다기능 응용을 위한 Forward Roll Coating 공정의 리브 경함 형상 제어를 통한 선형 주기적 미세구조물의 템플릿 프리 제작
Md Didarul Islam, Himendra Perera, Benjamin Black, Matthew Phillips,Muh-Jang Chen, Greyson Hodges, Allyce Jackman, Yuxuan Liu, Chang-Jin Kim,Mohammed Zikry, Saad Khan, Yong Zhu, Mark Pankow, and Jong Eun Ryu
Abstract
Periodic micro/nanoscale structures from nature have inspired the scientific community to adopt surface design for various applications, including superhydrophobic drag reduction. One primary concern of practical applications of such periodic microstructures remains the scalability of conventional microfabrication technologies. This study demonstrates a simple template-free scalable manufacturing technique to fabricate periodic microstructures by controlling the ribbing defects in the forward roll coating. Viscoelastic composite coating materials are designed for roll-coating using carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), which helps achieve a controllable ribbing with a periodicity of 114–700 µm. Depending on the process parameters, the patterned microstructures transition from the linear alignment to a random structure. The periodic microstructure enables hydrophobicity as the water contact angles of the samples ranged from 128° to 158°. When towed in a static water pool, a model boat coated with the microstructure film shows 7%–8% faster speed than the boat with a flat PDMS film. The CNT addition shows both mechanical and electrical properties improvement. In a mechanical scratch test, the cohesive failure of the CNT-PDMS film occurs in ≈90% higher force than bare PDMS. Moreover, the nonconductive bare PDMS shows sheet resistance of 747.84–22.66 Ω □−1 with 0.5 to 2.5 wt% CNT inclusion.
X. Wang, B. Ding, J. Yu, M. Wang, Nano Today 2011, 6, 510.
Z. Guo, W. Liu, B. L. Su, J. Colloid Interface Sci. 2011, 353, 335.
Q. Xu, W. Zhang, C. Dong, T. S. Sreeprasad, Z. Xia, J. R. Soc. Inter-face 2016, 13, 20160300.
W. L. Min, B. Jiang, P. Jiang, Adv. Mater. 2008, 20, 3914.
C. Peng Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, L. Jiang, P. Guo,Y. Zheng, M. Wen, C. Y. S. Lin, L. Jiang, Adv. Mater. 2012, 24, 2642.
Q. Li, Z. Guo, J. Mater. Chem. A 2018, 6, 13549.
L. Li, B. Yan, J. Yang, L. Chen, H. Zeng, L. Li, B. Yan, H. Zeng,J. Yang, L. Chen, Adv. Mater. 2015, 27, 1294.
J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng, Q. Li, J. Yang,X. Zhang, L. Wang, W. Feng, X. F. Zhang, Q. Li, Adv. Mater. 2021, 33,2004754.
Y. Y. Yan, N. Gao, W. Barthlott, Adv. Colloid Interface Sci. 2011, 169,80.[10] B. Bhushan, Philos. Trans. R. Soc., A 2009, 367, 1445.
C. Zhang, D. A. Mcadams, J. C. Grunlan, Adv. Mater. 2016, 28, 8566.[12] T. Sun, L. Feng, X. Gao, L. Jiang, Acc. Chem. Res. 2005, 38, 644.
P. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
M. Srinivasarao, Chem. Rev. 1999, 99, 1935.
W. Yu, J. Koc, J. A. Finlay, J. L. Clarke, A. S. Clare, A. Rosenhahn,Biointerphases 2019, 14, 051002.
M. D. Ibrahim, S. N. A. Amran, Y. S. Yunos, M. R. A. Rahman,M. Z. Mohtar, L. K. Wong, A. Zulkharnain, Appl. Bionics Biomech.2018, 2018, 7854321.
X. Li, J. Deng, Y. Lu, L. Zhang, J. Sun, F. Wu, Ceram. Int.2019, 45,21759.
G. Liu, Z. Yuan, Z. Qiu, S. Feng, Y. Xie, D. Leng, X. Tian, Ocean Eng.2020, 199, 106962.
X. Feng, P. Sun, G. Tian, X. Feng, P. Sun, G. Tian,Adv. Mater. Inter-faces 2022, 9, 2101616.
M. Xu, A. Grabowski, N. Yu, G. Kerezyte, J. W. Lee, B. R. Pfeifer,C.-J. J. Kim, Phys. Rev. Appl. 2020, 13, 034056.
H. Park, G. Sun, C. J. Kim, J. Fluid Mech. 2014, 747, 722.
M. Xu, N. Yu, J. Kim, C.-J. Kim, J. Fluid Mech. 2021, 908, A6.
B. Liu, Y. He, Y. Fan, X. Wang, Macromol. Rapid Commun. 2006, 27,1859.
H. S. Hwang, N. H. Kim, S. G. Lee, D. Y. Lee, K. Cho, I. Park,ACSAppl. Mater. Interfaces 2011, 3, 2179.
S. Kato, A. Sato, J. Mater. Chem. 2012, 22, 8613.
J. Zou, H. Chen, A. Chunder, Y. Yu, Q. Huo, L. Zhai, Adv. Mater.2008, 20, 3337.
S. Lee, J. Lee, J. Park, Y. Choi, K. Yong, Adv. Mater. 2012, 24, 2418.
L. Zhu, Y. Xiu, J. Xu, P. A. Tamirisa, D. W. Hess, C. P. Wong, Lang-muir 2005, 21, 11208.
X. Hu, L. Chen, T. Ji, Y. Zhang, A. Hu, F. Wu, G. Li, Y. Chen, X. Hu,L. Chen, T. Ji, Y. Zhang, A. Hu, F. Wu, Y. Chen, G. Li, Adv. Mater.Interfaces 2015, 2, 1500445.
X. Liang, J. Lu, T. Zhao, X. Yu, Q. Jiang, Y. Hu, P. Zhu, R. Sun,C. P. Wong, Adv. Mater. Interfaces 2019, 6, 1801635.
S. Chae, K. H. Cho, S. Won, A. Yi, J. Choi, H. H. Lee, J. H. Kim,H. J. Kim, Adv. Mater. Interfaces 2017, 4, 1701099.
M. E. G. Castillo, A. T. Patera, J. Fluid Mech. 1997, 335, 323.
Y. H. Chong, P. H. Gaskell, N. Kapur, Chem. Eng. Sci. 2007, 62, 4138.
T. Bauman, T. Sullivan, S. Middleman, Chem. Eng. Commun. 1982,14, 35.
J. Greener, T. Sullivan, B. Turner, S. Middleman, Chem. Eng.Commun. 1980, 5, 73.
G. A. Zevallos, M. S. Carvalho, M. Pasquali, J. Non-Newtonian FluidMech. 2005, 130, 96.
R. J. Fields, M. F. Ashby, Philos. Mag. 1976, 33, 33.
A. M. Grillet, A. G. Lee, E. S. G. Shaqfeh, J. Fluid Mech. 1999, 399,49.
E. Szczurek, M. Dubar, R. Deltombe, A. Dubois, L. Dubar,J. Mater.Process. Technol. 2009, 209, 3187.
O. Cohu, A. Magnin, J. Rheol. 1995, 39, 767.
C. K. Yang, D. S. H. Wong, T. J. Liu, Polym. Eng. Sci. 2004, 44, 1970.
G. P. Bierwagen, Electrochim. Acta 1992, 37, 1471.
P. Brumm, H. Sauer, E. Dörsam, Colloids Interfaces 2019, 3, 37.
M. Pudas, J. Hagberg, S. Leppävuori, Int. J. Electron. 2005, 92, 251.
M. Yamamura, J. Coat. Technol. Res. 2020, 17, 1447.
J. H. Lee, S. K. Han, J. S. Lee, H. W. Jung, J. C. Hyun, Korea Aust.Rheol. J. 2010, 22, 75.
M. Rosen, M. Vazquez, AIP Conf. Proc. 2007, 913, 14.
D. J. Coyle, C. W. Macosko, L. E. Scriven, J. Rheol. 1990, 34, 615.
F. V. López, L. Pauchard, M. Rosen, M. Rabaud, J. Non-NewtonianFluid Mech. 2002, 103, 123.
D. A. Soules, R. H. Fernando, J. E. Glass, J. Rheol. 1988, 32, 181.
D. J. Coyle, Liquid Film Coating, Springer, Netherlands, Dordrecht1997, pp. 539–571.
A. Shahsavar, M. Bahiraei, Powder Technol. 2017, 318, 441.
S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, A. Youssefi,M.-S. Ekrami-Kakhki, J. Therm. Anal. Calorim. 2016, 123, 81.
B. Jo, D. Banerjee, Mater. Lett. 2014, 122, 212.
S. Mueller, E. W. Llewellin, H. M. Mader, Proc. R. Soc. A: Math. Phys.Eng. Sci. 2010, 466, 1201.
E. Anczurowski, S. G. Mason, Trans. Soc. Rheol. 1968, 12, 209.
C. W. Macosko, Rheology: Principles, Measurements, and Applications,VCH, Weinheim 1994.
R. D. Corder, P. Adhikari, M. C. Burroughs, O. J. Rojas, S. A. Khan,Soft Matter 2020, 16, 8602.
S. A. Jin, E. G. Facchine, S. A. Khan, O. J. Rojas, R. J. Spontak, J. Col-loid Interface Sci. 2021, 599, 207.
S. Wang, H. Tang, J. Guo, K. Wang, Carbohydr. Polym. 2016, 147, 455.
M. Razavi-Nouri, A. Sabet, M. Mohebbi, Polym. Bull. 2020, 77, 5933.
T. V. Neumann, E. G. Facchine, B. Leonardo, S. Khan, M. D. Dickey,Soft Matter 2020, 16, 6608.
Y. Y. Huang, S. V. Ahir, E. M. Terentjev, Phys. Rev. B: Condens. MatterMater. Phys. 2006, 73, 125422.
N. A. Burns, M. A. Naclerio, S. A. Khan, A. Shojaei, S. R. Raghavan,J. Rheol. 2014, 58, 1599.
S. Wu, J. Polym. Sci., Part C: Polym. Symp. 1971, 34, 19.
J. E. Mark, Physical Properties of Polymers Handbook, 2nd ed.,Springer, Berlin 2007.
B. B. Sauer, N. V. Dipaolo, J. Colloid Interface Sci. 1991, 144, 527.
M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey,D. Johnson, J. Colloid Interface Sci. 1990, 137, 11.
A. Dresel, U. Teipel, Colloids Surf., A 2016, 489, 57.
S. C. Roh, E. Y. Choi, Y. S. Choi, C. K. Kim, Polymer 2014, 55, 1527.
S. Nuriel, L. Liu, A. H. Barber, H. D. Wagner, Chem. Phys. Lett. 2005,404, 263.
Y. C. Jeong, S. J. Yang, K. Lee, A.-Y. Kamebuchi, Y. Kamimoto,M. H. Al-Saleh, Mater. Res. Express 2019, 6, 115088.
S.-H. Park, S. Lee, D. Moreira, P. R. Bandaru, I. Han, D.-J. Yun, Sci.Rep. 2015, 5, 15430.
D. J. Coyle, C. W. Macosko, L. E. Scriven, J. Fluid Mech. 1986, 171, 183.
D. J. Coyle, C. W. Macosko, L. E. Scriven, AIChE J. 1987, 33, 741.
M. S. Owens, M. Vinjamur, L. E. Scriven, C. W. Macosko, J. Non-Newtonian Fluid Mech. 2011, 166, 1123.
C. Lee, C. H. Choi, C. J. Kim, Exp. Fluids 2016, 57, 176.
M. P. Schultz, Biofouling 2007, 23, 331.
Y. Xia, P. Cai, Y. Liu, J. Zhu, R. Guo, W. Zhang, Y. Gan, H. Huang,J. Zhang, C. Liang, X. He, Z. Xiao, J. Electron. Mater. 2021, 50, 3084.
B. Earp, J. Simpson, J. Phillips, D. Grbovic, S. Vidmar, J. McCarthy,C. C. Luhrs, Nanomaterials 2019, 9, 491.
D. M. Kalyon, E. Birinci, R. Yazici, B. Karuv, S. Walsh, Polym. Eng.Sci. 2002, 42, 1609.
A. Mora, P. Verma, S. Kumar, Composites, Part B 2020, 183, 107600.
C. Lee, C. J. Kim, Phys. Rev. Lett. 2011, 106, 014502.
M. Xu, C. T. Liu, C. J. Kim, Langmuir 2020, 36, 8193.
D. Li, Scratch Hardness Measurement Using Tribometer, Nanovea,Irvine, CA 2014.
D. Li, Understanding Coating Failures Using Scratch Testing, Nanovea,Irvine, CA 2013.
X. Li, J. Deng, H. Yue, D. Ge, X. Zou, Tribol. Int. 2019, 134, 240.
S. N. Li, Z. R. Yu, B. F. Guo, K. Y. Guo, Y. Li, L. X. Gong, L. Zhao,J. Bae, L. C. Tang, Nano Energy 2021, 90, 106502.
S. W. Dai, Y. L. Gu, L. Zhao, W. Zhang, C. H. Gao, Y. X. Wu,S. C. Shen, C. Zhang, T. T. Kong, Y. T. Li, L. X. Gong, G. D. Zhang,L. C. Tang, Composites, Part B 2021, 225, 109243.
Y. T. Li, W. J. Liu, F. X. Shen, G. D. Zhang, L. X. Gong, L. Zhao,P. Song, J. F. Gao, L. C. Tang, Composites, Part B2022, 238,109907.
H. J. Walls, S. B. Caines, A. M. Sanchez, S. A. Khan, J. Rheol. 2003,47, 847.
F. M. Fowkes, J. Phys. Chem. 1963, 67, 2538.
D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
N. Selvakumar, H. C. Barshilia, K. S. Rajam, J. Appl. Phys. 2010, 108,013505.
A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat,F. Zhou, B. Durso, H. Liu, L. Li, Langmuir 2014, 30, 8598.
A. F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, ColloidsSurf., A 2006, 286, 92.
C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 2012, 9, 671.Adv. Mater. Interfaces 2022, 9, 2201237
Mary Kathryn Walker Florida Institute of Technology, mwalker2022@my.fit.edu
Robert J. Weaver, Ph.D. Associate Professor Ocean Engineering and Marine Sciences Major Advisor
Chungkuk Jin, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences
Kelli Z. Hunsucker, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences
Richard B. Aronson, Ph.D. Professor and Department Head Ocean Engineering and Marine Sciences
Abstract
모노파일은 해상 풍력 터빈 건설에 사용되며 일반적으로 설계 수명은 25~50년입니다. 모노파일은 수명 주기 동안 부식성 염수 환경에 노출되어 구조물을 빠르게 분해하는 전기화학적 산화 공정을 용이하게 합니다. 이 공정은 모노파일을 보호 장벽으로 코팅하고 음극 보호 기술을 구현하여 완화할 수 있습니다.
역사적으로 모노파일 설계자는 파일 내부가 완전히 밀봉되고 전기화학적 부식 공정이 결국 사용 가능한 모든 산소를 소모하여 반응을 중단시킬 것이라고 가정했습니다. 그러나 도관을 위해 파일 벽에 만든 관통부는 종종 누출되어 신선하고 산소화된 물이 내부 공간으로 유입되었습니다.
표준 부식 방지 기술을 보다 효과적으로 적용할 수 있는 산소화된 환경으로 내부 공간을 재고하는 새로운 모노파일 설계가 연구되고 있습니다. 이러한 새로운 모노파일은 간조대 또는 조간대 수준에서 벽에 천공이 있어 신선하고 산소화된 물이 구조물을 통해 흐를 수 있습니다.
이러한 천공은 또한 구조물의 파도 하중을 줄일 수 있습니다. 유체 역학적 하중 감소의 크기는 천공의 크기와 방향에 따라 달라집니다. 이 연구에서는 천공의 크기에 따른 모노파일의 힘 감소 분석에서 전산 유체 역학(CFD)의 적용 가능성을 연구하고 주어진 파도의 접근 각도 변화의 효과를 분석했습니다.
모노파일의 힘 감소를 결정하기 위해 이론적 3D 모델을 제작하여 FLOW-3D® HYDRO를 사용하여 테스트했으며, 천공되지 않은 모노파일을 제어로 사용했습니다. 이론적 데이터를 수집한 후, 동일한 종류의 천공이 있는 물리적 스케일 모델을 파도 탱크를 사용하여 테스트하여 이론적 모델의 타당성을 확인했습니다.
CFD 시뮬레이션은 물리적 모델의 10% 이내, 이전 연구의 5% 이내에 있는 것으로 나타났습니다. 물리적 모델과 시뮬레이션 모델을 검증한 후, 천공의 크기가 파도 하중 감소에 뚜렷한 영향을 미치고 주어진 파도의 접근 각도에 대한 테스트를 수행할 수 있음을 발견했습니다.
접근 각도의 변화는 모노파일을 15°씩 회전하여 시뮬레이션했습니다. 이 논문에 제시된 데이터는 모노파일의 방향이 통계적으로 유의하지 않으며 천공 모노파일의 설계 고려 사항이 되어서는 안 된다는 것을 시사합니다.
또한 파도 하중 감소와 구조적 안정성 사이의 균형을 찾기 위해 천공의 크기와 모양에 대한 연구를 계속하는 것이 좋습니다.
Monopiles are used in the construction of offshore wind turbines and typically have a design life of 25 to 50 years. Over their lifecycle, monopiles are exposed to a corrosive saltwater environment, facilitating a galvanic oxidation process that quickly degrades the structure. This process can be mitigated by coating the monopile in a protective barrier and implementing cathodic protection techniques. Historically, monopile designers assumed the interior of the pile would be completely sealed and the galvanic corrosion process would eventually consume all the available oxygen, halting the reaction. However, penetrations made in the pile wall for conduit often leaked and allowed fresh, oxygenated water to enter the interior space. New monopile designs are being researched that reconsider the interior space as an oxygenated environment where standard corrosion protection techniques can be more effectively applied. These new monopiles have perforations through the wall at intertidal or subtidal levels to allow fresh, oxygenated water to flow through the structure. These perforations can also reduce wave loads on the structure. The magnitude of the hydrodynamic load reduction depends on the size and orientation of the perforations. This research studied the applicability of computational fluid dynamics (CFD) in analysis of force reduction on monopiles in relation to size of a perforation and to analyze the effect of variation in approach angle of a given wave. To determine the force reduction on the monopile, theoretical 3D models were produced and tested using FLOW-3D® HYDRO with an unperforated monopile used as the control. After the theoretical data was collected, physical scale models with the same variety of perforations were tested using a wave tank to determine the validity of the theoretical models. The CFD simulations were found to be within 10% of the physical models and within 5% of previous research. After the physical and simulated models were validated, it was found that the size of the perforations has a distinct impact on the wave load reduction and testing for differing approach angles of a given wave could be conducted. The variation in approach angle was simulated by rotating the monopile in 15° increments. The data presented in this paper suggests that the orientation of the monopile is not statistically significant and should not be a design consideration for perforated monopiles. It is also suggested to continue the study on the size and shape of the perforations to find the balance between wave load reduction and structural stability.
References Andersen, J., Abrahamsen, R., Andersen, T., Andersen, M., Baun, T., & Neubauer, J. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of Marine Science and Engineering, 8(5), 352. https://doi.org/10.3390/jmse8050352 Bakker A. (2008) Lectures on Applied Computational Fluid Dynamics. www.bakker.org. Bustamante, A., Vera-Tudela, L., & Kühn, M. (2015). Evaluation of wind farm effects on fatigue loads of an individual wind turbine at the EnBW baltic 1 offshore wind farm. Journal of Physics: Conference Series, 625, 012020. https://doi.org/10.1088/1742-6596/625/1/012020 Chakrabarti SK. Hydrodynamics of offshore structures. Springer Verlag;1987. Christiansen, R. (2020). Living Docks: Structural Implications and Determination of Force Coefficients of Oyster Mats on Dock Pilings in the Indian River Lagoon [Master’s Thesis, Florida Institute of Technology]. Clauss, G. (1992). Offshore Structures, Volume 1, Conceptual Design and Hydromechanics. Springer, London, UK. COMSOL Multiphysics® v. 6.1. www.comsol.com. COMSOL AB, Stockholm, Sweden. Delwiche, A. & Tavares, I. (2017). Retrofit Strategy using Aluminum Anodes for the Internal section of Windturbine Monopiles. NACE Internation Corrosion Conference & Expo, Paper no. 8955. Det Norske Veritas (2014) Fatigue design of offshore steel structures. Norway. 70 Det Norske Veritas (1989). Rules for the Classification of Fixed Offshore Installations. Technical report, DNV, Hovik, Norway. DNV. (2011). DNV-RP-C203 Fatigue Design of Offshore Steel Structures (tech. rep.). http://www.dnv.com Elger, D. F., LeBret, B. A., Crowe, C. T., & Roberson, J. A. (2022). Engineering fluid mechanics. John Wiley & Sons, Inc. FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin Andersen, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti, Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose, Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli. (2020). Definition of the IEA 15-Megawatt Offshore Reference Wind. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-
https://www.nrel.gov/docs/fy20osti/75698.pdf Goodisman, Jerry (2001). “Observations on Lemon Cells”. Journal of Chemical Education. 78 (4): 516–518. Bibcode:2001JChEd..78..516G. doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks use an incorrect model for a cell with zinc and copper electrodes in an acidic electrolyte Hilbert, L.R. & Black, Anders & Andersen, F. & Mathiesen, Troels. (2011). Inspection and monitoring of corrosion inside monopile foundations for offshore wind turbines. European Corrosion Congress 2011, EUROCORR
3. 2187-2201. H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” in Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi: 10.1109/PROC.1967.5962. 71 Journee, J. M., and W. W. Massie. Offshore Hydrodynamics, First Edition. Delft University of Technology, 2001. Keulegan, G. H., and L. H. Carpenter. “Forces on Cylinders and Plates in an Oscillating Fluid.” Journal of Research of the National Bureau of Standards, vol. 60, no. 5, 1958, pp. 423–40. Lahlou, O. (2019). Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes (thesis). L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cam-bridge University Press, 2007. doi:10.1017/cbo9780511618536. MacCamy, R.C., Fuchs, R.A.: Wave Forces on Piles: a Diffraction Theory. Corps of Engineers Washington DC Beach Erosion Board (1954) M. M. Maher and G. Swain, “The Corrosion and Biofouling Characteristics of Sealed vs. Perforated Offshore Monopile Interiors Experiment Design Comparing Corrosion and Environment Inside Steel Pipe,” OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-4, doi: 10.1109/OCEANS.2018.8604522. Morison, J. R.; O’Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), “The force exerted by surface waves on piles”, Petroleum Transactions, American Institute of Mining Engineers, 189 (5): 149–154, doi:10.2118/950149-G Paluzzi, Alexander John, “Effects of Perforations on Internal Cathodic Protection and Recruitment of Marine Organisms to Steel Pipes” (2023). Theses and Dissertations. 1403. https://repository.fit.edu/etd/1403 Ploeg, J.V.D. (2021). Perforation of monopiles to reduce hydrodynamic loads and enable use in deep waters [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:91eada6f-4f2b-4ae6-be59-2b5ff0590c6f. 72 Shi, W., Zhang, S., Michailides, C., Zhang, L., Zhang, P., & Li, X. (2023). Experimental investigation of the hydrodynamic effects of breaking waves on monopiles in model scale. Journal of Marine Science and Technology, 28(1), 314–325. https://doi.org/10.1007/s00773-023-00926-9 Santamaria Gonzalez, G.A. (2023) Advantages and Challenges of Perforated Monopiles in Deep Water Sites [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:490791b6-a912-4bac-a007-f77012c01107 Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore Structures. Number ISBN 0-442-25402-4. Van Nostrand Reinhold Company Inc., New York. Tang, Y., Shi, W., Ning, D., You, J., & Michailides, C. (2020). Effects of spilling and plunging type breaking waves acting on large monopile offshore wind turbines. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00427 Teja, R. (2021, June 25). Wheatstone bridge: Working, examples, applications. ElectronicsHub. https://www.electronicshub.org/wheatstone-bridge/ The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com Wave gauges. Edinburgh Designs. (2016). http://www4.edesign.co.uk/product/wavegauges/ Wilberts, F. (2017). MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF OFFSHORE WIND TURBINE FOUNDATIONS (Master’s Thesis, Uppsala University).
Tungsten carbide was manufactured by picosecond laser in this study. Shapes of the ablated craters evolved from parabolic-like (less than 10 pulses) to Gaussian-like (more than 500 pulses) as the pulse number increased. The shape changes were closely associated with the discontinuous diameter expansion of ablated crater. To explain these phenomena, two thresholds were identified: an upper threshold of 0.129 J/cm2 and a lower threshold of 0.099 J/cm2. When the laser energy exceeded the upper threshold, ablation occurred under the laser-energy-dominated mode. When the laser energy fell between the upper and lower thresholds, ablation occurred under the cumulative-effect-dominated mode. The transition of ablation mode contributed to the diameter expansion and shape change. In addition, elemental composition varied significantly at the ablated crater and heat-affected zone (HAZ), which were related to the degrees of reactions that occurred at different distances from the laser. Finally, surface hardness decreased from base material (32.52 GPa) to edge of crater (11.59 GPa) due to the escape of unpaired interstitial C atoms from the grain boundaries.
References
1Sun JL, Zhao J, Huang ZF, Yan K, Shen X, Xing J, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Lett. 2020; 12(1): 37.ViewPubMedWeb of Science®Google Scholar
2Katiyar PK. A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: a mechanistic approach. Int J Refract Met Hard Mat. 2020; 92: 18.ViewCASWeb of Science®Google Scholar
3Sun JL, Zhao J, Gong F, Ni XY, Li ZL. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State Mat Sci. 2019; 44(3): 211–238.ViewCASWeb of Science®Google Scholar
4Lopez JML, Bakrania A, Coupland J, Marimuthu S. Droplet assisted laser micromachining of hard ceramics. J Eur Ceram Soc. 2016; 36(11): 2689–2694.ViewWeb of Science®Google Scholar
5Chen FJ, Yin SH, Huang H, Homori H, Wang Y, Fan YF, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int J Mach Tools Manuf. 2010; 50(5): 480–486.ViewWeb of Science®Google Scholar
6Guo B, Zhao QL. On-machine dry electric discharge truing of diamond wheels for micro-structured surfaces grinding. Int J Mach Tools Manuf. 2015; 88: 62–70.ViewWeb of Science®Google Scholar
7Sciti D, Zoli L, Silvestroni L, Cecere A, Di Martino GD, Savino R. Design, fabrication and high velocity oxy-fuel torch tests of a Cf-ZrB2-fiber nozzle to evaluate its potential in rocket motors. Mater Des. 2016; 109: 709–717.ViewCASWeb of Science®Google Scholar
8Jiang G, Minhao G, Zhiguang Z, Xiaohua L, Nai MLS, Jun W. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater Des. 2018; 153: 211–220.ViewWeb of Science®Google Scholar
10Ali B, Litvinyuk IV, Rybachuk M. Femtosecond laser micromachining of diamond: current research status, applications and challenges. Carbon. 2021; 179: 209–226.ViewCASWeb of Science®Google Scholar
11Sansone M, De Bonis A, Santagata A, Rau JV, Galasso A, Teghil R. Pulsed laser ablation and deposition of niobium carbide. Appl Surf Sci. 2016; 374: 112–116.ViewCASWeb of Science®Google Scholar
12Wang HP, Guan YC, Zheng HY, Hong MH. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing. Appl Surf Sci. 2019; 471: 347–354.ViewCASWeb of Science®Google Scholar
13Jiangyou L, Zhijian H, Caixia Z, Xiaozhu X, Zuo C, Peiyang Z, et al. Hierarchical micro- and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance. Mater Des. 2018; 155: 185–193.ViewWeb of Science®Google Scholar
14Zemaitis A, Gecys P, Barkauskas M, Raciukaitis G, Gedvilas M. Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs-ps) pulses. Sci Rep. 2019; 9: 8.ViewPubMedWeb of Science®Google Scholar
15Basler C, Brandenburg A, Michalik K, Mory D. Comparison of laser pulse duration for the spatially resolved measurement of coating thickness with laser-induced breakdown spectroscopy. Sensors. 2019; 19(19): 10.ViewWeb of Science®Google Scholar
16Qin Z, Xiang H, Liu J, Zeng X. High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling. Mater Des. 2019; 184:108200.ViewCASWeb of Science®Google Scholar
17Eberle G, Wegener K. Ablation study of WC and PCD composites using 10 picosecond and 1 nanosecond pulse durations at green and infrared wavelengths. In: 8th International Conference on Laser Assisted Net Shape Engineering (LANE); 2014 Sep 08–11, Furth, Germany. Amsterdam: Elsevier Science; 2014. p. 951–962.Google Scholar
18Boerner P, Zandonadi G, Eberle G, Wegener K. Experimental and modelling investigations into the laser ablation with picosecond pulses at second harmonics. In: Conference on laser-based micro- and nanoprocessing IX; 2015 Feb 10–12 San Francisco, CA. Bellingham: SPIE, the international society for optics and photonics; 2015. p. 19–31.Google Scholar
19Urbina JPC, Daniel C, Emmelmann C. Experimental and analytical investigation of cemented tungsten carbide ultra-short pulse laser ablation. In: 7th International WLT conference on Lasers in Manufacturing (LiM), 2013 May 13–16, Munich, Germany. Amsterdam: Elsevier Science; 2013. p. 752–758.Google Scholar
20Stankevic V, Cermak A, Mikalauskas S, Kozmin P, Indrisiunas S, Raciukaitis G. Processing of ultra-hard materials with picosecond pulses: from research work to industrial applications. J Laser Appl. 2018; 30(3): 7.ViewWeb of Science®Google Scholar
21Lickschat P, Metzner D, Weissmantel S. Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide. Int J Adv Manuf Technol. 2020; 109(3–4): 1167–1175.ViewWeb of Science®Google Scholar
22Ouyang JL, Mativenga PT, Liu Z, Li L. Energy consumption and process characteristics of picosecond laser de-coating of cutting tools. J Cleaner Prod. 2021; 290: 10.ViewWeb of Science®Google Scholar
23Metzner D, Lickschat P, Weissmantel S. Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: ablation mechanisms and heat accumulation. Appl Phys A-Mater Sci Process. 2019; 125(7): 8.ViewWeb of Science®Google Scholar
24Marimuthu S, Dunleavey J, Smith B. Picosecond laser machining of tungsten carbide. Int J Refract Met Hard Mat. 2020; 92: 9.ViewWeb of Science®Google Scholar
25Mensink K, Penilla EH, Martinez-Torres P, Cuando-Espitia N, Mathaudhu S, Aguilar G. High repetition rate femtosecond laser heat accumulation and ablation thresholds in cobalt-binder and binderless tungsten carbides. J Mater Process Technol. 2019; 266: 388–396.ViewCASWeb of Science®Google Scholar
26Miley G, Osman F, Hora H, Badziak J, Rohlena K, Jungwirth K, et al. Plasma block acceleration by ps-TW laser irradiation. In High-Power Laser Ablation V: SPIE; 2004. p. 973–986.Google Scholar
27Alidokht SA, Yue S, Chromik RR. Effect of WC morphology on dry sliding wear behavior of cold-sprayed Ni–WC composite coatings. Surf Coat Technol. 2019; 357: 849–863.ViewCASWeb of Science®Google Scholar
28Gao D, Li YH. An improved Gaussian laser beam probability distribution simulation based on Monte Carlo method. Mod Phys Lett B. 2020; 34(36): 9.ViewWeb of Science®Google Scholar
29Garcia-Lechuga M, Puerto D, Fuentes-Edfuf Y, Solis J, Siegel J. Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures. ACS Photonics. 2016; 3(10): 1961–1967.ViewCASWeb of Science®Google Scholar
30Bashir S, Rafique MS, Nathala CSR, Ajami A, Husinsky W. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium. Radiat Eff Defects Solids. 2015; 170(5): 414–428.ViewCASWeb of Science®Google Scholar
31Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, Shoja-Razavi R. Kinetics and oxidation behavior of laser clad WC–Co and Ni/WC–Co coatings. Ceram Int. 2018; 44(11): 12805–12814.ViewCASWeb of Science®Google Scholar
32Petisme MVG, Johansson SAE, Wahnstrom G. A computational study of interfaces in WC–Co cemented carbides. Model Simul Mater Sci Eng. 2015; 23(4): 29.ViewWeb of Science®Google Scholar
33Kornaus K, Raczka M, Gubernat A, Zientara D. Pressureless sintering of binderless tungsten carbide. J Eur Ceram Soc. 2017; 37(15): 4567–4576.ViewCASWeb of Science®Google Scholar
34Kong XS, You YW, Xia JH, Liu CS, Fang QF, Luo GN, et al. First principles study of intrinsic defects in hexagonal tungsten carbide. J Nucl Mater. 2010; 406(3): 323–329.ViewCASWeb of Science®Google Scholar
35Wu X, Shen JY, Jiang F, Wu HR, Li L. Study on the oxidation of WC–Co cemented carbide under different conditions. Int J Refract Met Hard Mat. 2021; 94: 8.ViewWeb of Science®Google Scholar
37Juslin N, Erhart P, Traskelin P, Nord J, Henriksson KOE, Nordlund K, et al. Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J Appl Phys. 2005; 98(12): 12.ViewWeb of Science®Google Scholar
38Sevy A, Huffaker RF, Morse MD. Bond dissociation energies of tungsten molecules: WC, WSi, WS, WSe, and WCl. J Phys Chem A. 2017; 121(49): 9446–9457.ViewCASPubMedWeb of Science®Google Scholar
39Burr PA, Oliver SX. Formation and migration of point defects in tungsten carbide: unveiling the sluggish bulk self-diffusivity of WC. J Eur Ceram Soc. 2019; 39(2–3): 165–172.ViewCASWeb of Science®Google Scholar
40Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. J Alloys Compd. 2013; 577: S404–S407.ViewCASWeb of Science®Google Scholar
Formation of a quasi-steady molten pool is one of the necessary conditions for achieving excellent quality in many laser processes. The influences of distribution characteristics of powder sizes on quasi-stability of the molten pool shape during single-track powder bed fusion-laser beam (PBF-LB) of molybdenum and the underlying mechanism were investigated.
