Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.

Benchmark study on slamming response of flat-stiffened plates considering fluid-structure interaction

유체-구조 상호작용을 고려한 평판 보강판의 슬래밍 응답에 대한 벤치마크 연구

Dac DungTruongabBeom-SeonJangaCarl-ErikJansoncJonas W.RingsbergcYasuhiraYamadadKotaTakamotofYasumiKawamuraeHan-BaekJua
aResearch Institute of Marine Systems Engineering, Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, South Korea
bDepartment of Engineering Mechanics, Nha Trang University, Nha Trang, Viet Nam
cDivision of Marine Technology, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
dNational Maritime Research Institute, National Institute of Maritime, Port and Aviation Technology, Tokyo, Japan
eDepartment of Systems Design for Ocean-Space, Yokohama National University, Kanagawa, Japan
fDepartment of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan

ABSTRACT

이 논문은 해양구조물의 평보강판의 슬래밍 반응에 대한 벤치마크 연구를 제시합니다. 목표는 유체-구조 상호작용(FSI) 시뮬레이션 방법론, 모델링 기술 및 슬래밍 압력 예측에 대한 기존 연구원의 경험을 비교하는 것이었습니다.

수치 FSI 시뮬레이션을 위해 가장 일반적인 상용 소프트웨어 패키지를 사용하는 3개의 연구 그룹(예: LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX 및 Star-CCM+/ABAQUS)이 이 연구에 참여했습니다.

공개 문헌에서 입수할 수 있는 경량 선박과 같은 바닥 구조의 평평한 강화 알루미늄 판에 대한 습식 낙하 시험 데이터는 FSI 모델링의 검증에 활용되었습니다. 형상 모델 및 재료 속성을 포함한 실험 조건의 요약은 시뮬레이션 전에 참가자에게 배포되었습니다.

충돌 속도와 강판의 강성이 슬래밍 응답에 미치는 영향을 조사하기 위해 해양 설비에 사용되는 실제 치수를 갖는 평판 보강 강판에 대한 매개변수 연구를 수행했습니다. 보강판에 작용하는 전체 수직력에 대한 FE 시뮬레이션 결과와 이러한 힘에 대한 구조적 반응을 참가자로부터 획득하여 분석 및 비교하였다.

앞서 언급한 상용 FSI 소프트웨어 패키지를 사용하여 슬래밍 부하에 대한 신뢰할 수 있고 정확한 예측을 평가했습니다. 또한 FSI 시뮬레이션에서 관찰된 동일한 영구 처짐을 초래하는 등가 정적 슬래밍 압력을 보고하고 분류 표준 DNV에서 제안한 해석 모델 및 슬래밍 압력 계산을 위한 기존 실험 데이터와 비교했습니다.

연구 결과는 등가 하중 모델이 물 충돌 속도와 플레이트 강성에 의존한다는 것을 보여주었습니다. 즉, 등가정압계수는 충돌속도가 증가함에 따라 감소하고 충돌구조가 더 단단해지면 증가한다.

This paper presents a benchmark study on the slamming responses of offshore structures’ flat-stiffened plates. The objective was to compare the fluid-structure interaction (FSI) simulation methodologies, modeling techniques, and established researchers’ experiences in predicting slamming pressure. Three research groups employing the most common commercial software packages for numerical FSI simulations (i.e. LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX, and Star-CCM+/ABAQUS) participated in this study. Wet drop test data on flat-stiffened aluminum plates of light-ship-like bottom structures available in the open literature was utilized for validation of the FSI modeling. A summary of the experimental conditions including the geometry model and material properties, was distributed to the participants prior to their simulations. A parametric study on flat-stiffened steel plates having actual scantlings used in marine installations was performed to investigate the effect of impact velocity and plate rigidity on slamming response. The FE simulation results for the total vertical forces acting on the stiffened plates and their structural responses to those forces, as obtained from the participants, were analyzed and compared. The reliable and accurate predictions of slamming loads using the aforementioned commercial FSI software packages were evaluated. Additionally, equivalent static slamming pressures resulting in the same permanent deflections, as observed from the FSI simulations, were reported and compared with analytical models proposed by the Classification Standards DNV and existing experimental data for calculation of the slamming pressure. The study results showed that the equivalent load model depends on the water impact velocity and plate rigidity; that is, the equivalent static pressure coefficient decreases with an increase in impact velocity, and increases when impacting structures become stiffer.

Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.
Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.
Fig. 6. (a) Boundary conditions of water hitting case and (b) water jets at end of the simulation.
Fig. 6. (a) Boundary conditions of water hitting case and (b) water jets at end of the simulation.
Fig. 7. Comparison of prediction and test results for deflection time history of (a) D1 and (b) D2 for Vi = 2.3 m/s.
Fig. 7. Comparison of prediction and test results for deflection time history of (a) D1 and (b) D2 for Vi = 2.3 m/s.
Fig. 8. Comparison of prediction and test results for maximum deflection with different impact velocities.
Fig. 8. Comparison of prediction and test results for maximum deflection with different impact velocities.
Fig. 16. Boundary conditions applied to present FSI simulations (Sym. denotes symmetric, and Cons. denotes constrained)
Fig. 16. Boundary conditions applied to present FSI simulations (Sym. denotes symmetric, and Cons. denotes constrained)
Fig. 24. Distribution of deflections at moment of maximum deflection in: (a) LS-Dyna ALE, (b) Star-CCM+/ABAQUS, (c) ANSYS CFD, and (d) LSDyna ICFD (unit: m).

Keywords

Benchmark studyEquivalent static pressureFlat-stiffened plateFluid-structure interactionPermanent deflectionSlamming pressure coefficient

References

[1] Von Karman TH. The impact on seaplane floats during landing. Washington, DC: National Advisory Committee for Aeronautics; 1929. Technical note No.: 321.
[2] Wagner VH. Über Stoß- und Gleitvorgange ¨ an der Oberflache ¨ von Flüssigkeiten. Z Angew Math Mech 1932;12(4):193–215.
[3] Chuang SL. Experiments on flat-bottom slamming. J Ship Res 1966;10:10–7.
[4] Chuang SL. Investigation of impact of rigid and elastic bodies with water. Report for Department of the Navy. Washington, DC: United States Department of the
Navy; 1970. Report No.: 3248.
[5] Mori K. Response of the bottom plate of high-speed crafts under impulsive water pressure. J Soc Nav Archit Jpn 1977;142:297–305 [Japanese].
[6] Cheon JS, Jang BS, Yim KH, Lee HSD, Koo BY, Ju HB. A study on slamming pressure on a flat stiffened plate considering fluid–structure interaction. J Mar Sci
Technol 2016;21:309–24.
[7] Truong DD, Jang BS, Ju HB, Han SW. Prediction of slamming pressure considering fluid-structure interaction. Part I: Numerical simulations. Ships Offshore
Struct. https://doi.org/10.1080/17445302.2020.1816732.
[8] Truong DD, Jang BS, Ju HB, Han SW. Prediction of slamming pressure considering fluid-structure interaction. Part II: Derivation of empirical formulations. Mar
Struct. https://doi.org/10.1016/j.marstruc.2019.102700.
[9] Greenhow M, Lin W. Numerical simulation of nonlinear free surface flows generated by wedge entry and wave maker motions. In: Proceedings of the 4th
international conference on numerical ship hydrodynamics, Washington, DC; 1985.
[10] Sun H, Faltinsen OM. Water impact of horizontal circular cylinders and cylindrical shells. Appl Ocean Res 2006;28(5):299–311.
[11] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Royal Astronomical Society 1977;181:375–89.
[12] Shao S. Incompressible SPH simulation of water entry of a free-falling object. Int J Numer Methods Fluid 2009;59(1):91–115.
[13] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid-structure interaction problems. Comput Methods Appl Mech Eng 2000;190(5):659–75.
[14] Livermore Software Technology Corporation (LSTC). ICFD theory manual incompressible fluid solver in LS-DYNA. Livermore Software Technology Corporation;

[15] Livermore Software Technology Corporation (LSTC). LS-DYNA theoretical manual. Livermore Software Technology Corporation; 2006.
[16] FLOW-3D user’s manual. 2018., version 12.0.
[17] Cd-adapco. STAR-CCM+ User’s manual. 2012., version 7.06.
[18] ANSYS fluent user’s guide. 2015.
[19] ANSYS CFX user’s guide. 2014.
[20] Abaqus user’s manual, version 6.13. SIMULIA; 2013.
[21] Luo HB, Hu J, Guedes Soares C. Numerical simulation of hydroelastic responses of flat stiffened panels under slamming loads. In: Proceedings of the 29th
international conference on ocean, offshore and arctic engineering (OMAE2010); 2010 [Shanghai, China].[22] Yamada Y, Takami T, Oka M. Numerical study on the slamming impact of wedge shaped obstacles considering fluid-structure interaction (FSI). In: Proceedings
of the 22nd international offshore and polar engineering conference (ISOPE2012); 2012 [Rhodes, Greece].
[23] Luo HB, Wang H, Guedes Soares C. Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened
panels. Ocean Eng 2012;40:1–14.
[24] Sun H, Wang DY. Experimental and numerical analysis of hydrodynamic impact on stiffened side of three dimensional elastic stiffened plates. Adv Mech Eng
2018;10(4):1–23.
[25] Ma S, Mahfuz H. Finite element simulation of composite ship structures with fluid structure interaction. Ocean Eng 2012;52:52–9.
[26] LSTC. Turek & hron’s FSI benchmark problem. 2012.
[27] Califano A, Brinchmann K. Evaluation of loads during a free-fall lifeboat drop. In: Proceedings of the ASME 32nd international conference on ocean, offshore
and arctic engineering (OMAE2013); 2013 [Nantes, France].
[28] LSTC. 3D fluid elastic body interaction problem. 2014.
[29] Yamada Y, Takamoto K, Nakanishi T, Ma C, Komoriyama Y. Numerical study on the slamming impact of stiffened flat panel using ICFD method – effect of
structural rigidity on the slamming impact. In: Proceedings of the ASME 39th international conference on ocean, offshore and arctic engineering (OMAE2020);
2020 [Florida, USA].
[30] Nicolici S, Bilegan RM. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks in flexible tanks. Nucl Eng Des 2013;258:51–6.
[31] DNV. DNV-RP-C205 environmental conditions and environmental loads. Det Norske Veritas; October 2010.
[32] Ahmed YM. Numerical simulation for the free surface flow around a complex ship hull form at different froude numbers. Alex Eng J 2011;50(3):229–35.
[33] Ghadimi P, Feizi Chekab MA, Dashtimanesh A. Numerical simulation of water entry of different arbitrary bow sections. J Nav Architect Mar Eng 2014;11:
117–29.
[34] Park BW, Cho S-R. Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosive loadings. Int J Impact Eng
2006;32:1721–36.
[35] Truong DD, Shin HK, Cho S-R. Permanent set evolution of aluminium-alloy plates due to repeated impulsive pressure loadings induced by slamming. J Mar Sci
Technol 2018;23:580–95.
[36] Jones N. Structural impact. first ed. Cambridge, UK: Cambridge University Press; 1989.
[37] Zha Y, Moan T. Ultimate strength of stiffened aluminium panels with predominantly torsional failure modes. Thin-Walled Struct 2001;39:631–48.
[38] Sensharma P, Collette M, Harrington J. Effect of welded properties on aluminum structures. Ship Structure Committee SSC-4 2010.
[39] ABS. Guide for slamming loads and strength assessment for vessels. 2011.
[40] Villavicencio R, Sutherland L, Guedes Soares C. Numerical simulation of transversely impacted, clamped circular aluminium plates. Ships Offshore Struct 2012;7(1):31–45.
[41] Material properties database. https://www.varmintal.com/aengr.htm, Assessed date: 16 May 2020.
[42] Ringsberg JW, Andri´c J, Heggelund SE, Homma N, Huang YT, Jang BS, et al. Report of the ISSC technical committee II.1 on quasi-static response. In:
Kaminski ML, Rigo P, editors. Proceedings of the 20th international ship and offshore structures congress (ISSC 2018), vol. 1. IOS Press BV; 2018. p. 226–31.
[43] Shin HK, Kim S-C, Cho S-R. Experimental investigations on slamming impacts by drop tests. J Soc Nav Archit Korea 2010;47(3):410–20 [Korean].
[44] Huera-Huarte FJ, Jeon D, Gharib M. Experimental investigation of water slamming loads on panels. Ocean Eng 2011;38:1347–55.

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

BrandonHayes,Travis Hainsworth, Robert MacCurdy
University of Colorado Boulder, Department of Mechanical Engineering, Boulder, 80309, CO, USA

Abstract

다중 재료 재료 분사 적층 제조 공정은 3차원(3D) 부품을 레이어별로 구축하기 위해 다양한 모델 및 지지 재료의 미세 액적을 증착합니다.

최근의 노력은 액체가 마이크로/밀리 채널에서 쉽게 퍼지할 수 있는 지지 재료로 작용할 수 있고 구조에 영구적으로 남아 있는 작동 유체로 작용할 수 있음을 보여주었지만 인쇄 프로세스 및 메커니즘에 대한 자세한 이해가 부족합니다.

액체 인쇄의 제한된 광범위한 적용. 이 연구에서 광경화성 및 광경화성 액체 방울이 동시에 증착되는 액체-고체 공동 인쇄라고 하는 “한 번에 모두 가능한” 다중 재료 인쇄 프로세스가 광범위하게 특성화됩니다. 액체-고체 공동 인쇄의 메커니즘은 실험적인 고속 이미징 및 CFD(전산 유체 역학) 연구를 통해 설명됩니다.

이 연구는 액체의 표면 장력이 액체 표면에서 광중합하여 재료의 단단한 층을 형성하는 분사된 광중합체 미세 방울을 지지할 수 있음을 보여줍니다.

마이크로/밀리 유체 소자의 액체-고체 공동 인쇄를 위한 설계 규칙은 믹서, 액적 발생기, 고도로 분기되는 구조 및 통합된 단방향 플랩 밸브와 같은 평면, 3D 및 복합 재료 마이크로/메조 유체 구조에 대한 사례 연구뿐만 아니라 제시됩니다.

우리는 액체-고체 공동 인쇄 과정을 마이크로/메조플루이딕 회로, 전기화학 트랜지스터, 칩 장치 및 로봇을 포함한 응용 프로그램을 사용하여 3D, 통합된 복합 재료 유체 회로 및 유압 구조의 단순하고 빠른 제작을 가능하게 하는 적층 제조의 핵심 새로운 기능으로 구상합니다.

Multi-material material jetting additive manufacturing processes deposit micro-scale droplets of different model and support materials to build three-dimensional (3D) parts layer by layer. Recent efforts have demonstrated that liquids can act as support materials, which can be easily purged from micro/milli-channels, and as working fluids, which permanently remain in a structure, yet the lack of a detailed understanding of the print process and mechanism has limited widespread applications of liquid printing. In this study, an “all in one go” multi-material print process, herein termed liquid–solid co-printing in which non photo-curable and photo-curable liquid droplets are simultaneous deposited, is extensively characterized. The mechanism of liquid–solid co-printing is explained via experimental high speed imaging and computational fluid dynamic (CFD) studies. This work shows that a liquid’s surface tension can support jetted photopolymer micro-droplets which photo-polymerize on the liquid surface to form a solid layer of material. Design rules for liquid–solid co-printing of micro/milli-fluidic devices are presented as well as case studies of planar, 3D, and multi-material micro/mesofluidic structures such as mixers, droplet generators, highly branching structures, and an integrated one-way flap valve. We envision the liquid–solid co-printing process as a key new capability in additive manufacturing to enable simple and rapid fabrication of 3D, integrated print-in-place multi-material fluidic circuits and hydraulic structures with applications including micro/mesofluidic circuits, electrochemical transistors, lab-on-a-chip devices, and robotics.

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

Keywords

Additive manufacturing; Mesofluidics; Modeling and simulation; Multi-material; Material jetting

Fig. 5. The predicted shapes of initial breach (a) Rectangular (b) V-notch. Fig. 6. Dam breaching stages.

Investigating the peak outflow through a spatial embankment dam breach

공간적 제방댐 붕괴를 통한 최대 유출량 조사

Mahmoud T.GhonimMagdy H.MowafyMohamed N.SalemAshrafJatwaryFaculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

Investigating the breach outflow hydrograph is an essential task to conduct mitigation plans and flood warnings. In the present study, the spatial dam breach is simulated by using a three-dimensional computational fluid dynamics model, FLOW-3D. The model parameters were adjusted by making a comparison with a previous experimental model. The different parameters (initial breach shape, dimensions, location, and dam slopes) are studied to investigate their effects on dam breaching. The results indicate that these parameters have a significant impact. The maximum erosion rate and peak outflow for the rectangular shape are higher than those for the V-notch by 8.85% and 5%, respectively. Increasing breach width or decreasing depth by 5% leads to increasing maximum erosion rate by 11% and 15%, respectively. Increasing the downstream slope angle by 4° leads to an increase in both peak outflow and maximum erosion rate by 2.0% and 6.0%, respectively.

유출 유출 수문곡선을 조사하는 것은 완화 계획 및 홍수 경보를 수행하는 데 필수적인 작업입니다. 본 연구에서는 3차원 전산유체역학 모델인 FLOW-3D를 사용하여 공간 댐 붕괴를 시뮬레이션합니다. 이전 실험 모델과 비교하여 모델 매개변수를 조정했습니다.

다양한 매개변수(초기 붕괴 형태, 치수, 위치 및 댐 경사)가 댐 붕괴에 미치는 영향을 조사하기 위해 연구됩니다. 결과는 이러한 매개변수가 상당한 영향을 미친다는 것을 나타냅니다. 직사각형 형태의 최대 침식율과 최대 유출량은 V-notch보다 각각 8.85%, 5% 높게 나타났습니다.

위반 폭을 늘리거나 깊이를 5% 줄이면 최대 침식률이 각각 11% 및 15% 증가합니다. 하류 경사각을 4° 증가시키면 최대 유출량과 최대 침식률이 각각 2.0% 및 6.0% 증가합니다.

Keywords

Spatial dam breach; FLOW-3D; Overtopping erosion; Computational fluid dynamics (CFD)

1. Introduction

There are many purposes for dam construction, such as protection from flood disasters, water storage, and power generationEmbankment failures may have a catastrophic impact on lives and infrastructure in the downstream regions. One of the most common causes of embankment dam failure is overtopping. Once the overtopping of the dam begins, the breach formation will start in the dam body then end with the dam failure. This failure occurs within a very short time, which threatens to be very dangerous. Therefore, understanding and modeling the embankment breaching processes is essential for conducting mitigation plans, flood warnings, and forecasting flood damage.

The analysis of the dam breaching process is implemented by different techniques: comparative methods, empirical models with dimensional and dimensionless solutions, physical-based models, and parametric models. These models were described in detail [1]Parametric modeling is commonly used to simulate breach growth as a time-dependent linear process and calculate outflow discharge from the breach using hydraulics principles [2]. Alhasan et al. [3] presented a simple one-dimensional mathematical model and a computer code to simulate the dam breaching process. These models were validated by small dams breaching during the floods in 2002 in the Czech Republic. Fread [4] developed an erosion model (BREACH) based on hydraulics principles, sediment transport, and soil mechanics to estimate breach size, time of formation, and outflow discharge. Říha et al. [5] investigated the dam break process for a cascade of small dams using a simple parametric model for piping and overtopping erosion, as well as a 2D shallow-water flow model for the flood in downstream areas. Goodarzi et al. [6] implemented mathematical and statistical methods to assess the effect of inflows and wind speeds on the dam’s overtopping failure.

Dam breaching studies can be divided into two main modes of erosion. The first mode is called “planar dam breach” where the flow overtops the whole dam width. While the second mode is called “spatial dam breach” where the flow overtops through the initial pilot channel (i.e., a channel created in the dam body). Therefore, the erosion will be in both vertical and horizontal directions [7].

The erosion process through the embankment dams occurs due to the shear stress applied by water flows. The dam breaching evolution can be divided into three stages [8][9], but Y. Yang et al. [10] divided the breach development into five stages: Stage I, the seepage erosion; Stage II, the initial breach formation; Stage III, the head erosion; Stage IV, the breach expansion; and Stage V, the re-equilibrium of the river channel through the breach. Many experimental tests have been carried out on non-cohesive embankment dams with an initial breach to examine the effect of upstream inflow discharges on the longitudinal profile evolution and the time to inflection point [11].

Zhang et al. [12] studied the effect of changing downstream slope angle, sediment grain size, and dam crest length on erosion rates. They noticed that increasing dam crest length and decreasing downstream slope angle lead to decreasing sediment transport rate. While the increase in sediment grain size leads to an increased sediment transport rate at the initial stages. Höeg et al. [13] presented a series of field tests to investigate the stability of embankment dams made of various materials. Overtopping and piping were among the failure tests carried out for the dams composed of homogeneous rock-fill, clay, or gravel with a height of up to 6.0 m. Hakimzadeh et al. [14] constructed 40 homogeneous cohesive and non-cohesive embankment dams to study the effect of changing sediment diameter and dam height on the breaching process. They also used genetic programming (GP) to estimate the breach outflow. Refaiy et al. [15] studied different scenarios for the downstream drain geometry, such as length, height, and angle, to minimize the effect of piping phenomena and therefore increase dam safety.

Zhu et al. [16] examined the effect of headcut erosion on dam breach growth, especially in the case of cohesive dams. They found that the breach growth in non-cohesive embankments is slower than cohesive embankments due to the little effect of headcut. Schmocker and Hager [7] proposed a relationship for estimating peak outflow from the dam breach process.(1)QpQin-1=1.7exp-20hc23d5013H0

where: Qp = peak outflow discharge.

Qin = inflow discharge.

hc = critical flow depth.

d50 = mean sediment diameter.

Ho = initial dam height.

Yu et al. [17] carried out an experimental study for homogeneous non-cohesive embankment dams in a 180° bending rectangular flume to determine the effect of overtopping flows on breaching formation. They found that the main factors influencing breach formation are water level, river discharge, and embankment material diameter.

Wu et al. [18] carried out a series of experiments to investigate the effect of breaching geometry on both non-cohesive and cohesive embankment dams in a U-bend flume due to overtopping flows. In the case of non-cohesive embankments, the non-symmetrical lateral expansion was noticed during the breach formation. This expansion was described by a coefficient ranging from 2.7 to 3.3.

The numerical models of the dam breach can be categorized according to different parameters, such as flow dimensions (1D, 2D, or 3D), flow governing equations, and solution methods. The 1D models are mainly used to predict the outflow hydrograph from the dam breach. Saberi et al. [19] applied the 1D Saint-Venant equation, which is solved by the finite difference method to investigate the outflow hydrograph during dam overtopping failure. Because of the ability to study dam profile evolution and breach formation, 2D models are more applicable than 1D models. Guan et al. [20] and Wu et al. [21] employed both 2D shallow water equations (SWEs) and sediment erosion equations, which are solved by the finite volume method to study the effect of the dam’s geometry parameters on outflow hydrograph and dam profile evolution. Wang et al. [22] also proposed a second-order hybrid-type of total variation diminishing (TVD) finite-difference to estimate the breach outflow by solving the 2D (SWEs). The accuracy of (SWEs) for both vertical flow contraction and surface roughness has been assessed [23]. They noted that the accuracy of (SWEs) is acceptable for milder slopes, but in the case of steeper slopes, modelers should be more careful. Generally, the accuracy of 2D models is still low, especially with velocity distribution over the flow depth, lateral momentum exchange, density-driven flows, and bottom friction [24]. Therefore, 3D models are preferred. Larocque et al. [25] and Yang et al. [26] started to use three-dimensional (3D) models that depend on the Reynolds-averaged Navier-Stokes (RANS) equations.

Previous experimental studies concluded that there is no clear relationship between the peak outflow from the dam breach and the initial breach characteristics. Some of these studies depend on the sharp-crested weir fixed at the end of the flume to determine the peak outflow from the breach, which leads to a decrease in the accuracy of outflow calculations at the microscale. The main goals of this study are to carry out a numerical simulation for a spatial dam breach due to overtopping flows by using (FLOW-3D) software to find an empirical equation for the peak outflow discharge from the breach and determine the worst-case that leads to accelerating the dam breaching process.

2. Numerical simulation

The current study for spatial dam breach is simulated by using (FLOW-3D) software [27], which is a powerful computational fluid dynamics (CFD) program.

2.1. Geometric presentations

A stereolithographic (STL) file is prepared for each change in the initial breach geometry and dimensions. The CAD program is useful for creating solid objects and converting them to STL format, as shown in Fig. 1.

2.2. Governing equations

The governing equations for water flow are three-dimensional Reynolds Averaged Navier-Stokes equations (RANS).

The continuity equation:(2)∂ui∂xi=0

The momentum equation:(3)∂ui∂t+1VFuj∂ui∂xj=1ρ∂∂xj-pδij+ν∂ui∂xj+∂uj∂xi-ρu`iu`j¯

where u is time-averaged velocity,ν is kinematic viscosity, VF is fractional volume open to flow, p is averaged pressure and -u`iu`j¯ are components of Reynold’s stress. The Volume of Fluid (VOF) technique is used to simulate the free surface profile. Hirt et al. [28] presented the VOF algorithm, which employs the function (F) to express the occupancy of each grid cell with fluid. The value of (F) varies from zero to unity. Zero value refers to no fluid in the grid cell, while the unity value refers to the grid cell being fully occupied with fluid. The free surface is formed in the grid cells having (F) values between zero and unity.(4)∂F∂t+1VF∂∂xFAxu+∂∂yFAyv+∂∂zFAzw=0

where (u, v, w) are the velocity components in (x, y, z) coordinates, respectively, and (AxAyAz) are the area fractions.

2.3. Boundary and initial conditions

To improve the accuracy of the results, the boundary conditions should be carefully determined. In this study, two mesh blocks are used to minimize the time consumed in the simulation. The boundary conditions for mesh block 1 are as follows: The inlet and sides boundaries are defined as a wall boundary condition (wall boundary condition is usually used for bound fluid by solid regions. In the case of viscous flows, no-slip means that the tangential velocity is equal to the wall velocity and the normal velocity is zero), the outlet is defined as a symmetry boundary condition (symmetry boundary condition is usually used to reduce computational effort during CFD simulation. This condition allows the flow to be transferred from one mesh block to another. No inputs are required for this boundary condition except that its location should be defined accurately), the bottom boundary is defined as a uniform flow rate boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure. The boundary conditions for mesh block 2 are as follows: The inlet is defined as a symmetry boundary condition, the outlet is defined as a free flow boundary condition, the bottom and sides boundaries are defined as a wall boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure as shown in Fig. 2. The initial conditions required to be set for the fluid (i.e., water) inside of the domain include configuration, temperature, velocities, and pressure distribution. The configuration of water depends on the dimensions and shape of the dam reservoir. While the other conditions have been assigned as follows: temperature is normal water temperature (25 °c) and pressure distribution is hydrostatic with no initial velocity.

2.4. Numerical method

FLOW-3D uses the finite volume method (FVM) to solve the governing equation (Reynolds-averaged Navier-Stokes) over the computational domain. A finite-volume method is an Eulerian approach for representing and evaluating partial differential equations in algebraic equations form [29]. At discrete points on the mesh geometry, values are determined. Finite volume expresses a small volume surrounding each node point on a mesh. In this method, the divergence theorem is used to convert volume integrals with a divergence term to surface integrals. After that, these terms are evaluated as fluxes at each finite volume’s surfaces.

2.5. Turbulent models

Turbulence is the chaotic, unstable motion of fluids that occurs when there are insufficient stabilizing viscous forces. In FLOW-3D, there are six turbulence models available: the Prandtl mixing length model, the one-equation turbulent energy model, the two-equation (k – ε) model, the Renormalization-Group (RNG) model, the two-equation (k – ω) models, and a large eddy simulation (LES) model. For simulating flow motion, the RNG model is adopted to simulate the motion behavior better than the k – ε and k – ω.

models [30]. The RNG model consists of two main equations for the turbulent kinetic energy KT and its dissipation.εT(5)∂kT∂t+1VFuAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z=PT+GT+DiffKT-εT(6)∂εT∂t+1VFuAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z=C1.εTKTPT+c3.GT+Diffε-c2εT2kT

where KT is the turbulent kinetic energy, PT is the turbulent kinetic energy production, GT is the buoyancy turbulence energy, εT is the turbulent energy dissipation rate, DiffKT and Diffε are terms of diffusion, c1, c2 and c3 are dimensionless parameters, in which c1 and c3 have a constant value of 1.42 and 0.2, respectively, c2 is computed from the turbulent kinetic energy (KT) and turbulent production (PT) terms.

2.6. Sediment scour model

The sediment scour model available in FLOW-3D can calculate all the sediment transport processes including Entrainment transport, Bedload transport, Suspended transport, and Deposition. The erosion process starts once the water flows remove the grains from the packed bed and carry them into suspension. It happens when the applied shear stress by water flows exceeds critical shear stress. This process is represented by entrainment transport in the numerical model. After entrained, the grains carried by water flow are represented by suspended load transport. After that, some suspended grains resort to settling because of the combined effect of gravity, buoyancy, and friction. This process is described through a deposition. Finally, the grains sliding motions are represented by bedload transport in the model. For the entrainment process, the shear stress applied by the fluid motion on the packed bed surface is calculated using the standard wall function as shown in Eq.7.(7)ks,i=Cs,i∗d50

where ks,i is the Nikuradse roughness and Cs,i is a user-defined coefficient. The critical bed shear stress is defined by a dimensionless parameter called the critical shields number as expressed in Eq.8.(8)θcr,i=τcr,i‖g‖diρi-ρf

where θcr,i is the critical shields number, τcr,i is the critical bed shear stress, g is the absolute value of gravity acceleration, di is the diameter of the sediment grain, ρi is the density of the sediment species (i) and ρf is the density of the fluid. The value of the critical shields number is determined according to the Soulsby-Whitehouse equation.(9)θcr,i=0.31+1.2d∗,i+0.0551-exp-0.02d∗,i

where d∗,i is the dimensionless diameter of the sediment, given by Eq.10.(10)d∗,i=diρfρi-ρf‖g‖μf213

where μf is the fluid dynamic viscosity. For the sloping bed interface, the value of the critical shields number is modified according to Eq.11.(11)θ`cr,i=θcr,icosψsinβ+cos2βtan2φi-sin2ψsin2βtanφi

where θ`cr,i is the modified critical shields number, φi is the angle of repose for the sediment, β is the angle of bed slope and ψ is the angle between the flow and the upslope direction. The effects of the rolling, hopping, and sliding motions of grains along the packed bed surface are taken by the bedload transport process. The volumetric bedload transport rate (qb,i) per width of the bed is expressed in Eq.12.(12)qb,i=Φi‖g‖ρi-ρfρfdi312

where Φi is the dimensionless bedload transport rate is calculated by using Meyer Peter and Müller equation.(13)Φi=βMPM,iθi-θ`cr,i1.5cb,i

where βMPM,i is the Meyer Peter and Müller user-defined coefficient and cb,i is the volume fraction of species i in the bed material. The suspended load transport is calculated as shown in Eq.14.(14)∂Cs,i∂t+∇∙Cs,ius,i=∇∙∇DCs,i

where Cs,i is the suspended sediment mass concentration, D is the diffusivity, and us,i is the grain velocity of species i. Entrainment and deposition are two opposing processes that take place at the same time. The lifting and settling velocities for both entrainment and deposition processes are calculated according to Eq.15 and Eq.16, respectively.(15)ulifting,i=αid∗,i0.3θi-θ`cr,igdiρiρf-1(16)usettling,i=υfdi10.362+1.049d∗,i3-10.36

where αi is the entrainment coefficient of species i and υf is the kinematic viscosity of the fluid.

2.7. Grid type

Using simple rectangular orthogonal elements in planes and hexahedral in volumes in the (FLOW-3D) program makes the mesh generation process easier, decreases the required memory, and improves numerical accuracy. Two mesh blocks were used in a joined form with a size ratio of 2:1. The first mesh block is coarser, which contains the reservoir water, and the second mesh block is finer, which contains the dam. For achieving accuracy and efficiency in results, the mesh size is determined by using a grid convergence test. The optimum uniform cell size for the first mesh block is 0.012 m and for the second mesh block is 0.006 m.

2.8. Time step

The maximum time step size is determined by using a Courant number, which controls the distance that the flow will travel during the simulation time step. In this study, the Courant number was taken equal to 0.25 to prevent the flow from traveling through more than one cell in the time step. Based on the Courant number, a maximum time step value of 0.00075 s was determined.

2.9. Numerical model validation

The numerical model accuracy was achieved by comparing the numerical model results with previous experimental results. The experimental study of Schmocker and Hager [7] was based on 31 tests with changes in six parameters (d50, Ho, Bo, Lk, XD, and Qin). All experimental tests were conducted in a straight open glass-sided flume. The horizontal flume has a rectangular cross-section with a width of 0.4 m and a height of 0.7 m. The flume was provided with a flow straightener and an intake with a length of 0.66 m. All tested dams were inserted at various distances (XD) from the intake. Test No.1 from this experimental program was chosen to validate the numerical model. The different parameters used in test No.1 are as follows:

(1) uniform sediment with a mean diameter (d50 = 0.31 mm), (2) Ho = 0.2 m, (3) Bo = 0.2 m, (4) Lk = 0.1 m,

(5) XD = 1.0 m, (6) Qin = 6.0 lit/s, (7) Su and Sd = 2:1, (8) mass density (ρs = 2650 kg/m3(9) Homogenous and non-cohesive embankment dam. As shown in Fig. 2, the simulation is contained within a rectangular grid with dimensions: 3.56 m in the x-direction (where 0.66 m is used as inlet, 0.9 m as dam base width, and 1.0 m as outlet), in y-direction 0.2 m (dam length), and in the z-direction 0.3 m, which represents the dam height (0.2 m) with a free distance (0.1 m) above the dam. There are two main reasons that this experimental program is preferred for the validation process. The first reason is that this program deals with homogenous, non-cohesive soil, which is available in FLOW-3D. The second reason is that this program deals with small-scale models which saves time for numerical simulation. Finally, some important assumptions were considered during the validation process. The flow is assumed to be incompressible, viscous, turbulent, and three-dimensional.

By comparing dam profiles at different time instants for the experimental test with the current numerical model, it appears that the numerical model gives good agreement as shown in Fig. 3 and Fig. 4, with an average error percentage of 9% between the experimental results and the numerical model.

3. Analysis and discussions

The current model is used to study the effects of different parameters such as (initial breach shapes, dimensions, locations, upstream and downstream dam slopes) on the peak outflow discharge, QP, time of peak outflow, tP, and rate of erosion, E.

This study consists of a group of scenarios. The first scenario is changing the shapes of the initial breach according to Singh [1], the most predicted shapes are rectangular and V-notch as shown in Fig. 5. The second scenario is changing the initial breach dimensions (i.e., width and depth). While the third scenario is changing the location of the initial breach. Eventually, the last scenario is changing the upstream and downstream dam slopes.

All scenarios of this study were carried out under the same conditions such as inflow discharge value (Qin=1.0lit/s), dimensions of the tested dam, where dam height (Ho=0.20m), crest width.

(Lk=0.1m), dam length (Bo=0.20m), and homogenous & non-cohesive soil with a mean diameter (d50=0.31mm).

3.1. Dam breaching process evolution

The dam breaching process is a very complex process due to the quick changes in hydrodynamic conditions during dam failure. The dam breaching process starts once water flows reach the downstream face of the dam. During the initial stage of dam breaching, the erosion process is relatively quiet due to low velocities of flow. As water flows continuously, erosion rates increase, especially in two main zones: the crest and the downstream face. As soon as the dam crest is totally eroded, the water levels in the dam reservoir decrease rapidly, accompanied by excessive erosion in the dam body. The erosion process continues until the water levels in the dam reservoir equal the remaining height of the dam.

According to Zhou et al. [11], the breaching process consists of three main stages. The first stage starts with beginning overtopping flow, then ends when the erosion point directed upstream and reached the inflection point at the inflection time (ti). The second stage starts from the end of the stage1 until the occurrence of peak outflow discharge at the peak outflow time (tP). The third stage starts from the end of the stage2 until the value of outflow discharge becomes the same as the value of inflow discharge at the final time (tf). The outflow discharge from the dam breach increases rapidly during stage1 and stage2 because of the large dam storage capacity (i.e., the dam reservoir is totally full of water) and excessive erosion. While at stage3, the outflow values start to decrease slowly because most of the dam’s storage capacity was run out. The end of stage3 indicates that the dam storage capacity was totally run out, so the outflow equalized with the inflow discharge as shown in Fig. 6 and Fig. 7.

3.2. The effect of initial breach shape

To identify the effect of the initial breach shape on the evolution of the dam breaching process. Three tests were carried out with different cross-section areas for each shape. The initial breach is created at the center of the dam crest. Each test had an ID to make the process of arranging data easier. The rectangular shape had an ID (Rec5h & 5b), which means that its depth and width are equal to 5% of the dam height, and the V-notch shape had an ID (V-noch5h & 1:1) which means that its depth is equal to 5% of the dam height and its side slope is equal to 1:1. The comparison between rectangular and V-notch shapes is done by calculating the ratio between maximum dam height at different times (ZMax) to the initial dam height (Ho), rate of erosion, and hydrograph of outflow discharge for each test. The rectangular shape achieves maximum erosion rate and minimum inflection time, in addition to a rapid decrease in the dam reservoir levels. Therefore, the dam breaching is faster in the case of a rectangular shape than in a V-notch shape, which has the same cross-section area as shown in Fig. 8.

Also, by comparing the hydrograph for each test, the peak outflow discharge value in the case of a rectangular shape is higher than the V-notch shape by 5% and the time of peak outflow for the rectangular shape is shorter than the V-notch shape by 9% as shown in Fig. 9.

3.3. The effect of initial breach dimensions

The results of the comparison between the different initial breach shapes indicate that the worst initial breach shape is rectangular, so the second scenario from this study concentrated on studying the effect of a change in the initial rectangular breach dimensions. Groups of tests were carried out with different depths and widths for the rectangular initial breach. The first group had a depth of 5% from the dam height and with three different widths of 5,10, and 15% from the dam height, the second group had a depth of 10% with three different widths of 5,10, and 15%, the third group had a depth of 15% with three different widths of 5,10, and 15% and the final group had a width of 15% with three different heights of 5, 10, and 15% for a rectangular breach shape. The comparison was made as in the previous section to determine the worst case that leads to the quick dam failure as shown in Fig. 10.

The results show that the (Rec 5 h&15b) test achieves a maximum erosion rate for a shorter period of time and a minimum ratio for (Zmax / Ho) as shown in Fig. 10, which leads to accelerating the dam failure process. The dam breaching process is faster with the minimum initial breach depth and maximum initial breach width. In the case of a minimum initial breach depth, the retained head of water in the dam reservoir is high and the crest width at the bottom of the initial breach (L`K) is small, so the erosion point reaches the inflection point rapidly. While in the case of the maximum initial breach width, the erosion perimeter is large.

3.4. The effect of initial breach location

The results of the comparison between the different initial rectangular breach dimensions indicate that the worst initial breach dimension is (Rec 5 h&15b), so the third scenario from this study concentrated on studying the effect of a change in the initial breach location. Three locations were checked to determine the worst case for the dam failure process. The first location is at the center of the dam crest, which was named “Center”, the second location is at mid-distance between the dam center and dam edge, which was named “Mid”, and the third location is at the dam edge, which was named “Edge” as shown in Fig. 11. According to this scenario, the results indicate that the time of peak outflow discharge (tP) is the same in the three cases, but the maximum value of the peak outflow discharge occurs at the center location. The difference in the peak outflow values between the three cases is relatively small as shown in Fig. 12.

The rates of erosion were also studied for the three cases. The results show that the maximum erosion rate occurs at the center location as shown in Fig. 13. By making a comparison between the three cases for the dam storage volume. The results show that the center location had the minimum values for the dam storage volume, which means that a large amount of water has passed to the downstream area as shown in Fig. 14. According to these results, the center location leads to increased erosion rate and accelerated dam failure process compared with the two other cases. Because the erosion occurs on both sides, but in the case of edge location, the erosion occurs on one side.

3.5. The effect of upstream and downstream dam slopes

The results of the comparison between the different initial rectangular breach locations indicate that the worst initial breach location is the center location, so the fourth scenario from this study concentrated on studying the effect of a change in the upstream (Su) and downstream (Sd) dam slopes. Three slopes were checked individually for both upstream and downstream slopes to determine the worst case for the dam failure process. The first slope value is (2H:1V), the second slope value is (2.5H:1V), and the third slope value is (3H:1V). According to this scenario, the results show that the decreasing downstream slope angle leads to increasing time of peak outflow discharge (tP) and decreasing value of peak outflow discharge. The difference in the peak outflow values between the three cases for the downstream slope is 2%, as shown in Fig. 15, but changing the upstream slope has a negligible impact on the peak outflow discharge and its time as shown in Fig. 16.

The rates of erosion were also studied in the three cases for both upstream and downstream slopes. The results show that the maximum erosion rate increases by 6.0% with an increasing downstream slope angle by 4°, as shown in Fig. 17. The results also indicate that the erosion rates aren’t affected by increasing or decreasing the upstream slope angle, as shown in Fig. 18. According to these results, increasing the downstream slope angle leads to increased erosion rate and accelerated dam failure process compared with the upstream slope angle. Because of increasing shear stress applied by water flows in case of increasing downstream slope.

According to all previous scenarios, the dimensionless peak outflow discharge QPQin is presented for a fixed dam height (Ho) and inflow discharge (Qin). Fig. 19 illustrates the relationship between QP∗=QPQin and.

Lr=ho2/3∗bo2/3Ho. The deduced relationship achieves R2=0.96.(17)QP∗=2.2807exp-2.804∗Lr

4. Conclusions

A spatial dam breaching process was simulated by using FLOW-3D Software. The validation process was performed by making a comparison between the simulated results of dam profiles and the dam profiles obtained by Schmocker and Hager [7] in their experimental study. And also, the peak outflow value recorded an error percentage of 12% between the numerical model and the experimental study. This model was used to study the effect of initial breach shape, dimensions, location, and dam slopes on peak outflow discharge, time of peak outflow, and the erosion process. By using the parameters obtained from the validation process, the results of this study can be summarized in eight points as follows.1.

