Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis

여수로 모델링 및 실험 데이터와 CFD 해석의 비교에 대한 조사

DOI:10.1007/s12205-016-1257-z

Authors:

Serife Yurdagul Kumcu at Necmettin Erbakan Üniversitesi

Serife Yurdagul Kumcu

Abstract and Figures

As a part of design process for hydro-electric generating stations, hydraulic engineers typically conduct some form of model testing. The desired outcome from the testing can vary considerably depending on the specific situation, but often characteristics such as velocity patterns, discharge rating curves, water surface profiles, and pressures at various locations are measured. Due to recent advances in computational power and numerical techniques, it is now also possible to obtain much of this information through numerical modeling. In this paper, hydraulic characteristics of Kavsak Dam and Hydroelectric Power Plant (HEPP), which are under construction and built for producing energy in Turkey, were investigated experimentally by physical model studies. The 1/50-scaled physical model was used in conducting experiments. Flow depth, discharge and pressure data were recorded for different flow conditions. Serious modification was made on the original project with the experimental study. In order to evaluate the capability of the computational fluid dynamics on modeling spillway flow a comparative study was made by using results obtained from physical modeling and Computational Fluid Dynamics (CFD) simulation. A commercially available CFD program, which solves the Reynolds-averaged Navier-Stokes (RANS) equations, was used to model the numerical model setup by defining cells where the flow is partially or completely restricted in the computational space. Discharge rating curves, velocity patterns and pressures were used to compare the results of the physical model and the numerical model. It was shown that there is reasonably good agreement between the physical and numerical models in flow characteristics.

수력 발전소 설계 프로세스의 일부로 수력 엔지니어는 일반적으로 어떤 형태의 모델 테스트를 수행합니다. 테스트에서 원하는 결과는 특정 상황에 따라 상당히 다를 수 있지만 속도 패턴, 방전 등급 곡선, 수면 프로파일 및 다양한 위치에서의 압력과 같은 특성이 측정되는 경우가 많습니다. 최근 계산 능력과 수치 기법의 발전으로 인해 이제는 수치 모델링을 통해 이러한 정보의 대부분을 얻을 수도 있습니다.

본 논문에서는 터키에서 에너지 생산을 위해 건설 중인 Kavsak 댐과 수력발전소(HEPP)의 수력학적 특성을 물리적 모델 연구를 통해 실험적으로 조사하였다. 1/50 스케일의 물리적 모델이 실험 수행에 사용되었습니다. 다양한 흐름 조건에 대해 흐름 깊이, 배출 및 압력 데이터가 기록되었습니다. 실험 연구를 통해 원래 프로젝트에 대대적인 수정이 이루어졌습니다.

배수로 흐름 모델링에 대한 전산유체역학의 능력을 평가하기 위해 물리적 모델링과 전산유체역학(CFD) 시뮬레이션 결과를 이용하여 비교 연구를 수행하였습니다. RANS(Reynolds-averaged Navier-Stokes) 방정식을 푸는 상업적으로 이용 가능한 CFD 프로그램은 흐름이 계산 공간에서 부분적으로 또는 완전히 제한되는 셀을 정의하여 수치 모델 설정을 모델링하는 데 사용되었습니다.

물리적 모델과 수치 모델의 결과를 비교하기 위해 배출 등급 곡선, 속도 패턴 및 압력을 사용했습니다. 유동 특성에서 물리적 모델과 수치 모델 간에 상당히 좋은 일치가 있는 것으로 나타났습니다.

Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory
Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

References

Bureau of Reclamation (1977). Design of small dams, U.S. Government Printing Office, Washington, D.C., U.S.

Bureau of Reclamation (1990). Cavitation in chute and spillways, Engineering Monograph, No.42, U.S. Chanel, P. G. (2008). An evaluation of computational fluid dynamics for

spillway modeling, MSc Thesis, University of Manitoba Winnipeg, Manitoba, Canada.

Chanson, H. (2002). The hydraulics of stepped chutes and spillways,Balkema, Lisse, The Netherlands.