The feasibility of improving quasi-stability of the molten pool shape by increasing the laser energy conduction effect and preheating was explored. Results show that an increase in the range of powder sizes does not significantly influence the average laser energy conduction effect in PBF-LB process. Whereas, it intensifies fluctuations of the transient laser energy conduction effect.
It also leads to fluctuations of the replenishment rate of metals, difficulty in formation of the quasi-steady molten pool, and increased probability of incomplete fusion and pores defects. As the laser power rises, the laser energy conduction effect increases, which improves the quasi-stability of the molten pool shape. When increasing the laser scanning speed, the laser energy conduction effect grows.
However, because the molten pool size reduces due to the decreased heat input, the replenishment rate of metals of the molten pool fluctuates more obviously and the quasi-stability of the molten pool shape gets worse. On the whole, the laser energy conduction effect in the PBF-LB process of Mo is low (20-40%). The main factor that affects quasi-stability of the molten pool shape is the amount of energy input per unit length of the scanning path, rather than the laser energy conduction effect.
Moreover, substrate preheating can not only enlarge the molten pool size, particularly the length, but also reduce non-uniformity and discontinuity of surface morphologies of clad metals and inhibit incomplete fusion and pores defects.
준안정 용융 풀의 형성은 많은 레이저 공정에서 우수한 품질을 달성하는 데 필요한 조건 중 하나입니다. 몰리브덴의 단일 트랙 분말층 융합 레이저 빔(PBF-LB) 동안 용융 풀 형태의 준안정성에 대한 분말 크기 분포 특성의 영향과 그 기본 메커니즘을 조사했습니다.
레이저 에너지 전도 효과와 예열을 증가시켜 용융 풀 형태의 준안정성을 향상시키는 타당성을 조사했습니다. 결과는 분말 크기 범위의 증가가 PBF-LB 공정의 평균 레이저 에너지 전도 효과에 큰 영향을 미치지 않음을 보여줍니다. 반면, 과도 레이저 에너지 전도 효과의 변동이 강화됩니다.
이는 또한 금속 보충 속도의 변동, 준안정 용융 풀 형성의 어려움, 불완전 융합 및 기공 결함 가능성 증가로 이어집니다. 레이저 출력이 증가함에 따라 레이저 에너지 전도 효과가 증가하여 용융 풀 모양의 준 안정성이 향상됩니다. 레이저 스캐닝 속도를 높이면 레이저 에너지 전도 효과가 커집니다.
그러나 열 입력 감소로 인해 용융 풀 크기가 줄어들기 때문에 용융 풀의 금속 보충 속도의 변동이 더욱 뚜렷해지고 용융 풀 형태의 준안정성이 악화됩니다.
전체적으로 Mo의 PBF-LB 공정에서 레이저 에너지 전도 효과는 낮다(20~40%). 용융 풀 형상의 준안정성에 영향을 미치는 주요 요인은 레이저 에너지 전도 효과보다는 스캐닝 경로의 단위 길이당 입력되는 에너지의 양입니다.
또한 기판 예열은 용융 풀 크기, 특히 길이를 확대할 수 있을 뿐만 아니라 클래드 금속 표면 형태의 불균일성과 불연속성을 줄이고 불완전한 융합 및 기공 결함을 억제합니다.
M. Sharifitabar, F.O. Sadeq, and M.S. Afarani, Synthesis and Kinetic Study of Mo (Si, Al)2 Coatings on the Surface of Molybdenum Through Hot Dipping into a Commercial Al-12 wt.% Si Alloy Melt, Surf. Interfaces, 2021, 24, p 101044.ArticleCASGoogle Scholar
Z. Zhang, X. Li, and H. Dong, Response of a Molybdenum Alloy to Plasma Nitriding, Int. J. Refract. Met. Hard Mater., 2018, 72, p 388–395.ArticleCASGoogle Scholar
C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang, Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions, Sci. Technol. Adv. Mater., 2018, 19(1), p 746–758.ArticleCASGoogle Scholar
C. Tan, F. Weng, S. Sui, Y. Chew, and G. Bi, Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials, Int. J. Mach. Tools Manuf, 2021, 170, p 103804.ArticleGoogle Scholar
S.A. Khairallah and A. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder, J. Mater. Process. Technol., 2014, 214(11), p 2627–2636.ArticleCASGoogle Scholar
S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45.ArticleCASADSGoogle Scholar
K.Q. Le, C. Tang, and C.H. Wong, On the Study of Keyhole-Mode Melting in Selective Laser Melting Process, Int. J. Therm. Sci., 2019, 145, p 105992.ArticleGoogle Scholar
M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel, Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation, Addit. Manuf., 2019, 30, p 100835.CASGoogle Scholar
B. Liu, G. Fang, L. Lei, and X. Yan, Predicting the Porosity Defects in Selective Laser Melting (SLM) by Molten Pool Geometry, Int. J. Mech. Sci., 2022, 228, p 107478.ArticleGoogle Scholar
W. Ge, J.Y.H. Fuh, and S.J. Na, Numerical Modelling of Keyhole Formation in Selective Laser Melting of Ti6Al4V, J. Manuf. Process., 2021, 62, p 646–654.ArticleGoogle Scholar
W. Ge, S. Han, S.J. Na, and J.Y.H. Fuh, Numerical Modelling of Surface Morphology in Selective Laser Melting, Comput. Mater. Sci., 2021, 186, p 110062.ArticleGoogle Scholar
Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang, Numerical Modeling of Melt-Pool Behavior In Selective Laser Melting with Random Powder Distribution and Experimental Validation, J. Mater. Process. Technol., 2018, 254, p 72–78.ArticleGoogle Scholar
C. Tang, J.L. Tan, and C.H. Wong, A Numerical Investigation on the Physical Mechanisms of Single Track Defects in Selective Laser Melting, Int. J. Heat Mass Transf., 2018, 126, p 957–968.ArticleCASGoogle Scholar
X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, Balling Phenomena in Selective Laser Melted Tungsten, J. Mater. Process. Technol., 2015, 222, p 33–42.ArticleCASGoogle Scholar
J.D.K. Monroy and J. Ciurana, Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process, Procedia Eng., 2013, 63, p 361–369.ArticleCASGoogle Scholar
L. Kaserer, J. Braun, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, I. Letofsky-Papst, H. Kestler, and G. Leichtfried, Fully Dense and Crack Free Molybdenum Manufactured by Selective Laser Melting Through Alloying with Carbon, Int. J. Refract. Met. Hard Mater., 2019, 84, p 105000.ArticleCASGoogle Scholar
T.B.T. Majumdar, E.M.C. Ribeiro, J.E. Frith, and N. Birbilis, Understanding the Effects of PBF Process Parameter Interplay on Ti-6Al-4V Surface Properties, PLoS ONE, 2019, 14, p e0221198.ArticleCASPubMedPubMed CentralGoogle Scholar
A.K.J.-R. Poulin, P. Terriault, and V. Brailovski, Long Fatigue Crack Propagation Behavior of Laser Powder Bed-Fused Inconel 625 with Intentionally- Seeded Porosity, Int. J. Fatigue, 2019, 127, p 144–156.ArticleCASGoogle Scholar
P. Rebesan, M. Ballan, M. Bonesso, A. Campagnolo, S. Corradetti, R. Dima, C. Gennari, G.A. Longo, S. Mancin, M. Manzolaro, G. Meneghetti, A. Pepato, E. Visconti, and M. Vedani, Pure Molybdenum Manufactured by Laser Powder Bed Fusion: Thermal and Mechanical Characterization at Room and High Temperature, Addit. Manuf., 2021, 47, p 102277.CASGoogle Scholar
D. Wang, C. Yu, J. Ma, W. Liu, and Z. Shen, Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum, Mater. Des., 2017, 129, p 44–52.ArticleCASGoogle Scholar
K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl, Multi-physical Simulation of Selective Laser Melting, Met. Powder Rep., 2017, 72, p 331–338.ArticleGoogle Scholar
D.G.J. Zhang, Y. Yang, H. Zhang, H. Chen, D. Dai, and K. Lin, Influence of Particle Size on Laser Absorption and Scanning Track Formation Mechanisms of Pure Tungsten Powder During Selective Laser Melting, Engineering, 2019, 5, p 736–745.ArticleCASGoogle Scholar
L. Caprio, A.G. Demir, and B. Previtali, Influence of Pulsed and Continuous Wave Emission on Melting Efficiency in Selective Laser Melting, J. Mater. Process. Technol., 2019, 266, p 429–441.ArticleCASGoogle Scholar
D. Gu, M. Xia, and D. Dai, On the Role of Powder Flow Behavior in Fluid Thermodynamics and Laser Processability of Ni-based Composites by Selective Laser Melting, Int. J. Mach. Tools Manuf, 2018, 137, p 67–78.ArticleGoogle Scholar
W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212(1), p 262–275.ArticleCASGoogle Scholar
S.W. Han, J. Ahn, and S.J. Na, A Study on Ray Tracing Method for CFD Simulations of Laser Keyhole Welding: Progressive Search Method, Weld. World, 2016, 60, p 247–258.ArticleCASGoogle Scholar
W. Ge, S. Han, Y. Fang, J. Cheon, and S.J. Na, Mechanism of Surface Morphology in Electron Beam Melting of Ti6Al4V Based on Computational Flow Patterns, Appl. Surf. Sci., 2017, 419, p 150–158.ArticleCASADSGoogle Scholar
W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212, p 262–275.ArticleCASGoogle Scholar
W. Ma, J. Ning, L.-J. Zhang, and S.-J. Na, Regulation of Microstructures and Properties of Molybdenum-Silicon-Boron Alloy Subjected to Selective Laser Melting, J. Manuf. Process., 2021, 69, p 593–601.ArticleGoogle Scholar
S. Haeri, Y. Wang, O. Ghita, and J. Sun, Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing, Powder Technol., 2016, 306, p 45–54.ArticleGoogle Scholar
D. Yao, X. Liu, J. Wang, W. Fan, M. Li, H. Fu, H. Zhang, X. Yang, Q. Zou, and X. An, Numerical Insights on the Spreading of Practical 316 L Stainless Steel Powder in SLM Additive Manufacturing, Powder Technol., 2021, 390, p 197–208.ArticleCASGoogle Scholar
S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, Powders for Powder Bed Fusion: A Review, Prog. Addit. Manuf., 2019, 4, p 383–397.ArticleGoogle Scholar
X. Luo, C. Yang, Z.Q. Fu, L.H. Liu, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, and Y.Y. Li, Achieving Ultrahigh-Strength in Beta-Type Titanium Alloy by Controlling the Melt Pool Mode in Selective Laser Melting, Mater. Sci. Eng. A, 2021, 823, p 141731.ArticleCASGoogle Scholar
J. Braun, L. Kaserer, J. Stajkovic, K.-H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, and G. Leichtfried, Molybdenum and Tungsten Manufactured by Selective Laser Melting: Analysis of Defect Structure and Solidification Mechanisms, Int. J. Refract. Met. Hard Mater., 2019, 84, p 104999.ArticleCASGoogle Scholar
L. Kaserera, J. Brauna, J. Stajkovica, K.-H. Leitzb, B. Tabernigb, P. Singerb, I. Letofsky-Papstc, H. Kestlerb, and G. Leichtfried, Fully Dense and Crack Free Molybdenum Manufactured by Selective Laser Melting Through Alloying with Carbon, Int. J. Refract Metal Hard Mater., 2019, 84, p 105000.ArticleGoogle Scholar
Microstructural defects in laser powder bed fusion (LPBF) metallic materials are correlated with processing parameters. A multi-physics model and a crystal plasticity framework are employed to predict microstructure growth in molten pools and assess the impact of manufacturing defects on plastic damage parameters. Criteria for optimising the LPBF process are identified, addressing microstructural defects and tensile properties of LPBF Hastelloy X at various volumetric energy densities (VED). The results show that higher VED levels foster a specific Goss texture {110} <001>, with irregular lack of fusion defects significantly affecting plastic damage, especially near the material surface. A critical threshold emerges between manufacturing defects and grain sizes in plastic strain accumulation. The optimal processing window for superior Hastelloy X mechanical properties ranges from 43 to 53 J/mm3 . This work accelerates the development of superior strengthductility alloys via LPBF, streamlining the trial-and-error process and reducing associated costs.
References [1] DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10. 1016/j.pmatsci.2017.10.001 [2] Mostafaei A, Ghiaasiaan R, Ho IT, et al. Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship. Prog Mater Sci. 2023;136:101108. doi:10.1016/j.pmatsci. 2023.101108 [3] Akande IG, Oluwole OO, Fayomi OSI, et al. Overview of mechanical, microstructural, oxidation properties and high-temperature applications of superalloys. Mater Today Proc. 2021;43:2222–2231. doi:10.1016/j.matpr. 2020.12.523 [4] Sanchez S, Smith P, Xu Z, et al. Powder bed fusion of nickel-based superalloys: a review. Int J Machine Tools Manuf. 2021;165:103729. doi:10.1016/j.ijmachtools.2021. 103729 [5] Xie Y, Teng Q, Shen M, et al. The role of overlap region width in multi-laser powder bed fusion of Hastelloy X superalloy. Virtual Phys Prototyp. 2023;18(1):e2142802. doi:10.1080/17452759.2022.2142802 [6] Yuan W, Chen H, Cheng T, et al. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment. Mater Des. 2020;189:108542. doi:10.1016/j.matdes.2020. 108542 [7] He X, Kong D, Zhou Y, et al. Powder recycling effects on porosity development and mechanical properties of Hastelloy X alloy during laser powder bed fusion process. Addit Manuf. 2022;55:102840. doi:10.1016/j. addma.2022.102840 [8] Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a stateof-the-art review. Prog Mater Sci. 2021;117:100724. doi:10.1016/j.pmatsci.2020.100724 [9] Pourbabak S, Montero-Sistiaga ML, Schryvers D, et al. Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by selective laser melting. Mater Charact. 2019;153:366–371. doi:10.1016/j. matchar.2019.05.024 [10] He X, Wang L, Kong D, et al. Recrystallization effect on surface passivation of Hastelloy X alloy fabricated by laser powder bed fusion. J Mater Sci Technol. 2023;163:245–258. doi:https://doi.org/10.1016j.jmst. 2023.06.003. [11] Sabzi HE, Maeng S, Liang X, et al. Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation. Addit Manuf. 2020;34:101360. doi:10.1016/j.addma.2020.101360 [12] Yu C, Chen N, Li R, et al. Selective laser melting of GH3536 superalloy: microstructure, mechanical properties, and hydrocyclone manufacturing. Adv Powder Mater. 2023:
doi:10.1016/j.apmate.2023.100134 [13] Ye C, Zhang C, Zhao J, et al. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review. J Mater Eng Perform. 2021;30(9):6407–6425. doi:10. 1007/s11665-021-06021-7 [14] Zhang W, Zheng Y, Liu F, et al. Effect of solution temperature on the microstructure and mechanical properties of Hastelloy X superalloy fabricated by laser directed energy deposition. Mater Sci Eng A. 2021;820:141537. doi:10. 1016/j.msea.2021.141537 [15] Lehmann T, Rose D, Ranjbar E, et al. Large-scale metal additive manufacturing: a holistic review of the state of the art and challenges. Int Mater Rev. 2021;67(4):410–459. doi:10.1080/09506608.2021.1971427
[16] Wu S, Hu Y, Yang B, et al. Review on defect characterization and structural integrity assessment method of additively manufactured materials. J Mech Eng. 2021;57 (22):3–34. doi:10.3901/JME.2021.22.003
[17] Keller C, Mokhtari M, Vieille B, et al. Influence of a rescanning strategy with different laser powers on the microstructure and mechanical properties of Hastelloy X elaborated by powder bed fusion. Mater Sci Eng A. 2021;803:140474. doi:10.1016/j.msea.2020.140474
[18] Keshavarzkermani A, Marzbanrad E, Esmaeilizadeh R,et al. An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Optics & Laser Technol. 2019;116:83–91. doi:10.1016/j.optlastec. 2019.03.012
[19] Watring DS, Benzing JT, Hrabe N, et al. Effects of laserenergy density and build orientation on the structureproperty relationships in as-built Inconel 718 manufactured by laser powder bed fusion. Addit Manuf. 2020;36:101425. doi:10.1016/j.addma.2020.101425
[20] Xiao H, Liu X, Xiao W, et al. Influence of molten-pool cooling rate on solidification structure and mechanical property of laser additive manufactured Inconel 718. J Mater Res Technol. 2022;19:4404–4416. doi:10.1016/j. jmrt.2022.06.162
[21] Wang J, Zhu R, Liu Y, et al. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Adv Powder Mater. 2023;2(4):100137. doi:10.1016/j. apmate.2023.100137
[22] Li Z, Deng Y, Yao B, et al. Effect of laser scan speed on pool size and densification of selective laser melted CoCr alloy under constant laser energy density. Laser Optoelectronics Progress. 2022;59(7):0736001. doi:10. 3788/LOP202259.0736001
[23] Zhang J, Yuan W, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv Powder Mater. 2022;1 (4):100035. doi:10.1016/j.apmate.2022.100035
[24] Rui H, Meiping W, Chen C, et al. Effects of laser energy density on microstructure and corrosion resistance of FeCrNiMnAl high entropy alloy coating. Optics & Laser Technol. 2022;152:108188. doi:https://doi.org/10.1016j. optlastec.2022.108188.
[25] Zhao Y, Sun W, Wang Q, et al. Effect of beam energy density characteristics on microstructure and mechanical properties of nickel-based alloys manufactured by laser directed energy deposition. J Mater Process Technol. 2023;319:118074. doi:10.1016/j.jmatprotec.2023.118074
[26] Tan P, Zhou M, Tang C, et al. Multiphysics modelling of powder bed fusion for polymers. Virtual Phys Prototyp. 2023;18(1):e2257191. doi:10.1080/17452759.2023. 2257191
[27] Tan P, Shen F, Shian Tey W, et al. A numerical study on the packing quality of fibre/polymer composite powder for powder bed fusion additive manufacturing. Virtual Phys Prototyp. 2021;16(sup1):S1–S18. doi:10.1080/17452759. 2021.1922965
[28] Kusano M, Watanabe M. Microstructure control of Hastelloy X by geometry-induced elevation of sample temperature during a laser powder bed fusion process. Mater Des. 2022;222:111016. doi:10.1016/j.matdes.2022. 111016
[29] Lee YS, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf. 2016;12:178–188. doi:10.1016/j.addma.2016.05.003
[30] Lv F, Liang HX, Xie DQ, et al. On the role of laser in situ remelting into pore elimination of Ti-6Al-4V components fabricated by selective laser melting. J Alloys Compd. 2021;854:156866. doi:10.1016/j.jallcom.2020.156866
[31] Prithivirajan V, Sangid MD. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity. Mater Des. 2018;150:139–153. doi:10.1016/j.matdes.2018.04.022
[32] Huang Y. A user-material subroutine incroporating single crystal plasticity in the ABAQUS finite element program. Cambridge: Harvard University Press; 1991.
[33] Pilgar CM, Fernandez AM, Lucarini S, et al. Effect of printing direction and thickness on the mechanical behavior of SLM fabricated Hastelloy-X. Int J Plasticity. 2022;153:103250. doi:10.1016/j.ijplas.2022.103250
[34] Garlea E, Choo H, Sluss CC, et al. Variation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. Mater Sci Eng A. 2019;763:138032. doi:10.1016/j. msea.2019.138032
[35] Sanchez-Mata O, Wang X, Muñiz-Lerma JA, et al. Dependence of mechanical properties on crystallographic orientation in nickel-based superalloy Hastelloy X fabricated by laser powder bed fusion. J Alloys Compd. 2021;865:158868. doi:10.1016/j.jallcom.2021. 158868
[36] Gu H, Wei C, Li L, et al. Multi-physics modelling of molten
pool development and track formation in multi-track, multi-layer and multi-material selective laser melting. Int J Heat Mass Transf. 2020;151:119458. doi:10.1016/j. ijheatmasstransfer.2020.119458
[37] Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 2019;176:199–210. doi:10.1016/j.actamat. 2019.07.005
[38] Wang S, Ning J, Zhu L, et al. Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater Today. 2022;59:133–160. doi:10.1016/j.mattod.2022.08.014
[39] Guo Y, Collins DM, Tarleton E, et al. Measurements of stress fields near a grain boundary: exploring blocked arrays of dislocations in 3D. Acta Mater. 2015;96:229–doi:10.1016/j.actamat.2015.05.041 [40] Kong D, Dong C, Ni X, et al. Hetero-deformation-induced stress in additively manufactured 316L stainless steel. Mater Res Lett. 2020;8(10):390–397. doi:10.1080/ 21663831.2020.1775149
Review on Blood Flow Dynamics in Lab-on-a-Chip Systems: An Engineering Perspective
Bin-Jie Lai
,
Li-Tao Zhu
,
Zhe Chen*
,
Bo Ouyang*
, and
Zheng-Hong Luo*
Abstract
다양한 수송 메커니즘 하에서, “LOC(lab-on-a-chip)” 시스템에서 유동 전단 속도 조건과 밀접한 관련이 있는 혈류 역학은 다양한 수송 현상을 초래하는 것으로 밝혀졌습니다.
본 연구는 적혈구의 동적 혈액 점도 및 탄성 거동과 같은 점탄성 특성의 역할을 통해 LOC 시스템의 혈류 패턴을 조사합니다. 모세관 및 전기삼투압의 주요 매개변수를 통해 LOC 시스템의 혈액 수송 현상에 대한 연구는 실험적, 이론적 및 수많은 수치적 접근 방식을 통해 제공됩니다.
전기 삼투압 점탄성 흐름에 의해 유발되는 교란은 특히 향후 연구 기회를 위해 혈액 및 기타 점탄성 유체를 취급하는 LOC 장치의 혼합 및 분리 기능 향상에 논의되고 적용됩니다. 또한, 본 연구는 보다 정확하고 단순화된 혈류 모델에 대한 요구와 전기역학 효과 하에서 점탄성 유체 흐름에 대한 수치 연구에 대한 강조와 같은 LOC 시스템 하에서 혈류 역학의 수치 모델링의 문제를 식별합니다.
전기역학 현상을 연구하는 동안 제타 전위 조건에 대한 보다 실용적인 가정도 강조됩니다. 본 연구는 모세관 및 전기삼투압에 의해 구동되는 미세유체 시스템의 혈류 역학에 대한 포괄적이고 학제적인 관점을 제공하는 것을 목표로 한다.
1.1. Microfluidic Flow in Lab-on-a-Chip (LOC) Systems
Over the past several decades, the ability to control and utilize fluid flow patterns at microscales has gained considerable interest across a myriad of scientific and engineering disciplines, leading to growing interest in scientific research of microfluidics.
(1) Microfluidics, an interdisciplinary field that straddles physics, engineering, and biotechnology, is dedicated to the behavior, precise control, and manipulation of fluids geometrically constrained to a small, typically submillimeter, scale.
(2) The engineering community has increasingly focused on microfluidics, exploring different driving forces to enhance working fluid transport, with the aim of accurately and efficiently describing, controlling, designing, and applying microfluidic flow principles and transport phenomena, particularly for miniaturized applications.
(3) This attention has chiefly been fueled by the potential to revolutionize diagnostic and therapeutic techniques in the biomedical and pharmaceutical sectorsUnder various driving forces in microfluidic flows, intriguing transport phenomena have bolstered confidence in sustainable and efficient applications in fields such as pharmaceutical, biochemical, and environmental science. The “lab-on-a-chip” (LOC) system harnesses microfluidic flow to enable fluid processing and the execution of laboratory tasks on a chip-sized scale. LOC systems have played a vital role in the miniaturization of laboratory operations such as mixing, chemical reaction, separation, flow control, and detection on small devices, where a wide variety of fluids is adapted. Biological fluid flow like blood and other viscoelastic fluids are notably studied among the many working fluids commonly utilized by LOC systems, owing to the optimization in small fluid sample volumed, rapid response times, precise control, and easy manipulation of flow patterns offered by the system under various driving forces.
(4)The driving forces in blood flow can be categorized as passive or active transport mechanisms and, in some cases, both. Under various transport mechanisms, the unique design of microchannels enables different functionalities in driving, mixing, separating, and diagnosing blood and drug delivery in the blood.
(5) Understanding and manipulating these driving forces are crucial for optimizing the performance of a LOC system. Such knowledge presents the opportunity to achieve higher efficiency and reliability in addressing cellular level challenges in medical diagnostics, forensic studies, cancer detection, and other fundamental research areas, for applications of point-of-care (POC) devices.
1.2. Engineering Approach of Microfluidic Transport Phenomena in LOC Systems
Different transport mechanisms exhibit unique properties at submillimeter length scales in microfluidic devices, leading to significant transport phenomena that differ from those of macroscale flows. An in-depth understanding of these unique transport phenomena under microfluidic systems is often required in fluidic mechanics to fully harness the potential functionality of a LOC system to obtain systematically designed and precisely controlled transport of microfluids under their respective driving force. Fluid mechanics is considered a vital component in chemical engineering, enabling the analysis of fluid behaviors in various unit designs, ranging from large-scale reactors to separation units. Transport phenomena in fluid mechanics provide a conceptual framework for analytically and descriptively explaining why and how experimental results and physiological phenomena occur. The Navier–Stokes (N–S) equation, along with other governing equations, is often adapted to accurately describe fluid dynamics by accounting for pressure, surface properties, velocity, and temperature variations over space and time. In addition, limiting factors and nonidealities for these governing equations should be considered to impose corrections for empirical consistency before physical models are assembled for more accurate controls and efficiency. Microfluidic flow systems often deviate from ideal conditions, requiring adjustments to the standard governing equations. These deviations could arise from factors such as viscous effects, surface interactions, and non-Newtonian fluid properties from different microfluid types and geometrical layouts of microchannels. Addressing these nonidealities supports the refining of theoretical models and prediction accuracy for microfluidic flow behaviors.
The analytical calculation of coupled nonlinear governing equations, which describes the material and energy balances of systems under ideal conditions, often requires considerable computational efforts. However, advancements in computation capabilities, cost reduction, and improved accuracy have made numerical simulations using different numerical and modeling methods a powerful tool for effectively solving these complex coupled equations and modeling various transport phenomena. Computational fluid dynamics (CFD) is a numerical technique used to investigate the spatial and temporal distribution of various flow parameters. It serves as a critical approach to provide insights and reasoning for decision-making regarding the optimal designs involving fluid dynamics, even prior to complex physical model prototyping and experimental procedures. The integration of experimental data, theoretical analysis, and reliable numerical simulations from CFD enables systematic variation of analytical parameters through quantitative analysis, where adjustment to delivery of blood flow and other working fluids in LOC systems can be achieved.
Numerical methods such as the Finite-Difference Method (FDM), Finite-Element-Method (FEM), and Finite-Volume Method (FVM) are heavily employed in CFD and offer diverse approaches to achieve discretization of Eulerian flow equations through filling a mesh of the flow domain. A more in-depth review of numerical methods in CFD and its application for blood flow simulation is provided in Section 2.2.2.
1.3. Scope of the Review
In this Review, we explore and characterize the blood flow phenomena within the LOC systems, utilizing both physiological and engineering modeling approaches. Similar approaches will be taken to discuss capillary-driven flow and electric-osmotic flow (EOF) under electrokinetic phenomena as a passive and active transport scheme, respectively, for blood transport in LOC systems. Such an analysis aims to bridge the gap between physical (experimental) and engineering (analytical) perspectives in studying and manipulating blood flow delivery by different driving forces in LOC systems. Moreover, the Review hopes to benefit the interests of not only blood flow control in LOC devices but also the transport of viscoelastic fluids, which are less studied in the literature compared to that of Newtonian fluids, in LOC systems.
Section 2 examines the complex interplay between viscoelastic properties of blood and blood flow patterns under shear flow in LOC systems, while engineering numerical modeling approaches for blood flow are presented for assistance. Sections 3 and 4 look into the theoretical principles, numerical governing equations, and modeling methodologies for capillary driven flow and EOF in LOC systems as well as their impact on blood flow dynamics through the quantification of key parameters of the two driving forces. Section 5 concludes the characterized blood flow transport processes in LOC systems under these two forces. Additionally, prospective areas of research in improving the functionality of LOC devices employing blood and other viscoelastic fluids and potentially justifying mechanisms underlying microfluidic flow patterns outside of LOC systems are presented. Finally, the challenges encountered in the numerical studies of blood flow under LOC systems are acknowledged, paving the way for further research.
Blood, an essential physiological fluid in the human body, serves the vital role of transporting oxygen and nutrients throughout the body. Additionally, blood is responsible for suspending various blood cells including erythrocytes (red blood cells or RBCs), leukocytes (white blood cells), and thrombocytes (blood platelets) in a plasma medium.Among the cells mentioned above, red blood cells (RBCs) comprise approximately 40–45% of the volume of healthy blood.
(7) An RBC possesses an inherent elastic property with a biconcave shape of an average diameter of 8 μm and a thickness of 2 μm. This biconcave shape maximizes the surface-to-volume ratio, allowing RBCs to endure significant distortion while maintaining their functionality.
(8,9) Additionally, the biconcave shape optimizes gas exchange, facilitating efficient uptake of oxygen due to the increased surface area. The inherent elasticity of RBCs allows them to undergo substantial distortion from their original biconcave shape and exhibits high flexibility, particularly in narrow channels.RBC deformability enables the cell to deform from a biconcave shape to a parachute-like configuration, despite minor differences in RBC shape dynamics under shear flow between initial cell locations. As shown in Figure 1(a), RBCs initiating with different resting shapes and orientations displaying display a similar deformation pattern
(10) in terms of its shape. Shear flow induces an inward bending of the cell at the rear position of the rim to the final bending position,
(11) resulting in an alignment toward the same position of the flow direction.
The flexible property of RBCs enables them to navigate through narrow capillaries and traverse a complex network of blood vessels. The deformability of RBCs depends on various factors, including the channel geometry, RBC concentration, and the elastic properties of the RBC membrane.
(12) Both flexibility and deformability are vital in the process of oxygen exchange among blood and tissues throughout the body, allowing cells to flow in vessels even smaller than the original cell size prior to deforming.As RBCs serve as major components in blood, their collective dynamics also hugely affect blood rheology. RBCs exhibit an aggregation phenomenon due to cell to cell interactions, such as adhesion forces, among populated cells, inducing unique blood flow patterns and rheological behaviors in microfluidic systems. For blood flow in large vessels between a diameter of 1 and 3 cm, where shear rates are not high, a constant viscosity and Newtonian behavior for blood can be assumed. However, under low shear rate conditions (0.1 s
–1) in smaller vessels such as the arteries and venules, which are within a diameter of 0.2 mm to 1 cm, blood exhibits non-Newtonian properties, such as shear-thinning viscosity and viscoelasticity due to RBC aggregation and deformability. The nonlinear viscoelastic property of blood gives rise to a complex relationship between viscosity and shear rate, primarily influenced by the highly elastic behavior of RBCs. A wide range of research on the transient behavior of the RBC shape and aggregation characteristics under varied flow circumstances has been conducted, aiming to obtain a better understanding of the interaction between blood flow shear forces from confined flows.
For a better understanding of the unique blood flow structures and rheological behaviors in microfluidic systems, some blood flow patterns are introduced in the following section.
2.1.1. RBC Aggregation
RBC aggregation is a vital phenomenon to be considered when designing LOC devices due to its impact on the viscosity of the bulk flow. Under conditions of low shear rate, such as in stagnant or low flow rate regions, RBCs tend to aggregate, forming structures known as rouleaux, resembling stacks of coins as shown in Figure 1(b).
(13) The aggregation of RBCs increases the viscosity at the aggregated region,
(14) hence slowing down the overall blood flow. However, when exposed to high shear rates, RBC aggregates disaggregate. As shear rates continue to increase, RBCs tend to deform, elongating and aligning themselves with the direction of the flow.
(15) Such a dynamic shift in behavior from the cells in response to the shear rate forms the basis of the viscoelastic properties observed in whole blood. In essence, the viscosity of the blood varies according to the shear rate conditions, which are related to the velocity gradient of the system. It is significant to take the intricate relationship between shear rate conditions and the change of blood viscosity due to RBC aggregation into account since various flow driving conditions may induce varied effects on the degree of aggregation.
2.1.2. Fåhræus-Lindqvist Effect
The Fåhræus–Lindqvist (FL) effect describes the gradual decrease in the apparent viscosity of blood as the channel diameter decreases.
(16) This effect is attributed to the migration of RBCs toward the central region in the microchannel, where the flow rate is higher, due to the presence of higher pressure and asymmetric distribution of shear forces. This migration of RBCs, typically observed at blood vessels less than 0.3 mm, toward the higher flow rate region contributes to the change in blood viscosity, which becomes dependent on the channel size. Simultaneously, the increase of the RBC concentration in the central region of the microchannel results in the formation of a less viscous region close to the microchannel wall. This region called the Cell-Free Layer (CFL), is primarily composed of plasma.
(17) The combination of the FL effect and the following CFL formation provides a unique phenomenon that is often utilized in passive and active plasma separation mechanisms, involving branched and constriction channels for various applications in plasma separation using microfluidic systems.
2.1.3. Cell-Free Layer Formation
In microfluidic blood flow, RBCs form aggregates at the microchannel core and result in a region that is mostly devoid of RBCs near the microchannel walls, as shown in Figure 1(c).
(18) The region is known as the cell-free layer (CFL). The CFL region is often known to possess a lower viscosity compared to other regions within the blood flow due to the lower viscosity value of plasma when compared to that of the aggregated RBCs. Therefore, a thicker CFL region composed of plasma correlates to a reduced apparent whole blood viscosity.
