Figure 2 Idea and details of T-shaped weir.

Introducing the T-shaped weir: a new nonlinear weir

Behzad NorooziJalal BazarganAkbar Safarzadeh

Abstract

본 연구에서는 LW(Labyrinth Weir)와 PKW(Piano Key Weir)가 결합된 T자형 웨어(TSW)라는 새로운 비선형 웨어를 도입하여 수압 성능을 비교하였다.

PKW. 입구 키, 출구 키 또는 두 키 모두에서 수직 벽의 존재에 따라 TSW 위어는 각각 A, B 또는 C 유형 웨어로 분류되었습니다. 다른 TSW 사례의 흐름 패턴을 분석하고 배출 계수 곡선을 제공했습니다. 또한 테스트된 둑의 유체역학을 정확하게 연구하기 위해 FLOW-3D 소프트웨어를 사용하여 3D 수치 시뮬레이션을 수행했습니다.

결과는 출구 키(C-TSW 유형)의 상류에 수직 벽을 삽입하는 것이 PKW의 유압 성능에 미미한 영향을 미치는 것으로 나타났습니다. B-TSW의 토출계수는 PKW 대비 최대 16% 증가하였으며, Ht/p 0.45까지 수직벽의 성능향상 효과 증가 B-TSW는 유지되었습니다.

실험적 및 수치적 실험을 통해 가장 높은 방전 용량을 갖는 B-TSW에서 수직벽의 최적 높이비(Pd/P)는 0.4로 결정되었다.

In the present study, a new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), was introduced, and its hydraulic performance was compared with the PKW. Based on the presence of the vertical walls at the inlet key, outlet key, or both keys, the TSW weirs were classified as type A, B, or C weirs, respectively. The flow pattern of different TSW cases was analyzed, and the discharge coefficient curves were provided. Furthermore, to accurately study the hydrodynamics of the tested weirs, 3D numerical simulations were performed using the FLOW-3D software. The results showed that inserting a vertical wall at the upstream of the outlet keys (C-TSW type) has a negligible effect on the hydraulic performance of the PKW. A maximum increase of 16% occurred in the discharge coefficient of the B-TSW in comparison to the PKW, and up to a head to height ratio (Ht/p) of 0.45, the effect of the vertical wall on increasing the performance of the B-TSW was maintained. Based on the experimental and numerical tests, the optimal height ratio of the vertical wall (Pd/P) in B-TSW with highest discharge capacity was determined to be equal to 0.4.

HIGHLIGHTS

Listen

  • A new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), is introduced.
  • To investigate the hydrodynamics of the tested weirs in more detail, 3D numerical models are developed on the CFD-software FLOW-3D.
  • By testing different vertical wall sizes, the optimal size of the vertical wall is determined for B-TSW weir.

Keywords

discharge coefficientlabyrinth weirlocal submergencepiano key weirT-shaped weir

Figure 2 Idea and details of T-shaped weir.
Figure 2 Idea and details of T-shaped weir.

Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.
Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.
Figure 21 Transverse water surface profile in the outlet key of tested weirs  for H/P = 0.4.
Figure 21 Transverse water surface profile in the outlet key of tested weirs for H/P = 0.4.

REFERENCES

Anderson R. M. & Tullis B. P. 2011 Influence of Piano Key Weirs Geometry on Discharge. In Labyrinth and Piano Key Weirs – PKW 2011. CRC Press, Leiden, pp. 75–80.

Anderson R. M. & Tullis B. P. 2012 Comparison of piano key and rectangular labyrinth weir hydraulics. Journal of Hydraulic Engineering 138 (4), 358–361.

Azamathulla H. M., Haghiabi A. H. & Parsaie A. 2016 Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply 16 (4), 1002–1016.

Bremer F. L. & Oertel M. 2017 Numerical investigation of wall thickness influence on Piano key Weir discharge coefficients: A preliminary study. In Labyrinth and Piano Key Weirs III – PKW 2017. CRC Press, London, UK, pp. 101–108.

Cicero G. M., Delisle J. R., Lefebvre V. & Vermeulen J. 2013 Experimental and Numerical Study of the Hydraulic Performance of A Trapezoidal PKW. In Labyrinths and Piano Key Weirs PKW 2013. CRC Press, Boca Raton, FL, pp. 265–272.

Crookston B. & Tullis B. 2012 Labyrinth Weirs: Nappe interference and local submergence. Journal of Irrigation and Drainage Engineering 138 (8), 757–765.