Chanson, H. and Gonzalez, C. A. (2005). “Physical modeling and scale effects of air-water flows on stepped spillways.” Journal of Zhejiang University Science, Vol. 6A, No. 3, pp. 243-250.

Demiroz, E. (1986). “Specifications of aeration structures which are added to the spillways.” DSI Report, HI-754, DSI-TAKK Publications, Ankara, Turkey.

Erfanain-Azmoudeh, M. H. and Kamanbedast, A. A. (2013). “Determine the appropriate location of aerator system on gotvandoliadam’s spillway using Flow 3D.” American-Eurasian J. Agric. & Environ. Sci., Vol. 13, No. 3, pp. 378-383, DOI: 10.5829/idosi.aejaes.2013. 13.03. 458.

Falvey, H. T. (1990). Cavitation in chutes and spillways, Engineering Monograph 42 Water Resources Technical Publication US Printing Office, Bureau of Reclamation, Denver.

Flow-3D User ’s Manual (2012). Flow science, Inc., Santa Fe, N.M.

Hirt, C. W. (1992). “Volume-fraction techniques: Powerful tools for flow

modeling.” Flow Science Report, No. FSI-92-00-02, Flow Science, Inc., Santa Fe, N.M.

Hirt C. W. and Nichols B. D. (1981). “Volume of Fluid (VOF) method for the dynamics of free boundaries.”Jornal of Computational Physics, Vol. 39, pp. 201-225, DOI: 10.1016/0021-9991(81)90145-5.

Hirt, C. W. and Sicilian, J. M. (1985). “A Porosity technique for the definition of obstacles in rectangular cell meshes.” Proceedings of the 4th International Conference on Ship Hydro-dynamics, 24-27 September 1985, National Academic of Sciences, Washington DC.

Ho, D., Boyes, K., Donohoo, S., and Cooper, B. (2003). “Numerical flow analysis for spillways.” 43rd ANCOLD Conference, Hobart, Tas m a nia .

Johnson, M. C. and Savage, B. M. (2006). “Physical and numerical comparison of flow over ogee spillway in the presence of tailwater.”

Journal of Hydraulic Engineering, Vol. 132, No. 12, pp. 1353-135, DOI: 10.1061/(ASCE)0733-9429.

Kim, S. D., Lee, H. J., and An, S. D. (2010). “Improvement of hydraulic stability for spillway using CFD model.” Int. Journal of the Physical Sciences, Vol. 5, No. 6, pp. 774-780.

Kokpinar, M. A. and Gogus, M. (2002). “High speed jet flows over spillway aerators.” Canadian Journal of Civil Engineering, Vol. 29, No. 6, pp. 885-898, DOI: 10.1139/l02-088.

Kumcu, S. Y. (2010). Hydraulic model studies of Kavsak Dam and HEPP, DSI Report, HI-1005, DSI-TAKK Publications, Ankara, Turkey.

Margeirsson, B. (2007). Computational modeling of flow over a spillway, MSc Thesis, Chalmers University of Technology, Gothenburg, Sweden.

Nichols, B. D. and Hirt, C. W. (1975). “Methods for calculating multi-dimensional, transient free surface flows past bodies.” Proc. First Intern. Conf. Num., Ship Hydrodynamics, Gaithersburg, ML.

Savage, B. M. and Johnson, M. C. (2001). “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 8, pp. 640-649, DOI: 10.1061/(ASCE)0733-9429.

Souders, D. T. and Hirt, C. W. (2004). “Modeling entrainment of air at turbulent free surfaces.” Critical Transitions in Water and Environmental resources Management, pp. 1-10.

entürk, F. (1994). Hydraulics of dams and reservoirs, Water Resources Publication Colorado, USA.

Teklemariam, E., Korbaylo, B, Groeneveld, J., Sydor, K., and Fuchs, D. (2001). Optimization of hydraulic design using computational fluid dynamics, Waterpower XII, Salt Lake City, Utah.