(19) A thicker CFL region is often established following the RBC aggregation at the microchannel core under conditions of decreasing the tube diameter. Apart from the dependence on the RBC concentration in the microchannel core, the CFL thickness is also affected by the volume concentration of RBCs, or hematocrit, in whole blood, as well as the deformability of RBCs. Given the influence CFL thickness has on blood flow rheological parameters such as blood flow rate, which is strongly dependent on whole blood viscosity, investigating CFL thickness under shear flow is crucial for LOC systems accounting for blood flow.
2.1.4. Plasma Skimming in Bifurcation Networks
The uneven arrangement of RBCs in bifurcating microchannels, commonly termed skimming bifurcation, arises from the axial migration of RBCs within flowing streams. This uneven distribution contributes to variations in viscosity across differing sizes of bifurcating channels but offers a stabilizing effect. Notably, higher flow rates in microchannels are associated with increased hematocrit levels, resulting in higher viscosity compared with those with lower flow rates. Parametric investigations on bifurcation angle,
(21) and RBC dynamics, including aggregation and deformation,
(22) may alter the varying viscosity of blood and its flow behavior within microchannels.
2.2. Modeling on Blood Flow Dynamics
2.2.1. Blood Properties and Mathematical Models of Blood Rheology
Under different shear rate conditions in blood flow, the elastic characteristics and dynamic changes of the RBC induce a complex velocity and stress relationship, resulting in the incompatibility of blood flow characterization through standard presumptions of constant viscosity used for Newtonian fluid flow. Blood flow is categorized as a viscoelastic non-Newtonian fluid flow where constitutive equations governing this type of flow take into consideration the nonlinear viscometric properties of blood. To mathematically characterize the evolving blood viscosity and the relationship between the elasticity of RBC and the shear blood flow, respectively, across space and time of the system, a stress tensor (τ) defined by constitutive models is often coupled in the Navier–Stokes equation to account for the collective impact of the constant dynamic viscosity (η) and the elasticity from RBCs on blood flow.The dynamic viscosity of blood is heavily dependent on the shear stress applied to the cell and various parameters from the blood such as hematocrit value, plasma viscosity, mechanical properties of the RBC membrane, and red blood cell aggregation rate. The apparent blood viscosity is considered convenient for the characterization of the relationship between the evolving blood viscosity and shear rate, which can be defined by Casson’s law, as shown in eq 1.
𝜇=𝜏0𝛾˙+2𝜂𝜏0𝛾˙⎯⎯⎯⎯⎯⎯⎯√+𝜂�=�0�˙+2��0�˙+�
(1)where τ
0 is the yield stress–stress required to initiate blood flow motion, η is the Casson rheological constant, and γ̇ is the shear rate. The value of Casson’s law parameters under blood with normal hematocrit level can be defined as τ
0 = 0.0056 Pa and η = 0.0035 Pa·s.
(23) With the known property of blood and Casson’s law parameters, an approximation can be made to the dynamic viscosity under various flow condition domains. The Power Law model is often employed to characterize the dynamic viscosity in relation to the shear rate, since precise solutions exist for specific geometries and flow circumstances, acting as a fundamental standard for definition. The Carreau and Carreau–Yasuda models can be advantageous over the Power Law model due to their ability to evaluate the dynamic viscosity at low to zero shear rate conditions. However, none of the above-mentioned models consider the memory or other elastic behavior of blood and its RBCs. Some other commonly used mathematical models and their constants for the non-Newtonian viscosity property characterization of blood are listed in Table 1 below.
(24−26)Table 1. Comparison of Various Non-Newtonian Models for Blood Viscosity
The blood rheology is commonly known to be influenced by two key physiological factors, namely, the hematocrit value (H
t) and the fibrinogen concentration (c
f), with an average value of 42% and 0.252 gd·L
–1, respectively. Particularly in low shear conditions, the presence of varying fibrinogen concentrations affects the tendency for aggregation and rouleaux formation, while the occurrence of aggregation is contingent upon specific levels of hematocrit.
(28) modifies the Casson model through emphasizing its reliance on hematocrit and fibrinogen concentration parameter values, owing to the extensive knowledge of the two physiological blood parameters.The viscoelastic response of blood is heavily dependent on the elasticity of the RBC, which is defined by the relationship between the deformation and stress relaxation from RBCs under a specific location of shear flow as a function of the velocity field. The stress tensor is usually characterized by constitutive equations such as the Upper-Convected Maxwell Model
(30) to track the molecule effects under shear from different driving forces. The prominent non-Newtonian features, such as shear thinning and yield stress, have played a vital role in the characterization of blood rheology, particularly with respect to the evaluation of yield stress under low shear conditions. The nature of stress measurement in blood, typically on the order of 1 mPa, is challenging due to its low magnitude. The occurrence of the CFL complicates the measurement further due to the significant decrease in apparent viscosity near the wall over time and a consequential disparity in viscosity compared to the bulk region.In addition to shear thinning viscosity and yield stress, the formation of aggregation (rouleaux) from RBCs under low shear rates also contributes to the viscoelasticity under transient flow
(32) of whole blood. Given the difficulty in evaluating viscoelastic behavior of blood under low strain magnitudes and limitations in generalized Newtonian models, the utilization of viscoelastic models is advocated to encompass elasticity and delineate non-shear components within the stress tensor. Extending from the Oldroyd-B model, Anand et al.
(33) developed a viscoelastic model framework for adapting elasticity within blood samples and predicting non-shear stress components. However, to also address the thixotropic effects, the model developed by Horner et al.
(34) serves as a more comprehensive approach than the viscoelastic model from Anand et al. Thixotropy
(32) typically occurs from the structural change of the rouleaux, where low shear rate conditions induce rouleaux formation. Correspondingly, elasticity increases, while elasticity is more representative of the isolated RBCs, under high shear rate conditions. The model of Horner et al.
(34) considers the contribution of rouleaux to shear stress, taking into account factors such as the characteristic time for Brownian aggregation, shear-induced aggregation, and shear-induced breakage. Subsequent advancements in the model from Horner et al. often revolve around refining the three aforementioned key terms for a more substantial characterization of rouleaux dynamics. Notably, this has led to the recently developed mHAWB model
(35) and other model iterations to enhance the accuracy of elastic and viscoelastic contributions to blood rheology, including the recently improved model suggested by Armstrong et al.
Numerical simulation has become increasingly more significant in analyzing the geometry, boundary layers of flow, and nonlinearity of hyperbolic viscoelastic flow constitutive equations. CFD is a powerful and efficient tool utilizing numerical methods to solve the governing hydrodynamic equations, such as the Navier–Stokes (N–S) equation, continuity equation, and energy conservation equation, for qualitative evaluation of fluid motion dynamics under different parameters. CFD overcomes the challenge of analytically solving nonlinear forms of differential equations by employing numerical methods such as the Finite-Difference Method (FDM), Finite-Element Method (FEM), and Finite-Volume Method (FVM) to discretize and solve the partial differential equations (PDEs), allowing for qualitative reproduction of transport phenomena and experimental observations. Different numerical methods are chosen to cope with various transport systems for optimization of the accuracy of the result and control of error during the discretization process.FDM is a straightforward approach to discretizing PDEs, replacing the continuum representation of equations with a set of finite-difference equations, which is typically applied to structured grids for efficient implementation in CFD programs.
(37) However, FDM is often limited to simple geometries such as rectangular or block-shaped geometries and struggles with curved boundaries. In contrast, FEM divides the fluid domain into small finite grids or elements, approximating PDEs through a local description of physics.
(38) All elements contribute to a large, sparse matrix solver. However, FEM may not always provide accurate results for systems involving significant deformation and aggregation of particles like RBCs due to large distortion of grids.
(39) FVM evaluates PDEs following the conservation laws and discretizes the selected flow domain into small but finite size control volumes, with each grid at the center of a finite volume.
(40) The divergence theorem allows the conversion of volume integrals of PDEs with divergence terms into surface integrals of surface fluxes across cell boundaries. Due to its conservation property, FVM offers efficient outcomes when dealing with PDEs that embody mass, momentum, and energy conservation principles. Furthermore, widely accessible software packages like the OpenFOAM toolbox
(41) include a viscoelastic solver, making it an attractive option for viscoelastic fluid flow modeling.
The complexity in the blood flow simulation arises from deformability and aggregation that RBCs exhibit during their interaction with neighboring cells under different shear rate conditions induced by blood flow. Numerical models coupled with simulation programs have been applied as a groundbreaking method to predict such unique rheological behavior exhibited by RBCs and whole blood. The conventional approach of a single-phase flow simulation is often applied to blood flow simulations within large vessels possessing a moderate shear rate. However, such a method assumes the properties of plasma, RBCs and other cellular components to be evenly distributed as average density and viscosity in blood, resulting in the inability to simulate the mechanical dynamics, such as RBC aggregation under high-shear flow field, inherent in RBCs. To accurately describe the asymmetric distribution of RBC and blood flow, multiphase flow simulation, where numerical simulations of blood flows are often modeled as two immiscible phases, RBCs and blood plasma, is proposed. A common assumption is that RBCs exhibit non-Newtonian behavior while the plasma is treated as a continuous Newtonian phase.Numerous multiphase numerical models have been proposed to simulate the influence of RBCs on blood flow dynamics by different assumptions. In large-scale simulations (above the millimeter range), continuum-based methods are wildly used due to their lower computational demands.
(43) Eulerian multiphase flow simulations offer the solution of a set of conservation equations for each separate phase and couple the phases through common pressure and interphase exchange coefficients. Xu et al.
(44) utilized the combined finite-discrete element method (FDEM) to replicate the dynamic behavior and distortion of RBCs subjected to fluidic forces, utilizing the Johnson–Kendall–Roberts model
(45) to define the adhesive forces of cell-to-cell interactions. The iterative direct-forcing immersed boundary method (IBM) is commonly employed in simulations of the fluid–cell interface of blood. This method effectively captures the intricacies of the thin and flexible RBC membranes within various external flow fields.
(44) also adopts this approach to bridge the fluid dynamics and RBC deformation through IBM. Yoon and You utilized the Maxwell model to define the viscosity of the RBC membrane.
(47) It was discovered that the Maxwell model could represent the stress relaxation and unloading processes of the cell. Furthermore, the reduced flexibility of an RBC under particular situations such as infection is specified, which was unattainable by the Kelvin–Voigt model
(48) when compared to the Maxwell model in the literature. The Yeoh hyperplastic material model was also adapted to predict the nonlinear elasticity property of RBCs with FEM employed to discretize the RBC membrane using shell-type elements. Gracka et al.
(49) developed a numerical CFD model with a finite-volume parallel solver for multiphase blood flow simulation, where an updated Maxwell viscoelasticity model and a Discrete Phase Model are adopted. In the study, the adapted IBM, based on unstructured grids, simulates the flow behavior and shape change of the RBCs through fluid-structure coupling. It was found that the hybrid Euler–Lagrange (E–L) approach
(50) for the development of the multiphase model offered better results in the simulated CFL region in the microchannels.To study the dynamics of individual behaviors of RBCs and the consequent non-Newtonian blood flow, cell-shape-resolved computational models are often adapted. The use of the boundary integral method has become prevalent in minimizing computational expenses, particularly in the exclusive determination of fluid velocity on the surfaces of RBCs, incorporating the option of employing IBM or particle-based techniques. The cell-shaped-resolved method has enabled an examination of cell to cell interactions within complex ambient or pulsatile flow conditions
(51) surrounding RBC membranes. Recently, Rydquist et al.
(52) have looked to integrate statistical information from macroscale simulations to obtain a comprehensive overview of RBC behavior within the immediate proximity of the flow through introduction of respective models characterizing membrane shape definition, tension, bending stresses of RBC membranes.At a macroscopic scale, continuum models have conventionally been adapted for assessing blood flow dynamics through the application of elasticity theory and fluid dynamics. However, particle-based methods are known for their simplicity and adaptability in modeling complex multiscale fluid structures. Meshless methods, such as the boundary element method (BEM), smoothed particle hydrodynamics (SPH), and dissipative particle dynamics (DPD), are often used in particle-based characterization of RBCs and the surrounding fluid. By representing the fluid as discrete particles, meshless methods provide insights into the status and movement of the multiphase fluid. These methods allow for the investigation of cellular structures and microscopic interactions that affect blood rheology. Non-confronting mesh methods like IBM can also be used to couple a fluid solver such as FEM, FVM, or the Lattice Boltzmann Method (LBM) through membrane representation of RBCs. In comparison to conventional CFD methods, LBM has been viewed as a favorable numerical approach for solving the N–S equations and the simulation of multiphase flows. LBM exhibits the notable advantage of being amenable to high-performance parallel computing environments due to its inherently local dynamics. In contrast to DPD and SPH where RBC membranes are modeled as physically interconnected particles, LBM employs the IBM to account for the deformation dynamics of RBCs
(53,54) under shear flows in complex channel geometries.
(54,55) However, it is essential to acknowledge that the utilization of LBM in simulating RBC flows often entails a significant computational overhead, being a primary challenge in this context. Krüger et al.
(56) proposed utilizing LBM as a fluid solver, IBM to couple the fluid and FEM to compute the response of membranes to deformation under immersed fluids. This approach decouples the fluid and membranes but necessitates significant computational effort due to the requirements of both meshes and particles.Despite the accuracy of current blood flow models, simulating complex conditions remains challenging because of the high computational load and cost. Balachandran Nair et al.
(57) suggested a reduced order model of RBC under the framework of DEM, where the RBC is represented by overlapping constituent rigid spheres. The Morse potential force is adapted to account for the RBC aggregation exhibited by cell to cell interactions among RBCs at different distances. Based upon the IBM, the reduced-order RBC model is adapted to simulate blood flow transport for validation under both single and multiple RBCs with a resolved CFD-DEM solver.
(58) In the resolved CFD-DEM model, particle sizes are larger than the grid size for a more accurate computation of the surrounding flow field. A continuous forcing approach is taken to describe the momentum source of the governing equation prior to discretization, which is different from a Direct Forcing Method (DFM).
(59) As no body-conforming moving mesh is required, the continuous forcing approach offers lower complexity and reduced cost when compared to the DFM. Piquet et al.
(60) highlighted the high complexity of the DFM due to its reliance on calculating an additional immersed boundary flux for the velocity field to ensure its divergence-free condition.The fluid–structure interaction (FSI) method has been advocated to connect the dynamic interplay of RBC membranes and fluid plasma within blood flow such as the coupling of continuum–particle interactions. However, such methodology is generally adapted for anatomical configurations such as arteries
(63) where both the structural components and the fluid domain undergo substantial deformation due to the moving boundaries. Due to the scope of the Review being blood flow simulation within microchannels of LOC devices without deformable boundaries, the Review of the FSI method will not be further carried out.In general, three numerical methods are broadly used: mesh-based, particle-based, and hybrid mesh–particle techniques, based on the spatial scale and the fundamental numerical approach, mesh-based methods tend to neglect the effects of individual particles, assuming a continuum and being efficient in terms of time and cost. However, the particle-based approach highlights more of the microscopic and mesoscopic level, where the influence of individual RBCs is considered. A review from Freund et al.
(64) addressed the three numerical methodologies and their respective modeling approaches of RBC dynamics. Given the complex mechanics and the diverse levels of study concerning numerical simulations of blood and cellular flow, a broad spectrum of numerical methods for blood has been subjected to extensive review.
(65) offered an extensive review of the application of the DPD, SPH, and LBM for numerical simulations of RBC, while Rathnayaka et al.
(67) conducted a review of the particle-based numerical modeling for liquid marbles through drawing parallels to the transport of RBCs in microchannels. A comparative analysis between conventional CFD methods and particle-based approaches for cellular and blood flow dynamic simulation can be found under the review by Arabghahestani et al.
(69) offer an overview of both continuum-based models at micro/macroscales and multiscale particle-based models encompassing various length and temporal dimensions. Furthermore, these reviews deliberate upon the potential of coupling continuum-particle methods for blood plasma and RBC modeling. Arciero et al.
(70) investigated various modeling approaches encompassing cellular interactions, such as cell to cell or plasma interactions and the individual cellular phases. A concise overview of the reviews is provided in Table 2 for reference.
Table 2. List of Reviews for Numerical Approaches Employed in Blood Flow Simulation
Capillary driven (CD) flow is a pivotal mechanism in passive microfluidic flow systems
(9) such as the blood circulation system and LOC systems.
(71) CD flow is essentially the movement of a liquid to flow against drag forces, where the capillary effect exerts a force on the liquid at the borders, causing a liquid–air meniscus to flow despite gravity or other drag forces. A capillary pressure drops across the liquid–air interface with surface tension in the capillary radius and contact angle. The capillary effect depends heavily on the interaction between the different properties of surface materials. Different values of contact angles can be manipulated and obtained under varying levels of surface wettability treatments to manipulate the surface properties, resulting in different CD blood delivery rates for medical diagnostic device microchannels. CD flow techniques are appealing for many LOC devices, because they require no external energy. However, due to the passive property of liquid propulsion by capillary forces and the long-term instability of surface treatments on channel walls, the adaptability of CD flow in geometrically complex LOC devices may be limited.
3.2. Theoretical and Numerical Modeling of Capillary Driven Blood Flow
3.2.1. Theoretical Basis and Assumptions of Microfluidic Flow
The study of transport phenomena regarding either blood flow driven by capillary forces or externally applied forces under microfluid systems all demands a comprehensive recognition of the significant differences in flow dynamics between microscale and macroscale. The fundamental assumptions and principles behind fluid transport at the microscale are discussed in this section. Such a comprehension will lay the groundwork for the following analysis of the theoretical basis of capillary forces and their role in blood transport in LOC systems.
At the macroscale, fluid dynamics are often strongly influenced by gravity due to considerable fluid mass. However, the high surface to volume ratio at the microscale shifts the balance toward surface forces (e.g., surface tension and viscous forces), much larger than the inertial force. This difference gives rise to transport phenomena unique to microscale fluid transport, such as the prevalence of laminar flow due to a very low Reynolds number (generally lower than 1). Moreover, the fluid in a microfluidic system is often assumed to be incompressible due to the small flow velocity, indicating constant fluid density in both space and time.Microfluidic flow behaviors are governed by the fundamental principles of mass and momentum conservation, which are encapsulated in the continuity equation and the Navier–Stokes (N–S) equation. The continuity equation describes the conservation of mass, while the N–S equation captures the spatial and temporal variations in velocity, pressure, and other physical parameters. Under the assumption of the negligible influence of gravity in microfluidic systems, the continuity equation and the Eulerian representation of the incompressible N–S equation can be expressed as follows:
∇·𝐮⇀=0∇·�⇀=0
(7)
−∇𝑝+𝜇∇2𝐮⇀+∇·𝝉⇀−𝐅⇀=0−∇�+�∇2�⇀+∇·�⇀−�⇀=0
(8)Here, p is the pressure, u is the fluid viscosity,
𝝉⇀�⇀ represents the stress tensor, and F is the body force exerted by external forces if present.
3.2.2. Theoretical Basis and Modeling of Capillary Force in LOC Systems
The capillary force is often the major driving force to manipulate and transport blood without an externally applied force in LOC systems. Forces induced by the capillary effect impact the free surface of fluids and are represented not directly in the Navier–Stokes equations but through the pressure boundary conditions of the pressure term p. For hydrophilic surfaces, the liquid generally induces a contact angle between 0° and 30°, encouraging the spread and attraction of fluid under a positive cos θ condition. For this condition, the pressure drop becomes positive and generates a spontaneous flow forward. A hydrophobic solid surface repels the fluid, inducing minimal contact. Generally, hydrophobic solids exhibit a contact angle larger than 90°, inducing a negative value of cos θ. Such a value will result in a negative pressure drop and a flow in the opposite direction. The induced contact angle is often utilized to measure the wall exposure of various surface treatments on channel walls where different wettability gradients and surface tension effects for CD flows are established. Contact angles between different interfaces are obtainable through standard values or experimental methods for reference.
(72)For the characterization of the induced force by the capillary effect, the Young–Laplace (Y–L) equation
(73) is widely employed. In the equation, the capillary is considered a pressure boundary condition between the two interphases. Through the Y–L equation, the capillary pressure force can be determined, and subsequently, the continuity and momentum balance equations can be solved to obtain the blood filling rate. Kim et al.
(74) studied the effects of concentration and exposure time of a nonionic surfactant, Silwet L-77, on the performance of a polydimethylsiloxane (PDMS) microchannel in terms of plasma and blood self-separation. The study characterized the capillary pressure force by incorporating the Y–L equation and further evaluated the effects of the changing contact angle due to different levels of applied channel wall surface treatments. The expression of the Y–L equation utilized by Kim et al.
(9)where σ is the surface tension of the liquid and θ
b, θ
t, θ
l, and θ
r are the contact angle values between the liquid and the bottom, top, left, and right walls, respectively. A numerical simulation through Coventor software is performed to evaluate the dynamic changes in the filling rate within the microchannel. The simulation results for the blood filling rate in the microchannel are expressed at a specific time stamp, shown in Figure 2. The results portray an increasing instantaneous filling rate of blood in the microchannel following the decrease in contact angle induced by a higher concentration of the nonionic surfactant treated to the microchannel wall.
When in contact with hydrophilic or hydrophobic surfaces, blood forms a meniscus with a contact angle due to surface tension. The Lucas–Washburn (L–W) equation
(75) is one of the pioneering theoretical definitions for the position of the meniscus over time. In addition, the L–W equation provides the possibility for research to obtain the velocity of the blood formed meniscus through the derivation of the meniscus position. The L–W equation
(10)Here L(t) represents the distance of the liquid driven by the capillary forces. However, the generalized L–W equation solely assumes the constant physical properties from a Newtonian fluid rather than considering the non-Newtonian fluid behavior of blood. Cito et al.
(76) constructed an enhanced version of the L–W equation incorporating the power law to consider the RBC aggregation and the FL effect. The non-Newtonian fluid apparent viscosity under the Power Law model is defined as
𝜇=𝑘·(𝛾˙)𝑛−1�=�·(�˙)�−1
(11)where γ̇ is the strain rate tensor defined as
𝛾˙=12𝛾˙𝑖𝑗𝛾˙𝑗𝑖⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√�˙=12�˙���˙��. The stress tensor term τ is computed as τ = μγ̇
(12)where k is the flow consistency index and n is the power law index, respectively. The power law index, from the Power Law model, characterizes the extent of the non-Newtonian behavior of blood. Both the consistency and power law index rely on blood properties such as hematocrit, the appearance of the FL effect, the formation of RBC aggregates, etc. The updated L–W equation computes the location and velocity of blood flow caused by capillary forces at specified time points within the LOC devices, taking into account the effects of blood flow characteristics such as RBC aggregation and the FL effect on dynamic blood viscosity.Apart from the blood flow behaviors triggered by inherent blood properties, unique flow conditions driven by capillary forces that are portrayed under different microchannel geometries also hold crucial implications for CD blood delivery. Berthier et al.
(77) studied the spontaneous Concus–Finn condition, the condition to initiate the spontaneous capillary flow within a V-groove microchannel, as shown in Figure 3(a) both experimentally and numerically. Through experimental studies, the spontaneous Concus–Finn filament development of capillary driven blood flow is observed, as shown in Figure 3(b), while the dynamic development of blood flow is numerically simulated through CFD simulation.
Berthier et al.
(77) characterized the contact angle needed for the initiation of the capillary driving force at a zero-inlet pressure, through the half-angle (α) of the V-groove geometry layout, and its relation to the Concus–Finn filament as shown below:
(13)Three possible regimes were concluded based on the contact angle value for the initiation of flow and development of Concus–Finn filament:
𝜃>𝜃1𝜃1>𝜃>𝜃0𝜃0no SCFSCF without a Concus−Finn filamentSCF without a Concus−Finn filament{�>�1no SCF�1>�>�0SCF without a Concus−Finn filament�0SCF without a Concus−Finn filament
(14)Under Newton’s Law, the force balance with low Reynolds and Capillary numbers results in the neglect of inertial terms. The force balance between the capillary forces and the viscous force induced by the channel wall is proposed to derive the analytical fluid velocity. This relation between the two forces offers insights into the average flow velocity and the penetration distance function dependent on time. The apparent blood viscosity is defined by Berthier et al.
(23) given in eq 1. The research used the FLOW-3D program from Flow Science Inc. software, which solves transient, free-surface problems using the FDM in multiple dimensions. The Volume of Fluid (VOF) method
(79) is utilized to locate and track the dynamic extension of filament throughout the advancing interface within the channel ahead of the main flow at three progressing time stamps, as depicted in Figure 3(c).
The utilization of external forces, such as electric fields, has significantly broadened the possibility of manipulating microfluidic flow in LOC systems.
(80) Externally applied electric field forces induce a fluid flow from the movement of ions in fluid terms as the “electro-osmotic flow” (EOF).Unique transport phenomena, such as enhanced flow velocity and flow instability, induced by non-Newtonian fluids, particularly viscoelastic fluids, under EOF, have sparked considerable interest in microfluidic devices with simple or complicated geometries within channels.
(81) However, compared to the study of Newtonian fluids and even other electro-osmotic viscoelastic fluid flows, the literature focusing on the theoretical and numerical modeling of electro-osmotic blood flow is limited due to the complexity of blood properties. Consequently, to obtain a more comprehensive understanding of the complex blood flow behavior under EOF, theoretical and numerical studies of the transport phenomena in the EOF section will be based on the studies of different viscoelastic fluids under EOF rather than that of blood specifically. Despite this limitation, we believe these studies offer valuable insights that can help understand the complex behavior of blood flow under EOF.
4.1. EOF Phenomena
Electro-osmotic flow occurs at the interface between the microchannel wall and bulk phase solution. When in contact with the bulk phase, solution ions are absorbed or dissociated at the solid–liquid interface, resulting in the formation of a charge layer, as shown in Figure 4. This charged channel surface wall interacts with both negative and positive ions in the bulk sample, causing repulsion and attraction forces to create a thin layer of immobilized counterions, known as the Stern layer. The induced electric potential from the wall gradually decreases with an increase in the distance from the wall. The Stern layer potential, commonly termed the zeta potential, controls the intensity of the electrostatic interactions between mobile counterions and, consequently, the drag force from the applied electric field. Next to the Stern layer is the diffuse mobile layer, mainly composed of a mobile counterion. These two layers constitute the “electrical double layer” (EDL), the thickness of which is directly proportional to the ionic strength (concentration) of the bulk fluid. The relationship between the two parameters is characterized by a Debye length (λ
D), expressed as
𝜆𝐷=𝜖𝑘B𝑇2(𝑍𝑒)2𝑐0⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√��=��B�2(��)2�0
(15)where ϵ is the permittivity of the electrolyte solution, k
B is the Boltzmann constant, T is the electron temperature, Z is the integer valence number, e is the elementary charge, and c
0 is the ionic density.
When an electric field is applied perpendicular to the EDL, viscous drag is generated due to the movement of excess ions in the EDL. Electro-osmotic forces can be attributed to the externally applied electric potential (ϕ) and the zeta potential, the system wall induced potential by charged walls (ψ). As illustrated in Figure 4, the majority of ions in the bulk phase have a uniform velocity profile, except for a shear rate condition confined within an extremely thin Stern layer. Therefore, EOF displays a unique characteristic of a “near flat” or plug flow velocity profile, different from the parabolic flow typically induced by pressure-driven microfluidic flow (Hagen–Poiseuille flow). The plug-shaped velocity profile of the EOF possesses a high shear rate above the Stern layer.Overall, the EOF velocity magnitude is typically proportional to the Debye Length (λ
D), zeta potential, and magnitude of the externally applied electric field, while a more viscous liquid reduces the EOF velocity.
4.2. Modeling on Electro-osmotic Viscoelastic Fluid Flow
4.2.1. Theoretical Basis of EOF Mechanisms
The EOF of an incompressible viscoelastic fluid is commonly governed by the continuity and incompressible N–S equations, as shown in eqs 7 and 8, where the stress tensor and the electrostatic force term are coupled. The electro-osmotic body force term F, representing the body force exerted by the externally applied electric force, is defined as
𝐹⇀=𝑝𝐸𝐸⇀�⇀=���⇀, where ρ
E and
𝐸⇀�⇀ are the net electric charge density and the applied external electric field, respectively.Numerous models are established to theoretically study the externally applied electric potential and the system wall induced potential by charged walls. The following Laplace equation, expressed as eq 16, is generally adapted and solved to calculate the externally applied potential (ϕ).
∇2𝜙=0∇2�=0
(16)Ion diffusion under applied electric fields, together with mass transport resulting from convection and diffusion, transports ionic solutions in bulk flow under electrokinetic processes. The Nernst–Planck equation can describe these transport methods, including convection, diffusion, and electro-diffusion. Therefore, the Nernst–Planck equation is used to determine the distribution of the ions within the electrolyte. The electric potential induced by the charged channel walls follows the Poisson–Nernst–Plank (PNP) equation, which can be written as eq 17.
i are the diffusion coefficient, ionic concentration, and ionic valence of the ionic species I, respectively. However, due to the high nonlinearity and numerical stiffness introduced by different lengths and time scales from the PNP equations, the Poisson–Boltzmann (PB) model is often considered the major simplified method of the PNP equation to characterize the potential distribution of the EDL region in microchannels. In the PB model, it is assumed that the ionic species in the fluid follow the Boltzmann distribution. This model is typically valid for steady-state problems where charge transport can be considered negligible, the EDLs do not overlap with each other, and the intrinsic potentials are low. It provides a simplified representation of the potential distribution in the EDL region. The PB equation governing the EDL electric potential distribution is described as
0 is the ion bulk concentration, z is the ionic valence, and ε
0 is the electric permittivity in the vacuum. Under low electric potential conditions, an even further simplified model to illustrate the EOF phenomena is the Debye–Hückel (DH) model. The DH model is derived by obtaining a charge density term by expanding the exponential term of the Boltzmann equation in a Taylor series.
4.2.2. EOF Modeling for Viscoelastic Fluids
Many studies through numerical modeling were performed to obtain a deeper understanding of the effect exhibited by externally applied electric fields on viscoelastic flow in microchannels under various geometrical designs. Bello et al.
(83) found that methylcellulose solution, a non-Newtonian polymer solution, resulted in stronger electro-osmotic mobility in experiments when compared to the predictions by the Helmholtz–Smoluchowski equation, which is commonly used to define the velocity of EOF of a Newtonian fluid. Being one of the pioneers to identify the discrepancies between the EOF of Newtonian and non-Newtonian fluids, Bello et al. attributed such discrepancies to the presence of a very high shear rate in the EDL, resulting in a change in the orientation of the polymer molecules. Park and Lee
(84) utilized the FVM to solve the PB equation for the characterization of the electric field induced force. In the study, the concept of fractional calculus for the Oldroyd-B model was adapted to illustrate the elastic and memory effects of viscoelastic fluids in a straight microchannel They observed that fluid elasticity and increased ratio of viscoelastic fluid contribution to overall fluid viscosity had a significant impact on the volumetric flow rate and sensitivity of velocity to electric field strength compared to Newtonian fluids. Afonso et al.
(85) derived an analytical expression for EOF of viscoelastic fluid between parallel plates using the DH model to account for a zeta potential condition below 25 mV. The study established the understanding of the electro-osmotic viscoelastic fluid flow under low zeta potential conditions. Apart from the electrokinetic forces, pressure forces can also be coupled with EOF to generate a unique fluid flow behavior within the microchannel. Sousa et al.
(86) analytically studied the flow of a standard viscoelastic solution by combining the pressure gradient force with an externally applied electric force. It was found that, at a near wall skimming layer and the outer layer away from the wall, macromolecules migrating away from surface walls in viscoelastic fluids are observed. In the study, the Phan-Thien Tanner (PTT) constitutive model is utilized to characterize the viscoelastic properties of the solution. The approach is found to be valid when the EDL is much thinner than the skimming layer under an enhanced flow rate. Zhao and Yang
(87) solved the PB equation and Carreau model for the characterization of the EOF mechanism and non-Newtonian fluid respectively through the FEM. The numerical results depict that, different from the EOF of Newtonian fluids, non-Newtonian fluids led to an increase of electro-osmotic mobility for shear thinning fluids but the opposite for shear thickening fluids.Like other fluid transport driving forces, EOF within unique geometrical layouts also portrays unique transport phenomena. Pimenta and Alves
(88) utilized the FVM to perform numerical simulations of the EOF of viscoelastic fluids considering the PB equation and the Oldroyd-B model, in a cross-slot and flow-focusing microdevices. It was found that electroelastic instabilities are formed due to the development of large stresses inside the EDL with streamlined curvature at geometry corners. Bezerra et al.
(89) used the FDM to numerically analyze the vortex formation and flow instability from an electro-osmotic non-Newtonian fluid flow in a microchannel with a nozzle geometry and parallel wall geometry setting. The PNP equation is utilized to characterize the charge motion in the EOF and the PTT model for non-Newtonian flow characterization. A constriction geometry is commonly utilized in blood flow adapted in LOC systems due to the change in blood flow behavior under narrow dimensions in a microchannel. Ji et al.
(90) recently studied the EOF of viscoelastic fluid in a constriction microchannel connected by two relatively big reservoirs on both ends (as seen in Figure 5) filled with the polyacrylamide polymer solution, a viscoelastic fluid, and an incompressible monovalent binary electrolyte solution KCl.