The rectangular initial breach shape leads to an accelerating dam failure process compared with the V-notch.2.

The value of peak outflow discharge in the case of a rectangular initial breach is higher than the V-notch shape by 5%.3.

The time of peak outflow discharge for a rectangular initial breach is shorter than the V-notch shape by 9%.4.

The minimum depth and maximum width for the initial breach achieve maximum erosion rates (increasing breach width, b0, or decreasing breach depth, h0, by 5% from the dam height leads to an increase in the maximum rate of erosion by 11% and 15%, respectively), so the dam failure is rapid.5.

The center location of the initial breach leads to an accelerating dam failure compared with the edge location.6.

The initial breach location has a negligible effect on the peak outflow discharge value and its time.7.

Increasing the downstream slope angle by 4° leads to an increase in both peak outflow discharge and maximum rate of erosion by 2.0% and 6.0%, respectively.8.

The upstream slope has a negligible effect on the dam breaching process.

References

[1]V. SinghDam breach modeling technologySpringer Science & Business Media (1996)Google Scholar[2]Wahl TL. Prediction of embankment dam breach parameters: a literature review and needs assessment. 1998.Google Scholar[3]Z. Alhasan, J. Jandora, J. ŘíhaStudy of dam-break due to overtopping of four small dams in the Czech RepublicActa Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (3) (2015), pp. 717-729 View PDFCrossRefView Record in ScopusGoogle Scholar[4]D. FreadBREACH, an erosion model for earthen dam failures: Hydrologic Research LaboratoryNOAA, National Weather Service (1988)Google Scholar[5]J. Říha, S. Kotaška, L. PetrulaDam Break Modeling in a Cascade of Small Earthen Dams: Case Study of the Čižina River in the Czech RepublicWater, 12 (8) (2020), p. 2309, 10.3390/w12082309 View PDFView Record in ScopusGoogle Scholar[6]E. Goodarzi, L. Teang Shui, M. ZiaeiDam overtopping risk using probabilistic concepts–Case study: The Meijaran DamIran Ain Shams Eng J, 4 (2) (2013), pp. 185-197ArticleDownload PDFView Record in ScopusGoogle Scholar[7]L. Schmocker, W.H. HagerPlane dike-breach due to overtopping: effects of sediment, dike height and dischargeJ Hydraul Res, 50 (6) (2012), pp. 576-586 View PDFCrossRefView Record in ScopusGoogle Scholar[8]J.S. Walder, R.M. Iverson, J.W. Godt, M. Logan, S.A. SolovitzControls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen damsWater Resour Res, 51 (8) (2015), pp. 6701-6724View Record in ScopusGoogle Scholar[9]H. Wei, M. Yu, D. Wang, Y. LiOvertopping breaching of river levees constructed with cohesive sedimentsNat Hazards Earth Syst Sci, 16 (7) (2016), pp. 1541-1551 View PDFCrossRefView Record in ScopusGoogle Scholar[10]Y. Yang, S.-Y. Cao, K.-J. Yang, W.-P. LiYang K-j, Li W-p. Experimental study of breach process of landslide dams by overtopping and its initiation mechanismsJ Hydrodynamics, 27 (6) (2015), pp. 872-883ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[11]G.G.D. Zhou, M. Zhou, M.S. Shrestha, D. Song, C.E. Choi, K.F.E. Cui, et al.Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floodsGeomorphology, 334 (2019), pp. 29-43ArticleDownload PDFView Record in ScopusGoogle Scholar[12]J. Zhang, Z.-x. Guo, S.-y. CaoYang F-g. Experimental study on scour and erosion of blocked damWater Sci Eng, 5 (2012), pp. 219-229ArticleDownload PDFView Record in ScopusGoogle Scholar[13]K. Höeg, A. Løvoll, K. VaskinnStability and breaching of embankment dams: Field tests on 6 m high damsInt J Hydropower Dams, 11 (2004), pp. 88-92View Record in ScopusGoogle Scholar[14]H. Hakimzadeh, V. Nourani, A.B. AminiGenetic programming simulation of dam breach hydrograph and peak outflow dischargeJ Hydrol Eng, 19 (4) (2014), pp. 757-768View Record in ScopusGoogle Scholar[15]A.R. Refaiy, N.M. AboulAtta, N.Y. Saad, D.A. El-MollaModeling the effect of downstream drain geometry on seepage through earth damsAin Shams Eng J, 12 (3) (2021), pp. 2511-2531ArticleDownload PDFView Record in ScopusGoogle Scholar[16]Y. Zhu, P.J. Visser, J.K. Vrijling, G. WangExperimental investigation on breaching of embankmentsScience China Technological Sci, 54 (1) (2011), pp. 148-155 View PDFCrossRefView Record in ScopusGoogle Scholar[17]M.-H. Yu, H.-Y. Wei, Y.-J. Liang, Y. ZhaoInvestigation of non-cohesive levee breach by overtopping flowJ Hydrodyn, 25 (4) (2013), pp. 572-579ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[18]S. Wu, M. Yu, H. Wei, Y. Liang, J. ZengNon-symmetrical levee breaching processes in a channel bend due to overtoppingInt J Sedim Res, 33 (2) (2018), pp. 208-215ArticleDownload PDFView Record in ScopusGoogle Scholar[19]O. Saberi, G. ZenzNumerical investigation on 1D and 2D embankment dams failure due to overtopping flowInt J Hydraulic Engineering, 5 (2016), pp. 9-18View Record in ScopusGoogle Scholar[20]M. Guan, N.G. Wright, P.A. Sleigh2D Process-Based Morphodynamic Model for Flooding by Noncohesive Dyke BreachJ Hydraul Eng, 140 (7) (2014), p. 04014022, 10.1061/(ASCE)HY.1943-7900.0000861 View PDFView Record in ScopusGoogle Scholar[21]W. Wu, R. Marsooli, Z. HeDepth-Averaged Two-Dimensional Model of Unsteady Flow and Sediment Transport due to Noncohesive Embankment Break/BreachingJ Hydraul Eng, 138 (6) (2012), pp. 503-516View Record in ScopusGoogle Scholar[22]Z. Wang, D.S. BowlesThree-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodologyAdv Water Resour, 29 (10) (2006), pp. 1528-1545ArticleDownload PDFView Record in ScopusGoogle Scholar[23]Říha J, Duchan D, Zachoval Z, Erpicum S, Archambeau P, Pirotton M, et al. Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs. J Hydrology Hydromechanics. 2019;67:322-8.Google Scholar[24]C.B. VreugdenhilNumerical methods for shallow-water flowSpringer Science & Business Media (1994)Google Scholar[25]L.A. Larocque, J. Imran, M.H. Chaudhry3D numerical simulation of partial breach dam-break flow using the LES and k–∊ turbulence modelsJ Hydraul Res, 51 (2) (2013), pp. 145-157 View PDFCrossRefView Record in ScopusGoogle Scholar[26]C. Yang, B. Lin, C. Jiang, Y. LiuPredicting near-field dam-break flow and impact force using a 3D modelJ Hydraul Res, 48 (6) (2010), pp. 784-792 View PDFCrossRefView Record in ScopusGoogle Scholar[27]FLOW-3D. Version 11.1.1 Flow Science, Inc., Santa Fe, NM. https://wwwflow3dcom.Google Scholar[28]C.W. Hirt, B.D. NicholsVolume of fluid (VOF) method for the dynamics of free boundariesJ Comput Phys, 39 (1) (1981), pp. 201-225ArticleDownload PDFGoogle Scholar[29]S.V. PatankarNumerical heat transfer and fluid flow, Hemisphere PublCorp, New York, 58 (1980), p. 288View Record in ScopusGoogle Scholar[30]M. Alemi, R. MaiaNumerical simulation of the flow and local scour process around single and complex bridge piersInt J Civil Eng, 16 (5) (2018), pp. 475-487 View PDFCrossRefView Record in ScopusGoogle Scholar

Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) - (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.

MULTIPHYSICS SIMULATION OF THEMRAL AND FLUID DYNAMICS PHENOMENA DURING THE PULSED LASER POWDER BED FUSION PROCESS OF 316-L STEEL

M. Bayat* , V. K. Nadimpalli, J. H. Hattel
1Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet
425, Kgs. 2800, Lyngby, Denmark

ABSTRACT

L-PBF(Laser Powder Bed Fusion)는 다양한 산업 분야에서 많은 관심을 받았으며, 주로 기존 제조 기술을 사용하여 만들 수 없었던 복잡한 토폴로지 최적화 구성 요소를 구현하는 잘 알려진 능력 덕분입니다. . 펄스 L-PBF(PL-PBF)에서 레이저의 시간적 프로파일은 주기 지속 시간과 듀티 주기 중 하나 또는 둘 다를 수정하여 변조할 수 있습니다. 따라서 레이저의 시간적 프로파일은 향후 적용을 위해 이 프로세스를 더 잘 제어할 수 있는 길을 열어주는 새로운 프로세스 매개변수로 간주될 수 있습니다. 따라서 이 작업에서 우리는 레이저의 시간적 프로파일을 변경하는 것이 PL-PBF 공정에서 용융 풀 조건과 트랙의 최종 모양 및 형상에 어떻게 영향을 미칠 수 있는지 조사하는 것을 목표로 합니다. 이와 관련하여 본 논문에서는 CFD(Computational Fluid Dynamics) 소프트웨어 패키지인 Flow-3D를 기반으로 하는 316-L 스테인리스강 PL-PBF 공정의 다중물리 수치 모델을 개발하고 이 모델을 사용하여 열과 유체를 시뮬레이션합니다. 다양한 펄스 모드에서 공정 과정 중 용융 풀 내부에서 발생하는 유동 조건. 따라서 고정된 레이저 듀티 사이클(50%)이 있는 레이저 주기 지속 시간이 용융 풀의 모양과 크기 및 최종 트랙 형태에 미치는 영향을 연구하기 위해 매개변수 연구가 수행됩니다. 더 긴 주기 기간에서 더 많은 재료가 더 큰 용융 풀 내에서 변위됨에 따라 용융 풀의 후류에 더 눈에 띄는 혹이 형성되며, 동시에 더 심각한 반동 압력을 받습니다. 또한 시뮬레이션에서 50% 듀티 사이클에서 1000μs에서 형성된 보다 대칭적인 용융 풀과 비교하여 400μs 사이클 주기에서 더 긴 용융 풀이 형성된다는 것이 관찰되었습니다. 풀 볼륨은 1000μs의 경우 더 큽니다. 매개변수 연구는 연속 트랙과 파손된 트랙 PL-PBF 사이의 경계를 설명하며, 여기서 연속 트랙은 항상 소량의 용융 재료를 유지함으로써 유지됩니다.

English Abstract

Laser Powder Bed Fusion (L-PBF) has attracted a lot of attention from various industrial sectors and mainly thanks to its well-proven well-known capacity of realizing complex topology-optimized components that have so far been impossible to make using conventional manufacturing techniques. In Pulsed L-PBF (PL-PBF), the laser’s temporal profile can be modulated via modifying either or both the cycle duration and the duty cycle. Thus, the laser’s temporal profile could be considered as a new process parameter that paves the way for a better control of this process for future applications. Therefore, in this work we aim to investigate how changing the laser’s temporal profile can affect the melt pool conditions and the final shape and geometry of a track in the PL-PBF process. In this respect, in this paper a multiphysics numerical model of the PL-PBF process of 316-L stainless steel is developed based on the computational fluid dynamics (CFD) software package Flow-3D and the model is used to simulate the heat and fluid flow conditions occurring inside the melt pool during the course of the process at different pulsing modes. Thus, a parametric study is carried out to study the influence of the laser’s cycle duration with a fixed laser duty cycle (50 %) on the shape and size of the melt pool and the final track morphology. It is noticed that at longer cycle periods, more noticeable humps form at the wake of the melt pool as more material is displaced within bigger melt pools, which are at the same time subjected to more significant recoil pressures. It is also observed in the simulations that at 50 % duty cycle, longer melt pools form at 400 μs cycle period compared to the more symmetrical melt pools formed at 1000 μs, primarily because of shorter laser off-times in the former, even though melt pool volume is bigger for the 1000 μs case. The parameteric study illustrates the boundary between a continuous track and a broken track PL-PBF wherein the continuous track is retained by always maintaining a small volume of molten material.

Figure 1: Front and side views of the computational domain. Note that the region along z and from -100 μm to +50 μm is void.
Figure 1: Front and side views of the computational domain. Note that the region along z and from -100 μm to +50 μm is void.
Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) - (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.
Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) – (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.
Figure 3: Plot of melt pool volume versus time for four cases including continuous wave laser as well as 50 % duty cycle at 400 μs, 1000 μs and 3000 μs.
Figure 3: Plot of melt pool volume versus time for four cases including continuous wave laser as well as 50 % duty cycle at 400 μs, 1000 μs and 3000 μs.

CONCLUSIONS

In this work a CFD model of the modulated PL-PBF process of stainless steel 316-L is developed in the commercial software package Flow-3D. The model involves physics such as solidification, melting, evaporation, convection, laser-material interaction, capillarity, Marangoni effect and the recoil pressure effect. In the current study, a parametric study is carried out to understand how the change in the cycle period duration affects the melt pool’s thermo-fluid conditions during the modulated PL-PBF process. It is observed that at the pulse mode with 50 % duty cycle and 400 μs cycle period, an overlapped chain of humps form at the wake of the melt pool and at a spatial frequency of occurrence of about 78 μm. Furthermore and as expected, it is noted that the melt pool volume, the size of the hump as well as the crater size at the end of the track, increase with increase in the cycle period duration, as more material is re-deposited at the back of the melt pool and that itself is caused by more pronounced recoil pressures. Moreover, it is noticed that due to the short off-time period of the laser in the 400 μs cycle period case, there is always an amount of liquid metal left from the previous cycle, at the time the new cycle starts. This is found to be the main reason why longer and elongated melt pools form at 400 μs cycle period, compared to the bigger, shorter and more symmetrical-like melt pools forming at the 1000 μs case. In this study PL-PBF single tracks including the broken track and the continuous track examples were studied to illustrate the boundary of this transition at a given laser scan parameter setting. At higher scan speeds, it is expected that the Plateau–Rayleigh instability will compete with the pulsing behavior to change the transition boundary between a broken and continuous track, which is suggested as future work from this study.

REFERENCES

[1] T. Craeghs, L. Thijs, F. Verhaeghe, J.-P. Kruth, J. Van Humbeeck, A study of the microstructural
evolution during selective laser melting of Ti–6Al–4V, Acta Mater. 58 (2010) 3303–3312.
https://doi.org/10.1016/j.actamat.2010.02.004.
[2] J. Liu, A.T. Gaynor, S. Chen, Z. Kang, K. Suresh, A. Takezawa, L. Li, J. Kato, J. Tang, C.C.L. Wang, L.
Cheng, X. Liang, A.C. To, Current and future trends in topology optimization for additive manufacturing,
(2018) 2457–2483.
[3] M. Bayat, W. Dong, J. Thorborg, A.C. To, J.H. Hattel, A review of multi-scale and multi-physics
simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf.
47 (2021). https://doi.org/10.1016/j.addma.2021.102278.
[4] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Finite Element Simulation of Selective Laser
Melting process considering Optical Penetration Depth of laser in powder bed, Mater. Des. 89 (2016)
255–263. https://doi.org/10.1016/j.matdes.2015.10.002.
[5] Y.S. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base
superalloy fabricated by laser powder bed fusion, Addit. Manuf. 12 (2016) 178–188.
https://doi.org/10.1016/j.addma.2016.05.003.
[6] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive
manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation
zones, Acta Mater. 108 (2016) 36–45. https://doi.org/10.1016/j.actamat.2016.02.014.
[7] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and
experimental validation, Addit. Manuf. 30 (2019). https://doi.org/10.1016/j.addma.2019.100835.
[8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J.H. Hattel, S. Scholz, Elucidation of dross formation in laser
powder bed fusion at down-facing surfaces: phenomenon-oriented multiphysics simulation and
experimental validation, Addit. Manuf. Under revi (2021).
[9] M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, A fundamental investigation of thermo-capillarity
in laser powder bed fusion of metals and alloys, Int. J. Heat Mass Transf. 166 (2021) 120766.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120766.
[10] J.D. Roehling, S.A. Khairallah, Y. Shen, A. Bayramian, C.D. Boley, A.M. Rubenchik, J. Demuth, N.
Duanmu, M.J. Matthews, Physics of large-area pulsed laser powder bed fusion, Addit. Manuf. 46 (2021) https://doi.org/10.1016/j.addma.2021.102186.
[11] M. Zheng, L. Wei, J. Chen, Q. Zhang, J. Li, S. Sui, G. Wang, W. Huang, Surface morphology evolution
during pulsed selective laser melting: Numerical and experimental investigations, Appl. Surf. Sci. 496
(2019) 143649. https://doi.org/10.1016/j.apsusc.2019.143649.
[12] M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, A fundamental investigation of thermo-capillarity
in laser powder bed fusion of metals and alloys, Int. J. Heat Mass Transf. 166 (2021).
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120766.

Effect of roughness on separation zone dimensions.

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

조도 계수 및 역전 수준 변화가 개선된 90도 측면 분출구에서의 유동에 대한 실험적 및 수치적 연구

Maryam BagheriSeyed M. Ali ZomorodianMasih ZolghadrH. Md. AzamathullaC. Venkata Siva Rama Prasad

Abstract

측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 출력 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다. 본 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 7가지 유형의 거칠기 요소를 분기구 입구에 설치하고 4가지 다른 배출(총 84번의 실험을 수행)과 함께 3개의 서로 다른 베드 반전 레벨을 조사했습니다. 또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면, 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

HIGHLIGHTS

Listen

  • Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance.
  • Installation of 7 types of roughening elements at the turnout entrance and 3 different bed level inverts were investigated.
  • Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow.
  • Combining both methods can reduce the separation zone dimensions by up to 63%.
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

Keywords

discharge ratioflow separation zoneintakethree dimensional simulation

INTRODUCTION

Listen

Turnouts or intakes are amongst the oldest and most widely used hydraulic structures in irrigation networks. Turnouts are also used in water distribution, transmission networks, power generation facilities, and waste water treatment plants etc. The flows that enter a turnout have a strong momentum in the direction of the main waterway and that is why flow separation occurs inside the turnout. The horizontal vortex formed in the separation area is a suitable place for accumulation and deposition of sediments. The separation zone is a vulnerable area for sedimentation and for reduction of effective flow due to a contracted flow region in the lateral channel. Sedimentaion in the entrance of the intake can gradually be transfered into the lateral channel and decrease the capacity of the higher order channels over time (Jalili et al. 2011). On the other hand, the existence of coarse-grained materials causes erosion and destruction of the waterway side walls and bottom. In addition, sedimentation creates conditions for vegetation to take root and damage the waterway cover, which causes water to leak from its perimeter. Therefore, it is important to investigate the pattern of the flow separation area in turnouts and provide solutions to reduce the dimensions of this area.

The three-dimensional flow structure at turnouts is quite complex. In an experimental study by Neary & Odgaard (1993) in a 90-degree water turnout it was found that the secondary currents and separation zone varies from the bed to the water surface. They also found that at a 90-degree water turnout, the bed roughness and discharge ratio play a critical role in flow structure. They asserted that an explanation of sediment behavior at a diversion entrance requires a comprehensive understanding of 3D flow patterns around the lateral-channel entrance. In addition, they suggested that there is a strong similarity between flow in a channel bend and a diversion channel, and that this similarity can rationalize the use of bend flow models for estimation of 3D flow structures in diversion channels.

Some of the distinctive characteristics of dividing flow in a turnout include a zone of separation immediately near the entrance of the lateral turnout (separation zone), a contracted flow region in the branch channel (contracted flow), and a stagnation point near the downstream corner of the junction (stagnation zone). In the region downstream of the junction, along the continuous far wall, separation due to flow expansion may occur (Ramamurthy et al. 2007), that is, a separation zone. This can both reduce the turnout efficiency and the effective width of flow while increasing the sediment deposition in the turnout entrance (Jalili et al. 2011). Installation of submerged vanes in the turnout entrance is a method which is already applied to reduce the size of flow separation zones. The separation zone draws sediments and floating materials into themselves. This reduces effective cross-section area and reduces transmission capacity. These results have also been obtained in past studies, including by Ramamurthy et al. (2007) and in Jalili et al. (2011). Submerged vanes (Iowa vanes) are designed in order to modify the near-bed flow pattern and bed-sediment motion in the transverse direction of the river. The vanes are installed vertically on the channel bed, at an angle of attack which is usually oriented at 10–25 degrees to the local primary flow direction. Vane height is typically 0.2–0.5 times the local water depth during design flow conditions and vane length is 2–3 times its height (Odgaard & Wang 1991). They are vortex-generating devices that generate secondary circulation, thereby redistributing sediment within the channel cross section. Several factors affect the flow separation zone such as the ratio of lateral turnout discharge to main channel discharge, angle of lateral channel with respect to the main channel flow direction and size of applied submerged vanes. Nakato et al. (1990) found that sediment management using submerged vanes in the turnout entrance to Station 3 of the Council Bluffs plant, located on the Missouri River, is applicable and efficient. The results show submerged vanes are an appropriate solution for reduction of sediment deposition in a turnout entrance. The flow was treated as 3D and tests results were obtained for the flow characteristics of dividing flows in a 90-degree sharp-edged, junction. The main and lateral channel were rectangular with the same dimensions (Ramamurthy et al., 2007).

Keshavarzi & Habibi (2005) carried out experiments on intake with angles of 45, 67, 79 and 90 degrees in different discharge ratios and reported the optimum angle for inlet flow with the lowest flow separation area to be about 55 degrees. The predicted flow characteristics were validated using experimental data. The results indicated that the width and length of the separation zone increases with the increase in the discharge ratio Qr (ratio of outflow per unit width in the turnout to inflow per unit width in the main channel).

Abbasi et al. (2004) performed experiments to investigate the dimensions of the flow separation zone at a lateral turnout entrance. They demonstrated that the length and width of the separation zone decreases with the increasing ratio of lateral turn-out discharge. They also found that with a reducing angle of lateral turnout, the length of the separation zone scales up and width of separation zone reduces. Then they compared their observations with results of Kasthuri & Pundarikanthan (1987) who conducted some experiments in an open-channel junction formed by channels of equal width and an angle of lateral 90 degree turnout, which showed the dimensions of the separation zone in their experiments to be smaller than in previous studies. Kasthuri & Pundarikanthan (1987) studied vortex and flow separation dimensions at the entrance of a 90 degree channel. Results showed that increasing the diversion discharge ratio can reduce the length and width of the vortex area. They also showed that the length and width of the vortex area remain constant at diversion ratios greater than 0.7. Karami Moghaddam & Keshavarzi (2007) analyzed the flow characteristics in turnouts with angles of 55 and 90 degrees. They reported that the dimensions of the separation zone decrease by increasing the discharge ratio and reducing the turnout angle with respect to the main channel. Studies about flow separation zone can be found in Jalili et al. (2011)Nikbin & Borghei (2011)Seyedian et al. (2008).

Jamshidi et al. (2016) measured the dimensions of a flow separation zone in the presence of submerged vanes with five arrangements (parallel, stagger, compound, piney and butterflies). Results showed that the ratio of the width to the length of the separation zone (shape index) was between 0.2 and 0.28 for all arrangements.

Karami et al. (2017) developed a 3D computational fluid dynamic (CFD) code which was calibrated by measured data. They used the model to evaluate flow pattern, diversion ratio of discharge, strength of the secondary flow, and dimensions of the vortex inside the channel in various dikes and submerged vane installation scenarios. Results showed that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation area in the main channel. A dike, perpendicular to the flow, doubles the ratio of diverted discharge and reduces the suspended sediment load compared with the base-line situation by creating outer arch conditions. In addition, increasing the longitudinal distance between vanes increases the velocity gradient between the vanes and leads to a more severe erosion of the bed near the vanes.Figure 1VIEW LARGEDOWNLOAD SLIDE

Laboratory channel dimensions.

Al-Zubaidy & Hilo (2021) used the Navier–Stokes equation to study the flow of incompressible fluids. Using the CFD software ANSYS Fluent 19.2, 3D flow patterns were simulated at a diversion channel. Their results showed good agreement using the comparison between the experimental and numerical results when the k-omega turbulence viscous model was employed. Simulation of the flow pattern was then done at the lateral channel junction using a variety of geometry designs. These improvements included changing the intake’s inclination angle and chamfering and rounding the inner corner of the intake mouth instead of the sharp edge. Flow parameters at the diversion including velocity streamlines, bed shear stress, and separation zone dimensions were computed in their study. The findings demonstrated that changing the 90° lateral intake geometry can improve the flow pattern and bed shear stress at the intake junction. Consequently, sedimentation and erosion problems are reduced. According to the conclusions of their study, a branching angle of 30° to 45° is the best configuration for increasing branching channel discharge, lowering branching channel sediment concentration.

The review of the literature shows that most of the studies deal with turnout angle, discharge ratio and implementation of vanes as techniques to reduce the area of the separation zone. This study examines the effect of roughness coefficient and drop implementation at the entrance of a 90-degree lateral turnout on the dimensions of the separation zone. As far as the authors are aware, these two variables have never been studied as a remedy to decrease the separation zone dimensions whilst enhancing turnout efficiency. Additionally, a three-dimensional numerical model is applied to simulate the flow pattern around the turnout. The numerical results are verified against experimental data.

METHOD

Experimental setup

Listen

The experiments were conducted in a 90 degree dividing flow laboratory channel. The main channel is 15 m long, 0.5 m wide and 0.4 m high and the branch channel is 3 m long, 0.35 m wide and 0.4 m high, as shown in Figure 1. The tests were carried out at 9.65 m from the beginning of the flume and were far enough from the inlet, so we were sure that the flow was fully developed. According to Kirkgöz & Ardiçlioğlu (1997) the length of the developing region would be approximantly 65 and 72 times the flow depth. In this study, the depth is 9 cm, which makes this condition.

Both the main and lateral channel had a slope of 0.0003 with side walls of concrete. A 100 hp pump discharged the water into a stilling basin at the entrance of the main flume. The discharge was measured using an ultrasonic discharge meter around the discharge pipe. Eighty-four experiments in total were carried out at range of 0.1<Fr<0.4 (Froude numbers in main channel and upstream of turnout). The depth of water in the main channel in the experiments was 9 cm, in which case the effect of surface tension can be considered; according to research by Zolghadr & Shafai Bejestan (2020) and Zolghadr et al. (2021), when the water depth is more than 6 cm, the effect of surface tension is reduced and can be ignored given that the separation phenomenon occurs in the boundary layer, the height of the roughness creates disturbances in growth and development of the boundary layer and, as a result, separation growth is also faced with disruption and its dimensions grow less compared to smooth surfaces. Similar conditions occur in case of drop implementation. A disturbance occurs in the growth of the boundary layer and as a result the separation zone dimensions decrease. In order to investigate the effect of roughness coefficient and drop implementation on the separation zone dimensions, four different discharges (16, 18, 21, 23 l/s) in subcritical conditions, seven Manning (Strickler) roughness coefficients (0.009, 0.011, 0.017, 0.023, 0.028, 0.030, 0.032) as shown in Figure 2 and three invert elevation differences between the main channel and lateral turnout invert (0, 5 and 10 cm) at the entrance of the turnout were considered. The Manning roughness coefficient values were selected based on available and feasible values for real conditions, so that 0.009 is equivalent to galvanized sheet roughness and selected for the baseline tests. 0.011 is for concrete with neat surface, 0.017 and 0.023 are for unfinished and gunite concrete respectively. 0.030 and 0.032 values are for concrete on irregular excavated rock (Chow 1959). The roughness coefficients were created by gluing sediment particles on a thin galvanized sheet which was installed at the upstream side of the lateral turnout. The values of roughness coefficients were calculated based on the Manning-Strickler formula. For this purpose, some uniformly graded sediment samples were prepared and the Manning roughness coefficient of each sample was determined with respect to the median size (D50) value pasted into the Manning-Strickler formula. Some KMnO4 was sifted in the main channel upstream to visualize and measure the dimensions of the separation zone. Consequently, when KMnO4 approached the lateral turnout a photo of the separation zone was taken from a top view. All the experiments were recorded and several photos were taken during the experiment after stablishment of steady flow conditions. The photos were then imported to AutoCAD to measure the separation zone dimensions. Because all the shooting was done with a high-definition camera and it was possible to zoom in, the results are very accurate.Figure 2VIEW LARGEDOWNLOAD SLIDE

Roughness plates.

The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in transverse direction (perpendicular to the flow direction).

The water level was also measured by depth gauges with a accuracy of 0.1 mm, and velocity in one direction with a single-dimensional KENEK LP 1100 with an accuracy of ±0.02 m/s (0–1 m/s), ± 0.04 m/s (1–2 m/s), ± 0.08 m/s (2–4 m/s), ±0.10 m/s (4–5 m/s).

Numerical simulation

ListenA FLOW-3D numerical model was utilized as a solver of the Navier-Stokes equation to simulate the three-dimensional flow field at the entrance of the turnout. The governing equations included continuity momentum equations. The continuity equation, regardless of the density of the fluid in the form of Cartesian coordinates x, y, and z, is as follows:

formula

(1)where uv, and w represent the velocity components in the x, y, and z directions, respectively; AxAy, and Az are the surface flow fractions in the xy, and z directions, respectively; VF denotes flow volume fraction; r is the density of the fluid; t is time; and Rsor refers to the source of the mass. Equations (2)–(4) show momentum equations in xy and z dimensions respectively :

formula

(2)

formula

(3)

formula

(4)where GxGy, and Gz are the accelerations caused by gravity in the xy, and z directions, respectively; and fxfy, and fz are the accelerations caused by viscosity in the xy, and z directions, respectively.

The turbulence models used in this study were the renormalized group (RNG) models. Evaluation of the concordance of the mentioned models with experimental studies showed that the RNG model provides more accurate results.

Two blocks of mesh were used to simulate the main channels and lateral turnout. The meshes were denser in the vicinity of the entrance of the turnout in order to increase the accuracy of computations. Boundary conditions for the main mesh block included inflow for the channel entrance (volumetric flow rate), outflow for the channel exit, ‘wall’ for the bed and the right boundary and ‘symmetry’ for the top (free surface) and left boundaries (turnout). The side wall roughness coefficient was given to the software as the Manning number in surface roughness of any component. Considering the restrictions in the available processor, a main mesh block with appropriate mesh size was defined to simulate the main flow field in the channel, while the nested mesh-block technique was utilized to create a very dense solution field near the roughness plate in order to provide accurate results around the plates and near the entrance of the lateral turnout. This technique reduced the number of required mesh elements by up to 60% in comparison with the method in which the mesh size of the main solution field was decreased to the required extent.

The numerical outputs are verified against experimental data. The hydraulic characteristics of the experiment are shown in Table 1.Table 1

Hydraulic conditions of the flow

Q(L/s)FrY1 (m)Q2/Q1
16 0.449 0.09 0.22 
18 0.335 0.09 0.61 
21 0.242 0.09 0.71 
23 0.180 0.09 1.04 

RESULTS AND DISCUSSION

Experimental results

Listen

During the experiments, the dimensions of the separation zone were recorded with an HD camera. Some photos were imported to AutoCad software. Then, the separation zones dimensions were measured and compared in different scenarios.

At the beginning, the flow pattern in the separation zone for four different hydraulic conditions was studied for seven different Manning roughness coefficients from 0.009 to 0.032. To compare the obtained results, roughness of 0.009 was considered as the base line. The percentage of reduction in separation zone area in different roughness coefficients is shown in Figure 3. According to this figure, by increasing the roughness of the turnout side wall, the separation zone area ratio reduces (ratio of separation zone area to turnout area). In other words, in any desired Froud number, the highest dimensions of the separation zone area are related to the lowest roughness coefficients. In Figure 3, ‘A’ is the area of the separation zone and ‘Ai’ represents the total area of the turnout.Figure 3VIEW LARGEDOWNLOAD SLIDE

Effect of roughness on separation zone dimensions.Figure 4VIEW LARGEDOWNLOAD SLIDE

Effect of roughness on separation zone dimensions.

It should be mentioned that the separation zone dimensions change with depth, so that the area is larger at the surface than near the bed. This study measured the dimensions of this area at the surface. Figure 4 show exactly where the roughness elements were located.Figure 5VIEW LARGEDOWNLOAD SLIDE

Comparison of separation zone for n=0.023 and n=0.032.

Figure 5 shows images of the separation zone at n=0.023 and n=0.032 as examples, and show that the separation area at n=0.032 is smaller than that of n=0.023.

The difference between the effect of the two 0.032 and 0.030 roughnesses is minor. In other words, the dimensions of the separation zone decreased by increasing roughness up to 0.030 and then remained with negligable changes.

In the next step, the effect of intake invert relative to the main stream (drop) on the dimensions of the separation zone was investigated. To do this, three different invert levels were considered: (1) without drop; (2) a 5 cm drop between the main canal and intake canal; and (3) a 10 cm drop between the main canal and intake canal. The without drop mode was considered as the control state. Figure 6 shows the effect of drop implementation on separation zone dimensions. Tables 2 and 3 show the reduced percentage of separation zone areas in 5 and 10 cm drop compared to no drop conditions as the base line. It was found that the best results were obtained when a 10 cm drop was implemented.Table 2

Decrease percentage of separation zone area in 5 cm drop

Frn=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
0.08 10.56 11.06 25.27 33.03 35.57 36.5 
0.121 7.66 11.14 11.88 15.93 34.59 36.25 
0.353 1.38 2.63 8.17 14.39 31.20 31.29 
0.362 11.54 19.56 25.73 37.89 38.31 

Table 3

Decrease percentage of separation zone area in 10 cm drop

Frn=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
0.047 4.30 8.75 23.47 31.22 34.96 35.13 
0.119 11.01 13.16 15.02 21.48 39.45 40.68 
0.348 3.89 5.71 9.82 16.09 29 30.96 
0.354 2.84 10.44 18.42 25.45 35.68 35.76 

Figure 6VIEW LARGEDOWNLOAD SLIDE

Effect of drop implementation on separation zone dimensions.

The combined effect of drop and roughness is shown in Figure 7. According to this figure, by installing a drop structure at the entrance of the intake, the dimensions of the separation zone scales down in any desired roughness coefficient. Results indicated that by increasing the roughness coefficient or drop implementation individually, the separation zone area decreases up to 38 and 25% respectively. However, employing both techniques simultaneously can reduce the separation zone area up to 63% (Table 4). The reason for the reduction of the dimensions of the separation zone area by drop implementation can be attributed to the increase of discharge ratio. This reduces the dimensions of the separation zone area.Table 4

Reduction in percentage of combined effect of roughness and 10 cm drop

Qin=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
16 32.3 35.07 37.2 45.7 58.01 59.1 
18 44.5 34.15 36.18 48.13 54.2 56.18 
21 43.18 32.33 42.30 37.79 57.16 63.2 
23 40.56 34.5 34.09 46.25 50.12 57.2 

Figure 7VIEW LARGEDOWNLOAD SLIDE

Combined effect of roughness and drop on separation zone dimensions.

This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Some other researchers reported that increasing the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007Ramamurthy et al. 2007). However, these researchers employed other methods to enhance the discharge ratio. Drop implementation is simple and applicable in practice, since there is normally an elevation difference between the main and lateral canal in irrigation networks to ensure gravity flow occurance.

Table 4 depicts the decrease in percentage of the separation zone compared to base line conditions in different arrangements of the combined tests.Figure 8VIEW LARGEDOWNLOAD SLIDE

Velocity profiles for various roughness coefficients along turnout width.

A comparison between the proposed methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. Figure 8 shows the comparison of the results. The comparison shows that the new techniques can be highly influential and still practical. In this research, with no change in structural geometry (enhancement of roughness coefficient) or minor changes with respect to drop implementation, the dimensions of the separation zone are decreased noticeably. The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in a transverse direction (perpendicular to the flow direction). The results are shown in Figure 9.Figure 9VIEW LARGEDOWNLOAD SLIDE

Effect of roughness on separation zone dimensions in numerical study.

Numerical results

Listen

This study examined the flow patterns around the entrance of a diversion channel due to various wall roughnesses in the diversion channel. Results indicated that increasing the discharge ratio in the main channel and diversion channel reduces the area of the separation zone in the diversion channel.Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).A laboratory and numerical error rate of 0.2605 was calculated from the following formula,

formula

where Uexp is the experimental result, Unum is the numerical result, and N is the number of data.

Figure 9 shows the effect of roughness on separation zone dimensions in numerical study. Figure 10 compares the vortex area (software output) for three roughnesses, 0.009, 0.023 and 0.032 and Figure 11 shows the flow lines (tecplot output) that indicate the effect of roughness on flow in the separation zone. Numerical analysis shows that by increasing the roughness coefficient, the dimensions of the separation zone area decrease, as shown in Figure 10 where the separation zone area at n=0.032 is less than the separation zone area at n=0.009.Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.Figure 12VIEW LARGEDOWNLOAD SLIDE

Velocity vector for flow condition Q1/422 l/s, near surface.

The velocities intensified moving midway toward the turnout showing that the effective area is scaled down. The velocity values were almost equal to zero near the side walls as expected. As shown in Figure 12 the approach vortex area velocity decreases. Experimental and numerical measured velocity at x=0.15 m of the diversion channel compared in Figure 13 shows that away from the separation zone area, the velocity increases. All longitudinal velocity contours near the vortex area are distinctly different between different roughnesses. The separation zone is larger at less roughness both in length and width.Figure 13VIEW LARGEDOWNLOAD SLIDE

Exprimental and numerical measured velocity.

CONCLUSION

Listen

This study introduces practical and feasible methods for enhancing turnout efficiency by reducing the separation zone dimensions. Increasing the roughness coefficient and implementation of inlet drop were considered as remedies for reduction of separation zone dimensions. A data set has been compiled that fully describes the complex, 3D flow conditions present in a 90 degree turnout channel for selected flow conditions. The aim of this numerical model was to compare the results of a laboratory model in the area of the separation zone and velocity. Results showed that enhancing roughness coefficient reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%. Further research is proposed to investigate the effect of roughness and drop implementation on sedimentation pattern at lateral turnouts. The dimensions of the separation zone decreases with the increase of the non-dimensional parameter, due to the reduction ratio of turnout discharge increasing in all the experiments.

This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Other researchers have reported that intensifying the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007Ramamurthy et al. 2007). However, they employed other methods to enhance the discharge ratio. Employing both techniques simultaneously can decrease the separation zone dimensions up to 63%. A comparison between the new methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. The comparison shows that the new techniques can be highly influential and still practical. The numerical and laboratory models are in good agreement and show that the method used in this study has been effective in reducing the separation area. This method is simple, economical and can prevent sediment deposition in the intake canal. Results show that CFD prediction of the fluid through the separation zone at the canal intake can be predicted reasonably well and the RNG model offers the best results in terms of predictability.

DATA AVAILABILITY STATEMENT

Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abbasi A., Ghodsian M., Habibi M. & Salehi Neishabouri S. A. 2004 Experimental investigation on dimensions of flow separation zone at lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).Google Scholar Al-Zubaidy R. & Hilo A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.Google Scholar Chow V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.Jalili H., Hosseinzadeh Dalir A. & Farsadizadeh D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern. Iranian Water Research Journal 5 (9), 1–10. (In Persian).Google Scholar Jamshidi A., Farsadizadeh D. & Hosseinzadeh Dalir A. 2016 Variations of flow separation zone at lateral intake entrance using submerged vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.Google Scholar Karami Moghaddam K. & Keshavarzi A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge. In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).Google Scholar Karami H., Farzin S., Sadrabadi M. T. & Moazeni H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.Google ScholarCrossref  Kasthuri B. & Pundarikanthan N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering 113 (4), 543–548.Google ScholarCrossref  Keshavarzi A. & Habibi L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552. https://doi.org/10.1002/ird.207.Google ScholarCrossref  Kirkgöz M. S. & Ardiçlioğlu M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering 1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).Google Scholar Nakato T., Kennedy J. F. & Bauerly D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).Google Scholar Neary V. S. & Odgaard J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119 (11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).Google ScholarCrossref  Nikbin S. & Borghei S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90° openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://civilica.com/doc/120494.Google Scholar Odgaard J. A. & Wang Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.Google ScholarCrossref  Ramamurthy A. S., Junying Q. & Diep V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).Google Scholar Seyedian S., Karami Moghaddam K. & Shafai Begestan M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian). Available from: https://civilica.com/doc/56251.Google Scholar Zolghadr M. & Shafai Bejestan M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.Google Scholar Zolghadr M., Zomorodian S. M. A., Shabani R. & Azamatulla H.Md. 2021 Migration of sand mining pit in rivers: an experimental, numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.Google Scholar © 2022 The AuthorsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

Xiang WangLin-Jie ZhangJie Ning, and Suck-Joo Na
Published Online:8 Apr 2022https://doi.org/10.1089/3dp.2021.0159

Abstract

A 3D numerical model of heat transfer and fluid flow of molten pool in the process of laser wire deposition was presented by computational fluid dynamics technique. The simulation results of the deposition morphology were also compared with the experimental results under the condition of liquid bridge transfer mode. Moreover, they showed a good agreement. Considering the effect of recoil pressure, the morphology of the deposit metal obtained by the simulation was similar to the experiment result. Molten metal at the wire tip was peeled off and flowed into the molten pool, and then spread to both sides of the deposition layer under the recoil pressure. In addition, the results of simulation and high-speed charge-coupled device presented that a wedge transition zone, with a length of ∼6 mm, was formed behind the keyhole in the liquid bridge transfer process, where the height of deposited metal decreased gradually. After solidification, metal in the transition zone retained the original melt morphology, resulting in a decrease in the height of the tail of the deposition layer.