Crookston B., Anderson R. M. & Tullis B. P. 2017 Free-flow discharge estimation method for piano key weir geometries. Journal of Hydro-Environment Research 19, 60–167.

Ghasemlounia R. & Saghebian S. M. 2021 Uncertainty assessment of kernel based approaches on scour depth modeling in downstream of ski-jump bucket spillways. Water Supply 21 (5), 2333–2346. doi:10.2166/ws.2021.063.

Kabiri-Samani A. & Javaheri A. 2012 Discharge coefficients for free and submerged flow over piano key weirs. Journal of Hydraulic Research 50 (1), 114–120.

Lefebvre V., Vermeulen J. & Blancher B. 2013 Influence of Geometrical Parameters on PK-Weirs Discharge with 3D Numerical Analysis. In: Labyrinth and Piano key Weirs II – PKW 2013. CRC Press, London, pp. 49–56.

Lempérière F. & Ouamane A. 2003 The piano keys weir: a new cost-effective solution for spillways. International Journal on Hydropower & Dams 10 (5), 144–149.

Machiels O., Erpicum S., Archambeau P., Dewals B. J. & Pirotton M. 2011 Influence of piano key weir height on its discharge capacity. In Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B, pp. 59–66.

Machiels O., Pirotton M., Pierre A., Dewals B. & Erpicum S. 2014 Experimental parametric study and design of piano key weirs. Journal of Hydraulic Research 52 (3), 326–335.

Parsaie A., Azamathulla H. M. & Haghiabi A. H. 2018 Prediction of discharge coefficient of cylindrical weir-gate using GMDH-PSO. ISH Journal of Hydraulic Engineering 24 (2), 116–123.

Paxson G. & Savage B. 2006 Labyrinth spillways: comparison of two popular USA design methods and consideration of non-standard approach conditions and geometries. Division of Civil Engineering, p.37.

Pourshahbaz H., Abbasi S., Pandey M., Pu J. H., Taghvaei P. & Tofangdar N. 2020 Morphology and hydrodynamics numerical simulation around groynes. ISH Journal of Hydraulic Engineering 1–9.

Pralong J., Vermeulen J., Blancher B., Laugier F., Erpicum S., Machiels O., Pirotton M., Boillat J.-L., Leite Ribeiro M. & Schleiss A. 2011a A naming convention for the Piano Key Weirs geometrical parameters. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 271–278.

Pralong J., Montarros F., Blancher B. & Laugier F. 2011b A sensitivity analysis of Piano Key Weirs geometrical parameters based on 3D numerical modelling. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 133–139.

Ribeiro M. L., Bieri M., Boillat J. L., Schleiss A., Delorme F. & Laugier F. 2009 Hydraulic capacity improvement of existing spillways–design of a piano key weir. In Proceedings (on CD) of the 23rd Congress of the Int. Commission on Large Dams CIGB-ICOLD, Brasilia, Vol. 2, No. CONF, pp. 100–118.

Ribeiro M. L., Pfister M., Schleiss A. J. & Boillat J. L. 2012 Hydraulic design of A-type piano key weirs. Journal of Hydraulic Research 50 (4), 400–408.

Roache P. 1994 Perspective: a method for uniform reporting of grid refinement studies. Journal of Fluids Engineering 116 (3), 405–413.

Safarzadeh A. & Mohajeri S. H. 2018 Hydrodynamics of rectangular broad-crested porous weirs. Journal of Irrigation and Drainage Engineering 144 (10), 04018028.

Safarzadeh A. & Noroozi B. 2014 Three dimensional hydrodynamics of arced piano key spillways. Journal of Hydraulics 9 (3), 61–79.

Safarzadeh A. & Noroozi B. 2017 3D hydrodynamics of trapezoidal piano key spillways. International Journal of Civil Engineering 15 (1), 89–101.

Safarzadeh A., Zaji A. H. & Bonakdari H. 2017 Comparative assessment of the hybrid genetic algorithm–artificial neural network and genetic programming methods for the prediction of longitudinal velocity field around a single straight groyne. Applied Soft Computing 60, 213–228.

Tullis B. P., Young J. C. & Chandler M. A. 2007 Head-discharge relationships for submerged labyrinth weirs. Journal of Hydraulic Engineering 133 (3), 248–254.

Xinlei G., Zhiping L., Tao Wang H., Jiazhen L., Qingfu X. & Yongxin G. 2019 Discharge capacity evaluation and hydraulic design of a piano key weir. Water Supply 19 (3), 871–878.

Zahiri A., Azamathulla H. M. & Bagheri S. 2013 Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. Journal of Hydrology 480, 162–166.