In studying the EOF of viscoelastic fluids, the Oldroyd-B model is often utilized to characterize the polymeric stress tensor and the deformation rate of the fluid. The Oldroyd-B model is expressed as follows:
𝜏=𝜂p𝜆(𝐜−𝐈)�=�p�(�−�)
(19)where η
p, λ, c, and I represent the polymer dynamic viscosity, polymer relaxation time, symmetric conformation tensor of the polymer molecules, and the identity matrix, respectively.A log-conformation tensor approach is taken to prevent convergence difficulty induced by the viscoelastic properties. The conformation tensor (c) in the polymeric stress tensor term is redefined by a new tensor (Θ) based on the natural logarithm of the c. The new tensor is defined as
Θ=ln(𝐜)=𝐑ln(𝚲)𝐑Θ=ln(�)=�ln(�)�
(20)in which Λ is the diagonal matrix and R is the orthogonal matrix.Under the new conformation tensor, the induced EOF of a viscoelastic fluid is governed by the continuity and N–S equations adapting the Oldroyd-B model, which is expressed as
(21)where Ω and B represent the anti-symmetric matrix and the symmetric traceless matrix of the decomposition of the velocity gradient tensor ∇u, respectively. The conformation tensor can be recovered by c = exp(Θ). The PB model and Laplace equation are utilized to characterize the charged channel wall induced potential and the externally applied potential.The governing equations are numerically solved through the FVM by RheoTool,
(42) an open-source viscoelastic EOF solver on the OpenFOAM platform. A SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm was applied to solve the velocity-pressure coupling. The pressure field and velocity field were computed by the PCG (Preconditioned Conjugate Gradient) solver and the PBiCG (Preconditioned Biconjugate Gradient) solver, respectively.Ranging magnitudes of an applied electric field or fluid concentration induce both different streamlines and velocity magnitudes at various locations and times of the microchannel. In the study performed by Ji et al.,
(90) notable fluctuation of streamlines and vortex formation is formed at the upper stream entrance of the constriction as shown in Figure 6(a) and (b), respectively, due to the increase of electrokinetic effect, which is seen as a result of the increase in polymeric stress (τ
xx).
(90) The contraction geometry enhances the EOF velocity within the constriction channel under high E
app condition (600 V/cm). Such phenomena can be attributed to the dependence of electro-osmotic viscoelastic fluid flow on the system wall surface and bulk fluid properties.
As elastic normal stress exceeds the local shear stress, flow instability and vortex formation occur. The induced elastic stress under EOF not only enhances the instability of the flow but often generates an irregular secondary flow leading to strong disturbance.
(92) It is also vital to consider the effect of the constriction layout of microchannels on the alteration of the field strength within the system. The contraction geometry enhances a larger electric field strength compared with other locations of the channel outside the constriction region, resulting in a higher velocity gradient and stronger extension on the polymer within the viscoelastic solution. Following the high shear flow condition, a higher magnitude of stretch for polymer molecules in viscoelastic fluids exhibits larger elastic stresses and enhancement of vortex formation at the region.
(93)As shown in Figure 6(c), significant elastic normal stress occurs at the inlet of the constriction microchannel. Such occurrence of a polymeric flow can be attributed to the dominating elongational flow, giving rise to high deformation of the polymers within the viscoelastic fluid flow, resulting in higher elastic stress from the polymers. Such phenomena at the entrance result in the difference in velocity streamline as circled in Figure 6(d) compared to that of the Newtonian fluid at the constriction entrance in Figure 6(e).
(90) The difference between the Newtonian and polymer solution at the exit, as circled in Figure 6(d) and (e), can be attributed to the extrudate swell effect of polymers
(94) within the viscoelastic fluid flow. The extrudate swell effect illustrates that, as polymers emerge from the constriction exit, they tend to contract in the flow direction and grow in the normal direction, resulting in an extrudate diameter greater than the channel size. The deformation of polymers within the polymeric flow at both the entrance and exit of the contraction channel facilitates the change in shear stress conditions of the flow, leading to the alteration in streamlines of flows for each region.
4.3. EOF Applications in LOC Systems
4.3.1. Mixing in LOC Systems
Rather than relying on the micromixing controlled by molecular diffusion under low Reynolds number conditions, active mixers actively leverage convective instability and vortex formation induced by electro-osmotic flows from alternating current (AC) or direct current (DC) electric fields. Such adaptation is recognized as significant breakthroughs for promotion of fluid mixing in chemical and biological applications such as drug delivery, medical diagnostics, chemical synthesis, and so on.
(95)Many researchers proposed novel designs of electro-osmosis micromixers coupled with numerical simulations in conjunction with experimental findings to increase their understanding of the role of flow instability and vortex formation in the mixing process under electrokinetic phenomena. Matsubara and Narumi
(96) numerically modeled the mixing process in a microchannel with four electrodes on each side of the microchannel wall, which generated a disruption through unstable electro-osmotic vortices. It was found that particle mixing was sensitive to both the convection effect induced by the main and secondary vortex within the micromixer and the change in oscillation frequency caused by the supplied AC voltage when the Reynolds number was varied. Qaderi et al.
(97) adapted the PNP equation to numerically study the effect of the geometry and zeta potential configuration of the microchannel on the mixing process with a combined electro-osmotic pressure driven flow. It was reported that the application of heterogeneous zeta potential configuration enhances the mixing efficiency by around 23% while the height of the hurdles increases the mixing efficiency at most 48.1%. Cho et al.
(98) utilized the PB model and Laplace equation to numerically simulate the electro-osmotic non-Newtonian fluid mixing process within a wavy and block layout of microchannel walls. The Power Law model is adapted to describe the fluid rheological characteristic. It was found that shear-thinning fluids possess a higher volumetric flow rate, which could result in poorer mixing efficiency compared to that of Newtonian fluids. Numerous studies have revealed that flow instability and vortex generation, in particular secondary vortices produced by barriers or greater magnitudes of heterogeneous zeta potential distribution, enhance mixing by increasing bulk flow velocity and reducing flow distance.To better understand the mechanism of disturbance formed in the system due to externally applied forces, known as electrokinetic instability, literature often utilize the Rayleigh (Ra) number,
(22)where γ is the conductivity ratio of the two streams and can be written as
𝛾=𝜎el,H𝜎el,L�=�el,H�el,L. The Ra number characterizes the ratio between electroviscous and electro-osmotic flow. A high Ra
v value often results in good mixing. It is evident that fluid properties such as the conductivity (σ) of the two streams play a key role in the formation of disturbances to enhance mixing in microsystems. At the same time, electrokinetic parameters like the zeta potential (ζ) in the Ra number is critical in the characterization of electro-osmotic velocity and a slip boundary condition at the microchannel wall.To understand the mixing result along the channel, the concentration field can be defined and simulated under the assumption of steady state conditions and constant diffusion coefficient for each of the working fluid within the system through the convection–diffusion equation as below:
∂𝑐𝒊∂𝑡+∇⇀(𝑐𝑖𝑢⇀−𝐷𝑖∇⇀𝑐𝒊)=0∂��∂�+∇⇀(���⇀−��∇⇀��)=0
(23)where c
i is the species concentration of species i and D
i is the diffusion coefficient of the corresponding species.The standard deviation of concentration (σ
sd) can be adapted to evaluate the mixing quality of the system.
(97) The standard deviation for concentration at a specific portion of the channel may be calculated using the equation below:
m are the non-dimensional concentration profile and the mean concentration at the portion, respectively. C* is the non-dimensional concentration and can be calculated as
𝐶∗=𝐶𝐶ref�*=��ref, where C
ref is the reference concentration defined as the bulk solution concentration. The mean concentration profile can be calculated as
𝐶m=∫10(𝐶∗(𝑦∗)d𝑦∗∫10d𝑦∗�m=∫01(�*(�*)d�*∫01d�*. With the standard deviation of concentration, the mixing efficiency
sd,0 is the standard derivation of the case of no mixing. The value of the mixing efficiency is typically utilized in conjunction with the simulated flow field and concentration field to explore the effect of geometrical and electrokinetic parameters on the optimization of the mixing results.
Viscoelastic fluids such as blood flow in LOC systems are an essential topic to proceed with diagnostic analysis and research through microdevices in the biomedical and pharmaceutical industries. The complex blood flow behavior is tightly controlled by the viscoelastic characteristics of blood such as the dynamic viscosity and the elastic property of RBCs under various shear rate conditions. Furthermore, the flow behaviors under varied driving forces promote an array of microfluidic transport phenomena that are critical to the management of blood flow and other adapted viscoelastic fluids in LOC systems. This review addressed the blood flow phenomena, the complicated interplay between shear rate and blood flow behaviors, and their numerical modeling under LOC systems through the lens of the viscoelasticity characteristic. Furthermore, a theoretical understanding of capillary forces and externally applied electric forces leads to an in-depth investigation of the relationship between blood flow patterns and the key parameters of the two driving forces, the latter of which is introduced through the lens of viscoelastic fluids, coupling numerical modeling to improve the knowledge of blood flow manipulation in LOC systems. The flow disturbances triggered by the EOF of viscoelastic fluids and their impact on blood flow patterns have been deeply investigated due to their important role and applications in LOC devices. Continuous advancements of various numerical modeling methods with experimental findings through more efficient and less computationally heavy methods have served as an encouraging sign of establishing more accurate illustrations of the mechanisms for multiphase blood and other viscoelastic fluid flow transport phenomena driven by various forces. Such progress is fundamental for the manipulation of unique transport phenomena, such as the generated disturbances, to optimize functionalities offered by microdevices in LOC systems.
The following section will provide further insights into the employment of studied blood transport phenomena to improve the functionality of micro devices adapting LOC technology. A discussion of the novel roles that external driving forces play in microfluidic flow behaviors is also provided. Limitations in the computational modeling of blood flow and electrokinetic phenomena in LOC systems will also be emphasized, which may provide valuable insights for future research endeavors. These discussions aim to provide guidance and opportunities for new paths in the ongoing development of LOC devices that adapt blood flow.
5.2. Future Directions
5.2.1. Electro-osmosis Mixing in LOC Systems
Despite substantial research, mixing results through flow instability and vortex formation phenomena induced by electro-osmotic mixing still deviate from the effective mixing results offered by chaotic mixing results such as those seen in turbulent flows. However, recent discoveries of a mixing phenomenon that is generally observed under turbulent flows are found within electro-osmosis micromixers under low Reynolds number conditions. Zhao
(99) experimentally discovered a rapid mixing process in an AC applied micromixer, where the power spectrum of concentration under an applied voltage of 20 V
p-p induces a −5/3 slope within a frequency range. This value of the slope is considered as the O–C spectrum in macroflows, which is often visible under relatively high Re conditions, such as the Taylor microscale Reynolds number Re > 500 in turbulent flows.
(100) However, the Re value in the studied system is less than 1 at the specific location and applied voltage. A secondary flow is also suggested to occur close to microchannel walls, being attributed to the increase of convective instability within the system.Despite the experimental phenomenon proposed by Zhao et al.,
(99) the range of effects induced by vital parameters of an EOF mixing system on the enhanced mixing results and mechanisms of disturbance generated by the turbulent-like flow instability is not further characterized. Such a gap in knowledge may hinder the adaptability and commercialization of the discovery of micromixers. One of the parameters for further evaluation is the conductivity gradient of the fluid flow. A relatively strong conductivity gradient (5000:1) was adopted in the system due to the conductive properties of the two fluids. The high conductivity gradients may contribute to the relatively large Rayleigh number and differences in EDL layer thickness, resulting in an unusual disturbance in laminar flow conditions and enhanced mixing results. However, high conductivity gradients are not always achievable by the working fluids due to diverse fluid properties. The reliance on turbulent-like phenomena and rapid mixing results in a large conductivity gradient should be established to prevent the limited application of fluids for the mixing system. In addition, the proposed system utilizes distinct zeta potential distributions at the top and bottom walls due to their difference in material choices, which may be attributed to the flow instability phenomena. Further studies should be made on varying zeta potential magnitude and distribution to evaluate their effect on the slip boundary conditions of the flow and the large shear rate condition close to the channel wall of EOF. Such a study can potentially offer an optimized condition in zeta potential magnitude through material choices and geometrical layout of the zeta potential for better mixing results and manipulation of mixing fluid dynamics. The two vital parameters mentioned above can be varied with the aid of numerical simulation to understand the effect of parameters on the interaction between electro-osmotic forces and electroviscous forces. At the same time, the relationship of developed streamlines of the simulated velocity and concentration field, following their relationship with the mixing results, under the impact of these key parameters can foster more insight into the range of impact that the two parameters have on the proposed phenomena and the microfluidic dynamic principles of disturbances.
In addition, many of the current investigations of electrokinetic mixers commonly emphasize the fluid dynamics of mixing for Newtonian fluids, while the utilization of biofluids, primarily viscoelastic fluids such as blood, and their distinctive response under shear forces in these novel mixing processes of LOC systems are significantly less studied. To develop more compatible microdevice designs and efficient mixing outcomes for the biomedical industry, it is necessary to fill the knowledge gaps in the literature on electro-osmotic mixing for biofluids, where properties of elasticity, dynamic viscosity, and intricate relationship with shear flow from the fluid are further considered.
5.2.2. Electro-osmosis Separation in LOC Systems
Particle separation in LOC devices, particularly in biological research and diagnostics, is another area where disturbances may play a significant role in optimization.
(101) Plasma analysis in LOC systems under precise control of blood flow phenomena and blood/plasma separation procedures can detect vital information about infectious diseases from particular antibodies and foreign nucleic acids for medical treatments, diagnostics, and research,
(102) offering more efficient results and simple operating procedures compared to that of the traditional centrifugation method for blood and plasma separation. However, the adaptability of LOC devices for blood and plasma separation is often hindered by microchannel clogging, where flow velocity and plasma yield from LOC devices is reduced due to occasional RBC migration and aggregation at the filtration entrance of microdevices.
(103)It is important to note that the EOF induces flow instability close to microchannel walls, which may provide further solutions to clogging for the separation process of the LOC systems. Mohammadi et al.
(104) offered an anti-clogging effect of RBCs at the blood and plasma separating device filtration entry, adjacent to the surface wall, through RBC disaggregation under high shear rate conditions generated by a forward and reverse EOF direction.
Further theoretical and numerical research can be conducted to characterize the effect of high shear rate conditions near microchannel walls toward the detachment of binding blood cells on surfaces and the reversibility of aggregation. Through numerical modeling with varying electrokinetic parameters to induce different degrees of disturbances or shear conditions at channel walls, it may be possible to optimize and better understand the process of disrupting the forces that bind cells to surface walls and aggregated cells at filtration pores. RBCs that migrate close to microchannel walls are often attracted by the adhesion force between the RBC and the solid surface originating from the van der Waals forces. Following RBC migration and attachment by adhesive forces adjacent to the microchannel walls as shown in Figure 7, the increase in viscosity at the region causes a lower shear condition and encourages RBC aggregation (cell–cell interaction), which clogs filtering pores or microchannels and reduces flow velocity at filtration region. Both the impact that shear forces and disturbances may induce on cell binding forces with surface walls and other cells leading to aggregation may suggest further characterization. Kinetic parameters such as activation energy and the rate-determining step for cell binding composition attachment and detachment should be considered for modeling the dynamics of RBCs and blood flows under external forces in LOC separation devices.
5.2.3. Relationship between External Forces and Microfluidic Systems
In blood flow, a thicker CFL suggests a lower blood viscosity, suggesting a complex relationship between shear stress and shear rate, affecting the blood viscosity and blood flow. Despite some experimental and numerical studies on electro-osmotic non-Newtonian fluid flow, limited literature has performed an in-depth investigation of the role that applied electric forces and other external forces could play in the process of CFL formation. Additional studies on how shear rates from external forces affect CFL formation and microfluidic flow dynamics can shed light on the mechanism of the contribution induced by external driving forces to the development of a separate phase of layer, similar to CFL, close to the microchannel walls and distinct from the surrounding fluid within the system, then influencing microfluidic flow dynamics.One of the mechanisms of phenomena to be explored is the formation of the Exclusion Zone (EZ) region following a “Self-Induced Flow” (SIF) phenomenon discovered by Li and Pollack,
(106) as shown in Figure 8(a) and (b), respectively. A spontaneous sustained axial flow is observed when hydrophilic materials are immersed in water, resulting in the buildup of a negative layer of charges, defined as the EZ, after water molecules absorb infrared radiation (IR) energy and break down into H and OH
+–.
Despite the finding of such a phenomenon, the specific mechanism and role of IR energy have yet to be defined for the process of EZ development. To further develop an understanding of the role of IR energy in such phenomena, a feasible study may be seen through the lens of the relationships between external forces and microfluidic flow. In the phenomena, the increase of SIF velocity under a rise of IR radiation resonant characteristics is shown in the participation of the external electric field near the microchannel walls under electro-osmotic viscoelastic fluid flow systems. The buildup of negative charges at the hydrophilic surfaces in EZ is analogous to the mechanism of electrical double layer formation. Indeed, research has initiated the exploration of the core mechanisms for EZ formation through the lens of the electrokinetic phenomena.
(107) Such a similarity of the role of IR energy and the transport phenomena of SIF with electrokinetic phenomena paves the way for the definition of the unknown SIF phenomena and EZ formation. Furthermore, Li and Pollack
(106) suggest whether CFL formation might contribute to a SIF of blood using solely IR radiation, a commonly available source of energy in nature, as an external driving force. The proposition may be proven feasible with the presence of the CFL region next to the negatively charged hydrophilic endothelial glycocalyx layer, coating the luminal side of blood vessels.
(108) Further research can dive into the resonating characteristics between the formation of the CFL region next to the hydrophilic endothelial glycocalyx layer and that of the EZ formation close to hydrophilic microchannel walls. Indeed, an increase in IR energy is known to rapidly accelerate EZ formation and SIF velocity, depicting similarity to the increase in the magnitude of electric field forces and greater shear rates at microchannel walls affecting CFL formation and EOF velocity. Such correlation depicts a future direction in whether SIF blood flow can be observed and characterized theoretically further through the lens of the relationship between blood flow and shear forces exhibited by external energy.
The intricate link between the CFL and external forces, more specifically the externally applied electric field, can receive further attention to provide a more complete framework for the mechanisms between IR radiation and EZ formation. Such characterization may also contribute to a greater comprehension of the role IR can play in CFL formation next to the endothelial glycocalyx layer as well as its role as a driving force to propel blood flow, similar to the SIF, but without the commonly assumed pressure force from heart contraction as a source of driving force.
5.3. Challenges
Although there have been significant improvements in blood flow modeling under LOC systems over the past decade, there are still notable constraints that may require special attention for numerical simulation applications to benefit the adaptability of the designs and functionalities of LOC devices. Several points that require special attention are mentioned below:
1.
The majority of CFD models operate under the relationship between the viscoelasticity of blood and the shear rate conditions of flow. The relative effect exhibited by the presence of highly populated RBCs in whole blood and their forces amongst the cells themselves under complex flows often remains unclearly defined. Furthermore, the full range of cell populations in whole blood requires a much more computational load for numerical modeling. Therefore, a vital goal for future research is to evaluate a reduced modeling method where the impact of cell–cell interaction on the viscoelastic property of blood is considered.
2.
Current computational methods on hemodynamics rely on continuum models based upon non-Newtonian rheology at the macroscale rather than at molecular and cellular levels. Careful considerations should be made for the development of a constructive framework for the physical and temporal scales of micro/nanoscale systems to evaluate the intricate relationship between fluid driving forces, dynamic viscosity, and elasticity.
3.
Viscoelastic fluids under the impact of externally applied electric forces often deviate from the assumptions of no-slip boundary conditions due to the unique flow conditions induced by externally applied forces. Furthermore, the mechanism of vortex formation and viscoelastic flow instability at laminar flow conditions should be better defined through the lens of the microfluidic flow phenomenon to optimize the prediction of viscoelastic flow across different geometrical layouts. Mathematical models and numerical methods are needed to better predict such disturbance caused by external forces and the viscoelasticity of fluids at such a small scale.
4.
Under practical situations, zeta potential distribution at channel walls frequently deviates from the common assumption of a constant distribution because of manufacturing faults or inherent surface charges prior to the introduction of electrokinetic influence. These discrepancies frequently lead to inconsistent surface potential distribution, such as excess positive ions at relatively more negatively charged walls. Accordingly, unpredicted vortex formation and flow instability may occur. Therefore, careful consideration should be given to these discrepancies and how they could trigger the transport process and unexpected results of a microdevice.
Zhe Chen – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Email: zaccooky@sjtu.edu.cn
Bo Ouyang – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Email: bouy93@sjtu.edu.cn
Zheng-Hong Luo – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; https://orcid.org/0000-0001-9011-6020; Email: luozh@sjtu.edu.cn
Authors
Bin-Jie Lai – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; https://orcid.org/0009-0002-8133-5381
Li-Tao Zhu – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; https://orcid.org/0000-0001-6514-8864
NotesThe authors declare no competing financial interest.
This work was supported by the National Natural Science Foundation of China (No. 22238005) and the Postdoctoral Research Foundation of China (No. GZC20231576).
the field of technological and scientific study that investigates fluid flow in channels with dimensions between 1 and 1000 μm
Lab-on-a-Chip Technology
the field of research and technological development aimed at integrating the micro/nanofluidic characteristics to conduct laboratory processes on handheld devices
Computational Fluid Dynamics (CFD)
the method utilizing computational abilities to predict physical fluid flow behaviors mathematically through solving the governing equations of corresponding fluid flows
Shear Rate
the rate of change in velocity where one layer of fluid moves past the adjacent layer
Viscoelasticity
the property holding both elasticity and viscosity characteristics relying on the magnitude of applied shear stress and time-dependent strain
Electro-osmosis
the flow of fluid under an applied electric field when charged solid surface is in contact with the bulk fluid
Vortex
the rotating motion of a fluid revolving an axis line
1Neethirajan, S.; Kobayashi, I.; Nakajima, M.; Wu, D.; Nandagopal, S.; Lin, F. Microfluidics for food, agriculture and biosystems industries. Lab Chip2011, 11 (9), 1574– 1586, DOI: 10.1039/c0lc00230eViewGoogle Scholar
2Whitesides, G. M. The origins and the future of microfluidics. Nature2006, 442 (7101), 368– 373, DOI: 10.1038/nature05058ViewGoogle Scholar
3Burklund, A.; Tadimety, A.; Nie, Y.; Hao, N.; Zhang, J. X. J. Chapter One – Advances in diagnostic microfluidics; Elsevier, 2020; DOI: DOI: 10.1016/bs.acc.2019.08.001 .ViewGoogle Scholar
4Abdulbari, H. A. Chapter 12 – Lab-on-a-chip for analysis of blood. In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Denizli, A., Nguyen, T. A., Rajan, M., Alam, M. F., Rahman, K., Eds.; Elsevier, 2022; pp 265– 283.ViewGoogle Scholar
5Vladisavljević, G. T.; Khalid, N.; Neves, M. A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews2013, 65 (11), 1626– 1663, DOI: 10.1016/j.addr.2013.07.017ViewGoogle Scholar
6Kersaudy-Kerhoas, M.; Dhariwal, R.; Desmulliez, M. P. Y.; Jouvet, L. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid. Nanofluid.2010, 8 (1), 105– 114, DOI: 10.1007/s10404-009-0450-5ViewGoogle Scholar
7Popel, A. S.; Johnson, P. C. Microcirculation and Hemorheology. Annu. Rev. Fluid Mech.2005, 37 (1), 43– 69, DOI: 10.1146/annurev.fluid.37.042604.133933ViewGoogle Scholar
8Fedosov, D. A.; Peltomäki, M.; Gompper, G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter2014, 10 (24), 4258– 4267, DOI: 10.1039/C4SM00248BViewGoogle Scholar
9Chakraborty, S. Dynamics of capillary flow of blood into a microfluidic channel. Lab Chip2005, 5 (4), 421– 430, DOI: 10.1039/b414566fViewGoogle Scholar
10Tomaiuolo, G.; Guido, S. Start-up shape dynamics of red blood cells in microcapillary flow. Microvascular Research2011, 82 (1), 35– 41, DOI: 10.1016/j.mvr.2011.03.004ViewGoogle Scholar
11Sherwood, J. M.; Dusting, J.; Kaliviotis, E.; Balabani, S. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. Biomicrofluidics2012, 6 (2), 24119, DOI: 10.1063/1.4717755ViewGoogle Scholar
12Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Frontiers in Physiology2019, 10, 01329, DOI: 10.3389/fphys.2019.01329ViewGoogle Scholar
13Trejo-Soto, C.; Lázaro, G. R.; Pagonabarraga, I.; Hernández-Machado, A. Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. Membranes2022, 12 (2), 217, DOI: 10.3390/membranes12020217ViewGoogle Scholar
14Wagner, C.; Steffen, P.; Svetina, S. Aggregation of red blood cells: From rouleaux to clot formation. Comptes Rendus Physique2013, 14 (6), 459– 469, DOI: 10.1016/j.crhy.2013.04.004ViewGoogle Scholar
15Kim, H.; Zhbanov, A.; Yang, S. Microfluidic Systems for Blood and Blood Cell Characterization. Biosensors2023, 13 (1), 13, DOI: 10.3390/bios13010013ViewGoogle Scholar
16Fåhræus, R.; Lindqvist, T. THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES. American Journal of Physiology-Legacy Content1931, 96 (3), 562– 568, DOI: 10.1152/ajplegacy.1931.96.3.562ViewGoogle Scholar
17Ascolese, M.; Farina, A.; Fasano, A. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?. J. Biol. Phys.2019, 45 (4), 379– 394, DOI: 10.1007/s10867-019-09534-4ViewGoogle Scholar
18Bento, D.; Fernandes, C. S.; Miranda, J. M.; Lima, R. In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Experimental Thermal and Fluid Science2019, 109, 109847, DOI: 10.1016/j.expthermflusci.2019.109847ViewGoogle Scholar
19Namgung, B.; Ong, P. K.; Wong, Y. H.; Lim, D.; Chun, K. J.; Kim, S. A comparative study of histogram-based thresholding methods for the determination of cell-free layer width in small blood vessels. Physiological Measurement2010, 31 (9), N61, DOI: 10.1088/0967-3334/31/9/N01ViewGoogle Scholar
20Hymel, S. J.; Lan, H.; Fujioka, H.; Khismatullin, D. B. Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics. Phys. Fluids (1994)2019, 31 (8), 082003, DOI: 10.1063/1.5113516ViewGoogle Scholar
21Li, X.; Popel, A. S.; Karniadakis, G. E. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys. Biol.2012, 9 (2), 026010, DOI: 10.1088/1478-3975/9/2/026010ViewGoogle Scholar
22Yin, X.; Thomas, T.; Zhang, J. Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation. Microvascular Research2013, 89, 47– 56, DOI: 10.1016/j.mvr.2013.05.002ViewGoogle Scholar
23Shibeshi, S. S.; Collins, W. E. The Rheology of Blood Flow in a Branched Arterial System. Appl. Rheol2005, 15 (6), 398– 405, DOI: 10.1515/arh-2005-0020ViewGoogle Scholar
24Sequeira, A.; Janela, J. An Overview of Some Mathematical Models of Blood Rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon; Pereira, M. S., Ed.; Springer Netherlands: Dordrecht, 2007; pp 65– 87.ViewGoogle Scholar
25Walburn, F. J.; Schneck, D. J. A constitutive equation for whole human blood. Biorheology1976, 13, 201– 210, DOI: 10.3233/BIR-1976-13307ViewGoogle Scholar
26Quemada, D. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood. Biorheology1981, 18, 501– 516, DOI: 10.3233/BIR-1981-183-615ViewGoogle Scholar
27Varchanis, S.; Dimakopoulos, Y.; Wagner, C.; Tsamopoulos, J. How viscoelastic is human blood plasma?. Soft Matter2018, 14 (21), 4238– 4251, DOI: 10.1039/C8SM00061AViewGoogle Scholar
28Apostolidis, A. J.; Moyer, A. P.; Beris, A. N. Non-Newtonian effects in simulations of coronary arterial blood flow. J. Non-Newtonian Fluid Mech.2016, 233, 155– 165, DOI: 10.1016/j.jnnfm.2016.03.008ViewGoogle Scholar
29Luo, X. Y.; Kuang, Z. B. A study on the constitutive equation of blood. J. Biomech.1992, 25 (8), 929– 934, DOI: 10.1016/0021-9290(92)90233-QViewGoogle Scholar
30Oldroyd, J. G.; Wilson, A. H. On the formulation of rheological equations of state. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences1950, 200 (1063), 523– 541, DOI: 10.1098/rspa.1950.0035ViewGoogle Scholar
31Prado, G.; Farutin, A.; Misbah, C.; Bureau, L. Viscoelastic transient of confined red blood cells. Biophys J.2015, 108 (9), 2126– 2136, DOI: 10.1016/j.bpj.2015.03.046ViewGoogle Scholar
32Huang, C. R.; Pan, W. D.; Chen, H. Q.; Copley, A. L. Thixotropic properties of whole blood from healthy human subjects. Biorheology1987, 24 (6), 795– 801, DOI: 10.3233/BIR-1987-24630ViewGoogle Scholar
33Anand, M.; Kwack, J.; Masud, A. A new generalized Oldroyd-B model for blood flow in complex geometries. International Journal of Engineering Science2013, 72, 78– 88, DOI: 10.1016/j.ijengsci.2013.06.009ViewGoogle Scholar
34Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J. Rheol.2018, 62 (2), 577– 591, DOI: 10.1122/1.5017623ViewGoogle Scholar
35Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof. J. Rheol.2019, 63 (5), 799– 813, DOI: 10.1122/1.5108737ViewGoogle Scholar
36Armstrong, M.; Tussing, J. A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood. Phys. Fluids2020, 32 (9), 094111, DOI: 10.1063/5.0022501ViewGoogle Scholar
37Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society1947, 43 (1), 50– 67, DOI: 10.1017/S0305004100023197ViewGoogle Scholar
38Clough, R. W. Original formulation of the finite element method. Finite Elements in Analysis and Design1990, 7 (2), 89– 101, DOI: 10.1016/0168-874X(90)90001-UViewGoogle Scholar
39Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering2006, 195 (13), 1722– 1749, DOI: 10.1016/j.cma.2005.05.049ViewGoogle Scholar
40Lopes, D.; Agujetas, R.; Puga, H.; Teixeira, J.; Lima, R.; Alejo, J. P.; Ferrera, C. Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. International Journal of Mechanical Sciences2021, 207, 106650, DOI: 10.1016/j.ijmecsci.2021.106650ViewGoogle Scholar
41Favero, J. L.; Secchi, A. R.; Cardozo, N. S. M.; Jasak, H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newtonian Fluid Mech.2010, 165 (23), 1625– 1636, DOI: 10.1016/j.jnnfm.2010.08.010ViewGoogle Scholar
42Pimenta, F.; Alves, M. A. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newtonian Fluid Mech.2017, 239, 85– 104, DOI: 10.1016/j.jnnfm.2016.12.002ViewGoogle Scholar
43Chee, C. Y.; Lee, H. P.; Lu, C. Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte. Phys. Lett. A2008, 372 (9), 1357– 1362, DOI: 10.1016/j.physleta.2007.09.067ViewGoogle Scholar