Keywords

LWD, CFD, liquid bridge transfer, fluid dynamics, wedge transition zone

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

References

1. Matthews MJ, Guss G, Khairallah SA, et al. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42. CrossrefGoogle Scholar

2. Ge WJ, Han SW, Fang YC, et al. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns. Appl Surf Sci 2017;419:150–158. CrossrefGoogle Scholar

3. Bai XW, Colegrove P, Ding JL, et al. Numerical analyswas of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 2018;124:504–516. CrossrefGoogle Scholar

4. Torkamany MJ, Kaplan AFH, Ghaini FM. Wire deposition by a laser-induced boiling front. Opt Laser Technol 2015;69:104–112. CrossrefGoogle Scholar

5. Yu Y, Huang W, Wang G. Investigation of melting dynamics of filler wire during wire feed laser welding. J Mec Sci Technol 2013;27:1097–1108. CrossrefGoogle Scholar

6. Ma G, Li L, Chen Y. Effects of beam confgurations on wire melting and transfer behaviors in dual beam laser welding with fller wire. Opt Laser Technol 2017;91:138–148. CrossrefGoogle Scholar

7. Abioye TE, Folkes J, Clare AT. A parametric study of Inconel 625 wire laser deposition. J Mater Process Tech 2013;213:2145–2151. CrossrefGoogle Scholar

8. Wei S, Wang G, Shin YC, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transf 2018;125:1356–1368. CrossrefGoogle Scholar

9. Gu H, Li L. Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 2019;140:51–65. CrossrefGoogle Scholar

10. Hu R, Luo M, Liu T, et al. Thermal fluid dynamics of liquid bridge transfer in laser wire deposition 3D printing. Sci Technolf Weld Join 2019;24:1–11. Google Scholar

11. Chatterjee D, Chakraborty S. A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Phys Lett A 2006;351:359–367. CrossrefGoogle Scholar

12. Wu L, Cheon J, Kiran DV, et al. CFD simulations of GMA welding of horizontal fillet joints based on coordinate rotation of arc models. J Mater Process Tech 2016;231:221–238. CrossrefGoogle Scholar

13. Gerhard W, Boyer RR, Collings EW. Materials Properties Handbook: Titanium Alloys. ASM International: Almere, The Netherlands, 1994. Google Scholar

14. Colegrove P, Simiand PE, Varughese A, et al. Evaluation of a drilling model approach to represent laser spot microwelding. In: ASM Proceedings of the international conference: trends in welding research; 2009. Google Scholar

15. Boivineau M, Cagran C, Doytier D, et al. Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J Thermophys 2006;27:507–529. CrossrefGoogle Scholar

16. Shejndlin AE, Kenisarin MM, Chekhovskoj VY. Melting point of yttrium oxide. AN SSSR 1974;216:582–584. Google Scholar

17. Cho JH, Na SJ. Teflection and Fresnel absorption of laser beam in keyhole. J Phys D Appl Phys 2006;39:5372–5378. CrossrefGoogle Scholar

18. Han SW, Ahn J, Na SJ. A study on ray tracing method for CFD simulations of laser keyhole welding: Progressive search method. Weld World 2016;60:247–258. CrossrefGoogle Scholar

19. Allmen MV. Laser-Beam Interactions with Materials. Springer, Berlin-Heidelberg, 1995. Google Scholar

20. Dobson PJ. Absorption and scattering of light by small particles. Phys Bull 1984;35:104. CrossrefGoogle Scholar

21. Greses J, Hilton PA, Barlow CY. Plume attenuation under high power Nd:yttritium aluminum garnet laser welding. J Laser Appl 2004;16:9–15. CrossrefGoogle Scholar

22. Shcheglov PY, Uspenskiy SA, Gumenyuk AV, et al. Plume attenuation of laser radiation during high power fiber laser welding. Laser Phys Lett 2011;8:475–480. CrossrefGoogle Scholar

23. Yang P, Liou KN. Effective refractive index for determining ray propagation in an absorbing dielectric particle. J Quant Spectrosc Radiat Transf 2009;110:300–306. CrossrefGoogle Scholar

24. Barber PW. Absorption and scattering of light by small particles. J Colloid Interface Sci 1984;98:290–291. Google Scholar

25. Hu ZR, Chen X, Yang G, et al. Metal transfer in wire feeding-based electron beam 3D printing: Modes, dynamics, and transition criterion. Int J Heat Mass Transf 2018;126:877–887. CrossrefGoogle Scholar

26. David SA, Babu SS, Vitek JM. Welding: Solidification and microstructure. JOM 2013;55:14–20. CrossrefGoogle Scholar

27. Zhong ML, Liu W. Laser surface cladding: The state of the art and challenges. Proc Inst Mech Eng Part C J Mech Eng Sci 2010;224:1041–1060. CrossrefGoogle Scholar

28. Kobryn PA, Semiatin S. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J Mater Process Technol 2003;135:330–339. CrossrefGoogle Scholar

29. Debroy T, David S. Physical processes in fusion welding. Rev Mod Phys 1995;67:85–112. CrossrefGoogle Scholar

30. Lee YS, Nordin M, Babu SS, et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall Trans B 2014;45:1520–1528. CrossrefGoogle Scholar

31. Rappaz M, David SA, Vitek JM, et al. Development of microstructures in Fe15Ni15Cr single crystal electron beam welds. Metall Trans A 1989;20:1125–1138. CrossrefGoogle Scholar

Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.

Hybrid modeling on 3D hydraulic features of a step-pool unit

Chendi Zhang1
, Yuncheng Xu1,2, Marwan A Hassan3
, Mengzhen Xu1
, Pukang He1
1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China. 2
College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100081, China.
5 3Department of Geography, University of British Columbia, 1984 West Mall, Vancouver BC, V6T1Z2, Canada.
Correspondence to: Chendi Zhang (chendinorthwest@163.com) and Mengzhen Xu (mzxu@mail.tsinghua.edu.cn)

Abstract

스텝 풀 시스템은 계류의 일반적인 기반이며 전 세계의 하천 복원 프로젝트에 활용되었습니다. 스텝 풀 장치는 스텝 풀 기능의 형태학적 진화 및 안정성과 밀접하게 상호 작용하는 것으로 보고된 매우 균일하지 않은 수력 특성을 나타냅니다.

그러나 스텝 풀 형태에 대한 3차원 수리학의 자세한 정보는 측정의 어려움으로 인해 부족했습니다. 이러한 지식 격차를 메우기 위해 SfM(Structure from Motion) 및 CFD(Computational Fluid Dynamics) 기술을 기반으로 하이브리드 모델을 구축했습니다. 이 모델은 CFD 시뮬레이션을 위한 입력으로 6가지 유속의 자연석으로 만든 인공 스텝 풀 장치가 있는 침대 표면의 3D 재구성을 사용했습니다.

하이브리드 모델은 스텝 풀 장치에 대한 3D 흐름 구조의 고해상도 시각화를 제공하는 데 성공했습니다. 결과는 계단 아래의 흐름 영역의 분할, 즉 수면에서의 통합 점프, 침대 근처의 줄무늬 후류 및 그 사이의 고속 제트를 보여줍니다.

수영장에서 난류 에너지의 매우 불균일한 분포가 밝혀졌으며 비슷한 용량을 가진 두 개의 에너지 소산기가 수영장에 공존하는 것으로 나타났습니다. 흐름 증가에 따른 풀 세굴 개발은 점프 및 후류 와류의 확장으로 이어지지만 이러한 증가는 스텝 풀 실패에 대한 임계 조건에 가까운 높은 흐름에서 점프에 대해 멈춥니다.

음의 경사면에서 발달된 곡물 20 클러스터와 같은 미세 지반은 국부 수력학에 상당한 영향을 주지만 이러한 영향은 수영장 바닥에서 억제됩니다. 스텝 스톤의 항력은 가장 높은 흐름이 사용되기 전에 배출과 함께 증가하는 반면 양력은 더 큰 크기와 더 넓은 범위를 갖습니다. 우리의 결과는 계단 풀 형태의 복잡한 흐름 특성을 조사할 때 물리적 및 수치적 모델링을 결합한 하이브리드 모델 접근 방식의 가능성과 큰 잠재력을 강조합니다.

Step-pool systems are common bedforms in mountain streams and have been utilized in river restoration projects around the world. Step-pool units exhibit highly non-uniform hydraulic characteristics which have been reported to closely 10 interact with the morphological evolution and stability of step-pool features. However, detailed information of the threedimensional hydraulics for step-pool morphology has been scarce due to the difficulty of measurement. To fill in this knowledge gap, we established a hybrid model based on the technologies of Structure from Motion (SfM) and computational fluid dynamics (CFD). The model used 3D reconstructions of bed surfaces with an artificial step-pool unit built by natural stones at six flow rates as inputs for CFD simulations. The hybrid model succeeded in providing high-resolution visualization 15 of 3D flow structures for the step-pool unit. The results illustrate the segmentation of flow regimes below the step, i.e., the integral jump at the water surface, streaky wake vortexes near the bed, and high-speed jets in between. The highly non-uniform distribution of turbulence energy in the pool has been revealed and two energy dissipaters with comparable capacity are found to co-exist in the pool. Pool scour development under flow increase leads to the expansion of the jump and wake vortexes but this increase stops for the jump at high flows close to the critical condition for step-pool failure. The micro-bedforms as grain 20 clusters developed on the negative slope affect the local hydraulics significantly but this influence is suppressed at pool bottom. The drag forces on the step stones increase with discharge before the highest flow is used while the lift force has a larger magnitude and wider varying range. Our results highlight the feasibility and great potential of the hybrid model approach combining physical and numerical modeling in investigating the complex flow characteristics of step-pool morphology.

Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo. DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with Volume of Fluid method.
Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo. DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with Volume of Fluid method.
Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.
Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.
Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed 160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall 165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface.
Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed 160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall 165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface.
Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with 265 lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15, x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15, x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.
Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.
Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE, panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the inspected range is shown by shaded area in each plot.
Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE, panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the inspected range is shown by shaded area in each plot.
Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.
Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.
Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges, with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa, whose absolute value is 1.013×105 Pa.
Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges, with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa, whose absolute value is 1.013×105 Pa.
Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The standard atmospheric pressure is set as 0 Pa.
Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The standard atmospheric pressure is set as 0 Pa.
Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone 4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest.
Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone 4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest.
Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the negative values of CL correspond to lift forces pointing downwards.
Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the negative values of CL correspond to lift forces pointing downwards.
Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction sections under the three flow rates are marked by dashed lines in figures (d) to (f).
Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction sections under the three flow rates are marked by dashed lines in figures (d) to (f).
Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size. The flow direction is from left to right in each plot.
Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size. The flow direction is from left to right in each plot.
Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction is from left to right.
Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction is from left to right.
Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).
Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).
Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5. G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.
Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5. G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.
Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.
Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.

References

720 Aberle, J. and Smart, G. M: The influence of roughness structure on flow resistance on steep slopes, J. Hydraul. Res., 41(3),
259-269, https://doi.org/10.1080/00221680309499971, 2003.
Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-pool streams: Adjustment to maximum flow resistance. Water Resour. Res.,
31(10), 2593-2602, https://doi.org/10.1029/95WR01957, 1995.
Adrian, R. J.: Twenty years of particle image velocimetry. Exp. Fluids, 39(2), 159-169, https://doi.org/10.1007/s00348-005-
725 0991-7 2005.
Chanson, H.: Hydraulic design of stepped spillways and downstream energy dissipators. Dam Eng., 11(4), 205-242, 2001.
Chartrand, S. M., Jellinek, M., Whiting, P. J., and Stamm, J.: Geometric scaling of step-pools in mountain streams:
Observations and implications, Geomorphology, 129(1-2), 141-151, https://doi.org/10.1016/j.geomorph.2011.01.020,
2011.
730 Chen, Y., DiBiase, R. A., McCarroll, N., and Liu, X.: Quantifying flow resistance in mountain streams using computational
fluid dynamics modeling over structure‐from‐motion photogrammetry‐derived microtopography, Earth Surf. Proc.
Land., 44(10), 1973-1987, https://doi.org/10.1002/esp.4624, 2019.
Church, M. and Zimmermann, A.: Form and stability of step‐pool channels: Research progress, Water Resour. Res., 43(3),
W03415, https://doi.org/10.1029/2006WR005037, 2007.
735 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.: Meshlab: an open-source mesh
processing tool, in: Eurographics Italian chapter conference, Salerno, Italy, 2-4 July 2008, 129-136, 2008.

Comiti, F., Andreoli, A., and Lenzi, M. A.: Morphological effects of local scouring in step-pool streams, Earth Surf. Proc.
Land., 30(12), 1567-1581, https://doi.org/10.1002/esp.1217, 2005.
Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow resistance in self‐formed step-pool
740 channels, Water Resour. Res., 45(4), 546-550, https://doi.org/10.1029/2008WR007259, 2009.
Dudunake, T., Tonina, D., Reeder, W. J., and Monsalve, A.: Local and reach‐scale hyporheic flow response from boulder ‐
induced geomorphic changes, Water Resour. Res., 56, e2020WR027719, https://doi.org/10.1029/2020WR027719, 2020.
Flow Science.: Flow-3D Version 11.2 User Manual, Flow Science, Inc., Los Alamos, 2016.
Gibson, S., Heath, R., Abraham, D., and Schoellhamer, D.: Visualization and analysis of temporal trends of sand infiltration
745 into a gravel bed, Water Resour. Res., 47(12), W12601, https://doi.org/10.1029/2011WR010486, 2011.
Hassan, M. A., Tonina, D., Beckie, R. D., and Kinnear, M.: The effects of discharge and slope on hyporheic flow in step‐pool
morphologies, Hydrol. Process., 29(3), 419-433, https://doi.org/10.1002/hyp.10155, 2015.
Hirt, C. W. and Nichols, B. D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39,
201-225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
750 Javernick L., Brasington J., and Caruso B.: Modeling the topography of shallow braided rivers using structure-from-motion
photogrammetry, Geomorphology, 213(4), 166-182, https://doi.org/10.1016/j.geomorph.2014.01.006, 2014.
Lai, Y. G., Smith, D. L., Bandrowski, D. J., Xu, Y., Woodley, C. M., and Schnell, K.: Development of a CFD model and
procedure for flows through in-stream structures, J. Appl. Water Eng. Res., 1-15,
https://doi.org/10.1080/23249676.2021.1964388, 2021.
755 Lenzi, M. A.: Step-pool evolution in the Rio Cordon, northeastern Italy, Earth Surf. Proc. Land., 26(9), 991-1008,
https://doi.org/10.1002/esp.239, 2001.
Lenzi, M. A.: Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern
Italy, Geomorphology, 45(3-4), 243-260, https://doi.org/10.1016/S0169-555X(01)00157-X, 2002.
Lenzi, M. A., Marion, A., and Comiti, F.: Local scouring at grade‐control structures in alluvial mountain rivers, Water Resour.
760 Res., 39(7), 1176, https://doi:10.1029/2002WR001815, 2003.
Li, W., Wang Z., Li, Z., Zhang, C., and Lv, L.: Study on hydraulic characteristics of step-pool system, Adv. Water Sci., 25(3),
374-382, https://doi.org/10.14042/j.cnki.32.1309.2014.03.012, 2014. (In Chinese with English abstract)
Maas, H. G., Gruen, A., and Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids, 15(2),
133-146. https://doi.org/10.1007/BF00223406, 1993.

765 Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bul., 109(5), 596-611, https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997. Morgan J. A., Brogan D. J., and Nelson P. A.: Application of structure-from-motion photogrammetry in laboratory flumes, Geomorphology, 276(1), 125-143, https://doi.org/10.1016/j.geomorph.2016.10.021, 2017. Recking, A., Leduc, P., Liébault, F., and Church, M.: A field investigation of the influence of sediment supply on step-pool 770 morphology and stability. Geomorphology, 139, 53-66, https://doi.org/10.1016/j.geomorph.2011.09.024, 2012. Roth, M. S., Jähnel, C., Stamm, J., and Schneider, L. K.: Turbulent eddy identification of a meander and vertical-slot fishways in numerical models applying the IPOS-framework, J. Ecohydraulics, 1-20, https://doi.org/10.1080/24705357.2020.1869916, 2020. Saletti, M. and Hassan, M. A.: Width variations control the development of grain structuring in steep step‐pool dominated 775 streams: insight from flume experiments, Earth Surf. Proc. Land., 45(6), 1430-1440, https://doi.org/10.1002/esp.4815, 2020. Smith, D. P., Kortman, S. R., Caudillo, A. M., Kwan‐Davis, R. L., Wandke, J. J., Klein, J. W., Gennaro, M. C. S., Bogdan, M. A., and Vannerus, P. A.: Controls on large boulder mobility in an ‘auto-naturalized’ constructed step-pool river: San Clemente Reroute and Dam Removal Project, Carmel River, California, USA, Earth Surf. Proc. Land., 45(9), 1990-2003, 780 https://doi.org/10.1002/esp.4860, 2020. Thappeta, S. K., Bhallamudi, S. M., Fiener, P., and Narasimhan, B.: Resistance in Steep Open Channels due to Randomly Distributed Macroroughness Elements at Large Froude Numbers, J. Hydraul. Eng., 22(12), 04017052, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001587, 2017. Thappeta, S. K., Bhallamudi, S. M., Chandra, V., Fiener, P., and Baki, A. B. M.: Energy loss in steep open channels with step785 pools, Water, 13(1), 72, https://doi.org/10.3390/w13010072, 2021. Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Proc. Land., 34(12), 1661-1673, https://doi.org/10.1002/esp.1855, 2009. Vallé, B. L. and Pasternack, G. B.: Air concentrations of submerged and unsubmerged hydraulic jumps in a bedrock step‐pool 790 channel, J. Geophys. Res.-Earth, 111(F3), F03016. https://doi:10.1029/2004JF000140, 2006. Waldon, M. G.: Estimation of average stream velocity, J. Hydraul. Eng., 130(11), 1119-1122. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1119), 2004. Wang, Z., Melching, C., Duan, X., and Yu, G.: Ecological and hydraulic studies of step-pool systems, J. Hydraul. Eng., 135(9), 705-717, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(705), 2009

795 Wang, Z., Qi, L., and Wang, X.: A prototype experiment of debris flow control with energy dissipation structures, Nat. Hazards, 60(3), 971-989, https://doi.org/10.1007/s11069-011-9878-5, 2012. Weichert, R. B.: Bed Morphology and Stability in Steep Open Channels, Ph.D. Dissertation, No. 16316. ETH Zurich, Switzerland, 247pp., 2005. Wilcox, A. C., Wohl, E. E., Comiti, F., and Mao, L.: Hydraulics, morphology, and energy dissipation in an alpine step‐pool 800 channel, Water Resour. Res., 47(7), W07514, https://doi.org/10.1029/2010WR010192, 2011. Wohl, E. E. and Thompson, D. M.: Velocity characteristics along a small step–pool channel. Earth Surf. Proc. Land., 25(4), 353-367, https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5, 2000. Wu, S. and Rajaratnam, N.: Impinging jet and surface flow regimes at drop. J. Hydraul. Res., 36(1), 69-74, https://doi.org/10.1080/00221689809498378, 1998. 805 Xu, Y. and Liu, X.: 3D computational modeling of stream flow resistance due to large woody debris, in: Proceedings of the 8th International Conference on Fluvial Hydraulics, St. Louis, USA, 11-14, Jul, 2346-2353, 2016. Xu, Y. and Liu, X.: Effects of different in-stream structure representations in computational fluid dynamics models—Taking engineered log jams (ELJ) as an example, Water, 9(2), 110, https://doi.org/10.3390/w9020110, 2017. Zeng, Y. X., Ismail, H., and Liu, X.: Flow Decomposition Method Based on Computational Fluid Dynamics for Rock Weir 810 Head-Discharge Relationship. J. Irrig. Drain. Eng., 147(8), 04021030, https://doi.org/10.1061/(ASCE)IR.1943- 4774.0001584, 2021. Zhang, C., Wang, Z., and Li, Z.: A physically-based model of individual step-pool stability in mountain streams, in: Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 801-809, 2016. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., and Wang, Z.: Experimental study on the stability and failure of individual 815 step-pool, Geomorphology, 311, 51-62, https://doi.org/10.1016/j.geomorph.2018.03.023, 2018. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., Wang, Z., and Ma, Z.: Experiment on morphological and hydraulic adjustments of step‐pool unit to flow increase, Earth Surf. Proc. Land., 45(2), 280-294, https://doi.org/10.1002/esp.4722, 2020. Zimmermann A., E.: Flow resistance in steep streams: An experimental study, Water Resour. Res., 46, W09536, 820 https://doi.org/10.1029/2009WR007913, 2010. Zimmermann A. E., Salleti M., Zhang C., Hassan M. A.: Step-pool Channel Features, in: Treatise on Geomorphology (2nd Edition), vol. 9, Fluvial Geomorphology, edited by: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-12-818234-5.00004-3, 2020.

그림 1. 실험수로 평면도(Agaccioglu, 1998)

FLOW-3D를 이용한 다양한 곡률에 대한 횡월류 위어의 유량계수 산정

Discharge Coefficient of Side Weir for Various Curvatures Simulated
by FLOW-3D

Chang Sam Jeong*
접수일자: 2015년 5월 15일/심사완료일: 2015년 6월 9일/게재일자: 2015년 6월 30일

ABSTRACT

본 연구는 수치모형을 이용하여 만곡수로 외측에 설치된 횡월류 위어의 곡률반경에 대한 횡월류 유량계수를 분석한 연구이다.

곡률반경의 변화에 따른 만곡부의 중심각이 180°인 수로모형을 설계하였으며, FLOW-3D모형에 적용하여 유량계 수를 산정하고 직선 수로와 비교하는 방법으로 유량계수의 특성을 분석하였다. 모형의 적용성 검증을 위해 기존에 연구되었던 수리실험과 동일한 조건의 수치모의를 수행하였다.

하폭(b)을 고정시키고 곡률반경(Rc)을 변화시킴으로써 Rc/b의 변화에 따른 유량계수(CM)의 변화를 분석하고, 만곡수로의 월류량(Qwc)에 대한 직선수로의 월류량(Qwc)의 비를 분석하였다.

분석결과 유량 계수는 상류수심, 만곡수로의 곡률반경의 변화에 따라 유량계수는 변화하였으며, 직선과 만곡수로에 대해 분석을 수행하였기 때문에 직선수로의 영향인자를 이용하여 만곡수로에 설치된 횡월류 위어의 월류량과 유량계수를 추정 가능 할 것이라 판단된다.

KEYWORDS

discharge coefficient, side weir, curvature, meandering channel, FLOW-3D, 유량계수, 횡월류 위어, 곡률, 만곡수로

서 론

최근의 기상변화에 의한 이상홍수와 유역의 도시화로 인한 불투수면적의 증가는 홍수시 유출량을 증가시켜 기 존의 하도의 적정 소통량을 초과하는 홍수를 발생시키고 있다. 토지의 고도 이용으로 하도의 확폭이 제한된 도시유 역에서 초과 홍수에 대비할 수 있는 구조적 홍수관리 방안 은 제방 증고, 저류지 설치, 방수로 설치 등이 대표적이다. 저류지는 하천에 유입되는 홍수를 일시 조절하여 하도의 적정한 홍수 소통능력을 초과하는 유출을 억제하는 구조 물로 국내외에서 널리 이용되는 구조적 홍수대책의 하나 이다. 그러나 이러한 활용도에 비해서 예연위어, 광정위어,암거 등의 수리구조물에 비교할 때 횡월류 위어에 대한 연 구는 미진한 것이 현실이다. 횡월류 위어(side weir 또는 lateral weir)는 인공수로 또는 자연하천에서 흐름방향에 평행하게 수로측면에 설치된 수 공구조물이다.

이는 본류의 수심이 횡월류 위어 월류부의 높이보다 높을 경우 위어를 통하여 물을 월류시켜 에너지 소산, 수위조절, 일정 유량의 취수 및 분배, 초과 홍수량 전 환 등의 목적으로 이용된다. 이러한 횡월류 유량의 취수 및 분배, 초과 홍수량 전환 등의 목적으로 이용된다. 이러한 횡월류 위어는 off-line저류지, 관계수로, 하수도 설비, 댐의 여수로 등에서 폭넓게 사용되고 있다.

국내의 경우 개발에 따른 횡월류 위어 구조물의 사용이 증가하는 추세이나, 유입유량 결정이나 적용되는 유량계 수에 대한 신뢰할만한 평가가 이루어지지 않아서 설계에 어려움을 겪고 있다. 또한 지금까지 연구된 횡월류 위어는 직선수로에 국한되어있으며, 실험을 통해서 제안된 유량 계수식들은 제안자에 따라 편차가 커서 실무적으로 이용 되기에는 많은 한계를 가지고 있다. Cheong(1991)은 횡월류 위어의 단면을 사다리꼴로하여 상류 프루드수와 유량계수와의 관계를 정립하였다.

Uyumaz (1997)는 U-모양 단면의 주수로의 횡월류 위어에서 사류와 상류시의 유량계수의 변화를 파악하였으며, Agaccioglu (1998)는 만곡수로의 사각형 단면에서 중심각에 따른 유량 계수와 무차원변수와의 관계를 정립하고, 퇴적이 발생하 는 지역의 크기는 상류 프루드수에 영향을 받는 다는 것을 확인 하였으며, Agaccioglu(2004)는 만곡수로에서 횡월류 위어의 단면을 삼각형으로 하여 중심각에 따른 유량계수 와 무차원 변수와의 관계를 정립하였다. 국내에서 윤세의 (1990)는 곡률반경에 대한 하폭의 비(Rc/b)의 변화에 따른 만곡수로에서의 흐름특성을 분석하였고, 이종태(1991)는 곡률반경의 증가, 감소는 만곡부 흐름특성인자에 많은 영 향을 끼치는 것을 확인 하였다.

서일원 등(2004)이 실내 실 험을 수행하여 다중 만곡수로에서 이차류의 변화양상을 관찰하였고, 이두한 등(2005)은 복단면을 갖는 사행수로에 서 만곡부의 저수로와 홍수터에서 회전류가 발생함을 관 측하였으며, 홍수심이 증가 할수록 저수로와 고수로간의 유속 차이보다 사행의 영향이 지배적임을 분석하였다.

본 연구에서는 기존에 연구된 만곡수로에 설치된 횡월류 위어를 상용 3차원 CFD모형인 FLOW-3D를 이용하여 횡 월류 위어의 흐름을 모의하여 그 적용성을 검증하고, 곡률 변화에 따른 만곡부 횡월류 위어에서의 유량계수와 여러 변수들과의 관계를 정립하고 특성을 분석하는데 목적이 있다.

또한 만곡수로에 횡월류 위어를 설치하였을 때, 그 흐름 특성의 변화를 분석하여, 횡월류 위어 주변의 수심 및 유속변화, 월류량에 영향을 미치는 인자들을 관찰하고, 월 류량에 가장 직접적인 영향을 미치는 인자인 유량계수를 산정하여 영향인자들과의 관계를 무차원하여 분석하여 만 곡부에 설치된 횡월류 위어의 실용적인 기준으로 활용할 수 있는 자료를 제시하고자 한다.

그림 1. 실험수로 평면도(Agaccioglu, 1998)
그림 1. 실험수로 평면도(Agaccioglu, 1998)
그림 2. Fr1에 따른 유량계수(Agaccioglu, 1998)
그림 2. Fr1에 따른 유량계수(Agaccioglu, 1998)
그림 3. Fr1에 따른 유량계수(3D 수치모의)
그림 3. Fr1에 따른 유량계수(3D 수치모의)
그림 4. 직선수로의 지오메트리와 mesh block
그림 4. 직선수로의 지오메트리와 mesh block
그림 5. 만곡 수로(Rc = 2.5 m)의 지오메트리와 mesh block
그림 5. 만곡 수로(Rc = 2.5 m)의 지오메트리와 mesh block
표 2. Case별 설계 수로의 제원
표 2. Case별 설계 수로의 제원
그림 6. 횡월류 위어에서의 수면형(0.04 m3 /sec)
그림 6. 횡월류 위어에서의 수면형(0.04 m3 /sec)
그림 7. 횡월류 위어에서의 수면형(0.06 m3 /sec)
그림 7. 횡월류 위어에서의 수면형(0.06 m3 /sec)
그림 8. 횡월류 위어에서의 수면형(0.1 m3 /sec)
그림 8. 횡월류 위어에서의 수면형(0.1 m3 /sec)
그림 9. Rc/b에 따른 CMC/CMS의 변화
그림 9. Rc/b에 따른 CMC/CMS의 변화
그림 10. 유량에 대한 CMC/CMS의 변화
그림 10. 유량에 대한 CMC/CMS의 변화

참고문헌

  1. 서일원, 성기훈, 백경오, 정성진(2004) 사행수로에서흐름특성에 관한 실험적 연구, 한국수자원학회논문집, 37(7), pp.527~540.
  2. 이두한, 이찬주, 김명환(2005) 복단면 사행 하도의 흐름 특성에 대한 실험 연구, 대한토목학회 논문집, 25(3B), pp.197~206.
  3. 이종태, 윤세의(1991) 만곡부 곡률의 연속적 변화와 흐름특성, 대한토목학회 학술발표회 개요집, pp.394~397.
  4. 윤세의, 이종태(1990) 만곡수로에서의 곡률반경 변화에 따른 흐름특성, 한국수문학회지, 23(4), pp.435~444.
  5. Agaccioglu, H., Yalcin, Y. (1998) Side-Weir Flow in Curved Channels, Journal of Irrigation and Drainage Engineering, 124(3), pp.163~175.
  6. Agaccioglu, H., Ali, C. (2004) Discharge Coefficient of a Triangular Side-Weir Located on a Curved Channels, Journal of Irrigation and Drainage Engineering, 130(5), pp.410~423.
  7. Cheong, H. F. (1991) Discharge coefficient of lateral diversion from trapezoidal channel, Journal of Irrigation and Drainage Engineering, 117(4), pp.461~475.
  8. Uyumaz, A. (1997) Side Weir in U-Shaped Channels Journal of Hydraulics Engineering. 123(7), pp.639~646.
Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].

Application of Numerical and Experimental Modeling to Improve the Efficiency of Parshall Flumes: A Review of the State-of-the-Art

Parshall Flumes의 효율성 향상을 위한 수치 및 실험 모델링의 적용: 최신 기술 검토

Mehdi Heyrani 1,* , Abdolmajid Mohammadian 1, Ioan Nistor 1 and Omerul Faruk Dursun 2

Abstract

열린 채널에서 흐름을 관리하는 기본 단계 중 하나는 속성을 결정하는 것입니다. 개방 수로의 흐름에 관한 추가 정보를 제공하기 위해 경험적 방정식이 개발되었습니다. 이러한 실험 방정식을 얻는 것은 비용과 시간이 많이 소요됩니다. 따라서 대체 솔루션이 모색되었습니다.

지난 세기 동안 움직이는 부분이 없는 정적 측정 장치인 Parshall 수로가 개방 수로의 흐름을 측정하는 데 중요한 역할을 했습니다. 많은 연구자들이 관개 및 폐수 관리와 같은 다양한 분야에서 Parshall 수로의 적용을 연구하는 데 관심을 집중해 왔습니다.

여러 학자들이 실험 결과를 사용하여 Parshall 수로의 등급 방정식을 향상시켰지만 다른 학자들은 수치 시뮬레이션을 사용하여 높이-방전 관계 방정식을 재보정하기 위해 대체 데이터 소스를 사용했습니다. 컴퓨팅 하드웨어가 지난 수십 년 동안 크게 발전하여 과거에 경험했던 제한된 해상도를 뛰어넘는 것이 가능해짐에 따라 CFD(Computational Fluid Dynamic) 소프트웨어가 오늘날 대중화되고 있습니다.

여러 CFD 모델은 가용성에 따라 오픈 소스 또는 상업적으로 허가되어 수위 결과를 생성하기 위해 다양한 구성의 수로, 특히 Parshall 수로에 대한 수치 시뮬레이션을 수행하는 데 사용되었습니다.

FLOW-3D, Ansys Fluent, OpenFOAM 등 지금까지 사용되어 온 다양한 CFD 도구에 대해 실험 데이터로 정밀 교정한 결과, 출력이 안정적이고 실제 시나리오에 구현할 수 있음이 확인되었습니다.

결과를 생성하기 위해 이 기술을 사용하는 이점은 필요한 경우 유속 또는 구조적 형상과 같은 초기 조건을 조정하는 CFD 접근 방식의 능력입니다. 수로 크기와 수로가 위치한 부지의 조건과 관련하여 상황에 적합한 특정 Parshall 수로로 선택이 좁혀집니다.

표준 Parshall 수로를 선택하는 것이 항상 가능한 것은 아닙니다. 따라서 엔지니어는 가장 가까운 수로 크기에 약간의 수정을 제공하고 정확한 유량을 생성하기 위해 새로운 등급 곡선을 제공합니다.

이 검토는 기존 등급 방정식을 향상시키거나 구조의 기하학에 대한 추가 수정을 제안하기 위해 Parshall 수로에서 수치 시뮬레이션 및 물리적 실험 데이터의 적용을 목표로 하는 여러 학자의 작업에 대해 수행되었습니다.

One of the primary steps in managing the flow in an open channel is determining its properties. Empirical equations are developed to provide further information regarding the flow in open channels. Obtaining such experimental equations is expensive and time consuming; therefore, alternative solutions have been sought. Over the last century, the Parshall flume, a static measuring device with no moving parts, has played a significant role in measuring the flow in open channels. Many researchers have focused their interest on studying the application of Parshall flumes in various fields like irrigation and wastewater management. Although various scholars used experimental results to enhance the rating equation of the Parshall flume, others used an alternative source of data to recalibrate the height–discharge relation equation using numerical simulation. Computational Fluid Dynamic (CFD) software is becoming popular nowadays as computing hardware has advanced significantly within the last few decades, making it possible to go beyond the limited resolution that was experienced in the past. Multiple CFD models, depending on their availability, either open-source or commercially licensed, have been used to perform numerical simulations on different configurations of flumes, especially Parshall flumes, to produce water level results. Regarding various CFD tools that have been used, i.e., FLOW-3D, Ansys Fluent, or OpenFOAM, after precise calibration with experimental data, it has been determined that the output is reliable and can be implemented to the actual scenarios. The benefit of using this technique to produce results is the ability of the CFD approach to adjust the initial conditions, like flow velocity or structural geometry, where necessary. With respect to channel size and the condition of the site where the flume is located, the choices are narrowed to the specific Parshall flume suitable to the situation. It is not always possible to select the standard Parshall flume; therefore, engineers provide some modification to the closest flume size and provide a new rating curve to produce accurate flowrates. This review has been performed on the works of a number of scholars who targeted the application of numerical simulation and physical experimental data in Parshall flumes to either enhance the existing rating equation or propose further modification to the structure’s geometry.

Keywords

Parshall flume; CFD; OpenFOAM; FLOW-3D; numerical simulation; turbulence model

Figure 1. Parshall flume measuring structure, installed [2].
Figure 1. Parshall flume measuring structure, installed [2].
Figure 2. Parshall flume measuring structure, uninstalled [3]
Figure 2. Parshall flume measuring structure, uninstalled [3]
Figure 4. Mesh sensitivity analysis: top view and side view of the Parshall flume: (a) contains 27,000 cells; (b) 52,000 cells; (c) 75,000 cells; (d) 270,000 cells. The C setup was used in their simulation [7].
Figure 4. Mesh sensitivity analysis: top view and side view of the Parshall flume: (a) contains 27,000 cells; (b) 52,000 cells; (c) 75,000 cells; (d) 270,000 cells. The C setup was used in their simulation [7].
Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].
Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].
Figure 8. Computational grid system in the Side A flume. (a) contains a triangular grid system (b) demonstrates the rectangular grid system. (c) and (d) are three-dimensional schematics showing the superimposed grid system. (e) magnifies the dashed section in (b). (Reprinted with permission from Ref. [11]. 2020 ELSEVIER). ).
Figure 8. Computational grid system in the Side A flume. (a) contains a triangular grid system (b) demonstrates the rectangular grid system. (c) and (d) are three-dimensional schematics showing the superimposed grid system. (e) magnifies the dashed section in (b). (Reprinted with permission from Ref. [11]. 2020 ELSEVIER). ).
Figure 10. The results of flow patterns in different flumes; (a) Cutthroat flume, (b) airfoil-shaped flume, (c) airfoil pillar-shaped flume, (d) optimized airfoil-shaped flume [23]
Figure 10. The results of flow patterns in different flumes; (a) Cutthroat flume, (b) airfoil-shaped flume, (c) airfoil pillar-shaped flume, (d) optimized airfoil-shaped flume [23]
Figure 11. Experimental setup: contraction ratio used on each flume [23].
Figure 11. Experimental setup: contraction ratio used on each flume [23].
Figure 12. Entire flume geometry [25]
Figure 12. Entire flume geometry [25]

References

  1. Cone, V.M. The Venturi Flume; U.S. Government Printing Office: Washington, DC, USA, 1917.
  2. 20-Foot Concrete Parshall Flume with Radius Wing Walls. Available online: https://www.openchannelflow.com/assets/uploads/
    media/_large/20-foot-parshall-flume-curved-wing-walls.jpg (accessed on 12 January 2021).
  3. Fiberglass 6-Inch Parshall Flume with Gauge. Available online: https://www.openchannelflow.com/assets/uploads/media/
    _large/flume-parshall-6-inch-fiberglass.png (accessed on 12 January 2021).
  4. Parshall, R.L. The Parshall Measuring Flume; Colorado State College, Colorado Experiment Station: Fort Collins, CO, USA, 1936.
  5. Selecting Between a Weir and a Flume. 2022. Available online: https://www.openchannelflow.com/blog/selecting-a-primarydevice-part-1-choosing-between-a-weir-and-a-flume (accessed on 29 December 2021).
  6. Parshall, R.L. The Improved Venturi Flume. Trans. Am. Soc. Civ. Eng. 1928, 89, 841–851. [CrossRef]
  7. Heyrani, M.; Mohammadian, A.; Nistor, I. Numerical Simulation of Flow in Parshall Flume Using Selected Nonlinear Turbulence
    Models. Hydrology 2021, 8, 151. [CrossRef]
  8. Heyrani, M.; Mohammadian, A.; Nistor, I.; Dursun, O.F. Numerical Modeling of Venturi Flume. Hydrology 2021, 8, 27. [CrossRef]
  9. Alfonsi, G. Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling. Appl. Mech. Rev. 2009, 62, 040802. [CrossRef]
  10. Imanian, H.; Mohammadian, A. Numerical Simulation of Flow over Ogee Crested Spillways under High Hydraulic Head Ratio.
    Eng. Appl. Comput. Fluid Mech. 2019, 13, 983–1000. [CrossRef]
  11. Khosronejad, A.; Herb, W.; Sotiropoulos, F.; Kang, S.; Yang, X. Assessment of Parshall Flumes for Discharge Measurement of
    Open-Channel Flows: A Comparative Numerical and Field Case Study. Measurement 2020, 167, 108292. [CrossRef]
  12. Dursun, O.F. An Experimental Investigation of the Aeration Performance of Parshall Flume and Venturi Flumes. KSCE J. Civ. Eng.
    2016, 20, 943–950. [CrossRef]
  13. Shih, T.-H.; Liu, N.-S.; Chen, K.-H. A Non-Linear k-Epsilon Model for Turbulent Shear Flows. In Proceedings of the 34th
    AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13 July 1998; p. 3983.
  14. Lien, F.S. Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations. In Proceedings of the 3rd Symposium on Engineering Turbulence Modelling and Measurement, Heraklion, Greece, 27 May 1996.
  15. Davis, R.W.; Deutsch, S. A Numerical-Experimental Study of Parhall Flumes. J. Hydraul. Res. 1980, 18, 135–152. [CrossRef]
  16. Xiao, Y.; Wang, W.; Hu, X.; Zhou, Y. Experimental and Numerical Research on Portable Short-Throat Flume in the Field. Flow
    Meas. Instrum. 2016, 47, 54–61. [CrossRef]
  17. Wright, S.J.; Tullis, B.P.; Long, T.M. Recalibration of Parshall Flumes at Low Discharges. J. Irrig. Drain. Eng. 1994, 120, 348–362.
    [CrossRef]
  18. Heiner, B.; Barfuss, S.L. Parshall Flume Discharge Corrections: Wall Staff Gauge and Centerline Measurements. J. Irrig. Drain.
    Eng. 2011, 137, 779–792. [CrossRef]
  19. Savage, B.M.; Heiner, B.; Barfuss, S. Parshall Flume Discharge Correction Coefficients through Modelling. Proc. ICE Water Manag.
    2013, 167, 279–287. [CrossRef]
  20. Zerihun, Y.T. A Numerical Study on Curvilinear Free Surface Flows in Venturi Flumes. Fluids 2016, 1, 21. [CrossRef]
  21. Sun, B.; Zhu, S.; Yang, L.; Liu, Q.; Zhang, C.; Zhang, J. ping Experimental and Numerical Investigation of Flow Measurement
    Mechanism and Hydraulic Performance on Curved Flume in Rectangular Channel. Arab. J. Sci. Eng. 2020. [CrossRef]
  22. Hu, H.; Huang, J.; Qian, Z.; Huai, W.; Yu, G. Hydraulic Analysis of Parabolic Flume for Flow Measurement. Flow Meas. Instrum.
    2014, 37, 54–64. [CrossRef]
  23. Sun, B.; Yang, L.; Zhu, S.; Liu, Q.; Wang, C.; Zhang, C. Study on the Applicability of Four Flumes in Small Rectangular Channels.
    Flow Meas. Instrum. 2021, 80, 101967. [CrossRef]
  24. Willeitner, R.P.; Barfuss, S.L.; Johnson, M.C. Using Numerical Modeling to Correct Flow Rates for Submerged Montana Flumes. J.
    Irrig. Drain. Eng. 2013, 139, 586–592. [CrossRef]
  25. Ran, D.; Wang, W.; Hu, X. Three-Dimensional Numerical Simulation of Flow in Trapezoidal Cutthroat Flumes Based on FLOW-3D.
    Front. Agric. Sci. Eng. 2018, 5, 168–176. [CrossRef]
  26. Kim, S.-Y.; Lee, J.-H.; Hong, N.-K.; Lee, S.-O. Numerical Simulation for Determining Scale of Parshall Flume. Proc. Korea Water
    Resour. Assoc. Conf. 2010, 719–723.
  27. Tekade, S.A.; Vasudeo, A.D.; Ghare, A.D.; Ingle, R.N. Measurement of Flow in Supercritical Flow Regime Using Cutthroat Flumes.
    Sadhana 2016, 41, 265–272. [CrossRef]
  28. Wahl, T.L.; Replogle, J.A.; Wahlin, B.T.; Higgs, J.A. New Developments in Design and Application of Long-Throated Flumes. In
    Proceedings of the Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis,
    MN, USA, 30 July–2 August 2000.
  29. Howes, D.J.; Burt, C.M.; Sanders, B.F. Subcritical Contraction for Improved Open-Channel Flow Measurement Accuracy with an
    Upward-Looking ADVM. J. Irrig. Drain. Eng. 2010, 136, 617–626. [CrossRef]
  30. Tiwari, N.K.; Sihag, P. Prediction of Oxygen Transfer at Modified Parshall Flumes Using Regression Models. ISH J. Hydraul. Eng.
    2020, 26, 209–220. [CrossRef]
  31. Thornton, C.I.; Smith, B.A.; Abt, S.R.; Robeson, M.D. Supercritical Flow Measurement Using a Small Parshall Flume. J. Irrig.
    Drain. Eng. 2009, 135, 683–692. [CrossRef]
  32. Cox, A.L.; Thornton, C.I.; Abt, S.R. Supercritical Flow Measurement Using a Large Parshall Flume. J. Irrig. Drain. Eng. 2013, 139,
    655–662. [CrossRef]
  1. Ribeiro, Á.S.; Sousa, J.A.; Simões, C.; Martins, L.L.; Dias, L.; Mendes, R.; Martins, C. Parshall Flumes Flow Rate Uncertainty
    Including Contributions of the Model Parameters and Correlation Effects. Meas. Sens. 2021, 18, 100108. [CrossRef]
  2. Singh, J.; Mittal, S.K.; Tiwari, H.L. Discharge Relation for Small Parshall Flume in Free Flow Condition. Int. J. Res. Eng. Technol.
    2014, 3, 317–321.
  3. Kim, S.-D.; Lee, H.-J.; Oh, B.-D. Investigation on Application of Parshall Flume for Flow Measurement of Low-Flow Season in
    Korea. Meas. Sci. Rev. 2010, 10, 111. [CrossRef]
  4. Willeitner, R.P.; Barfuss, S.L.; Johnson, M.C. Montana Flume Flow Corrections under Submerged Flow. J. Irrig. Drain. Eng. 2012,
    138, 685–689. [CrossRef]
  5. Dufresne, M.; Vazquez, J. Head–Discharge Relationship of Venturi Flumes: From Long to Short Throats. J. Hydraul. Res. 2013, 51,
    465–468. [CrossRef]
図3 He ガスストリッパー装置の図と全景.

