in Figure 13 (200 rpm, gas flow 20 and dm3·min−1) and relevant examples in numerical simulation Figure 16, the worst bubble dispersion results were obtained because the dead zones were identified in the area near the bottom and sidewalls of the vessel, which disqualifies these work parameters for further use. The areas where swirls and gas bubble chains formed were identified only for the inert gas flows of 20 and 30 dm3·min−1 and 200 rpm in the analyzed model (physical model). This means that the presented impeller model had the best performance in terms of dispersion of gas bubbles in the model liquid. The worst bubble dispersion results were obtained because the dead zones were identified in the area near the bottom and side walls of the vessel, which disqualifies these work parameters for further use.

Figure 17 presents exemplary results of model tests (CFD and physical model) with marked gas bubble dispersion zones. All variants of tests were analogously compared, and this comparison allowed validating the numerical model.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g017.jpg

Figure 17

Compilations of model research results (CFD and physical): A—single gas bubbles formed on the surface of the modeling liquid, B—excessive formation of gas chains and swirls, C—uniform distribution of gas bubbles in the entire volume of the tank, and D—dead zones without gas bubbles, no dispersion. (a) Variant B; (b) variant F.

It should be mentioned here that, in numerical simulations, it is necessary to make certain assumptions and simplifications. The calculations assumed three particle size classes (Table 2), which represent the different gas bubbles that form due to different gas flow rates. The maximum number of particles/bubbles (Table 1) generated was assumed in advance and related to the computational capabilities of the computer. Too many particles can also make it difficult to visualize and analyze the results. The size of the particles, of course, affects their behavior during simulation, while, in the figures provided in the article, the bubbles are represented by spheres (visualization of the results) of the same size. Please note that, due to the adopted Lagrangian–Eulerian approach, the simulation did not take into account phenomena such as bubble collapse or fusion. However, the obtained results allow a comprehensive analysis of the behavior of gas bubbles in the system under consideration.

The comparative analysis of the visualization (quantitative) results obtained with the water model and CFD simulations (see Figure 17) generated a sufficient agreement from the point of view of the trends. A precise quantitative evaluation is difficult to perform because of the lack of a refraction compensating system in the water model. Furthermore, in numerical simulations, it is not possible to determine the geometry of the forming gas bubbles and their interaction with each other as opposed to the visualization in the water model. The use of both research methods is complementary. Thus, a direct comparison of images obtained by the two methods requires appropriate interpretation. However, such an assessment gives the possibility to qualitatively determine the types of the present gas bubble dispersion, thus ultimately validating the CFD results with the water model.

A summary of the visualization results for impellers RT3, i.e., analysis of the occurring gas bubble dispersion types, is presented in Table 8.

Table 8

Summary of visualization results (impeller RT3)—different types of gas bubble dispersion.

No Exp.ABCDEF
Gas flow rate, dm3·min−11030
Impeller speed, rpm200300500200300500
Type of dispersionAccurateUniformUniform/excessiveMinimalExcessiveExcessive

Open in a separate window

Tests carried out for impeller RT3 confirmed the high efficiency of gas bubble distribution in the volume of the tested object at a low inert gas flow rate of 10 dm3·min−1. The most optimal variant was variant B (300 rpm, 10 dm3·min−1). However, the other variants A and C (gas flow rate 10 dm3·min−1) seemed to be favorable for this type of impeller and are recommended for further testing. The above process parameters will be analyzed in detail in a quantitative analysis to be performed on the basis of the obtained efficiency curves of the degassing process (oxygen removal). This analysis will give an unambiguous answer as to which process parameters are the most optimal for this type of impeller; the results are planned for publication in the next article.

It should also be noted here that the high agreement between the results of numerical calculations and physical modelling prompts a conclusion that the proposed approach to the simulation of a degassing process which consists of a single-phase flow model with a free surface and a particle flow model is appropriate. The simulation results enable us to understand how the velocity field in the fluid is formed and to analyze the distribution of gas bubbles in the system. The simulations in Flow-3D software can, therefore, be useful for both the design of the impeller geometry and the selection of process parameters.

Go to:

4. Conclusions

The results of experiments carried out on the physical model of the device for the simulation of barbotage refining of aluminum revealed that the worst results in terms of distribution and dispersion of gas bubbles in the studied object were obtained for the black impellers variants B4, B8, and B12 (multi-orifice impellers—four, eight, and 12 outlet holes, respectively).

In this case, the control of flow, speed, and number of gas exit orifices did not improve the process efficiency, and the developed design did not meet the criteria for industrial tests. In the case of the ‘red triangle’ impeller (variant RT3), uniform gas bubble dispersion was achieved throughout the volume of the modeling fluid for most of the tested variants. The worst bubble dispersion results due to the occurrence of the so-called dead zones in the area near the bottom and sidewalls of the vessel were obtained for the flow variants of 20 dm3·min−1 and 200 rpm and 30 dm3·min−1 and 200 rpm. For the analyzed model, areas where swirls and gas bubble chains were formed were found only for the inert gas flow of 20 and 30 dm3·min−1 and 200 rpm. The model impeller (variant RT3) had the best performance compared to the previously presented impellers in terms of dispersion of gas bubbles in the model liquid. Moreover, its design differed from previously presented models because of its sharp edges. This can be advantageous for gas bubble dispersion, but may negatively affect its suitability in industrial conditions due to premature wearing.

The CFD simulation results confirmed the results obtained from the experiments performed on the physical model. The numerical simulation of the operation of the ‘red triangle’ impeller model (using Flow-3D software) gave good agreement with the experiments performed on the physical model. This means that the presented model impeller, as compared to other (analyzed) designs, had the best performance in terms of gas bubble dispersion in the model liquid.

In further work, the developed numerical model is planned to be used for CFD simulations of the gas bubble distribution process taking into account physicochemical parameters of liquid aluminum based on industrial tests. Consequently, the obtained results may be implemented in production practice.

Go to:

Funding Statement

This paper was created with the financial support grants from the AGH-UST, Faculty of Foundry Engineering, Poland (16.16.170.654 and 11/990/BK_22/0083) for the Faculty of Materials Engineering, Silesian University of Technology, Poland.

Go to:

Author Contributions

Conceptualization, K.K. and D.K.; methodology, J.P. and T.M.; validation, M.S. and S.G.; formal analysis, D.K. and T.M.; investigation, J.P., K.K. and S.G.; resources, M.S., J.P. and K.K.; writing—original draft preparation, D.K. and T.M.; writing—review and editing, D.K. and T.M.; visualization, J.P., K.K. and S.G.; supervision, D.K.; funding acquisition, D.K. and T.M. All authors have read and agreed to the published version of the manuscript.

Go to:

Institutional Review Board Statement

Not applicable.

Go to:

Informed Consent Statement

Not applicable.

Go to:

Data Availability Statement

Data are contained within the article.

Go to:

Conflicts of Interest

The authors declare no conflict of interest.

Go to:

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Go to:

References

1. Zhang L., Xuewei L., Torgerson A.T., Long M. Removal of Impurity Elements from Molten Aluminium: A Review. Miner. Process. Extr. Metall. Rev. 2011;32:150–228. doi: 10.1080/08827508.2010.483396. [CrossRef] [Google Scholar]

2. Saternus M. Impurities of liquid aluminium-methods on their estimation and removal. Met. Form. 2015;23:115–132. [Google Scholar]

3. Żak P.L., Kalisz D., Lelito J., Gracz B., Szucki M., Suchy J.S. Modelling of non-metallic particle motion process in foundry alloys. Metalurgija. 2015;54:357–360. [Google Scholar]

4. Kalisz D., Kuglin K. Efficiency of aluminum oxide inclusions rmoval from liquid steel as a result of collisions and agglomeration on ceramic filters. Arch. Foundry Eng. 2020;20:43–48. [Google Scholar]

5. Kuglin K., Kalisz D. Evaluation of the usefulness of rotors for aluminium refining. IOP Conf. Ser. Mater. Sci. Eng. 2021;1178:012036. doi: 10.1088/1757-899X/1178/1/012036. [CrossRef] [Google Scholar]

6. Saternus M., Merder T. Physical modeling of the impeller construction impact o the aluminium refining process. Materials. 2022;15:575. doi: 10.3390/ma15020575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Saternus M., Merder T. Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals. 2018;8:726. doi: 10.3390/met8090726. [CrossRef] [Google Scholar]

8. Saternus M., Merder T., Pieprzyca J. The influence of impeller geometry on the gas bubbles dispersion in uro-200 reactor—RTD curves. Arch. Metall. Mater. 2015;60:2887–2893. doi: 10.1515/amm-2015-0461. [CrossRef] [Google Scholar]

9. Hernández-Hernández M., Camacho-Martínez J., González-Rivera C., Ramírez-Argáez M.A. Impeller design assisted by physical modeling and pilot plant trials. J. Mater. Process. Technol. 2016;236:1–8. doi: 10.1016/j.jmatprotec.2016.04.031. [CrossRef] [Google Scholar]

10. Mancilla E., Cruz-Méndez W., Garduño I.E., González-Rivera C., Ramírez-Argáez M.A., Ascanio G. Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chem. Eng. Res. Des. 2017;118:158–169. doi: 10.1016/j.cherd.2016.11.031. [CrossRef] [Google Scholar]

11. Michalek K., Socha L., Gryc K., Tkadleckova M., Saternus M., Pieprzyca J., Merder T. Modelling of technological parameters of aluminium melt refining in the ladle by blowing of inert gas through the rotating impeller. Arch. Metall. Mater. 2018;63:987–992. [Google Scholar]

12. Walek J., Michalek K., Tkadlecková M., Saternus M. Modelling of Technological Parameters of Aluminium Melt Refining in the Ladle by Blowing of Inert Gas through the Rotating Impeller. Metals. 2021;11:284. doi: 10.3390/met11020284. [CrossRef] [Google Scholar]

13. Michalek K., Gryc K., Moravka J. Physical modelling of bath homogenization in argon stirred ladle. Metalurgija. 2009;48:215–218. [Google Scholar]

14. Michalek K. The Use of Physical Modeling and Numerical Optimization for Metallurgical Processes. VSB; Ostrawa, Czech Republic: 2001. [Google Scholar]

15. Chen J., Zhao J. Light Metals. TMS; Warrendale, PA, USA: 1995. Bubble distribution in a melt treatment water model; pp. 1227–1231. [Google Scholar]

16. Saternus M. Model Matematyczny do Sterowania Procesem Rafinacji Ciekłych Stopów Aluminium Przy Zastosowaniu URO-200. Katowice, Poland: 2004. Research Project Nr 7 T08B 019 21. [Google Scholar]

17. Pietrewicz L., Wężyk W. Urządzenia do rafinacji gazowej typu URO-200 sześć lat produkcji i doświadczeń; Proceedings of the Aluminum Conference; Zakopane, Poland. 12–16 October 1998. [Google Scholar]

18. Flow3d User’s Guide. Flow Science, Inc.; Santa Fe, NM, USA: 2020. [Google Scholar]

19. Sinelnikov V., Szucki M., Merder T., Pieprzyca J., Kalisz D. Physical and numerical modeling of the slag splashing process. Materials. 2021;14:2289. doi: 10.3390/ma14092289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. White F. Fluid Mechanics. McGraw-Hill; New York, NY, USA: 2010. (McGraw-Hill Series in Mechanical Engineering). [Google Scholar]

21. Yang Z., Yang L., Cheng T., Chen F., Zheng F., Wang S., Guo Y. Fluid Flow Characteristic of EAF Molten Steel with Different Bottom-Blowing Gas Flow Rate Distributions. ISIJ. 2020;60:1957–1967. doi: 10.2355/isijinternational.ISIJINT-2019-794. [CrossRef] [Google Scholar]

22. Nichols B.D., Hirt C.W. Methods for calculating multi-dimensional, transient free surface flows past bodies; Proceedings of the First International Conference on Numerical Ship Hydrodynamics; Gaithersburg, MD, USA. 20–22 October 1975. [Google Scholar]

23. Hirt C.W., Nichols B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981;39:201–255. doi: 10.1016/0021-9991(81)90145-5. [CrossRef] [Google Scholar]

24. Szucki M., Suchy J.S., Lelito J., Malinowski P., Sobczyk J. Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry. Heat Mass Transf. 2017;53:3421–3431. doi: 10.1007/s00231-017-2069-5. [CrossRef] [Google Scholar]

25. Themelis N.J., Goyal P. Gas injection in steelmaking. Candian Metall. Trans. 1983;22:313–320. [Google Scholar]

26. Zhang L., Jing X., Li Y., Xu Z., Cai K. Mathematical model of decarburization of ultralow carbon steel during RH treatment. J. Univ. Sci. Technol. Beijing. 1997;4:19–23. [Google Scholar]

27. Chiti F., Paglianti A., Bujalshi W. A mechanistic model to estimate powder consumption and mixing time in aluminium industries. Chem. Eng. Res. Des. 2004;82:1105–1111. doi: 10.1205/cerd.82.9.1105.44156. [CrossRef] [Google Scholar]

28. Bouaifi M., Roustan M. Power consumption, mixing time and homogenization energy in dual-impeller agitated gas-liquid reactors. Chem. Eng. Process. 2011;40:87–95. doi: 10.1016/S0255-2701(00)00128-8. [CrossRef] [Google Scholar]

29. Kang J., Lee C.H., Haam S., Koo K.K., Kim W.S. Studies on the overall oxygen transfer rate and mixing time in pilot-scale surface aeration vessel. Environ. Technol. 2001;22:1055–1068. doi: 10.1080/09593332208618215. [PubMed] [CrossRef] [Google Scholar]

30. Moucha T., Linek V., Prokopov E. Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci. 2003;58:1839–1846. doi: 10.1016/S0009-2509(02)00682-6. [CrossRef] [Google Scholar]

31. Szekely J. Flow phenomena, mixing and mass transfer in argon-stirred ladles. Ironmak. Steelmak. 1979;6:285–293. [Google Scholar]

32. Iguchi M., Nakamura K., Tsujino R. Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection. Metall. Mat. Trans. 1998;29:569–575. doi: 10.1007/s11663-998-0091-1. [CrossRef] [Google Scholar]

33. Hjelle O., Engh T.A., Rasch B. Removal of Sodium from Aluminiummagnesium Alloys by Purging with Cl2. Aluminium-Verlag GmbH; Dusseldorf, Germany: 1985. pp. 343–360. [Google Scholar]

34. Zhang L., Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int. Mat. Rev. 2000;45:59–82. doi: 10.1179/095066000101528313. [CrossRef] [Google Scholar]

CFD Modelling of Local Scour and Flow Field around Isolated and In-Line Bridge Piers using FLOW-3D

CFD Modelling of Local Scour and Flow Field around Isolated and In-Line Bridge Piers using FLOW-3D

Abstract

CFD Modelling of Local Scour and Flow Field around Isolated and In-Line Bridge Piers using FLOW-3D
CFD Modelling of Local Scour and Flow Field around Isolated and In-Line Bridge Piers using FLOW-3D

Harshvardhan Harshvardhan1and Deo Raj Kaushal2

  • 1Research Scholar, Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India (cez198227@iitd.ac.in)
  • 2Professor, Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India (Deo.Raj.Kaushal@civil.iitd.ac.in)

Scouring at bridge piers is troublesome and inevitable at the same time. Numerous empirical studies have been conducted in the last century to predict scour depth, but they completely ignore the physics of the problem. The physics behind scouring at bridge piers can be best understood in terms of the effect of the flow field around the pier at different stages of scour. This study comprises experimental and numerical parts. Experiments are conducted in the laboratory in which the flow field data at equilibrium is collected using Acoustic Doppler Velocimeter (ADV) and the equilibrium scoured bed is measured around isolated and In-Line Piers. Additionally, the commercial CFD code “FLOW-3D HYDRO 2022 R1” is utilized to simulate the flow field and scour around bridge piers. The FLOW-3D model solves the three–dimensional momentum and continuity equations coupled with the sediment transport equations to calculate and predict the flow field and the equilibrium scoured bed. While the maximum scour depth at equilibrium has been used to validate various CFD codes in the past, point-wise comparison of scour depth is scanty in previous research works. Moreover, the flow field at the equilibrium scour stage obtained using FLOW-3D has also been compared with experimental data available in the literature and experiment conducted in the laboratory. The performance of the CFD model is evaluated, the flow field and scoured bed geometry at equilibrium are analyzed and results are presented.