Teklemariam, E., Shumilak, B., Sydor, K., Murray, D., Fuchs, D., and Holder, G. (2008). “An integral approach using both physical and computational modeling can be beneficial in addressing the full range of hydraulic design issues.” CDA Annual Conference, Winnipeg, Canada.

Usta, E. (2014). Numerical investigation of hydraulic characteristics of Laleli Dam spillway and comparison with physical model study, Master Thesis, Middle East Technical University, Ankara, Turkey.

Versteeg, H. K. and Malalasekera, W. (1996). An introduction to computational fluid dynamics, Longman Scientific and Technical, Longman Group Limited, Harlow, England.

Vischer, D. L. and Hager, W. H. (1997). Dam hydraulics, J. Wiley & Sons Ltd., England.

Wagner, W. E. (1967). “Glen Canyon diversion tunnel outlets.” J. Hydraulic Division, ASCE, Vol. 93, No. HY6, pp. 113-134.

Willey, J., Ewing, T., Wark, B., and Lesleighter, E. (2012). Comple-mentary use of physical and numerical modeling techniques in spillway design refinement, Commission Internationale Des Grands Barrages, Kyoto, June 2012.

CFD + Physical Modeling Results

CFD + Physical Modeling Results

This material was provided by Kevin Sydor, M.Sc., P.Eng., Section Head, Hydrotechnical and Oceanographic Studies, Water Resources Engineering; Manitoba Hydro; Joe Groeneveld, Western Canada Discipline Practice Lead – Hydrotechnical, Hatch Ltd.; Graham Holder, Consultant, LaSalle; D.G. Murray, P.Eng., M.Sc., Discipline Practice Lead – Hydrotechnical, Hatch Ltd.

 

10년이 넘는 기간 동안 Manitoba Hydro는 Flow-3D의 힘으로 수력 발전소 설계의 복잡성을 해결해 왔습니다. 최근 Manitoba Hydro는 급류, 다중 채널, 그리고 natural contours을 포함한 복잡한 장소에서 제안된 Keeyask생성에 대한 사전연구에 집중해 왔습니다. FLOW-3D사용 이전에는 초기 설계를 토대로 시뮬레이션과 물리적 모델링의 결합 결과가 서로의 성능을 검증하고 향상시키는 통합 연구를 수행했습니다.

Water velocities (m/s) as determined in CFD simulation at left, compared with photo of physical model in operation at right, for Stage 1 Cofferdam operation at a construction length of 450m.

 

실제 발전소와 제철소를 건설하기 위해서는 두 단계의 강 유역이 필요했습니다. Manitoba Hydro는 임시 코퍼 댐 건설 중 물리적 조건이 변화함에 따라 다양한 지역에서의 수위와 속도가 어떻게 변할 것인지를 추정하는 시뮬레이션을 수행했습니다. 그런 다음, 그들은 연안 공사, 우회 구조, 하천 폐쇄 및 배수로의 1/120 축척모델에서 측정된 결과와, 배수로 구역의 1/50 축척모델에서 측정된 결과를 비교했습니다. 1/120 축척모델의 연산에서 관찰된 수치는 수정되었고, CFD시뮬레이션 내 경계 조건을 나타내는 STL모델의 변경 사항으로 세부 사항이 피드백 되었습니다. 여러 가지의 상세한 공정은 물리적 축척 모형의 거동을 약 5%이내에서 예측했을 뿐만 아니라 공사비를 절감할 수 있는 설계 변경 사항도 찾아냈습니다.

 

Setting up and Calibrating the CFD Model

Simulation of final Keeyask spillway structure, verifying water velocities (m/s) to compare with physical scale model operation.

 

CFD모델은 약 3km x 2km의 영역을 커버하였으며, 탐지 속도 경계로 설정된 경계 조건을 통해 상류 쪽으로의 흐름을 제어하고 하류 쪽 끝의 지속적인 유출 경계를 설정하였습니다. 설계자들은 교각, 교대, 여수로 구조 및 코퍼댐과 같은 기하학적 객체의 STL AutoCAD파일을 가져와 물리적 경계를 나타낸 다음 매개 변수를 정의 했습니다.