RIKEN RIBF의 He-Gas 스트리퍼 및 회전 디스크 스트리퍼

He Gas Stripper and Rotating Disk Stripper at the RIKEN RIBF

理研 RI ビームファクトリーにおける He ガスと回転ディスクストリッパー

今尾 浩士 *・長谷部 裕雄 *

서론

우라늄 빔 등 중원소 빔의 대강도화는 다양한 단수명 원자핵을 생성·이용하고 우주에서의 원소 합성을 이해하기 위한 필수 과제이다. 중이온의 가속에 있어서는, 복수의 가속기를 이용하여, 고에너지까지 캐스케이드상으로 가속해 가지만, 효율적인 가속을 위해 도중의 하전 변환 과정은 필수 과정이라고 할 수 있다.

리켄 RI 빔팩토리(RIBF) 1)에서는 가장 무거운 우라늄 등의 가속에 있어서, 2회의 하전 변환을 실시하고 있다.

그러나 기존에 사용해 온 고정형 탄소막 스트리퍼 2)의 내구성은 대강화의 원리적 병목이며, 미국 FRIB 계획 3) 등을 포함한 차세대 RI 생성 시설의 공통 문제에서도 있었다. RIBF는 가스 4-7)과 회전형 디스크 8, 9)를 사용하여 고강도 우라늄을 견딜 수있는 스트리퍼를 개발했다.

RIBF에서 238U 빔의 가속도를 그림 1에 나타내었다. 28 GHz의 초전도 ECR 이온 소스 (10, 11)로 생성 및 선별 된 238U35 +는 입사기 RILAC2와 4 개의 링 사이클로트론 (RRC, fRC, IRC, SRC)을 사용하여 345 MeV / u까지 가속된다.

스트리퍼는 RRC 가속 후 11 MeV / u와 fRC 가속 후 51 MeV / u에서 두 번 사용된다. 첫 번째 단계는 He 가스 스트리퍼를 사용하며 U35 +에서 U64 +로 변환한다. 두 번째 단계는 회전 흑연 시트 디스크 스트리퍼이며 U64 +에서 U86 +로 변환한다.

중이온 스트리퍼는 총 열 부하, 파워 손실이라는 의미에서는 전혀 작지만, 특히 큰 것은 단위 길이 에너지 손실 dE/dx이며, 이에 특유의 어려움이 있다. 우라늄의 dE / dx는 특히 크고, 수 MeV / u-50 MeV / u 정도까지의 스트리퍼는 dE / dx가 크고 두께가 고체로서는 얇아지기 때문에 어렵다.

우리의 11 MeV / u에서의 목표 강도 10 pA는 dE / dx로 정규화 된 경우, 예를 들어 400 MeV의 양성자 빔이라면 500 mA라고 불리우는 강도에 해당한다. 또한 우라늄의 국부적 인 에너지 손실로 인한 비선형 피해도보고되었으며 상황은 더욱 심각하다.

예를 들어 제1 스트리퍼로 탄소막을 사용했을 경우, 1 µm 정도 이하의 박막을 사용하지 않을 수 없고, 취약성, 불균일성과의 싸움으로, 열 제거도 어렵다. 실제로 RIBF 초기에 사용 된 고정형 탄소막 2)에서는 우라늄 빔 20pnA 정도의 조사 강도에서도 사용 가능 시간은 반일 정도였다. 그런 다음 두 번째 스트리퍼에서도 비슷한 상황이 발생했다.

현재 사용하고 있는 He 가스 스트리퍼와 회전형 그라파이트 디스크 스트리퍼는 당시의 약 100배의 강도라도 사용 시간을 거의 신경쓸 필요가 없을 정도의 내구성을 가지고 있다.

본 논문에서는 He 가스 스트리퍼와 회전형 스트리퍼에 대해 개요와 고출력 표적으로서의 측면을 중심으로 설명한다.

図1 He ガスと回転ディスクストリッパーを用いた現在の RIBF ウラン加速スキーム.
図1 He ガスと回転ディスクストリッパーを用いた現在の RIBF ウラン加速スキーム.
図2 様々な厚さの He ガスによる11 MeV/u 238U の荷電分布.
図2 様々な厚さの He ガスによる11 MeV/u 238U の荷電分布.
図3 He ガスストリッパー装置の図と全景.
図3 He ガスストリッパー装置の図と全景.
図4 かく乱板の写真(上)と位置依存性(下).
図4 かく乱板の写真(上)と位置依存性(下).
図5 オリフィスから噴出する He のマッハ数の CFD 計算 (Solidworks flow simulation).
図5 オリフィスから噴出する He のマッハ数の CFD 計算 (Solidworks flow simulation).
図6 238U ビームによる He ガス温度上昇の実験値と計算値 の比較.実験値は輸送条件の異なる幾つかの RUN の データをプロットしている.
図6 238U ビームによる He ガス温度上昇の実験値と計算値 の比較.実験値は輸送条件の異なる幾つかの RUN の データをプロットしている.
図7 マクロパルスの長さと周期を変えた時のΔt の変化 (上)とマクロパルスの構造(下).
図7 マクロパルスの長さと周期を変えた時のΔt の変化 (上)とマクロパルスの構造(下).
図8 ガスジェットカーテン法コンセプト.
図8 ガスジェットカーテン法コンセプト.
図9 シール効果とガス置換効果(上)とオリフィスの大口径 化(下).
図9 シール効果とガス置換効果(上)とオリフィスの大口径 化(下).
図10 2 次元ラバール式ノズルによるガスジェットカーテ ンの計算例(Solidworks flow simulation).図はマッハ 数のプロットである.
図10 2 次元ラバール式ノズルによるガスジェットカーテ ンの計算例(Solidworks flow simulation).図はマッハ 数のプロットである.
図11 4 枚目の Be ディスク.左使用前,右使用後.
図11 4 枚目の Be ディスク.左使用前,右使用後.
図12 40 mg/cm2 グラッシーカーボンディスク
図12 40 mg/cm2 グラッシーカーボンディスク
図13 GS ディスク.左使用前,右使用後.
図13 GS ディスク.左使用前,右使用後.
図14 GTF ディスク.左使用前,右使用後.
図14 GTF ディスク.左使用前,右使用後.
図15 U ビーム照射中の GTF ディスク
図15 U ビーム照射中の GTF ディスク
図16 アクセスドア用ガラス. 左変色したガラス,右新品のガラス
図16 アクセスドア用ガラス. 左変色したガラス,右新品のガラス

References

1) Y. Yano: Nucl. Instrum. Methods 261, 1009 (2007).
2) ACF-Metals Arizona Carbon Foil Co. Inc.: http://www.
techexpo.com/firms/acf-metl.html
3) J. Wei et al.: “Progress towards the Facility for Rare Isotope Beams,” in Proceedings of 2013 North American
Particle Accelerator Conference (NA-PAC’13), Pasadena,
CA, U.S.A., September 2013, pp. 1453–1457.
4) H. Kuboki, H. Okuno, S. Yokouchi, H. Hasebe, T. Kishida,
N. Fukunishi, O. Kamigaito, A. Goto, M. Kase and Y.
Yano: Phys. Rev. Spec. Top. Accel. Beams 13, 093501
(2010).
5) H. Okuno, N. Fukunishi, A. Goto, H. Hasebe, H. Imao, O.
Kamigaito, M. Kase, H. Kuboki, Y. Yano, S. Yokouchi and
A. Hershcovitch: Phys. Rev. Spec. Top. Accel. Beams 14,
033503 (2011).
6) H. Imao, H. Okuno, H. Kuboki, S. Yokouchi, N. Fukunishi,
O. Kamigaito, H. Hasebe, T. Watanabe, Y. Watanabe, M.
Kase and Y. Yano: Phys. Rev. Spec. Top. Accel. Beams
15, 123501 (2012).
7) H. Imao et al.: “R&D of Helium Gas Stripper for Intense
Uranium Beams,” in Proceedings of the Twentieth International Conference on Cyclotrons and their Applications
(CYC2013), Vancouver, BC, Canada, September 2013, pp.
265–268.
8) H. Hasebe, H. Okuno, A. Tatami, M. Tachibana, M. Murakami, H. Kuboki, H. Imao, N. Fukunishi, M. Kase and O.
Kamigaito: AIP Conf. Proc. 1962, 030004 (2018).
9) H. Hasebe, H. Okuno, A. Tatami, M. Tachibana, M. Murakami, H. Imao, N. Fukunishi, M. Kase and O. Kamigaito:
EPJ Web of Conferences 229, 01004 (2020).
10) T. Nakagawa, M. Kidera, Y. Higurashi, J. Ohonishi, A.
Goto and Y. Yano: Rev. Sci. Instrum. 79, 02A327 (2008).
11) Y. Higurashi, J. Ohnishi, K. Ozeki, M. Kidera and T. Nakagawa: Rev. Sci. Instrum. 85, 02A953 (2014).
12) 小山亮,内山暁仁,今尾浩士,渡邉環:RIBF にお
けるシステム統合のためのガスストリッパー制御の
更新,PASJ2019, FRPH003 (2019).
13) H. Imao et al.: “Development of gas stripper at RIBF,” in
Proceedings of the 9th International Particle Accelerator
Conference (IPAC2018), Vancouver, BC, Canada, April
2018, pp. 41–46.
14) A. Akashio, K. Tanaka, H. Imao and Y. Uwamino: EPJ
Web of Conferences 153, 01022 (2017).
15) H. Imao et al.: “Charge Stripper Ring for Cyclotron
Cascade,” in Proceedings of the Twenty-first International Conference on Cyclotrons and their Applications
(CYC2016), Zurich, Switzerland, September 2016, pp.
155–159.
16) H. Imao: JINST 15, P12036 (2020).
17) H. Kuboki, H. Okuno, A. Hershcovitch, T. Dantsuka, H.
Hasebe, K. Ikegami, H. Imao, O. Kamigaito, M. Kase,
T. Maie, T. Nakagawa and Y. Yano: J. Radioanal. Nucl.
Chem. 299, 1029 (2014).
18) N. Ikoma, Y. Miyake, M. Takahashi, H. Okuno, S. Namba,
K. Takahashi, T. Sasaki and T. Kikuchi: Rev. Sci. Instrum. 91, 053503 (2020).
19) H. Ryuto, H. Hasebe, N. Fukunishi, S. Yokouchi, A. Goto,
M. Kase and Y. Yano: Nucl. Instrum. Methods Phys. Res.
A 569, 697 (2006).
20) H. Hasebe, H. Okuno, H. Kuboki, H. Imao, N. Fukunishi, M.
Kase and O. Kamigaito: J. Radioanal. Nucl. Chem. 305,
825 (2015).
21) Crystal Optics Inc.: http://www.crystal-opt.co.jp.
22) TANKEN SEAL SEIKO Co., LTD.: http://www.tanken
seal.co.jp.
23) Kaneka Corporation: http://www.elecdiv.kaneka.co.jp.
24) H. Hasebe, H. Okuno, H. Imao, N. Fukunishi, M. Kase and
O. Kamigaito: Proceedings of the 16th annual meeting of
PASJ, p. 9 (2019).
25) A. Tatami, Y. Kawashima, M. Murakami, K. Murashima
and M. Tachibana: Proceedings of the 14th annual meeting of PASJ, p. 159 (2017).

Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.

스키밍 흐름 영역에서 계단형 여수로의 수리 성능에 대한 삼각형 프리즘 요소의 영향: 실험 연구 및 수치 모델링

The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: an experimental study and numerical modeling 

Kiyoumars RoushangarSamira AkhgarSaman Shahnazi

계단식 여수로는 댐의 여수로 위로 흐르는 큰 물의 에너지를 분산시키는 비용 효율적인 유압 구조입니다. 이 연구에서는 삼각주형 요소(TPE)가 계단식 배수로의 수력 성능에 미치는 영향에 초점을 맞췄습니다. 9개의 계단식 배수로 모델이 TPE의 다양한 모양과 레이아웃으로 실험 및 수치적으로 조사되었습니다. 적절한 난류 모델을 채택하려면 RNG k – ε 및 표준 k – ε모델을 활용했습니다. 계산 모델 결과는 계단 표면의 속도 분포 및 압력 프로파일을 포함하여 실험 사례의 계단 여수로에 대한 복잡한 흐름을 만족스럽게 시뮬레이션했습니다. 결과는 계단식 여수로에 TPE를 설치하는 것이 캐비테이션 효과를 줄이는 효과적인 방법이 될 수 있음을 나타냅니다. 계단식 여수로에 TPE를 설치하면 에너지 소실률이 최대 54% 증가했습니다. 계단식 배수로의 성능은 TPE가 더 가깝게 배치되었을 때 개선되었습니다. 또한, 실험 데이터를 이용하여 거칠기 계수( f )와 임계 깊이 대 단차 거칠기( yc / k )의 비율 사이의 관계를 높은 정확도로 얻었다.

Keywords

energy dissipationFlow-3Droughness coefficientstepped spillwaytriangular prismatic elements

에너지 소산 , Flow-3D , 거칠기 계수 , 계단식 배수로 , 삼각형 프리즘 요소

Figure 1 | General schematics of laboratory flume facilities.
Figure 1 | General schematics of laboratory flume facilities.
Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).
Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).
Figure 3 | Geometry and alignment of TPE in the numerical study.
Figure 3 | Geometry and alignment of TPE in the numerical study.
Figure 5 | Comparison of turbulence models in Flow-3D.
Figure 5 | Comparison of turbulence models in Flow-3D.
Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A and B.
Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A and B.
Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.
Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.
Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillway
Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillway
Figure 9 | Velocity distributions on the vertical surface of step number 4.
Figure 9 | Velocity distributions on the vertical surface of step number 4.
Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.
Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.
Figure 11 | Pressure distribution on the vertical surface of the fourth step.
Figure 11 | Pressure distribution on the vertical surface of the fourth step.
Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.
Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.
Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.
Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.
Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.
Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.
Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.
Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.
Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).
Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).

REFERENCES

Abbasi, S. & Kamanbedast, A. A. 2012 Investigation of effect of changes in dimension and hydraulic of stepped spillways for maximization
energy dissipation. World Applied Sciences Journal 18 (2), 261–267.
Arjenaki, M. O. & Sanayei, H. R. Z. 2020 Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using
experimental model development approach. Modeling Earth Systems and Environment 1–12.
Attarian, A., Hosseini, K., Abdi, H. & Hosseini, M. 2014 The effect of the step height on energy dissipation in stepped spillways using
numerical simulation. Arabian Journal for Science and Engineering 39 (4), 2587–2594.
Azhdary Moghaddam, M. 1997 The Hydraulics of Flow on Stepped Ogee-Profile Spillways. Doctoral Dissertation, University of Ottawa,
Canada.
Bakhtyar, R. & Barry, D. A. 2009 Optimization of cascade stilling basins using GA and PSO approaches. Journal of Hydroinformatics 11 (2),
119–132.
Barani, G. A., Rahnama, M. B. & Sohrabipoor, N. 2005 Investigation of flow energy dissipation over different stepped spillways. American
Journal of Applied Sciences 2 (6), 1101–1105.
Boes, R. M. & Hager, W. H. 2003 Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Chamani, M. R. & Rajaratnam, N. 1994 Jet flow on stepped spillways. Journal of Hydraulic Engineering 120 (2), 254–259.
Chanson, H. 1994 Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic
Research 32 (2), 213–218.
Felder, S., Guenther, P. & Chanson, H. 2012 Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of
Several Pooled Stepped Configurations. No. CH87/12. School of Civil Engineering, The University of Queensland.
Harlow, F. H. & Nakayama, P. I. 1968 Transport of Turbulence Energy Decay Rate. No. LA-3854. Los Alamos Scientific Lab, N. Mex.
Hekmatzadeh, A. A., Papari, S. & Amiri, S. M. 2018 Investigation of energy dissipation on various configurations of stepped spillways
considering several RANS turbulence models. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (2),
97–109.
Henderson, F. M. 1966 Open Channel Flow. MacMillan Company, New York.
Kavian Pour, M. R. & Masoumi, H. R. 2008 New approach for estimating of energy dissipation over stepped spillways. International Journal
of Civil Engineering 6 (3), 230–237.
Li, S., Li, Q. & Yang, J. 2019 CFD modelling of a stepped spillway with various step layouts. Mathematical Problems in Engineering.
Li, S., Yang, J. & Li, Q. 2020 Numerical modelling of air-water flows over a stepped spillway with chamfers and cavity blockages. KSCE
Journal of Civil Engineering 24 (1), 99–109.
Moghadam, M. K., Amini, A. & Moghadam, E. K. 2020 Numerical study of energy dissipation and block barriers in stepped spillways. Journal
of Hydroinformatics.
Morovati, K., Eghbalzadeh, A. & Javan, M. 2016 Numerical investigation of the configuration of the pools on the flow pattern passing over
pooled stepped spillway in skimming flow regime. Acta Mechanic Journal 227, 353–366.
Parsaie, A. & Haghiabi, A. H. 2019 The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation
70, 101624.
Peng, Y., Zhang, X., Yuan, H., Li, X., Xie, C., Yang, S. & Bai, Z. 2019 Energy dissipation in stepped spillways with different horizontal face
angles. Energies 12 (23), 4469.
Roushangar, K., Foroudi, A. & Saneie, M. 2019 Influential parameters on submerged discharge capacity of converging ogee spillways based
on experimental study and machine learning-based modeling. Journal of Hydroinformatics 21 (3), 474–492.
Sarkardeh, H., Marosi, M. & Roshan, R. 2015 Stepped spillway optimization through numerical and physical modeling. International Journal
of Energy and Environment 6 (6), 597.
Shahheydari, H., Nodoshan, E. J., Barati, R. & Moghadam, M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway
under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Tabari, M. M. R. & Tavakoli, S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science
and Engineering 41 (4), 1215–1224.
Toombes, L. & Chanson, H. 2000 Air-water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes. In
Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zurich, Switzerland, pp. 22–24.
Torabi, H., Parsaie, A., Yonesi, H. & Mozafari, E. 2018 Energy dissipation on rough stepped spillways. Iranian Journal of Science and
Technology, Transactions of Civil Engineering 42 (3), 325–330.
Wüthrich, D. & Chanson, H. 2014 Hydraulics, air entrainment, and energy dissipation on a Gabion stepped weir. Journal of Hydraulic
Engineering 140 (9), 04014046.
Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1), 3–51.
Yakhot, V. & Smith, L. M. 1992 The renormalization group, the ɛ-expansion and derivation of turbulence models. Journal of Scientific
Computing 7 (1), 35–61.

Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.

Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes

조도 계수 및 역 고도 변화가 향상된 90도 측면 회전에서 유동의 실험 및 수치 연구

Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. MD. Azamathulla d,*
and C. Venkata Siva Rama Prasade
a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran
b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran
d Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad
e Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India
*Corresponding author. E-mail: azmatheditor@gmail.com

ABSTRACT

Flow separation at the upstream side of the lateral turnouts (intakes) is a critical issue causing eddy currents at the turn-out entrance. It reduces the effective width of flow, turn-out capacity and efficiency.

Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turn-out entrance and 3 different bed level inverts, with 4 different discharges (total of 84 experiments) were examined in this study as a method to reduce the dimensions of
the separation zone.

Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 턴아웃 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

이 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 4가지 다른 배출(총 84개 실험)과 함께 7가지 유형의 조면화 요소를 출구 입구에 설치하고 3가지 서로 다른 베드 레벨 반전 장치를 조사했습니다.

또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다.

두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

Key words

discharge ratio, flow separation zone, intake, three dimensional simulation

Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes
Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes
Figure 2 | Roughness plates.
Figure 2 | Roughness plates.
Figure 3 | Effect of roughness on separation zone dimensions
Figure 3 | Effect of roughness on separation zone dimensions
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.
Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.
Figure 6 | Effect of drop implementation on separation zone dimensions
Figure 6 | Effect of drop implementation on separation zone dimensions
Figure 7 | Combined effect of roughness and drop on separation zone dimensions
Figure 7 | Combined effect of roughness and drop on separation zone dimensions
Figure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared with other methods.
Figure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared with other methods.
Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.
Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.
Figure 10 | Effect of roughness on sepration zone dimensions in numerical study
Figure 10 | Effect of roughness on sepration zone dimensions in numerical study
Figure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).
Figure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).
Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032
Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032
Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.
Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.
Figure 14 | Exprimental and numerical measured velocity.
Figure 14 | Exprimental and numerical measured velocity.

REFERENCES

Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at
lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi (in Persian) 62, 38–44.
Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).
Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.
Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and flow pattern at lateral.
Iranian Water Research Journal(InPersian) 5 (9), 1–10.
Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intakes entrance using submerged
vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.
Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes 55° and 900
° with rounded entrance edge.
In: 03 National Congress on Civil Engineering University of Tabriz. (In Persian). Available from: https://civilica.com/doc/16317.
Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and
submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering
113 (4), 543–548.
Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.
https://doi.org/10.1002/ird.207.
Kirkgöz, M. S. & Ardiçlioğ
lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering
1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).
Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).

Neary, V. S., Sotiropoulos, F. & Odgaard, A. J. 1999 Three-dimensional numerical model of lateral-intake in flows. Journal of Hydraulic
Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(126).
Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at 90°
openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://
civilica.com/doc/120494.
Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.
Ouyang, H. T. 2009 Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels. Journal of
Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(209).
Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic
Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).
Samimi Behbahan, T. 2011 Laboratory investigation of submerged vane shapes effect on river banks protection. Australian Journal of Basic
and Applied Sciences 5 (12), 1402–1407.
Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determine the optimal radius in lateral intakes 55° and 90° using variation
of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT) (in Persian). Available from:
https://civilica.com/doc/56251.
Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.
International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.
Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2020 Migration of sand mining pit in rivers: an experimental,
numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.

Figura 1. Parámetros del medidor Palmer-Bowlus

Three-Dimensional Numerical Modeling of the Palmer-Bowlus Measuring Flume Applying the FLOW-3D Software.

TOAPAXI-ALVAREZ*, JorgeSILA-BASTIDA, Roberto    TORRES-JACOBOWITZ, Cristina.

The Palmer-Bowlus flume was developed in 1936, as an adaptation of the Venturi flume for the use in sewer systems, due to the difficulty in modifying the pipe invert. There are commercially available single-body Palmer-Bowlus flume with their respective discharge curves, which increase the cost of sewer projects. Based on the physical model of the Palmer-Bowlus flume (Torres & Vásquez, 2010), the aim of this research was to carry out the three-dimensional numerical modeling of these flow meters, considering four pipe diameters: 160 mm, 200 mm, 250 mm and 400 mm; the selected diameters are the most used ones, according to the information provided by the Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito (EPMAPS). The discharge curves were calibrated and validated using the FLOW-3D program. Meshing had a great influence on the quality results and duration of the numerical simulation; in contrast, the roughness and turbulence models (RNG y k-e) had little influence. The discharge curves obtained in the numerical modeling have good approximation to those obtained in the physical model.

Palmer-Bowlus 수로는 1936년에 하수도 시스템에 사용하기 위해 Venturi 수로를 개조한 것으로 파이프 인버트를 수정하는 것이 어렵기 때문에 개발되었습니다. 각각의 배출 곡선이 있는 시판되는 단일 몸체 Palmer-Bowlus 수로가 있으며, 이는 하수도 프로젝트 비용을 증가시킵니다.

Palmer-Bowlus 수로의 물리적 모델을 기반으로(Torres & Vásquez, 2010), 이 연구의 목적은 160mm, 200mm, 4개의 파이프 직경을 고려하여 이러한 유량계의 3차원 수치 모델링을 수행하는 것이었습니다. 250mm 및 400mm; Empresa Pública Metropolitana de Agua Potable y Sanaeamiento de Quito(EPMAPS)에서 제공한 정보에 따르면 선택한 지름이 가장 많이 사용되는 지름입니다.

방전 곡선은 FLOW-3D 프로그램을 사용하여 보정 및 검증되었습니다. 메싱은 수치 시뮬레이션의 품질 결과와 기간에 큰 영향을 미쳤습니다. 대조적으로, 거칠기 및 난류 모델(RNG y k-e)은 거의 영향을 미치지 않았습니다. 수치 모델링에서 얻은 방전 곡선은 물리적 모델에서 얻은 것과 유사합니다.

Figura 1. Parámetros del medidor Palmer-Bowlus
Figura 1. Parámetros del medidor Palmer-Bowlus
Figura 2. Diagrama de flujo de la modelación del medidor Palmer-Bowlus en FLOW-3D
Figura 2. Diagrama de flujo de la modelación del medidor Palmer-Bowlus en FLOW-3D
Figura 3. Captura de pantalla del modelo numérico Q=22.047( 𝑙 𝑠 ), Ho=20.038 cm
Figura 3. Captura de pantalla del modelo numérico Q=22.047( 𝑙 𝑠 ), Ho=20.038 cm

REFERENCIAS

Aulestia, C. (2017). Modelación numérica en tres dimensiones de flujo en
las compuertas de la captación del Proyecto Toachi – Pilatón
aplicando dinámica de fluidos computacional (CFD). [Tesis
Maestría]. Quito, Ecuador: Escuela Politécnica Nacional.
Casa, E. (2016). Modelación numérica del flujo rasante en una rápida
escalonada aplicando la dinámica de fluidos computacional
(CFD) Programa FLOW-3D. [Tesis maestría]. Quito, Ecuador:
Escuela Politécnica Nacional.
Chow, V. T. (2004). Hidráulica de canales abiertos (Primera ed.). (J.
Saldarriaga, Trad.) Santafé de Bogotá, Colombia: McGrawHill.
Domínguez, F. (1999). Hidráulica (Sexta Edición ed.). Santiango de Chile,
Chile: Editorial Universitaria.
Fernández, J. (2012). Introducción a la dinámica de fluidos computacional
(CFD) por el método de volúmenes finitos. Barcelona: Editorial
Reverté, S.A.
Flow Science, Inc. (2016). Flow-3D v11.2 Documentation. Flow Science,
Inc. Santa Fe: Flow Science.
Ludwig, J., & Ludwig, R. (1951). Design of Palmer-Bowlus Flumes.
Sewafe and Insdustrial Wastes, 23(9), 1096-1107. Obtenido de
https://www.jstor.org/stable/25031687
Recasens, J. (2014). Modelación tridimensional del glujo de entrada en un
sumidero. Barcelona: UPC BARCELONATECH.
Sotelo, G. (1997). Hidráulica General Vol. 1. México D.F.: LIMUSA S.A.
Torres, C., & Vásquez, E. (2010). Análisis de medidores de caudal para
flujo subcrítico en sistemas de alcantarillado. [Tesis
ingeniería]. Quito, Ecuador: Escuela Politécnica Nacional.
Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to
computational fluid dynamics – The finite volume method. New
York: John Wiley & Sons.

Figure 2 Idea and details of T-shaped weir.

Introducing the T-shaped weir: a new nonlinear weir

Behzad NorooziJalal BazarganAkbar Safarzadeh

Abstract

본 연구에서는 LW(Labyrinth Weir)와 PKW(Piano Key Weir)가 결합된 T자형 웨어(TSW)라는 새로운 비선형 웨어를 도입하여 수압 성능을 비교하였다.

PKW. 입구 키, 출구 키 또는 두 키 모두에서 수직 벽의 존재에 따라 TSW 위어는 각각 A, B 또는 C 유형 웨어로 분류되었습니다. 다른 TSW 사례의 흐름 패턴을 분석하고 배출 계수 곡선을 제공했습니다. 또한 테스트된 둑의 유체역학을 정확하게 연구하기 위해 FLOW-3D 소프트웨어를 사용하여 3D 수치 시뮬레이션을 수행했습니다.

결과는 출구 키(C-TSW 유형)의 상류에 수직 벽을 삽입하는 것이 PKW의 유압 성능에 미미한 영향을 미치는 것으로 나타났습니다. B-TSW의 토출계수는 PKW 대비 최대 16% 증가하였으며, Ht/p 0.45까지 수직벽의 성능향상 효과 증가 B-TSW는 유지되었습니다.

실험적 및 수치적 실험을 통해 가장 높은 방전 용량을 갖는 B-TSW에서 수직벽의 최적 높이비(Pd/P)는 0.4로 결정되었다.

In the present study, a new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), was introduced, and its hydraulic performance was compared with the PKW. Based on the presence of the vertical walls at the inlet key, outlet key, or both keys, the TSW weirs were classified as type A, B, or C weirs, respectively. The flow pattern of different TSW cases was analyzed, and the discharge coefficient curves were provided. Furthermore, to accurately study the hydrodynamics of the tested weirs, 3D numerical simulations were performed using the FLOW-3D software. The results showed that inserting a vertical wall at the upstream of the outlet keys (C-TSW type) has a negligible effect on the hydraulic performance of the PKW. A maximum increase of 16% occurred in the discharge coefficient of the B-TSW in comparison to the PKW, and up to a head to height ratio (Ht/p) of 0.45, the effect of the vertical wall on increasing the performance of the B-TSW was maintained. Based on the experimental and numerical tests, the optimal height ratio of the vertical wall (Pd/P) in B-TSW with highest discharge capacity was determined to be equal to 0.4.

HIGHLIGHTS

Listen

  • A new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), is introduced.
  • To investigate the hydrodynamics of the tested weirs in more detail, 3D numerical models are developed on the CFD-software FLOW-3D.
  • By testing different vertical wall sizes, the optimal size of the vertical wall is determined for B-TSW weir.

Keywords

discharge coefficientlabyrinth weirlocal submergencepiano key weirT-shaped weir

Figure 2 Idea and details of T-shaped weir.
Figure 2 Idea and details of T-shaped weir.

Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.
Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.
Figure 21 Transverse water surface profile in the outlet key of tested weirs  for H/P = 0.4.
Figure 21 Transverse water surface profile in the outlet key of tested weirs for H/P = 0.4.

REFERENCES

Anderson R. M. & Tullis B. P. 2011 Influence of Piano Key Weirs Geometry on Discharge. In Labyrinth and Piano Key Weirs – PKW 2011. CRC Press, Leiden, pp. 75–80.

Anderson R. M. & Tullis B. P. 2012 Comparison of piano key and rectangular labyrinth weir hydraulics. Journal of Hydraulic Engineering 138 (4), 358–361.

Azamathulla H. M., Haghiabi A. H. & Parsaie A. 2016 Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply 16 (4), 1002–1016.

Bremer F. L. & Oertel M. 2017 Numerical investigation of wall thickness influence on Piano key Weir discharge coefficients: A preliminary study. In Labyrinth and Piano Key Weirs III – PKW 2017. CRC Press, London, UK, pp. 101–108.

Cicero G. M., Delisle J. R., Lefebvre V. & Vermeulen J. 2013 Experimental and Numerical Study of the Hydraulic Performance of A Trapezoidal PKW. In Labyrinths and Piano Key Weirs PKW 2013. CRC Press, Boca Raton, FL, pp. 265–272.

Crookston B. & Tullis B. 2012 Labyrinth Weirs: Nappe interference and local submergence. Journal of Irrigation and Drainage Engineering 138 (8), 757–765.

Crookston B., Anderson R. M. & Tullis B. P. 2017 Free-flow discharge estimation method for piano key weir geometries. Journal of Hydro-Environment Research 19, 60–167.

Ghasemlounia R. & Saghebian S. M. 2021 Uncertainty assessment of kernel based approaches on scour depth modeling in downstream of ski-jump bucket spillways. Water Supply 21 (5), 2333–2346. doi:10.2166/ws.2021.063.

Kabiri-Samani A. & Javaheri A. 2012 Discharge coefficients for free and submerged flow over piano key weirs. Journal of Hydraulic Research 50 (1), 114–120.

Lefebvre V., Vermeulen J. & Blancher B. 2013 Influence of Geometrical Parameters on PK-Weirs Discharge with 3D Numerical Analysis. In: Labyrinth and Piano key Weirs II – PKW 2013. CRC Press, London, pp. 49–56.

Lempérière F. & Ouamane A. 2003 The piano keys weir: a new cost-effective solution for spillways. International Journal on Hydropower & Dams 10 (5), 144–149.

Machiels O., Erpicum S., Archambeau P., Dewals B. J. & Pirotton M. 2011 Influence of piano key weir height on its discharge capacity. In Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B, pp. 59–66.

Machiels O., Pirotton M., Pierre A., Dewals B. & Erpicum S. 2014 Experimental parametric study and design of piano key weirs. Journal of Hydraulic Research 52 (3), 326–335.

Parsaie A., Azamathulla H. M. & Haghiabi A. H. 2018 Prediction of discharge coefficient of cylindrical weir-gate using GMDH-PSO. ISH Journal of Hydraulic Engineering 24 (2), 116–123.

Paxson G. & Savage B. 2006 Labyrinth spillways: comparison of two popular USA design methods and consideration of non-standard approach conditions and geometries. Division of Civil Engineering, p.37.

Pourshahbaz H., Abbasi S., Pandey M., Pu J. H., Taghvaei P. & Tofangdar N. 2020 Morphology and hydrodynamics numerical simulation around groynes. ISH Journal of Hydraulic Engineering 1–9.

Pralong J., Vermeulen J., Blancher B., Laugier F., Erpicum S., Machiels O., Pirotton M., Boillat J.-L., Leite Ribeiro M. & Schleiss A. 2011a A naming convention for the Piano Key Weirs geometrical parameters. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 271–278.

Pralong J., Montarros F., Blancher B. & Laugier F. 2011b A sensitivity analysis of Piano Key Weirs geometrical parameters based on 3D numerical modelling. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 133–139.

Ribeiro M. L., Bieri M., Boillat J. L., Schleiss A., Delorme F. & Laugier F. 2009 Hydraulic capacity improvement of existing spillways–design of a piano key weir. In Proceedings (on CD) of the 23rd Congress of the Int. Commission on Large Dams CIGB-ICOLD, Brasilia, Vol. 2, No. CONF, pp. 100–118.

Ribeiro M. L., Pfister M., Schleiss A. J. & Boillat J. L. 2012 Hydraulic design of A-type piano key weirs. Journal of Hydraulic Research 50 (4), 400–408.

Roache P. 1994 Perspective: a method for uniform reporting of grid refinement studies. Journal of Fluids Engineering 116 (3), 405–413.

Safarzadeh A. & Mohajeri S. H. 2018 Hydrodynamics of rectangular broad-crested porous weirs. Journal of Irrigation and Drainage Engineering 144 (10), 04018028.

Safarzadeh A. & Noroozi B. 2014 Three dimensional hydrodynamics of arced piano key spillways. Journal of Hydraulics 9 (3), 61–79.

Safarzadeh A. & Noroozi B. 2017 3D hydrodynamics of trapezoidal piano key spillways. International Journal of Civil Engineering 15 (1), 89–101.

Safarzadeh A., Zaji A. H. & Bonakdari H. 2017 Comparative assessment of the hybrid genetic algorithm–artificial neural network and genetic programming methods for the prediction of longitudinal velocity field around a single straight groyne. Applied Soft Computing 60, 213–228.

Tullis B. P., Young J. C. & Chandler M. A. 2007 Head-discharge relationships for submerged labyrinth weirs. Journal of Hydraulic Engineering 133 (3), 248–254.

Xinlei G., Zhiping L., Tao Wang H., Jiazhen L., Qingfu X. & Yongxin G. 2019 Discharge capacity evaluation and hydraulic design of a piano key weir. Water Supply 19 (3), 871–878.

Zahiri A., Azamathulla H. M. & Bagheri S. 2013 Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. Journal of Hydrology 480, 162–166.

Zahiri A., Tang X. & Azamathulla H. M. 2014 Mathematical modeling of flow discharge over compound sharp-crested weirs. Journal of Hydro-Environment Research 8 (3), 194–199.

Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.

Interference of Dual Spillways Operations

Jai Hong Lee, Ph.D., P.E., M.ASCE; Pierre Y. Julien, Ph.D., M.ASCE; and Christopher I. Thornton, Ph.D., P.E., M.ASCE

Abstract

이중 여수로 간섭은 여수로가 서로 가깝게 배치될 때 수압 성능의 손실을 나타냅니다. 배수로 간섭은 물리적 실험과 수치 시뮬레이션을 모두 사용하여 조사됩니다.

이중 여수로 구성의 4개 물리적 모델의 단계 및 배출 측정값을 한국의 4개 댐 부지에서 Flow-3D 계산 결과와 비교합니다.

두 개의 배수로를 함께 사용하는 것을 각 배수로의 단일 작동과 비교합니다. 두 여수로를 동시에 운영할 경우 두 여수로를 통한 총 유량은 최대 7.6%까지 감소합니다.

간섭 계수는 단계 He가 설계 단계 Hd를 초과하고 두 배수로를 분리하는 거리 D가 배수로 너비 W에 비해 짧을 때 가장 중요합니다. 매개변수 DHd/WHe는 계산 및 측정된 간섭 계수와 매우 잘 관련됩니다.

안동댐 설계방류에 대한 홍수경로 예시는 간섭계수를 적용한 경우와 적용하지 않은 경우 저수지 수위의 차이가 42cm임을 보여줍니다. 결과적으로 댐 안전을 위해 추가 여수로의 너비(간섭 계수 포함)를 늘려야 합니다.

Dual spillway interference refers to the loss of hydraulic performance of spillways when they are placed close together. Spillway interference is examined using both physical experiments and numerical simulations. Stage and discharge measurements from four physical models with dual spillways configurations are compared to the Flow-3D computational results at four dam sites in South Korea. The conjunctive use of two spillways is compared with the singular operation of each spillway. When both spillways are operated at the same time, the total flow rate through the two spillways is reduced by up to 7.6%. Interference coefficients are most significant when the stage He exceeds the design stage Hd and when the distance D separating two spillways is short compared to the spillway width W. The parameter DHd/WHecorrelates very well with the calculated and measured interference coefficients. A flood routing example for the design discharge at Andong dam shows a 42 cm difference in reservoir water level with and without application of the interference coefficient. Consequently, the width of additional spillways (including the interference coefficient) should be increased for dam safety.

Fig. 1. Definition sketch for dual spillways
Fig. 1. Definition sketch for dual spillways
Fig. 2. Stage-discharge rating curves for dual spillway operations.
Fig. 2. Stage-discharge rating curves for dual spillway operations.
Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1
Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1
Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.
Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.
Fig. 4. (Continued.)
Fig. 4. (Continued.)
Fig. 5. Meshes and calculation domain for numerical modeling of Andong dam.
Fig. 5. Meshes and calculation domain for numerical modeling of Andong dam.
Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual spillway simulations.
Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual spillway simulations.
Fig. 7. Discharge comparison of physical experiments and numerical simulations. The upper panel is the comparative result for the existing spillway (ES) and the lower panel is for the additional spillway (AS) at four dams.
Fig. 7. Discharge comparison of physical experiments and numerical simulations. The upper panel is the comparative result for the existing spillway (ES) and the lower panel is for the additional spillway (AS) at four dams.
Fig. 8. Interference coefficients for dual spillways simulations with various scenarios.
Fig. 8. Interference coefficients for dual spillways simulations with various scenarios.
Fig. 9. Regression model for the distance-width ratio (D=W) and head ratio (Hd=He) by dual spillway simulations
Fig. 9. Regression model for the distance-width ratio (D=W) and head ratio (Hd=He) by dual spillway simulations
Fig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of reservoir and spillway
Fig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of reservoir and spillway
Fig. 11. Interference coefficients for dual spillways operations with various scenarios. The dashed lines indicate the results of the validation model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.
Fig. 11. Interference coefficients for dual spillways operations with various scenarios. The dashed lines indicate the results of the validation model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.
Fig. 12. Results of reservoir operations under the PMF at Andong dam.
Fig. 12. Results of reservoir operations under the PMF at Andong dam.