How to cite: Harshvardhan, H. and Kaushal, D. R.: CFD Modelling of Local Scour and Flow Field around Isolated and In-Line Bridge Piers using FLOW-3D , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3820,

https://doi.org/10.5194/egusphere-egu23-3820, 2023.

Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling

Optimization of filling systems for low pressure by Flow-3D

Dissertação de Mestrado
Ciclo de Estudos Integrados Conducentes ao
Grau de Mestre em Engenharia Mecânica
Trabalho efectuado sob a orientação do
Doutor Hélder de Jesus Fernades Puga
Professor Doutor José Joaquim Carneiro Barbosa

ABSTRACT

논문의 일부로 튜터 선택 가능성과 해결해야 할 주제가 설정되는 매개변수를 염두에 두고 개발 주제 ‘Flow- 3D ®에 의한 저압 충전 시스템 최적화’가 선택되었습니다. 이를 위해서는 달성해야 할 목표와 이를 달성하기 위한 방법을 정의하는 것이 필요했습니다.

충전 시스템을 시뮬레이션하고 검증할 수 있는 광범위한 소프트웨어에도 불구하고 Flow-3D®는 시장에서 최고의 도구 중 하나로 표시되어 전체 충전 프로세스 및 행동 표현과 관련하여 탁월한 정확도로 시뮬레이션하는 능력을 입증했습니다.

이를 위해 관련 프로세스를 더 잘 이해하고 충진 시스템 시뮬레이션을 위한 탐색적 기반 역할을 하기 위해 이 도구를 탐색하는 것이 중요합니다. 지연 및 재료 낭비에 반영되는 실제적인 측면에서 충전 장치의 치수를 완벽하게 만드는 비용 및 시간 낭비. 이러한 방식으로 저압 주조 공정에서 충진 시스템을 설계하고 물리적 모델을 탐색하여 특성화하는 방법론을 검증하기 위한 것입니다.

이를 위해 다음 주요 단계를 고려하십시오.

시뮬레이션 소프트웨어 Flow 3D® 탐색;
충전 시스템 모델링;
모델의 매개변수를 탐색하여 모델링된 시스템의 시뮬레이션, 검증 및 최적화.

따라서 연구 중인 압력 곡선과 주조 분석에서 가장 관련성이 높은 정보의 최종 마이닝을 검증하기 위한 것입니다.

사용된 압력 곡선은 수집된 문헌과 이전에 수행된 실제 작업을 통해 얻었습니다. 결과를 통해 3단계 압력 곡선이 층류 충진 체계의 의도된 목적과 관련 속도가 0.5 𝑚/𝑠를 초과하지 않는다는 결론을 내릴 수 있었습니다.

충전 수준이 2인 압력 곡선은 0.5 𝑚/𝑠 이상의 속도로 영역을 채우는 더 난류 시스템을 갖습니다. 열전달 매개변수는 이전에 얻은 값이 주물에 대한 소산 거동을 확증하지 않았기 때문에 연구되었습니다.

이러한 방식으로 주조 공정에 더 부합하는 새로운 가치를 얻었습니다. 달성된 결과는 유사한 것으로 나타난 NovaFlow & Solid®에 의해 생성된 결과와 비교되어 시뮬레이션에서 설정된 매개변수를 검증했습니다. Flow 3D®는 주조 부품 시뮬레이션을 위한 강력한 도구로 입증되었습니다.

As part of the dissertation and bearing in mind the parameters in which the possibility of a choice of tutor and the subject to be addressed is established, the subject for development ’Optimization of filling systems for low pressure by Flow 3D ®’ was chosen. For this it was necessary to define the objectives to achieve and the methods to attain them. Despite the wide range of software able to simulate and validate filling systems, Flow 3D® has been shown as one of the best tools in the market, demonstrating its ability to simulate with distinctive accuracy with respect to the entire process of filling and the behavioral representation of the fluid obtained. To this end, it is important to explore this tool for a better understanding of the processes involved and to serve as an exploratory basis for the simulation of filling systems, simulation being one of the great strengths of the current industry due to the need to reduce costs and time waste, in practical terms, that lead to the perfecting of the dimensioning of filling devices, which are reflected in delays and wasted material. In this way it is intended to validate the methodology to design a filling system in lowpressure casting process, exploring their physical models and thus allowing for its characterization. For this, consider the following main phases: The exploration of the simulation software Flow 3D®; modeling of filling systems; simulation, validation and optimization of systems modeled by exploring the parameters of the models. Therefore, it is intended to validate the pressure curves under study and the eventual mining of the most relevant information in a casting analysis. The pressure curves that were used were obtained through the gathered literature and the practical work previously performed. Through the results it was possible to conclude that the pressure curve with 3 levels meets the intended purpose of a laminar filling regime and associated speeds never exceeding 0.5 𝑚/𝑠. The pressure curve with 2 filling levels has a more turbulent system, having filling areas with velocities above 0.5 𝑚/𝑠. The heat transfer parameter was studied due to the values previously obtained didn’t corroborate the behavior of dissipation regarding to the casting. In this way, new values, more in tune with the casting process, were obtained. The achieved results were compared with those generated by NovaFlow & Solid®, which were shown to be similar, validating the parameters established in the simulations. Flow 3D® was proven a powerful tool for the simulation of casting parts.

키워드

저압, Flow 3D®, 시뮬레이션, 파운드리, 압력-시간 관계,Low Pressure, Flow 3D®, Simulation, Foundry, Pressure-time relation

Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling
Figure 4.24 – Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling
Figure 4.39 - Values of temperature contours using full energy heat transfer parameter for simula
Figure 4.39 – Values of temperature contours using full energy heat transfer parameter for simula
Figure 4.40 – Comparison between software simulations (a) Flow 3D® simulation,
(b) NovaFlow & Solid® simulation
Figure 4.40 – Comparison between software simulations (a) Flow 3D® simulation, (b) NovaFlow & Solid® simulation

BIBLIOGRAPHY

[1] E. Stanley and D. B. Sc, “Fluid Flow Aspects of Solidification Modelling : Simulation
of Low Pressure Die Casting .”
[2] Y. Sahin, “Computer aided foundry die-design,” Metallography, vol. 24, no. 8, pp.
671–679, 2003.
[3] F. Bonollo, J. Urban, B. Bonatto, and M. Botter, “Gravity and low pressure die casting
of aluminium alloys : a technical and economical benchmark,” La Metall. Ital., vol. 97,
no. 6, pp. 23–32, 2005.
[4] P. a and R. R, “Study of the effect of process parameters on the production of a nonsimmetric low pressure die casting part,” La Metall. Ital., pp. 57–63, 2009.
[5] “Fundição em baixa pressão | Aluinfo.” [Online]. Available:
http://www.aluinfo.com.br/novo/materiais/fundicao-em-baixa-pressao. [Accessed: 18-
Sep-2015].
[6] “Low Pressure Sand Casting by Wolverine Bronze.” [Online]. Available:
http://www.wolverinebronze.com/low-pressure-sand-casting.php. [Accessed: 18-Sep2015].
[7] A. Reikher, “Numerical Analysis of Die-Casting Process in Thin Cavities Using
Lubrication Approximation,” no. December, 2012.
[8] P. Fu, A. a. Luo, H. Jiang, L. Peng, Y. Yu, C. Zhai, and A. K. Sachdev, “Low-pressure
die casting of magnesium alloy AM50: Response to process parameters,” J. Mater.
Process. Technol., vol. 205, no. 1–3, pp. 224–234, 2008.
[9] X. Li, Q. Hao, W. Jie, and Y. Zhou, “Development of pressure control system in
counter gravity casting for large thin-walled A357 aluminum alloy components,”
Trans. Nonferrous Met. Soc. China, vol. 18, no. 4, pp. 847–851, 2008.
[10] J. a. Hines, “Determination of interfacial heat-transfer boundary conditions in an
aluminum low-pressure permanent mold test casting,” Metall. Mater. Trans. B, vol. 35,
no. 2, pp. 299–311, 2004.
[11] A. Lima, A. Freitas, and P. Magalhães, “Processos de vazamento em moldações
permanentes,” pp. 40–49, 2003.
[12] Y. B. Choi, K. Matsugi, G. Sasaki, K. Arita, and O. Yanagisawa, “Analysis of
Manufacturing Processes for Metal Fiber Reinforced Aluminum Alloy Composite
Fabricated by Low-Pressure Casting,” Mater. Trans., vol. 47, no. 4, pp. 1227–1231,
68
2006.
[13] G. Mi, X. Liu, K. Wang, and H. Fu, “Numerical simulation of low pressure die-casting
aluminum wheel,” China Foundry, vol. 6, no. 1, pp. 48–52, 2009.
[14] J. Kuo, F. Hsu, and W. Hwang, “ADVANCED Development of an interactive
simulation system for the determination of the pressure ± time relationship during the
® lling in a low pressure casting process,” vol. 2, pp. 131–145, 2001.
[15] S.-G. Liu, F.-Y. Cao, X.-Y. Zhao, Y.-D. Jia, Z.-L. Ning, and J.-F. Sun, “Characteristics
of mold filling and entrainment of oxide film in low pressure casting of A356 alloy,”
Mater. Sci. Eng. A, vol. 626, pp. 159–164, 2015.
[16] “Casting Training Class – Lecture 10 – Solidification and Shrinkage-Casting.” FLOW3D®.
[17] “UAB Casting Engineering Laboratory.” [Online]. Available:
file:///C:/Users/Jos%C3%A9 Belo/Desktop/Artigo_Software/UAB Casting
Engineering Laboratory.htm. [Accessed: 09-Nov-2015].
[18] A. Louvo, “Casting Simulation as a Tool in Concurrent Engineering,” pp. 1–12, 1997.
[19] T. R. Vijayaram and P. Piccardo, “Computers in Foundries,” vol. 30, 2012.
[20] M. Sadaiah, D. R. Yadav, P. V. Mohanram, and P. Radhakrishnan, “A generative
computer-aided process planning system for prismatic components,” Int. J. Adv.
Manuf. Technol., vol. 20, no. 10, pp. 709–719, 2002.
[21] Ministry_of_Planning, “Digital Data,” vol. 67, pp. 1–6, 2004.
[22] S. Shamasundar, D. Ramachandran, and N. S. Shrinivasan, “COMPUTER
SIMULATION AND ANALYSIS OF INVESTMENTCASTING PROCESS.”
[23] J. M. Siqueira and G. Motors, “Simulation applied to Aluminum High Pressure Die
Casting,” pp. 1–5, 1998.
[24] C. Fluid, COMPUTATIONAL FLUID DYNAMICS. Abdulnaser Sayma & Ventus
Publishing ApS, 2009.
[25] C. a. Felippa, “1 – Overview,” Adv. Finite Elem. Methods, pp. 1–9.
[26] a. Meena and M. El Mansori, “Correlative thermal methodology for castability
simulation of ductile iron in ADI production,” J. Mater. Process. Technol., vol. 212,
no. 11, pp. 2484–2495, 2012.
[27] T. R. Vijayaram, S. Sulaiman, a. M. S. Hamouda, and M. H. M. Ahmad, “Numerical
simulation of casting solidification in permanent metallic molds,” J. Mater. Process.
69
Technol., vol. 178, pp. 29–33, 2006.
[28] “General CFD FAQ — CFD-Wiki, the free CFD reference.” [Online]. Available:
http://www.cfd-online.com/Wiki/General_CFD_FAQ. [Accessed: 10-Nov-2015].
[29] “FEM | FEA | CFD.” [Online]. Available: http://fem4analyze.blogspot.pt/. [Accessed:
09-Nov-2015].
[30] “Fundição; revista da Associação portuguesa de fundição,” Fundição, vol. N
o
227.
[31] “Casting Training Class – Lecture 1 – Introduction_to_FLOW-3D – Casting.” FLOW3D®.
[32] F. Science, “FLOW-3D Cast Documentation,” no. 3.5, p. 80, 2012.
[33] “Casting Training Class – Lecture 4 – Geometry Building – General.” FLOW-3D®.
[34] F. Science, “FLOW-3D v11.0.3 User Manual,” pp. 1–132, 2015.
[35] “Casting Training Class – Lecture 5 Meshing Concept – General.” FLOW-3D®.
[36] “Casting Training Class – Lecture 6 – Boundary_Conditions – Casting.” FLOW-3D®.
[37] “Casting Training Class – Lecture 9 – Physical Models-castings.” FLOW-3D®.
[38] P. A. D. Jácome, M. C. Landim, A. Garcia, A. F. Furtado, and I. L. Ferreira, “The
application of computational thermodynamics and a numerical model for the
determination of surface tension and Gibbs–Thomson coefficient of aluminum based
alloys,” Thermochim. Acta, vol. 523, no. 1–2, pp. 142–149, 2011.
[39] J. P. Anson, R. A. L. Drew, and J. E. Gruzleski, “The surface tension of molten
aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres,” Metall.
Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 30, no. 6, pp. XVI–1032,
1999.