44Xu, D.; Kaliviotis, E.; Munjiza, A.; Avital, E.; Ji, C.; Williams, J. Large scale simulation of red blood cell aggregation in shear flows. J. Biomech.2013, 46 (11), 1810– 1817, DOI: 10.1016/j.jbiomech.2013.05.010ViewGoogle Scholar
45Johnson, K. L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences1971, 324 (1558), 301– 313, DOI: 10.1098/rspa.1971.0141ViewGoogle Scholar
46Shi, L.; Pan, T.-W.; Glowinski, R. Deformation of a single red blood cell in bounded Poiseuille flows. Phys. Rev. E2012, 85 (1), 016307, DOI: 10.1103/PhysRevE.85.016307ViewGoogle Scholar
47Yoon, D.; You, D. Continuum modeling of deformation and aggregation of red blood cells. J. Biomech.2016, 49 (11), 2267– 2279, DOI: 10.1016/j.jbiomech.2015.11.027ViewGoogle Scholar
48Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. European Physical Journal Special Topics2011, 193 (1), 133– 160, DOI: 10.1140/epjst/e2011-01387-1ViewGoogle Scholar
49Gracka, M.; Lima, R.; Miranda, J. M.; Student, S.; Melka, B.; Ostrowski, Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Computer Methods and Programs in Biomedicine2022, 226, 107117, DOI: 10.1016/j.cmpb.2022.107117ViewGoogle Scholar
50Aryan, H.; Beigzadeh, B.; Siavashi, M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. Computer Methods and Programs in Biomedicine2022, 219, 106778, DOI: 10.1016/j.cmpb.2022.106778ViewGoogle Scholar
51Czaja, B.; Závodszky, G.; Azizi Tarksalooyeh, V.; Hoekstra, A. G. Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. J. R Soc. Interface2018, 15 (146), 20180485, DOI: 10.1098/rsif.2018.0485ViewGoogle Scholar
52Rydquist, G.; Esmaily, M. A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows. J. Comput. Phys.2022, 461, 111204, DOI: 10.1016/j.jcp.2022.111204ViewGoogle Scholar
53Dadvand, A.; Baghalnezhad, M.; Mirzaee, I.; Khoo, B. C.; Ghoreishi, S. An immersed boundary-lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows. Journal of Computational Science2014, 5 (5), 709– 718, DOI: 10.1016/j.jocs.2014.06.006ViewGoogle Scholar
54Krüger, T.; Holmes, D.; Coveney, P. V. Deformability-based red blood cell separation in deterministic lateral displacement devices─A simulation study. Biomicrofluidics2014, 8 (5), 054114, DOI: 10.1063/1.4897913ViewGoogle Scholar
55Takeishi, N.; Ito, H.; Kaneko, M.; Wada, S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. Micromachines2019, 10 (3), 199, DOI: 10.3390/mi10030199ViewGoogle Scholar
56Krüger, T.; Varnik, F.; Raabe, D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications2011, 61 (12), 3485– 3505, DOI: 10.1016/j.camwa.2010.03.057ViewGoogle Scholar
57Balachandran Nair, A. N.; Pirker, S.; Umundum, T.; Saeedipour, M. A reduced-order model for deformable particles with application in bio-microfluidics. Computational Particle Mechanics2020, 7 (3), 593– 601, DOI: 10.1007/s40571-019-00283-8ViewGoogle Scholar
58Balachandran Nair, A. N.; Pirker, S.; Saeedipour, M. Resolved CFD-DEM simulation of blood flow with a reduced-order RBC model. Computational Particle Mechanics2022, 9 (4), 759– 774, DOI: 10.1007/s40571-021-00441-xViewGoogle Scholar
60Piquet, A.; Roussel, O.; Hadjadj, A. A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows. Computers & Fluids2016, 136, 272– 284, DOI: 10.1016/j.compfluid.2016.06.001ViewGoogle Scholar
61Akerkouch, L.; Le, T. B. A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid Flows. Fluids2021, 6 (4), 139, DOI: 10.3390/fluids6040139ViewGoogle Scholar
62Barker, A. T.; Cai, X.-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. J. Comput. Phys.2010, 229 (3), 642– 659, DOI: 10.1016/j.jcp.2009.10.001ViewGoogle Scholar
63Cetin, A.; Sahin, M. A monolithic fluid-structure interaction framework applied to red blood cells. International Journal for Numerical Methods in Biomedical Engineering2019, 35 (2), e3171 DOI: 10.1002/cnm.3171ViewGoogle Scholar
64Freund, J. B. Numerical Simulation of Flowing Blood Cells. Annu. Rev. Fluid Mech.2014, 46 (1), 67– 95, DOI: 10.1146/annurev-fluid-010313-141349ViewGoogle Scholar
65Ye, T.; Phan-Thien, N.; Lim, C. T. Particle-based simulations of red blood cells─A review. J. Biomech.2016, 49 (11), 2255– 2266, DOI: 10.1016/j.jbiomech.2015.11.050ViewGoogle Scholar
66Arabghahestani, M.; Poozesh, S.; Akafuah, N. K. Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. Applied Sciences2019, 9 (19), 4041, DOI: 10.3390/app9194041ViewGoogle Scholar
67Rathnayaka, C. M.; From, C. S.; Geekiyanage, N. M.; Gu, Y. T.; Nguyen, N. T.; Sauret, E. Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Archives of Computational Methods in Engineering2022, 29 (5), 3021– 3039, DOI: 10.1007/s11831-021-09683-7ViewGoogle Scholar
68Li, X.; Vlahovska, P. M.; Karniadakis, G. E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter2013, 9 (1), 28– 37, DOI: 10.1039/C2SM26891DViewGoogle Scholar
69Beris, A. N.; Horner, J. S.; Jariwala, S.; Armstrong, M. J.; Wagner, N. J. Recent advances in blood rheology: a review. Soft Matter2021, 17 (47), 10591– 10613, DOI: 10.1039/D1SM01212FViewGoogle Scholar
70Arciero, J.; Causin, P.; Malgaroli, F. Mathematical methods for modeling the microcirculation. AIMS Biophysics2017, 4 (3), 362– 399, DOI: 10.3934/biophy.2017.3.362ViewGoogle Scholar
71Maria, M. S.; Chandra, T. S.; Sen, A. K. Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid. Nanofluid.2017, 21 (4), 72, DOI: 10.1007/s10404-017-1907-6ViewGoogle Scholar
72Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc.2018, 13 (7), 1521– 1538, DOI: 10.1038/s41596-018-0003-zViewGoogle Scholar
73Young, T., III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London1805, 95, 65– 87, DOI: 10.1098/rstl.1805.0005ViewGoogle Scholar
74Kim, Y. C.; Kim, S.-H.; Kim, D.; Park, S.-J.; Park, J.-K. Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens. Actuators, B2010, 145 (2), 861– 868, DOI: 10.1016/j.snb.2010.01.017ViewGoogle Scholar
75Washburn, E. W. The Dynamics of Capillary Flow. Physical Review1921, 17 (3), 273– 283, DOI: 10.1103/PhysRev.17.273ViewGoogle Scholar
76Cito, S.; Ahn, Y. C.; Pallares, J.; Duarte, R. M.; Chen, Z.; Madou, M.; Katakis, I. Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography. Microfluid Nanofluidics2012, 13 (2), 227– 237, DOI: 10.1007/s10404-012-0950-6ViewGoogle Scholar
77Berthier, E.; Dostie, A. M.; Lee, U. N.; Berthier, J.; Theberge, A. B. Open Microfluidic Capillary Systems. Anal Chem.2019, 91 (14), 8739– 8750, DOI: 10.1021/acs.analchem.9b01429ViewGoogle Scholar
78Berthier, J.; Brakke, K. A.; Furlani, E. P.; Karampelas, I. H.; Poher, V.; Gosselin, D.; Cubizolles, M.; Pouteau, P. Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens. Actuators, B2015, 206, 258– 267, DOI: 10.1016/j.snb.2014.09.040ViewGoogle Scholar
79Hirt, C. W.; Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.1981, 39 (1), 201– 225, DOI: 10.1016/0021-9991(81)90145-5ViewGoogle Scholar
80Chen, J.-L.; Shih, W.-H.; Hsieh, W.-H. AC electro-osmotic micromixer using a face-to-face, asymmetric pair of planar electrodes. Sens. Actuators, B2013, 188, 11– 21, DOI: 10.1016/j.snb.2013.07.012ViewGoogle Scholar
81Zhao, C.; Yang, C. Electrokinetics of non-Newtonian fluids: A review. Advances in Colloid and Interface Science2013, 201-202, 94– 108, DOI: 10.1016/j.cis.2013.09.001ViewGoogle Scholar
82Oh, K. W. 6 – Lab-on-chip (LOC) devices and microfluidics for biomedical applications. In MEMS for Biomedical Applications; Bhansali, S., Vasudev, A., Eds.; Woodhead Publishing, 2012; pp 150– 171.ViewGoogle Scholar
83Bello, M. S.; De Besi, P.; Rezzonico, R.; Righetti, P. G.; Casiraghi, E. Electroosmosis of polymer solutions in fused silica capillaries. ELECTROPHORESIS1994, 15 (1), 623– 626, DOI: 10.1002/elps.1150150186ViewGoogle Scholar
84Park, H. M.; Lee, W. M. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip2008, 8 (7), 1163– 1170, DOI: 10.1039/b800185eViewGoogle Scholar
85Afonso, A. M.; Alves, M. A.; Pinho, F. T. Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech.2009, 159 (1), 50– 63, DOI: 10.1016/j.jnnfm.2009.01.006ViewGoogle Scholar
86Sousa, J. J.; Afonso, A. M.; Pinho, F. T.; Alves, M. A. Effect of the skimming layer on electro-osmotic─Poiseuille flows of viscoelastic fluids. Microfluid. Nanofluid.2011, 10 (1), 107– 122, DOI: 10.1007/s10404-010-0651-yViewGoogle Scholar
87Zhao, C.; Yang, C. Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics2011, 5 (1), 014110, DOI: 10.1063/1.3571278ViewGoogle Scholar
88Pimenta, F.; Alves, M. A. Electro-elastic instabilities in cross-shaped microchannels. J. Non-Newtonian Fluid Mech.2018, 259, 61– 77, DOI: 10.1016/j.jnnfm.2018.04.004ViewGoogle Scholar
89Bezerra, W. S.; Castelo, A.; Afonso, A. M. Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation. Micromachines (Basel)2019, 10 (12), 796, DOI: 10.3390/mi10120796ViewGoogle Scholar
90Ji, J.; Qian, S.; Liu, Z. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines (Basel)2021, 12 (4), 417, DOI: 10.3390/mi12040417ViewGoogle Scholar
91Zhao, C.; Yang, C. Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Applied Mathematics and Computation2009, 211 (2), 502– 509, DOI: 10.1016/j.amc.2009.01.068ViewGoogle Scholar
92Gerum, R.; Mirzahossein, E.; Eroles, M.; Elsterer, J.; Mainka, A.; Bauer, A.; Sonntag, S.; Winterl, A.; Bartl, J.; Fischer, L. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. Elife2022, 11, e78823, DOI: 10.7554/eLife.78823ViewGoogle Scholar
93Sadek, S. H.; Pinho, F. T.; Alves, M. A. Electro-elastic flow instabilities of viscoelastic fluids in contraction/expansion micro-geometries. J. Non-Newtonian Fluid Mech.2020, 283, 104293, DOI: 10.1016/j.jnnfm.2020.104293ViewGoogle Scholar
94Spanjaards, M.; Peters, G.; Hulsen, M.; Anderson, P. Numerical Study of the Effect of Thixotropy on Extrudate Swell. Polymers2021, 13 (24), 4383, DOI: 10.3390/polym13244383ViewGoogle Scholar
95Rashidi, S.; Bafekr, H.; Valipour, M. S.; Esfahani, J. A. A review on the application, simulation, and experiment of the electrokinetic mixers. Chemical Engineering and Processing – Process Intensification2018, 126, 108– 122, DOI: 10.1016/j.cep.2018.02.021ViewGoogle Scholar
96Matsubara, K.; Narumi, T. Microfluidic mixing using unsteady electroosmotic vortices produced by a staggered array of electrodes. Chemical Engineering Journal2016, 288, 638– 647, DOI: 10.1016/j.cej.2015.12.013ViewGoogle Scholar
97Qaderi, A.; Jamaati, J.; Bahiraei, M. CFD simulation of combined electroosmotic-pressure driven micro-mixing in a microchannel equipped with triangular hurdle and zeta-potential heterogeneity. Chemical Engineering Science2019, 199, 463– 477, DOI: 10.1016/j.ces.2019.01.034ViewGoogle Scholar
98Cho, C.-C.; Chen, C.-L.; Chen, C. o.-K. Mixing enhancement in crisscross micromixer using aperiodic electrokinetic perturbing flows. International Journal of Heat and Mass Transfer2012, 55 (11), 2926– 2933, DOI: 10.1016/j.ijheatmasstransfer.2012.02.006ViewGoogle Scholar
99Zhao, W.; Yang, F.; Wang, K.; Bai, J.; Wang, G. Rapid mixing by turbulent-like electrokinetic microflow. Chemical Engineering Science2017, 165, 113– 121, DOI: 10.1016/j.ces.2017.02.027ViewGoogle Scholar
100Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G. Macroscopic effects of the spectral structure in turbulent flows. Nat. Phys.2010, 6 (6), 438– 441, DOI: 10.1038/nphys1674ViewGoogle Scholar
101Toner, M.; Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed Eng.2005, 7, 77– 103, DOI: 10.1146/annurev.bioeng.7.011205.135108ViewGoogle Scholar
102Maria, M. S.; Rakesh, P. E.; Chandra, T. S.; Sen, A. K. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics2016, 10 (5), 054108, DOI: 10.1063/1.4962874ViewGoogle Scholar
103Tripathi, S.; Varun Kumar, Y. V. B.; Prabhakar, A.; Joshi, S. S.; Agrawal, A. Passive blood plasma separation at the microscale: a review of design principles and microdevices. Journal of Micromechanics and Microengineering2015, 25 (8), 083001, DOI: 10.1088/0960-1317/25/8/083001ViewGoogle Scholar
104Mohammadi, M.; Madadi, H.; Casals-Terré, J. Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow. Biomicrofluidics2015, 9 (5), 054106, DOI: 10.1063/1.4930865ViewGoogle Scholar
105Kang, D. H.; Kim, K.; Kim, Y. J. An anti-clogging method for improving the performance and lifespan of blood plasma separation devices in real-time and continuous microfluidic systems. Sci. Rep2018, 8 (1), 17015, DOI: 10.1038/s41598-018-35235-4ViewGoogle Scholar
106Li, Z.; Pollack, G. H. Surface-induced flow: A natural microscopic engine using infrared energy as fuel. Science Advances2020, 6 (19), eaba0941 DOI: 10.1126/sciadv.aba0941ViewGoogle Scholar
107Mercado-Uribe, H.; Guevara-Pantoja, F. J.; García-Muñoz, W.; García-Maldonado, J. S.; Méndez-Alcaraz, J. M.; Ruiz-Suárez, J. C. On the evolution of the exclusion zone produced by hydrophilic surfaces: A contracted description. J. Chem. Phys.2021, 154 (19), 194902, DOI: 10.1063/5.0043084ViewGoogle Scholar
108Yalcin, O.; Jani, V. P.; Johnson, P. C.; Cabrales, P. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Front Physiol2018, 9, 168, DOI: 10.3389/fphys.2018.00168ViewGoogle Scholar
Beom-Jin Kim 1, Jae-Hong Hwang 2 and Byunghyun Kim 3,* 1 Advanced Structures and Seismic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea 2 Korea Water Resources Corporation (K-Water), Daejeon 34350, Korea 3 Department of Civil Engineering, Kyungpook National University, Daegu 41566, Korea
Hydraulic structures installed in rivers inevitably create a water level difference between upstream and downstream regions. The potential energy due to this difference in water level is converted into kinetic energy, causing high-velocity flow and hydraulic jumps in the river. As a result, problems such as scouring and sloping downstream may occur around the hydraulic structures. In this study, a FLOW-3D model was constructed to perform a numerical analysis of the ChangnyeongHaman weir in the Republic of Korea. The constructed model was verified based on surface velocity measurements from a field gate operation experiment. In the simulation results, the flow discharge differed from the measured value by 9–15 m3/s, from which the accuracy was evaluated to be 82–87%. The flow velocity was evaluated with an accuracy of 92% from a difference of 0.01 to 0.16 m/s. Following this verification, a flow analysis of the hydraulic structures was performed according to boundary conditions and operation conditions for numerous scenarios. Since 2018, the ChangnyeongHaman weir gate has been fully opened due to the implementation of Korea’s eco-environmental policy; therefore, in this study, the actual gate operation history data prior to 2018 was applied and evaluated. The evaluation conditions were a 50% open gate condition and the flow discharge of two cases with a large difference in water level. As a result of the analysis, the actual operating conditions showed that the velocity and the Froude number were lower than the optimal conditions, confirming that the selected design was appropriate. It was also found that in the bed protection section, the average flow velocity was high when the water level difference was large, whereas the bottom velocity was high when the gate opening was large. Ultimately, through the reviewed status survey data in this study, the downstream flow characteristics of hydraulic structures along with adequacy verification techniques, optimal design techniques such as procedures for design, and important considerations were derived. Based on the current results, the constructed FLOW-3D-based model can be applied to creating or updating flow analysis guidelines for future repair and reinforcement measures as well as hydraulic structure design.
하천에 설치되는 수력구조물은 필연적으로 상류와 하류의 수위차를 발생시킨다. 이러한 수위차로 인한 위치에너지는 운동에너지로 변환되어 하천의 고속유동과 수압점프를 일으킨다. 그 결과 수력구조물 주변에서 하류의 세굴, 경사 등의 문제가 발생할 수 있다.
본 연구에서는 대한민국 창녕함안보의 수치해석을 위해 FLOW-3D 모델을 구축하였다. 구축된 모델은 현장 게이트 작동 실험에서 표면 속도 측정을 기반으로 검증되었습니다.
시뮬레이션 결과에서 유량은 측정값과 9~15 m3/s 차이가 나고 정확도는 82~87%로 평가되었다. 유속은 0.01~0.16m/s의 차이에서 92%의 정확도로 평가되었습니다.
검증 후 다양한 시나리오에 대한 경계조건 및 운전조건에 따른 수리구조물의 유동해석을 수행하였다. 2018년부터 창녕함안보 문은 한국의 친환경 정책 시행으로 전면 개방되었습니다.
따라서 본 연구에서는 2018년 이전의 실제 게이트 운영 이력 데이터를 적용하여 평가하였다. 평가조건은 50% open gate 조건과 수위차가 큰 2가지 경우의 유수방류로 하였다. 해석 결과 실제 운전조건은 속도와 Froude수가 최적조건보다 낮아 선정된 설계가 적합함을 확인하였다.
또한 베드보호구간에서는 수위차가 크면 평균유속이 높고, 수문개구가 크면 저저유속이 높은 것으로 나타났다. 최종적으로 본 연구에서 검토한 실태조사 자료를 통해 적정성 검증기법과 함께 수력구조물의 하류 유동특성, 설계절차 등 최적 설계기법 및 중요 고려사항을 도출하였다.
현재의 결과를 바탕으로 구축된 FLOW-3D 기반 모델은 수력구조 설계뿐만 아니라 향후 보수 및 보강 조치를 위한 유동해석 가이드라인 생성 또는 업데이트에 적용할 수 있습니다.
References
Wanoschek, R.; Hager, W.H. Hydraulic jump in trapezoidal channel. J. Hydraul. Res. 1989, 27, 429–446. [CrossRef]
Bohr, T.; Dimon, P.; Putkaradze, V. Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 1993, 254, 635–648. [CrossRef]
Chanson, H.; Brattberg, T. Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000, 26, 583–607. [CrossRef]
Dhamotharan, S.; Gulliver, J.S.; Stefan, H.G. Unsteady one-dimensional settling of suspended sediment. Water Resour. Res. 1981, 17, 1125–1132. [CrossRef]
Ziegler, C.K.; Nisbet, B.S. Long-term simulation of fine-grained sediment transport in large reservoir. J. Hydraul. Eng. 1995, 121, 773–781. [CrossRef]
Olsen, N.R.B. Two-dimensional numerical modelling of flushing processes in water reservoirs. J. Hydraul. Res. 1999, 37, 3–16. [CrossRef]
Saad, N.Y.; Fattouh, E.M. Hydraulic characteristics of flow over weirs with circular openings. Ain Shams Eng. J. 2017, 8, 515–522. [CrossRef]
Bagheri, S.; Kabiri-Samani, A.R. Hydraulic Characteristics of flow over the streamlined weirs. Modares Civ. Eng. J. 2018, 17, 29–42.
Hussain, Z.; Khan, S.; Ullah, A.; Ayaz, M.; Ahmad, I.; Mashwani, W.K.; Chu, Y.-M. Extension of optimal homotopy asymptotic method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations. Open Phys. 2020, 18, 916–924. [CrossRef]
Arifeen, S.U.; Haq, S.; Ghafoor, A.; Ullah, A.; Kumam, P.; Chaipanya, P. Numerical solutions of higher order boundary value problems via wavelet approach. Adv. Differ. Equ. 2021, 2021, 347. [CrossRef]
Sharafati, A.; Haghbin, M.; Motta, D.; Yaseen, Z.M. The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: A comprehensive review, assessment and possible future research direction. Arch. Comput. Methods Eng. 2021, 28, 423–447. [CrossRef]
Khan, S.; Selim, M.M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ayaz, M.; Mashwani, W.K. On the analysis of the non-Newtonian fluid flow past a stretching/shrinking permeable surface with heat and mass transfer. Coatings 2021, 11, 566. [CrossRef]
Khan, S.; Selim, M.M.; Gepreel, K.A.; Ullah, A.; Ayaz, M.; Mashwani, W.K.; Khan, E. An analytical investigation of the mixed convective Casson fluid flow past a yawed cylinder with heat transfer analysis. Open Phys. 2021, 19, 341–351. [CrossRef]
Ullah, A.; Selim, M.M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A. A Magnetite–Water-Based Nanofluid Three-Dimensional Thin Film Flow on an Inclined Rotating Surface with Non-Linear Thermal Radiations and Couple Stress Effects. Energies 2021, 14, 5531. [CrossRef]
Aamir, M.; Ahmad, Z.; Pandey, M.; Khan, M.A.; Aldrees, A.; Mohamed, A. The Effect of Rough Rigid Apron on Scour Downstream of Sluice Gates. Water 2022, 14, 2223. [CrossRef]
Gharebagh, B.A.; Bazargan, J.; Mohammadi, M. Experimental Investigation of Bed Scour Rate in Flood Conditions. Environ. Water Eng. 2022, in press. [CrossRef]
Laishram, K.; Devi, T.T.; Singh, N.B. Experimental Comparison of Hydraulic Jump Characteristics and Energy Dissipation Between Sluice Gate and Radial Gate. In Innovative Trends in Hydrological and Environmental Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 207–218.
Varaki, M.E.; Sedaghati, M.; Sabet, B.S. Effect of apron length on local scour at the downstream of grade control structures with labyrinth planform. Arab. J. Geosci. 2022, 15, 1240. [CrossRef]
Rizk, D.; Ullah, A.; Elattar, S.; Alharbi, K.A.M.; Sohail, M.; Khan, R.; Khan, A.; Mlaiki, N. Impact of the KKL Correlation Model on the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ ZnO+ Water) Flow through Permeable Vertically Rotating Surface. Energies 2022, 15, 2872. [CrossRef]
Kim, K.H.; Choi, G.W.; Jo, J.B. An Experimental Study on the Stream Flow by Discharge Ratio. Korea Water Resour. Assoc. Acad. Conf. 2005, 05b, 377–382.
Lee, D.S.; Yeo, H.G. An Experimental Study for Determination of the Material Diameter of Riprap Bed Protection Structure. Korea Water Resour. Assoc. Acad. Conf. 2005, 05b, 1036–1039.
Choi, G.W.; Byeon, S.J.; Kim, Y.G.; Cho, S.U. The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom. J. Korean Soc. Hazard Mitig. 2008, 8, 117–122.
Jung, J.G. An Experimental Study for Estimation of Bed Protection Length. J. Korean Wetl. Soc. 2011, 13, 677–686.
Kim, S.H.; Kim, W.; Lee, E.R.; Choi, G.H. Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River. J. Korean Water Resour. Assoc. 2005, 38, 401–413. [CrossRef]
Kim, J.H.; Sim, M.P.; Choi, G.W.; Oh, J.M. Hydraulic Analysis of Air Entrainment by Weir Types. J. Korean Water Resour. Assoc. 2003, 36, 971–984. [CrossRef]
Jeong, S.; Yeo, C.G.; Yun, G.S.; Lee, S.O. Analysis of Characteristics for Bank Scour around Low Dam using 3D Numerical Simulation. Korean Soc. Hazard Mitig. Acad. Conf. 2011, 02a, 102.
Son, A.R.; Kim, B.H.; Moon, B.R.; Han, G.Y. An Analysis of Bed Change Characteristics by Bed Protection Work. J. Korean Soc. Civ. Eng. 2015, 35, 821–834.
French, R.H.; French, R.H. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1985; ISBN 0070221340.
TianLiabJ.M.T.DaviesaXiangzhenZhuc aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom
Abstract
An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.
연행 결함(이중 산화막 결함 또는 이중막이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주물을 사용하여 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF6/CO2, SF6/공기)에서 생산되었습니다. AZ91 합금에 포함된 연행 결함의 진화 과정은 미세 조직 검사 및 열역학 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.
As the lightest structural metal available on Earth, magnesium became one of the most attractive light metals over the last few decades. The magnesium industry has consequently experienced a rapid development in the last 20 years [1,2], indicating a large growth in demand for Mg alloys all over the world. Nowadays, the use of Mg alloys can be found in the fields of automobiles, aerospace, electronics and etc.[3,4]. It has been predicted that the global consumption of Mg metals will further increase in the future, especially in the automotive industry, as the energy efficiency requirement of both traditional and electric vehicles further push manufactures lightweight their design [3,5,6].
The sustained growth in demand for Mg alloys motivated a wide interest in the improvement of the quality and mechanical properties of Mg-alloy castings. During a Mg-alloy casting process, surface turbulence of the melt can lead to the entrapment of a doubled-over surface film containing a small quantity of the surrounding atmosphere, thus forming an entrainment defect (also known as a double oxide film defect or bifilm) [7], [8], [9], [10]. The random size, quantity, orientation, and placement of entrainment defects are widely accepted to be significant factors linked to the variation of casting properties [7]. In addition, Peng et al. [11] found that entrained oxides films in AZ91 alloy melt acted as filters to Al8Mn5 particles, trapping them as they settle. Mackie et al. [12] further suggested that entrained oxide films can act to trawl the intermetallic particles, causing them to cluster and form extremely large defects. The clustering of intermetallic compounds made the entrainment defects more detrimental for the casting properties.
Most of the previous studies regarding entrainment defects were carried out on Al-alloys [7,[13], [14], [15], [16], [17], [18], and a few potential methods have been suggested for diminishing their negative effect on the quality of Al-alloy castings. Nyahumwa et al.,[16] shows that the void volume within entrainment defects could be reduced by a hot isostatic pressing (HIP) process. Campbell [7] suggested the entrained gas within the defects could be consumed due to reaction with the surrounding melt, which was further verified by Raiszedeh and Griffiths [19].The effect of the entrained gas consumption on the mechanical properties of Al-alloy castings has been investigated by [8,9], suggesting that the consumption of the entrained gas promoted the improvement of the casting reproducibility.
Compared with the investigation concerning the defects within Al-alloys, research into the entrainment defects within Mg-alloys has been significantly limited. The existence of entrainment defects has been demonstrated in Mg-alloy castings [20,21], but their behaviour, evolution, as well as entrained gas consumption are still not clear.
In a Mg-alloy casting process, the melt is usually protected by a cover gas to avoid magnesium ignition. The cavities of sand or investment moulds are accordingly required to be flushed with the cover gas prior to the melt pouring [22]. Therefore, the entrained gas within Mg-alloy castings should contain the cover gas used in the casting process, rather than air only, which may complicate the structure and evolution of the corresponding entrainment defects.
SF6 is a typical cover gas widely used for Mg-alloy casting processes [23], [24], [25]. Although this cover gas has been restricted to use in European Mg-alloy foundries, a commercial report has pointed out that this cover is still popular in global Mg-alloy industry, especially in the countries which dominated the global Mg-alloy production, such as China, Brazil, India, etc. [26]. In addition, a survey in academic publications also showed that this cover gas was widely used in recent Mg-alloy studies [27]. The protective mechanism of SF6 cover gas (i.e., the reaction between liquid Mg-alloy and SF6 cover gas) has been investigated by several previous researchers, but the formation process of the surface oxide film is still not clearly understood, and even some published results are conflicting with each other. In early 1970s, Fruehling [28] found that the surface film formed under SF6 was MgO mainly with traces of fluorides, and suggested that SF6 was absorbed in the Mg-alloy surface film. Couling [29] further noticed that the absorbed SF6 reacted with the Mg-alloy melt to form MgF2. In last 20 years, different structures of the Mg-alloy surface films have been reported, as detailed below.(1)
Single-layered film. Cashion [30,31] used X-ray Photoelectron Spectroscopy (XPS) and Auger Spectroscopy (AES) to identify the surface film as MgO and MgF2. He also found that composition of the film was constant throughout the thickness and the whole experimental holding time. The film observed by Cashion had a single-layered structure created from a holding time from 10 min to 100 min.(2)
Double-layered film. Aarstad et. al [32] reported a doubled-layered surface oxide film in 2003. They observed several well-distributed MgF2 particles attached to the preliminary MgO film and grew until they covered 25–50% of the total surface area. The inward diffusion of F through the outer MgO film was the driving force for the evolution process. This double-layered structure was also supported by Xiong’s group [25,33] and Shih et al. [34].(3)
Triple-layered film. The triple-layered film and its evolution process were reported in 2002 by Pettersen [35]. Pettersen found that the initial surface film was a MgO phase and then gradually evolved to the stable MgF2 phase by the inward diffusion of F. In the final stage, the film has a triple-layered structure with a thin O-rich interlayer between the thick top and bottom MgF2 layers.(4)
Oxide film consisted of discrete particles. Wang et al [36] stirred the Mg-alloy surface film into the melt under a SF6 cover gas, and then inspect the entrained surface film after the solidification. They found that the entrained surface films were not continues as the protective surface films reported by other researchers but composed of discrete particles. The young oxide film was composed of MgO nano-sized oxide particles, while the old oxide films consist of coarse particles (about 1 µm in average size) on one side that contained fluorides and nitrides.
The oxide films of a Mg-alloy melt surface or an entrained gas are both formed due to the reaction between liquid Mg-alloy and the cover gas, thus the above-mentioned research regarding the Mg-alloy surface film gives valuable insights into the evolution of entrainment defects. The protective mechanism of SF6 cover gas (i.e., formation of a Mg-alloy surface film) therefore indicated a potential complicated evolution process of the corresponding entrainment defects.
However, it should be noted that the formation of a surface film on a Mg-alloy melt is in a different situation to the consumption of an entrained gas that is submerged into the melt. For example, a sufficient amount of cover gas was supported during the surface film formation in the studies previously mentioned, which suppressed the depletion of the cover gas. In contrast, the amount of entrained gas within a Mg-alloy melt is finite, and the entrained gas may become fully depleted. Mirak [37] introduced 3.5%SF6/air bubbles into a pure Mg-alloy melt solidifying in a specially designed permanent mould. It was found that the gas bubbles were entirely consumed, and the corresponding oxide film was a mixture of MgO and MgF2. However, the nucleation sites (such as the MgF2 spots observed by Aarstad [32] and Xiong [25,33]) were not observed. Mirak also speculated that the MgF2 formed prior to MgO in the oxide film based on the composition analysis, which was opposite to the surface film formation process reported in previous literatures (i.e., MgO formed prior to MgF2). Mirak’s work indicated that the oxide-film formation of an entrained gas may be quite different from that of surface films, but he did not reveal the structure and evolution of the oxide films.
In addition, the use of carrier gas in the cover gases also influenced the reaction between the cover gas and the liquid Mg-alloy. SF6/air required a higher content of SF6 than did a SF6/CO2 carrier gas [38], to avoid the ignition of molten magnesium, revealing different gas-consumption rates. Liang et.al [39] suggested that carbon was formed in the surface film when CO2 was used as a carrier gas, which was different from the films formed in SF6/air. An investigation into Mg combustion [40] reported a detection of Mg2C3 in the Mg-alloy sample after burning in CO2, which not only supported Liang’s results, but also indicated a potential formation of Mg carbides in double oxide film defects.
The work reported here is an investigation into the behaviour and evolution of entrainment defects formed in AZ91 Mg-alloy castings, protected by different cover gases (i.e., SF6/air and SF6/CO2). These carrier gases have different protectability for liquid Mg alloy, which may be therefore associated with different consumption rates and evolution processes of the corresponding entrained gases. The effect of the entrained-gas consumption on the reproducibility of AZ91 castings was also studied.
2. Experiment
2.1. Melting and casting
Three kilograms AZ91 alloy was melted in a mild steel crucible at 700 ± 5 °C. The composition of the AZ91 alloy has been shown in Table 1. Prior to heating, all oxide scale on the ingot surface was removed by machining. The cover gases used were 0.5%SF6/air or 0.5%SF6/CO2 (vol.%) at a flow rate of 6 L/min for different castings. The melt was degassed by argon with a flow rate of 0.3 L/min for 15 min [41,42], and then poured into sand moulds. Prior to pouring, the sand mould cavity was flushed with the cover gas for 20 min [22]. The residual melt (around 1 kg) was solidified in the crucible.
Table 1. Composition (wt.%) of the AZ91 alloy used in this study.
Al
Zn
Mn
Si
Fe
Ni
Mg
9.4
0.61
0.15
0.02
0.005
0.0017
Residual
Fig. 1(a) shows the dimensions of the casting with runners. A top-filling system was deliberately used to generate entrainment defects in the final castings. Green and Campbell [7,43] suggested that a top-filling system caused more entrainment events (i.e., bifilms) during a casting process, compared with a bottom-filling system. A melt flow simulation (Flow-3D software) of this mould, using Reilly’s model [44] regarding the entrainment events, also predicted that a large amount of bifilms would be contained in the final casting (denoted by the black particles in Fig. 1b).
Shrinkage defects also affect the mechanical properties and reproducibility of castings. Since this study focused on the effect of bifilms on the casting quality, the mould has been deliberately designed to avoid generating shrinkage defects. A solidification simulation using ProCAST software showed that no shrinkage defect would be contained in the final casting, as shown in Fig. 1c. The casting soundness has also been confirmed using a real time X-ray prior to the test bar machining.
The sand moulds were made from resin-bonded silica sand, containing 1wt. % PEPSET 5230 resin and 1wt. % PEPSET 5112 catalyst. The sand also contained 2 wt.% Na2SiF6 to act as an inhibitor [45]. The pouring temperature was 700 ± 5 °C. After the solidification, a section of the runner bars was sent to the Sci-Lab Analytical Ltd for a H-content analysis (LECO analysis), and all the H-content measurements were carried out on the 5th day after the casting process. Each of the castings was machined into 40 test bars for a tensile strength test, using a Zwick 1484 tensile test machine with a clip extensometer. The fracture surfaces of the broken test bars were examined using Scanning Electron Microscope (SEM, Philips JEOL7000) with an accelerating voltage of 5–15 kV. The fractured test bars, residual Mg-alloy solidified in the crucible, and the casting runners were then sectioned, polished and also inspected using the same SEM. The cross-section of the oxide film found on the test-bar fracture surface was exposed by the Focused Ion Beam milling technique (FIB), using a CFEI Quanta 3D FEG FIB-SEM. The oxide film required to be analysed was coated with a platinum layer. Then, a gallium ion beam, accelerated to 30 kV, milled the material substrate surrounding the platinum coated area to expose the cross section of the oxide film. EDS analysis of the oxide film’s cross section was carried out using the FIB equipment at accelerating voltage of 30 kV.
2.2. Oxidation cell
As previously mentioned, several past researchers investigated the protective film formed on a Mg-alloy melt surface [38,39,[46], [47], [48], [49], [50], [51], [52]. During these experiments, the amount of cover gas used was sufficient, thus suppressing the depletion of fluorides in the cover gas. The experiment described in this section used a sealed oxidation cell, which limited the supply of cover gas, to study the evolution of the oxide films of entrainment defects. The cover gas contained in the oxidation cell was regarded as large-size “entrained bubble”.
As shown in Fig. 2, the main body of the oxidation cell was a closed-end mild steel tube which had an inner length of 400 mm, and an inner diameter of 32 mm. A water-cooled copper tube was wrapped around the upper section of the cell. When the tube was heated, the cooling system created a temperature difference between the upper and lower sections, causing the interior gas to convect within the tube. The temperature was monitored by a type-K thermocouple located at the top of the crucible. Nie et al. [53] suggested that the SF6 cover gas would react with the steel wall of the holding furnace when they investigated the surface film of a Mg-alloy melt. To avoid this reaction, the interior surface of the steel oxidation cell (shown in Fig. 2) and the upper half section of the thermocouple were coated with boron nitride (the Mg-alloy was not in contact with boron nitride).