References

Cassidy, J. J. 1965. “Irrotational flow over spillways of finite height.”
J. Eng. Mech. Div. 91 (6): 155–173.
Chanel, P., and J. Doering. 2008. “Assessment of spillway modeling using
computational fluid dynamics.” Can. J. Civ. Eng. 35 (12): 1481–1485.
https://doi.org/10.1139/L08-094.
Chow, V. T. 1959. Open-channel hydraulics, 365–380. New York:
McGraw-Hill.
Ho, D., B. Cooper, K. Riddette, and S. Donohoo. 2006. “Application of
numerical modelling to spillways in Australia.” In Proc., Int. Symp.
on Dams in the Societies of the 21st Century, 22nd Int. Congress on
Large Dams (ICOLD), edited by L. Berga, et al. London: Taylor &
Francis.
Huff, F. A. 1967. “Time distribution of rainfall in heavy storms.” Water
Resour. Res. 3 (4): 1007–1019. https://doi.org/10.1029/WR003i004
p01007.
Kim, D. G., and J. H. Park. 2005. “Analysis of flow structure over ogeespillway in consideration of scale and roughness effects by using CFD
model.” KSCE J. Civ. Eng. 9 (2): 161–169. https://doi.org/10.1007
/BF02829067.
Koutsunis, N. A. 2015. “Impact of climatic changes on downstream hydraulic geometry and its influence on flood hydrograph
routing—Applied to the bluestone dam watershed.” M.S. degree,
Dept. of Civil and Environmental Engineering, Colorado State Univ.
Lee, J. H., and P. Y. Julien. 2016a. “ENSO impacts on temperature over
South Korea.” Int. J. Climatol. 36 (11): 3651. https://doi.org/10.1002
/joc.4581.
Lee, J. H., and P. Y. Julien. 2016b. “Teleconnections of the ENSO and
South Korean precipitation patterns.” J. Hydrol. 534: 237–250.
https://doi.org/10.1016/j.jhydrol.2016.01.011.
Lee, J. H., and P. Y. Julien. 2017. “Influence of the El Nino/southern ˜
oscillation on South Korean streamflow variability.” Hydrol. Processes
31 (12): 2162–2178. https://doi.org/10.1002/hyp.11168.
Li, S., S. Cain, N. Wosnik, C. Miller, H. Kocahan, and R. Wyckoff. 2011.
“Numerical modeling of probable maximum flood flowing through a
system of spillways.” J. Hydraul. Eng. 137 (1): 66–74. https://doi.org
/10.1061/(ASCE)HY.1943-7900.0000279.
MOCT (Ministry of Construction and Transportation). 2003. Hydraulic
model study of Soyanggang multipurpose dam auxiliary spillway.
[In Korean.] Governing City, South Korea: MOCT.
Olsen, N. R., and H. M. Kjellesvig. 1998. “Three-dimensional numerical
flow modeling for estimation of spillway capacity.” J. Hydraul. Res.
36 (5): 775–784. https://doi.org/10.1080/00221689809498602.
Savage, B. M., and M. C. Johnson. 2001. “Flow over ogee spillway:
Physical and numerical model case study.” J. Hydraul. Eng. 127 (8):
640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640).
USACE (US Army Corps of Engineers). 2008. Hydrologic modeling
system HEC-HMS, user’s manual version 3.2. Davis, CA: USACE.
USBR (US Bureau of Reclamation). 1980. Hydraulic laboratory techniques: A water resources technical publication. Denver: US Dept.
of the Interior, Bureau of Reclamation.
Yakhot, V., and S. A. Orszag. 1986. “Renormalization group analysis of
turbulence. I: Basic theory.” J. Sci. Comput. 1 (1): 3–51. https://doi
.org/10.1007/BF01061452.
Yakhot, V., and L. M. Smith. 1992. “The renormalization group, the
e-expansion and derivation of turbulence models.” J. Sci. Comput.
7 (1): 35–61. https://doi.org/10.1007/BF01060210.
Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. Gonzalez-Castro. 2017.
“Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig.
Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR
.1943-4774.0001112.

3D Numerical Modeling of a Side-Channel Spillway

3D Numerical Modeling of a Side-Channel Spillway

Géraldine MilésiStéphane Causse

Abstract

Electricité de Tahiti(GDF Suez) 댐의 재건이라는 틀 내에서 Coyne et Bellier는 진단과 Tahiti 댐의 전반적인 연구를 수행했습니다.

Tahinu는 프랑스령 폴리네시아의 Tahiti 섬에 위치한 37m 높이의 수력 발전 댐입니다. 수문학적 연구의 검토와 프랑스 표준의 적용은 최대 설계 홍수를 500에서 644 m3/s(+30%)로 증가시켰습니다.

먼저 측수로 여수로(마루 길이 60m)의 1D 수치 모델링을 수행하여 배수 용량을 평가했습니다. 결론은 마루댐과 배수로 수로 측벽의 오버토핑을 유발할 수 있는 배수로의 용량이 충분하지 않다는 것이었습니다.

그런 다음 이러한 결과를 확인하고 배수로의 특정 구성(정원 아래의 접근 속도와 깊이의 불균일한 분포, 측면 채널 단면의 불규칙한 기하학, 잠긴 둑, 곡선 채널 배수로)을 고려하기 위해, 3D 수치 모델링은 Flow 3D®로 수행되었습니다.

시뮬레이션은 1D 모델(흐름의 일반적인 패턴, 상류 저수지 수위)보다 더 정확한 결과를 보여주었습니다. 이에 따라 댐 능선의 높이와 여수로 측벽을 설계 및 최적화하여 안전을 위한 충분한 freeboards을 확보하도록 하였습니다.

Within the framework of the rehabilitation of Electricité de Tahiti (GDF Suez) dams, Coyne et Bellier carried out a diagnosis and an overall study of the Tahinu dam. Tahinu is a 37-m-high earthfill hydroelectric dam, located in the island of Tahiti, French Polynesia. The review of the hydrological study and the application of French standards lead to increase the peak design flood from 500 to 644 m3/s (+30 %). First, a 1D numerical modeling of the side-channel spillway (crest length 60 m) was performed to assess its discharge capacity. The conclusion was an insufficient capacity of the spillway that might induce an overtopping of the crest dam and of the sidewalls of the spillway channel. Then, to confirm these results and to take into account the specific configuration of the spillway (non-uniform distribution of the approach velocity and depth below crest, irregular geometry of the side-channel cross section, submerged weir, curved channel spillway), a 3D numerical modeling was carried out with Flow 3D®. Simulations showed more accurate results than 1D model (general pattern of the flow, upstream reservoir level). Consequently, heightenings of the dam crest and the sidewalls of the spillway channel were designed and optimized to secure sufficient freeboards for safety.

Keywords

CFD, Dam, FLOW-3D, Hydraulics, Numerical simulation, Rehabilitation, Submergence, Weir, 저수지, 댐, 측수로, 여수로

References

  1. 1.Khatsuria, R. M. (2005). Hydraulics of spillways and energy dissipators. New York: Marcel Dekker.Google Scholar
  2. 2.USBR. (1987). Design of small dams (3rd ed.). Washington: US Government printing office.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

About this chapter

Cite this chapter as:Milési G., Causse S. (2014) 3D Numerical Modeling of a Side-Channel Spillway. In: Gourbesville P., Cunge J., Caignaert G. (eds) Advances in Hydroinformatics. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-42-0_39

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

Abstract

태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

1. Introduction

Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

2. Cycle Description

CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

2.1. System Analysis Equations

An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

Based on the first law of thermodynamic, energy analysis is based on the following steps.

First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

Collector efficiency is going to be calculated by the following equation [9]:

Total energy received by the collector is given by [9]

Also, the auxiliary boiler heat load is [2]

Energy consumed from vapor to expander is calculated by [2]

The power output form by the screw expander [9]:

The efficiency of the expander is 80% in this case [11].

In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

First step: calculating the cooling load with the following equation [9]:

Second step: calculating heating loads [9]:

Then, calculating the required loud for sanitary hot water will be [9]

According to the above-mentioned equations, efficiency is [9]

In the third step, calculated exergy analysis as follows.

First, the received exergy collector from the sun is calculated [9]:

In the previous equation, f is the constant of air dilution.

The received exergy from the collector is [9]

In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

Delivering exergy from vapor to expander is calculated with the following equation [9]:

In the fourth step, the exergy in cooling and heating is calculated by the following equation:

Cooling exergy in summer is calculated [9]:

Heating exergy in winter is calculated [9]:

In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

3. Porous Media

The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

3.1. Nano Fluid

In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

The specific heat capacity is calculated from the following equation [29]:

The thermal conductivity of the nanofluid is calculated from the following equation [29]:

The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

The mixture viscosity is calculated as follows [30]:

In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

4. Results and Discussion

In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

Figure 4 Verification charts of energy analysis results.

Figure 5 Verification charts of exergy analysis results.

We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

Figure 7 Energy and exergy efficiency of the SCCHP.

Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

5. Conclusion and Future Directions

In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

Nomenclature

:Solar radiation
a:Heat transfer augmentation coefficient
A:Solar collector area
Bf:Basic fluid
:Specific heat capacity of the nanofluid
F:Constant of air dilution
:Thermal conductivity of the nanofluid
:Thermal conductivity of the basic fluid
:Viscosity of the nanofluid
:Viscosity of the basic fluid
:Collector efficiency
:Collector energy receives
:Auxiliary boiler heat
:Expander energy
:Gas energy
:Screw expander work
:Cooling load, in kilowatts
:Heating load, in kilowatts
:Solar radiation energy on collector, in Joule
:Sanitary hot water load
Np:Nanoparticle
:Energy efficiency
:Heat exchanger efficiency
:Sun exergy
:Collector exergy
:Natural gas exergy
:Expander exergy
:Cooling exergy
:Heating exergy
:Exergy efficiency
:Steam mass flow rate
:Hot water mass flow rate
:Specific heat capacity of water
:Power output form by the screw expander
Tam:Average ambient temperature
:Density of the mixture.

Greek symbols

ρ:Density
ϕ:Nanoparticles volume fraction
β:Ratio of the nanolayer thickness.

Abbreviations

CCHP:Combined cooling, heating, and power
EES:Engineering equation solver.

Data Availability

For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
  2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
  3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
  4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
  5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
  6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
  7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
  8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
  9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
  10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
  11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
  12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
  13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
  14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
  15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
  16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
  17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
  18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
  19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
  20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
  21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
  22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
  23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
  24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
  25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
  26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
  27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
  28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
  29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
  30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
  31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
  32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
  37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
  38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
  39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
  40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
  41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
  43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
  44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
  45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
  46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
  47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
  48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
  55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
  57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
  58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
  59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
  60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
  61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
  62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
  63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
  64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
  66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
  68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
  69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
  70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
  71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
  73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
  74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Year 2021, Volume 7, Issue 6, 1489 – 1505, 02.09.2021

N. TONEKABONI  H. SALARIAN  M. Eshagh NIMVARI  J. KHALEGHINIA https://doi.org/10.18186/thermal.990897

Abstract

The low efficiency of Collectors that absorb energy can be mentioned as one of the drawbacks in solar cogeneration cycles. In the present study, solar systems have been improved by adding porous media and Nanofluid to collectors. One advantage of using porous media and nanomaterials is to absorb more energy while the surface area is reduced. In this study, first, solar collectors are enhanced using 90% porosity copper in solar combined cooling, heating and power systems (SCCHP). Second, different percentages of CuO and Al2O3 nano-fluids are added to a flat plate and parabolic collectors to enhance thermal properties. Simulations are performed in different modes (simple parabolic collectors, simple flat plate collectors, improved flat plate collectors, parabolic collectors with porous media, and flat plate and parabolic collectors with different density of CuO and Al2O3 nanofluids). A case study is investigated for warm and dry regions with mean solar radiation Ib = 820 w / m2 in Iran. The maximum energy and exergy efficiencies are 60.12% and 18.84%, respectively, that is related to enhanced parabolic solar collectors with porous media and nanofluids. Adding porous media and nano-fluids increases an average 14.4% collector energy efficiency and 8.08% collector exergy efficiency.

Keywords

Exergy analysisSolar cogeneration systemPorous mediaNanofluid

References

  • [1] Center TU. Annual report on China building energy efficiency. China Construction Industry Press (In Chinese). 2016.
  • [2] Tonekaboni N, Salarian H, Fatahian E, Fatahian H. Energy and exergy economic analysis of cogeneration cycle of homemade CCHP with PVT collector. Canadian Journal of Basic and Applied Sciences 2015;3:224-233.
  • [3] Hassan JM, Abdul-Ghafour QJ, Mohammed MF. CFD simulation of enhancement techniques in flat plate solar water collectors. Al-Nahrain Journal for Engineering Sciences 2017;20:751-761.
  • [4] Sopian K, Daud WR, Othman MY, Yatim B. Thermal performance of the double-pass solar collector with and without porous media. Renewable Energy 1999;18:557-564. https://doi.org/10.1016/S0960-1481(99)00007-5
  • [5] Feizbahr M, Kok Keong C, Rostami F, Shahrokhi M. Wave energy dissipation using perforated and non perforated piles. International Journal of Engineering 2018;31:212-219. https://doi.org/10.5829/ije.2018.31.02b.04
  • [6] Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy 2013;104:538-553. https://doi.org/10.1016/j.apenergy.2012.11.051
  • [7] Wang F, Tan J, Wang Z. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas. Energy Conversion and Management 2014;83:159-166. https://doi.org/10.1016/j.enconman.2014.03.068
  • [8] Korti AI. Numerical 3-D heat flow simulations on double-pass solar collector with and without porous media. Journal of Thermal Engineering 2015;1:10-23. https://doi.org/10.18186/jte.86295
  • [9] Sharma N, Diaz G. Performance model of a novel evacuated-tube solar collector based on minichannels. Solar Energy 2011;85:881-890. https://doi.org/10.1016/j.solener.2011.02.001
  • [10] Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews 2012;16:1383-1398. https://doi.org/10.1016/j.rser.2011.12.013
  • [11] Zhai H, Dai YJ, Wu JY, Wang RZ. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Applied Energy 2009;86:1395-1404. https://doi.org/10.1016/j.apenergy.2008.11.020
  • [12] Wang J, Dai Y, Gao L, Ma S. A new combined cooling, heating and power system driven by solar energy. Renewable Energy 2009;34:2780-2788. https://doi.org/10.1016/j.renene.2009.06.010
  • [13] Jing YY, Bai H, Wang JJ, Liu L. Life cycle assessment of a solar combined cooling heating and power system in different operation strategies. Applied Energy 2012;92:843-853. https://doi.org/10.1016/j.apenergy.2011.08.046
  • [14] Temir G, Bilge D. Thermoeconomic analysis of a trigeneration system. applied thermal engineering. Applied Thermal Engineering 2004;24:2689-2699. https://doi.org/10.1016/j.applthermaleng.2004.03.014
  • [15] Wang JJ, Jing YY, Zhang CF. Optimization of capacity and operation for CCHP system by genetic algorithm. Applied Energy 2010;87:1325-1335. https://doi.org/10.1016/j.apenergy.2009.08.005
  • [16] Kleinstreuer C, Chiang H. Analysis of a porous-medium solar collector. Heat Transfer Engineering 1990;11:45-55. https://doi.org/10.1080/01457639008939728
  • [17] Mbaye M, Bilgen E. Natural convection and conduction in porous wall, solar collector systems without vents. Jornal of Solar Energy Engineering 1992;114:40-46. https://doi.org/10.1115/1.2929980
  • [18] Hirasawa S, Tsubota R, Kawanami T, Shirai K. Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium. Solar Energy 2013;97:305-313. https://doi.org/10.1016/j.solener.2013.08.035
  • [19] Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renewable Energy 2017;114:1407-1418. https://doi.org/10.1016/j.renene.2017.07.008
  • [20] Subramani J, Nagarajan PK, Wongwises S, El‐Agouz SA, Sathyamurthy R. Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids. Environmental Progress & Sustainable Energy 2018;37:1149-1159. https://doi.org/10.1002/ep.12767
  • [21] Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy 2012;39:293-298. https://doi.org/10.1016/j.renene.2011.08.056
  • [22] Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering 2009;131:041004. https://doi.org/10.1115/1.3197562
  • [23] Shojaeizadeh E, Veysi F, Kamandi A. Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based Flat-plate solar collector. Energy and Buildings 2015;101:12-23. https://doi.org/10.1016/j.enbuild.2015.04.048
  • [24] Tiwari AK, Ghosh P, Sarkar J. Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis. International Journal of Emerging Technology and Advanced Engineering 2013;3:221-224. [25] Akram N, Sadri R, Kazi SN, Zubir MN, Ridha M, Ahmed W, et al. A comprehensive review on nanofluid operated solar flat plate collectors. Journal of Thermal Analysis and Calorimetry 2020;139:1309-1343. https://doi.org/10.1007/s10973-019-08514-z
  • [26] Lemington N. Study of solar driven adsorption cooling potential in Indonesia. Journal of Thermal Engineering 2017;3:1044-1051. https://doi.org/10.18186/thermal.290257
  • [27] Tong Y, Lee H, Kang W, Cho H. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Applied Thermal Engineering 2019;159:113959. https://doi.org/10.1016/j.applthermaleng.2019.113959
  • [28] Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat And Mass Transfer 2011;54:4410-4428. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
  • [29] Farhana K, Kadirgama K, Rahman MM, Ramasamy D, Noor MM, Najafi G, et al. Improvement in the performance of solar collectors with nanofluids—A state-of-the-art review. Nano-Structures & Nano-Objects 2019;18:100276. https://doi.org/10.1016/j.nanoso.2019.100276
  • [30] Turkyilmazoglu M. Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models. European Journal of Mechanics-B/Fluids 2017;65:184-91. https://doi.org/10.1016/j.euromechflu.2017.04.007
  • [31] Chen CC, Huang PC. Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks. International Journal of Heat And Mass Transfer 2012;55:6734-6756. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.082
  • [32] Huang PC, Chen CC, Hwang HY. Thermal enhancement in a flat-plate solar water collector by flow pulsation and metal-foam blocks. International Journal of Heat and Mass Transfer 2013;61:696-720. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.037
  • [33] Hajipour M, Dehkordi AM. Mixed-convection flow of Al2O3–H O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Experimental Thermal and Fluid Science 2014;53:49-56. https://doi.org/10.1016/j.expthermflusci.2013.11.002
  • [34] Rashidi S, Bovand M, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis. Energy Conversion and Management 2015;103:726-738. https://doi.org/10.1016/j.enconman.2015.07.019
  • [35] Manikandan GK, Iniyan S, Goic R. Enhancing the optical and thermal efficiency of a parabolic trough collector–A review. Applied Energy 2019;235:1524-1540. https://doi.org/10.1016/j.apenergy.2018.11.048

Details

Primary LanguageEnglish
SubjectsEngineering
Journal SectionArticles
AuthorsN. TONEKABONI  This is me
Islamic Azad University Nour Branch
0000-0002-1563-4407
IranH. SALARIAN  This is me (Primary Author)
Islamic Azad University Nour Branch
0000-0002-2161-0276
IranM. Eshagh NIMVARI  This is me
Amol University of Special Modern Technologies
0000-0002-7401-315X
IranJ. KHALEGHINIA  This is me
Islamic Azad University Nour Branch
0000-0001-5357-193X
Iran
Publication DateSeptember 2, 2021
Application DateDecember 28, 2020
Acceptance DateMay 9, 2020
Published in IssueYear 2021, Volume 7, Issue 6
Figure 1. Typical road and rail tunnel sections.

터널의 화재 위험을 평가하는 컴퓨터 모델(FASIT)

A Computer Model to Assess Fire Hazards in Tunnels (FASlT)

David A. Charters, W. Alan Gray, Andrew C. McIntosh
Charters is now with NHS Estates in Leeds (previously with AEA Consultancy
Services), and Gray and Mclntosh are with the University of Leeds, England.

Abstract

터널에서 화재 성장 움직임을 시뮬레이션하는 컴퓨터 모델이 설명되고 터널 시스템에 대한 간략한 개요가 표시됩니다. 질량 흐름, 속도, 연기 농도 및 열 전달을 예측하는 방법과 위험 출력 매개 변수 목록이 표시됩니다. 실험에 대한 모델의 유효성 검사와 향후 작업에 대한 가능한 방향도 제시됩니다.

Introduction

최근 도로 및 철도 터널의 화재 안전에 대해 운송 업계와 여행자들 사이에서 많은 우려가 제기되고 있습니다.

1,2,3 터널에서 연소 생성물은 한 방향 또는 두 방향을 제외한 모든 방향으로 제한되어 매우 빠른 연기 이동과 생명에 대한 빠른 위협을 초래할 수 있습니다.

이 분야의 많은 초기 작업은 Thomas에 의해 수행되었습니다. 4,5 AEA Consultancy Services와 University of Leeds의 연료 및 에너지부는 현재 터널의 구멍으로 인한 위험을 예측하는 컴퓨터 모델을 개발 중입니다.

이 모델은 터널 내 설비의 위험과 화재 위험 수준, 화재 방지 시스템의 이점을 평가하는 데 도움이 됩니다.

유사한 ‘구역’ 화재 모델에서 Considine et al. 7은 유해 물질 운송을 포함하는 피트에 대한 모델을 개발했으며 Miclea 등은 터널 환기에 대한 화재의 영향을 평가하고 비상 환기를 논의하는 터널 환기 모델을 개발했으며 Laage 등은 터널 환기 모델을 개발했습니다.

9는 특히 광산 네트워크의 화재에 대한 모델을 개발했습니다. 다른 터널 화재 모델에서 Kumar et al.10 및 Jones et al.11은 터널 화재의 유체 흐름을 예측하기 위해 전산 유체 역학(CFD) 또는 ‘장’ 모델을 사용합니다.

AEA/Leeds University에서 개발 중인 코드는 터널의 화재 위험을 예측하기 위한 더 큰 모델의 일부가 되도록 의도되었습니다.

이 코드는 FASIT(Fire growth And Smoke movement In Tunnels) 모델이라고 합니다.12 FASIT는 구조가 모듈식이므로 화염, 연기, 부력 흐름, 열 전달 등에 대한 개선된 모델을 많은 수의 재작성 없이 통합할 수 있습니다.

Figure 1. Typical road and rail tunnel sections.
Figure 1. Typical road and rail tunnel sections.
Figure 2. Tunnel zone/layer schematic.
Figure 2. Tunnel zone/layer schematic.
Figure 3. Schematic of plume mass flows°
Figure 3. Schematic of plume mass flows°

References

  1. Bertrand, A., “Opening Address,”Safety in Road and Rail Tunnels, 1992.
  2. Haack, A., “Fire Protection Traffic Tunnels-Initial Recognitions from Large Scale Tests,”Safety in Road and Rail Tunnels, 1992.
  3. Luchian, S.F., “The Central Artery/Tunnel Project Memorial Tunnel Fire Test Program,”Safety in Road and Rail Tunnels, 1992.
  4. Thomas, P.H., “The Movement of Buoyant Fluid Against a Stream and the Venting of Underground Fires,”Fire Research Note 351/1958, Fire Research Station, U.K., 1958.Google Scholar 
  5. Thomas, P.H., “The Movement of Smoke in Horizontal Passages Against an Air Flow,”Fire Research Note 723/1968, Fire Research Station, U.K., 1968.Google Scholar 
  6. Charters, D.A., “Fire Risk Assessment in Rail Tunnels,”Safety in Road and Rail Tunnels, 1992.
  7. Considine, M., Parry, S.T., and Blything, K.,Risk Assessments of Hazardous Substances Through Road Tunnels in the United Kingdom, Department of Transport, 1989.
  8. Miclea, P.C. and Murphy, R.E., “Assessment of Emergency Ventilation Capability in Case of Train Fire in a Tunnel Using Subway Environment Simulation (SES) Computer Program,”Proceedings of 4th U.S. Mine Ventilation Symposium, SME, 1989.
  9. Laage, L.W. and Yang, H., “Mine Fire Experiments at the Waldo Mine,”Proceedings of 5th U.S. Mine Ventilation Symposium, SME, 1991.
  10. Kumar, S. and Cox, G.,Mathematical Modeling of Fire in Road Tunnels—Validation of JASMINE Department of Transport, 1986.
  11. Simcox, S., Wilkies, N.S. and Jones, I.P., “Computer Simulation of the Flows of Hot Gases from Fire at King’s Cross Underground Station,”Institution of Mechanical Engineers, 1989.
  12. Charters, D.A., Gray, W. A., and McIntosh, A.C.,FASIT Tunnel Fire Computer Model—Physical Basis, AEA Technology/Leeds University, 1993.
  13. Heskestad, G., “Fire Plumes,”The SFPE Handbook of Fire Protection Engineering, SFPE/NFPA, 1988, Chapters 1–6.
  14. Drysdale, D.D.,An Introduction to Fire Dynamics, Wiley, 1985.
  15. British Standard (Draft for Development) 180,Guide for the Assessment of Toxic Hazards in Fire in Buildings and Transport British Standards Institution, 1989.
  16. Vantelon, J.P.,et al., Investigation of Fire-Induced Smoke Movement in Tunnels and Stations: An Application to the Paris Metro, Third International Symposium on Fire Safety Science, Elsevier, 1991.
  17. Heselden, A.J.M., “Studies of Fire and Smoke Behavior Relevant to Tunnels,”Current Paper CP66/78, Building Research Establishment, 1978.
  18. Emmons, H.W., “The Ceiling Jet in Fires,”Proceedings of the 3rd International Symposium of Fire Safety Science, Elsevier, 1991.
  19. Carslaw, H.S. and Jaeger, J.C.,Conduction of Heat in Solids, 2nd edition, Oxford University Press, 1959.
  20. Final Report on the Tests in the Ofenegg Tunnel, Commission for Safety Measures in Road Tunnels, Bern, 1965.
  21. Feizlmayr, A.H.,Brandversuche in Einen Tunnel, Bundesministerium für Banten und Technik, Heft 50, Vienna, 1976.Google Scholar 
  22. Keski-Rahkonen, O., Holmlund, C., Loikkanen, P., Ludrigsen, H., and Mikkola, E.,Two Full-Scale Pilot Fire Experiments in a Tunnel, VTT Finland, 1986.
  23. Marshall, I.A., Hines, M.A., Cutler, D.P., and Packer, S.D.,Fire Gallery Tests for Non-Metallic Materials Intended for Underground Use Project No. 7255-10/058, CEC, 1984.
  24. Private communication between Beckett, H. (HSE) and Burke, G. (AEA), 1986.
  25. McCaughey, M.N. and Fletcher, D.F.,Simulation of a Fire in a Tunnel, SRD, 1992.
  26. Fletcher, D.F. and Owens, M.P.,Tunnel Fire Modeling Using FLOW 3D: Progress and Suggested Future Work, SRD, 1993.
Fig. 2. Schematic indication of the separate parts comprising the rotary kiln model, together with the energy fluxes from Eq. (1).

화염 모델링, 열 전달 및 클링커 화학을 포함한 시멘트 가마에 대한 CFD 예측

E Mastorakos Massias 1C.D Tsakiroglou D.A Goussis V.N Burganos A.C Payatakes 2

Abstract

실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.

키워드

산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer

1 . 소개

시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3  →  CaO  +  CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.

최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.

내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.

최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.

화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.

본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.

이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.

2 . 모델 공식화

2.1 . 개요

Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .

석탄 연소에 의해 방출되는 에너지(단위 시간당)( 석탄 )는 배기 가스(Δ 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( rad ) 및 대류( conv )됩니다. 공급 및 배기 덕트( rad,1  + rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( rad ) 및 대류( conv )에 의해 가스로부터 에너지(Δ cl )를 흡수 하고 주변으로 열을 잃습니다( Q 손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.

2.2 . CFD 코드

가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.

2.2.1 . 석탄 연소

Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .

2.2.2 . 복사와 대류

가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1  ×  1.0 m와 0.2  ×  5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.

최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.

2.2.3 . 그리드

반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.

2.2.4 . 경계 조건

벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .

내벽 온도 w ( in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다.  의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.

고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.

2.3 . 가마 온도

내부 소성로 표면 온도 w ( in , x , ϕ )는 Eq. 에서 필요합니다 (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.

전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 sh = w ( out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .

위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 가스 ( r , x ) 및 로컬 w ( in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 (2) , 결과적인 rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.

소성로와 장입물 사이의 열전달 계수 w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값  K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 w ( r , x , ϕ ) 및 RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.

식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.

2.4 . 수갑

가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 cl 은 속도 cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 gcl =2 in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , WCL = Θ 에서는 , SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl cl cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .

(나)CaCO3→높은+무엇2k = 108특급(−175728/RT)
(Ⅱ)높은+2SiO2→C2Sk = 107특급(−240000/RT)
(Ⅲ)높은+C2S→C3Sk = 109특급(−420000/RT)
(IV)3높은+로2그만큼3→C3Ak = 108특급(−310000/RT)
(V)4높은+로2그만큼3+철2그만큼3→Q4AFk = 108특급(−330000/RT)

상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.

클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.

상미분 방정식, , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 w–cl ( x , ϕ ).

2.5 . 최종 커플링

전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. RAD 의 균일한 분포에서 시작 하여 기체상은 rad ( x ) 및 conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., 그 솔루션의 새로운 추정 결과 RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 RAD ( x ) 의 수렴 이력을 보여줍니다 .

2.6 . 가마 조건

사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.

표 1 . 공기 및 석탄 입자 입구 조건

수송소용돌이중고등 학년석탄
m (kg/s)2.2531.7592.91045.9304.0
 (m/s)77.136.576.112.7336.5
V (m/s)−20.7063.900
W (m/s)00112.800
 (케이)3183833181273383

표 2 . 클링커 조성(질량 분율)

밀가루가마 입구가마 출구
m (kg/s)50.37439.81532.775
 (케이)11001785
CACO 30.79470.402180
높은00.338010.0229
그런가 20.14340.181430
알 2 O 30.03490.04420
철 2 O 30.02700.034160
C2S000.1808
C3S000.5981
C3A000.0731
Q4AF000.1242
소성 인자00.61.0

소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.

표 3 . 재료 속성 및 기타 매개변수

ω (래드/초)0.5
V의 CL (m / s)0.035
 (K)300
sh (W/m 2 K)30
w–cl (W/m 2 K)500
ε w , ε cl0.9
ε 0.8
C의 P (클링커) (킬로 / kg K)1.5
ϱ cl (kg/m 3 )1200
fus (kJ/kg)418.4
p (벽) (kJ/kg K)1.5
ϱ w (kg/m 3 )1600–3000
k는 w (W / m K)0.6–3.0
석탄 열 방출(kJ/kg)25475

3 . 결과 및 토론

이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.

3.1 . 화염 구조

그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.

버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.

3.2 . 가마 온도 분포

중심선에서 계산된 가스 온도, 온도 RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를  합니다. 이 관찰의 중요성은 나중에 논의됩니다.

대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.

예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을  습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 ,        x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0  < ϕ 범위에서 발생 < π /2).   

그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.

마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .

이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x  >  15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x  >  15 m 에서 열을 흡수 하고 0  < x < 15 m 에서 일부를 가스로 되돌려 줍니다.   

이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.

3.3 . 클링커 온도 및 조성

클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.

3.4 . 글로벌 에너지 균형

전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( rad  + conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.

표 4 . CFD 그리드 및 가마-클링커 조합에 대한 글로벌 에너지 균형

가스(MW)
라드 , 1−2.47
라드 , 2−2.72
큐 라드−57.12
전환0.04
석탄101.2
Δ 가스41.25
균형2.32
가마 클링커
큐 라드57.12
전환−0.04
손실−10.45
Δ H의 CL40.99
균형5.64

에너지 흐름의 정의는 그림 2 를 참조하십시오 .

시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.

3.5 . 논의

여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.

우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학.

실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.

더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.

이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.

4 . 결론

실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.

결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.

감사의 말

이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.

References
1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996
Google Scholar
2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993
Google Scholar
3 Basel Convention, UNEP Document No. 93-7758, 1993
Google Scholar
4 N.C Markatos
Mathematical modelling of single and two-phase flow problems in the process industries
Revue de l’Institut Français du Pétrole, 48 (1993), p. 631
View PDFCrossRefView Record in ScopusGoogle Scholar
5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767
Google Scholar
6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995
Google Scholar
7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503
Google Scholar
8 P.V Barr, J.K Brimacombe, A.P Watkinson
A heat-transfer model for the rotary kiln: Part II, development of the cross-section model
Metallurgical Transactions B, 20B (1989), p. 403
View Record in ScopusGoogle Scholar
9 V Frisch, R Jeschar
Possibilities for optimizing the burning process in rotary cement kilns
Zement-Kalk-Gips, 36 (1983), p. 549
View Record in ScopusGoogle Scholar
10 A.A Boateng, P.V Barr
A thermal model for the rotary kiln including heat transfer within the bed
Int. J. Heat Mass Transfer, 39 (1996), p. 2131
ArticleDownload PDFView Record in ScopusGoogle Scholar
11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146
Google Scholar
12 H.A Spang
A dynamic model of a cement kiln
Automatica, 8 (1972), p. 309
ArticleDownload PDFView Record in ScopusGoogle Scholar
13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK
Google Scholar
14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor
The origin of turbulence acquired by heavy particles in a round, turbulent jet
Part. Part. Syst. Charact., 7 (1990), p. 203
View PDFCrossRefView Record in ScopusGoogle Scholar
15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996
Google Scholar
16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar
Investigation on the kinetics of thermal decomposition of calcium carbonate
Chem. Eng. Sci., 49 (1996), p. 2198
Google Scholar
17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993
Google Scholar
1 Also at Department of Mechanical Engineering, University of Patras, Greece.

2 Also at Department of Chemical Engineering, University of Patras, Greece.

Fig.(9) Turbulent dissipation for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s

실험적 및 수치적 계단식 배수로의 에너지 소산 연구

The energy dissipation of Stepped Spillways experimentally and numerically

계단식 여수로는 댐의 통합된 부분인 수압 구조로, 넘침 흐름의 안전한 통과를 허용합니다. 이 논문에서는 에너지 소산을 최대한 활용하기 위해 여수로의 상대적인 계단 높이가 다른 영향을 조사하기 위해 실험적 및 수치적 연구를 수행했습니다.

여수로 위의 흐름 모델링은 RANS(Reynolds Averaged Navier-Stokes) 방정식을 푸는 상용 3D CFD 모델인 FLOW-3D를 사용하여 수행되었습니다.

FLOW-3D는 에너지 소산율을 분석하고 얻기 위해 사용되었습니다. 최대 에너지 소산을 달성할 수 있는 계단의 최상의 기하학은 관련 문헌을 검토하고 FLOW-3D에서 제안된 모델을 발명하여 결정되었습니다.

결과는 배수로의 상대적 계단 높이(hs/H) = 0.25. FLOW-3D를 사용한 수치모델은 다양한 실험모델에 대한 측정 데이터와 잘 일치하는 것으로 나타났습니다.

A. ShawkyAwada ,T. Hemdan Nasr-Allah a , Y. Abdallah Mohamed , b G. Mohamed Abdel-Aalb.
a Benah University, Faculty of Engineering, Egypt
b Zagazig University, Faculty of Engineering, Egypt

KEYWORDS

Stepped spillway, FLOW-3D, energy dissipation

Photo (1) general view of laboratory apparatus and flow direction
Photo (1) general view of laboratory apparatus and flow direction
Photo (2) stepped spillways for (hs/H) =0.17,0.25
Photo (2) stepped spillways for (hs/H) =0.17,0.25
Fig.(6) Pressure contours for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s Fig.(7) Velocity magnitude for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s
Fig.(6) Pressure contours for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s Fig.(7) Velocity magnitude for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s
Fig.(8) Flow depth for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s
Fig.(8) Flow depth for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s
Fig.(9) Turbulent dissipation for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s
Fig.(9) Turbulent dissipation for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s

REFERENCE

1- A. Hazzab, C. Chafi (2006),” Experimental investigation of flow and energy dissipation in stepped spillways “,
Larhyss Journal, ISSN 1112-3680,vol. 05, pp.91-104.
2- H. Chanson and S. Felder (2007), “Dynamic Similarity and Scale Effects in Turbulent Free-Surface Flows above
Triangular Cavities”, 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia.
3- G.A. Barani, M.B. Rahnama and N. Sohrabipoor (2005), “Investigation of Flow Energy Dissipation over Different
Stepped Spillways”, American Journal of Applied Sciences 2 (6): 1101-1105, ISSN 1546-9239.
4- Iman Naderi Rad and Mehdi Teimouri (2010),”An Investigation of Flow Energy Dissipation in Simple Stepped
Spillways by Numerical Model”, European Journal of Scientific Research ISSN 1450-216X Vol.47 No.4, pp.544-553.
5- Felder, S., and Chanson, H. (2011). “Energy Dissipation down a Stepped Spillway with Non-Uniform Step
Heights.” Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 11, pp. 1543-1548 (DOI 10.1061/(ASCE)HY.1943-
7900.0000455) (ISSN 0733-9429).
6- Hubert Chanson (2008), “Physical modeling scale effects and self similarity of stepped spillways flows”, World
Environmental and Water Resources Congress, Ahupua’a.
7- Chanson, H., YASUDA, Y., and OHTSU, I. (2002). “Flow Resistance in Skimming Flows and its Modelling.” Can
Jl of Civ. Eng., Vol. 29, No. 6, pp. 809-819 (ISSN 0315-1468).

8- Chanson (2004), Hydraulics of stepped chutes: The transition flow, Journal of Hydraulic Research Vol. 42, No. 1 ,
pp. 43–54.
9- Moussa Rassaei, Sedigheh Rahbar (2014), Numerical flow model stepped spillways in order to maximize energy
dissipation using FLUENT software, IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021,
ISSN (p): 2278-8719 Vol. 04, Issue 06 , PP 17-25.
10- Jean G Chatila & Bassam R Jurdi (2004), Stepped Spillway as an Energy Dissipater, Canadian Water Resources
Journal Vol. 29(3): 147–158 .
11- A.H. Nikseresht, N. Talebbeydokhti and M.J. Rezaei, (2013), Numerical simulation of two-phase flow on steppool spillways, Scientia Iranica A ,20 (2), 222–230.
12- Khosro Morovati , Afshin Eghbalzadeh and Saba Soori,(2016), Numerical Study of Energy Dissipation of Pooled
Stepped Spillways, Civil Engineering Journal , Vol. 2, No. 5.
13- Abbas Mansoori , Shadi Erfanian and Farhad Khamchin Moghadam (2017), A Study of the Conditions of Energy
Dissipation in Stepped Spillways with Λ -shaped step Using FLOW-3D, Civil Engineering Journal Vol. 3, No. 10,
October, 2017

View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald

Thames Tideway Tunnel – East Contract – Hydraulic Modelling

수력 구조물의 수력 설계 및 모델링 경험 (Experiences in the hydraulic design and modelling of the hydraulic structures)

CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

템스 타이드웨이 터널은 주로 템스 강 아래 런던 중심부를 통과하는 새로운 저장 및 이송 터널입니다. 최대 지름 7.2m의 길이약 25km에 달하는 주요 터널은 서쪽액톤에서 동쪽의 수도원 밀스까지 운행됩니다. 이 프로젝트의 목적은 템스 강에 도달하기 전에 결합된 하수 흐름을 가로채고 저장하여 가장 오염이 많은 복합 하수 오버플로(CSOS)의 34개 를 제어하는 것입니다. 템스 타이드웨이 터널은 베크턴 하수 처리 작업에서 치료를 위해 흐름을 수송할 수도원 밀스의 리 터널에 연결됩니다. CSO 현장에서는 소용돌이 낙하 샤프트와 같은 가로채기 및 전환 구조물이 근처 표면 하수 네트워크에서 깊은 저장 터널로 결합된 하수 흐름을 수송합니다.

East main works

터널을 납품하는 회사인 Tideway는 프로젝트를 세 부분으로 분리했습니다. 동쪽 구간은 프로젝트의 가장 깊은 부분이며, 65m 깊이에 도달합니다. 버몬드시의 챔버 부두는 애비 밀스 (Abbey Mills)에 이르는이 5.5km 터널 섹션의 주요 드라이브 사이트입니다. 동부 개발에는 그리니치 펌핑 스테이션에서 챔버 스워프의 주요 터널까지 약 4.5km의 5m 내부 직경 연결 터널이 포함되어 있습니다.

4개의 드롭 샤프트가 현재 설계 및 제작 중입니다. 이들은 24-36m 3/s 범위의 설계 흐름을 가지며 차단 및 전환 구조, 터널 격리 게이트 및 플랩 밸브가 있는 밸브 챔버, 와류 발생기 입구 구조, 와류 드롭 튜브 및 에너지 소산 및 탈기 챔버를 포함한 유압 구조로 구성됩니다.

The challenge/ hydraulic modelling

이러한 새로운 구조의 설계는 수많은 엔지니어링 문제에 직면해 있습니다. 최대 36m3/s의 대규모 설계 유량은 기존 네트워크에 부정적인 영향을 미치거나 기존 CSO를 통해 유출되지 않고 완전히 캡처되어 터널로 안전하게 전달되어야 합니다.

또한 복잡한 흐름 패턴이 발생하는 수축된 설계와 시스템의 올바른 작동을 위해 필요하고 불리한 유체 역학 조건으로부터 보호해야 하는 기계 플랜트의 필요성을 초래하는 공간 제약이 있습니다. 또한, 소용돌이 낙하 샤프트 내부에 최대 50m까지 떨어지는 흐름에 의해 생성되는 많은 양의 에너지는 터널로 전달하기 전에 안전하게 소멸되고 유동을 제거해야합니다.

이러한 과제를 해결하기 위해 프로젝트 팀은 물리적 스케일 모델링과 함께 CFD(계산 유체 역학) 모델링을 광범위하게 사용했습니다.

CFD 모델링: 얼 펌핑 스테이션 소용돌이 드롭 샤프트 및 저장 터널 의 보기 - Courtesy of Mott MacDonald
CFD 모델링: arl Pumping Station 소용돌이 드롭 샤프트 및 저장 터널 의 보기 – Courtesy of Mott MacDonald

전산 유체 역학 모델링

CFD는 초기 설계 단계에서 사용되는 주요 유압 모델링 도구로, 모든 유압 구조를 모델링하고, 설계 수정을 통합하고, 결과를 신속하게 시각화 및 분석하고, 성능을 마무리할 수 있는 기능을 제공했습니다.

제안된 설계의 3D 건물 정보 모델링(BIM) 형상을 CFD 소프트웨어로 전송하여 CFD 유체 도메인에 대한 형상을 생성하는 데 필요한 시간을 줄였습니다.