Figure 1: Mold drawings

3D Flow and Temperature Analysis of Filling a Plutonium Mold

플루토늄 주형 충전의 3D 유동 및 온도 분석

Authors: Orenstein, Nicholas P. [1]

Publication Date:2013-07-24
Research Org.: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.: DOE/LANL
OSTI Identifier: 1088904
Report Number(s): LA-UR-13-25537
DOE Contract Number: AC52-06NA25396
Resource Type: Technical Report
Country of Publication: United States
Language: English
Subject: Engineering(42); Materials Science(36); Radiation Chemistry, Radiochemistry, & Nuclear Chemistry(38)

Introduction

The plutonium foundry at Los Alamos National Laboratory casts products for various special nuclear applications. However, plutonium’s radioactivity, material properties, and security constraints complicate the ability to perform experimental analysis of mold behavior. The Manufacturing Engineering and Technologies (MET-2) group previously developed a graphite mold to vacuum cast small plutonium disks to be used by the Department of Homeland Security as point sources for radiation sensor testing.

A two-stage pouring basin consisting of a funnel and an angled cavity directs the liquid into a vertical runner. A stack of ten disk castings connect to the runner by horizontal gates. Volumetric flow rates were implemented to limit overflow into the funnel and minimize foundry returns. Models using Flow-3D computational fluid dynamics software are employed here to determine liquid Pu flow paths, optimal pour regimes, temperature changes, and pressure variations.

Setup

Hardcopy drawings provided necessary information to create 3D .stl models for import into Flow-3D (Figs. 1 and 2). The mesh was refined over several iterations to isolate the disk cavities, runner, angled cavity, funnel, and input pour. The final flow and mold-filling simulation utilizes a fine mesh with ~5.5 million total cells. For the temperature study, the mesh contained 1/8 as many cells to reduce computational time and set temperatures to 850 °C for the molten plutonium and 500 °C for the solid graphite mold components (Fig. 3).

Flow-3D solves mass continuity and Navier-Stokes momentum equations over the structured rectangular grid model using finite difference and finite volume numerical algorithms. The solver includes terms in the momentum equation for body and viscous accelerations and uses convective heat transfer.

Simulation settings enabled Flow-3D physics calculations for gravity at 980.665 cm/s 2 in the negative Z direction (top of mold to bottom); viscous, turbulent, incompressible flow using dynamically-computed Renormalized Group Model turbulence calculations and no-slip/partial slip wall shear, and; first order, full energy equation heat transfer.

Mesh boundaries were all set to symmetric boundary conditions except for the Zmin boundary set to outflow and the Zmax boundary set to a volume flow. Vacuum casting conditions and the high reactivity of remaining air molecules with Pu validate the assumption of an initially fluidless void.

Results

The flow follows a unique three-dimensional path. The mold fills upwards with two to three disks receiving fluid in a staggered sequence. Figures 5-9 show how the fluid fills the cavity, and Figure 7 includes the color scale for pressure levels in these four figures. The narrow gate causes a high pressure region which forces the fluid to flow down the cavity centerline.

It proceeds to splash against the far wall and then wrap around the circumference back to the gate (Figs. 5 and 6). Flow in the angled region of the pouring basin cascades over the bottom ledge and attaches to the far wall of the runner, as seen in Figure 7.

This channeling becomes less pronounced as fluid volume levels increase. Finally, two similar but non-uniform depressed regions form about the centerline. These regions fill from their perimeter and bottom until completion (Fig. 8). Such a pattern is counter, for example, to a steady scenario in which a circle of molten Pu encompassing the entire bottom surface rises as a growing cylinder.

Cavity pressure becomes uniform when the cavity is full. Pressure levels build in the rising well section of the runner, where impurities were found to settle in actual casting. Early test simulations optimized the flow as three pours so that the fluid would never overflow to the funnel, the cavities would all fill completely, and small amounts of fluid would remain as foundry returns in the angled cavity.

These rates and durations were translated to the single 2.7s pour at 100 cm 3 per second used here. Figure 9 shows anomalous pressure fluctuations which occurred as the cavities became completely filled. Multiple simulations exhibited a rapid change in pressure from positive to negative and back within the newly-full disk and surrounding, already-full disks.

The time required to completely fill each cavity is plotted in Figure 10. Results show negligible temperature change within the molten Pu during mold filling and, as seen in Figure 11, at fill completion.

Figure 1: Mold drawings
Figure 1: Mold drawings
Figure 2: Mold Assembly
Figure 2: Mold Assembly
Figure 4: Actual mold and cast Pu
Figure 4: Actual mold and cast Pu
Figure 5: Bottom cavity filling
from runner
Figure 5: Bottom cavity filling from runner
Figure 6: Pouring and filling
Figure 6: Pouring and filling
Figure 8: Edge detection of cavity fill geometry. Two similar depressed areas form
about the centerline. Top cavity shown; same pressure scale as other figures
Figure 8: Edge detection of cavity fill geometry. Two similar depressed areas form about the centerline. Top cavity shown; same pressure scale as other figures
Figure 10: Cavity fill times,from first fluid contact with pouring basin, Figure 11:Fluid temperature remains essentially constant
Figure 10: Cavity fill times,from first fluid contact with pouring basin, Figure 11:Fluid temperature remains essentially constant

Conclusions

Non-uniform cavity filling could cause crystal microstructure irregularities during solidification. However, the small temperature changes seen – due to large differences in specific heat between Pu and graphite – over a relatively short time make such problems unlikely in this case.

In the actual casting, cooling required approximately ten minutes. This large difference in time scales further reduces the chance for temperature effects in such a superheated scenario. Pouring basin emptying decreases pressure at the gate which extends fill time of the top two cavities.

The bottom cavity takes longer to fill because fluid must first enter the runner and fill the well. Fill times continue linearly until the top two cavities. The anomalous pressure fluctuations may be due to physical attempts by the system to reach equilibrium, but they are more likely due to numerical errors in the Flow3D solver.

Unsuccessful tests were performed to remove them by halving fluid viscosity. The fine mesh reduced, but did not eliminate, the extent of the fluctuations. Future work is planned to study induction and heat transfer in the full Pu furnace system, including quantifying temporal lag of the cavity void temperature to the mold wall temperature during pre-heat and comparing heat flux levels between furnace components during cool-down.

Thanks to Doug Kautz for the opportunity to work with MET-2 and for assigning an interesting unclassified project. Additional thanks to Mike Bange for CFD guidance, insight of the project’s history, and draft review.

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.

Numerical modelling of air-water flows in sewer drops

하수구 방울의 공기-물 흐름 수치 모델링

Paula Beceiro (corresponding author)
Maria do Céu Almeida
Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal
E-mail: pbeceiro@lnec.pt
Jorge Matos
Department of Civil Engineering, Arquitecture and Geosources,
Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal

ABSTRACT

물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.

하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.

본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.

이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.

유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.

The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.

Key words | air entrainment, computational fluid dynamics (CFD), sewer drops

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.

REFERENCES

Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal.
Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia.
Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal.
Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal.
Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288.
Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA.
Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada.
Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA.
Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203.
Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243.
Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049.
Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150.
Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263.
Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA.
Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British
Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA.
Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225.
Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA.
Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA.
Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527.
Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476.
Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430.
Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands.
Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532.
Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil.
Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552.
Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724.
Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal.
Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal.
Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK.
Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA.
Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582.
Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England.
Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452.
Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870.
Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.

Figura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.

Flow-3D를 사용하여 전산유체역학(CFD)을 적용한 빠른 단계의 플러시 유동 수치 모델링

Numerical Modeling of Flush Flow in a Rapid Step Applying Computational Fluid Dynamics (CFD) Using Flow-3D.

레브 폴리텍. (Quito) [온라인]. 2018, vol.41, n.2, pp.53-64. ISSN 2477-8990.

이 프로젝트의 주요 목표는 FLOW-3D를 사용하여 계단식 여수로에서 스키밍 흐름의 수치 모델링을 개발하는 것입니다. 이러한 구조의 설계는 물리적 모델링에서 얻은 경험적 표현과 CFD 코드를 지원하는 계단식 여수로를 통한 흐름의 수치 모델링에서 보완 연구를 기반으로 합니다. 수치 모델은 균일한 영역의 유속과 계단 여수로의 마찰 계수를 추정하는 데 사용됩니다(ϴ = 45º, Hd=4.61m). 흐름에 대한 자동 통기의 표현은 복잡하므로 프로그램은 공기 연행 모델을 사용하여 특정 제한이 있는 솔루션에 근접합니다.

The main objective of this project is to develop the numerical modeling of the skimming flow in a stepped spillway using FLOW-3D. The design of these structures is based on the use of empirical expressions obtained from physical modeling and complementary studies in the numerical modeling of flow over the stepped spillway with support of CFD code. The numerical model is used to estimate the flow velocity in the uniform region and the friction coefficient of the stepped spillway (ϴ = 45º, Hd=4.61m). The representation of auto aeration a flow is complex, so the program approximates the solution with certain limitations, using an air entrainment model; drift flux model and turbulence model k-ԑ RNG. The results obtained with numerical modeling and physical modeling at the beginning of natural auto aeration of flow and depth of the biphasic flow in the uniform region presents deviations above to 10% perhaps the flow is highly turbulent.

Keywords : Stepped spillway; skimming flow; air entrainment; drift flux; numerical modeling; FLOW-3D.

Keywords : 계단식 여수로; 스키밍 흐름; 공기 연행; 드리프트 플럭스; 수치 모델링; 흐름-3D.· 

스페인어로 된 초록 · 스페인어 로 된 텍스트 · 스페인어로 된 텍스트( pdf 

Figure 1. Grazing flow over a rapid step.
Figure 1. Grazing flow over a rapid step.
Figura 2. Principales regiones existentes en un flujo rasante.
Figura 2. Principales regiones existentes en un flujo rasante.
Figure 3. Dimensions of the El Batán stepped rapid.
Figure 3. Dimensions of the El Batán stepped rapid.
Figure 4. 3D physical model of the El Batán stepped rapid
Figure 4. 3D physical model of the El Batán stepped rapid
Figura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.
Figura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.

REFERENCIAS

ARAGUA. (2013). “Modelación numérica y experimental de flujos aire-agua
en caídas en colectores.”, Laboratório Nacional de Engenharia Civil, I.
P. Av do Brasil 101 • 1700-066 Lisboa.
Bombardelli, F.A., Meireles, I. and Matos, J., (2010), “Laboratory
measurement and multi-block numerical simulations of the mean flow
and turbulence in the non-aerated skimming flow region of steep stepped
spillways”, Environ Fluid Mechanics.
Castro M. (2015) “Análisis Dimensional y Modelación física en Hidráulica”.
Escuela Politécnica Nacional. Quito Ecuador. 50 p.
Chanson H., D. B. Bung., J. Matos (2015). “Stepped spillways and cascades”.
IAHR Monograph. School of Civil Engineering, University of
Queensland, Brisbane, Australia.
Chanson H. (1993). “Stepped Spillway Flows and Air Entrainment.” Can. Jl
of Civil Eng., Vol. 20, No. 3, June, pp. 422-435 (ISSN 0315-1468).
CIERHI, EPN TECH, (2016). “Estudio experimental en modelo físico de las
rápidas con perfil escalonado y liso de la quebrada el Batán Fase I y Fase
II”, Escuela Politécnica Nacional, Quito Ecuador.
Fernández Oro J. M. (2012)., “Técnicas Numéricas en Ingeniería de Fluidos:
Introducción a la Dinámica de Fluidos Computacional (CFD) por el
Método de Volúmenes Finitos”. Barcelona: Reverté.
Flow Science, Inc. (2012). “FLOW 3D 10.1.0 Documentation Release.
Manual de Usuario”, Los Alamos National Laboratory. Santa Fe, New
México
Khatsuria, R.M., (2005)., “Hydraulics of Spillways and Energy Dissipators”.
Department of Civil and Environmental Engineering Georgia Institute
of Technology Atlanta.
Lucio I., Matos J., Meireles I. (2015). “Stepped spillway flow over small
embankment dams: some computational experiments”. 15th FLOW-3D
European users conference.
Mohammad S., Jalal A. and Michael P., (2012). “Numerical Computation of
Inception Point Location for Steeply Sloping Stepped Spillways” 9th
International Congress on Civil Engineering. Isfahan University of
Technology (IUT), Isfahan, Iran
Pfister M., Chanson H., (2013), “Scale Effects in Modelling Two-phase Airwater Flows”, Proceedings of 2013 IAHR World Congress.
Sarfaraz, M. and Attari, J. (2011), “Numerical Simulation of Uniform Flow
Region over a Steeply Sloping Stepped Spillway”, 6th National
Congress on Civil Engineering, Semnan University, Semnan, Iran.
Valero, D., Bung, D., (2015), “Hybrid investigation of air transport processes
in moderately sloped stepped spillway flows”, E-proceedings of the 36th
IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands.

Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

Computer Simulation of Centrifugal Casting Process using FLOW-3D

Aneesh Kumar J1, a, K. Krishnakumar1, b and S. Savithri2, c 1 Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, Kerala, 2 Computational Modelling& Simulation Division, Process Engineering & Environmental Technology Division CSIR-National Institute for Interdisciplinary Science & Technology
Thiruvananthapuram, Kerala, India.
a aneesh82kj@gmail.com, b kkk@cet.ac.in, c sivakumarsavi@gmail.com, ssavithri@niist.res.in Key words: Mold filling, centrifugal casting process, computer simulation, FLOW- 3D™

Abstract

원심 주조 공정은 기능적으로 등급이 지정된 재료, 즉 구성 요소 간에 밀도 차이가 큰 복합 재료 또는 금속 재료를 생산하는 데 사용되는 잠재적인 제조 기술 중 하나입니다. 이 공정에서 유체 흐름이 중요한 역할을 하며 복잡한 흐름 공정을 이해하는 것은 결함 없는 주물을 생산하는 데 필수입니다. 금형이 고속으로 회전하고 금형 벽이 불투명하기 때문에 흐름 패턴을 실시간으로 시각화하는 것은 불가능합니다. 따라서 현재 연구에서는 상용 CFD 코드 FLOW-3D™를 사용하여 수직 원심 주조 공정 중 단순 중공 원통형 주조에 대한 금형 충전 시퀀스를 시뮬레이션했습니다. 수직 원심주조 공정 중 다양한 방사 속도가 충전 패턴에 미치는 영향을 조사하고 있습니다.