During the experiment, a block of solid AZ91 alloy was placed in a magnesia crucible located at the bottom of the oxidation cell. The cell was heated to 100 °C in an electric resistance furnace under a gas flow rate of 1 L/min. The cell was held at this temperature for 20 min, to replace the original trapped atmosphere (i.e. air). Then, the oxidation cell was further heated to 700 °C, melting the AZ91 sample. The gas inlet and exit valves were then closed, creating a sealed environment for oxidation under a limited supply of cover gas. The oxidation cell was then held at 700 ± 10 °C for periods of time from 5 min to 30 min in 5-min intervals. At the end of each holding time, the cell was quenched in water. After cooling to room temperature, the oxidised sample was sectioned, polished, and subsequently examined by SEM.
3. Results
3.1. Structure and composition of the entrainment defects formed in SF6/air
The structure and composition of the entrainment defect formed in the AZ91 castings under a cover gas of 0.5%SF6/air was observed by SEM and EDS. The results indicate that there exist two types of entrainment defects which are sketched in Fig. 3: (1) Type A defect whose oxide film has a traditional single-layered structure and (2) Type B defect, whose oxide film has two layers. The details of these defects were introduced in the following. Here it should be noticed that, as the entrainment defects are also known as biofilms or double oxide film, the oxide films of Type B defect were referred to as “multi-layered oxide film” or “multi-layered structure” in the present work to avoid a confusing description such as “the double-layered oxide film of a double oxide film defect”.
Fig. 4(a-b) shows a Type A defect having a compact single-layered oxide film with about 0.4 µm thickness. Oxygen, fluorine, magnesium and aluminium were detected in this film (Fig. 4c). It is speculated that oxide film is the mixture of fluoride and oxide of magnesium and aluminium. The detection of fluorine revealed that an entrained cover gas was contained in the formation of this defect. That is to say that the pores shown in Fig. 4(a) were not shrinkage defects or hydrogen porosity, but entrainment defects. The detection of aluminium was different with Xiong and Wang’s previous study [47,48], which showed that no aluminium was contained in their surface film of an AZ91 melt protected by a SF6 cover gas. Sulphur could not be clearly recognized in the element map, but there was a S-peak in the corresponding ESD spectrum.
Fig. 5(a-b) shows a Type B entrainment defect having a multi-layered oxide film. The compact outer layers of the oxide films were enriched with fluorine and oxygen (Fig. 5c), while their relatively porous inner layers were only enriched with oxygen (i.e., poor in fluorine) and partly grew together, thus forming a sandwich-like structure. Therefore, it is speculated that the outer layer is the mixture of fluoride and oxide, while the inner layer is mainly oxide. Sulphur could only be recognized in the EDX spectrum and could not be clearly identified in the element map, which might be due to the small S-content in the cover gas (i.e., 0.5% volume content of SF6 in the cover gas). In this oxide film, aluminium was contained in the outer layer of this oxide film but could not be clearly detected in the inner layer. Moreover, the distribution of Al seems to be uneven. It can be found that, in the right side of the defect, aluminium exists in the film but its concentration can not be identified to be higher than the matrix. However, there is a small area with much higher aluminium concentration in the left side of the defect. Such an uneven distribution of aluminium was also observed in other defects (shown in the following), and it is the result of the formation of some oxide particles in or under the film.
Figs. 4 and 5 show cross sectional observations of the entrainment defects formed in the AZ91 alloy sample cast under a cover gas of SF6/air. It is not sufficient to characterize the entrainment defects only by the figures observed from the two-dimensional section. To have a further understanding, the surface of the entrainment defects (i.e. the oxide film) was further studied by observing the fracture surface of the test bars.
Fig. 6(a) shows fracture surfaces of an AZ91 alloy tensile test bar produced in SF6/air. Symmetrical dark regions can be seen on both sides of the fracture surfaces. Fig. 6(b) shows boundaries between the dark and bright regions. The bright region consisted of jagged and broken features, while the surface of the dark region was relatively smooth and flat. In addition, the EDS results (Fig. 6c-d and Table 2) show that fluorine, oxygen, sulphur, and nitrogen were only detected in the dark regions, indicating that the dark regions were surface protective films entrained into the melt. Therefore, it could be suggested that the dark regions were an entrainment defect with consideration of their symmetrical nature. Similar defects on fracture surfaces of Al-alloy castings have been previously reported [7]. Nitrides were only found in the oxide films on the test-bar fracture surfaces but never detected in the cross-sectional samples shown in Figs. 4 and 5. An underlying reason is that the nitrides contained in these samples may have hydrolysed during the sample polishing process [54].
Table 2. EDS results (wt.%) corresponding to the regions shown in Fig. 6 (cover gas: SF6/air).
In conjunction with the cross-sectional observation of the defects shown in Figs. 4 and 5, the structure of an entrainment defect contained in a tensile test bar was sketched as shown in Fig. 6(e). The defect contained an entrained gas enclosed by its oxide film, creating a void section inside the test bar. When the tensile force applied on the defect during the fracture process, the crack was initiated at the void section and propagated along the entrainment defect, since cracks would be propagated along the weakest path [55]. Therefore, when the test bar was finally fractured, the oxide films of entrainment defect appeared on both fracture surfaces of the test bar, as shown in Fig. 6(a).
3.2. Structure and composition of the entrainment defects formed in SF6/CO2
Similar to the entrainment defect formed in SF6/air, the defects formed under a cover gas of 0.5%SF6/CO2 also had two types of oxide films (i.e., single-layered and multi-layered types). Fig. 7(a) shows an example of the entrainment defects containing a multi-layered oxide film. A magnified observation to the defect (Fig. 7b) shows that the inner layers of the oxide films had grown together, presenting a sandwich-like structure, which was similar to the defects formed in an atmosphere of SF6/air (Fig. 5b). An EDS spectrum (Fig. 7c) revealed that the joint area (inner layer) of this sandwich-like structure mainly contained magnesium oxides. Peaks of fluorine, sulphur, and aluminium were recognized in this EDS spectrum, but their amount was relatively small. In contrast, the outer layers of the oxide films were compact and composed of a mixture of fluorides and oxides (Fig. 7d-e).
Fig. 8(a) shows an entrainment defect on the fracture surfaces of an AZ91 alloy tensile test bar, which was produced in an atmosphere of 0.5%SF6/CO2. The corresponding EDS results (Table 3) showed that oxide film contained fluorides and oxides. Sulphur and nitrogen were not detected. Besides, a magnified observation (Fig. 8b) indicated spots on the oxide film surface. The diameter of the spots ranged from hundreds of nanometres to a few micron meters.
To further reveal the structure and composition of the oxide film clearly, the cross-section of the oxide film on a test-bar fracture surface was onsite exposed using the FIB technique (Fig. 9). As shown in Fig. 9a, a continuous oxide film was found between the platinum coating layer and the Mg-Al alloy substrate. Fig. 9 (b-c) shows a magnified observation to oxide films, indicating a multi-layered structure (denoted by the red box in Fig. 9c). The bottom layer was enriched with fluorine and oxygen and should be the mixture of fluoride and oxide, which was similar to the “outer layer” shown in Figs. 5 and 7, while the only-oxygen-enriched top layer was similar to the “inner layer” shown in Figs. 5 and 7.
Except the continuous film, some individual particles were also observed in or below the continuous film, as shown in Fig. 9. An Al-enriched particle was detected in the left side of the oxide film shown in Fig. 9b and might be speculated to be spinel Mg2AlO4 because it also contains abundant magnesium and oxygen elements. The existing of such Mg2AlO4 particles is responsible for the high concentration of aluminium in small areas of the observed film and the uneven distribution of aluminium, as shown in Fig. 5(c). Here it should be emphasized that, although the other part of the bottom layer of the continuous oxide film contains less aluminium than this Al-enriched particle, the Fig. 9c indicated that the amount of aluminium in this bottom layer was still non-negligible, especially when comparing with the outer layer of the film. Below the right side of the oxide film shown in Fig. 9b, a particle was detected and speculated to be MgO because it is rich in Mg and O. According to Wang’s result [56], lots of discrete MgO particles can be formed on the surface of the Mg melt by the oxidation of Mg melt and Mg vapor. The MgO particles observed in our present work may be formed due to the same reasons. While, due to the differences in experimental conditions, less Mg melt can be vapored or react with O2, thus only a few of MgO particles formed in our work. An enrichment of carbon was also found in the film, revealing that CO2 was able to react with the melt, thus forming carbon or carbides. This carbon concentration was consistent with the relatively high carbon content of the oxide film shown in Table 3 (i.e., the dark region). In the area next to the oxide film.
Table 3. EDS results (wt.%) corresponding to the regions shown in Fig. 8 (cover gas: SF6/ CO2).
This cross-sectional observation of the oxide film on a test bar fracture surface (Fig. 9) further verified the schematic of the entrainment defect shown in Fig. 6(e). The entrainment defects formed in different atmospheres of SF6/CO2 and SF6/air had similar structures, but their compositions were different.
3.3. Evolution of the oxide films in the oxidation cell
The results in Section 3.1 and 3.2 have shown the structures and compositions of entrainment defects formed in AZ91 castings under cover gases of SF6/air and SF6/CO2. Different stages of the oxidation reaction may lead to the different structures and compositions of entrainment defects. Although Campbell has conjectured that an entrained gas may react with the surrounding melt, it is rarely reported that the reaction occurring between the Mg-alloy melt and entrapped cover gas. Previous researchers normally focus on the reaction between a Mg-alloy melt and the cover gas in an open environment [38,39,[46], [47], [48], [49], [50], [51], [52], which was different from the situation of a cover gas trapped into the melt. To further understand the formation of the entrainment defect in an AZ91 alloy, the evolution process of oxide films of the entrainment defect was further studied using an oxidation cell.
Fig. 10 (a and d) shows a surface film held for 5 min in the oxidation cell, protected by 0.5%SF6/air. There was only one single layer consisting of fluoride and oxide (MgF2 and MgO). In this surface film. Sulphur was detected in the EDS spectrum, but its amount was too small to be recognized in the element map. The structure and composition of this oxide film was similar to the single-layered films of entrainment defects shown in Fig. 4.
After a holding time of 10 min, a thin (O, S)-enriched top layer (around 700 nm) appeared upon the preliminary F-enriched film, forming a multi-layered structure, as shown in Fig. 10(b and e). The thickness of the (O, S)-enriched top layer increased with increased holding time. As shown in Fig. 10(c and f), the oxide film held for 30 min also had a multi-layered structure, but the thickness of its (O, S)-enriched top layer (around 2.5 µm) was higher than the that of the 10-min oxide film. The multi-layered oxide films shown in Fig. 10(b-c) presented a similar appearance to the films of the sandwich-like defect shown in Fig. 5.
The different structures of the oxide films shown in Fig. 10 indicated that fluorides in the cover gas would be preferentially consumed due to the reaction with the AZ91 alloy melt. After the depletion of fluorides, the residual cover gas reacted further with the liquid AZ91 alloy, forming the top (O, S)-enriched layer in the oxide film. Therefore, the different structures and compositions of entrainment defects shown in Figs. 4 and 5 may be due to an ongoing oxidation reaction between melt and entrapped cover gas.
This multi-layered structure has not been reported in previous publications concerning the protective surface film formed on a Mg-alloy melt [38,[46], [47], [48], [49], [50], [51]. This may be due to the fact that previous researchers carried out their experiments with an un-limited amount of cover gas, creating a situation where the fluorides in the cover gas were not able to become depleted. Therefore, the oxide film of an entrainment defect had behaviour traits similar to the oxide films shown in Fig. 10, but different from the oxide films formed on the Mg-alloy melt surface reported in [38,[46], [47], [48], [49], [50], [51].
Similar with the oxide films held in SF6/air, the oxide films formed in SF6/CO2 also had different structures with different holding times in the oxidation cell. Fig. 11(a) shows an oxide film, held on an AZ91 melt surface under a cover gas of 0.5%SF6/CO2 for 5 min. This film had a single-layered structure consisting of MgF2. The existence of MgO could not be confirmed in this film. After the holding time of 30 min, the film had a multi-layered structure; the inner layer was of a compact and uniform appearance and composed of MgF2, while the outer layer is the mixture of MgF2 and MgO. Sulphur was not detected in this film, which was different from the surface film formed in 0.5%SF6/air. Therefore, fluorides in the cover gas of 0.5%SF6/CO2 were also preferentially consumed at an early stage of the film growth process. Compared with the film formed in SF6/air, the MgO in film formed in SF6/CO2 appeared later and sulphide did not appear within 30 min. It may mean that the formation and evolution of film in SF6/air is faster than SF6/CO2. CO2 may have subsequently reacted with the melt to form MgO, while sulphur-containing compounds accumulated in the cover gas and reacted to form sulphide in very late stage (may after 30 min in oxidation cell).
4. Discussion
4.1. Evolution of entrainment defects formed in SF6/air
HSC software from Outokumpu HSC Chemistry for Windows (http://www.hsc-chemistry.net/) was used to carry out thermodynamic calculations needed to explore the reactions which might occur between the trapped gases and liquid AZ91 alloy. The solutions to the calculations suggest which products are most likely to form in the reaction process between a small amount of cover gas (i.e., the amount within a trapped bubble) and the AZ91-alloy melt.
In the trials, the pressure was set to 1 atm, and the temperature set to 700 °C. The amount of the cover gas was assumed to be 7 × 10−7 kg, with a volume of approximately 0.57 cm3 (3.14 × 10−8 kmol) for 0.5%SF6/air, and 0.35 cm3 (3.12 × 10−8 kmol) for 0.5%SF6/CO2. The amount of the AZ91 alloy melt in contact with the trapped gas was assumed to be sufficient to complete all reactions. The decomposition products of SF6 were SF5, SF4, SF3, SF2, F2, S(g), S2(g) and F(g) [57], [58], [59], [60].
Fig. 12 shows the equilibrium diagram of the thermodynamic calculation of the reaction between the AZ91 alloy and 0.5%SF6/air. In the diagram, the reactants and products with less than 10−15 kmol have not been shown, as this was 5 orders of magnitude less than the amount of SF6 present (≈ 1.57 × 10−10 kmol) and therefore would not affect the observed process in a practical way.
This reaction process could be divided into 3 stages.
Stage 1: The formation of fluorides. the AZ91 melt preferentially reacted with SF6 and its decomposition products, producing MgF2, AlF3, and ZnF2. However, the amount of ZnF2 may have been too small to be detected practically (1.25 × 10−12 kmol of ZnF2 compared with 3 × 10−10 kmol of MgF2), which may be the reason why Zn was not detected in any the oxide films shown in Sections 3.1–3.3. Meanwhile, sulphur accumulated in the residual gas as SO2.
Stage 2: The formation of oxides. After the liquid AZ91 alloy had depleted all the available fluorides in the entrapped gas, the amount of AlF3 and ZnF2 quickly reduced due to a reaction with Mg. O2(g) and SO2 reacted with the AZ91 melt, forming MgO, Al2O3, MgAl2O4, ZnO, ZnSO4 and MgSO4. However, the amount of ZnO and ZnSO4 would have been too small to be found practically by EDS (e.g. 9.5 × 10−12 kmol of ZnO,1.38 × 10−14 kmol of ZnSO4, in contrast to 4.68 × 10−10 kmol of MgF2, when the amount of AZ91 on the X-axis is 2.5 × 10−9 kmol). In the experimental cases, the concentration of F in the cover gas is very low, whole the concentration f O is much higher. Therefore, the stage 1 and 2, i.e, the formation of fluoride and oxide may happen simultaneously at the beginning of the reaction, resulting in the formation of a singer-layered mixture of fluoride and oxide, as shown in Figs. 4 and 10(a). While an inner layer consisted of oxides but fluorides could form after the complete depletion of F element in the cover gas.
Stages 1- 2 theoretically verified the formation process of the multi-layered structure shown in Fig. 10.
The amount of MgAl2O4 and Al2O3 in the oxide film was of a sufficient amount to be detected, which was consistent with the oxide films shown in Fig. 4. However, the existence of aluminium could not be recognized in the oxide films grown in the oxidation cell, as shown in Fig. 10. This absence of Al may be due to the following reactions between the surface film and AZ91 alloy melt:(1)
Mg + MgAl2O4 = MgO + Al, △G(700 °C) =-106.34 kJ/molwhich could not be simulated by the HSC software since the thermodynamic calculation was carried out under an assumption that the reactants were in full contact with each other. However, in a practical process, the AZ91 melt and the cover gas would not be able to be in contact with each other completely, due to the existence of the protective surface film.
Stage 3: The formation of Sulphide and nitride. After a holding time of 30 min, the gas-phase fluorides and oxides in the oxidation cell had become depleted, allowing the melt reaction with the residual gas, forming an additional sulphur-enriched layer upon the initial F-enriched or (F, O)-enriched surface film, thus resulting in the observed multi-layered structure shown in Fig. 10 (b and c). Besides, nitrogen reacted with the AZ91 melt until all reactions were completed. The oxide film shown in Fig. 6 may correspond to this reaction stage due to its nitride content. However, the results shows that the nitrides were not detected in the polished samples shown in Figs. 4 and 5, but only found on the test bar fracture surfaces. The nitrides may have hydrolysed during the sample preparation process, as follows [54]:(3)
Mg3N2 + 6H2O =3Mg(OH)2 + 2NH3↑(4)
AlN+ 3H2O =Al(OH)3 + NH3↑
In addition, Schmidt et al. [61] found that Mg3N2 and AlN could react to form ternary nitrides (Mg3AlnNn+2, n= 1, 2, 3…). HSC software did not contain the database of ternary nitrides, and it could not be added into the calculation. The oxide films in this stage may also contain ternary nitrides.
4.2. Evolution of entrainment defects formed in SF6/CO2
Fig. 13 shows the results of the thermodynamic calculation between AZ91 alloy and 0.5%SF6/CO2. This reaction processes can also be divided into three stages.
Stage 1: The formation of fluorides. SF6 and its decomposition products were consumed by the AZ91 melt, forming MgF2, AlF3, and ZnF2. As in the reaction of AZ91 in 0.5%SF6/air, the amount of ZnF2 was too small to be detected practically (1.51 × 10−13 kmol of ZnF2 compared with 2.67 × 10−10 kmol of MgF2). Sulphur accumulated in the residual trapped gas as S2(g) and a portion of the S2(g) reacted with CO2, to form SO2 and CO. The products in this reaction stage were consistent with the film shown in Fig. 11(a), which had a single layer structure that contained fluorides only.
Stage 2: The formation of oxides. AlF3 and ZnF2 reacted with the Mg in the AZ91 melt, forming MgF2, Al and Zn. The SO2 began to be consumed, producing oxides in the surface film and S2(g) in the cover gas. Meanwhile, the CO2 directly reacted with the AZ91 melt, forming CO, MgO, ZnO, and Al2O3. The oxide films shown in Figs. 9 and 11(b) may correspond to this reaction stage due to their oxygen-enriched layer and multi-layered structure.
The CO in the cover gas could further react with the AZ91 melt, producing C. This carbon may further react with Mg to form Mg carbides, when the temperature reduced (during solidification period) [62]. This may be the reason for the high carbon content in the oxide film shown in Figs. 8–9. Liang et al. [39] also reported carbon-detection in an AZ91 alloy surface film protected by SO2/CO2. The produced Al2O3 may be further combined with MgO, forming MgAl2O4[63]. As discussed in Section 4.1, the alumina and spinel can react with Mg, causing an absence of aluminium in the surface films, as shown in Fig. 11.
Stage 3: The formation of Sulphide. the AZ91 melt began to consume S2(g) in the residual entrapped gas, forming ZnS and MgS. These reactions did not occur until the last stage of the reaction process, which could be the reason why the S-content in the defect shown Fig. 7(c) was small.
In summary, thermodynamic calculations indicate that the AZ91 melt will react with the cover gas to form fluorides firstly, then oxides and sulphides in the last. The oxide film in the different reaction stages would have different structures and compositions.
4.3. Effect of the carrier gases on consumption of the entrained gas and the reproducibility of AZ91 castings
The evolution processes of entrainment defects, formed in SF6/air and SF6/CO2, have been suggested in Sections 4.1 and 4.2. The theoretical calculations were verified with respect to the corresponding oxide films found in practical samples. The atmosphere within an entrainment defect could be efficiently consumed due to the reaction with liquid Mg-alloy, in a scenario dissimilar to the Al-alloy system (i.e., nitrogen in an entrained air bubble would not efficiently react with Al-alloy melt [64,65], however, nitrogen would be more readily consumed in liquid Mg alloys, commonly referred to as “nitrogen burning” [66]).
The reaction between the entrained gas and the surrounding liquid Mg-alloy converted the entrained gas into solid compounds (e.g. MgO) within the oxide film, thus reducing the void volume of the entrainment defect and hence probably causing a collapse of the defect (e.g., if an entrained gas of air was depleted by the surrounding liquid Mg-alloy, under an assumption that the melt temperature is 700 °C and the depth of liquid Mg-alloy is 10 cm, the total volume of the final solid products would be 0.044% of the initial volume taken by the entrapped air).
The relationship between the void volume reduction of entrainment defects and the corresponding casting properties has been widely studied in Al-alloy castings. Nyahumwa and Campbell [16] reported that the Hot Isostatic Pressing (HIP) process caused the entrainment defects in Al-alloy castings to collapse and their oxide surfaces forced into contact. The fatigue lives of their castings were improved after HIP. Nyahumwa and Campbell [16] also suggested a potential bonding of the double oxide films that were in contact with each other, but there was no direct evidence to support this. This binding phenomenon was further investigated by Aryafar et.al.[8], who re-melted two Al-alloy bars with oxide skins in a steel tube and then carried out a tensile strength test on the solidified sample. They found that the oxide skins of the Al-alloy bars strongly bonded with each other and became even stronger with an extension of the melt holding time, indicating a potential “healing” phenomenon due to the consumption of the entrained gas within the double oxide film structure. In addition, Raidszadeh and Griffiths [9,19] successfully reduced the negative effect of entrainment defects on the reproducibility of Al-alloy castings, by extending the melt holding time before solidification, which allowed the entrained gas to have a longer time to react with the surrounding melt.
With consideration of the previous work mentioned, the consumption of the entrained gas in Mg-alloy castings may diminish the negative effect of entrainment defects in the following two ways.
(1) Bonding phenomenon of the double oxide films. The sandwich-like structure shown in Fig. 5 and 7 indicated a potential bonding of the double oxide film structure. However, more evidence is required to quantify the increase in strength due to the bonding of the oxide films.
(2) Void volume reduction of entrainment defects. The positive effect of void-volume reduction on the quality of castings has been widely demonstrated by the HIP process [67]. As the evolution processes discussed in Section 4.1–4.2, the oxide films of entrainment defects can grow together due to an ongoing reaction between the entrained gas and surrounding AZ91 alloy melt. The volume of the final solid products was significant small compared with the entrained gas (i.e., 0.044% as previously mentioned).
Therefore, the consumption rate of the entrained gas (i.e., the growth rate of oxide films) may be a critical parameter for improving the quality of AZ91 alloy castings. The oxide film growth rate in the oxidization cell was accordingly further investigated.
Fig. 14 shows a comparison of the surface film growth rates in different cover gases (i.e., 0.5%SF6/air and 0.5%SF6/CO2). 15 random points on each sample were selected for film thickness measurements. The 95% confidence interval (95%CI) was computed under an assumption that the variation of the film thickness followed a Gaussian distribution. It can be seen that all the surface films formed in 0.5%SF6/air grew faster than those formed in 0.5%SF6/CO2. The different growth rates suggested that the entrained-gas consumption rate of 0.5%SF6/air was higher than that of 0.5%SF6/CO2, which was more beneficial for the consumption of the entrained gas.
It should be noted that, in the oxidation cell, the contact area of liquid AZ91 alloy and cover gas (i.e. the size of the crucible) was relatively small with consideration of the large volume of melt and gas. Consequently, the holding time for the oxide film growth within the oxidation cell was comparatively long (i.e., 5–30 min). However, the entrainment defects contained in a real casting are comparatively very small (i.e., a few microns size as shown in Figs. 3–6, and [7]), and the entrained gas is fully enclosed by the surrounding melt, creating a relatively large contact area. Hence the reaction time for cover gas and the AZ91 alloy melt may be comparatively short. In addition, the solidification time of real Mg-alloy sand castings can be a few minutes (e.g. Guo [68] reported that a Mg-alloy sand casting with 60 mm diameter required 4 min to be solidified). Therefore, it can be expected that an entrained gas trapped during an Mg-alloy melt pouring process will be readily consumed by the surrounding melt, especially for sand castings and large-size castings, where solidification times are long.
Therefore, the different cover gases (0.5%SF6/air and 0.5%SF6/CO2) associated with different consumption rates of the entrained gases may affect the reproducibility of the final castings. To verify this assumption, the AZ91 castings produced in 0.5%SF6/air and 0.5%SF6/CO2 were machined into test bars for mechanical evaluation. A Weibull analysis was carried out using both linear least square (LLS) method and non-linear least square (non-LLS) method [69].
Fig. 15(a-b) shows a traditional 2-p linearized Weibull plot of the UTS and elongation of the AZ91 alloy castings, obtained by the LLS method. The estimator used is P= (i-0.5)/N, which was suggested to cause the lowest bias among all the popular estimators [69,70]. The casting produced in SF6/air has an UTS Weibull moduli of 16.9, and an elongation Weibull moduli of 5.0. In contrast, the UTS and elongation Weibull modulus of the casting produced in SF6/CO2 are 7.7 and 2.7 respectively, suggesting that the reproducibility of the casting protected by SF6/CO2 were much lower than that produced in SF6/air.
In addition, the author’s previous publication [69] demonstrated a shortcoming of the linearized Weibull plots, which may cause a higher bias and incorrect R2 interruption of the Weibull estimation. A Non-LLS Weibull estimation was therefore carried out, as shown in Fig. 15 (c-d). The UTS Weibull modulus of the SF6/air casting was 20.8, while the casting produced under SF6/CO2 had a lower UTS Weibull modulus of 11.4, showing a clear difference in their reproducibility. In addition, the SF6/air elongation (El%) dataset also had a Weibull modulus (shape = 5.8) higher than the elongation dataset of SF6/CO2 (shape = 3.1). Therefore, both the LLS and Non-LLS estimations suggested that the SF6/air casting has a higher reproducibility than the SF6/CO2 casting. It supports the method that the use of air instead of CO2 contributes to a quicker consumption of the entrained gas, which may reduce the void volume within the defects. Therefore, the use of 0.5%SF6/air instead of 0.5%SF6/CO2 (which increased the consumption rate of the entrained gas) improved the reproducibility of the AZ91 castings.
However, it should be noted that not all the Mg-alloy foundries followed the casting process used in present work. The Mg-alloy melt in present work was degassed, thus reducing the effect of hydrogen on the consumption of the entrained gas (i.e., hydrogen could diffuse into the entrained gas, potentially suppressing the depletion of the entrained gas [7,71,72]). In contrast, in Mg-alloy foundries, the Mg-alloy melt is not normally degassed, since it was widely believed that there is not a ‘gas problem’ when casting magnesium and hence no significant change in tensile properties[73]. Although studies have shown the negative effect of hydrogen on the mechanical properties of Mg-alloy castings [41,42,73], a degassing process is still not very popular in Mg-alloy foundries.
Moreover, in present work, the sand mould cavity was flushed with the SF6 cover gas prior to pouring [22]. However, not all the Mg-alloy foundries flushed the mould cavity in this way. For example, the Stone Foundry Ltd (UK) used sulphur powder instead of the cover-gas flushing. The entrained gas within their castings may be SO2/air, rather than the protective gas.
Therefore, although the results in present work have shown that using air instead of CO2 improved the reproducibility of the final casting, it still requires further investigations to confirm the effect of carrier gases with respect to different industrial Mg-alloy casting processes.
7. Conclusion
Entrainment defects formed in an AZ91 alloy were observed. Their oxide films had two types of structure: single-layered and multi-layered. The multi-layered oxide film can grow together forming a sandwich-like structure in the final casting.2.
Both the experimental results and the theoretical thermodynamic calculations demonstrated that fluorides in the trapped gas were depleted prior to the consumption of sulphur. A three-stage evolution process of the double oxide film defects has been suggested. The oxide films contained different combinations of compounds, depending on the evolution stage. The defects formed in SF6/air had a similar structure to those formed in SF6/CO2, but the compositions of their oxide films were different. The oxide-film formation and evolution process of the entrainment defects were different from that of the Mg-alloy surface films previous reported (i.e., MgO formed prior to MgF2).3.
The growth rate of the oxide film was demonstrated to be greater under SF6/air than SF6/CO2, contributing to a quicker consumption of the damaging entrapped gas. The reproducibility of an AZ91 alloy casting improved when using SF6/air instead of SF6/CO2.
Acknowledgements
The authors acknowledge funding from the EPSRC LiME grant EP/H026177/1, and the help from Dr W.D. Griffiths and Mr. Adrian Carden (University of Birmingham). The casting work was carried out in University of Birmingham.
316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링
M. BAYAT1,* , AND J. H. HATTEL1
Corresponding author 1 Technical University of Denmark (DTU), Building 425, Kgs. 2800 Lyngby, Denmark
ABSTRACT
Spatter and denudation are two very well-known phenomena occurring mainly during the laser powder bed fusion process and are defined as ejection and displacement of powder particles, respectively. The main driver of this phenomenon is the formation of a vapor plume jet that is caused by the vaporization of the melt pool which is subjected to the laser beam. In this work, a 3-dimensional transient turbulent computational fluid dynamics model coupled with a discrete element model is developed in the finite volume-based commercial software package Flow-3D AM to simulate the spatter phenomenon. The numerical results show that a localized low-pressure zone forms at the bottom side of the plume jet and this leads to a pseudo-Bernoulli effect that drags nearby powder particles into the area of influence of the vapor plume jet. As a result, the vapor plume acts like a momentum sink and therefore all nearby particles point are dragged towards this region. Furthermore, it is noted that due to the jet’s attenuation, powder particles start diverging from the central core region of the vapor plume as they move vertically upwards. It is moreover observed that only particles which are in the very central core region of the plume jet get sufficiently accelerated to depart the computational domain, while the rest of the dragged particles, especially those which undergo an early divergence from the jet axis, get stalled pretty fast as they come in contact with the resting fluid. In the last part of the work, two simulations with two different scanning speeds are carried out, where it is clearly observed that the angle between the departing powder particles and the vertical axis of the plume jet increases with increasing scanning speed.
스패터와 denudation은 주로 레이저 분말 베드 융합 과정에서 발생하는 매우 잘 알려진 두 가지 현상으로 각각 분말 입자의 배출 및 변위로 정의됩니다.
이 현상의 주요 동인은 레이저 빔을 받는 용융 풀의 기화로 인해 발생하는 증기 기둥 제트의 형성입니다. 이 작업에서 이산 요소 모델과 결합된 3차원 과도 난류 전산 유체 역학 모델은 스패터 현상을 시뮬레이션하기 위해 유한 체적 기반 상용 소프트웨어 패키지 Flow-3D AM에서 개발되었습니다.
수치적 결과는 플룸 제트의 바닥면에 국부적인 저압 영역이 형성되고, 이는 근처의 분말 입자를 증기 플룸 제트의 영향 영역으로 끌어들이는 의사-베르누이 효과로 이어진다는 것을 보여줍니다.
결과적으로 증기 기둥은 운동량 흡수원처럼 작용하므로 근처의 모든 입자 지점이 이 영역으로 끌립니다. 또한 제트의 감쇠로 인해 분말 입자가 수직으로 위쪽으로 이동할 때 증기 기둥의 중심 코어 영역에서 발산하기 시작합니다.
더욱이 플룸 제트의 가장 중심 코어 영역에 있는 입자만 계산 영역을 벗어날 만큼 충분히 가속되는 반면, 드래그된 나머지 입자, 특히 제트 축에서 초기 발산을 겪는 입자는 정체되는 것으로 관찰됩니다. 그들은 휴식 유체와 접촉하기 때문에 꽤 빠릅니다.
작업의 마지막 부분에서 두 가지 다른 스캔 속도를 가진 두 가지 시뮬레이션이 수행되었으며, 여기서 출발하는 분말 입자와 연기 제트의 수직 축 사이의 각도가 스캔 속도가 증가함에 따라 증가하는 것이 명확하게 관찰되었습니다.
References
[1] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, 2018, doi: 10.1016/j.pmatsci.2017.10.001. [2] M. Markl and C. Körner, “Multiscale Modeling of Powder Bed–Based Additive Manufacturing,” Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 93–123, 2016, doi: 10.1146/annurev-matsci-070115-032158. [3] A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method,” Mater. Des., vol. 106, pp. 321–329, 2016, doi: 10.1016/j.matdes.2016.05.125. [4] Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata,” Addit. Manuf., vol. 28, no. July 2018, pp. 750–765, 2019, doi: 10.1016/j.addma.2019.06.024. [5] A. A. Martin et al., “Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging,” Mater. Today Adv., vol. 1, p. 100002, 2019, doi: 10.1016/j.mtadv.2019.01.001. [6] Y. C. Wu et al., “Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation,” J. Mater. Process. Technol., vol. 254, no. July 2017, pp. 72–78, 2018, doi: 10.1016/j.jmatprotec.2017.11.032. [7] W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin, “Numerical simulation of thermal field and Fe-based coating doped Ti,” Int. J. Heat Mass Transf., vol. 92, pp. 83– 90, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.082. [8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J. H. Hattel, and S. Scholz, “Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: Phenomenonoriented multiphysics simulation and experimental validation,” Addit. Manuf., vol. 50, 2022, doi: 10.1016/j.addma.2021.102551. [9] C. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena in metal additive manufacturing by selective laser melting: Fundamentals, modeling, simulation and experimentation,” arXiv, 2017, doi: 10.1615/annualrevheattransfer.2018019042. [10] W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, and S. A. Khairallah, “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory,” Mater. Sci. Technol. (United Kingdom), vol. 31, no. 8, pp. 957–968, 2015, doi: 10.1179/1743284714Y.0000000728.
Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*
Abstract
염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.
Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.
Keywords
computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination
References
Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.; Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
Yu Hao a, Nannan Chen a,b, Hui-Ping Wang c,*, Blair E. Carlson c, Fenggui Lu a,* a Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China b Department of Industrial and Manufacturing Eng
ABSTRACT
A three-dimensional thermal-fluid numerical model considering zinc vapor interaction with the molten pool was developed to study the occurrence of zinc vapor-induced spatter in partial penetration laser overlap welding of zinc-coated steels. The zinc vapor effect was represented by two forces: a jet pressure force acting on the keyhole rear wall as the vapor bursts into the keyhole and a drag force on the upper keyhole wall as the vapor escapes upwards. The numerical model was calibrated by comparing the predicted keyhole shape with the keyhole shape observed by high-speed X-ray imaging and applied for various weld schedules. The study showed that large jet pressure forces induced violent fluctuations of the keyhole rear wall, resulting in an unstable keyhole and turbulent melt flow. A large drag force pushed the melt adjacent to the keyhole surface upward and accelerated the movement of the melt whose velocities reached 1 m/s or even higher, potentially inducing spatter. Increased heat input facilitated the occurrence of large droplets of spatter, which agreed with experimental observations captured by high-speed camera.
아연도금강의 부분용입 레이저 겹침용접에서 아연증기유도 스패터의 발생을 연구하기 위하여 용융풀과의 아연증기 상호작용을 고려한 3차원 열유체 수치모델을 개발하였습니다.
아연 증기 효과는 증기가 열쇠 구멍으로 폭발할 때 키홀 뒤쪽 벽에 작용하는 제트 압력력과 증기가 위쪽으로 빠져나갈 때 위쪽 키홀 벽에 작용하는 항력의 두 가지 힘으로 표시됩니다.
수치 모델은 예측된 열쇠 구멍 모양과 고속 X선 영상으로 관찰된 키홀 모양을 비교하여 보정하고 다양한 용접 일정에 적용했습니다.
이 연구는 큰 제트 압력이 키홀 뒷벽의 격렬한 변동을 유발하여 불안정한 열쇠 구멍과 난류 용융 흐름을 초래한다는 것을 보여주었습니다. 큰 항력은 키홀 표면에 인접한 용융물을 위로 밀어올리고 속도가 1m/s 이상에 도달한 용융물의 이동을 가속화하여 잠재적으로 스패터를 유발할 수 있습니다.
증가된 열 입력은 고속 카메라로 포착한 실험적 관찰과 일치하는 큰 방울의 스패터 발생을 촉진했습니다.
References
Ai, Y., Jiang, P., Wang, C., et al., 2018. Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding. Int. J. Heat Mass Transf. 126 (part-A), 779–789. Chen, Z., Yang, S., Wang, C., et al., 2014. A study of fiber laser welding of galvanized steel using a suction method. J. Mater. Process. Technol. 214 (7), 1456–1465. Cho, W.I., Na, S.J., Thomy, C., et al., 2012. Numerical simulation of molten pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212 (1), 262–275. Deng, S., Wang, H.P., Lu, F., et al., 2019. Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels. Int. J. Heat Mass Transf. 140 (9), 269–280. Fabbro, R., Coste, F., Goebels, D., et al., 2006. Study of CW Nd-Yag laser welding of Zncoated steel sheets. J. Phys. D Appl. Phys. 39 (2), 401. Gao, Z., Wu, Y., Huang, J., 2009. Analysis of weld pool dynamic during stationary laser–MIG hybrid welding. Int. J. Adv. Manuf. Technol. 44 (9), 870–879. Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D Appl. Phys. 27 (9), 1805. Kim, J., Oh, S., Ki, H., 2015. A study of keyhole geometry in laser welding of zinc-coated and uncoated steels using a coaxial observation method. J. Mater. Process. Technol. 225, 451–462. Kim, J., Oh, S., Ki, H., 2016. Effect of keyhole geometry and dynamics in zero-gap laser welding of zinc-coated steel sheets. J. Mater. Process. Technol. 232, 131–141. Koch, H., KaGeler, C., Otto, A., et al., 2011. Analysis of welding zinc coated steel sheets in zero gap configuration by 3D simulations and high-speed imaging. Phys. Procedia 12 (part-B), 428–436. Kouraytem, N., Li, X., Cunningham, R., et al., 2019. Effect of laser-matter interaction on molten pool flow and keyhole dynamics. Phys. Rev. Appl. 11 (6), 54–64. Li, S., Chen, G., Katayama, S., et al., 2014. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding. Appl. Surf. Sci. 303 (6), 481–488. Ma, J., 2013. Experimental and Numerical Studies on the Issues in Laser Welding of Galvanized High-Strength Dual-Phase Steels in a Zero-Gap Lap Joint Configuration, PhD Thesis. Southern Methodist University. Pan, Y., 2011. Laser Welding of Zinc Coated Steel Without a Pre-Set Gap, PhD Thesis. Delft University of Technology. Schmidt, M., Otto, A., 2008. Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Ann. Manuf. Technol. 57, 213–216. Semak, V., Matsunawa, A., 1999. The role of recoil pressure in energy balance during laser materials processing. J. Phys. D Appl. Phys. 30 (18), 2541. Wu, S., Zhao, H., Wang, Y., Zhang, X., 2004. A new heat source model in numerical simulation of high energy beam welding. Trans. China Weld. 21, 99–102. Yaws, C.L., 2015. The Yaws Handbook of Vapor Pressure: Antoine Coefficients. Zhou, J., Tsai, H.L., 2008. Modeling of transport phenomena in hybrid laser-MIG keyhole welding. Int. J. Heat Mass Transf. 51 (17–18), 4353–4366.
1Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
2William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA *Author to whom correspondence should be addressed.
The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.
생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를위한 기능화 된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드를 자기 적으로 회수하여 분석 또는 진단 테스트를 수행 할 수 있습니다. 연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다.
따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다. 그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는 데있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜주의를 기울였습니다.
여기에서 우리는 자기 비드가 혈액에서 분리되고 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 YY 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다.
이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증 된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다. 우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다.
따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.
References
Gómez-Pastora, J.; Xue, X.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol.2017, 172, 16–31. [Google Scholar] [CrossRef]
Wise, N.; Grob, T.; Morten, K.; Thompson, I.; Sheard, S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater.2015, 384, 328–334. [Google Scholar] [CrossRef]
Khashan, S.A.; Elnajjar, E.; Haik, Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater.2011, 323, 2960–2967. [Google Scholar] [CrossRef]
Khashan, S.A.; Furlani, E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol.2014, 125, 311–318. [Google Scholar] [CrossRef]
Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials2010, 3, 2412–2446. [Google Scholar] [CrossRef]
Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans.2016, 47, 241–246. [Google Scholar]
Gómez-Pastora, J.; Bringas, E.; Lázaro-Díez, M.; Ramos-Vivas, J.; Ortiz, I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs). In Drug Delivery Systems; Stroeve, P., Mahmoudi, M., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 207–244. ISBN 9789813201057. [Google Scholar]
Ruffert, C. Magnetic bead-magic bullet. Micromachines2016, 7, 21. [Google Scholar] [CrossRef]
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors2016, 16, 1585. [Google Scholar] [CrossRef]
Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous biosensing based on magnetic particle labels. Sensors2016, 16, 828. [Google Scholar] [CrossRef]
He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal.2014, 101, 84–101. [Google Scholar] [CrossRef]
Ha, Y.; Ko, S.; Kim, I.; Huang, Y.; Mohanty, K.; Huh, C.; Maynard, J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater.2018, 1, 512–521. [Google Scholar] [CrossRef]
Gómez-Pastora, J.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J.2018, 344, 487–497. [Google Scholar] [CrossRef]
Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions2018, 3, 60. [Google Scholar] [CrossRef]
Nanobiotechnology; Concepts, Applications and Perspectives; Niemeyer, C.M.; Mirkin, C.A. (Eds.) Wiley-VCH: Weinheim, Germany, 2004; ISBN 3527305068. [Google Scholar]
Khashan, S.A.; Dagher, S.; Alazzam, A.; Mathew, B.; Hilal-Alnaqbi, A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng.2017, 27, 055016. [Google Scholar] [CrossRef]
Basauri, A.; Gomez-Pastora, J.; Fallanza, M.; Bringas, E.; Ortiz, I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol.2019, 209, 900–907. [Google Scholar] [CrossRef]
Abdollahi, P.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol.2020, 231, 115875. [Google Scholar] [CrossRef]
Khashan, S.A.; Alazzam, A.; Furlani, E. A novel design for a microfluidic magnetophoresis system: Computational study. In Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013), Nara, Japan, 18–23 November 2013. [Google Scholar]
Pamme, N. Magnetism and microfluidics. Lab Chip2006, 6, 24–38. [Google Scholar] [CrossRef]
Gómez-Pastora, J.; Amiri Roodan, V.; Karampelas, I.H.; Alorabi, A.Q.; Tarn, M.D.; Iles, A.; Bringas, E.; Paunov, V.N.; Pamme, N.; Furlani, E.P.; et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C2019, 123, 10065–10080. [Google Scholar] [CrossRef]
Gómez-Pastora, J.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep.2019, 9, 7265. [Google Scholar] [CrossRef]
Tarn, M.D.; Pamme, N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In Microchip Diagnostics Methods and Protocols; Taly, V., Viovy, J.L., Descroix, S., Eds.; Humana Press: New York, NY, USA, 2017; pp. 69–83. [Google Scholar]
Phurimsak, C.; Tarn, M.D.; Peyman, S.A.; Greenman, J.; Pamme, N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem.2014, 86, 10552–10559. [Google Scholar] [CrossRef]
Wu, X.; Wu, H.; Hu, Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid.2011, 11, 11–24. [Google Scholar] [CrossRef]
Vojtíšek, M.; Tarn, M.D.; Hirota, N.; Pamme, N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid.2012, 13, 625–635. [Google Scholar] [CrossRef]
Gómez-Pastora, J.; González-Fernández, C.; Real, E.; Iles, A.; Bringas, E.; Furlani, E.P.; Ortiz, I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip2018, 18, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
Nandy, K.; Chaudhuri, S.; Ganguly, R.; Puri, I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater.2008, 320, 1398–1405. [Google Scholar] [CrossRef]
Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics2014, 8, 044118. [Google Scholar] [CrossRef] [PubMed]
Becker, H.; Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis2000, 21, 12–26. [Google Scholar] [CrossRef]
Pekas, N.; Zhang, Q.; Nannini, M.; Juncker, D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip2010, 10, 494–498. [Google Scholar] [CrossRef]
Wang, T.; Chen, J.; Zhou, T.; Song, L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines2018, 9, 269. [Google Scholar] [CrossRef]
Castaño-Álvarez, M.; Pozo Ayuso, D.F.; García Granda, M.; Fernández-Abedul, M.T.; Rodríguez García, J.; Costa-García, A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem.2008, 130, 436–448. [Google Scholar] [CrossRef]
Prakash, S.; Kumar, S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.2015, 229, 1273–1288. [Google Scholar] [CrossRef]
Leester-Schädel, M.; Lorenz, T.; Jürgens, F.; Ritcher, C. Fabrication of Microfluidic Devices. In Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells; Dietzel, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 23–57. ISBN 9783319269207. [Google Scholar]
Bartlett, N.W.; Wood, R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng.2016, 26, 115013. [Google Scholar] [CrossRef]
Ng, P.F.; Lee, K.I.; Yang, M.; Fei, B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers2019, 11, 64. [Google Scholar] [CrossRef] [PubMed]
Furlani, E.P.; Sahoo, Y.; Ng, K.C.; Wortman, J.C.; Monk, T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices2007, 9, 451–463. [Google Scholar] [CrossRef]
Tarn, M.D.; Peyman, S.A.; Robert, D.; Iles, A.; Wilhelm, C.; Pamme, N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater.2009, 321, 4115–4122. [Google Scholar] [CrossRef]
Furlani, E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications; Academic Press: Waltham, MA, USA, 2001. [Google Scholar]
White, F.M. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
Mathew, B.; Alazzam, A.; El-Khasawneh, B.; Maalouf, M.; Destgeer, G.; Sung, H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol.2015, 153, 99–107. [Google Scholar] [CrossRef]
Furlani, E.J.; Furlani, E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater.2007, 312, 187–193. [Google Scholar] [CrossRef]
Furlani, E.P.; Ng, K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E2006, 73, 061919. [Google Scholar] [CrossRef]
Pamme, N.; Eijkel, J.C.T.; Manz, A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater.2006, 307, 237–244. [Google Scholar] [CrossRef]
Alorabi, A.Q.; Tarn, M.D.; Gómez-Pastora, J.; Bringas, E.; Ortiz, I.; Paunov, V.N.; Pamme, N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip2017, 17, 3785–3795. [Google Scholar] [CrossRef]
Zhang, H.; Guo, H.; Chen, Z.; Zhang, G.; Li, Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng.2007, 17, 775–780. [Google Scholar] [CrossRef]
Mourzina, Y.; Steffen, A.; Offenhäusser, A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol.2005, 11, 135–140. [Google Scholar] [CrossRef]
Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng.2006, 16, 276–284. [Google Scholar] [CrossRef]
Su, N. 8 2000 Negative Tone Photoresist Formulations 2002–2025; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
Su, N. 8 2000 Negative Tone Photoresist Formulations 2035–2100; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
Fu, C.; Hung, C.; Huang, H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser.2006, 34, 330–335. [Google Scholar] [CrossRef]
Kazoe, Y.; Yamashiro, I.; Mawatari, K.; Kitamori, T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines2016, 7, 142. [Google Scholar] [CrossRef]
Sharp, K.V.; Adrian, R.J.; Santiago, J.G.; Molho, J.I. Liquid flows in microchannels. In MEMS: Introduction and Fundamentals; Gad-el-Hak, M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 10-1–10-46. ISBN 9781420036572. [Google Scholar]
Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip2012, 12, 515–545. [Google Scholar] [CrossRef]
Bruus, H. Theoretical Microfluidics; Oxford University Press: New York, NY, USA, 2008; ISBN 9788578110796. [Google Scholar]
Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng.2002, 4, 261–286. [Google Scholar] [CrossRef] [PubMed]
Yalikun, Y.; Tanaka, Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines2016, 7, 83. [Google Scholar] [CrossRef] [PubMed]
Van Heeren, H.; Verhoeven, D.; Atkins, T.; Tzannis, A.; Becker, H.; Beusink, W.; Chen, P. Design Guideline for Microfluidic Device and Component Interfaces (Part 2), Version 3; Available online: http://www.makefluidics.com/en/design-guideline?id=7 (accessed on 9 March 2020).
Scheuble, N.; Iles, A.; Wootton, R.C.R.; Windhab, E.J.; Fischer, P.; Elvira, K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem.2017, 89, 9116–9123. [Google Scholar] [CrossRef] [PubMed]
Lynch, E.C. Red blood cell damage by shear stress. Biophys. J.1972, 12, 257–273. [Google Scholar]
Paul, R.; Apel, J.; Klaus, S.; Schügner, F.; Schwindke, P.; Reul, H. Shear stress related blood damage in laminar Couette flow. Artif. Organs2003, 27, 517–529. [Google Scholar] [CrossRef] [PubMed]
Gómez-Pastora, J.; Karampelas, I.H.; Xue, X.; Bringas, E.; Furlani, E.P.; Ortiz, I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C2017, 121, 7466–7477. [Google Scholar] [CrossRef]
Lim, J.; Yeap, S.P.; Leow, C.H.; Toh, P.Y.; Low, S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci.2014, 421, 170–177. [Google Scholar] [CrossRef] [PubMed]
Culbertson, C.T.; Sibbitts, J.; Sellens, K.; Jia, S. Fabrication of Glass Microfluidic Devices. In Microfluidic Electrophoresis: Methods and Protocols; Dutta, D., Ed.; Humana Press: New York, NY, USA, 2019; pp. 1–12. ISBN 978-1-4939-8963-8. [Google Scholar]
이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 위해 연속 흐름 마이크로 채널 내부의 비드 자기 영동에 대한 수치 흐름 중심 연구를 보고합니다.
수치 모델은 Lagrangian 접근 방식을 포함하며 영구 자석에 의해 생성 된 자기장의 적용에 의해 혈액에서 비드 분리 및 유동 버퍼로의 수집을 예측합니다.
다음 시나리오가 모델링됩니다. (i) 운동량이 유체에서 점 입자로 처리되는 비드로 전달되는 단방향 커플 링, (ii) 비드가 점 입자로 처리되고 운동량이 다음으로부터 전달되는 양방향 결합 비드를 유체로 또는 그 반대로, (iii) 유체 변위에서 비드 체적의 영향을 고려한 양방향 커플 링.
결과는 세 가지 시나리오에서 비드 궤적에 약간의 차이가 있지만 특히 높은 자기력이 비드에 적용될 때 유동장에 상당한 변화가 있음을 나타냅니다.
따라서 높은 자기력을 사용할 때 비드 운동과 유동장의 체적 효과를 고려한 정확한 전체 유동 중심 모델을 해결해야 합니다. 그럼에도 불구하고 비드가 중간 또는 낮은 자기력을 받을 때 계산적으로 저렴한 모델을 안전하게 사용하여 자기 영동을 모델링 할 수 있습니다.
References
1.Keshipour, S. & Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organometal. Chem.30, 653–656 (2016).CASArticleGoogle Scholar
2.Neamtu, M. et al. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep.8(1), 6278 (2018).ADSMathSciNetArticleGoogle Scholar
3.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J.256, 187–204 (2014).ArticleGoogle Scholar
4.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans.47, 241–246 (2016).Google Scholar
5.Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-Cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep.7(1), 7672 (2017).ADSArticleGoogle Scholar
6.Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J.310, 407–427 (2017).ArticleGoogle Scholar
7.Lee, H. Y. et al. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew. Chem. Int. Ed.48, 1239–1243 (2009).CASArticleGoogle Scholar
8.Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases2, MR17–MR71 (2007).ArticleGoogle Scholar
9.Roux, S. et al. Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol.7, 781–801 (2010).ADSCASArticleGoogle Scholar
10.Gómez-Pastora, J., Bringas, E., Lázaro-Díez, M., Ramos-Vivas, J. & Ortiz, I. In Drug Delivery Systems (Stroeve, P. & Mahmoudi, M. ed) 207–244 (World Scientific, 2017).
11.Selmi, M., Gazzah, M. H. & Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep.7(1), 5721 (2017).ADSArticleGoogle Scholar
12.Gómez-Pastora, J., González-Fernández, C., Fallanza, M., Bringas, E. & Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J.344, 487–497 (2018).ArticleGoogle Scholar
14.Alorabi, A. Q. et al. On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab Chip17, 3785–3795 (2017).CASArticleGoogle Scholar
15.Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep. Purif. Technol.172, 16–31 (2017).ArticleGoogle Scholar
16.Tarn, M. D. & Pamme, N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnosis. Methods Mol. Biol.1547, 69–83 (2017).CASArticleGoogle Scholar
17.Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci. Rep.6, 19801 (2016).ADSCASArticleGoogle Scholar
18.Gómez-Pastora, J. et al. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C121, 7466–7477 (2017).ArticleGoogle Scholar
19.Furlani, E. P. Magnetic biotransport: analysis and applications. Materials3, 2412–2446 (2010).ADSCASArticleGoogle Scholar
20.Khashan, S. A. & Furlani, E. P. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid.12, 565–580 (2012).ArticleGoogle Scholar
21.Modak, N., Datta, A. & Ganguly, R. Cell separation in a microfluidic channel using magnetic microspheres. Microfluid. Nanofluid.6, 647–660 (2009).CASArticleGoogle Scholar
22.Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. & Monk, T. E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices9, 451–463 (2007).CASArticleGoogle Scholar
23.Furlani, E. P. & Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D: Appl. Phys.39, 1724–1732 (2006).ADSCASArticleGoogle Scholar
24.Tarn, M. D. et al. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater.321, 4115–4122 (2009).ADSCASArticleGoogle Scholar
25.Fonnum, G., Johansson, C., Molteberg, A., Morup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater.293, 41–47 (2005).ADSCASArticleGoogle Scholar
26.Xue, W., Moore, L. R., Nakano, N., Chalmers, J. J. & Zborowski, M. Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS – A comparison. J. Magn. Magn. Mater.474, 152–160 (2019).ADSCASArticleGoogle Scholar
27.Moore, L. R. et al. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol. Bioeng.115, 1521–1530 (2018).CASArticleGoogle Scholar
28.Furlani, E. P. & Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid.13, 589–602 (2012).CASArticleGoogle Scholar
29.Furlani, E. P. & Xue, X. A model for predicting field-directed particle transport in the magnetofection process. Pharm. Res.29, 1366–1379 (2012).CASArticleGoogle Scholar
30.Furlani, E. P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications, (Academic Press, 2001).
31.Balachandar, S. & Eaton, J. K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.42, 111–133 (2010).ADSArticleGoogle Scholar
32.Wakaba, L. & Balachandar, S. On the added mass force at finite Reynolds and acceleration number. Theor. Comput. Fluid. Dyn.21, 147–153 (2007).ArticleGoogle Scholar
33.White, F. M. Viscous Fluid Flow, (McGraw-Hill, 1974).
34.Rietema, K. & Van Den Akker, H. E. A. On the momentum equations in dispersed two-phase systems. Int. J. Multiphase Flow9, 21–36 (1983).ArticleGoogle Scholar
35.Furlani, E. P. & Ng, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E73, 1–10 (2006).ArticleGoogle Scholar
36.Eibl, R., Eibl, D., Pörtner, R., Catapano, G. & Czermak, P. Cell and Tissue Reaction Engineering, (Springer, 2009).
37.Gómez-Pastora, J. et al. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip18, 1593–1606 (2018).ArticleGoogle Scholar
38.Khashan, S. A. & Furlani, E. P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol.125, 311–318 (2014).CASArticleGoogle Scholar
39.Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. Proc. Fourth International Conf. Ship Hydro., National Academic of Science, Washington, DC., (1985).
40.Crank, J. Free and Moving Boundary Problems, (Oxford University Press, 1984).
41.Bruus, H. Theoretical Microfluidics, (Oxford University Press, 2008).
42.Liang, L. & Xuan, X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid. Nanofluid.13, 637–643 (2012).
Author information
Edward P. Furlani is deceased.
Affiliations
Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, SpainJenifer Gómez-Pastora, Eugenio Bringas & Inmaculada Ortiz
Flow Science, Inc, Santa Fe, New Mexico, 87505, USAIoannis H. Karampelas
Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션
ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab LinanLia ShibinWanga MengWangab aSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, China bKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, Chinac School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
Received 23 September 2020, Revised 17 November 2020, Accepted 26 November 2020, Available online 11 December 2020.
Abstract
Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.
Korea Abstract
초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.
레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.
변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.
이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.
시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.
이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.
서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].
자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].
일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].
<내용 중략> ……
References
[1] H.W. Chen, P.F. Zhang, L.W. Zhang, Y. Jiang, H.L. Liu, D.Y. Zhang, Z.W. Han, L. Jiang, Continuous directional water transport on the peristome surface of Nepenthes alata, Nature 532 (2016) 85-89. [2] Y. Liu, K.T. Zhang, W.G. Yao, J.A. Liu, Z.W. Han, L.Q. Ren, Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oilwater separation, Colloids Surf., A 500 (2016) 54-63. [3] Y.X. Liu, W.L. Liu, G.L. Wang, J.C. Hou, H. Kong, W.L. Wang, A facile one-step approach to superhydrophilic silica film with hierarchical structure using fluoroalkylsilane, Colloids Surf., A 539 (2018) 109-115. [4] F.P. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaflike bamboo surfaces through soft lithography, Colloids Surf., A 513 (2017) 389-395. [5] W. Huang, X.Y. Tang, Z. Qiu, W.X. Zhu, Y.G. Wang, Y.L. Zhu, Z.F. Xiao, H.G. Wang, D.X. Liang, Jian, L. Y.J Xie, Cellulose-based Superhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting, ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.0c12504. [6] M.Y. Zhang, L.J. Ma, Q. Wang, P. Hao, X. Zheng, Wettability behavior of nanodroplets on copper surfaces with hierarchical nanostructures, Colloids Surf., A 604 (2020) 125291. [7] A.F. Pan, W.J. Wang, X.S. Mei, K.D. Wang, X.B. Yang, Rutile TiO2 flocculent ripples with high antireflectivity and superhydrophobicity on the surface of titanium under 10 ns laser irradiation without focusing, Langmuir 33 (2017) 9530-9538. [8] M. Li, X.H. Liu, N. Liu, Z.H. Guo, P.K. Singh, S.Y. Fu, Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups, Colloids Surf., A 554 (2018) 122-128. [9] T.C. Chen, H.T. Liu, H.F. Yang, W. Yan, W. Zhu, H. Liu, Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate, RSC Adv. 6 (2016) 43937-43949. [10] P. Zhang, F.Y. Lv, A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications, Energy 82 (2015) 1068-1087. [11] Z. Yang, X.P. Liu, Y.L. Tian, Novel metal-organic super-hydrophobic surface fabricated by nanosecond laser irradiation in solution, Colloids Surf., A 587 (2020) 124343. [12] J.Y. Peng, X.J. Zhao, W.F. Wang, X. Gong, Durable Self-Cleaning Surfaces with Superhydrophobic and Highly Oleophobic Properties, Langmuir, 35 (2019) 8404- 8412. [13] Z. Yang, X.P. Liu, Y.L. Tian, A contrastive investigation on anticorrosive performance of laser-induced super-hydrophobic and oil-infused slippery coatings, Prog. Org. Coat. 138 (2020) 105313. [14] J.L. Yong, F. Chen, Q. Yang, J.L. Huo, X. Hou, Superoleophobic Surfaces, Chem. Soc. Rev. 46 (2017) 4168-4217. [15] D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-Scale Fabrication of Durable and Robust Super-Hydrophobic Spray Coatings with Excellent Repairable and Anti-Corrosion Performance, Chem. Eng. J. 367 (2019) 169-179. [16] R.J. Liao, Z.P. Zuo, C. Guo, Y. Yuan, A.Y. Zhuang, Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its antiicing property, Appl. Surf. Sci. 317 (2014) 701-709. [17] Z. Yang. X.P. Liu, Y.L. Tian, Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired super-hydrophobic surface with excellent selfcleaning, stability and corrosion resistance, J Bionic Eng 16 (2019) 13-26. [18] Z. Yang, Y.L. Tian, Y.C. Zhao, C.J. Yang, Study on the fabrication of superhydrophobic surface on Inconel alloy via nanosecond laser ablation, Materials 12 (2019) 278. [19] Y. Wang, X. Gong, Superhydrophobic Coatings with Periodic Ring Structured Patterns for Self-Cleaning and Oil-Water Separation, Adv. Mater. Interfaces 4 (2017) 1700190. [20] N. Chik, W.S.W.M. Zain, A.J. Mohamad, M.Z. Sidek, W.H.W. Ibrahim, A. Reif, J.H. Rakebrandt, W. Pfleging, X. Liu, Bacterial adhesion on the titanium and stainless-steel surfaces undergone two different treatment methods: Polishing and ultrafast laser treatment, IOP Conf. Ser.: Mater. Sci. Eng.358 (2018) 012034. [21] N.K.K. Win, P. Jitareerat, S. Kanlayanarat, S. Sangchote, Effects of cinnamon extract, chitosan coating, hot water treatment and their combinations on crown rot disease and quality of banana fruit, Postharvest Biol. Technol. 45 (2007) 333–340. [22] A. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159–192. [23] N. Wang, L.L. Tang, Y.F. Cai, W. Tong, D.S. Xiong, Scalable superhydrophobic coating with controllable wettability and investigations of its drag reduction, Colloids Surf. A 555 (2018) 290–295. [24] R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir 21 (2005) 956–61. [25] U. Trdan, M. Hočevar, P. Gregorčič, Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance, Corros. Sci. 123 (2017) 21–44. [26] A.L. Biance, C. Clanet, D. Quere, First steps in the spreading of a liquid droplet, Phys. Rev. E 69 (2004) 016301. [27] S. Kulju, L. Riegger, P. Koltay et al, Fluid flow simulations meet high-speed video: computer vision comparison of droplet dynamics, J. Colloid Interface Sci. 522 (2018) 48. [28] C.J. Yong, B. Bhushan, Dynamic effects of bouncing water droplets on superhydrophobic surfaces, Langmuir 24.12 (2008) 6262–6269. [29] G. Karapetsas, N.T. Chamakos, A.G. Papathanasiou, Efficient modelling of droplet dynamics on complex surfaces, J. Phys.: Condens. Matter 28.8 (2016) 085101. [30] D. Khojasteh, N.M. Kazerooni, S. Salarian et al, Droplet impact on superhydrophobic surfaces: a review of recent developments, J. Ind. Eng. Chem. 42 (2016) 1–14. [31] S.H. Kim, Y. Jiang, H. Kim, Droplet impact and LFP on wettability and nanostructured surface, Exp. Therm. Fluid Sci. 99 (2018) 85–93. [32] M. Rudman, Volume‐Tracking Methods for Interfacial Flow Calculations, Int. J. Numer. Methods Fluids 24.7 (1997) 671-691.
Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.
광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.
PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.
흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.
조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.
PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006).
이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다.
DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.
많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.
몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.
카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.
이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.
위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).
객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.
본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다.
우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다.
논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.
행동 양식
제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조 ) 음영 영역의 마스킹을 수행합니다.
형광 코팅
코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이 실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.
우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림 3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).
대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.
마스킹 소프트웨어
DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.
각 단계에 대한 자세한 내용은 다음과 같습니다.
(ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
(비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
(씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.
레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.
DM 검증
이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.
실험 설정
진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조 ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.
VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는 Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.
시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .
PIV 체인 분석 평가
사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.
첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그(지δ)+8.5];(1)
여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림 4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.
두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조 하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.
결과
그림 6을 참조하여 순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.
제안 된 DM (그림 6 의 패널 a )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.
NM 접근법 (그림 6 의 패널 b1 )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.
그림 6 의 패널 b2는 SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.
그림 6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를 살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.
결론
이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은
메모
1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.
참고 문헌
Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6조Google 학술 검색
Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271조Google 학술 검색
Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137조Google 학술 검색
Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21조Google 학술 검색
Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
Driscoll K, Sick V, Gray C (2003) 고밀도 연료 스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115조Google 학술 검색
Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478조Google 학술 검색
Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.
작가 정보
제휴
이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi
교신 저자
Valentina Lombardi에 대한 서신 .
추가 정보
발행인의 메모
Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.
권리와 허가
오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .
Subin Shrestha1 J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292 e-mail: subin.shrestha@louisville.edu
Y. Kevin Chou J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292 e-mail: kevin.chou@louisville.edu
LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.
이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.
이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.
전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.
또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.
The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.
Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity
[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528. [2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98. [3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24 (9), pp. 1469–1478. [4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol., 214(11), pp. 2627–2636. [5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process. Technol., 210(12), pp. 1624–1631. [6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools Manuf., 109(2016), pp. 147–157. [7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188. [8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78. [9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta Materialia, 108(2016), pp. 36–45. [10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans. A, 49A(8), pp. 3663–3673. [11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl, L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,” Metal Powder Report, 72(5), pp. 331–338. [12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett, A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1), p. 3602. [13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W., Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser– Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5), pp. 1467–1477. [14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T., and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852. [15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,” ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23. [16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018, “Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations, Optical Society of America, San Jose, CA, May 13–18, Optical Society of America, p. JW2A.117. [17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604. [18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018, “Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and Design, 141(2018), pp. 210–219. [19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models, Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog. Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152. [20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart, W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading Dynamics in Powder-Bed-Based Additive Manufacturing Process by High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079. [21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth, J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267. [22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK. [23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49. [24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D: Appl. Phys., 39(24), p. 5372. [25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B., 2017, “Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167. [26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung, J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340. [27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3), p. 474. [28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R., Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002. [29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions of laser power and scanning speed towards process-induced porosity in selective laser melting,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug. 13–15, pp. 1400–1409. [30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl. Phys., 44(44), p. 445401. [31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-bed Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.
Cristina González Fernández,1 Jenifer Gómez Pastora,2 Arantza Basauri,1 Marcos Fallanza,1 Eugenio Bringas,1 Jeffrey J. Chalmers,2 and Inmaculada Ortiz1,* Author information Article notes Copyright and License information Disclaimer
생체 유체에서 자성 입자의 연속 흐름 분리 : 마이크로 장치 형상이 분리 성능을 어떻게 결정합니까?
Abstract
The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.
생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를 위한 기능화된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드는 자기적으로 회수되어 분석 또는 진단 테스트를 수행 할 수 있습니다.
연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다.
그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는데 있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜 주의를 기울였습니다.
여기에서 우리는 자기 비드가 혈액에서 분리되어 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 Y-Y 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다.
이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다.
우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩 온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.