강 급류의 특성과 레일 통로의 평행 부분을 통해 생성되는 예상 유량 범위를 모두 수용하기 위해 CFD모델이 다시 정규화되도록 설정되었습니다. 일반화된 최소 잔류 방법에 기초한 회전 난류 모드 및 implicit의 압력-속도 솔버를 설정했습니다. 메쉬는 데카르트 좌표로 설정되었고 보다 정밀한 메쉬 처리가 필요한 영역에서 grid를 다듬기 위해 중첩된 메쉬 블록을 사용했습니다. 배수로 구조 주위 영역의 격자 간격은 1m x 1m x 1m로 설정되었습니다. 즉, 배수로 및 배수로 용마루의 형상을 포함하는 데 필요했던 것입니다.

시뮬레이션의 목적은 건설 일정상 다양한 지점에서의 방전 용량, 수위, 속도 및 흐름 패턴, 다양한 위치, 경로 게이트(부분에서 완전히 열림)등을 추정하는 것이었습니다.  이 계산된 값들은 코페르담 건축에서 암석 덩어리에 필요한 돌의 크기를 결정하는데 중요합니다. 건축의 모든 단계에서 그들을 제자리와 하류로 이동시키는 항력에 저항할 만큼 암석들은 충분히 커야 합니다.

Excellent agreement in flow-rate prediction of spillway behavior between numeric and measured physical model values.

 

Physical Modeling

수력 발전소 설계로 인해 처음에는 제대로 하지 못하는 일이 너무 많습니다. 중요한 지형에서의 용량, 압력, 속도 및 배수로 게이트 동작(완전 개방)을 검증하기 위해서는 중요한 흐름 영역의 규모 물리적 모델을 구축해야 합니다. Manitoba Hydro는 LaSalle Consulting Group에 1/120 스케일의 하나의 포괄적 인 레이아웃과 1/50 스케일의 2 개의 전체구역과 2 개의 절반 구역을 가진 방수 모델을 구축할 것을 요청했습니다.

 

Integrated Modeling Results

실제 모델의 크기에 대한 힘의 이동 관계를 살펴보면, 바위 크기 예측에 대한 시뮬레이션은 약간 보존적입니다. 그러나 초기 수위 데이터 곡선은 시뮬레이션과 물리적 모델 행동 사이에 일치를 보여주었고 추가 시험을 위한 단계를 설정했습니다. 모델에서 코퍼댐이 서서히 생성됨에 따라 후속 수위 CFD시뮬레이션 결과를 정확하게 예측했음을 보여주었습니다.

완성된 코퍼댐의 테스트에 따르면 제어 구조가 아닌 채널 입구에서 흐름이 제어되고 있는 것으로 나타났습니다. 이것은 원하는 것보다 높은 상류수위가 나타났습니다. 접근 채널의 입구를 낮추도록 물리적 모델을 재구성하여 CFD에 사용된 고도를 반영했습니다. 출입구가 더 낮게 발굴되어, 수로의 왼쪽 둑을 따라 굴착하는 것은 입구 근처의 작은 지역에서만 필요했습니다.

 

Conclusion

Manitoba Hydro는 CFD모델링이 미래의 수력 발전소뿐만 아니라 Keeyask 발전소의 건설과 운영을 계획하는 데에도 여러 가지 이점을 제공한다는 사실을 발견했습니다 두 가지 접근법의 결과간에 매우 잘 일치했을 뿐만 아니라 FLOW-3D 시뮬레이션과 스케일 모델 테스트를 결합하면 두 가지 설계 옵션의 유효성을 개선하는 반복적 인 방법이 제공되었습니다. 또한 시뮬레이션을 통해 사용자는 실제 사용할 수 있는 값의 수가 제한되어 있지 않고 CFD모델 도메인 내의 어디서나 속도, 수위 및 유량을 쉽고 빠르게 추출할 수 있습니다.