Centrifugal casting process is one of the potential manufacturing techniques used for producing functionally graded materials viz., composite materials or metallic materials which have high differences of density among constituents. In this process, the fluid flow plays a major role and understanding the complex flow process is a must for the production of defect-free castings. Since the mold spins at a high velocity and the mold wall being opaque, it is impossible to visualise the flow patterns in real time. Hence, in the present work, the commercial CFD code FLOW-3D™, has been used to simulate the mold filling sequence for a simple hollow cylindrical casting during vertical centrifugal casting process. Effect of various spinning velocities on the fill pattern during vertical centrifugal casting process is being investigated.

Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 2: Experimental data on height of
vertex formed [8]  / Figure 3: Vertex height as a function of time
Figure 2: Experimental data on height of vertex formed [8]/Figure 3: Vertex height as a function of time
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

References

[1] W. Shi-Ping, L. Chang-yun, G. Jing-jie, S. Yan-qing, L. Xiu-qiao, F. Heng-zhi, Numerical simulation and
experimental investigation of two filling methods in vertical centrifugal casting, Trans. Nonferrous Met. Soc.
China 16 (2006) 1035-1040.
10.1016/s1003-6326(06)60373-7
[2] G. Chirita, D. Soares, F.S. Silva, Advantages of the centrifugal casting technique for the production of
structural components with Al-Si alloys, Mater. Des. 29 (2008) 20-27.
10.1016/j.matdes.2006.12.011
[3] A. Kermanpur, Sh. Mahmoudi, A. Hajipour, Numerical simulation of metal flow and solidification in the
multi-cavity casting moulds of automotive components, J. Mater. Proc. Tech. 206 (208) 62-68.
10.1016/j.jmatprotec.2007.12.004
[4] D. McBride et. al. Complex free surface flows in centrifugal casting: Computational modelling and
validation experiments, Computers & Fluids 82 (2013) 63-72.
10.1016/j.compfluid.2013.04.021

Fig. 2 Modeling of bubble point test apparatus (left) and computational grid (righ

Flow-3d를 이용한 표면장력 탱크용메시스크린모델링

Modeling of Mesh Screen for Use in Surface TensionTankUsing Flow-3d Software

Hyuntak Kim․ Sang Hyuk Lim․Hosung Yoon․Jeong-Bae Park*․Sejin Kwon

ABSTRACT

Mesh screen modeling and liquid propellant discharge simulation of surface tension tank wereperformed using commercial CFD software Flow-3d. 350 × 2600, 400 × 3000 and 510 × 3600 DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag
coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The
mesh screen model was validated with the experimental data. Based on the screen modeling, liquidpropellant discharge simulation from PMD tank was performed. NTO was assigned as the liquidpropellant, and void was set to flow into the tank inlet to achieve an initial volume flowrate of
liquid propellant in 3 × 10-3 g acceleration condition. The intial flow pressure drop through the meshscreen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant
discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near
the estimated bubble point value of the screen model.

초 록

상용 CFD 프로그램 Flow-3d를 활용하여, 표면 장력 탱크 적용을 위한 메시 스크린의 모델링 및 추진제 배출 해석을 수행하였다. Flow-3d 내 거시적 다공성 매체 모델을 사용하였으며, 350 × 2600, 400× 3000, 510 × 3600 DTW 메시 스크린에 대한 공극률, 모세관압, 항력계수를 스크린 모델에 대입 후, 기포점 측정 시뮬레이션을 수행하였다.

시뮬레이션 결과를 실험 데이터와 비교하였으며, 메시 스크린 모델링의 적절성을 검증하였다. 이를 기반으로 스크린 모델을 포함한 PMD 구조체에 대한 추진제 배출 해석을 수행하였다. 추진제는 액상의 NTO를 가정하였으며, 3 × 10-3 g 가속 조건에서 초기 유량을만족하도록 void를 유입시켰다. 메시 스크린을 통한 차압은 초기 약 270 Pa에서 시간에 따라 증가하였으며, 스크린 모델의 예상 기포점과 유사한 630 Pa에 이르기까지 액상 추진제 배출을 지속하였다.

Key Words

Surface Tension Tank(표면장력 탱크), Propellant Management Device(추진제 관리 장치),
Mesh Screen(메시 스크린), Porous Media Model(다공성 매체 모델), Bubble Point(기포점)

서론

    우주비행체를 미소 중력 조건 내에서 운용하 는 경우, 가압 기체가 액상의 추진제와 혼합되어 엔진으로 공급될 우려가 있으므로 이를 방지하 기 위한 탱크의 설계가 필요하다.

    다이어프램 (Diaphragm), 피스톤(Piston) 등 다양한 장치들 이 활용되고 있으며, 이 중 표면 장력 탱크는 내 부의 메시 스크린(Mesh screen), 베인(Vane) 등 의 구조체에서 추진제의 표면장력을 활용함으로 써 액상 추진제의 이송 및 배출을 유도하는 방 식이다.

    표면 장력 탱크는 구동부가 없는 구조로 신뢰성이 높고, 전 부분을 티타늄 등의 금속 재 질로 구성함으로써 부식성 추진제의 사용 조건 에서도 장기 운용이 가능한 장점이 있다. 위에서 언급한 메시 스크린(Mesh screen)은 수 십 마이크로미터 두께의 금속 와이어를 직조한 다공성 재질로 표면 장력 탱크의 핵심 구성 요소 중 하나이다.

    미세 공극 상 추진제의 표면장력에 의해 기체와 액체 간 계면을 일정 차압 내에서 유지시킬 수 있다. 이러한 성질로 인해 일정 조 건에서 가압 기체가 메시 스크린을 통과하지 못 하게 되고, 스크린을 탱크 유로에 설치함으로써 액상의 추진제 배출을 유도할 수 있다.

    메시 스크린이 가압 기체를 통과시키기 직전 의 기체-액체 계면에 형성되는 최대 차압을 기포 점 (Bubble point) 이라 칭하며, 메시 스크린의 주 요 성능 지표 중 하나이다. IPA, 물, LH2, LCH4 등 다양한 기준 유체 및 추진제, 다양한 메시 스 크린 사양에 대해 기포점 측정 관련 실험적 연 구가 이루어져 왔다 [1-3].

    위 메시 스크린을 포함하여 표면 장력 탱크 내 액상의 추진제 배출을 유도하는 구조물 일체 를 PMD(Propellant management device)라 칭하 며, 갤러리(Gallery), 베인(Vane), 스펀지(Sponge), 트랩(Trap) 등 여러 종류의 구조물에 대해 각종 형상 변수를 내포한다[4, 5].

    따라서 다양한 파라미터를 고려한 실험적 연구는 제약이 따를 수 있으며, 베인 등 상대적으로 작은 미소 중력 조건에서 개방형 유로를 활용하는 경우 지상 추진제 배출 실험이 불가능하다[6]. 그러므로 CFD를 통한 표면장력 탱크 추진제 배출 해석은 다양한 작동 조건 및 PMD 형상 변수에 따른 추진제 거동을 이해하고, 탱크를 설계하는 데 유용하게 활용될 수 있다.

    상기 추진제 배출 해석을 수행하기 위해서는 핵심 요소 중 하나인 메시 스크린에 대한 모델링이 필수적이다. Chato, McQuillen 등은 상용 CFD 프로그램인 Fluent를 통해, 갤러리 내 유동 시뮬레이션을 수행하였으며, 이 때 메시 스크린에 ‘porous jump’ 경계 조건을 적용함으로써 액상의 추진제가 스크린을 통과할 때 생기는 압력 강하를 모델링하였다[7, 8].

    그러나 앞서 언급한 메시 스크린의 기포점 특성을 모델링한 사례는 찾아보기 힘들다. 이는 스크린을 활용하는 표면 장력 탱크 내 액상 추진제 배출 현상을 해석적으로 구현하기 위해 반드시 필요한 부분이다. 본 연구에서는 자유표면 해석에 상대적으로 강점을 지닌 상용 CFD 프로그램 Flow-3d를 사용하여, 메시 스크린을 모델링하였다.

    거시적 다공성 매체 모델(Macroscopic porous mediamodel)을 활용하여 메시 스크린 모델 영역에 공극률(Porosity), 모세관압(Capillary pressure), 항력 계수(Drag coefficient)를 지정하고, 이를 기반으로 기포점 측정 시뮬레이션을 수행, 해석 결과와 실험 데이터 간 비교 및 검증을 수행하였다.

    이를 기반으로 메시 스크린 및 PMD구조체를 포함한 탱크의 추진제 배출 해석을 수행하고, 기포점 특성의 반영 여부를 확인하였다.

    Fig. 1 Real geometry-based mesh screen model (left)
and mesh screen model based on macroscopic
porous media model in Flow-3d (righ
    Fig. 1 Real geometry-based mesh screen model (left) and mesh screen model based on macroscopic porous media model in Flow-3d (righ
    Fig. 2 Modeling of bubble point test apparatus (left)
and computational grid (righ
    Fig. 2 Modeling of bubble point test apparatus (left) and computational grid (righ)
    Fig. 3 Modeling of sump in a tank (left) and lower part
of the sump structure (right)
    Fig. 3 Modeling of sump in a tank (left) and lower part of the sump structure (right)

    참 고 문 헌

    1. David J. C and Maureen T. K, ScreenChannel Liquid Aquisition Devices for Cryogenic Propellants” NASA-TM-2005- 213638, 2005
    2. Hartwig, J., Mann, J. A. Jr., Darr, S. R., “Parametric Analysis of the LiquidHydrogen and Nitrogen Bubble Point Pressure for Cryogenic Liquid AcquisitionDevices”, Cryogenics, Vol. 63, 2014, pp. 25-36
    3. Jurns, J. M., McQuillen, J. B.,BubblePoint Measurement with Liquid Methane of a Screen Capillary Liquid AcquisitionDevice”, NASA-TM-2009-215496, 2009
    4. Jaekle, D. E. Jr., “Propellant Management Device: Conceptual Design and Analysis: Galleries”, AIAA 29th Joint PropulsionConference, AIAA-97-2811, 1997
    5. Jaekle, D. E. Jr., “Propellant Management Device: Conceptual Design and Analysis: Traps and Troughs”, AIAA 31th Joint Propulsion Conference, AIAA-95-2531, 1995
    6. Yu, A., Ji, B., Zhuang, B. T., Hu, Q., Luo, X. W., Xu, H. Y., “Flow Analysis inaVane-type Surface Tension Propellant Tank”, IOP Conference Series: MaterialsScience and Engineering, Vol. 52, No. 7, – 990 – 2013, Article number: 072018
    7. Chato, D. J., McQuillen, J. B., Motil, B. J., Chao, D. F., Zhang, N., CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen”, World Academy of Science, Engineering and Technology, Vol. 3, 2009, pp. 144-149
    8. McQuillen, J. B., Chao, D. F., Hall, N. R., Motil, B. J., Zhang, N., CFD simulation of Flow in Capillary Flow Liquid Acquisition Device Channel”, World Academy of Science, Engineering and Technology, Vol. 6, 2012, pp. 640-646
    9. Hartwig, J., Chato, D., McQuillen, J.,  Screen Channel LAD Bubble Point Tests in Liquid Hydrogen”, International Journal of Hydrogen Energy, Vol. 39, No. 2, 2014, pp. 853-861
    10. Fischer, A., Gerstmann, J., “Flow Resistance of Metallic Screens in Liquid, Gaseous and Cryogenic Flow”, 5th European Conferencefor Aeronautics and Space Sciences, Munich, Germany, 2013
    11. Fries, N., Odic, K., Dreyer, M., Wickingof Perfectly Wetting Liquids into a MetallicMesh”, 2nd International Conference onPorous Media and its Applications inScience and Engineering, 2007
    12. Seo, M, K., Kim, D, H., Seo, C, W., Lee, S, Y., Jang, S, P., Koo, J., “Experimental Study of Pressure Drop in CompressibleFluid through Porous Media”, Transactionsof the Korean Society of Mechanical Engineers – B, Vol. 37, No. 8, pp. 759-765, 2013.
    13. Hartwig, J., Mann, J. A., “Bubble Point Pressures of Binary Methanol/Water Mixtures in Fine-Mesh Screens”, AlChEJournal, Vol. 60, No. 2, 2014, pp. 730-739
    Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

    Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis

    여수로 모델링 및 실험 데이터와 CFD 해석의 비교에 대한 조사

    DOI:10.1007/s12205-016-1257-z

    Authors:

    Serife Yurdagul Kumcu at Necmettin Erbakan Üniversitesi

    Serife Yurdagul Kumcu

    Abstract and Figures

    As a part of design process for hydro-electric generating stations, hydraulic engineers typically conduct some form of model testing. The desired outcome from the testing can vary considerably depending on the specific situation, but often characteristics such as velocity patterns, discharge rating curves, water surface profiles, and pressures at various locations are measured. Due to recent advances in computational power and numerical techniques, it is now also possible to obtain much of this information through numerical modeling. In this paper, hydraulic characteristics of Kavsak Dam and Hydroelectric Power Plant (HEPP), which are under construction and built for producing energy in Turkey, were investigated experimentally by physical model studies. The 1/50-scaled physical model was used in conducting experiments. Flow depth, discharge and pressure data were recorded for different flow conditions. Serious modification was made on the original project with the experimental study. In order to evaluate the capability of the computational fluid dynamics on modeling spillway flow a comparative study was made by using results obtained from physical modeling and Computational Fluid Dynamics (CFD) simulation. A commercially available CFD program, which solves the Reynolds-averaged Navier-Stokes (RANS) equations, was used to model the numerical model setup by defining cells where the flow is partially or completely restricted in the computational space. Discharge rating curves, velocity patterns and pressures were used to compare the results of the physical model and the numerical model. It was shown that there is reasonably good agreement between the physical and numerical models in flow characteristics.

    수력 발전소 설계 프로세스의 일부로 수력 엔지니어는 일반적으로 어떤 형태의 모델 테스트를 수행합니다. 테스트에서 원하는 결과는 특정 상황에 따라 상당히 다를 수 있지만 속도 패턴, 방전 등급 곡선, 수면 프로파일 및 다양한 위치에서의 압력과 같은 특성이 측정되는 경우가 많습니다. 최근 계산 능력과 수치 기법의 발전으로 인해 이제는 수치 모델링을 통해 이러한 정보의 대부분을 얻을 수도 있습니다.