Gómez-Pastora J., Xue X., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017;172:16–31. doi: 10.1016/j.seppur.2016.07.050. [CrossRef] [Google Scholar]
Wise N., Grob T., Morten K., Thompson I., Sheard S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015;384:328–334. doi: 10.1016/j.jmmm.2015.02.031. [CrossRef] [Google Scholar]
Khashan S.A., Elnajjar E., Haik Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011;323:2960–2967. doi: 10.1016/j.jmmm.2011.06.001. [CrossRef] [Google Scholar]
Khashan S.A., Furlani E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014;125:311–318. doi: 10.1016/j.seppur.2014.02.007. [CrossRef] [Google Scholar]
Furlani E.P. Magnetic biotransport: Analysis and applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. [CrossRef] [Google Scholar]
Gómez-Pastora J., Bringas E., Ortiz I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 2016;47:241–246. [Google Scholar]
Gómez-Pastora J., Bringas E., Lázaro-Díez M., Ramos-Vivas J., Ortiz I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs) In: Stroeve P., Mahmoudi M., editors. Drug Delivery Systems. World Scientific; Hackensack, NJ, USA: 2017. pp. 207–244. [Google Scholar]
Ruffert C. Magnetic bead-magic bullet. Micromachines. 2016;7:21. doi: 10.3390/mi7020021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Yáñez-Sedeño P., Campuzano S., Pingarrón J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors. 2016;16:1585. doi: 10.3390/s16101585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Schrittwieser S., Pelaz B., Parak W.J., Lentijo-Mozo S., Soulantica K., Dieckhoff J., Ludwig F., Guenther A., Tschöpe A., Schotter J. Homogeneous biosensing based on magnetic particle labels. Sensors. 2016;16:828. doi: 10.3390/s16060828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
He J., Huang M., Wang D., Zhang Z., Li G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014;101:84–101. doi: 10.1016/j.jpba.2014.04.017. [PubMed] [CrossRef] [Google Scholar]
Ha Y., Ko S., Kim I., Huang Y., Mohanty K., Huh C., Maynard J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 2018;1:512–521. doi: 10.1021/acsanm.7b00025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Gómez-Pastora J., González-Fernández C., Fallanza M., Bringas E., Ortiz I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018;344:487–497. doi: 10.1016/j.cej.2018.03.110. [CrossRef] [Google Scholar]
Gale B.K., Jafek A.R., Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C., Kamarapu S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018;3:60. doi: 10.3390/inventions3030060. [CrossRef] [Google Scholar]
Khashan S.A., Dagher S., Alazzam A., Mathew B., Hilal-Alnaqbi A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 2017;27:055016. doi: 10.1088/1361-6439/aa666d. [CrossRef] [Google Scholar]
Basauri A., Gomez-Pastora J., Fallanza M., Bringas E., Ortiz I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019;209:900–907. doi: 10.1016/j.seppur.2018.09.028. [CrossRef] [Google Scholar]
Abdollahi P., Karimi-Sabet J., Moosavian M.A., Amini Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020;231:115875. doi: 10.1016/j.seppur.2019.115875. [CrossRef] [Google Scholar]
Khashan S.A., Alazzam A., Furlani E. A novel design for a microfluidic magnetophoresis system: Computational study; Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013); Nara, Japan. 18–23 November 2013. [Google Scholar]
Pamme N. Magnetism and microfluidics. Lab Chip. 2006;6:24–38. doi: 10.1039/B513005K. [PubMed] [CrossRef] [Google Scholar]
Gómez-Pastora J., Amiri Roodan V., Karampelas I.H., Alorabi A.Q., Tarn M.D., Iles A., Bringas E., Paunov V.N., Pamme N., Furlani E.P., et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C. 2019;123:10065–10080. doi: 10.1021/acs.jpcc.9b01393. [CrossRef] [Google Scholar]
Gómez-Pastora J., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 2019;9:7265. doi: 10.1038/s41598-019-43827-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Tarn M.D., Pamme N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In: Taly V., Viovy J.L., Descroix S., editors. Microchip Diagnostics Methods and Protocols. Humana Press; New York, NY, USA: 2017. pp. 69–83. [Google Scholar]
Phurimsak C., Tarn M.D., Peyman S.A., Greenman J., Pamme N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 2014;86:10552–10559. doi: 10.1021/ac5023265. [PubMed] [CrossRef] [Google Scholar]
Wu X., Wu H., Hu Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 2011;11:11–24. doi: 10.1007/s10404-011-0768-7. [CrossRef] [Google Scholar]
Vojtíšek M., Tarn M.D., Hirota N., Pamme N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 2012;13:625–635. doi: 10.1007/s10404-012-0979-6. [CrossRef] [Google Scholar]
Gómez-Pastora J., González-Fernández C., Real E., Iles A., Bringas E., Furlani E.P., Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip. 2018;18:1593–1606. doi: 10.1039/C8LC00396C. [PubMed] [CrossRef] [Google Scholar]
Nandy K., Chaudhuri S., Ganguly R., Puri I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008;320:1398–1405. doi: 10.1016/j.jmmm.2007.11.024. [CrossRef] [Google Scholar]
Hale C., Darabi J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics. 2014;8:044118. doi: 10.1063/1.4893772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Becker H., Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21:12–26. doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7. [PubMed] [CrossRef] [Google Scholar]
Pekas N., Zhang Q., Nannini M., Juncker D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip. 2010;10:494–498. doi: 10.1039/B912770D. [PubMed] [CrossRef] [Google Scholar]
Wang T., Chen J., Zhou T., Song L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines. 2018;9:269. doi: 10.3390/mi9060269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Castaño-Álvarez M., Pozo Ayuso D.F., García Granda M., Fernández-Abedul M.T., Rodríguez García J., Costa-García A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008;130:436–448. doi: 10.1016/j.snb.2007.09.043. [CrossRef] [Google Scholar]
Prakash S., Kumar S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015;229:1273–1288. doi: 10.1177/0954405414535581. [CrossRef] [Google Scholar]
Leester-Schädel M., Lorenz T., Jürgens F., Ritcher C. Fabrication of Microfluidic Devices. In: Dietzel A., editor. Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells. Springer; Basel, Switzerland: 2016. pp. 23–57. [Google Scholar]
Bartlett N.W., Wood R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 2016;26:115013. doi: 10.1088/0960-1317/26/11/115013. [CrossRef] [Google Scholar]
Ng P.F., Lee K.I., Yang M., Fei B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers. 2019;11:64. doi: 10.3390/polym11010064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Furlani E.P., Sahoo Y., Ng K.C., Wortman J.C., Monk T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices. 2007;9:451–463. doi: 10.1007/s10544-007-9050-x. [PubMed] [CrossRef] [Google Scholar]
Tarn M.D., Peyman S.A., Robert D., Iles A., Wilhelm C., Pamme N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009;321:4115–4122. doi: 10.1016/j.jmmm.2009.08.016. [CrossRef] [Google Scholar]
Furlani E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications. Academic Press; Waltham, MA, USA: 2001. [Google Scholar]
White F.M. Viscous Fluid Flow. McGraw-Hill; New York, NY, USA: 1974. [Google Scholar]
Mathew B., Alazzam A., El-Khasawneh B., Maalouf M., Destgeer G., Sung H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015;153:99–107. doi: 10.1016/j.seppur.2015.08.026. [CrossRef] [Google Scholar]
Furlani E.J., Furlani E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007;312:187–193. doi: 10.1016/j.jmmm.2006.09.026. [CrossRef] [Google Scholar]
Furlani E.P., Ng K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E. 2006;73:061919. doi: 10.1103/PhysRevE.73.061919. [PubMed] [CrossRef] [Google Scholar]
Eibl R., Eibl D., Pörtner R., Catapano G., Czermak P. Cell and Tissue Reaction Engineering. Springer; Berlin/Heidelberg, Germany: 2009. [Google Scholar]
Pamme N., Eijkel J.C.T., Manz A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006;307:237–244. doi: 10.1016/j.jmmm.2006.04.008. [CrossRef] [Google Scholar]
Alorabi A.Q., Tarn M.D., Gómez-Pastora J., Bringas E., Ortiz I., Paunov V.N., Pamme N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip. 2017;17:3785–3795. doi: 10.1039/C7LC00918F. [PubMed] [CrossRef] [Google Scholar]
Zhang H., Guo H., Chen Z., Zhang G., Li Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 2007;17:775–780. doi: 10.1088/0960-1317/17/4/014. [CrossRef] [Google Scholar]
Mourzina Y., Steffen A., Offenhäusser A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 2005;11:135–140. doi: 10.1007/s00542-004-0430-3. [CrossRef] [Google Scholar]
Mata A., Fleischman A.J., Roy S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006;16:276–284. doi: 10.1088/0960-1317/16/2/012. [CrossRef] [Google Scholar]
Su N. 8 2000 Negative Tone Photoresist Formulations 2002–2025. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
Su N. 8 2000 Negative Tone Photoresist Formulations 2035–2100. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
Fu C., Hung C., Huang H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 2006;34:330–335. doi: 10.1088/1742-6596/34/1/054. [CrossRef] [Google Scholar]
Kazoe Y., Yamashiro I., Mawatari K., Kitamori T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines. 2016;7:142. doi: 10.3390/mi7080142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Sharp K.V., Adrian R.J., Santiago J.G., Molho J.I. Liquid flows in microchannels. In: Gad-el-Hak M., editor. MEMS: Introduction and Fundamentals. CRC Press; Boca Raton, FL, USA: 2006. pp. 10-1–10-46. [Google Scholar]
Oh K.W., Lee K., Ahn B., Furlani E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip. 2012;12:515–545. doi: 10.1039/C2LC20799K. [PubMed] [CrossRef] [Google Scholar]
Bruus H. Theoretical Microfluidics. Oxford University Press; New York, NY, USA: 2008. [Google Scholar]
Beebe D.J., Mensing G.A., Walker G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002;4:261–286. doi: 10.1146/annurev.bioeng.4.112601.125916. [PubMed] [CrossRef] [Google Scholar]
Yalikun Y., Tanaka Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines. 2016;7:83. doi: 10.3390/mi7050083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Van Heeren H., Verhoeven D., Atkins T., Tzannis A., Becker H., Beusink W., Chen P. [(accessed on 9 March 2020)];Design Guideline for Microfluidic Device and Component Interfaces (Part 2) Version 3. Available online: http://www.makefluidics.com/en/design-guideline?id=7.
Scheuble N., Iles A., Wootton R.C.R., Windhab E.J., Fischer P., Elvira K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 2017;89:9116–9123. doi: 10.1021/acs.analchem.7b01853. [PubMed] [CrossRef] [Google Scholar]
Lynch E.C. Red blood cell damage by shear stress. Biophys. J. 1972;12:257–273. [PMC free article] [PubMed] [Google Scholar]
Paul R., Apel J., Klaus S., Schügner F., Schwindke P., Reul H. Shear stress related blood damage in laminar Couette flow. Artif. Organs. 2003;27:517–529. doi: 10.1046/j.1525-1594.2003.07103.x. [PubMed] [CrossRef] [Google Scholar]
Gómez-Pastora J., Karampelas I.H., Xue X., Bringas E., Furlani E.P., Ortiz I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C. 2017;121:7466–7477. doi: 10.1021/acs.jpcc.6b12835. [CrossRef] [Google Scholar]
Lim J., Yeap S.P., Leow C.H., Toh P.Y., Low S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014;421:170–177. doi: 10.1016/j.jcis.2014.01.044. [PubMed] [CrossRef] [Google Scholar]
Culbertson C.T., Sibbitts J., Sellens K., Jia S. Fabrication of Glass Microfluidic Devices. In: Dutta D., editor. Microfluidic Electrophoresis: Methods and Protocols. Humana Press; New York, NY, USA: 2019. pp. 1–12. [Google Scholar]
International Thermal Spray Conference – ITSC-2006 Seattle, Washington, U.S.A., May 2006
M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, R. Knight, Drexel University, Philadelphia, Pennsylvania, USA J. A. Baldoni Duke University, North Carolina, USA
Abstract
거친 표면에 대한 입자 충격 및 변형의 3 차원 모델이 HVOF 스프레이 폴리머 입자에 대해 개발되었습니다. 유체 흐름 및 입자 변형은 FLOW-3D® 소프트웨어를 사용하는 유체 부피 (VoF) 방법으로 예측되었습니다. 스플래팅(splatting) 및 최종 스플랫 모양(splat shapes)의 역학에 대한 거칠기의 영향은 몇 가지 프로토타입 거친 표면을 사용하여 탐색 되었습니다 (예: 단계와 그루브)
또한 실제 그릿 블라스팅(grit blasted)된 강철 표면의 광학 간섭 측정에 의해 생성된 보다 사실적인 거친 표면의 수치 표현도 모델에 통합되었습니다. 예측된 스플랫 모양을 그릿 블라스팅 된 강철 기판에 증착된 나일론 11 스플랫의 SEM 이미지와 비교했습니다. 거친 기판은 부드러운 기판의 스플래팅 시뮬레이션에서 거의 관찰되지 않는 손가락 및 기타 비대칭 3 차원 불안정성을 생성했습니다.
Introduction
기판 거칠기가 용사 코팅의 접착력과 접착력을 향상 시킨다는 사실은 잘 알려져 있으며 일반적으로 받아 들여지고 있습니다 [1]. 스프레이하기 전에 기판 표면은 일반적으로 알루미나 또는 SiC와 같은 50 – 300 µm 각 세라믹 입자로 그릿 블라스팅으로 거칠게 처리됩니다.
기판 표면에 증착된 초기 스플랫의 형태는 코팅 / 기판 인터페이스의 무결성과 결과 코팅의 접착 강도에 중요한 역할을합니다. 단단하고 불규칙한 표면에 대한 열 스프레이 액적의 충격 및 변형은 액적 표면의 복잡한 대규모 3 차원 변형이 특징입니다.
충돌하는 물방울의 “스플래싱”이 발생하는 경우, 운지법 또는 위성 입자 생성 및 분리 중 새로운 표면 생성은 일반적으로 축 대칭이 아니므로 사실적인 splat 예측을 위해 3 차원 모델이 필요합니다. 이것은 정확한 3 차원 스플래팅 모델의 개발에 많은 수치적 도전을 야기합니다.
Fauchais et al. [2]는 스플랫 형성 과정과 관련하여 발표 된 논문의 대부분 (~ 98 %)이 매끄러운 표면에 대한 정상적인 액적 충격을 설명한다고보고했습니다. 게시된 작업의 2 % 미만은 매끄러운 표면에 대한 비정상적인 입자 영향과 관련이 있으며 ~ 0.1 %만이 거친 기판과 관련됩니다.
여러 저자 [3, 4]는 2 차원 모델을 사용하여 비평면 표면과 물방울의 상호 작용을 연구했거나 평행 그루브가 있는 표면에 대한 3 차원 충격 [5]을 연구했습니다. 그러나 이 접근법의 주요 단점은 거친 표면에 스플래팅의 비축 대칭 측면을 연구합니다.
최근 Raessi et al. [6] 이전에 개발된 VoF 모델 [7]을 확장하여 평평한 기판에 액적 스플래팅을 프로토 타입 거친 표면과 액적 상호 작용으로 확장했습니다. 표면 거칠기는 규칙적으로 정렬 된 정사각형 블록으로 근사화 되었습니다. Feng et al. [8]은 평평한 표면의 마찰 조건에 의해 표면 거칠기가 근사된 3 차원 Lagrangian 유한 요소 모델을 사용했습니다.
이 접근 방식은 소규모 점성 및 축 대칭 자유 표면 흐름과 관련하여 매우 정확할 수 있지만 fingering 생성 또는 satellites 생성 및 breakups 중 새로운 표면 생성과 관련된 물방울이 튀기는 경계 맞춤 기술에 적합하지 않습니다.
또한, 열 분무에 사용되는 그릿 블라스팅 표면의 평균 표면 거칠기 (Ra)는 일반적으로 50μm의 평균 액적 크기에 비해 ~ 5 ~ 30 % (~ 2 ~ 15μm)입니다. 평평한 표면에 간단한 마찰 흐름.
본 연구의 목표는 임의의 거친 기질에 영향을 미치는 HVOF 분무 중합체 입자의 모델을 개발하는 것이다. 매끄럽지 않은 표면에 대한 입자 분할 모델은 표면의 기하학적 불규칙성이 분할 거동과 최종 분할 형태에 어떻게 영향을 미치는지 더 잘 이해할 수 있게 해줄 것입니다.
HVOF 제트에서 미크론 크기의 공급 원료 입자로의 강제 대류는 높은 대류 열 전달 계수 (h ~ 5000 – 17,000 W / (m2 K))를 특징으로 합니다. 이로 인해 입자 표면 온도가 급격히 증가하지만 폴리머 입자의 높은 내부 열 저항 (높은 Bi 수)은 입자 내부가 동일한 속도로 가열되는 것을 방지합니다. 결과적으로 더 큰 (예 : 90 µm 직경) 나일론 11 입자는 기판에 충격을 주기 전에 코어와 표면 사이에 급격한 온도 구배를 나타냅니다 (그림 1) [9, 10, 11].
또한 가파른 내부 온도 구배를 가진 HVOF 스프레이 폴리머 입자가 얇은 디스크 중앙에 크고 거의 반구형 인 코어가있는 특징적인 “튀김 달걀”모양으로 퍼졌다고 보고되었습니다 [10]. 이 모양은 저온, 고점도 코어와 고온, 저점도 표면의 유동 특성 간에 큰 방사형 차이가 있음을 나타냅니다.
변형된 입자의 예측 된 모양 (그림 2a)은 유리 슬라이드에 증착된 실험적으로 관찰 된 스플랫과 좋은 질적 일치를 나타 냈습니다 (그림 2b). 액적의 오른쪽에 표시된 속도 장 벡터 (그림 2a)는 저점도 “피부”가 고점도 코어 주위를 흐르면서 특징적인 “튀김 달걀” splat 모양이 형성되었음을 나타냅니다.
이 작업에서 보고된 실험 중에 사용된 HVOF 스프레이 매개 변수는 나일론 11을 증착하는데 사용할 수 있는 일반적인 HVOF 스프레이 매개 변수를 나타냅니다. 그러나 실험 기준 매개 변수를 중심으로 개발된 수치 모델은 개별 스플랫의 흐름 거동을 더 잘 이해하는 데 사용할 수 있습니다. 증착 효율 향상을 위한 공정 최적화를 지원합니다.
Davis, J. R., (Ed.) et al, Handbook of Thermal Spray Technology, ASM International®, 1st Ed., Materials Park, OH, (2004).
Fauchais, P., Fukomoto, M., Vardelle, A. and Vardelle, M., Knowledge Concerning Splat Formation: An Invited Review, Journal of Thermal Spray Technology, 13 (3), pp. 337 – 360, (2004).
Liu, H., Lavernia, E. J. and Rangel, R. H., Modeling of Molten Droplet Impingement on a Non-flat Surface, Acta Metall. Mater, 43(5), pp. 2053 – 2072, (1995).
Sobolev, V. V., Guilemany, J. M. and Martin, A. J., Influence of Surface Roughness on the Flattening of Powder Particles during Thermal Spraying, Journal of Thermal Spray Technology 5(2), pp. 207 – 214, (1996). 5 Patanker, N. A. and Chen, Y., Numerical Simulation of Droplet Shapes on Rough Surfaces, Proc. Int. Conference on Modeling and Simulations of Microsystems – MSM 2002, pp. 116 – 119, (2002) 6 Raessi, M., Mostaghimi, J. and Bussmann, M., “Droplet Impact during the Plasma Spray Coating Process-Effect of Surface Roughness on Splat Shapes,” Proc. 17th Int. Symposium on Plasma Chemistry – ISPC 17, Toronto, Canada, (2005) 7 Pasandideh-Fard, M., Chandra, S. and Mostaghimi, J., A Three-dimensional Model of Droplet Impact and Solidification, Int. J. Heat and Mass Transfer, 45, pp. 2229 – 2242, (2002). 8 Feng, Z. G., Domaszewski, M., Montavon, G. and Coddet, C., Finite Element Analysis of Effect of Substrate Surface Roughness on Liquid Droplet Impact and Flattening Process, J. of Thermal Spray Technology, 11(1), pp. 62-68, (2002). 9 Petrovicova, E., “Structure and Properties of Polymer Nanocomposite Coatings Applied by the HVOF Process,” Ph.D. Dissertation, Drexel University, (1999). 10 Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc. ITSC-2005 International Thermal Spray Conference, DVS/IIW/ASM-TSS, Basel, Switzerland, (2005). 11 Bao, Y., Gawne, D. T. and Zhang, T., The Effect of Feedstock Particle Size on the Heat transfer Rates and Properties of Thermally Sprayed Polymer Coatings, Trans. I. M. F., 73(4), pp 119 – 124, (1998). 12 Ivosevic, M., Cairncross, R. A. and Knight, R., “Heating and Impact Modeling of HVOF Sprayed Polymer Particles,” Proc. 2004 International Thermal Spray Conference (ITSC-2004), DVS/IIW/ASM-TSS, Osaka, Japan, (2004). 13 Hirt, C. W. and Nichols, B. D., Volume of Fluid (VoF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, 39, pp. 201 – 225, (1981).
A K Sen1, J Darabi1, D R Knapp2 and J Liu2 1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA 2 Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA E-mail: darabi@engr.sc.edu
뾰족한 탄소 섬유(CF)를 사용하는 새로운 마이크로 스케일 이미터는 질량 분석 (MS) 분석에서 전기 분무에 사용할 수 있습니다. 탄소 섬유는 360 µm OD 및 75 µm ID의 용융 실리카 모세관과 동축에 위치하며 날카로운 팁은 튜브 말단에서 30 µm 연장됩니다.
Abstract
전기 분무 이온화 (ESI) 프로세스는 전기 유체 역학을 해결하기 위한 Taylor–Melcher 누설 유전체 유체 모델 및 액체-가스 인터페이스 추적을 위한 유체 부피 (VOF) 접근 방식을 기반으로 하는 전산 유체 역학 (CFD) 코드를 사용하여 시뮬레이션 됩니다. CFD 코드는 먼저 기존 지오메트리에 대해 검증한 다음 CF 이미터 기반 ESI 모델을 시뮬레이션하는데 사용됩니다.
시뮬레이션된 전류 흐름 및 전류 전압 결과는 CF 이미터의 실험 결과와 잘 일치합니다. 이미터 형상, 전위차, 유속 및 액체의 물리적 특성이 CF 이미터의 전기 분무 거동에 미치는 영향을 철저히 조사합니다.
스프레이 전류와 제트 직경은 액체의 유속, 전위차 및 물리적 특성과 상관 관계가 있으며 상관 결과는 문헌에 보고된 결과와 정량적으로 비교됩니다. (이 기사의 일부 그림은 전자 버전에서만 색상입니다)
Introduction
1980 년대 후반부터 매트릭스 보조 레이저 탈착 이온화 (MALDI)와 전기 분무 이온화 (ESI)의 두 가지 이온화 기술을 구현하여 감도, 속도 및 구조 정보 수준 측면에서 MS 분석이 엄청나게 성장했습니다. 1980 년대 초까지 전자 충격 (EI) 또는 화학 이온화 (CI) 방법은 가스 크로마토 그래피에 적합한 작은 생체 분자를 이온화 하는 데 사용되었습니다.
그러나 크고 열에 민감한 비 휘발성 샘플은 적절한 사전 처리 없이 EI 또는 CI-MS 기술로 분석 할 수 없습니다 [1]. ESI 기술을 사용하면 액체상에서 직접 이러한 큰 분자를 분석 할 수 있습니다 [2]. Zeleny [3, 4]는 출구에 높은 전위를 적용하여 모세관에서 액체 용액을 분사 할 수 있음을 보여주었습니다.
Dole [5, 6] 및 Fenn [7]의 선구적인 연구는 ESI를 고분자 및 생체 분자와 같은 대형 화합물의 이온화 방법으로 표시했습니다. 이에 이어이 기술에 의한 기상 이온 발생에 관련된 과정과 메커니즘이 널리 조사되고 있습니다.
ESI 방법에서 기체 이온화 된 분자는 강한 전계가 있는 상태에서 미세한 물방울을 생성하여 액체 용액에서 생성됩니다. ESI 프로세스의 이러한 능력은 단백질 및 기타 생체 분자 연구에 자연적으로 적용됨을 발견했습니다. ESI 방법과 관련된 다양한 프로세스가 그림 1에 나와 있습니다.
ESI 전위는 일반적으로 전도성 물질로 코팅 된 이미 터 튜브를 통해 외부에서 샘플 액체에 적용되지만 액체 샘플 내부에 적용될 수도 있습니다. Herring과 Qin [8]은 이미 터 팁에 삽입된 팔라듐 와이어를 통해 전기 분무 전위가 적용되는 모세관 전기 영동 (CE)을위한 ESI 인터페이스를 보여주었습니다.
Chiou의 설계 [9]에서는 작은 PDMS 칩에 있는 샘플 저장소, 마이크로 채널 및 실리카 모세관 노즐과 통합 된 내장 전극을 통해 전기 분무를 위한 고전압이 적용되었습니다.
Cao and Moini [10]는 ESI 전압이 모세관 내부에 위치한 전극을 통해인가되고 전기적 접촉이 출구 근처 모세관 벽의 작은 구멍을 통해 유지되는 전기 분무 방출기를 설계했습니다. 작은 모세관 직경 (~ 10 µm)을 가진 이미 터를 사용하여 낮은 전압에서 전기 분무가 가능하지만, 더 작은 구멍은 과도한 배압으로 인해 쉽게 막힐 수 있습니다.
직경이 더 큰 (> 50µm) 이미 터를 처리하는 것이 더 쉽습니다. 그러나 그들은 더 작은 직경의 이미 터만큼 효율적이지 않습니다 [11]. 일반적으로 ESI 전압을 적용하기 위해 유리 또는 용융 실리카와 같은 절연 재료로 제작 된 저 유량 이미 터의 외주에 전도성 코팅이 적용됩니다.
용융 실리카 모세관의 끝 부분에있는 스퍼터 코팅 된 귀금속 층은 내구성에 빠르게 영향을 미치는 것으로 관찰되었습니다. 코팅의 빠른 열화는 방전, 전기 화학적 반응 및 층과 용융 실리카 표면 사이의 불량한 기계적 결합으로 인해 발생할 수 있습니다.
이러한 에미 터의 수명은 스퍼터 코팅 후에 금을 전기 도금하거나 [12] 스퍼터 코팅 된 금 위에 SiOx를 코팅하여 증가시킬 수 있습니다 [13]. 크롬 또는 니켈 합금의 접착층 위에 금으로 코팅 된 이미 터는 우수한 결합력을 제공 할 수 있으며 음극으로 작동 할 때 내구성이 있습니다.
그러나 양극으로 작동하는 동안 접착층은 금 막을 통해 화학적으로 용해됩니다. 이미 터의 안정성과 내구성을 향상시키기 위해 대체 전도성 코팅이 평가되었습니다.
안정적인 ESI 작동을 위해 콜로이드 흑연 코팅 이미 터가 사용되었으며 수명이 길었습니다 [14]. 폴리아닐린 (PANI) 코팅 이미 터는 두꺼운 코팅으로 인해 높은 내구성을 보여주고 방전에 강합니다. PANIcoated와 gold-coated nanospray emitter의 electrospray ionization 거동을 비교 한 결과 PANIcoated emitter는 goldcoated emitter와 비슷한 향상된 감도를 제공합니다 [15].
그라파이트-폴리이 미드 혼합물은 또한 무 접착 전기 분무 방출기의 경우 전도성 코팅으로 사용되었습니다. 전도성 코팅의 안정성은 산화 스트레스 동안 좋은 성능을 나타내는 전기 화학적 방법에 의해 조사되었습니다 [16].
탄소 코팅 이미 터의 기능은 마이크로 스프레이 및 시스리스 CE 및 ESI 응용 분야에서 입증되었습니다. 이 이미 터는 견고하지는 않지만 방수가 되지 않는 CE 또는 ESI 애플리케이션에 충분히 내구성이있었습니다 [17].
우리는 막힘 문제를 제거하고 시료 액체와 금층 사이의 접촉 문제를 피할 수있는 뾰족한 탄소 섬유 기반의 새로운 ESI 방출기를 도입하여 ESI 시스템의 적용 성, 신뢰성 및 내구성을 향상 시켰습니다 [18]. 이 작업에서 탄소 섬유 기반 ESI 이미 터는 전산 유체 역학 (CFD) 소프트웨어 패키지 FLOW-3D [19]를 사용하여 시뮬레이션됩니다.
실험은 새로운 CF 이미 터를 사용하여 수행됩니다. 모델 예측은 실험 결과와 비교됩니다. 새로운 이미 터의 ESI 성능은 이미 터의 기하학적 구조, 유속, 액체의 물리적 특성과 같은 다양한 매개 변수에 대한 반응을 연구하여 평가됩니다.
스프레이 전류 및 제트 직경은 유량 및 액체의 특성과 상관 관계가 있으며 상관 결과는 문헌에보고 된 결과와 정량적으로 비교됩니다. 다음 섹션에서 ESI 공정을 지배하는 전기 유체 역학 이론은 Taylor–Melcher 누설 유전체 모델 [20]을 참조하여 설명됩니다.
그런 다음 Hartman 등이 사용하는 ESI 구성을 고려하여 CFD 코드의 유효성을 확인합니다 [21]. 또한 CF 기반 ESI 모델에 대한 시뮬레이션 및 실험 결과가 제시되고 논의됩니다. 마지막으로 모수 연구 결과와 상관 관계를 제시하고 논의합니다.
[1] Siuzdak M 1996 Mass Spectrometry for Biotechnology (New York: Academic) [2] Cole R B (ed) 1997 Electrospray Ionization Mass Spectrometry (New York: Wiley-Interscience) [3] Zeleny J 1914 Phys. Rev. 3 69–91 [4] Zeleny J 1917 Phys. Rev. 10 1–6 [5] Dole M, Mack L L, Hines R L, Mobley R C, Ferguson L D and Alice M B 1968 Molecular beams of macroions J. Chem. Phys. 49 2240–9 [6] Clegg G A and Dole M 1971 Molecular beams of macroions: III. Zein and polyvinylpyrrolidone Biopolymers 10 821–6 [7] Fenn J B, Mann M, Meng C K, Wong S F and Whitehouse C M 1989 Electrospray ionization for mass spectrometry of large biomolecules Science 246 64–71 [8] Herring C J and Qin J 1999 An on-line preconcentrator and the evaluation of electrospray interfaces for the capillary electrophoresis/mass spectrometry of peptides Rapid Commun. Mass Spectr. 13 1–7 [9] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C B 2002 Microscale Tools for Sample Preparation, Separation and Detection of Neuropeptides Sensors Actuators B 86 280–6 [10] Cao P and Moini M 1997 A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode J. Am. Soc. Mass Spectrom 8 561–4 [11] Janini G M, Conards T P, Wilkens K L, Issaq H J and Veenstra T D 2003 A sheathless nanoflow electrospray interface for on-line capillary electrophoresis mass spectrometry Anal. Chem 75 1615–9 [12] Barroso M B de Jong and Ad P 1999 Sheathless preconcentration-capillary zone electrophoresis-mass spectrometry applied to peptide analysis J. Am. Soc. Mass Spectrom 10 1271–8 [13] Valaskovic G A and McLafferty F W 1996 Long-lived metallized tips for nanoliter electrospray mass spectrometry J. Am. Soc. Mass Spectrom. 7 1270–2 [14] Zhu X, Thiam S, Valle B C and Warner I M 2002 A colloidal graphite coated emitter for seathless capillary electrophoresis/nanoelectrospray ionization mass spectrometry Anal. Chem 74 5405–9 [15] Maziarz E P I II, Lorenz S A, White T P and Wood T D 2000 Polyaniline: a conductive polymer coating for durable nanospray emitters J. Am. Soc. Mass. Spectrom 11 659–63 [16] Nilsson S, Wetterhall M, Bergquist J, Nyholm L and Markides K E 2001 A simple and robust conductive graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry Rapid Commun. Mass Spectr. 15 1997–2000 [17] Chang Y Z and Her G R 2000 Sheathless capillary electrophoresis/electospray mass spectrometry using a carbon-coated tapered fused silica capillary with a beveled edge Anal. Chem. 72 626–30 [18] Liu J, Ro K W, Busman M and Knapp D R 2004 Electrospray ionization with a pointed carbon fiber emitter Anal. Chem. 76 3599–606 [19] Hirt C W 2004 Electro-hydrodynamics of semi–conductive fluids: with application to electro–spraying Flow Science Technical Note 70 FSI–04–TN70 1–7 [20] Saville D A 1997 Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model Annu. Rev. Fluid Mech. 29 27–64 [21] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M and Scarlett B 1999 Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet J. Aerosol Sci. 30 823–49 [22] Castellanos A 1998 Basic Concepts and Equations in Electrohydrodynamics Electrohydrodynamics ed A Castellanos (Berlin: Springer) [23] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press) [24] Hirt C W and Nichols B D 1981 Volume of fluid (VOF) method for the dynamics of free boundaries J. Comp. Phys. 39 201–25 [25] De la Mora F J and Loscertales I G 1994 The current emitted by highly conducting Taylor cones J. Fluid Mech. 260 155–84 [26] Ganan-Calvo A M 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying Phys. Rev. Lett. 79 217–20 [27] Higuera F J 2004 Current/flow–rate characteristic of an electrospray with a small meniscus J. Fluid Mech. 513 239–46 [28] Zeng J, Sobek D and Korsmeyer T Electro-hydrodynamic modeling of electrospray ionization: cad for a microfluidic device-mass spectrometer interface Transducers ’03: 12th Int. Conf. on Solid State Sensors, Actuators and Microsystems 2 1275–8 [29] Ganan–Calvo A M, Davila J and Barrero A 1997 Current and droplet size in the electrospraying of liquids. Scaling laws J. Aerosol Sci. 28 249–75 [30] Cloupeau M and Prunet-Foch B 1989 Electrostatic spraying of liquids in cone–jet mode J. Electrost. 22 135–59
Tien-Li Chang a,*, Jung-Chang Wang b , Chun-Chi Chen c , Ya-Wei Lee d , Ta-Hsin Chou a a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan cNational Nano Device Laboratories, Taiwan d Research and Development Division, Ordnance Readiness Development Center, Taiwan
Abstract
이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.
Introduction
나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.
따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].
오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.
각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.
Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].
그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.
본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.
Experiment
먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.
디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.
이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.
마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.
PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.
수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.
200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.
마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.