FlowScience Inc에서 개발한 Flow 3D가 주요 모델링 플랫폼으로 활용되었습니다. 이 소프트웨어는 공기-물 인터페이스를 추적하기 위해 유체 체적 방법을 적용하여 자유 표면 흐름을 정확하게 모델링하는 기능이 있습니다.

입방 격자를 사용한 3D 구조형 메쉬를 사용하였고, 레이놀즈평균 Navier-Stokes 접근법을 표준 k-omega 난기류 모델로 사용하여 난류를 해석하였습니다.

View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

메쉬 해상도에 대한 민감도 분석이 수행되었고 계산 메쉬의 적합성에 대한 추론을 허용하기 위해 이전 개념 단계 구조의 물리적 스케일 모델링에서 사용 가능한 결과와 비교되었습니다. 와류 발생기 및 드롭 튜브의 목과 같이 급격한 기울기가 발생하는 영역의 메쉬에 특별한 주의를 기울였습니다.

전체 메쉬 해상도와 계산 효율성 간의 균형은 설계 목적을 위해 충분히 정확하지만 설계 프로그램 목표를 충족하는 시간 척도 내에서 결정적으로 중요한 솔루션을 생성하는 데 필요했습니다.

CFD 모델이 수렴되면 결과가 시각화되었습니다. 주요 산출물에는 구조 전체에 걸친 상세한 수위, 크기와 벡터, 흐름 유선이 있는 속도 플롯이 포함되었습니다. CFD 모델에 의해 생성된 데이터는 유동장의 거동을 이해하는 데 매우 유용했으며 이러한 결과를 분석하여 설계가 어떻게 수행되고 있는지에 대한 결론을 내릴 수 있었습니다.

View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber - Courtesy of Mott MacDonald
View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber – Courtesy of Mott MacDonald

물리적 스케일 유압 모델링

물리적 규모의 수력학적 모델링은 작동 조건의 전체 범위에 걸쳐 설계의 수력학적 성능을 종합적으로 평가하고 설계 개선 사항을 알리고 테스트하는 데 사용되었습니다.

프로그램의 효율성을 위해 수력구조물의 설계가 잘 진행된 단계에서 물리적인 규모의 모델링을 수행하였다. CFD 모델링은 이미 수행되어 설계의 전체 성능에 대한 확신을 제공했습니다. 주요 구조 부재도 MEICA 공장을 위해 크기가 조정되었고 설계 공간이 확보되었습니다.

설계 개발의 이 단계에서 물리적 모델링을 수행하는 것은 시간이 많이 소요되는 물리적 모델에 필요한 주요 변경의 위험을 줄이는 것을 목표로 했습니다. 또한 모델 테스트가 수력 구조의 최종 의도 설계를 가능한 한 가깝게 반영하도록 했습니다.

물리적 모델링을 위해 두 개의 사이트가 선택되었으며, 주로 공간 제약으로 인해 유압 구조의 설계가 더 복잡했습니다. 이러한 사이트는 다음과 같은 사이트였습니다.

  • 그리니치 펌핑 스테이션은 1:10 규모의 전체 작업 현장 모델이 건설되었습니다.
  • CSO 차단 구조의 모델이 수행된 King Edward Memorial Park 및 Foreshore는 1:10 축척으로, 드롭 샤프트 에너지 소산 및 탈기 챔버의 별도 모델은 1:12 축척으로 구축되었습니다.

모델은 실험실 시설에서 전문 하청 업체 BHR 그룹에 의해 구축 및 테스트되었습니다. 모델은 최신 디자인 BIM 모델에서 생성된 모델 도면을 사용하여 주로 퍼스펙스와 합판으로 구축되었다. 모델 시공승인을 받기 전에 도면은 실험실에서 유압 구조물의 정확한 복제본을 보장하기 위해 BIM 모델에 대한 엄격한 치수 검사를 받았습니다.

Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation - Courtesy of Mott MacDonald & BHR Group
Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation – Courtesy of Mott MacDonald & BHR Group

중력의 힘이 이러한 구조에서 개방 채널 유체 흐름을 지배하기 때문에 유사성을 보장하기 위해 프로토타입(전체 규모 설계) 및 축소된 축소 모델에서 Froude 수를 동일하게 유지하는 것이 중요합니다. 따라서 Froude 수의 동일성을 유지하기 위해 모델을 유속으로 작동했습니다. 규모는 또한 모든 흐름 조건에서 흐름이 완전히 난류임을 보장할 수 있을 만큼 충분히 커야 했으며 이는 모델의 다른 부분에서 흐름의 레이놀즈 수를 추정하여 확인했습니다.

축소된 물리적 모델에서는 모든 스케일 효과를 제거할 수 없습니다. 표면 장력은 비례하지 않기 때문에 프로토타입과 모델의 Weber 수(초기 힘과 표면 장력 사이의 비율을 나타냄)가 다르고 둘 사이의 액체 상태에 포함된 공기의 양도 다릅니다. 이것은 방법의 한계로 인식되고 이해되며 공기 동반 결과에 스케일링 계수를 적용하여 해결되었습니다.

이 모델은 작동 사례를 설정하는 미리 정의된 테스트 매트릭스에 따라 테스트를 거쳤습니다. 여기에는 다양한 흐름 사례와 저장 터널 꼬리 수위가 포함됩니다. 유량은 보정된 기기로 엄격하게 제어되었으며, 필요한 경우 모델로의 유량은 관심 영역의 유량이 유입구 조건에 의해 인위적으로 영향을 받지 않도록 조절되었습니다.

흐름의 동작을 관찰하고 기록했습니다.

  • 수위는 압력 태핑을 통해 또는 모델 측벽의 수직 눈금을 통해 시각적으로 기록되었습니다.
  • 플로우 패턴은 염료 추적기의 도움을 받아 시각적으로 기록되었습니다.

특히 관심의 한 측면은 소용돌이 흐름이었다. 소용돌이 발생기및 소용돌이 낙하튜브를 통한 흐름에 대한 상세한 관찰은 흐름이 안정적이고, 맥동과 도미 효과가 없는지, 그리고 흐름 범위 전반특히 관심의 한 측면은 소용돌이 흐름이었습니다. 와류 발생기 및 와류 드롭 튜브를 통한 흐름에 대한 자세한 관찰은 흐름이 안정적이고 맥동 과도 효과가 없으며 와류 흐름이 드롭 튜브에서 잘 형성되어 흐름 범위 전체에 걸쳐 안정적인 공기 코어를 유지하면서 관찰되었습니다.

(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft - Courtesy of Mott MacDonald and BHR Group
(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft – Courtesy of Mott MacDonald and BHR Group

와류 발생기에서 임계유량이 발생하기 때문에 확실한 수두-방전 관계가 설정되어 수위를 판독하여 유량을 측정할 수 있는 기회를 제공합니다. 와류 발생기에 대한 접근 암거에 위치한 압력 탭핑은 유속 범위에 걸쳐 수심 값을 기록하여 각 방울 구조에 대해 수두 방출 곡선을 도출할 수 있도록 했습니다. 프로토타입에서 이 지점에서 수집된 레벨 신호는 흐름을 계산하고 격리 게이트를 제어하는 ​​데 사용됩니다.

흐름이 와류 드롭 튜브 아래로 수 미터 떨어지고 드롭 샤프트의 바닥에 있는 물 풀로 충돌할 때 공기가 물 속으로 동반됩니다. 터널 시스템에서 발생하는 압축 공기 주머니와 저장 용량 감소 문제를 피하기 위해 드롭 샤프트에서 저장 터널로 전달되는 공기의 양을 최소화하는 것이 중요합니다. 이 목적을 달성하기 위해, 드롭 샤프트의 베이스가 흐름의 에너지 소산 및 탈기 기능을 수행하는 것이 매우 중요합니다. 이것은 충분한 체적을 제공하도록 샤프트의 크기를 조정하고 다음과 같은 흐름을 조절하기 위해 샤프트 내부 벽을 설계함으로써 달성되었습니다.

  • 플런지 풀이 형성되었습니다.
  • 샤프트의 흐름 경로/유지 시간은 가능한 한 오래 지속됩니다.
  • 샤프트 의 베이스의 특정 영역은 위쪽 흐름 경로를 촉진합니다.

이러한 조치는 떨어지는 물의 에너지가 소멸되고 공기가 가능한 한 흐름에서 분리되도록 하는 것을 목표로 하고 저장 터널로 전달됩니다.

에너지 소산 및 탈기 구조의 성능을 평가하기 위해 드롭 샤프트에서 저장 터널을 통과하는 공기 흐름을 물 변위 방법으로 측정했습니다. 흐름에 혼입된 정확한 양의 공기를 보장하기 위해 모델은 와류 드롭 튜브의 전체 높이를 통합했습니다. 설계의 허용 기준에 대해 최대 기류는 최대 설계 수류의 백분율로 정의된 미리 정의된 값으로 제한되었습니다. 스케일 효과를 설명하기 위해 모델에서 허용 가능한 최대 기류량은 프로토타입에 비해 약 6배 감소했습니다.

hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel - Courtesy of Mott MacDonald and BHR Group
hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel – Courtesy of Mott MacDonald and BHR Group

물리적 규모 모델링은 또한 구조물을 통한 퇴적물의 이동성을 테스트했습니다. 이는 하수 네트워크에서 발생하는 예상 입자 크기 분포와 일치하도록 조정된 모의물의 양으로 모델에 투여함으로써 달성되었습니다.

모델의 설계 개선은 주로 탈기 성능을 개선하기 위한 샤프트 내부 구조의 조정, 퇴적물 이동성을 돕기 위한 벤치 및 기타 조치의 포함으로 구성되었습니다. 이러한 개선 사항은 재테스트를 통해 확인된 다음 설계에 통합되었습니다. 물리적 모델링의 데이터는 관찰된 좋은 일치와 함께 CFD 모델링의 결과와 비교되었습니다.

최종 모델링 결과는 흐름이 기존 하수 네트워크에서 전환되는 위치 근처에서 큰 난류가 발생하는 반면 차단 챔버는 이 에너지를 부분적으로 소산할 수 있을 만큼 충분히 크기가 지정되었으며 특정 수력 설계 요소를 포함하면 문제가 있는 유압 거동이 기계 장비 근처에서 관찰되었습니다. 더 높은 유속에서 일부 공기 동반 와류는 유체의 대부분에 형성됩니다. 그러나 이러한 높은 폭풍 유속의 간헐적인 특성을 고려할 때 콘크리트 구조물의 열화를 일으킬 것으로 예상되지는 않았습니다. 결과는 또한 구조가 최대 설계 흐름을 Thames Tideway Tunnel로 전환하여 기존 보유 CSO를 통한 유출을 방지할 수 있음을 나타냅니다. 차단실과 와류 낙하축을 연결하는 선형 연결 암거는 흐름 조절에 긍정적인 영향을 미쳤고 소용돌이 낙하 튜브의 작동은 흐름 범위에 걸쳐 안정적인 것으로 관찰되었습니다.

Conclusions

Thames Tideway Tunnel의 수력 구조물 설계에는 복잡한 3D 난류 유동 거동이 포함되며 설계 단계에서 고급 수력 모델링 도구를 사용해야 합니다. CFD 모델링을 통해 제안된 설계를 테스트하고 수정할 수 있으므로 설계 흐름이 필요한 성능 매개변수 내에서 안전하게 수용됩니다.

이 프로젝트에서 CFD를 활용한 주요 이점은 비교적 짧은 시간에 수력학적 모델링을 수행할 수 있는 능력, 생성된 데이터의 유용성 및 시각화할 수 있는 능력이었습니다. 이는 설계를 알리고 확인하는 데 도움이 되었습니다. CFD 모델링은 제한된 도시 환경 내에서 설정된 이러한 수력학적 구조를 설계하는 데 유용한 도구였습니다.

Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber - Courtesy of Mott MacDonald and BHR Group
Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber – Courtesy of Mott MacDonald and BHR Group

구조의 중요성으로 인해 물리적 모델링이 수행되어 결과에 대한 신뢰도를 높이고 CFD가 한계를 나타내는 수력 성능 측면을 추가로 연구했습니다. 물리적 모델은 이해 관계자에게 구조 내부에서 흐름이 어떻게 수행되고 있는지 정확히 보여주기 위해 유용한 것으로 입증되었습니다. 또한, 모델 테스트가 대부분 최종 설계를 반영한다는 점을 감안할 때 구조물의 수력 성능에 대한 기록이 유지됩니다.

Timescale

5개 샤프트 중 4개에 대한 굴착이 진행 중이거나 완료되었으며 1차 기초 슬래브와 2차 라이닝이 올해 말 전에 샤프트에 부어질 것입니다. 주 터널인 Selina의 TBM은 2020년 터널링이 시작되어 연말에 현장으로의 마지막 여정을 시작할 것입니다.

The editor and publishers thank Ricardo Telo, Senior Hydraulic Engineer, and Tejal Shah, Senior Mechanical Engineer, both with Mott MacDonald, for providing the above article for publication.

첨부 파일

CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2

원추형 중앙 배플 수로의 CFD 시뮬레이션

CFD Simulations of Conical Central Baffle Flumes

Abstract

Ankur KapoorAniruddha D. Ghare; and Avinash M. Badar

원추형 중앙 배플 수로는 개방 채널에서 임시 유량 측정을 위한 효과적인 솔루션을 제공합니다. 

원추형 중앙 배플 수로는 원뿔 모양의 장애물 또는 열린 수로의 중심에서 수직으로 향하는 중앙 배플로 구성됩니다. 본 연구에서, 원추형 중앙 배플 수로를 사용하여 개방 채널에서 유량 측정을 위해 이전에 개발된 배출 예측 모델은 더 넓은 적용 범위를 커버하기 위해 직사각형 및 사다리꼴 채널에서 사용하기 위해 실험적으로 재 보정되었습니다. 

제안된 보정 방정식은 FLOW-3D를 사용한 전산유체역학(CFD) 시뮬레이션 결과를 사용하여 확장된 범위의 흐름 및 기하학적 매개변수에 대해 검증되었습니다. 

시뮬레이션 연구는 두 단계로 수행됩니다. 첫 번째 단계는 시뮬레이션의 수면 프로파일과 동일한 배출 및 흐름 조건에 대한 실험 흐름을 비교하여 설정한 정의된 시뮬레이션 문제의 검증입니다. 

두 번째 단계는 무차원 방전 및 측면 경사(중1= 0중1=0, 0.50, 1.00 및 1.50). 80% 미만의 수중에서 방전 예측의 오류는 평균값이 거의 3%로 항상 10% 미만인 것으로 나타났습니다. 

CFD 분석 결과에 따르면 보정된 배출 예측 모델의 사용은 수중 한계 80%까지 권장되었으며, 그 이상에서는 오차가 10% 이상인 것으로 나타났습니다.

Conical central baffle flumes present an effective solution for temporary flow measurements in open channels. A conical central baffle flume consists of a cone-shaped obstruction, or a central baffle, oriented vertically at the center of an open channel. In the present study, a previously developed discharge prediction model for flow measurements in open channels using the conical central baffle flumes has been experimentally recalibrated for use in rectangular and trapezoidal channels to cover a wider application range. The proposed calibration equation has been validated for an extended range of flow and geometrical parameters using the results of computational fluid dynamics (CFD) simulations using Flow-3D. The simulation studies are carried out in two steps. The first step is the validation of the defined simulation problem set up by comparing the water surface profiles of the simulation and experiment flows for the same discharge and flow conditions. The second step is the validation of the proposed discharge prediction model for the extended range (0–0.50) of the dimensionless discharge and side slopes (m1=0m1=0, 0.50, 1.00, and 1.50). It is found that for submergence less than 80%, the error in discharge prediction is always less than 10% with a mean value of nearly 3%. Based on the results of the CFD analysis, the use of the calibrated discharge prediction model has been recommended up to a submergence limit of 80%, beyond which the errors are found to be greater than 10%.

ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]
Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).

복합 광대보의 방류계수 예측을 위한 실험적 해석과 CFD 해석의 비교연구

Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir

ABSTRACT

Present study highlights the behavior of weir crest head and width parameter on the discharge coefficient of compound broad crested (CBC) weir. Computational fluid dynamics model (CFD) is validated with laboratory experimental investigations.

In the discharge analysis through broad crested weirs, the upstream head over the weir crest (h) is crucial, where the result is mainly dependent upon the weir crest length (L) in transverse direction to flow, water depth from channel bed. Currently, minimal investigations are known for CFD validations on compound broad crested weirs.

The hydraulic research for measuring discharge numerically is carried out using FLOW 3D software. The model applies renormalized group (RNG) using volume of fluid (VOF) method for improved accuracy in free surface simulations. Structured hexagonal meshes of cubic elements define discretized meshing.

The comparative analysis of the numerical simulations and experimental observations confirm the performance of CBC weir for precise measurement of a wide range of discharges. Series of CFD model studies and experimental validation have led to constant range of discharg coefficients for various head over weir crest. The correlation coefficient of discharge predictions is 0.999 with mean error of 0.28%.

현재 연구에서는 CBC(compound broad crested) 위어의 배출 계수에 대한 위어 볏 머리 및 너비 매개변수의 거동을 강조합니다. 전산 유체 역학 모델(CFD)은 실험실 실험 조사를 통해 검증되었습니다.

넓은 볏이 있는 둑을 통한 유출 분석에서 둑 마루의 상류 수두(h)가 중요합니다. 여기서 결과는 주로 흐름에 대한 횡 방향의 둑 마루 길이(L), 수로 바닥에서 수심에 따라 달라집니다. . 현재 복합 넓은 볏 둑에 대한 CFD 검증에 대해 최소한의 조사가 알려져 있습니다.

수압 연구는 FLOW 3D 소프트웨어를 사용하여 수치적으로 측정합니다. 이 모델은 자유 표면 시뮬레이션의 정확도 향상을 위해 VOF(유체 체적) 방법을 사용하여 RNG(재정규화 그룹)를 적용합니다. 정육면체 요소의 구조화된 육각형 메쉬는 이산화된 메쉬를 정의합니다.

수치 시뮬레이션과 실험적 관찰의 비교 분석을 통해 광범위한 배출의 정확한 측정을 위한 CBC 둑의 성능을 확인했습니다. 일련의 CFD 모델 연구와 실험적 검증을 통해 다양한 head over weir crest에 대한 일정한 범위의 방전 계수가 나타났습니다. 방전 예측의 상관 계수는 0.999이고 평균 오차는 0.28%입니다.

Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).
Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).
Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).
Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).
Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).
Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).
Table 8 | Range of Froude number, Reynold number and Weber number
Table 8 | Range of Froude number, Reynold number and Weber number

Key words

compound weir, flow 3D, flow measurement, numerical technique, open channel

HIGHLIGHTS

• The Head-Discharge relation is established for discharge measurement using compound broad crested weir, experimentally and numerically.
• Assessment of head over weir crest for different step widths of proposed weir on discharge coefficient is executed.
• Experimental and CFD results of weir performance demonstrate good agreement between the theoretical discharges by traditional rectangular weir formulae keeping Cd constant.

CONCLUSION

  1. The head discharge relationship established for compound rectangular broad crested weir for various discharge ranges was validated by CFD technique. A three dimensional simulation software FLOW 3D was used for this purpose.
  2. Original theoretical compound weir model depicts the relative average error between discharge predictions with Flow 3D simulation as 4.96% which is found less than the predictions made by graphical interpolation technique which is 5.33%.
  3. The standard deviation in Cd parameter for CFD simulation model is less i.e. 0.0146 as compared to experimental output of 0.0502.
  4. The correlation coefficient for physical and CFD studies for modified compound weir model is high, around 0.999 with
    error in discharge predictions being 0.28% as compared to the accuracy limits of about +3–5% stated in literature so far.
  5. Discharge coefficient by experimental and CFD approach is maintained constant and equal to design input value of 0.6.
    Thus, the proposed CBC weir can be operated for various discharge ranges by maintaining constant discharge coefficients.
    Good agreement between the theoretical, experimental and CFD simulation results for obtaining discharge through compound broad crested weir ascertains the fact that CFD model can be used as an effective tool towards modeling flow through compound broad crested weir.

REFERENCES

Abd El-Hady Rady, R. M. 2011 2D 3D modeling of flow over sharp crested weirs. Journal of Applied Sciences Research 7 (12), 2495–2505.
ISSN 1819-544X.
Ackers, P., White, W. R. & Harrison, A. J. M. 1978 Weirs and Flumes for Flow Measurement. Wiley, New York.
Aydin, M. C. 2016 Investigation of a sill effect on rectangular side-weir flow by using CFD. Journal of Irrigation and Drainage Engineering
142 (2), 04015043.
Azimi, A. H. & Rajaratnam, N. 2009 Discharge characteristics of weirs of finite crest length. Journal of Hydraulic Engineering 135 (12),
1081–1085.
Bijankhan, M., Di Stefano, C., Ferro, V. & Kouchakzadeh, S. 2014 New stage discharge relationship for weirs of finite crest length. Journal of
Irrigation and Drainage Engineering 140 (3), 06013006.
Boiten, W. & Pitlo, H. R. 1982 The V- shaped broad-crested weir. Journal of Irrigation and Drainage Engineering 108 (2), 142–160.
Bos, M. G. 1989 Discharge Measurement Structures, 3rd edn. International Institute for Land Reclamation and Improvement, Publication 20,
Wageningen, The Netherlands.
Gogus, M., Defne, Z. & Ozkandemir, V. 2006 Broad-crested weirs with rectangular compound cross sections. Journal of Irrigation and
Drainage Engineering 132 (3), 272–280.

Gogus, M., Al-Khatib, I. A., Atalay, A. E. & Khatib, J. I. 2016 Discharge prediction in flow measurement flumes with different downstream
transition slopes. Flow Measurement and Instrumentation 47, 28–34.
Hager, W. H. & Schwalt, M. 1994 Broad – crested weir. Journal of Irrigation and Drainage Engineering 120 (1), 13–25.
Harrison, A. J. M. 1967 The streamlined broad-crested weir. Proceedings of the Institution of Civil Engineers 38, 657–678.
Hinge, G. A., Balkrishna, S. & Khare, K. C. 2010 Improved design of stilling basin for deficient tail water. Journal of Basic and Applied
Scientific Research 1 (1), 31–40.
Hinge, G. A., Balkrishna, S. & Khare, K. C. 2011 Experimental and numerical study of compound broad crested weir. International Journal of
Fluids Engineering 3 (2), 197–202.
Horton, R. E. 1907 Weir Experiments, Coefficients, and Formulas. Dept. of the Interior, U.S. Geological Survey, Water-Supply and Irrigation
Paper 200. Government Printing Office, Washington, DC.
Khan, L. A., Wicklein, E. A. & Teixeira, E. C. 2006 Validation of a three-dimensional computational fluid dynamics model of a contact tank.
Journal of Hydraulic Engineering 132 (7), 741–746.
Kindsvater, C. E. & Carter, R. W. 1959 Discharge characteristics of rectangular thin-plate weirs. Paper No. 3001, Transactions, American
Society of Civil Engineers 124.
Kulin, G. & Compton, P. R. 1975 A Guide to Methods and Standards for the Measurement of Water Flow. Special Publication 421, National
Bureau of Standards.
Kulkarni, K. H. & Hinge, G. A. 2017 Compound broad crested weir for measurement of discharge – a novel approach. In: Proceedings
International Conference Organized by Indian Society of Hydraulics – ISH HYDRO, 21–23 Dec 2017, India, pp. 678–687.
Kulkarni, K. H. & Hinge, G. A. 2020 Experimental study for measuring discharge through compound broad crested weir. Flow Measurement
Instrumentation 75, 101803. ISSN 0955-5986.
Man, C., Zhang, G., Hong, V., Zhou, S. & Feng, Y. 2019 Assessment of turbulence models on bridge-pier scour using flow-3D. World Journal
of Engineering and Technology 7, 241–255. ISSN Online: 2331-4249.
Omer, B., Cihan, A. M., Emin, E. M. & Miller, C. J. 2018 Experimental and CFD analysis of circular labyrinth weirs. Journal of Irrigation and
Drainage Engineering 144 (6), 04018007.
RangaRaju, K. G. 1981 Flow Through Open Channels. McGraw-Hill, New York.
Roushangar, K., Nouri, A., Shahnazi, S. & Azamathulla, H. M. 2021 Towards design of compound channels with minimum overall cost
through grey wolf optimization algorithm. IWA – Journal of Hydroinformatics (In – press).
Safarzadeh, A. & Mohajeri, S. H. 2018 Hydrodynamics of rectangular broad-crested porous weir. Journal of Irrigation and Drainage
Engineering 144 (10), 04018028.
Salmasi, F., Poorescandar, S., Dalir, A. H. & Zadeh, D. F. 2012 Discharge relations for rectangular broad crested weirs. Journal of
Agricultural Sciences 17, 324–336.
Samadi, A. & Arvanaghi, H. 2014 CFD simulation of flow over contracted compound arched rectangular sharp crested weirs. International
Journal of Optimization in Civil Engineering 4 (4), 549–560.
Savage, B. M. & Johnson, M. C. 2001 Flow over ogee spillway: physical and numerical model case study. Journal of Hydraulic Engineering
127 (8), 640–649.
Swamee, P. K. 1988 Generalized rectangular weir equations. Journal of Hydraulic Engineering 945–952. doi:10.1061/(ASCE),0733-9429
114:8(945).
The United States Bureau of Reclamation (USBR) 2001 Water Measurement Manual, Chapter 7 – Weirs. U.S. Government Printing Office,
Washington, DC, p. 20402. Available from: http://www/usbr.gov/pmts/hydraulics_lab/pubs/wmm.
Zahiri, A. & Azamathulla, H. M. 2014 Comparison between linear genetic programming and M5 tree models to predict flow discharge in
compound channels. Neural Computing and Application 24, 413–420.

Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

능동 가압의 경우 극저온 탱크의 열 및 물질 전달

Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

하이라이트

헤닝 슈플러 옌스 게르스트만DLR 독일 항공 우주 센터, 우주 시스템 연구소, 28359 Bremen, Germany

상변화 및 공액 열전달을 포함하는 압축성 2상 솔버 개발.

분석 솔루션으로 솔버를 성공적으로 검증.

극저온 탱크의 압력 및 온도 변화에 대한 정확한 시뮬레이션.

자유 표면에서의 물질 전달 분석.

Abstract

압력 요구 사항을 예측하는 것은 극저온 추진 시스템의 주요 과제 중 하나입니다. 이러한 맥락에서 증발 및 응축 현상을 고려한 탱크 여압을 시뮬레이션하기 위한 수치 모델을 개발하여 적용하였습니다. 

새로운 솔버는 PISO(splitting of operator) 알고리즘이 있는 압력 암시적 방법을 기반으로 하는 OpenFOAM의 약한 압축성 다상 솔버와 기울기 기반 위상 변화 모델을 결합합니다. 날카로운 인터페이스를 유지하기 위해 인터페이스에 인접한 셀에 질량 소스 용어가 적용됩니다. 

첫째, 모델은 1차원 상 변화 문제와 중력이 없는 상태에서 과열된 액체에서 증기 기포의 성장이라는 두 가지 분석 솔루션에 대해 검증되었습니다. 

두 번째 단계에서는 검증된 모델을 극저온 가압 실험에 적용했습니다. 측정된 압력 거동은 수치 모델이 양호한 근사값으로 확인될 수 있습니다. 

수치 모델을 사용하면 물리적 거동에 대한 추가 통찰력을 얻을 수 있습니다. 응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다.

Predicting the pressurant requirements is one of the key challenges for cryogenic propulsion systems. In this context, a numerical model to simulate the tank pressurization that considers evaporation and condensation phenomena was developed and applied. The novel solver combines the a gradient-based phase change model with a weakly compressible multiphase solver of OpenFOAM based on the pressure implicit method with splitting of operator (PISO) algorithm. To maintain a sharp interface the mass source terms are applied to the cells adjacent to the interface. First, the model is validated against two analytical solutions: the one-dimensional phase change problem and secondly, the growth of a vapor bubble in a superheated liquid in the absence of gravity. In a second step, the validated model was applied to a cryogenic pressurization experiment. The measured pressure behavior could be confirmed with the numerical model being in a good approximation. With the numerical model further insights into the physical behavior could be achieved. The condensation and evaporation effects have a significant impact on the pressure development during and after the pressurization. The mass flows due to phase change occurring at the vapor-liquid interface depend on interface location and time. Directly at the wall, evaporation becomes dominant while condensation occurs at the center area of the liquid surface.

  1. Fig. 1. Calculation of the gradient at the interface: On the left side the interface…
  2. Fig. 2. Mass source term distribution: First the sharp mass source term ρ0, which is…
  3. Fig. 3. a) Layout of the Stefan-Problem: a vapor is located between a liquid and a…
  4. Fig. 4. Bubble in a superheated liquid: The left side depicts the calculated and…
  5. Fig. 5. Modified drawing of the dewar (as documented in [5] [6]; dimensions in mm) and…
  6. Fig. 6. Schematic presentation of the pressure evoluation in the dewar: Initial…
  7. Fig. 7. Simulation of the pressurization phase: The diagram shows the pressure…
  8. Fig. 8. Turbulent thermal diffusivity in pressurization and relaxation phase
  9. Fig. 9. Comparison of the pressure evolution in the relaxation phase of the solver with…
  10. Fig. 10. On the left side the temperature evolution in the bulk of the gas phase is shown
  11. Fig. 11. Heat Flux profile over the interface caused by evaporation with details of the…
  12. Fig. 12. Temperatures field with velocity vectors at 420 seconds after the start of the…
  13. Fig. 13. Heat transfer to the liquid from the wall and the freesurface with and without…

Hide figures

키워드

Pressurization, Phase Change, CFD, Propellant Management, 가압, 상 변화, 추진제 관리

Wave Loads Assessment on Coastal Structures at Inundation Risk Using CFD Modelling

CFD 모델링을 사용하여 침수 위험이 있는 해안 구조물에 대한 파랑 하중 평가

Wave Loads Assessment on Coastal Structures at Inundation Risk Using CFD Modellin

Ana GomesJosé Pinho

Conference paperFirst Online: 19 November 2021

지난 수십 년 동안 극한 현상은 심각성과 주민, 기반 시설 및 인류 활동에 대한 위험 증가로 인해 우려를 불러일으켰습니다. 오늘날 해안 구조물이 범람하고 해변 침식 및 기반 시설 파괴가 전 세계 해안에서 흔히 발생합니다. 

완화에 효율적으로 기여하고 효율적인 방어 조치를 채택하려면 이러한 영향을 예상하는 것이 매우 중요합니다. 대규모 물리적 모델을 기반으로 하는 이전 실험 작업에서 목조 교각 상단의 고가 해안 구조물의 공극과 그에 따른 수평 및 수직 파도력 사이의 관계가 다양한 파도 하중 조건에 대해 연구되었습니다. 

이러한 실험 결과는 CFD 도구를 사용하여 유체/구조 상호 작용을 시뮬레이션하기 위한 수치 모델에 대한 보정 데이터 역할을 합니다. 주어진 파도 조건에 대해 물과 구조물 베이스 레벨 사이의 공극 높이를 다르게 하여 세 가지 시나리오를 시뮬레이션했습니다. 

수치 결과를 물리적 모델 결과와 비교하면 수치적으로 구한 수평력과 수직력의 최대값은 각각 평균 ​​14.4%와 25.4%의 상대차로 만족할 만합니다. 또한 구조물을 지지하는 교각에 작용하는 압력과 전단응력을 시뮬레이션하기 위해 실제 수치모델을 적용하였으며, 서로 다른 공극의 높이를 고려하고 각각의 CPU 시뮬레이션 시간을 평가하였습니다. 

이러한 방식으로 CFD 모델의 운영 모델링 기능을 평가하여 조기 경보 시스템 내에서 최종 사용에 대한 예측 선행 시간 제한을 결정했습니다.

키워드

Coastal risk, Elevated coastal structure, Numerical simulation, Flow-3D® , 해안 위험, 높은 해안 구조, 수치 시뮬레이션

References

  1. 1.Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PloS one, n. 10(3), p. X-XGoogle Scholar
  2. 2.Jones B, O’Neill BC (2016) Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, N. 11(8):1–10Google Scholar
  3. 3.Talbot J (2005) Repairing Florida’s Escambia Bay Bridge. Associated Construction Publications, available online at http://www.acppubs.com/article/CA511040
  4. 4.Kennedy A, Rogers S, Sallenger A, Gravois U, Zachry B, Dosa M, Zarama F (2011a) Building destruction from wave and surge on the bolivar peninsula during hurricane Ike. J. Waterw. Port, Coast. Ocean Eng. 137 (3), 132–141Google Scholar
  5. 5.Tomiczek T, Kennedy A, Rogers S (2014) Collapse limit state fragilities of woodframed residences from storm surge and waves during hurricane Ike. J. Waterw. Port, Coast. Ocean Eng. 140 (1), 43–55Google Scholar
  6. 6.Dentale F, Donnarumma G, Pugliese Carratelli E (2014a) Simulation of flow within armour blocks in a breakwater. J Coast Res 30(3):528–536CrossRefGoogle Scholar
  7. 7.Peregrine DH (2003) Water wave impact on walls. Annu Rev Fluid Mech 35:23–43CrossRefGoogle Scholar
  8. 8.Cuomo G, Piscopia R, Allsop W (2011) Evaluation of wave impact loads on caisson breakwaters based on joint probability of impact maxima and rise times. Coast Eng 58(1):9–27CrossRefGoogle Scholar
  9. 9.Faltinsen OM, Landrini M, Greco M (2004) Slamming in marine applications. J Eng Math 48(3–4):187–217CrossRefGoogle Scholar
  10. 10.Peregrine DH. et al (2005) Violent water wave impact on a wall. In: Proceedings of 14th Aha Huliko Winter Workshop, Honolulu, HawaiiGoogle Scholar
  11. 11.Cuomo G, Tirindelli M, Allsop W (2007) Wave in deck loads on exposed jetties. Coast Eng 54(9):657–679CrossRefGoogle Scholar
  12. 12.Azadbakht M, Yim SC (2015) Simulation and estimation of tsunami loads on bridge superstructures. J Waterw Port Coast Ocean Eng 141(2):20CrossRefGoogle Scholar
  13. 13.Wiebe DM, Park H, Cox DT (2014) Application of the Goda pressure formulae for horizontal wave loads on elevated structures. KSCE J. Civ. EngGoogle Scholar
  14. 14.Hayatdavoodi M, Seiffert B, Ertekin RC (2015) Experiments and calculations of cnoidal wave loads on a flat plate in shallow-water. J. Ocean Eng. Mar. Energy 1(1):77–99CrossRefGoogle Scholar
  15. 15.Wei Z, Dalrymple RA (2016) Numerical study on mitigating tsunami force on bridges by an SPH model. J. Ocean. Eng. Mar. Energy 2(365):365–380CrossRefGoogle Scholar
  16. 16.Bradner, C., Schumacher, T., Cox, D., Higgins, C.: Experimental Setup for a largescale bridge superstructure model subjected to waves. J. Waterw. Port, Coast. Ocean Eng. 137 (1), 3–11 (2011)Google Scholar
  17. 17.Xiao H, Huang W (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Eng 35(1):106–116CrossRefGoogle Scholar
  18. 18.Do T, van de Lindt JW, Cox D (2016) Performance-based design methodology for inundated elevated coastal structures subjected to wave load. Eng Struct 117:250–262CrossRefGoogle Scholar
  19. 19.Lara JL, Garcia N, Losada IJ (2006) RANS modeling applied to random wave interaction with submerged permeable structures. Coastal Eng 53(5–6):395–417CrossRefGoogle Scholar
  20. 20.Meringolo DD, Aristodemo F, Veltri P (2015) SPH numerical modeling of wave–perforated breakwater interaction. Coast Eng 101:48–68CrossRefGoogle Scholar
  21. 21.Al-Banaa K, Liu PLF (2007) Numerical study on the hydraulic performance of submerged porous breakwater under solitary wave attack. J Coast Res 50:201–205Google Scholar
  22. 22.Gomes, A., Pinho, J.L.S., Valente, T., Antunes do Carmo, J.S., V. Hegde, A.: Performance Assessment of a Semi-Circular Breakwater through CFD Modelling. J. Mar. Sci. Eng. 2020, 8, 226 (2020).Google Scholar
  23. 23.Flow Sciences Inc. Flow-3D User Manual, release 9.4, Santa Fe, NM, USA (2009).Google Scholar
  24. 24.Smith, H., Foster., D.L.: Modeling of flow around a cylinder over a scoured bed. J. Waterw., Port, Coastal, Ocean Eng.131(1),14–24 (2005).Google Scholar
  25. 25.Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540CrossRefGoogle Scholar
  26. 26.Jin J, Meng B (2011) Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng 38(17–18):2185–2200CrossRefGoogle Scholar
  27. 27.Dentale F, Donnarumma G, Pugliese Carratelli E (2014b) Numerical wave interaction with tetrapods breakwater. Int. J. Nav. Arch. Ocean 6:13Google Scholar
  28. 28.Carratelli EP, Viccione G, Bovolin V (2016) Free surface flow impact on a vertical wall: a numerical assessment. Theor. Comput. Fluid Mech. 30(5):403–414CrossRefGoogle Scholar
  29. 29.Cavallaro, L., Dentale, F., Donnarumma, G., Foti, E., Musumeci, R.E., Pugliese Carratelli, E.: Rubble mound breakwater overtopping: estimation of the reliability of a 3D numerical simulation, In: ICCE 2012, Interntional Conference on Coastal Engineering, Santander, Spain (2012).Google Scholar
  30. 30.Vanneste, D., Suzuki, T., Altomare, C.: Comparison of numerical models for wave overtoping and impact on storm return walls. In: ICCE 2014, International Conference on Coastal Engineering, Seoul, Korea (2014).Google Scholar
  31. 31.Park H, Tomiczek T, Cox DT, van de Lindt JW, Lomonaco P (2017) Experimental modeling of horizontal and vertical wave forces on an elevated coastal structure. Coast Eng 128:58–74CrossRefGoogle Scholar
  32. 32.Isfahani AHG, Brethour JM (2009) On the Implementation of Two-Equation Turbulence Models in FLOW-3D; FSI-09-TN86; Flow Science: Santa Fe. NM, USAGoogle Scholar
  33. 33.Novais-Barbosa J (1985) Mecânica dos Fluidos e Hidráulica Geral Vol 1 e II Porto Editora, PortoGoogle Scholar
  34. 34.Le Méhauté B (1976) An Introduction to Hydrodynamics and Water Waves. Springer, Berlin/Heidelberg, GermanyCrossRefGoogle Scholar
Figure 1- The experimental model [17]

와류형 우수 저류지의 수치 모델링에 대한 난류 슈미트 수의 영향 조사

Investigation of the Turbulent Schmidt Number Effects On Numerical Modelling Of Vortex-Type Stormwater Retention Ponds

S. M. Yamini1; H. Shamloo2; S. H. Ghafari3
1M.Eng., Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran.
smyamini@alumni.kntu.ac.ir
2Associate Professor, Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran.
hshamloo@kntu.ac.ir
3Ph.D., Dep. of Civil Engineering Univ. of Tehran, Enqelab St., Tehran, Iran. sarvenazghafari@ut.ac.ir

Abstract

정확하고 신뢰할 수 있는 CFD 모델링 결과를 얻는 것은 이러한 시뮬레이션에서 입력의 중요성 때문에 종종 정밀 조사의 대상입니다.

난류 모델링이 RANS(Reynolds-Averaged Navier-Stokes) 방정식을 기반으로 하는 경우 난류 스칼라 전송을 추정하려면 난류 흐름에서 질량 1에 대한 운동량 확산의 비율로 정의되는 난류 슈미트 수(Sct)의 정의가 필요합니다.

그러나 이 매개변수는 난류 흐름의 속성이므로 보편적인 값이 허용되지 않았습니다. 우수 저류지의 수치 연구에서 적절한 Sct를 설정하는 실제 역할은 수력 효율의 평가가 추적자 테스트의 출력 질량 농도를 기반으로 하기 때문에 가장 중요합니다.

본 연구에서는 FLOW-3D를 사용하여 와류형 우수 저류지의 여러 수치 시뮬레이션을 체계적으로 수행했습니다. 다양한 난류 슈미트 수의 범위는 메쉬 감도를 조사하기 위해 다른 수의 계산 셀에 의해 수행된 수치 시뮬레이션에 도입되었습니다.

또한 사용자 정의 또는 자동 계산 값으로 최대 난류 혼합 길이의 영향을 평가했습니다. 이 연구의 결과는 실험 결과와 밀접한 일치를 제공하는 Sct= 0.625와 함께 수리학적 직경의 7%와 동일한 최대 난류 혼합 길이의 일정한 값을 갖는 확립된 수치 모델입니다.

특히 수치적 무차원 RDT 곡선의 피크 값은 극적으로 감소하여 실험 결과와 거의 일치했습니다. 이것은 FLOW-3D가 난류 유동의 와류형 물리학에서 질량 확산도를 적절하게 예측하는 상당한 능력을 가지고 있다는 결론을 내립니다.

– Achieving accurate and reliable CFD modelling results often is the subject of scrutiny because of the importance of the inputs in those simulations. If turbulence modelling is based on Reynolds-Averaged Navier-Stokes (RANS) equations, estimating the turbulent scalar transport requires the definition of the turbulent Schmidt number (Sct), defined as the ratio of momentum diffusivity to mass one in a turbulent flow. However, no universal value has been accepted for this parameter as it is a property of turbulent flows.

The practical role of establishing a suitable Sct in numerical studies of stormwater retention ponds is of the utmost importance because the assessment of the hydraulic efficiency of them is based on output mass concentration of tracer tests. In this study, several numerical simulations of a vortex-type stormwater retention pond were systematically carried out using FLOW-3D. A range of various turbulent Schmidt numbers were introduced in numerical simulations performed by different number of computational cells to investigate mesh sensitivity.

Moreover, the effects of maximum turbulent mixing length as a user-defined or automatically computed value were assessed. The outcome of this study is an established numerical model with a constant value of maximum turbulent mixing length equal to 7% of the hydraulic diameter along with Sct= 0.625 which provides a close agreement with experimental results.

Noticeably, the peak values of numerical dimensionless RDT curves are dramatically decreased, resulted in a close match with experimental results. This concludes that FLOW-3D has a considerable ability to appropriately predict mass diffusivity in vortex-type physics of turbulent flows.