    본 논문에서는 터키에서 에너지 생산을 위해 건설 중인 Kavsak 댐과 수력발전소(HEPP)의 수력학적 특성을 물리적 모델 연구를 통해 실험적으로 조사하였다. 1/50 스케일의 물리적 모델이 실험 수행에 사용되었습니다. 다양한 흐름 조건에 대해 흐름 깊이, 배출 및 압력 데이터가 기록되었습니다. 실험 연구를 통해 원래 프로젝트에 대대적인 수정이 이루어졌습니다.

    배수로 흐름 모델링에 대한 전산유체역학의 능력을 평가하기 위해 물리적 모델링과 전산유체역학(CFD) 시뮬레이션 결과를 이용하여 비교 연구를 수행하였습니다. RANS(Reynolds-averaged Navier-Stokes) 방정식을 푸는 상업적으로 이용 가능한 CFD 프로그램은 흐름이 계산 공간에서 부분적으로 또는 완전히 제한되는 셀을 정의하여 수치 모델 설정을 모델링하는 데 사용되었습니다.

    물리적 모델과 수치 모델의 결과를 비교하기 위해 배출 등급 곡선, 속도 패턴 및 압력을 사용했습니다. 유동 특성에서 물리적 모델과 수치 모델 간에 상당히 좋은 일치가 있는 것으로 나타났습니다.

    Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory
    Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

    References

    Bureau of Reclamation (1977). Design of small dams, U.S. Government Printing Office, Washington, D.C., U.S.

    Bureau of Reclamation (1990). Cavitation in chute and spillways, Engineering Monograph, No.42, U.S. Chanel, P. G. (2008). An evaluation of computational fluid dynamics for

    spillway modeling, MSc Thesis, University of Manitoba Winnipeg, Manitoba, Canada.

    Chanson, H. (2002). The hydraulics of stepped chutes and spillways,Balkema, Lisse, The Netherlands.

    Chanson, H. and Gonzalez, C. A. (2005). “Physical modeling and scale effects of air-water flows on stepped spillways.” Journal of Zhejiang University Science, Vol. 6A, No. 3, pp. 243-250.

    Demiroz, E. (1986). “Specifications of aeration structures which are added to the spillways.” DSI Report, HI-754, DSI-TAKK Publications, Ankara, Turkey.

    Erfanain-Azmoudeh, M. H. and Kamanbedast, A. A. (2013). “Determine the appropriate location of aerator system on gotvandoliadam’s spillway using Flow 3D.” American-Eurasian J. Agric. & Environ. Sci., Vol. 13, No. 3, pp. 378-383, DOI: 10.5829/idosi.aejaes.2013. 13.03. 458.

    Falvey, H. T. (1990). Cavitation in chutes and spillways, Engineering Monograph 42 Water Resources Technical Publication US Printing Office, Bureau of Reclamation, Denver.

    Flow-3D User ’s Manual (2012). Flow science, Inc., Santa Fe, N.M.

    Hirt, C. W. (1992). “Volume-fraction techniques: Powerful tools for flow

    modeling.” Flow Science Report, No. FSI-92-00-02, Flow Science, Inc., Santa Fe, N.M.

    Hirt C. W. and Nichols B. D. (1981). “Volume of Fluid (VOF) method for the dynamics of free boundaries.”Jornal of Computational Physics, Vol. 39, pp. 201-225, DOI: 10.1016/0021-9991(81)90145-5.

    Hirt, C. W. and Sicilian, J. M. (1985). “A Porosity technique for the definition of obstacles in rectangular cell meshes.” Proceedings of the 4th International Conference on Ship Hydro-dynamics, 24-27 September 1985, National Academic of Sciences, Washington DC.

    Ho, D., Boyes, K., Donohoo, S., and Cooper, B. (2003). “Numerical flow analysis for spillways.” 43rd ANCOLD Conference, Hobart, Tas m a nia .

    Johnson, M. C. and Savage, B. M. (2006). “Physical and numerical comparison of flow over ogee spillway in the presence of tailwater.”

    Journal of Hydraulic Engineering, Vol. 132, No. 12, pp. 1353-135, DOI: 10.1061/(ASCE)0733-9429.

    Kim, S. D., Lee, H. J., and An, S. D. (2010). “Improvement of hydraulic stability for spillway using CFD model.” Int. Journal of the Physical Sciences, Vol. 5, No. 6, pp. 774-780.

    Kokpinar, M. A. and Gogus, M. (2002). “High speed jet flows over spillway aerators.” Canadian Journal of Civil Engineering, Vol. 29, No. 6, pp. 885-898, DOI: 10.1139/l02-088.

    Kumcu, S. Y. (2010). Hydraulic model studies of Kavsak Dam and HEPP, DSI Report, HI-1005, DSI-TAKK Publications, Ankara, Turkey.

    Margeirsson, B. (2007). Computational modeling of flow over a spillway, MSc Thesis, Chalmers University of Technology, Gothenburg, Sweden.

    Nichols, B. D. and Hirt, C. W. (1975). “Methods for calculating multi-dimensional, transient free surface flows past bodies.” Proc. First Intern. Conf. Num., Ship Hydrodynamics, Gaithersburg, ML.

    Savage, B. M. and Johnson, M. C. (2001). “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 8, pp. 640-649, DOI: 10.1061/(ASCE)0733-9429.

    Souders, D. T. and Hirt, C. W. (2004). “Modeling entrainment of air at turbulent free surfaces.” Critical Transitions in Water and Environmental resources Management, pp. 1-10.

    entürk, F. (1994). Hydraulics of dams and reservoirs, Water Resources Publication Colorado, USA.

    Teklemariam, E., Korbaylo, B, Groeneveld, J., Sydor, K., and Fuchs, D. (2001). Optimization of hydraulic design using computational fluid dynamics, Waterpower XII, Salt Lake City, Utah.

    Teklemariam, E., Shumilak, B., Sydor, K., Murray, D., Fuchs, D., and Holder, G. (2008). “An integral approach using both physical and computational modeling can be beneficial in addressing the full range of hydraulic design issues.” CDA Annual Conference, Winnipeg, Canada.

    Usta, E. (2014). Numerical investigation of hydraulic characteristics of Laleli Dam spillway and comparison with physical model study, Master Thesis, Middle East Technical University, Ankara, Turkey.

    Versteeg, H. K. and Malalasekera, W. (1996). An introduction to computational fluid dynamics, Longman Scientific and Technical, Longman Group Limited, Harlow, England.

    Vischer, D. L. and Hager, W. H. (1997). Dam hydraulics, J. Wiley & Sons Ltd., England.

    Wagner, W. E. (1967). “Glen Canyon diversion tunnel outlets.” J. Hydraulic Division, ASCE, Vol. 93, No. HY6, pp. 113-134.

    Willey, J., Ewing, T., Wark, B., and Lesleighter, E. (2012). Comple-mentary use of physical and numerical modeling techniques in spillway design refinement, Commission Internationale Des Grands Barrages, Kyoto, June 2012.

    Fig. 1. Averaged error trend.

    Assessment of spillway modeling using computational fluid dynamics

    전산유체역학을 이용한 여수로 모델링 평가

    Authors: Paul G. Chanel and John C. Doering AUTHORS INFO & AFFILIATIONS

    Publication: Canadian Journal of Civil Engineering

    3 December 2008

    Abstract

    Throughout the design and planning period for future hydroelectric generating stations, hydraulic engineers are increasingly integrating computational fluid dynamics (CFD) into the process. As a result, hydraulic engineers are interested in the reliability of CFD software to provide accurate flow data for a wide range of structures, including a variety of different spillways. In the literature, CFD results have generally been in agreement with physical model experimental data. Despite past success, there has not been a comprehensive assessment that looks at the ability of CFD to model a range of different spillway configurations, including flows with various gate openings. In this article, Flow-3D is used to model the discharge over ogee-crested spillways. The numerical model results are compared with physical model studies for three case study evaluations. The comparison indicates that the accuracy of Flow-3D is related to the parameter P/Hd.

    미래의 수력 발전소를 위한 설계 및 계획 기간 동안 유압 엔지니어는 전산유체역학(CFD)을 프로세스에 점점 더 많이 통합하고 있습니다. 결과적으로 유압 엔지니어는 다양한 여수로를 포함하여 광범위한 구조에 대한 정확한 흐름 데이터를 제공하는 CFD 소프트웨어의 신뢰성에 관심을 갖고 있습니다. 문헌에서 CFD 결과는 일반적으로 물리적 모델 실험 데이터와 일치했습니다. 과거의 성공에도 불구하고 다양한 게이트 개구부가 있는 흐름을 포함하여 다양한 여수로 구성을 모델링하는 CFD의 기능을 살펴보는 포괄적인 평가는 없었습니다. 이 기사에서는 Flow-3D를 사용하여 ogee-crested 방수로의 배출을 모델링합니다. 세 가지 사례 연구 평가를 위해 수치 모델 결과를 물리적 모델 연구와 비교합니다. 비교는 Flow-3D의 정확도가 매개변수 P/Hd와 관련되어 있음을 나타냅니다.

    Résumé

    Les ingénieurs en hydraulique intègrent de plus en plus la dynamique des fluides numérique (« CFD ») dans le processus de conception et de planification des futures centrales. Ainsi, les ingénieurs en hydraulique s’intéressent à la fiabilité du logiciel de « CFD » afin de fournir des données précises sur le débit pour une large gamme de structures, incluant différents types d’évacuateurs. Les résultats de « CFD » dans la littérature ont été globalement sont généralement en accord avec les données expérimentales des essais physiques. Malgré les succès antérieurs, il n’y avait aucune évaluation complète de la capacité des « CFD » à modéliser une plage de configuration des évacuateurs, incluant les débits à diverses ouvertures de vannes. Dans le présent article, le logiciel Flow-3D est utilisé pour modéliser le débit par des évacuateurs en doucine. Les résultats du modèle de calcul sont comparés à ceux des essais physiques pour trois études de cas. La comparaison montre que la précision du logiciel Flow-3D est associée au paramètre P/Hd.

    Fig. 1. Averaged error trend.
    Fig. 1. Averaged error trend.

    Get full access to this article

    View all available purchase options and get full access to this article.

    GET ACCESSALREADY A SUBSCRIBER? SIGN IN AS AN INDIVIDUAL OR VIA YOUR INSTITUTION

    References

    Chanel, P.G., and Doering, J.C. 2007. An evaluation of computational fluid dynamics for spillway modelling. In Proceedings of the 16th Australasian Fluid Mechanics Conference (AFMC), Gold Coast, Queensland, Australia, 3–7 December 2007. pp. 1201–1206.

    Google Scholar

    Flow Science, Inc. 2007. Flow-3D user’s manuals. Version 9.2. Flow Science, Inc., Santa Fe, N.M.

    Google Scholar

    Gessler, D. 2005. CFD modeling of spillway performance, EWRI 2005: Impacts of global climate change. In Proceedings of the World Water and Environmental Resources Congress, Anchorage, Alaska, 15–19 May 2005. Edited by R. Walton. American Society of Civil Engineers, Reston, Va.

    Google Scholar

    Hirt, C.W., and Nichols, B.D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1): 201–225.

    Crossref

    ISI

    Google Scholar

    Hirt, C.W., and Sicilian, J.M. 1985. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the 4th International Conference on Ship Hydro-dynamics, Washington, D.C., 24–27 September 1985. National Academy of Sciences, Washington, D.C.

    Google Scholar

    Ho, D., Cooper, B., Riddette, K., and Donohoo, S. 2006. Application of numerical modelling to spillways in Australia. In Dams and Reservoirs, Societies and Environment in the 21st Century. Edited by Berga et al. Taylor and Francis Group, London.

    Google Scholar

    LaSalle Consulting Group Inc. 1992. Conawapa generating station. Sectional model study of the spillway. LaSalle Consulting Group Inc., Montréal, Que.

    Google Scholar

    Lemke, D.E. 1989. A comparison of the hydraulic performance of an orifice and an overflow spillway in a northern application using physical modeling. M.Sc. thesis, University of Manitoba, Winnipeg, Man.

    Google Scholar

    Savage, B.M., and Johnson, M.C. 2001. Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering, 127(8): 640–649.

    Crossref

    ISI

    Google Scholar

    Teklemariam, E., Korbaylo, B., Groeneveld, J., Sydor, K., and Fuchs, D. 2001. Optimization of hydraulic design using computational fluid dynamics. In Proceedings of Waterpower XII, Salt Lake City, Utah, 9–11 July 2001.

    Google Scholar

    Teklemariam, E., Korbaylo, B., Groeneveld, J., and Fuchs, D. 2002. Computational fluid dynamics: Diverse applications in hydropower project’s design and analysis. In Proceedings of the CWRA 55th Annual Conference, Winnipeg, Man., 11–14 June 2002. Canadian Water Resources Association, Cambridge, Ontario.

    Google Scholar

    Western Canadian Hydraulic Laboratories Inc. 1980. Hydraulics model studies limestone generating station spillway/diversion structure flume study. Final report. Western Canadian Hydraulic Laboratories Inc., Port Coquitlam, B.C.

    Google Scholar

    Sketch of approach channel and spillway of the Kamal-Saleh dam

    CFD modeling of flow pattern in spillway’s approach channel

    Sustainable Water Resources Management volume 1, pages245–251 (2015)Cite this article

    Abstract

    Analysis of behavior and hydraulic characteristics of flow over the dam spillway is a complicated task that takes lots of money and time in water engineering projects planning. To model those hydraulic characteristics, several methods such as physical and numerical methods can be used. Nowadays, by utilizing new methods in computational fluid dynamics (CFD) and by the development of fast computers, the numerical methods have become accessible for use in the analysis of such sophisticated flows. The CFD softwares have the capability to analyze two- and three-dimensional flow fields. In this paper, the flow pattern at the guide wall of the Kamal-Saleh dam was modeled by Flow 3D. The results show that the current geometry of the left wall causes instability in the flow pattern and making secondary and vortex flow at beginning approach channel. This shape of guide wall reduced the performance of weir to remove the peak flood discharge.

    댐 여수로 흐름의 거동 및 수리학적 특성 분석은 물 공학 프로젝트 계획에 많은 비용과 시간이 소요되는 복잡한 작업입니다. 이러한 수력학적 특성을 모델링하기 위해 물리적, 수치적 방법과 같은 여러 가지 방법을 사용할 수 있습니다. 요즘에는 전산유체역학(CFD)의 새로운 방법을 활용하고 빠른 컴퓨터의 개발로 이러한 정교한 흐름의 해석에 수치 방법을 사용할 수 있게 되었습니다. CFD 소프트웨어에는 2차원 및 3차원 유동장을 분석하는 기능이 있습니다. 본 논문에서는 Kamal-Saleh 댐 유도벽의 흐름 패턴을 Flow 3D로 모델링하였다. 결과는 왼쪽 벽의 현재 형상이 흐름 패턴의 불안정성을 유발하고 시작 접근 채널에서 2차 및 와류 흐름을 만드는 것을 보여줍니다. 이러한 형태의 안내벽은 첨두방류량을 제거하기 위해 둑의 성능을 저하시켰다.

    Introduction

    Spillways are one of the main structures used in the dam projects. Design of the spillway in all types of dams, specifically earthen dams is important because the inability of the spillway to remove probable maximum flood (PMF) discharge may cause overflow of water which ultimately leads to destruction of the dam (Das and Saikia et al. 2009; E 2013 and Novak et al. 2007). So study on the hydraulic characteristics of this structure is important. Hydraulic properties of spillway including flow pattern at the entrance of the guide walls and along the chute. Moreover, estimating the values of velocity and pressure parameters of flow along the chute is very important (Chanson 2004; Chatila and Tabbara 2004). The purpose of the study on the flow pattern is the effect of wall geometry on the creation transverse waves, flow instability, rotating and reciprocating flow through the inlet of spillway and its chute (Parsaie and Haghiabi 2015ab; Parsaie et al. 2015; Wang and Jiang 2010). The purpose of study on the values of velocity and pressure is to calculate the potential of the structure to occurrence of phenomena such as cavitation (Fattor and Bacchiega 2009; Ma et al. 2010). Sometimes, it can be seen that the spillway design parameters of pressure and velocity are very suitable, but geometry is considered not suitable for conducting walls causing unstable flow pattern over the spillway, rotating flows at the beginning of the spillway and its design reduced the flood discharge capacity (Fattor and Bacchiega 2009). Study on spillway is usually conducted using physical models (Su et al. 2009; Suprapto 2013; Wang and Chen 2009; Wang and Jiang 2010). But recently, with advances in the field of computational fluid dynamics (CFD), study on hydraulic characteristics of this structure has been done with these techniques (Chatila and Tabbara 2004; Zhenwei et al. 2012). Using the CFD as a powerful technique for modeling the hydraulic structures can reduce the time and cost of experiments (Tabbara et al. 2005). In CFD field, the Navier–Stokes equation is solved by powerful numerical methods such as finite element method and finite volumes (Kim and Park 2005; Zhenwei et al. 2012). In order to obtain closed-form Navier–Stokes equations turbulence models, such k − ε and Re-Normalisation Group (RNG) models have been presented. To use the technique of computational fluid dynamics, software packages such as Fluent and Flow 3D, etc., are provided. Recently, these two software packages have been widely used in hydraulic engineering because the performance and their accuracy are very suitable (Gessler 2005; Kim 2007; Kim et al. 2012; Milési and Causse 2014; Montagna et al. 2011). In this paper, to assess the flow pattern at Kamal-Saleh guide wall, numerical method has been used. All the stages of numerical modeling were conducted in the Flow 3D software.

    Materials and methods

    Firstly, a three-dimensional model was constructed according to two-dimensional map that was prepared for designing the spillway. Then a small model was prepared with scale of 1:80 and entered into the Flow 3D software; all stages of the model construction was conducted in AutoCAD 3D. Flow 3D software numerically solved the Navier–Stokes equation by finite volume method. Below is a brief reference on the equations that used in the software. Figure 1 shows the 3D sketch of Kamal-Saleh spillway and Fig. 2 shows the uploading file of the Kamal-Saleh spillway in Flow 3D software.

    figure 1
    Fig. 1
    figure 2
    Fig. 2

    Review of the governing equations in software Flow 3D

    Continuity equation at three-dimensional Cartesian coordinates is given as Eq (1).

    vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,

    (1)

    where uvz are velocity component in the x, y, z direction; A xA yA z cross-sectional area of the flow; ρ fluid density; PSOR the source term; v f is the volume fraction of the fluid and three-dimensional momentum equations given in Eq (2).

    ∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,

    (2)

    where P is the fluid pressure; G xG yG z the acceleration created by body fluids; f xf yf z viscosity acceleration in three dimensions and v f is related to the volume of fluid, defined by Eq. (3). For modeling of free surface profile the VOF technique based on the volume fraction of the computational cells has been used. Since the volume fraction F represents the amount of fluid in each cell, it takes value between 0 and 1.

    ∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0

    (3)

    Turbulence models

    Flow 3D offers five types of turbulence models: Prantl mixing length, k − ε equation, RNG models, Large eddy simulation model. Turbulence models that have been proposed recently are based on Reynolds-averaged Navier–Stokes equations. This approach involves statistical methods to extract an averaged equation related to the turbulence quantities.

    Steps of solving a problem in Flow 3D software

    (1) Preparing the 3D model of spillway by AutoCAD software. (2) Uploading the file of 3D model in Flow 3D software and defining the problem in the software and checking the final mesh. (3) Choosing the basic equations that should be solved. (4) Defining the characteristics of fluid. (5) Defining the boundary conditions; it is notable that this software has a wide range of boundary conditions. (6) Initializing the flow field. (7) Adjusting the output. (8) Adjusting the control parameters, choice of the calculation method and solution formula. (9) Start of calculation. Figure 1 shows the 3D model of the Kamal-Saleh spillway; in this figure, geometry of the left and right guide wall is shown.

    Figure 2 shows the uploading of the 3D spillway dam in Flow 3D software. Moreover, in this figure the considered boundary condition in software is shown. At the entrance and end of spillway, the flow rate or fluid elevation and outflow was considered as BC. The bottom of spillway was considered as wall and left and right as symmetry.

    Model calibration

    Calibration of the Flow 3D for modeling the effect of geometry of guide wall on the flow pattern is included for comparing the results of Flow 3D with measured water surface profile. Calibration the Flow 3D software could be conducted in two ways: first, changing the value of upstream boundary conditions is continued until the results of water surface profile of the Flow 3D along the spillway successfully covered the measurement water surface profile; second is the assessment the mesh sensitivity. Analyzing the size of mesh is a trial-and-error process where the size of mesh is evaluated form the largest to the smallest. With fining the size of mesh the accuracy of model is increased; whereas, the cost of computation is increased. In this research, the value of upstream boundary condition was adjusted with measured data during the experimental studies on the scaled model and the mesh size was equal to 1 × 1 × 1 cm3.

    Results and discussion

    The behavior of water in spillway is strongly affected by the flow pattern at the entrance of the spillway, the flow pattern formation at the entrance is affected by the guide wall, and choice of an optimized form for the guide wall has a great effect on rising the ability of spillway for easy passing the PMF, so any nonuniformity in flow in the approach channel can cause reduction of spillway capacity, reduction in discharge coefficient of spillway, and even probability of cavitation. Optimizing the flow guiding walls (in terms of length, angle and radius) can cause the loss of turbulence and flow disturbances on spillway. For this purpose, initially geometry proposed for model for the discharge of spillway dam, Kamal-Saleh, 80, 100, and 120 (L/s) were surveyed. These discharges of flow were considered with regard to the flood return period, 5, 100 and 1000 years. Geometric properties of the conducting guidance wall are given in Table 1.Table 1 Characteristics and dimensions of the guidance walls tested

    Full size table

    Results of the CFD simulation for passing the flow rate 80 (L/s) are shown in Fig. 3. Figure 3 shows the secondary flow and vortex at the left guide wall.

    figure 3
    Fig. 3

    For giving more information about flow pattern at the left and right guide wall, Fig. 4 shows the flow pattern at the right side guide wall and Fig. 5 shows the flow pattern at the left side guide wall.

    figure 4
    Fig. 4
    figure 5
    Fig. 5

    With regard to Figs. 4 and 5 and observing the streamlines, at discharge equal to 80 (L/s), the right wall has suitable performance but the left wall has no suitable performance and the left wall of the geometric design creates a secondary and circular flow, and vortex motion in the beginning of the entrance of spillway that creates cross waves at the beginning of spillway. By increasing the flow rate (Q = 100 L/s), at the inlet spillway secondary flows and vortex were removed, but the streamline is severely distorted. Results of the guide wall performances at the Q = 100 (L/s) are shown in Fig. 6.

    figure 6
    Fig. 6

    Also more information about the performance of each guide wall can be derived from Figs. 7 and 8. These figures uphold that the secondary and vortex flows were removed, but the streamlines were fully diverted specifically near the left side guide wall.

    figure 7
    Fig. 7
    figure 8
    Fig. 8

    As mentioned in the past, these secondary and vortex flows and diversion in streamline cause nonuniformity and create cross wave through the spillway. Figure 9 shows the cross waves at the crest of the spillway.

    figure 9
    Fig. 9

    The performance of guide walls at the Q = 120 (L/s) also was assessed. The result of simulation is shown in Fig. 10. Figures 11 and 12 show a more clear view of the streamlines near to right and left side guide wall, respectively. As seen in Fig. 12, the left side wall still causes vortex flow and creation of and diversion in streamline.

    figure 10
    Fig. 10
    figure 11
    Fig. 11
    figure 12
    Fig. 12

    The results of the affected left side guide wall shape on the cross wave creation are shown in Fig. 13. As seen from Fig. 3, the left side guide wall also causes cross wave at the spillway crest.

    figure 13
    Fig. 13

    As can be seen clearly in Figs. 9 and 13, by moving from the left side to the right side of the spillway, the cross waves and the nonuniformity in flow is removed. By reviewing Figs. 9 and 13, it is found that the right side guide wall removes the cross waves and nonuniformity. With this point as aim, a geometry similar to the right side guide wall was considered instead of the left side guide wall. The result of simulation for Q = 120 (L/s) is shown in Fig. 14. As seen from this figure, the proposed geometry for the left side wall has suitable performance smoothly passing the flow through the approach channel and spillway.

    figure 14
    Fig. 14

    More information about the proposed shape for the left guide wall is shown in Fig. 15. As seen from this figure, this shape has suitable performance for removing the cross waves and vortex flows.

    figure 15
    Fig. 15

    Figure 16 shows the cross section of flow at the crest of spillway. As seen in this figure, the proposed shape for the left side guide wall is suitable for removing the cross waves and secondary flows.

    figure 16
    Fig. 16

    Conclusion

    Analysis of behavior and hydraulic properties of flow over the spillway dam is a complicated task which is cost and time intensive. Several techniques suitable to the purposes of study have been undertaken in this research. Physical modeling, usage of expert experience, usage of mathematical models on simulation flow in one-dimensional, two-dimensional and three-dimensional techniques, are some of the techniques utilized to study this phenomenon. The results of the modeling show that the CFD technique is a suitable tool for simulating the flow pattern in the guide wall. Using this tools helps the designer for developing the optimal shape for hydraulic structure which the flow pattern through them are important.

    References

    • Chanson H (2004) 19—Design of weirs and spillways. In: Chanson H (ed) Hydraulics of open channel flow, 2nd edn. Butterworth-Heinemann, Oxford, pp 391–430Chapter Google Scholar 
    • Chatila J, Tabbara M (2004) Computational modeling of flow over an ogee spillway. Comput Struct 82:1805–1812Article Google Scholar 
    • Das MM, Saikia MD (2009) Irrigation and water power engineering. PHI Learning, New DelhiGoogle Scholar 
    • E, Department Of Army: U.S. Army Corps (2013) Hydraulic Design of Spillways. BiblioBazaar, CharlestonGoogle Scholar 
    • Fattor C, Bacchiega J (2009) Design conditions for morning-glory spillways: application to potrerillos dam spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2123–2128Google Scholar 
    • Gessler D (2005) CFD modeling of spillway performance. Impacts Glob Clim Change. doi:10.1061/40792(173)398
    • Kim D-G (2007) Numerical analysis of free flow past a sluice gate. KSCE J Civ Eng 11:127–132Article Google Scholar 
    • Kim D, Park J (2005) Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J Civ Eng 9:161–169Article Google Scholar 
    • Kim S, Yu K, Yoon B, Lim Y (2012) A numerical study on hydraulic characteristics in the ice Harbor-type fishway. KSCE J Civ Eng 16:265–272Article Google Scholar 
    • Ma X-D, Dai G-Q, Yang Q, Li G-J, Zhao L (2010) Analysis of influence factors of cavity length in the spillway tunnel downstream of middle gate chamber outlet with sudden lateral enlargement and vertical drop aerator. J Hydrodyn Ser B 22:680–686Article Google Scholar 
    • Milési G, Causse S (2014) 3D numerical modeling of a side-channel spillway. In: Gourbesville P, Cunge J, Caignaert G (eds) Advances in hydroinformatics. Springer, Singapore, pp 487–498Chapter Google Scholar 
    • Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608Article Google Scholar 
    • Novak P, Moffat AIB, Nalluri C, Narayanan R (2007) Hydraulic structures. Taylor & Francis, LondonGoogle Scholar 
    • Parsaie A, Haghiabi A (2015a) Computational modeling of pollution transmission in rivers. Appl Water Sci. doi:10.1007/s13201-015-0319-6
    • Parsaie A, Haghiabi A (2015b) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Res Manag 29:973–985Article Google Scholar 
    • Parsaie A, Yonesi H, Najafian S (2015) Predictive modeling of discharge in compound open channel by support vector machine technique. Model Earth Syst Environ 1:1–6Article Google Scholar 
    • Su P-L, Liao H-S, Qiu Y, Li CJ (2009) Experimental study on a new type of aerator in spillway with low Froude number and mild slope flow. J Hydrodyn Ser B 21:415–422Article Google Scholar 
    • Suprapto M (2013) Increase spillway capacity using Labyrinth Weir. Procedia Eng 54:440–446Article Google Scholar 
    • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83:2215–2224Article Google Scholar 
    • Wang J, Chen H (2009) Experimental study of elimination of vortices along guide wall of bank spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2059–2063Google Scholar 
    • Wang Y, Jiang C (2010) Investigation of the surface vortex in a spillway tunnel intake. Tsinghua Sci Technol 15:561–565Article Google Scholar 
    • Zhenwei MU, Zhiyan Z, Tao Z (2012) Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng 28:808–812Article Google Scholar 

    Download references

    Author information

    Authors and Affiliations

    1. Department of Water Engineering, Lorestan University, Khorram Abad, IranAbbas Parsaie, Amir Hamzeh Haghiabi & Amir Moradinejad

    Corresponding author

    Correspondence to Abbas Parsaie.