Keywords:

turbulent Schmidt number – maximum turbulent mixing length – CFD – mesh sensitivity – vortex-type
stormwater retention pond – environmental fluid mechanics

Figure 1- The experimental model [17]
Figure 1- The experimental model [17]
Figure 2- Schematic of boundary conditions in the numerical model
Figure 2- Schematic of boundary conditions in the numerical model
Figure 3- Positioning of mesh blocks
Figure 3- Positioning of mesh blocks

References

[1] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser, “On the Values for the Turbulent Schmidt Number
in Environmental Flows,” Fluids, vol. 2, p. 17, 2017.
[2] Å. Adamsson, L. Bergdahl, and S. Lyngfelt, “Measurement and three-dimensional simulation of flow in a rectangular
detention tank,” Urban Water Journal, vol. 2, no. 4, pp. 277-287, 2005/12/01 2005, doi: 10.1080/15730620500386545.
[3] C. Gualtieri, “Numerical simulation of flow and tracer transport in a disinfection contact tank,” 2006.
[4] S. Khan, B. Melville, and A. Shamseldin, Modeling the Layouts of Stormwater Retention Ponds using Residence Time.
2009, pp. 77-83.
[5] F. Martínez-Solano, P. L. I. Rey, C. Gualtieri, and P. López-Jiménez, “Modelling flow and concentration field in
rectangular water tanks,” 2010.
[6] W. B. Rauen, A. Angeloudis, and R. A. Falconer, “Appraisal of chlorine contact tank modelling practices,” Water
Research, vol. 46, no. 18, pp. 5834-5847, 2012/11/15/ 2012, doi: https://doi.org/10.1016/j.watres.2012.08.013.

[7] J. Zhang, A. Tejada-Martínez, and Q. Zhang, “Evaluation of LES and RANS for Determining Hydraulic Performance
of Disinfection Systems for Water Treatment,” Journal of Fluids Engineering, vol. 136, 05/15 2014, doi:
10.1115/1.4027652.
[8] J. Zhang, A. E. Tejada-Martínez, and Q. Zhang, “Developments in computational fluid dynamics-based modeling for
disinfection technologies over the last two decades: A review,” Environmental Modelling & Software, vol. 58, pp. 71-
85, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.envsoft.2014.04.003.
[9] C. Gualtieri and F. Salzano, “DIscussion on “The effect of baffle spacing on hydrodynamics and solute transport in
serpentine contact tanks”,” Journal of Hydraulic Research, vol. 52, pp. 152-154, 02/28 2014, doi:
10.1080/00221686.2013.877528.
[10] A. Angeloudis, T. Stoesser, R. A. Falconer, and D. Kim, “Flow, transport and disinfection performance in small- and
full-scale contact tanks,” Journal of Hydro-environment Research, vol. 9, no. 1, pp. 15-27, 2015/03/01/ 2015, doi:
https://doi.org/10.1016/j.jher.2014.07.001.
[11] A. Angeloudis, T. Stoesser, C. Gualtieri, and R. A. Falconer, “Contact Tank Design Impact on Process Performance,”
Environmental Modeling & Assessment, vol. 21, no. 5, pp. 563-576, 2016/10/01 2016, doi: 10.1007/s10666-016-9502-
x.
[12] D. Valero and D. B. Bung, “Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in
crossflow,” Environmental Modelling & Software, vol. 82, pp. 218-228, 2016/08/01/ 2016, doi:
https://doi.org/10.1016/j.envsoft.2016.04.030.
[13] F. Sonnenwald, I. Guymer, and V. Stovin, “Computational fluid dynamics modelling of residence times in vegetated
stormwater ponds,” Proceedings of the Institution of Civil Engineers – Water Management, vol. 171, pp. 1-11, 11/07
2017, doi: 10.1680/jwama.16.00117.
[14] F. Sonnenwald, I. Guymer, and V. Stovin, “A CFD-Based Mixing Model for Vegetated Flows,” Water Resources
Research, vol. 55, no. 3, pp. 2322-2347, 2019, doi: https://doi.org/10.1029/2018WR023628.
[15] S. B. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000.
[16] R. Rossi and G. Iaccarino, “Numerical simulation of scalar dispersion downstream of a square obstacle using gradienttransport type models,” Atmospheric Environment, vol. 43, no. 16, pp. 2518-2531, 2009/05/01/ 2009, doi:
https://doi.org/10.1016/j.atmosenv.2009.02.044.
[17] R. Chowdhury, M. Ahadi, K. A. Mazurek, G. Putz, D. Bergstrom, and C. Albers, “Physical Scale and Computational
Modeling in the Development of a Vortex-Type Stormwater Retention Pond,” in World Environmental and Water
Resources Congress 2016, 2016, pp. 388-397.
[18] V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” Journal
of Scientific Computing, vol. 7, no. 1, pp. 35-61, 1992/03/01 1992, doi: 10.1007/BF01060210.
[19] Flow Science, Inc., FLOW-3D User manual. Santa Fe, NM, USA. (2015).
[20] M. M. Bishop, J. M. Morgan, B. Cornwell, and D. K. Jamison, “Improving the Disinfection Detention Time of a Water
Plant Clearwell,” Journal AWWA, vol. 85, no. 3, pp. 68-75, 1993, doi: https://doi.org/10.1002/j.1551-
8833.1993.tb05958.x.
[21] F. L. Hart, “Improved Hydraulic Performance of Chlorine Contact Chambers.,” Jounal of Water Pollution Control
Federation, vol. 51(12), pp. 2868–2875, 1979.

Hydraulic Analysis of Submerged Spillway Flows and Performance Evaluation of Chute Aerator Using CFD Modeling: A Case Study of Mangla Dam Spillway

CFD 모델링을 이용한 침수 배수로 흐름의 수리학적 해석 및 슈트 폭기장치 성능 평가: Mangla Dam 배수로 사례 연구

Hydraulic Analysis of Submerged Spillway Flows and Performance Evaluation of Chute Aerator Using CFD Modeling: A Case Study of Mangla Dam Spillway

Muhammad Kaleem SarwarZohaib NisarGhulam NabiFaraz ul HaqIjaz AhmadMuhammad Masood & Noor Muhammad Khan 

Abstract

대용량 배출구가 있는 수중 여수로는 일반적으로 홍수 처리 및 침전물 세척의 이중 기능을 수행하기 위해 댐 정상 아래에 제공됩니다. 이 방수로를 통과하는 홍수 물은 난류 거동을 나타냅니다. 

게다가 이러한 난류의 수력학적 분석은 어려운 작업입니다. 

따라서 본 연구는 파키스탄 Mangla Dam에 건설된 수중 여수로의 수리학적 거동을 수치해석을 통해 조사하는 것을 목적으로 한다. 또한 다양한 작동 조건에서 화기의 유압 성능을 평가했습니다. 

Mangla Spillway의 흐름을 수치적으로 모델링하는 데 전산 유체 역학 코드 FLOW 3D가 사용되었습니다. 레이놀즈 평균 Navier-Stokes 방정식은 난류 흐름을 수치적으로 모델링하기 위해 FLOW 3D에서 사용됩니다. 

연구 결과에 따르면 개발된 모델은 최대 6%의 허용 오차로 흐름 매개변수를 계산하므로 수중 여수로 흐름을 시뮬레이션할 수 있습니다. 

또한, 여수로 슈트 베드 주변 모델에 의해 계산된 공기 농도는 폭기 장치에 램프를 설치한 후 6% 이상으로 상승한 3%로 개발된 모델도 침수형 폭기 장치의 성능을 평가할 수 있음을 보여주었습니다.

Submerged spillways with large capacity outlets are generally provided below the dam crest to perform the dual functions of flood disposal and sediment flushing. Flood water passing through these spillways exhibits turbulent behavior. Moreover; hydraulic analysis of such turbulent flows is a challenging task. Therefore, the present study aims to use numerical simulations to examine the hydraulic behavior of submerged spillways constructed at Mangla Dam, Pakistan. Besides, the hydraulic performance of aerator was also evaluated at different operating conditions. Computational fluid dynamics code FLOW 3D was used to numerically model the flows of Mangla Spillway. Reynolds-averaged Navier–Stokes equations are used in FLOW 3D to numerically model the turbulent flows. The study results indicated that the developed model can simulate the submerged spillway flows as it computed the flow parameters with an acceptable error of up to 6%. Moreover, air concentration computed by model near spillway chute bed was 3% which raised to more than 6% after the installation of ramp on aerator which showed that developed model is also capable of evaluating the performance of submerged spillway aerator.

Keywords

  • Aerator
  • CFD
  • FLOW 3D
  • Froude number
  • Submerged spillway
  • Fig. 1extended data figure 1Fig. 2extended data figure 2Fig. 3extended data figure 3Fig. 4extended data figure 4Fig. 5extended data figure 5Fig. 6extended data figure 6Fig. 7extended data figure 7Fig. 8

References

  1. Aydin MC (2018) Aeration efficiency of bottom-inlet aerators for spillways. ISH J Hydraul Eng 24(3):330–336. https://doi.org/10.1080/09715010.2017.1381576Article Google Scholar 
  2. Bennett P, Chesterton J, Neeve D, Ucuncu M, Wearing M, Jones SEL (2018) Use of CFD for modelling spillway performance. Dams Reserv 28(2):62–72. https://doi.org/10.1680/jdare.18.00001Article Google Scholar 
  3. Bhosekar VV, Jothiprakash V, Deolalikar PB (2012) Orifice Spillway Aerator: Hydraulic Design. J Hydraul Eng 138(6):563–572. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000548Article Google Scholar 
  4. Chanel PG, Doering JC (2008) Assessment of spillway modeling using computational fluid dynamics. Can J Civ Eng 35(12):1481–1485. https://doi.org/10.1139/L08-094Article Google Scholar 
  5. Flow Sciences, Inc. (2013) FLOW 3D user manual version 10.1.
  6. Gadge PP, Jothiprakash V, Bhosekar VV (2018) Hydraulic investigation and design of roof profile of an orifice spillway using experimental and numerical models. J Appl Water Eng Res 6(2):85–94. https://doi.org/10.1080/23249676.2016.1214627Article Google Scholar 
  7. Gadge PP, Jothiprakash V, Bhosekar VV (2019) Hydraulic design considerations for orifice spillways. ISH J Hydraul Eng 25(1):12–18. https://doi.org/10.1080/09715010.2018.1423579Article Google Scholar 
  8. Gu S, Ren L, Wang X, Xie H, Huang Y, Wei J, Shao S (2017) SPHysics simulation of experimental spillway hydraulics. Water 9(12):973. https://doi.org/10.3390/w9120973Article Google Scholar 
  9. Gurav NV (2015) Physical and Numerical Modeling of an Orifice Spillway. Int J Mech Prod Eng 3(10):71–75Google Scholar 
  10. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5Article MATH Google Scholar 
  11. Ho DKH, Riddette KM (2010) Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia. Aust J Civ Eng 6(1):81–104. https://doi.org/10.1080/14488353.2010.11463946Article Google Scholar 
  12. Jothiprakash V, Bhosekar VV, Deolalikar PB (2015) Flow characteristics of orifice spillway aerator: numerical model studies. ISH J Hydraul Eng 21(2):216–230. https://doi.org/10.1080/09715010.2015.1007093Article Google Scholar 
  13. Kumcu SY (2017) Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE J Civ Eng 21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-zArticle Google Scholar 
  14. Lian J, Qi C, Liu F, Gou W, Pan S, Ouyang Q (2017) Air entrainment and air demand in the spillway tunnel at the Jinping-I Dam. Appl Sci 7(9):930. https://doi.org/10.3390/app7090930Article Google Scholar 
  15. Luo M, Khayyer A, Lin P (2021) Particle methods in ocean and coastal engineering. Appl Ocean Res 114:102734Article Google Scholar 
  16. Moreira A, Leroy A, Violeau D, Taveira-Pinto F (2019) Dam spillways and the SPH method: two case studies in Portugal. J Appl Water Eng Res 7(3):228–245. https://doi.org/10.1080/23249676.2019.1611496Article Google Scholar 
  17. Moreira AB, Leroy A, Violeau D, Taveira-Pinto FA (2020) Overview of large-scale smoothed particle hydrodynamics modeling of dam hydraulics. J Hydraul Eng 146(2):03119001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001658Article Google Scholar 
  18. O’Connor J, Rogers BD (2021) A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2021.103312Article Google Scholar 
  19. Sarwar MK, Bhatti MT, Khan NM (2016) Evaluation of air vents and ramp angles on the performance of orifice spillway aerators. J Eng Appl Sci 35(1):85–93Google Scholar 
  20. Sarwar MK, Ahmad I, Chaudary ZA, Mughal H-U-R (2020) Experimental and numerical studies on orifice spillway aerator of Bunji Dam. J Chin Inst Eng 43(1):27–36. https://doi.org/10.1080/02533839.2019.1676652Article Google Scholar 
  21. Saunders K, Prakash M, Cleary PW, Cordell M (2014) Application of smoothed particle hydrodynamics for modelling gated spillway flows. Appl Math Model 38(17–18):4308–4322. https://doi.org/10.1016/j.apm.2014.05.008Article MATH Google Scholar 
  22. Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  23. Shadloo MS, Oger G, le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput Fluids. https://doi.org/10.1016/j.compfluid.2016.05.029MathSciNet Article MATH Google Scholar 
  24. Shao Z, Jahangir Z, MuhammadYasir Q, Atta-ur-Rahman, Mahmood S (2020) Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 12(11):3249. https://doi.org/10.3390/w12113249Article Google Scholar 
  25. Shimizu Y, Khayyer A, Gotoh H, Nagashima K (2020) An enhanced multiphase ISPH-based method for accurate modeling of oil spill. Coast Eng J 62(4):625–646. https://doi.org/10.1080/21664250.2020.1815362Article Google Scholar 
  26. Teng P, Yang J (2016) CFD modeling of two-phase flow of a spillway chute aerator of large width. J Appl Water Eng Res 4(2):163–177. https://doi.org/10.1080/23249676.2015.1124030Article Google Scholar 
  27. Teng P, Yang J, Pfister M (2016) Studies of two-phase flow at a chute aerator with experiments and CFD modelling. Model Simul Eng 2016:1–11. https://doi.org/10.1155/2016/4729128Article Google Scholar 
  28. Wapda (2004) Mangla dam raising project-sectional physical model study report of main spillway: Wapda model study cell, Gujrawala, Pakistan
  29. Yang J, Andreasson P, Teng P, Xie Q (2019) The past and present of discharge capacity modeling for spillways—a Swedish perspective. Fluids 4(1):10. https://doi.org/10.3390/fluids4010010Article Google Scholar 
  30. Yang J, Teng P, Xie Q, Li S (2020) Understanding water flows and air venting features of spillway—a case study. Water 12(8):2106. https://doi.org/10.3390/w12082106Article Google Scholar 
  31. Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301Article Google Scholar 
  32. Zhan X, Qin H, Liu Y, Yao L, Xie W, Liu G, Zhou J (2020) Variational Bayesian neural network for ensemble flood forecasting. Water 12(10):2740. https://doi.org/10.3390/w12102740Article Google Scholar 

Download references

그림 3. 수중 4차 횡파 영향

Validation of Sloshing Simulations in Narrow Tanks

This case study was contributed by Peter Arnold, Minerva Dynamics.

이 작업의 목적은 FLOW-3D  를 검증하는 것입니다. 밀폐된 좁은 스팬 직사각형 탱크의 출렁거림 문제에 대비하여 탱크의 내부 파동 공명 주기에 가깝거나 같은 주기로 롤 운동을 하여 측면 및 지붕 파동 충격 이벤트가 발생합니다.

탱크는 물이나 해바라기 기름으로 두 가지 다른 수준으로 채워졌고 위의 공간은 공기로 채워졌습니다. 압력 센서는 여러 장소의 벽에 설치되었으며 처음 4개의 출렁이는 기간 동안 기록된 롤 각도와 시간 이력이 있습니다. 오일을 사용하는 경우의 흐름은 레이놀즈 수가 1748인 층류인 반면, 물로 채워진 경우의 흐름은 레이놀즈 수가 97546인 난류입니다. 

CFD 시뮬레이션은 탱크의 고조파 롤 운동을 복제하기 위해 본체력 방법을 사용했으며, 난류 및 공기 압축성을 설명하기 위해 다른 모델링 가정과 함께 그리드 의존성 테스트를 수행했습니다.

The objective of this work is to validate FLOW-3D against a sloshing problem in a sealed narrow span rectangular tank, subjected to roll motion at periods close to or equal to the tank’s internal wave resonance period, such that side and roof wave impact events occur. The tank was filled to two different levels with water or sunflower oil, with the space above filled by air. Pressure sensors were installed in the walls at several places and their time histories, along with the roll angle, recorded for the first four sloshing periods. For the cases using oil, the flow is laminar with a Reynolds number of 1748, while for the cases filled with water the flow is turbulent with a Reynolds number of 97546. The CFD simulations used the body force method to replicate the harmonic roll motion of the tank, while grid dependence tests were performed along with different modelling assumptions to account for turbulence and air compressibility.

Experimental Problem Setup

원래 실험은 Souto-Iglesias 및 Botia-Vera[1]에 의해 수행되었으며 모든 실험 데이터 파일은 문제 설명, 비디오 및 불확실성 분석과 함께 사용할 수 있습니다. 그림 1에 표시된 형상은 길이 900mm, 높이 508mm, 스팬 62mm의 직사각형 탱크로 구성되어 있으며 물이나 해바라기 기름으로 93mm 또는 355.3mm로 채워져 있으므로 4가지 경우가 고려됩니다. 탱크 벽과 같은 높이로 설치된 압력 센서의 위치도 표시됩니다. 탱크 회전 중심은 수평에 대한 회전 각도와 함께 그림 1에 나와 있습니다. 각 실험 실행은 반복성을 평가할 수 있도록 100번 수행되었습니다.

The original experiment was performed by Souto-Iglesias and Botia-Vera [1] and all experimental data files are available along with problem description, videos and an uncertainty analysis. The geometry shown in Fig. 1 consists of a rectangular tank of 900mm length, 508mm height and 62mm span, filled to either 93mm or 355.3 mm with either water or sunflower oil, hence four cases are considered. The locations of the pressure sensors that were installed flush with the tank walls are also shown. The tank rotation center is shown in Fig. 1, along with the rotation angle relative to the horizontal. Each of the experimental runs was performed 100 times to enable their repeatability to be assessed.

Tank dimensions and locations of pressure sensors
Figure 1. Tank dimensions and locations of pressure sensors

Numerical Simulation

문제는 FLOW-3D 내에서 비관성 기준 좌표계 모델을 사용하여 비교적 간단하게 설정할 수 있으며  , 이는 로컬 기준 좌표계의 가속도에 따라 유체에 체력 을 적용합니다. Z축 회전 속도는 탱크의 롤 운동을 시뮬레이션하기 위한 주기 함수로 정의되었으며 음의 수직 방향으로 작용하는 일정한 중력이 가해졌습니다.

메쉬 미세화, 운동량 이류에 대한 수치 근사 순서, 층류 대 난류 모델 및 탱크 내 공기에 대한 세 가지 다른 처리(즉, 일정 압력, 압축성 기체 및 비압축성 기체)와 같은 것을 조사하기 위해 여러 시뮬레이션을 수행했습니다.

93mm 깊이로 채워진 모든 케이스에 대해 압력은 압력 센서 P1에서만 실험 값과 비교되었으며, 355.3mm 깊이로 채워진 모든 케이스에서는 P3 센서의 데이터만 비교되었습니다.

The problem was relatively simple to set up using the non-inertial reference frame model within FLOW-3D, which applies a body force to the fluid depending on the acceleration of the local reference frame. The Z axis rotational velocity was defined as a periodic function to simulate a roll motion of the tank, and a constant gravity force acting in the negative vertical direction was applied.

Multiple simulations were performed to investigate such things as mesh refinement, the numerical approximation order for momentum advection, laminar versus turbulent models and three different treatments for the air in the tank (i.e., constant pressure, compressible gas and incompressible gas).

For all 93mm depth-filled cases, the pressure was compared to the experimental values at pressure sensor P1 only, while for all 355.3mm depth-filled cases, only data at the P3 sensor was compared.

Results

P1에서 측정된 측면 워터 슬로싱에 대한 메쉬 해상도의 영향은 그림 2에서 볼 수 있습니다. 피크 값 예측 측면에서 특별한 편향을 보이지 않습니다. 모든 측면 사례에서 초기 피크 직후의 압력은 시뮬레이션에서 일관되게 과대 평가되었습니다. 모든 메쉬는 피크의 타이밍 측면에서 우수한 일치를 보입니다. 100회 실행에서 보고된 실험 시간 기록은 평균 값에 가장 가까운 최고 압력을 가진 기록입니다.

The effect of mesh resolution on lateral water sloshing measured at P1 is seen in Fig. 2. It shows no particular bias in terms of the prediction of peak values. In all the Lateral cases, the pressures immediately after the initial peaks are consistently over estimated in the simulations. All meshes have excellent agreement in terms of the timing of the peaks. The experimental time histories reported from the 100 runs made are those with peak pressures closest to the average values.

Lateral water case
Figure 2. Tank dimensions and locations of pressure sensors

실험 결과의 반복성은 Souto-Iglesias & Elkin Botia-Vera[1]에 의해 각 테스트를 100번 실행하고 처음 4개의 피크 압력의 평균 및 표준 편차를 측정하여 평가했습니다. CFD 실행이 다른 실험 실행으로 간주되는 경우 오류 막대 내에 있을 확률이 95%입니다. 그러나 CFD 결과의 16개 피크 압력 중 9개만 실험 결과의 2 표준 편차 내에 있으므로 CFD 모델이 실험을 대표하지 않거나 피크 압력이 정규 분포를 따르지 않는다는 결론을 내려야 합니다.

어쨌든 표준 편차는 피크 자체에 비해 상당히 크며, 수성 케이스와 측면 오일의 비율이 가장 작은 피크 값에 대한 표준 편차의 비율이 가장 큰 것으로 나타났습니다. 이러한 결과는 그림 1과 2에서 볼 수 있는 벽 충격 역학의 복잡성을 고려할 때 그리 놀라운 일이 아닙니다. 3,4.

The repeatability of the experimental results was assessed by Souto-Iglesias & Elkin Botia-Vera [1] running each test 100 times and measuring the average and standard deviation of the first four peak pressures. If a CFD run is considered to be another experimental run there is a 95% chance it will lie within the error bars. However, only nine of the 16 peak pressures from the CFD results fall within two standard deviations of the experimental results, so we must conclude that either the CFD model is not representative of the experiment or that the peak pressures are not normally distributed.

In any event, the standard deviations are quite large compared to the peaks themselves, with the largest ratio of standard deviation to peak values occurring for the water-based cases and the lateral oil having the smallest ratio. These results are perhaps not too surprising when one considers the complexity of the wall impact dynamics as seen in Figs. 3,4.

Lateral Wave Impact in Water
Figure 3. 4th Lateral Wave Impact in Water
Wave Impact of Water on Roof
Figure 4. 4th Wave Impact of Water on Roof

Conclusions

좁은 탱크 슬로싱 문제의 네 가지 구성은 자유 표면 흐름을 위해 설계된 상용 CFD 코드를 사용하여 수치적으로 시뮬레이션되었습니다. 대략 2 X 10 3  및 1 X 10 5 의 Reynolds 수에 해당하는 두 가지 다른 유체  와 두 가지 유체 깊이가 네 가지 경우를 정의하는 데 사용되었습니다. 4가지 경우 모두에 대해 메쉬 셀 크기 독립성 테스트를 수행했지만 메쉬 해상도가 증가함에 따라 실험 결과에 대해 약한 수렴만 발견되었습니다. 조사는 또한 두 가지 다른 운동량 이류 수치 차분 계획을 테스트했으며 두 번째 방법을 사용하여 더 가까운 일치를 발견했습니다 1차 체계를 사용하는 것보다 차수 단조성 보존 체계. 기본 층류 흐름을 포함한 세 가지 난류 모델이 테스트되었지만 더 낮은 계산 비용으로 인해 층류 이외의 모델에 대한 선호도가 발견되지 않았습니다. 실험 데이터와 공기 감소 일치의 압축성을 포함하여 그 이유는 불분명합니다.

실험 압력 프로브 시간 이력 데이터 세트에는 100회 반복 테스트에서 파생된 각 압력 피크에 대해 100개의 값이 포함되어 있으므로 CFD 시뮬레이션과의 일치의 통계적 유의성을 조사할 수 있었습니다. 수치 시뮬레이션과 실험 모두 출렁이는 파동 충격에 해당하는 매우 가파른 압력 펄스를 발생시켰고 실험 결과는 피크 값에서 높은 정도의 자연적 변동성을 갖는 것으로 나타났습니다. CFD 시뮬레이션의 감도 테스트(예: 약간 다른 초기 시작 조건 사용)는 공식적으로 수행되지 않았지만 수치 솔루션은 또한 다른 메쉬, 차분 체계 및 난류 모델,

모든 경우에 압력 피크가 발생하는 수치해의 타이밍은 매우 정확함을 알 수 있었다. 그러나 가장 난이도가 낮은 Lateral Oil의 경우에도 압력 피크와 바로 뒤따르는 압력 값이 과대 평가되어 수치 모델링의 단점이 나타났습니다. 실험적 피크 압력 변동성을 고려할 때 CFD 생성 값은 CFD 솔루션이 통계적 유의성을 나타내기 위해 필요한 15개 이상이 아니라 16개 피크 중 9개에서 2개의 표준편차 한계 내에 떨어졌습니다. 실험을 대표했다. 이것은 피크가 정규 분포를 따르지 않거나 CFD 모델이 피크를 예측하는 데 어떤 식으로든 결함이 있음을 나타냅니다.

Four configurations of a narrow tank sloshing problem were numerically simulated using a commercial CFD code designed for free surface flow. Two different fluids corresponding to Reynolds numbers of approximately 2 X 103 and 1 X 105 and two fluid depths were used to define the four cases. Mesh cell size independence tests were conducted for all four cases, but only a weak convergence towards the experimental results with increasing mesh resolution was found. The investigation also tested two different momentum advection numerical differencing schemes and found closer agreement using the 2nd order monotonicity preserving scheme than by using a first order scheme. Three turbulence models, including the default laminar flow, were tested but no preference was found for any model other than the laminar by virtue of its lower computational cost. Including the compressibility of the air-reduced agreement with the experimental data, the reasons for this are unclear.

The experimental pressure probe time history data sets included 100 values for each of the pressure peaks derived from 100 repeat tests, and thus we were able to examine the statistical significance of the agreement with the CFD simulations. Both the numerical simulations and the experiments gave rise to very steep pressure pulses corresponding to the sloshing wave impacts, and the experimental results were found to have a high degree of natural variability in the peak values. Although sensitivity tests of the CFD simulations (using, for example, slightly different initial starting conditions) were not formally conducted, the numerical solutions also showed a high degree of variability in the pressure peak magnitudes resulting from the use of different meshes, differencing schemes and turbulence models, which could be considered to show that the numerical solution also had a high degree of natural variability.

In all cases, the numerical solutions’ timing of the occurrence of the pressure peaks were found to be very accurate. However, even for the least challenging Lateral Oil case, the pressure peaks and the immediately following pressure values were overestimated, which indicated a shortcoming in the numerical modelling. When the experimental peak pressure variability was taken into account, the CFD-generated values fell inside the two Standard Deviation margin in nine of the 16 peaks rather than the 15 or more that would be required to show statistical significance in the sense that the CFD solution was representative of the experiment. This indicates that either the peaks are not normally distributed and/or the CFD model is in some way deficient at predicting them. Further work is required to establish how the peak pressures are distributed and/or to establish the physical reasons why the CFD model is overestimating the pressure peaks for even the least challenging Lateral Oil configuration.

References

  1. Spheric Benchmark Test Case, Sloshing Wave Impact Problem, Antonio Souto-Iglesias & Elkin Botia-Vera, https://wiki.manchester.ac.uk/spheric/index.php/Test10
  2. Peregrine DH (1993). Water-wave impact on walls. Annual Review of Fluid Mechanics. Vol 35, pp 23-43.

Editor’s Note

The complete document from which this note was extracted and the related data and input files are available on our Users Site. Readers are encouraged to read the original validation to get a full appreciation of the detail in this work investigating comparisons between simulation and experimental data. This study is especially noteworthy since it deals with highly non-linear sloshing of fluids interacting with the boundaries of a confining tank.

With regard to the author’s conclusions, it should be mentioned that the over prediction of fluid impact pressures in simulations could be the result of not allowing for sufficient compressibility effects in the liquids. For instance, in Fig. 3, it appears that there has been some air entrained in the liquid near the side wall. Also, negative pressures (i.e., below atmospheric) recorded experimentally might result from liquid drops remaining on the pressure sensors after the main body of liquid has drained away. Such details, which may be hard to quantify, only emphasize the difficulties involved in undertaking detailed validation studies. The author is commended for his excellent work.

Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

Spillway Hydraulics Assessments

Spillway Hydraulics Assessments

이 기사는 BC Hydro의 Hydrotechnical부서의 전문 엔지니어인 M.A.Sc., P.Eng의 FaizalYusuf에 의해 기고되었다.

브리티시 콜롬비아의 공공 전력 회사인 BC Hydro는 FLOW-3D를 사용하여 현존하는 여러 댐의 복잡한 유압 문제를 조사하고 제안된 시설의 설계와 최적화를 지원합니다. 본 기사에서는 FLOW-3D를 다양한 유형의 드릴에 적용하는 방법과 신뢰할 수 있는 프로토 타입 또는 수치 모델 보정용 물리적 유압 모델 데이터의 중요성을 강조하는 세가지 사례가 제시됩니다.

W.A.C. Bennett Dam

Shock Waves in Spillway Chute

W.C. Bennett 댐에서는 1960년대 물리적 유압 모델과 프로토 타입 사이에 있었던 레일 궤도의 차이로 인해 충격파 형성에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 이 자료는 실제 모델 테스트 결과의 슈트 용량을 제공합니다. 콘크리트 라인 스풀 레이 슈트의 충격 파장의 크기는 헤드 워크에 있는 세 개의 방사형 게이트의 다운 스트림이 44% 감소되는데 크게 영향을 받습니다. 방사형 관문의 방사형 개구부의 충격파는 지역적으로 더 높은 수위로 이어져 특정 과거 작업에서 슈트 월의 과다 주입을 야기합니다.

2012년에 최대 2,865 m3/s 의 배출에 대한 프로토 타입 유출 테스트가 실행되어 슈트 벽, 슈트 내 물 표면에 대한 3D레이저 스캔 및 FLOW-3D model 보정을 위한 흐름 패턴. 수치 모델과 현장 관찰 간에, 특히 슈트 월의 첫번째 충격파의 위치와 높이 사이에 훌륭한 일치가 이루어졌습니다.

Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway
Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway

보정된 FLOW-3D모델은 기존에 규정된 바와 같이 3개의 방사형 관문이 모두 열리는 한, 유출되지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다. 바깥쪽 문을 이용한 허가 명령은 안쪽 문보다 더 많이 열립니다.
CFD모델 또한 spillway 슈트의 콘크리트 손상에 대한 통찰력을 제공했습니다. FLOW-3D시뮬레이션 결과로부터 계산된 공동지수를 USBR의 경험적 데이터와 비교했고, spillway의 과거 성능과 일치하는 것으로 확인되었습니다. 수치 해석을 통해 현장 검사를 지원하였으며, 이를 통해 슈트의 콘크리트 상태의 악화가 캐비테이션 때문이 아니라는 결론을 내렸습니다.

Strathcona Dam

Poor Approach Conditions and Uncertainty of Spillway Rating Curves

FLOW-3D는 댐 우측 교대에 수직 리프트 게이트가 3개 포함된 Strathcona댐 배수로의 등급 곡선과 관련한 열악한 접근 조건 및 불확실성을 조사하는 데 사용되었습니다. Strathcona spillway의 등급 곡선은 경험적인 조정과 교각의 기하학적 구조가 포함되지 않은 flume의 제한적인 물리적 유압 모델 테스트의 조합으로부터 개발되었습니다.
수치 모델 테스트 및 보정은 세개의 게이트가 모두 열려 있었던 1982년부터의 프로토 타입 유출 관측치와 비교하여 이루어진 것입니다. 맨 왼쪽 베이의 streamline입니다. 최좌측 베이로의 흐름은 댐 축에 평행하게 흐르는 물과 지하수 댐의 상류 경사에 인접한 콘크리트 옹벽 위로 곤두박질쳐 왜곡됩니다. 이 흐름은 다른 두 베이로 훨씬 더 부드럽게 들어갑니다. 프로토 타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도, 게이트 섹션에서 시뮬레이션된 수위는 1982년의 현장 측정 값과 0.1m이내에 일치했습니다.

Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
Figure 2-2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open
Figure 2-2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open

보정된 CFD모델은 모든 게이트가 완전히 열린 상태에서 탱크의 정상 작동 범위에 대해 배수로 정격 곡선의 5%이내에서 배출을 생성합니다. 그러나 큰 홍수가 지나가는 동안 발생할 수 있는 더 높은 저장소 수준에서(그림 3) 시뮬레이션 배출과 등급 곡선 간의 차이는 다음과 같이 10%보다 큽니다. 단순화된 기하학적 구조와 경험적 보정을 사용한 물리적 모델 시험은 복잡한 접근 흐름 패턴을 적절히 나타내지 않았습니다. FLOW-3D모델은 개별 베이의 등급 곡선 정확도, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 추가적인 통찰력을 제공합니다.

John Hart Dam

Optimization of a Proposed Spillway

John Hart 콘크리트 댐은 기존의 게이트 배수로와 현재 건설 중인 낮은 층의 출구 구조 사이에 위치할 새로운 free crest spillway를 포함하도록 개조될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 배수로 설계가 크게 개선되었습니다.
free crest 배수로의 예비 설계는 엔지니어링 유압 설계 가이드에 기초했습니다. 콘크리트 에이프런 블록은 댐의 끝에 있는 바위를 보호하기 위한 것입니다. 새로운 우측 도류벽이 새 배수로에서 테일 레일 풀로 흐르는 흐름을 유도하고 낮은 레벨의 배수로 구조물을 배수로로부터 보호합니다.

그림 4는 새 레일의 초기 설계와 최적화 설계에 대한 FLOW-3D모델 결과를 보여 줍니다. CFD분석을 통해 배수 용량이 10%증가하고 도로가 심하게 감소했습니다. 배수로 돌출부 위에 있고 제안된 오른쪽 벽을 따라 최대 5m의 수위 감소를 포함한 흐름 패턴을 개선합니다. 제안된 설계를 확인하기 위해 물리적 유압 모델 테스트가 사용됩니다.

Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

Conclusion

BC Hydro는 다양한 유형의 댐과 물 운반 구조의 흐름 패턴 및 성능 대한 광범위한 유압 장치 문제를 조사하기 위해 FLOW-3D를 사용해 왔습니다. 프로토 타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과에 대한 신뢰도를 높이기 위해 가능할 때마다 사용됩니다

Solved Aging Dam Dilemma

노후 댐 대책

How Computational Fluid Dynamics Modeling Solved Aging Dam Dilemma

By AyresApril 6, 2021No Comments

Solved Aging Dam Dilemma
Solved Aging Dam Dilemma

Keyword : 3D Hydraulic Modeling,CFD, CFD Model, Computational Fluid Dynamics, Dam Hydraulics, Hydrology structure damage

급격한 변화나 예기치 못한 노후화로 인해 댐에서 복잡한 문제가 발생하는 경우 20세기에 개발된 산업 표준 설계 방정식과 방법론이 많은 경우 올바른 솔루션을 제공할 수는 없습니다. 다행스럽게도 엔지니어들은 적절한 조치나 수리를 적용할 수 있도록 유압 상황을 확인하기 위해 전산유체역학(CFD) 모델을 사용할 수 있게 되었습니다.

About the Expert:

Matthew Hickox, PE, brings civil engineering expertise in stormwater and river design, planning, and construction phase services. His experience is founded on a solid understanding of hydrologic modeling, 1- and 2-dimensional hydraulic modeling, in-stream hydraulic structures, scour protection measures, culvert and bridge hydraulics, and the regulatory environment for stormwater projects.

How Does CFD Work in Practice?

최근의 한 사례에서 하천 수문학 및 지형학은 낮은 수두 전환 댐 주변에서 변경되었습니다. 지난 수십 년 동안 빠르게 발전해 온 도시 지역의 하류에 있는 모래 바닥 하천 시스템에 위치한 댐의 문제는 주변 하천 시스템에서 일어나는 여러 가지 일들로 인해 복잡해졌습니다. 증가하는 도시화는 배출 빈도를 증가시켰을 뿐만 아니라 기본 흐름을 증가시켰습니다. 수리학적으로 가파른 시스템은 일시적인 지류에서 연간 베이스 흐름으로의 변화가 상류가 침식됨에 따라 퇴적물 부하도 증가했음을 의미했습니다.

이 조합은 전환 댐의 하류 수로가 지난 15년 동안 3-4피트 감소했고, 배수가 감소된 정수장 apron에서 속도가 증가했으며 구조물 표면에 마모를 유발하는 퇴적물 하중이 감소했음을 의미합니다. 이러한 문제 중 어느 것도 전환 댐의 원래 설계의 잘못이 아니었지만 변화하는 하천 수문 및 지형학으로 인해 원래 설계자가 예상하지 못한 조건이 발생했습니다.

기존 구조물의 단위 너비 CFD 모델은 기존 현장 조건으로 인해 정수기 계류장에 수압 점프가 형성되지 않았다는 현장 관찰을 확인했습니다. 1).

Figure 1. Existing conditions unit width CFD model results showing velocity, cross section view of structure.
Figure 1. Existing conditions unit width CFD model results showing velocity, cross section view of structure.

설계 표고(열화 전)에서 하류 하류 바닥 표고와 함께 개발된 유사한 단위 너비 CFD 모델은 원래 설계가 정수 유역 계류장과 배수로 전면 근처에서 수압 점프를 생성한다는 것을 보여주었습니다. 이 단위 너비 CFD 모델은 구조에 영향을 미치는 수력학의 가치 있는 검증을 제공하지만 구조 손상이 구조 중간에서 매우 뚜렷하고 다른 영역에서는 거의 손대지 않았기 때문에 이것만으로는 충분하지 않습니다. (그림 2)

Figure 2. Original design conditions unit width CFD model results showing velocity, cross section view of structure. The only difference with Figure 1 is the downstream bed elevation.
Figure 2. Original design conditions unit width CFD model results showing velocity, cross section view of structure. The only difference with Figure 1 is the downstream bed elevation.

전체 기존 조건 CFD 모델은 정수조 앞치마 마모의 범위와 그에 따른 손상을 확인했습니다. (그림 3 및 4)

Figure 3. Existing conditions CFD model results showing velocity streamlines at 2-year event discharge. High velocities are areas of significant abrasion damage, low velocity areas have little or no abrasion damage.
Figure 3. Existing conditions CFD model results showing velocity streamlines at 2-year event discharge. High velocities are areas of significant abrasion damage, low velocity areas have little or no abrasion damage.
Figure 4. Existing conditions shows rebar exposed from significant abrasion damage to stilling basin apron in high velocity areas
Figure 4. Existing conditions shows rebar exposed from significant abrasion damage to stilling basin apron in high velocity areas

이 구조물에 대한 수리를 위한 예비 설계 동안 간단한 분석에 따르면 구조물의 미수를 높이는 것이 방수로 토우 근처의 구조물에 수력학적 점프를 만드는 데 도움이 될 것이며, 이는 정수 유역 계류장과 계류장을 가로지르는 극한 속도를 감소시킬 것입니다. 따라서 구조의 마모를 크게 줄입니다(그림 5 참조). 이 예비 제안 조건 CFD 모델은 엔드 실 높이만 높였습니다. 구조물 하류의 하천 시스템의 상태와 지형은 나머지 설계 수명 동안 구조물의 안정성을 보장하기 위해 모든 최종 설계 조건에 대해 평가되어야 합니다.

Figure 5. Preliminary design check to verify velocities under a raised tailwater condition at a 2-year event discharge. Velocity cross section slices shown.
Figure 5. Preliminary design check to verify velocities under a raised tailwater condition at a 2-year event discharge. Velocity cross section slices shown.

CFD 모델은 설계 상황이 확립된 설계 방정식 및 절차의 한계 내에 깔끔하게 속하지 않을 때 유압을 확인하는 또 다른 도구를 제공합니다. 구조와 유역의 개요에 대해 자세히 설명하는 전체적인 관점은 프로젝트 현장의 현재와 미래의 상태를 평가하는 데 필요합니다. 이 예에서 구조의 설계 및 작동은 원래 설계와 매우 유사하게 유지됩니다. 구조 주변에서 변경된 것은 하천 시스템입니다. CFD는 현장 조건 변경으로 인해 예기치 않은 수리력 및 구조 손상이 발생할 때 복잡한 수리력을 분석할 수 있는 도구 상자의 또 다른 도구를 제공합니다.

CFD 또는 여기 Ayres에서 제공하는 유압 엔지니어링 서비스에 대한 자세한 내용은 Matthew Hickox, PE에게 문의하십시오.

Fig. 11. Velocity vectors along x-direction through the center of the box culvert for B0, B30, B50, and B70 respectively.

Numerical investigation of scour characteristics downstream of blocked culverts

막힌 암거 하류의 세굴 특성 수치 조사

NesreenTahabMaged M.El-FekyaAtef A.El-SaiadaIsmailFathya
aDepartment of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
bLab Manager, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

횡단 구조물을 통한 막힘은 안정성을 위협하는 위험한 문제 중 하나입니다. 암거의 막힘 형상 및 하류 세굴 특성에 미치는 영향에 관한 연구는 거의 없습니다.

이 연구의 목적은 수면과 세굴 모두에서 상자 암거를 통한 막힘의 작용을 수치적으로 논의하는 것입니다. 이를 위해 FLOW 3D v11.1.0을 사용하여 퇴적물 수송 모델을 조사했습니다.

상자 암거를 통한 다양한 차단 비율이 연구되었습니다. FLOW 3D 모델은 실험 데이터로 보정되었습니다. 결과는 FLOW 3D 프로그램이 세굴 다운스트림 상자 암거를 정확하게 시뮬레이션할 수 있음을 나타냅니다.