    Reprints and Permissions

    About this article

    Cite this article

    Parsaie, A., Haghiabi, A.H. & Moradinejad, A. CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag. 1, 245–251 (2015). https://doi.org/10.1007/s40899-015-0020-9

    Download citation

    • Received28 April 2015
    • Accepted28 August 2015
    • Published15 September 2015
    • Issue DateSeptember 2015
    • DOIhttps://doi.org/10.1007/s40899-015-0020-9

    Share this article

    Anyone you share the following link with will be able to read this content:Get shareable link

    Provided by the Springer Nature SharedIt content-sharing initiative

    Keywords

    • Approach channel
    • Kamal-Saleh dam
    • Guide wall
    • Flow pattern
    • Numerical modeling
    • Flow 3D software
      Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

      BC Hydro Assesses Spillway Hydraulics with FLOW-3D

      by Faizal Yusuf, M.A.Sc., P.Eng.
      Specialist Engineer in the Hydrotechnical Department at BC Hydro

      BC Hydro, a public electric utility in British Columbia, uses FLOW-3D to investigate complex hydraulics issues at several existing dams and to assist in the design and optimization of proposed facilities.

      Faizal Yusuf, M.A.Sc., P.Eng., Specialist Engineer in the Hydrotechnical department at BC Hydro, presents three case studies that highlight the application of FLOW-3D to different types of spillways and the importance of reliable prototype or physical hydraulic model data for numerical model calibration.

      W.A.C. Bennett Dam
      At W.A.C. Bennett Dam, differences in the spillway geometry between the physical hydraulic model from the 1960s and the prototype make it difficult to draw reliable conclusions on shock wave formation and chute capacity from physical model test results. The magnitude of shock waves in the concrete-lined spillway chute are strongly influenced by a 44% reduction in the chute width downstream of the three radial gates at the headworks, as well as the relative openings of the radial gates. The shock waves lead to locally higher water levels that have caused overtopping of the chute walls under certain historical operations.Prototype spill tests for discharges up to 2,865 m3/s were performed in 2012 to provide surveyed water surface profiles along chute walls, 3D laser scans of the water surface in the chute and video of flow patterns for FLOW-3D model calibration. Excellent agreement was obtained between the numerical model and field observations, particularly for the location and height of the first shock wave at the chute walls (Figure 1).

      W.A.C에서 Bennett Dam, 1960년대의 물리적 수력학 모델과 프로토타입 사이의 여수로 형상의 차이로 인해 물리적 모델 테스트 결과에서 충격파 형성 및 슈트 용량에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 콘크리트 라이닝 방수로 낙하산의 충격파 크기는 방사형 게이트의 상대적인 개구부뿐만 아니라 헤드워크에 있는 3개의 방사형 게이트 하류의 슈트 폭이 44% 감소함에 따라 크게 영향을 받습니다. 충격파는 특정 역사적 작업에서 슈트 벽의 범람을 야기한 국부적으로 더 높은 수위로 이어집니다. 최대 2,865m3/s의 배출에 대한 프로토타입 유출 테스트가 2012년에 수행되어 슈트 벽을 따라 조사된 수면 프로필, 3D 레이저 스캔을 제공했습니다. FLOW-3D 모델 보정을 위한 슈트의 수면 및 흐름 패턴 비디오. 특히 슈트 벽에서 첫 번째 충격파의 위치와 높이에 대해 수치 모델과 현장 관찰 간에 탁월한 일치가 이루어졌습니다(그림 1).
      Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.
      Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.

      The calibrated FLOW-3D model confirmed that the design flood could be safely passed without overtopping the spillway chute walls as long as all three radial gates are opened as prescribed in existing operating orders with the outer gates open more than the inner gate.

      The CFD model also provided insight into the concrete damage in the spillway chute. Cavitation indices computed from FLOW-3D simulation results were compared with empirical data from the USBR and found to be consistent with the historical performance of the spillway. The numerical analysis supported field inspections, which concluded that deterioration of the concrete conditions in the chute is likely not due to cavitation.

      Strathcona Dam
      FLOW-3D was used to investigate poor approach conditions and uncertainties with the rating curves for Strathcona Dam spillway, which includes three vertical lift gates on the right abutment of the dam. The rating curves for Strathcona spillway were developed from a combination of empirical adjustments and limited physical hydraulic model testing in a flume that did not include geometry of the piers and abutments.

      Numerical model testing and calibration was based on comparisons with prototype spill observations from 1982 when all three gates were fully open, resulting in a large depression in the water surface upstream of the leftmost bay (Figure 2). The approach flow to the leftmost bay is distorted by water flowing parallel to the dam axis and plunging over the concrete retaining wall adjacent to the upstream slope of the earthfill dam. The flow enters the other two bays much more smoothly. In addition to very similar flow patterns produced in the numerical model compared to the prototype, simulated water levels at the gate section matched 1982 field measurements to within 0.1 m.

      보정된 FLOW-3D 모델은 외부 게이트가 내부 게이트보다 더 많이 열려 있는 기존 운영 명령에 규정된 대로 3개의 방사형 게이트가 모두 열리는 한 여수로 낙하산 벽을 넘지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다.

      CFD 모델은 방수로 낙하산의 콘크리트 손상에 대한 통찰력도 제공했습니다. FLOW-3D 시뮬레이션 결과에서 계산된 캐비테이션 지수는 USBR의 경험적 데이터와 비교되었으며 여수로의 역사적 성능과 일치하는 것으로 나타났습니다. 수치 분석은 현장 검사를 지원했으며, 슈트의 콘크리트 상태 악화는 캐비테이션 때문이 아닐 가능성이 높다고 결론지었습니다.

      Strathcona 댐
      FLOW-3D는 Strathcona Dam 여수로에 대한 등급 곡선을 사용하여 열악한 접근 조건과 불확실성을 조사하는 데 사용되었습니다. 여기에는 댐의 오른쪽 접합부에 3개의 수직 리프트 게이트가 포함되어 있습니다. Strathcona 여수로에 대한 등급 곡선은 경험적 조정과 교각 및 교대의 형상을 포함하지 않는 수로에서 제한된 물리적 수리 모델 테스트의 조합으로 개발되었습니다.

      수치 모델 테스트 및 보정은 세 개의 수문이 모두 완전히 개방된 1982년의 프로토타입 유출 관측과의 비교를 기반으로 했으며, 그 결과 가장 왼쪽 만의 상류 수면에 큰 함몰이 발생했습니다(그림 2). 최좌단 만으로의 접근 흐름은 댐 축과 평행하게 흐르는 물과 흙채움댐의 상류 경사면에 인접한 콘크리트 옹벽 위로 떨어지는 물에 의해 왜곡됩니다. 흐름은 훨씬 더 원활하게 다른 두 베이로 들어갑니다. 프로토타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도 게이트 섹션에서 시뮬레이션된 수위는 1982년 현장 측정과 0.1m 이내로 일치했습니다.

      Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
      Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.

      The calibrated CFD model produces discharges within 5% of the spillway rating curve for the reservoir’s normal operating range with all gates fully open. However, at higher reservoir levels, which may occur during passage of large floods (as shown in Figure 3), the difference between simulated discharges and the rating curves are greater than 10% as the physical model testing with simplified geometry and empirical corrections did not adequately represent the complex approach flow patterns. The FLOW-3D model provided further insight into the accuracy of rating curves for individual bays, gated conditions and the transition between orifice and free surface flow.

      보정된 CFD 모델은 모든 게이트가 완전히 열린 상태에서 저수지의 정상 작동 범위에 대한 여수로 등급 곡선의 5% 이내에서 배출을 생성합니다. 그러나 대규모 홍수가 통과하는 동안 발생할 수 있는 더 높은 저수지 수위에서는(그림 3 참조) 단순화된 기하학과 경험적 수정을 사용한 물리적 모델 테스트가 그렇지 않았기 때문에 모의 배출과 등급 곡선 간의 차이는 10% 이상입니다. 복잡한 접근 흐름 패턴을 적절하게 표현합니다. FLOW-3D 모델은 개별 베이, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 등급 곡선의 정확도에 대한 추가 통찰력을 제공했습니다.

      Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.
      Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

      John Hart Dam
      The John Hart concrete dam will be modified to include a new free crest spillway to be situated between an existing gated spillway and a low level outlet structure that is currently under construction. Significant improvements in the design of the proposed spillway were made through a systematic optimization process using FLOW-3D.

      The preliminary design of the free crest spillway was based on engineering hydraulic design guides. Concrete apron blocks are intended to protect the rock at the toe of the dam. A new right training wall will guide the flow from the new spillway towards the tailrace pool and protect the low level outlet structure from spillway discharges.

      FLOW-3D model results for the initial and optimized design of the new spillway are shown in Figure 4. CFD analysis led to a 10% increase in discharge capacity, significant decrease in roadway impingement above the spillway crest and improved flow patterns including up to a 5 m reduction in water levels along the proposed right wall. Physical hydraulic model testing will be used to confirm the proposed design.

      존 하트 댐
      John Hart 콘크리트 댐은 현재 건설 중인 기존 배수로와 저층 배수로 사이에 위치할 새로운 자유 마루 배수로를 포함하도록 수정될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 여수로 설계의 상당한 개선이 이루어졌습니다.

      자유 마루 여수로의 예비 설계는 엔지니어링 수력학 설계 가이드를 기반으로 했습니다. 콘크리트 앞치마 블록은 댐 선단부의 암석을 보호하기 위한 것입니다. 새로운 오른쪽 훈련 벽은 새 여수로에서 테일레이스 풀로 흐름을 안내하고 여수로 배출로부터 낮은 수준의 배출구 구조를 보호합니다.

      새 여수로의 초기 및 최적화된 설계에 대한 FLOW-3D 모델 결과는 그림 4에 나와 있습니다. CFD 분석을 통해 방류 용량이 10% 증가하고 여수로 마루 위의 도로 충돌이 크게 감소했으며 최대 제안된 오른쪽 벽을 따라 수위가 5m 감소합니다. 제안된 설계를 확인하기 위해 물리적 수압 모델 테스트가 사용됩니다.

      Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
      Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

      Conclusion

      BC Hydro has been using FLOW-3D to investigate a wide range of challenging hydraulics problems for different types of spillways and water conveyance structures leading to a greatly improved understanding of flow patterns and performance. Prototype data and reliable physical hydraulic model testing are used whenever possible to improve confidence in the numerical model results.

      다양한 유형의 여수로 및 물 수송 구조로 인해 흐름 패턴 및 성능에 대한 이해가 크게 향상되었습니다. 프로토타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과의 신뢰도를 향상시키기 위해 가능할 때마다 사용됩니다.

      About Flow Science, Inc.
      Based in Santa Fe, New Mexico USA, Flow Science was founded in 1980 by Dr. C. W. (Tony) Hirt, who was one of the principals in pioneering the “Volume-of-Fluid” or VOF method while working at the Los Alamos National Lab. FLOW-3D is a direct descendant of this work, and in the subsequent years, we have increased its sophistication with TruVOF, boasting pioneering improvements in the speed and accuracy of tracking distinct liquid/gas interfaces. Today, Flow Science products offer complete multiphysics simulation with diverse modeling capabilities including fluid-structure interaction, 6-DoF moving objects, and multiphase flows. From inception, our vision has been to provide our customers with excellence in flow modeling software and services.

      Figure 10. Flow distribution at the approach channel in PMF based on revised plan design. A. Hydarulic model test; B. Numerical simulation; C. Section view.

      Improvement of hydraulic stability for spillway using CFD model

      Hydraulic model test was used to analyze the rapidly varied flow on the spillway. But, it has some shortcomings such as error of scale effect and expensive costs. Recently, through the development of three dimensional computational fluid dynamics (CFD), rapidly varied flow and turbulence can be simulated. In this study, the applicability of CFD model to simulate flow on the spillway was reviewed. The Karian dam in Indonesia was selected as the study area. The FLOW-3d model, which is well known to simulate a flow having a free surface, was used to analyze flow. The flow stability in approach channel was investigated with the initial plan design, and the results showed that the flow in approach channel is unstable in the initial plan design. To improve flow stability in the spillway, therefore, the revised plan design was formulated. The appropriateness of the revised design was examined by a numerical modeling. The results showed that the flow in spillway is stable in the revised design.

      여수로의 급격하게 변화하는 흐름을 분석하기 위해 수리학적 모델 테스트를 사용했습니다. 그러나 스케일 효과의 오차와 고가의 비용 등의 단점이 있다. 최근에는 3차원 전산유체역학(CFD)의 발달로 급변하는 유동과 난류를 모사할 수 있다. 본 연구에서는 여수로의 흐름을 시뮬레이션하기 위한 CFD 모델의 적용 가능성을 검토했습니다. 인도네시아의 Karian 댐이 연구 지역으로 선정되었습니다. 자유표면을 갖는 유동을 모의하는 것으로 잘 알려진 FLOW-3d 모델을 유동해석에 사용하였다. 접근수로의 흐름 안정성은 초기 계획설계와 함께 조사한 결과 초기 계획설계에서 접근수로의 흐름이 불안정한 것으로 나타났다. 따라서 방수로의 흐름 안정성을 향상시키기 위해 수정된 계획 설계가 공식화되었습니다. 수정된 설계의 적합성을 수치모델링을 통해 검토하였다. 결과는 수정된 설계에서 여수로의 흐름이 안정적이라는 것을 보여주었습니다.

      Key words

      Spillway, FLOW-3D, approach channel, flow stability, numerical modeling, hydraulic model test.

      Figure 6. Two dimensional flow velocity distribution at the
approach channel (Flow velocity distribution at depth EL. 68.12 m).
      Figure 6. Two dimensional flow velocity distribution at the approach channel (Flow velocity distribution at depth EL. 68.12 m).
      Figure 7. Flow distribution at the approach channel in PMF.
A. Hydraulic model test; B. Numerial simulatio
C. Cross section view.
      Figure 7. Flow distribution at the approach channel in PMF. A. Hydraulic model test; B. Numerial simulatio C. Cross section view.
      Figure 8. Revised approach channel section.
A. Initial plan design; B. Revised plan design.
      Figure 8. Revised approach channel section. A. Initial plan design; B. Revised plan design.
      Figure 9. Two dimensional flow velocity distribution at the approach channel
based on revised plan design (Flow velocity distribution at depth EL. 68.12 m).
      Figure 9. Two dimensional flow velocity distribution at the approach channel based on revised plan design (Flow velocity distribution at depth EL. 68.12 m).
      Figure 10. Flow distribution at the approach channel in PMF based on revised plan design.
A. Hydarulic model test; B. Numerical simulation; C. Section view.
      Figure 10. Flow distribution at the approach channel in PMF based on revised plan design. A. Hydarulic model test; B. Numerical simulation; C. Section view.

      REFERENCES

      Betts PL (1979). A variation principle in terms of stream function for free
      surface flows and its application to finite element method. Comp.
      Fluids, 7(2): 145-153.
      Cassidy JJ (1965). Irrotational flow over spillways of finite height. J.
      Eng. Mech. Div. ASCE., 91(6): 155-173.
      Flow Science (2002). FLOW-3D -Theory manual. Los Alamos, NM.
      Guo Y, Wen X, Wu C, Fang D (1998). Numerical modeling of spillway
      flow with free drop and initially unknown discharge. J. Hydraulic Res.
      IAHR, 36(5): 785-801.
      Ho DKH, Donohoo SM (2001). Investigation of spillway behavior under
      increased maximum flood by computational fluid dynamics technique.
      Proceeding 14
      th Australasian Fluid Mech. Conference, Adelaide
      University, Adelaide, Australia, pp. 10-14.
      Ikegawa M, Washizu K (1973). Finite element method applied to
      analysis of flow over a spillway crest. Int. J. Numerical Methods Eng.,
      6: 179-189.
      Kim DG, Park JH (2005). Analysis of flow structure over ogee-spillway
      in consideration of scale and roughness effects by using CFD model.
      J. Civil Eng. KSCE., pp. 161-169.
      KRA, KWATER (2006). Feasibility study and detail design of the Karian
      dam project. Indonesia.
      Li W, Xie Q, Chen CJ (1989). Finite analytic solution of flow over
      spillways, J. Eng. Mech. ASCE, 115(2): 2645-2648.
      Olsen NR, Kjellesvig HM (1998).Three-dimensional numerical flow
      modeling for estimation of spillway capacity. J. Hydraulic Res. IAHR.,
      36(5): 775-784.
      Savage BM, Johnson MC (2001). Flow over ogee spillway: Physical and
      numerical model case study. J. Hydraulic Eng. ASCE., 127(8): 640-
      649.
      Tabbara M, Chatial J, Awwad R (2005). Computational simulation of
      flow over stepped spillways. Comput. Structure, 83: 2215-2224.

      Fig. 8. Comparison of the wave pattern for : (a) Ship wave only; (b) Ship wave in the presence of a following current.

      균일한 해류가 존재하는 선박 파도의 수치 시뮬레이션

      Numerical simulation of ship waves in the presence of a uniform current

      CongfangAiYuxiangMaLeiSunGuohaiDongState Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China

      Highlights

      • Ship waves in the presence of a uniform current are studied by a non-hydrostatic model.

      • Effects of a following current on characteristic wave parameters are investigated.

      • Effects of an opposing current on characteristic wave parameters are investigated.

      • The response of the maximum water level elevation to the ship draft is discussed.

      Abstract

      이 논문은 균일한 해류가 존재할 때 선박파의 생성 및 전파를 시뮬레이션하기 위한 비정역학적 모델을 제시합니다. 선박 선체의 움직임을 표현하기 위해 움직이는 압력장 방법이 모델에 통합되었습니다.

      뒤따르거나 반대 방향의 균일한 흐름이 있는 경우의 선박 파도의 수치 결과를 흐름이 없는 선박 파도의 수치 결과와 비교합니다. 추종 또는 반대 균일 전류가 존재할 때 계산된 첨단선 각도는 분석 솔루션과 잘 일치합니다. 추종 균일 전류와 반대 균일 전류가 특성파 매개변수에 미치는 영향을 제시하고 논의합니다.

      선박 흘수에 대한 최대 수위 상승의 응답은 추종 또는 반대의 균일한 흐름이 있는 경우에도 표시되며 흐름이 없는 선박 파도의 응답과 비교됩니다. 선박 선체 측면의 최대 수위 상승은 Froude 수 Fr’=Us/gh의 특정 범위에 대해 다음과 같은 균일한 흐름의 존재에 의해 증가될 수 있음이 밝혀졌습니다.

      여기서 Us는 선박 속도이고 h는 물입니다. 깊이. 균일한 해류를 무시하면 추종류나 반대류가 존재할 때 선박 흘수에 대한 최대 수위 상승의 응답이 과소평가될 수 있습니다.

      본 연구는 선박파의 해석에 있어 균일한 해류의 영향을 고려해야 함을 시사합니다.

      This paper presents a non-hydrostatic model to simulate the generation and propagation of ship waves in the presence of a uniform current. A moving pressure field method is incorporated into the model to represent the movement of a ship hull. Numerical results of ship waves in the presence of a following or an opposing uniform current are compared with those of ship waves without current. The calculated cusp-line angles in the presence of a following or opposing uniform current agree well with analytical solutions. The effects of a following uniform current and an opposing uniform current on the characteristic wave parameters are presented and discussed. The response of the maximum water level elevation to the ship draft is also presented in the presence of a following or an opposing uniform current and is compared with that for ship waves without current. It is found that the maximum water level elevation lateral to the ship hull can be increased by the presence of a following uniform current for a certain range of Froude numbers Fr′=Us/gh, where Us is the ship speed and h is the water depth. If the uniform current is neglected, the response of the maximum water level elevation to the ship draft in the presence of a following or an opposing current can be underestimated. The present study indicates that the effect of a uniform current should be considered in the analysis of ship waves.

      Keywords

      Ship waves, Non-hydrostatic model, Following current, Opposing current, Wave parameters

      1. Introduction

      Similar to wind waves, ships sailing across the sea can also create free-surface undulations ranging from ripples to waves of large size (Grue, 20172020). Ship waves can cause sediment suspension and engineering structures damage and even pose a threat to flora and fauna living near the embankments of waterways (Dempwolff et al., 2022). It is quite important to understand ship waves in various environments. The study of ship waves has been conducted over a century. A large amount of research (Almström et al., 2021Bayraktar and Beji, 2013David et al., 2017Ertekin et al., 1986Gourlay, 2001Havelock, 1908Lee and Lee, 2019Samaras and Karambas, 2021Shi et al., 2018) focused on the generation and propagation of ship waves without current. When a ship navigates in the sea or in a river where tidal flows or river flows always exist, the effect of currents should be taken into account. However, the effect of currents on the characteristic parameters of ship waves is still unclear, because very few publications have been presented on this topic.

      Over the past two decades, many two-dimensional (2D) Boussinesq-type models (Bayraktar and Beji, 2013Dam et al., 2008David et al., 2017Samaras and Karambas, 2021Shi et al., 2018) were developed to examine ship waves. For example, Bayraktar and Beji (2013) solved Boussinesq equations with improved dispersion characteristics to simulate ship waves due to a moving pressure field. David et al. (2017) employed a Boussinesq-type model to investigate the effects of the pressure field and its propagation speed on characteristic wave parameters. All of these Boussinesq-type models aimed to simulate ship waves without current except for that of Dam et al. (2008), who investigated the effect of currents on the maximum wave height of ship waves in a narrow channel.

      In addition to Boussinesq-type models, numerical models based on the Navier-Stokes equations (NSE) or Euler equations are also capable of resolving ship waves. Lee and Lee (20192021) employed the FLOW-3D model to simulate ship waves without current and ship waves in the presence of a uniform current to confirm their equations for ship wave crests. FLOW-3D is a computational fluid dynamics (CFD) software based on the NSE, and the volume of fluid (VOF) method is used to capture the moving free surface. However, VOF-based NSE models are computationally expensive due to the treatment of the free surface. To efficiently track the free surface, non-hydrostatic models employ the so-called free surface equation and can be solved efficiently. One pioneering application for the simulation of ship waves by the non-hydrostatic model was initiated by Ma (2012) and named XBeach. Recently, Almström et al. (2021) validated XBeach with improved dispersive behavior by comparison with field measurements. XBeach employed in Almström et al. (2021) is a 2-layer non-hydrostatic model and is accurate up to Kh=4 for the linear dispersion relation (de Ridder et al., 2020), where K=2π/L is the wavenumber. L is the wavelength, and h is the still water depth. However, no applications of non-hydrostatic models on the simulation of ship waves in the presence of a uniform current have been published. For more advances in the numerical modelling of ship waves, the reader is referred to Dempwolff et al. (2022).

      This paper investigates ship waves in the presence of a uniform current by using a non-hydrostatic model (Ai et al., 2019), in which a moving pressure field method is incorporated to represent the movement of a ship hull. The model solves the incompressible Euler equations by using a semi-implicit algorithm and is associated with iterating to solve the Poisson equation. The model with two, three and five layers is accurate up to Kh= 7, 15 and 40, respectively (Ai et al., 2019) in resolving the linear dispersion relation. To the best of our knowledge, ship waves in the presence of currents have been studied theoretically (Benjamin et al., 2017Ellingsen, 2014Li and Ellingsen, 2016Li et al., 2019.) and numerically (Dam et al., 2008Lee and Lee, 20192021). However, no publications have presented the effects of a uniform current on characteristic wave parameters except for Dam et al. (2008), who investigated only the effect of currents on the maximum wave height in a narrow channel for the narrow relative Froude number Fr=(Us−Uc)/gh ranging from 0.47 to 0.76, where Us is the ship speed and Uc is the current velocity. To reveal the effect of currents on the characteristic parameters of ship waves, the main objectives of this paper are (1) to validate the capability of the proposed model to resolve ship waves in the presence of a uniform current, (2) to investigate the effects of a following or an opposing current on characteristic wave parameters including the maximum water level elevation and the leading wave period in the ship wave train, (3) to show the differences in characteristic wave parameters between ship waves in the presence of a uniform current and those without current when the same relative Froude number Fr is specified, and (4) to examine the response of the maximum water level elevation to the ship draft in the presence of a uniform current.

      The remainder of this paper is organized as follows. The non-hydrostatic model for ship waves is described in Section 2. Section 3 presents numerical validations for ship waves. Numerical results and discussions about the effects of a uniform current on characteristic wave parameters are provided in Section 4, and a conclusion is presented in Section 5.

      2. Non-hydrostatic model for ship waves

      2.1. Governing equations

      The 3D incompressible Euler equations are expressed in the following form:(1)∂u∂x+∂v∂y+∂w∂z=0(2)∂u∂t+∂u2∂x+∂uv∂y+∂uw∂z=−∂p∂x(3)∂v∂t+∂uv∂x+∂v2∂y+∂vw∂z=−∂p∂y(4)∂w∂t+∂uw∂x+∂vw∂y+∂w2∂z=−∂p∂z−gwhere t is the time; u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) are the velocity components in the horizontal x, y and vertical z directions, respectively; p(x,y,z,t) is the pressure divided by a constant reference density; and g is the gravitational acceleration.

      The pressure p(x,y,z,t) can be expressed as(5)p=ps+g(η−z)+qwhere ps(x,y,t) is the pressure at the free surface, η(x,y,t) is the free surface elevation, and q(x,y,z,t) is the non-hydrostatic pressure.

      η(x,y,t) is calculated by the following free-surface equation:(6)∂η∂t+∂∂x∫−hηudz+∂∂y∫−hηvdz=0where z=−h(x,y) is the bottom surface.

      To generate ship waves, ps(x,y,t) is determined by the following slender-body type pressure field (Bayraktar and Beji, 2013David et al., 2017Samaras and Karambas, 2021):

      For −L/2≤x’≤L/2,−B/2≤y’≤B/2(7)ps(x,y,t)|t=0=pm[1−cL(x′/L)4][1−cB(y′/B)2]exp⁡[−a(y′/B)2]where x′=x−x0 and y′=y−y0. (x0,y0) is the center of the pressure field, pm is the peak pressure defined at (x0,y0), and L and B are the lengthwise and breadthwise parameters, respectively. cL, cB and a are set to 16, 2 and 16, respectively.

      2.2. Numerical algorithms

      In this study, the generation of ship waves is incorporated into the semi-implicit non-hydrostatic model developed by Ai et al. (2019). The 3D grid system used in the model is built from horizontal rectangular grids by adding horizontal layers. The horizontal layers are distributed uniformly along the water depth, which means the layer thickness is defined by Δz=(η+h)/Nz, where Nz is the number of horizontal layers.

      In the solution procedure, the first step is to generate ship waves by implementing Eq. (7) together with the prescribed ship track. In the second step, Eqs. (1)(2)(3)(4) are solved by the pressure correction method, which can be subdivided into three stages. The first stage is to compute intermediate velocities un+1/2, vn+1/2, and wn+1/2 by solving Eqs. (2)(3)(4), which contain the non-hydrostatic pressure at the preceding time level. In the second stage, the Poisson equation for the non-hydrostatic pressure correction term is solved on the graphics processing unit (GPU) in conjunction with the conjugate gradient method. The third stage is to compute the new velocities un+1, vn+1, and wn+1 by correcting the intermediate values after including the non-hydrostatic pressure correction term. In the discretization of Eqs. (2)(3), the gradient terms of the water surface ∂η/∂x and ∂η/∂y are discretized by means of the semi-implicit method (Vitousek and Fringer, 2013), in which the implicitness factor θ=0.5 is used. The model is second-order accurate in time for free-surface flows. More details about the model can be found in Ai et al. (2019).

      3. Model validation

      In this section, we validate the proposed model in resolving ship waves. The numerical experimental conditions are provided in Table 1 and Table 2. In Table 2, Case A with the current velocity of Uc = 0.0 m/s represents ship waves without current. Both Case B and Case C correspond to the cases in the presence of a following current, while Case D and Case E represent the cases in the presence of an opposing current. The current velocities are chosen based on the observed currents at 40.886° N, 121.812° E, which is in the Liaohe Estuary. The measured data were collected from 14:00 on September 18 (GMT + 08:00) to 19:00 on September 19 in 2021. The maximum flood velocity is 1.457 m/s, and the maximum ebb velocity is −1.478 m/s. The chosen current velocities are between the maximum flood velocity and the maximum ebb velocity.

      Table 1. Summary of ship speeds.

      CaseWater depth h (m)Ship speed Us (m/s)Froude number Fr′=Us/gh
      16.04.570.6
      26.05.350.7
      36.06.150.8
      46.06.900.9
      56.07.0930.925
      66.07.280.95
      76.07.4760.975
      86.07.861.025
      96.08.061.05
      106.08.2431.075
      116.08.451.1
      126.09.201.2
      136.09.971.3
      146.010.751.4
      156.011.501.5
      166.012.301.6
      176.013.051.7
      186.013.801.8
      196.014.601.9
      206.015.352.0

      Table 2. Summary of current velocities.

      CaseABCDE
      Current velocity
      Uc (m/s)
      0.00.51.0−0.5−1.0

      Notably, the Froude number Fr′=Us/gh presented in Table 1 is defined by the ship speed Us only and is different from the relative Froude number Fr when a uniform current is presented. According to