막힌 경우에 대한 속도 분포, 최대 세굴 깊이 및 수심을 플롯하고 비차단된 사례(기본 사례)와 비교했습니다.

그 결과 암거 높이의 70% 차단율은 상류의 수심을 암거 높이의 2.3배 증가시키고 평균 유속은 기본 경우보다 3배 더 증가시키는 것으로 입증되었다. 막힘 비율의 함수로 상대 최대 세굴 깊이를 추정하는 방정식이 만들어졌습니다.

Blockage through crossing structures is one of the dangerous problems that threaten its stability. There are few researches concerned with blockage shape in culverts and its effect on characteristics of scour downstream it.

The study’s purpose is to discuss the action of blockage through box culvert on both water surface and scour numerically. A sediment transport model has been investigated for this purpose using FLOW 3D v11.1.0. Different ratios of blockage through box culvert have been studied. The FLOW 3D model was calibrated with experimental data.

The results present that the FLOW 3D program was capable to simulate accurately the scour downstream box culvert. The velocity distribution, maximum scour depth and water depths for blocked cases have been plotted and compared with the non-blocked case (base case).

The results proved that the blockage ratio 70% of culvert height makes the water depth upstream increases by 2.3 times of culvert height and mean velocity increases by 3 times more than in the base case. An equation has been created to estimate the relative maximum scour depth as a function of blockage ratio.

1. Introduction

Local scour is the removal of granular bed material by the action of hydrodynamic forces. As the depth of scour hole increases, the stability of the foundation of the structure may be endangered, with a consequent risk of damage and failure [1]. So the prediction and control of scour is considered to be very important for protecting the water structures from failure. Most previous studies were designed to study the different factors that impact on scour and their relationship with scour hole dimensions like fluid characteristics, flow conditions, bed properties, and culvert geometry. Many previous researches studied the effect of flow rate on scour hole by information Froude number or modified Froude number [2][3][4][5][6]. Cesar Mendoza [6] found a good correlation between the scour depth and the discharge Intensity (Qg−.5D−2.5). Breusers and Raudkiv [7] used shear velocity in the outlet-scour prediction procedure. Ali and Lim [8] used the densimetric Froude number in estimation of the scour depth [1][8][9][10][11][12][13][14]. “The densimetric Froude number presents the ratio of the tractive force on sediment particle to the submerged specific weight of the sediment” [15](1)Fd=uρsρ-1gD50

Ali and Lim [8] pointed to the consequence of tailwater depth on scour behavior [1][2][8][13]. Abida and Townsend [2] indicated that the maximum depth of local scour downstream culvert was varying with the tailwater depth in three ways: first, for very shallow tailwater depths, local scouring decreases with a decrease in tailwater depth; second, when the ratio of tailwater depth to culvert height ranged between 0.2 and 0.7, the scour depth increases with decreasing tailwater depth; and third for a submerged outlet condition. The tailwater depth has only a marginal effect on the maximum depth of scour [2]. Ruff et al. [16] observed that for materials having similar mean grain sizes (d50) but different standard deviations (σ). As (σ) increased, the maximum scour hole depth decreased. Abt et al. [4] mentioned to role of soil type of maximum scour depth. It was noticed that local scour was more dangerous for uniform sands than for well-graded mixtures [1][2][4][9][17][18]. Abt et al [3][19] studied the culvert shape effect on scour hole. The results evidenced that the culvert shape has a limited effect on outlet scour. Under equivalent discharge conditions, it was noted that a square culvert with height equal to the diameter of a circular culvert would reduce scour [16][20]. The scour hole dimension was also effected by the culvert slope. Abt et al. [3][21] showed that the culvert slope is a key element in estimating the culvert flow velocity, the discharge capacity, and sediment transport capability. Abt et al. [21][22] tested experimentally culvert drop height effect on maximum scour depth. It was observed that as the drop height was increasing, the depth of scour was also increasing. From the previous studies, it could have noticed that the most scour prediction formula downstream unblocked culvert was the function of densimetric Froude number, soil properties (d50, σ), tailwater depth and culvert opening size. Blockage is the phenomenon of plugging water structures due to the movement of water flow loaded with sediment and debris. Water structures blockage has a bad effect on water flow where it causes increasing of upstream water level that may cause flooding around the structure and increase of scour rate downstream structures [23][24]. The blockage phenomenon through was studied experimentally and numerical [15][25][26][27][28][29][30][31][32][33]. Jaeger and Lucke [33] studied the debris transport behavior in a natural channel in Australia. Froude number scale model of an existing culvert was used. It was noticed that through rainfall event, the mobility of debris was impressed by stream shape (depth and width). The condition of the vegetation (size and quantities) through the catchment area was the main factor in debris transport. Rigby et al. [26] reported that steep slope was increasing the ability to mobilize debris that form field data of blocked culverts and bridges during a storm in Wollongong city.

Streftaris et al. [32] studied the probability of screen blockage by debris at trash screens through a numerical model to relate between the blockage probability and nature of the area around. Recently, many commercial computational fluid programs (CFD) such as SSIIM, Fluent, and FLOW 3D are used in the analysis of the scour process. Scour and sediment transport numerical model need to validate by using experimental data or field data [34][35][36][37][38]. Epely-Chauvin et al. [36] investigated numerically the effect of a series of parallel spur diked. The experimental data were compared by SSIIM and FLOW 3D program. It was found that the accuracy of calibrated FLOW 3D model was better than SSIIM model. Nielsen et al. [35] used the physical model and FLOW 3D model to analyze the scour process around the pile. The soil around the pile was uniform coarse stones in the physical models that were simulated by regular spheres, porous media, and a mixture of them. The calibrated porous media model can be used to determine the bed shear stress. In partially blocked culverts, there aren’t many studies that explain the blockage impact on scour dimensions. Sorourian et al. [14][15] studied the effect of inlet partial blockage on scour characteristics downstream box culvert. It resulted that the partial blockage at the culvert inlet could be the main factor in estimating the depth of scour. So, this study is aiming to investigate the effects of blockage through a box culvert on flow and scour characteristics by different blockage ratios and compares the results with a non-blocked case. Create a dimensionless equation relates the blockage ratio of the culvert with scour characteristics downstream culvert.

2. Experimental data

The experimental work of the study was conducted in the Hydraulics and Water Engineering Laboratory, Faculty of Engineering, Zagazig University, Egypt. The flume had a rectangular cross-section of 66 cm width, 65.5 cm depth, and 16.2 m long. A rectangular culvert was built with 0.2 m width, 0.2 m height and 3.00 m long with θ = 25° gradually outlet and 0.8 m fixed apron. The model was located on the mid-point of the channel. The sediment part was extended for a distance 2.20 m with 0.66 m width and 0.20 m depth of coarse sand with specific weight 1.60 kg/cm3, d50 = 2.75 mm and σ (d90/d50) = 1.50. The particle size distribution was as shown in Fig. 1. The experimental model was tested for different inlet flow (Q) of 25, 30, 34, 40 l/s for different submerged ratio (S) of 1.25, 1.50, 1.75.

3. Dimensional analysis

A dimensional analysis has been used to reduce the number of variables which affecting on the scour pattern downstream partial blocked culvert. The main factors affecting the maximum scour depth are:(2)ds=f(b.h.L.hb.lb.Q.ud.hu.hd.D50.ρ.ρs.g.ls.dd.ld)

Fig. 2 shows a definition sketch of the experimental model. The maximum scour depth can be written in a dimensionless form as:(3)dsh=f(B.Fd.S)where the ds/h is the relative maximum scour depth.

4. Numerical work

The FLOW 3D is (CFD) program used by many researchers and appeared high accuracy in solving hydrodynamic and sediment transport models in the three dimensions. Numerical simulation with FLOW 3D was performed to study the impacts of blockage ratio through box culvert on shear stress, velocity distribution and the sediment transport in terms of the hydrodynamic features (water surface, velocity and shear stress) and morphological parameters (scour depth and sizes) conditions in accurately and efficiently. The renormalization group (RNG) turbulence model was selected due to its high ability to predict the velocity profiles and turbulent kinetic energy for the flow through culvert [39]. The one-fluid incompressible mode was used to simulate the water surface. Volume of fluid (VOF) method was employed in FLOW 3D to tracks a liquid interface through arbitrary deformations and apply the correct boundary conditions at the interface [40].1.

Governing equations

Three-dimensional Reynolds-averaged Navier Stokes (RANS) equation was applied for incompressible viscous fluid motion. The continuity equation is as following:(4)VF∂ρ∂t+∂∂xρuAx+∂∂yρvAy+∂∂zρwAz=RDIF(5)∂u∂t+1VFuAx∂u∂x+vAy∂u∂y+ωAz∂u∂z=-1ρ∂P∂x+Gx+fx(6)∂v∂t+1VFuAx∂v∂x+vAy∂v∂y+ωAz∂v∂z=-1ρ∂P∂y+Gy+fy(7)∂ω∂t+1VFuAx∂ω∂x+vAy∂ω∂y+ωAz∂ω∂z=-1ρ∂P∂z+Gz+fz

ρ is the fluid density,

VF is the volume fraction,

(x,y,z) is the Cartesian coordinates,

(u,v,w) are the velocity components,

(Ax,Ay,Az) are the area fractions and

RDIF is the turbulent diffusion.

P is the average hydrodynamic pressure,

(Gx, Gy, Gz) are the body accelerations and

(fx, fy, fz) are the viscous accelerations.

The motion of sediment transport (suspended, settling, entrainment, bed load) is estimated by predicting the erosion, advection and deposition process as presented in [41].

The critical shields parameter is (θcr) is defined as the critical shear stress τcr at which sediments begin to move on a flat and horizontal bed [41]:(8)θcr=τcrgd50(ρs-ρ)

The Soulsby–Whitehouse [42] is used to predict the critical shields parameter as:(9)θcr=0.31+1.2d∗+0.0551-e(-0.02d∗)(10)d∗=d50g(Gs-1ν3where:

d* is the dimensionless grain size

Gs is specific weight (Gs = ρs/ρ)

The entrainment coefficient (0.005) was used to scale the scour rates and fit the experimental data. The settling velocity controls the Soulsby deposition equation. The volumetric sediment transport rate per width of the bed is calculated using Van Rijn [43].2.

Meshing and geometry of model

After many trials, it was found that the uniform cell size with 0.03 m cell size is the closest to the experimental results and takes less time. As shown in Fig. 3. In x-direction, the total model length in this direction is 700 cm with mesh planes at −100, 0, 300, 380 and 600 cm respectively from the origin point, in y-direction, the total model length in this direction is 66 cm at distances 0, 23, 43 and 66 cm respectively from the origin point. In z-direction, the total model length in this direction is 120 cm. with mesh planes at −20, 0, 20 and 100 cm respectively.3.

Boundary condition

As shown in Fig. 4, the boundary conditions of the model have been defined to simulate the experimental flow conditions accurately. The upstream boundary was defined as the volume flow rate with a different flow rate. The downstream boundary was defined as specific pressure with different fluid elevation. Both of the right side, the left side, and the bottom boundary were defined as a wall. The top boundary defined as specified pressure with pressure value equals zero.

5. Validation of experimental results and numerical results

The experimental results investigated the flow and scour characteristics downstream culvert due to different flow conditions. The measured value of maximum scour depth is compared with the simulated depth from FLOW 3D model as shown in Fig. 5. The scour results show that the simulated results from the numerical model is quite close to the experimental results with an average error of 3.6%. The water depths in numerical model results is so close to the experimental results as shown in Fig. 6 where the experiment and numerical results are compared at different submerged ratios and flow rates. The results appear maximum error percentage in water depths upstream and downstream the culvert is about 2.37%. This indicated that the FLOW 3D is efficient for the prediction of maximum scour depth and the flow depths downstream box culvert.

6. Computation time

The run time was chosen according to reaching to the stability limit. Hydraulic stability was achieved after 50 s, where the scour development may still go on. For run 1, the numerical simulation was run for 1000 s as shown in Fig. 7 where it mostly reached to scour stability at 800 s. The simulation time was taken 500 s at about 95% of scour stability.

7. Analysis and discussions

Fig. 8 shows the study sections where sec 1 represents to upstream section, sec2 represents to inside section and sec3 represents to downstream stream section. Table 1 indicates the scour hole dimensions at different blockage case. The symbol (B) represents to blockage and the number points to blockage ratio. B0 case signifies to the non-blocked case, B30 is that blockage height is 30% to the culvert height and so on.

Table 1. The scour results of different blockage ratio.

Casehb cmB = hb/hQ lit/sSFdd50 mmds/h measuredls/hdd/hld/hds/h estimated
B000351.261.692.50.581.500.275.000.46
B3060.30351.261.682.50.481.250.274.250.40
B50100.50351.221.742.50.451.100.244.000.37
B70140.70351.231.732.50.431.500.165.500.33

7.1. Scour hole geometry

The scour hole geometry mainly depends on the properties of soil of the bed downstream the fixed apron. From Table 1, the results show that the maximum scour depth in B0 case is about 0.58 of culvert height while the maximum deposition in B0 is 0.27 culvert height. There is a symmetric scour hole as shown in Fig. 9 in B0 case. An asymmetric scour hole is created in B50 and B70 due to turbulences that causes the deviation of the jet direction from the center of the flume where appear in Fig. 11 and Fig. 19.

7.2. Flow water surface

Fig. 10 presents the relative free surface water (hw/h) along the x-direction at center of the box culvert. From the mention Figure, it is easy to release the effect of different blockage ratios. The upstream water level rises by increasing the blockage ratio. Increasing upstream water level may cause flooding over the banks of the waterway. In the 70% blockage case, the upstream water level rises to 2.3 times of culvert height more than the non-blocked case at the same discharge and submerged ratio. The water surface profile shows an increase in water level upstream the culvert due to a decrease in transverse velocity. Because of decreasing velocity downstream culvert, there is an increase in water level before it reaches its uniform depth.

7.3. Velocity vectors

Scour downstream hydraulic structures mainly affects by velocities distribution and bed shear stress. Fig. 11 shows the velocity vectors and their magnitude in xz plane at the same flow conditions. The difference in the upstream water level due to the different blockage ratios is so clear. The maximum water level is in B70 and the minimum level is in B0. The inlet mean velocity value is about 0.88 m/s in B0 increases to 2.86 m/s in B70. As the blockage ratio increases, the inlet velocity increases. The outlet velocity in B0 case makes downward jet causes scour hole just after the fixed apron in the middle of the bed while the blockage causes upward water flow that appears clearly in B70. The upward jet decreases the scour depth to 0.13 culvert height less than B0 case. After the scour hole, the velocity decreases and the flow becomes uniform.

7.4. Velocity distribution

Fig. 12 represents flow velocity (Vx) distribution along the vertical depth (z/hu) upstream the inlet for the different blockage ratios at the same flow conditions. From the Figure, the maximum velocity creates closed to bed in B0 while in blocked case, the maximum horizontal velocity creates at 0.30 of relative vertical depth (z/hu). Fig. 13 shows the (Vz) distribution along the vertical depth (z/hu) upstream culvert at sec 1. From the mentioned Figure, it is easy to note that the maximum vertical is in B70 which appears that as the blockage ratio increases the vertical ratio also increases. In the non-blocked case. The vertical velocity (Vz) is maximum at (z/hu) equals 0.64. At the end of the fixed apron (sec 3), the horizontal velocity (Vx) is slowly increasing to reach the maximum value closed to bed in B0 and B30 while the maximum horizontal velocity occurs near to the top surface in B50 and B70 as shown in Fig. 14. The vertical velocity component along the vertical depth (z/hd) is presented in Fig. 15. The vertical velocity (Vz) is maximum in B0 at vertical depth (z/hd) 0.3 with value 0.45 m/s downward. Figs. 16 and 17 observe velocity components (Vx, Vz) along the vertical depth just after the end of blockage length at the centerline of the culvert barrel. It could be noticed the uniform velocity distribution in B0 case with horizontal velocity (Vx) closed to 1.0 m/s and vertical velocity closed to zero. In the blocked case, the maximum horizontal velocity occurs in depth more than the blockage height.

7.5. Bed velocity distribution

Fig. 18 presents the x-velocity vectors at 1.5 cm above the bed for different blockage ratios from the velocity vectors distribution and magnitude, it is easy to realize the position of the scour hole and deposition region. In B0 and B30, the flow is symmetric so that the scour hole is created around the centerline of flow while in B50 and B70 cases, the flow is asymmetric and the scour hole creates in the right of flow direction in B50. The maximum scour depth is found in the left of flow direction in B70 case where the high velocity region is found.

8. Maximum scour depth prediction

Regression analysis is used to estimate maximum scour depth downstream box culvert for different ratios of blockage by correlating the maximum relative scour by other variables that affect on it in one formula. An equation is developed to predict maximum scour depth for blocked and non-blocked. As shown in the equation below, the relative maximum scour depth(ds/hd) is a function of densimetric Froude number (Fd), blockage ratio (B) and submerged ratio (S)(11)dsh=0.56Fd-0.20B+0.45S-1.05

In this equation the coefficient of correlation (R2) is 0.82 with standard error equals 0·08. The developed equation is valid for Fd = [0.9 to 2.10] and submerged ratio (S) ≥ 1.00. Fig. 19 shows the comparison between relative maximum scour depths (ds/h) measured and estimated for different blockage ratios. Fig. 20 clears the comparison between residuals and ds/h estimated for the present study. From these figures, it could be noticed that there is a good agreement between the measured and estimated relative scour depth.

9. Comparison with previous scour equations

Many previous scour formulae have been produced for calculation the maximum scour depth downstream non-blockage culvert. These equations have been included the effect of flow regime, culvert shape, soil properties and the flow rate on maximum scour depth. Two of previous experimental studies data have been chosen to be compared with the present study results in non-blocked study data. Table 2 shows comparison of culvert shape, densmetric Froude number, median particle size and scour equations for these previous studies. By applying the present study data in these studies scour formula as shown in Fig. 21, it could be noticed that there are a good agreement between present formula results and others empirical equations results. Where that Lim [44] and Abt [4] are so closed to the present study data.

Table 2. Comparison of some previous scour formula.

ResearchersFdCulvert shaped50(mm)Proposed equationSubmerged ratio
Present study0.9–2.11square2.75dsh=0.56Fd-0.20B+0.45S-1.051.25–1.75
Lim [44]1–10Circular1.65dsh=0.45Fd0.47
Abt [4]Fd ≥ 1Circular0.22–7.34-dsh=3.67Fd0.57∗D500.4∗σ-0.4

10. Conclusions

The present study has shown that the FLOW 3D model can accurately simulate water surface and the scour hole characteristics downstream the box culvert with error percentage in water depths does not exceed 2.37%. Velocities distribution through and outlets culvert barrel helped on understanding the scour hole shape.

The blockage through culvert had caused of increasing of water surface upstream structure where the upstream water level in B70 was 2.3 of culvert height more than non-blocked case at the same discharge that could be dangerous on the stability of roads above. The depth averaged velocity through culvert barrel increased by 3 times its value in non-blocked case.

On the other hand, blockage through culvert had a limited effect on the maximum scour depth. The little effect of blockage on maximum scour depth could be noticed in Fig. 11. From this Figure, it could be noted that the residual part of culvert barrel after the blockage part had made turbulences. These turbulences caused the deviation of the flow resulting in the formation of asymmetric scour hole on the side of channel. This not only but in B70 the blockage height caused upward jet which made a wide far scour hole as cleared from the results in Table 1.

An empirical equation was developed from the results to estimate the maximum scour depth relative to culvert height function of blockage ratio (B), submerged ratio (S), and densimetric Froude number (Fd). The equation results was compared with some scour formulas at the same densimetric Froude number rang where the present study results was in between the other equations results as shown in Fig. 21.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]P. Sarathi, M. Faruque, R. BalachandarInfluence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jetsJ. Hydraul. Res., 46 (2) (2008), pp. 158-175CrossRefView Record in ScopusGoogle Scholar[2]H. Abida, R. TownsendLocal scour downstream of box-culvert outletsJ. Irrig. Drain. Eng., 117 (3) (1991), pp. 425-440CrossRefView Record in ScopusGoogle Scholar[3]S.R. Abt, C.A. Donnell, J.F. Ruff, F.K. DoehringCulvert Slope and Shape Effects on Outlet ScourTransp. Res. Rec., 1017 (1985), pp. 24-30View Record in ScopusGoogle Scholar[4]S.R. Abt, R.L. Kloberdanz, C. MendozaUnified culvert scour determinationJ. Hydraul. Eng., 110 (10) (1984), pp. 1475-1479CrossRefView Record in ScopusGoogle Scholar[5]J.P. Bohan, Erosion And Riprap Requirements At Culvert And Storm-Drain Outlets, ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS1970.Google Scholar[6]C. Mendoza, S.R. Abt, J.F. RuffHeadwall influence on scour at culvert outletsJ. Hydraul. Eng., 109 (7) (1983), pp. 1056-1060CrossRefView Record in ScopusGoogle Scholar[7]H. Breusers, A. Raudkivi, Scouring, hydraulic structures design manual, vol. 143, IAHR, AA Balkema, Rotterdam, 1991.Google Scholar[8]K. Ali, S. LimLocal scour caused by submerged wall jetsProc. Inst. Civ. Eng., 81 (4) (1986), pp. 607-645CrossRefView Record in ScopusGoogle Scholar[9]O. Aderibigbe, N. RajaratnamEffect of sediment gradation on erosion by plane turbulent wall jetsJ. Hydraul. Eng., 124 (10) (1998), pp. 1034-1042View Record in ScopusGoogle Scholar[10]F.W. Blaisdell, C.L. AndersonA comprehensive generalized study of scour at cantilevered pipe outletsJ. Hydraul. Res., 26 (4) (1988), pp. 357-376CrossRefView Record in ScopusGoogle Scholar[11]Y.-M. Chiew, S.-Y. LimLocal scour by a deeply submerged horizontal circular jetJ. Hydraul. Eng., 122 (9) (1996), pp. 529-532View Record in ScopusGoogle Scholar[12]R.A. Day, S.L. Liriano, W.R. WhiteEffect of tailwater depth and model scale on scour at culvert outletsProc. Instit. Civil Eng. – Water Marit. Eng., 148 (3) (2001), pp. 189-198http://www.icevirtuallibrary.com/doi/10.1680/wame.2001.148.3.18910.1680/wame.2001.148.3.189View Record in ScopusGoogle Scholar[13]S. Emami, A.J. SchleissPrediction of localized scour hole on natural mobile bed at culvert outletsScour and Erosion (2010), pp. 844-853CrossRefView Record in ScopusGoogle Scholar[14]S. Sorourian, A. Keshavarzi, J. Ball, B. SamaliStudy of Blockage Effect on Scouring Pattern Downstream of a Box Culvert under Unsteady FlowAustr. J Water Resor. (2013)Google Scholar[15]S. Sorourian, Turbulent Flow Characteristics At The Outlet Of Partially Blocked Box Culverts, in: 36th IAHR World Congress, The Hague, the Netherlands, 2015.Google Scholar[16]J. Ruff, S. Abt, C. Mendoza, A. Shaikh, R. KloberdanzScour at culvert outlets in mixed bed materialsUnited States. Federal Highway Administration. Office of Research and Development (1982)Google Scholar[17]S.A. Ansari, U.C. Kothyari, K.G.R. RajuInfluence of cohesion on scour under submerged circular vertical jetsJ. Hydraul. Eng., 129 (12) (2003), pp. 1014-1019View Record in ScopusGoogle Scholar[18]B. Crookston B. Tullis, Scour and Riprap Protection in a Bottomless Arch Culvert, in: World Environmental and Water Resources Congress 2008: Ahupua’A, 2008, pp. 1–10.Google Scholar[19]S.R. Abt, J. Ruff, F. Doehring, C. DonnellInfluence of culvert shape on outlet scourJ. Hydraul. Eng., 113 (3) (1987), pp. 393-400View Record in ScopusGoogle Scholar[20]Y.H. Chen, Scour at outlets of box culverts, Colorado State University, 1970.Google Scholar[21]S. Abt, P. Thompson, T. LewisEnhancement of the culvert outlet scour estimation equationsTransp. Res. Rec. J. Transp. Res. Board, 1523 (1996), pp. 178-185View Record in ScopusGoogle Scholar[22]F.K. Doehring, S.R. AbtDrop height influence on outlet scourJ. Hydraul. Eng., 120 (12) (1994), pp. 1470-1476CrossRefView Record in ScopusGoogle Scholar[23]W. Weeks, A. Barthelmess, E. Rigby, G. Witheridge, R. Adamson, Australian rainfall and runoff revison project 11: blockage of hydraulic structures, 2009.Google Scholar[24]W. Weeks, G. Witheridge, E. Rigby, A. BarthelmessProject 11: blockage of hydraulic structuresEngineers Australia (2013)Google Scholar[25]S.R. Abt, T.E. Brisbane, D.M. Frick, C.A. McKnightTrash rack blockage in supercritical flowJ. Hydraul. Eng., 118 (12) (1992), pp. 1692-1696View Record in ScopusGoogle Scholar[26]E. Rigby, M. Boyd, S. Roso, P. Silveri, A. Davis, Causes and effects of culvert blockage during large storms, in: Global solutions for urban drainage, 2002, pp. 1–16.Google Scholar[27]S. Roso, M. Boyd, E. Rigby, R. VanDrie“Prediction of increased flooding in urban catchments due to debris blockage and flow diversionsProceedings Novatech (2004), pp. 8-13View Record in ScopusGoogle Scholar[28]C.-D. Jan, C.-L. ChenDebris flows caused by Typhoon Herb in Taiwanin Debris-Flow Hazards and Related Phenomena, Springer (2005), pp. 539-563CrossRefGoogle Scholar[29]L.W. Zevenbergen, P.F. Lagasse, P.E. Clopper, Effects of debris on bridge pier scour, in: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, 2007, pp. 1–10.Google Scholar[30]A. Barthelmess, E. Rigby, Estimating Culvert and Bridge Blockages-a Simplified Procedure, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 39.Google Scholar[31]E. Rigby, A. Barthelmess, Culvert Blockage Mechanisms and their Impact on Flood Behaviour, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 380.Google Scholar[32]G. Streftaris, N. Wallerstein, G. Gibson, S. ArthurModeling probability of blockage at culvert trash screens using Bayesian approachJ. Hydraul. Eng., 139 (7) (2012), pp. 716-726Google Scholar[33]R. Jaeger, T. LuckeInvestigating the relationship between rainfall intensity, catchment vegetation and debris mobilityInt. J. GEOMATE, 12 (33) (2017), pp. 22-29 Download PDFView Record in ScopusGoogle Scholar[34]S. Amiraslani, J. Fahimi, H. Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect On the Scour of Plunge Pool, in: XVIII International conference on water resources, Tehran University, Iran, 2008.Google Scholar[35]A.W. Nielsen, X. Liu, B.M. Sumer, J. FredsøeFlow and bed shear stresses in scour protections around a pile in a currentCoast. Eng., 72 (2013), pp. 20-38ArticleDownload PDFView Record in ScopusGoogle Scholar[36]G. Epely-Chauvin, G. De Cesare, S. SchwindtNumerical modelling of plunge pool scour evolution in non-cohesive sedimentsEng. Appl. Comput. Fluid Mech., 8 (4) (2014), pp. 477-487 Download PDFCrossRefView Record in ScopusGoogle Scholar[37]H. Karami, H. Basser, A. Ardeshir, S.H. HosseiniVerification of numerical study of scour around spur dikes using experimental dataWater Environ. J., 28 (1) (2014), pp. 124-134CrossRefView Record in ScopusGoogle Scholar[38]S.-H. Oh, K.S. Lee, W.-M. JeongThree-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plantRenew. Energy, 92 (2016), pp. 462-473ArticleDownload PDFView Record in ScopusGoogle Scholar[39]M.A. Khodier, B.P. TullisExperimental and computational comparison of baffled-culvert hydrodynamics for fish passageJ. Appl. Water Eng. Res. (2017), pp. 1-9CrossRefView Record in ScopusGoogle Scholar[40]F.S. Inc., FLOW-3D user’s manual, Flow Science, Inc., 2009.Google Scholar[41]G. Wei, J. Brethour, M. Grünzner, J. BurnhamSedimentation scour modelFlow Science Report, 7 (2014), pp. 1-29View Record in ScopusGoogle Scholar[42]R. Soulsby, R. Whitehouse, Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, vol. 1, Centre for Advanced Engineering, University of Canterbury, 1997, pp. 145.Google Scholar[43]L.C.v. RijnSediment transport, part II: suspended load transportJ. Hydraul. Eng., 110 (11) (1984), pp. 1613-1641View Record in ScopusGoogle Scholar[44]S Y LIMScour below unsubmerged full-flowing culvert outletsProc. Instit. Civil Eng. – Water Marit. Energy, 112 (2) (1995), pp. 136-149http://www.icevirtuallibrary.com/doi/10.1680/iwtme.1995.2765910.1680/iwtme.1995.27659View Record in ScopusGoogle Scholar

Peer review under responsibility of Faculty of Engineering, Alexandria University.

Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d' is the water depth above the crest; y' is the distance normal to the crest invert

Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D

Khosro Morovati , Afshin Eghbalzadeh 
International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 3 April 2018

Abstract

많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.

이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.

얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.

여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.

모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.

Study of inception point, void fraction and pressure over pooled
stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.

Design/methodology/approach

압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.

Findings

마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.

Keywords

Citation

Morovati, K. and Eghbalzadeh, A. (2018), “Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 28 No. 4, pp. 982-998. https://doi.org/10.1108/HFF-03-2017-0112

Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h  step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):  d' is the water depth above the crest; y' is the distance normal to the crest invert
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d’ is the water depth above the crest; y’ is the distance normal to the crest invert
Figure 2- meshing domain and distribution of blocks
Figure 2- meshing domain and distribution of blocks
Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A); mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  Flat stepped spillway (slope: 0 26 6. )
Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A); Flat stepped spillway (slope: 0 26 6. )
Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled  and flat stepped spillways (slope: 0 9.8 )
Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled and flat stepped spillways (slope: 0 9.8 )
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),  288941 (model 2), 323578 (model 3) and 343154 (model 4)
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1), 288941 (model 2), 323578 (model 3) and 343154 (model 4)
Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with  experimental work conducted by Felder et al. (2012A); (slope 26.60 )
Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with experimental work conducted by Felder et al. (2012A); (slope 26.60 )
Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with  empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
Figure 10- Comparison of pressure distribution between numerical simulation and experimental work  conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
Figure 10- Comparison of pressure distribution between numerical simulation and experimental work conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the  free surface profile along the crest of the spillway.  Note: x' indicates the longitudinal distance from the starting point of the crest.
Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the free surface profile along the crest of the spillway. Note: x’ indicates the longitudinal distance from the starting point of the crest.
Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x'' indicatesthe  longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y" is the distance from the intersection of the horizontal and vertical faces in the vertical direction
Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the distance from the intersection of the horizontal and vertical faces in the vertical direction
Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
Table1- Used discharges for assessments of mesh convergence analysis and hydraulic  characteristics
Table1- Used discharges for assessments of mesh convergence analysis and hydraulic characteristics

Conclusion

본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.

낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.

In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.

The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.

References

  1. André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis,
    Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
  2. Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy
    Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and
    Engineering, 39(4), 2587-2594.
  3. Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical
    simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped
    spillways”. Environmental fluid mechanics, 11(3) 263-288.
  4. Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”.
    International Journal of Hydraulic Engineering; 2(3): 47-52.
  5. Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway.
    Journal of computational multiphase flows”, Volume 7. Number 1.
  6. Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure
    observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
  7. Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation
    of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
  8. Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”.
    Science in China Series E: Technological Sciences, 49(6), 674-684.
  9. Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings
    of the world water congress.
  10. Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid
    dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
  11. Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy
    Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources
    Congress ASCE.
  12. Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air
    entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
  13. Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a
    Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a
    Broad-Crested Weir: a Physical study
  14. Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped
    spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,.
    Brisbane, Australia.
  15. Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary
    flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
  16. Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on
    pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
  17. Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”.
    Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
  18. Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of
    embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
  19. Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped
    spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The
    University of Queensland,. Brisbane, Australia.
  20. Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
  21. Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of
    Hydraulic Engineering, 139(6), 630-636.
  22. Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”,
    department of civil engineering, Brisbane, Australia, Phd thesis.
  23. Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An
    experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
  24. Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and
    pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
  25. Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped
    Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources
    Congress, ASCE.
  26. Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
  27. Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng.,
    139(1), 60–64.
  28. Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped
    Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
  29. Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over
    RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E.
    Minor and W.H. Hager. Balkema. 69–76.
  30. Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment
    dams”. J. Hydraul. Eng., 135(8), 685–689.
  31. Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D
    RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
  32. Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on
    the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI
    10.1007/s00707-015-1444-x
  33. Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped
    spillway”. Civil Engineering Journal. Vol. 2, No. 5.
  34. Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
  35. Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE
    Convention.
  36. Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of
    a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
  37. Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with
    wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
  38. Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop
    on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema,
    137–146.
  39. Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply
    Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan
    University of Technology (IUT), Isfahan, Iran.
  40. Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case
    study.” Journal of Hydraulic Engineering 127.8:640-649.
  41. Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy
    dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI
    10.1007/s12205-013-0749-3.
  42. Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”.
    Computers & structures, 83(27) 2215-2224.
  43. Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte
    Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced
    unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
  44. WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration
    characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015-
    5783-6.
  45. Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped
    spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
  46. Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall
    Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY
    .1943-7900.0000630.
  47. Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped
    spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
  48. Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and
    velocity fields. Journal of Hydraulic Engineering, 142(7).
  49. Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF
    Method”. Procedia Engineering, 28, 808-812.
  50. Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”.
    Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
  51. ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water
    flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
Figure 3.4 Upstream View of the Radial Gated-Spillway

방사형 게이트 아래의 흐름에 대한 실험 및 수치 조사

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLOW UNDER RADIAL GATES

submitted by MAHMUT TANYERİ in partial fulfillment of the requirements for
the degree of Master of Science in Civil Engineering, Middle East Technical
University by,
Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Ahmet Türer
Head of the Department, Civil Engineering
Prof. Dr. Mete Köken
Supervisor, Civil Engineering, METU
Prof. Dr. İsmail Aydın
Co-Supervisor, Civil Engineering, METU

Abstract

방사형 게이트는 여수로에서 일반적으로 사용됩니다. 부분 게이트 개구부에서 60년대에 수행된 실험 작업에서 얻은 경험 방정식을 사용하여 통과하는 방전을 계산합니다.

그러나 이러한 방정식에서 얻은 배출 값과 유한 체적 방법 및 수리적 모델을 기반으로 한 수치 계산에서 얻은 값 사이에는 약간의 불일치가 있습니다. 이러한 차이의 원인을 밝히는 것이 목적입니다.

이를 위해 다양한 게이트 구성에 대한 실험과 수치 계산이 수행되었습니다. 수많은 수치 시뮬레이션에서 나온 경향을 활용하여 연구 말미에 새로운 방전 방정식을 도출했습니다.

하나의 수리학적 매개변수와 두 개의 기하학적 매개변수가 있는 제안된 방정식을 사용하면 설계자가 지루한 정격 곡선 없이도 쉽게 배출을 계산할 수 있습니다.

Keywords

Radial Gate, Spillway, Empirical Equations, Discharge Coefficient, Discharge Rating Curve

Introduction

방사형 수문(또는 테인터 수문)은 특히 수두가 높은 댐에서 홍수 방출을 제어하기 위해 광범위하게 사용되는 오버플로 수문 유형 중 하나입니다. 그것은 강철 곡선 리프, 지지 암 및 슈트 채널의 측벽에 장착된 고정 조인트로 구성됩니다.

게이트는 하류의 물 수요를 충족시키거나 상류 수두를 조절하기 위해 원하는 각도로 피벗 지점을 중심으로 쉽게 회전할 수 있습니다. 방사형 게이트는 다른 유형에 비해 많은 장점이 있습니다. 그들의 가장 놀라운 특성은 게이트를 움직이는 데 필요한 호이스트 힘이 적다는 것입니다.

이는 상류의 물이 게이트에 양력을 가할 수 있는 아치형 덕분에 에너지 소비도 감소합니다. 더욱이, 방사형 게이트는 슬롯이 필요하지 않으며, 시간이 지남에 따라 떠다니는 파편이 그 안에 쌓일 수 있기 때문에 때때로 작동 문제를 일으킬 수 있습니다. 그 활용 분야는 여러 가지가 있지만, 본 연구의 범위는 오지형 여수로에만 수반되는 방사형 게이트로 제한됩니다.

부분적으로 열리면 래디얼 게이트 아래를 통과하는 흐름은 다양한 수리적 및 기하학적 요인의 영향을 받습니다. 따라서 정확한 배출 추정은 어려운 문제입니다. 이 문제는 주로 게이트 근처에서 유선형 ​​동작의 복잡성으로 인해 발생합니다.

유동 영역은 고도의 곡선 유선을 포함하기 때문에 유속에 대한 해석적 솔루션이 불가능합니다. 이러한 이유로 방전은 대부분 실험적 모델에서 조사되었으며 이에 따라 실증적 관계가 도출되었습니다.

방전 방정식은 유선의 총 에너지 변환과 관련된 베르누이 방정식을 기반으로 개발되었습니다. 게이트 바로 아래의 평균 속도는 에너지 방정식에서 추론할 수 있으며, 게이트 개방의 순 면적을 곱하면 체적 유량의 이론적인 값을 얻을 수 있습니다.

그러나 실제로는 바닥 게이트 립과 같은 날카로운 모서리를 유선이 완벽하게 따라갈 수 없고 마찰로 인해 이론 속도가 약간 감소하기 때문에 실제로 분사되는 워터젯의 단면적이 수축합니다.

이러한 효과 때문에 실제 배출량을 추정하기 위해 배출 계수라고 하는 경험적 보정 계수가 방정식에 도입됩니다(Tokyay, 2019). 사례 연구로 터키의 민간 엔지니어링 회사인 TEMELSU(2018)에서 수행한 Lower Kaleköy 댐에 속한 방사형 여수로의 수리학적 계산을 조사했습니다.

그들은 세계적으로 인기 있는 수력 설계 책인 ‘Design of Small Dams’에 제공된 배출 계수 등급 곡선을 사용하여 이러한 계산을 수행했습니다. 이러한 곡선을 기반으로 산출된 토출량 값을 CFD(Computational Fluid Dynamics) 프로그램에서 생성한 수치모델 결과와 비교하였다.

게이트가 부분적으로 열린 경우 이러한 결과 사이에 명백한 불일치가 있는 것으로 관찰되었습니다. 일반적으로 제안된 경험식은 시뮬레이션에 비해 최대 20%까지 유량을 과소평가한다.

본 연구의 목적은 크게 두 가지이다. 첫 번째 목표는 언급된 실험식과 수치해석 간의 불일치 이유를 조사하는 것이고, 두 번째 목표는 어떤 수리적 및 기하학적 매개변수가 방사형 게이트 아래의 배출에 실제로 영향을 미치는지 탐구하는 것입니다.

먼저 METU 수력학 연구소에서 건설한 Lower Kaleköy 댐의 물리적 모델에서 미리 결정된 수문 개구부의 배출 값을 측정했습니다. 이러한 실험에서 얻은 데이터 세트를 수치 모델의 결과와 비교하여 일치 여부를 확인했습니다.

이러한 방식으로 수치적 결과를 검증한 후 원래 수력 조건이 동일하게 유지되는 경우 수치 모델의 게이트 위치, 배수로 형상과 같은 다양한 구성을 시뮬레이션했습니다.

분석은 연구 전반에 걸쳐 모델 규모로 수행되었습니다. 상술한 효과와 관련된 연구 결과, 수치해를 기반으로 새로운 방전방정식을 공식화하였다. 마지막으로 기존 실험식과 새로운 공식에서 얻은 결과를 수치해와 비교하여 정확도를 관찰하였다.

Figure 3.3 General View of the Experimental Setup
Figure 3.3 General View of the Experimental Setup
Figure 3.4 Upstream View of the Radial Gated-Spillway
Figure 3.4 Upstream View of the Radial Gated-Spillway
Figure 3.5 Side View of the Radial Gate During Operation
Figure 3.5 Side View of the Radial Gate During Operation
Figure 4.2 Mesh Detail of the 3D Models
Figure 4.2 Mesh Detail of the 3D Models
Figure 4.7 Mesh Details of the 2D Numerical Model
Figure 4.7 Mesh Details of the 2D Numerical Model
Figure 4.12 Velocity Magnitude Contours of T1, T2, T3 and T4 at the Design Head (d=10cm)
Figure 4.12 Velocity Magnitude Contours of T1, T2, T3 and T4 at the Design Head (d=10cm)
Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study

International Journal of Civil Engineering (2021)Cite this article

Abstract

이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.

그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.

이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.

다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.

저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.

이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.

This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.

Keywords

  • Dam spillway
  • Flip bucket
  • Ski jump
  • Dynamic pressure
  • Numerical modeling
  • FLOW-3D
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10

References

  1. 1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar 
  2. 2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar 
  3. 3.Novak P, Moffat AIB, Nalluri C, Narayanan R (2006) Hydraulics structures. Spon, LondonGoogle Scholar 
  4. 4.Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Co., New YorkGoogle Scholar 
  5. 5.Balloffet A (1961) Pressures on spillway flip buckets. J Hydraul Div ASCE 87(5):87–98. https://doi.org/10.1061/JYCEAJ.0000650Article Google Scholar 
  6. 6.Chen TC, Yu YS (1965) Pressure distribution on spillway flip buckets. J Hydraul Div ASCE 91(2):51–63. https://doi.org/10.1061/JYCEAJ.0001228Article Google Scholar 
  7. 7.Lenau CW, Cassidy JJ (1969) Flow through spillway flip bucket. Journal of the Hydraulics Division ASCE 95(2):633–648. https://doi.org/10.1061/JYCEAJ.0002029Article Google Scholar 
  8. 8.Juon R, Hager WH (2000) Flip bucket without and with deflectors. J Hydraul Eng 126(11):837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)Article Google Scholar 
  9. 9.Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  10. 10.Heller V, Hager WH, Minor HE (2005) Ski jump hydraulics. J Hydraul Eng 131(5):347–355. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)Article