Zahiri A., Tang X. & Azamathulla H. M. 2014 Mathematical modeling of flow discharge over compound sharp-crested weirs. Journal of Hydro-Environment Research 8 (3), 194–199.

Investigation ofcavitation in stepped spillway of Siah-Bishe dam by using Flow-3D model

Investigation ofcavitation in stepped spillway of Siah-Bishe dam by using Flow-3D model

Author(s) : Daneshfaraz, R. ;  Zogi, N.

Author Affiliation : Civil Eng. & Hydraulics Dept., Faculty of Engineering, University of Maragheh, Maragheh, Iran.

Author Email : daneshfaraz@yahoo.com

Journal article : International Research Journal of Applied and Basic Sciences 2013 Vol.4 No.11 pp.3382-3388 ref.14

Abstract

캐비테이션은 고속 및 과난류 흐름에서 수리 구조물에 손상을 입히고 구멍을 만드는 현상입니다. 본 연구에서는 Siah-Bishe 배수로의 계단식 급수 공식을 Flow-3D 소프트웨어를 통해 시뮬레이션하고 물리적 모델과 비교합니다.

이 소프트웨어는 자유 표면과 복잡한 형상의 불안정한 3D 흐름 문제를 분석하는 정확한 도구입니다. 유한체적법을 통해 질량, 운동량, 에너지 보존 공식을 풀어 문제를 해결합니다.

본 연구에서는 여수로의 시작, 끝, 끝 부분의 압력 매개변수를 연구하고 일부 부분에서 음압이 관찰됩니다. 이 압력은 캐비테이션을 일으킬 수 있습니다. 본 연구는 Flow-3D로 모델링된 물리적 모델과 유한체적법 간의 대응 결과를 보여준다.

Cavitation is a phenomenon which damages and makes hole in hydraulic structure in high velocity and over-turbulent flows. In this research, stepped fast water formula of Siah-Bishe spillway is stimulated via Flow-3D software and compared with physical model. This software is an accurate tool in analyzing unsteady 3D flow problems with free surface and complex geometry. It solves problems by solving conservation of mass formulas, momentum and energy viafinite volume method. In this study, pressure parameter at the beginning, end and along the spillway is studied and negative pressure is observed in some parts. This pressure can make cavitation. The study shows the results of correspondence between physical model and finite volume method modeled by Flow-3D.

ISSN : 2251-838X

URL : http://irjabs.com/files_site/paperlis…

Record Number : 20133348057

Publisher : Science Explorer Publications

Location of publication : London

Country of publication : UK

Language of text : English

Indexing terms for this abstract:

Keywords

cavitation, computer simulation, dams, pressure, simulation models, spillways, water flow

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

Abstract

태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

1. Introduction

Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

2. Cycle Description

CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

2.1. System Analysis Equations

An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

Based on the first law of thermodynamic, energy analysis is based on the following steps.

First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

Collector efficiency is going to be calculated by the following equation [9]:

Total energy received by the collector is given by [9]

Also, the auxiliary boiler heat load is [2]

Energy consumed from vapor to expander is calculated by [2]

The power output form by the screw expander [9]:

The efficiency of the expander is 80% in this case [11].

In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

First step: calculating the cooling load with the following equation [9]:

Second step: calculating heating loads [9]:

Then, calculating the required loud for sanitary hot water will be [9]

According to the above-mentioned equations, efficiency is [9]

In the third step, calculated exergy analysis as follows.

First, the received exergy collector from the sun is calculated [9]:

In the previous equation, f is the constant of air dilution.

The received exergy from the collector is [9]

In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

Delivering exergy from vapor to expander is calculated with the following equation [9]:

In the fourth step, the exergy in cooling and heating is calculated by the following equation:

Cooling exergy in summer is calculated [9]:

Heating exergy in winter is calculated [9]:

In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

3. Porous Media

The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

3.1. Nano Fluid

In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

The specific heat capacity is calculated from the following equation [29]:

The thermal conductivity of the nanofluid is calculated from the following equation [29]:

The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

The mixture viscosity is calculated as follows [30]:

In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

4. Results and Discussion

In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

Figure 4 Verification charts of energy analysis results.

Figure 5 Verification charts of exergy analysis results.

We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

Figure 7 Energy and exergy efficiency of the SCCHP.

Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

5. Conclusion and Future Directions

In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

Nomenclature

:Solar radiation
a:Heat transfer augmentation coefficient
A:Solar collector area
Bf:Basic fluid
:Specific heat capacity of the nanofluid
F:Constant of air dilution
:Thermal conductivity of the nanofluid
:Thermal conductivity of the basic fluid
:Viscosity of the nanofluid
:Viscosity of the basic fluid
:Collector efficiency
:Collector energy receives
:Auxiliary boiler heat
:Expander energy
:Gas energy
:Screw expander work
:Cooling load, in kilowatts
:Heating load, in kilowatts
:Solar radiation energy on collector, in Joule
:Sanitary hot water load
Np:Nanoparticle
:Energy efficiency
:Heat exchanger efficiency
:Sun exergy
:Collector exergy
:Natural gas exergy
:Expander exergy
:Cooling exergy
:Heating exergy
:Exergy efficiency
:Steam mass flow rate
:Hot water mass flow rate
:Specific heat capacity of water
:Power output form by the screw expander
Tam:Average ambient temperature
:Density of the mixture.

Greek symbols

ρ:Density
ϕ:Nanoparticles volume fraction
β:Ratio of the nanolayer thickness.

Abbreviations

CCHP:Combined cooling, heating, and power
EES:Engineering equation solver.

Data Availability

For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
  2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
  3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
  4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
  5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
  6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
  7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
  8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
  9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
  10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
  11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
  12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
  13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
  14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
  15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
  16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
  17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
  18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
  19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
  20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
  21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
  22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
  23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
  24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
  25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
  26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
  27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
  28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
  29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
  30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
  31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
  32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
  37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
  38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
  39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
  40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
  41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
  43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
  44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
  45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
  46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
  47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
  48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
  55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
  57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
  58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
  59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
  60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
  61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
  62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
  63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
  64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
  66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
  68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
  69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
  70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
  71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
  73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
  74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
Figure 1. Typical road and rail tunnel sections.

터널의 화재 위험을 평가하는 컴퓨터 모델(FASIT)

A Computer Model to Assess Fire Hazards in Tunnels (FASlT)

David A. Charters, W. Alan Gray, Andrew C. McIntosh
Charters is now with NHS Estates in Leeds (previously with AEA Consultancy
Services), and Gray and Mclntosh are with the University of Leeds, England.

Abstract

터널에서 화재 성장 움직임을 시뮬레이션하는 컴퓨터 모델이 설명되고 터널 시스템에 대한 간략한 개요가 표시됩니다. 질량 흐름, 속도, 연기 농도 및 열 전달을 예측하는 방법과 위험 출력 매개 변수 목록이 표시됩니다. 실험에 대한 모델의 유효성 검사와 향후 작업에 대한 가능한 방향도 제시됩니다.

Introduction

최근 도로 및 철도 터널의 화재 안전에 대해 운송 업계와 여행자들 사이에서 많은 우려가 제기되고 있습니다.

1,2,3 터널에서 연소 생성물은 한 방향 또는 두 방향을 제외한 모든 방향으로 제한되어 매우 빠른 연기 이동과 생명에 대한 빠른 위협을 초래할 수 있습니다.

이 분야의 많은 초기 작업은 Thomas에 의해 수행되었습니다. 4,5 AEA Consultancy Services와 University of Leeds의 연료 및 에너지부는 현재 터널의 구멍으로 인한 위험을 예측하는 컴퓨터 모델을 개발 중입니다.

이 모델은 터널 내 설비의 위험과 화재 위험 수준, 화재 방지 시스템의 이점을 평가하는 데 도움이 됩니다.

유사한 ‘구역’ 화재 모델에서 Considine et al. 7은 유해 물질 운송을 포함하는 피트에 대한 모델을 개발했으며 Miclea 등은 터널 환기에 대한 화재의 영향을 평가하고 비상 환기를 논의하는 터널 환기 모델을 개발했으며 Laage 등은 터널 환기 모델을 개발했습니다.

9는 특히 광산 네트워크의 화재에 대한 모델을 개발했습니다. 다른 터널 화재 모델에서 Kumar et al.10 및 Jones et al.11은 터널 화재의 유체 흐름을 예측하기 위해 전산 유체 역학(CFD) 또는 ‘장’ 모델을 사용합니다.

AEA/Leeds University에서 개발 중인 코드는 터널의 화재 위험을 예측하기 위한 더 큰 모델의 일부가 되도록 의도되었습니다.

이 코드는 FASIT(Fire growth And Smoke movement In Tunnels) 모델이라고 합니다.12 FASIT는 구조가 모듈식이므로 화염, 연기, 부력 흐름, 열 전달 등에 대한 개선된 모델을 많은 수의 재작성 없이 통합할 수 있습니다.

Figure 1. Typical road and rail tunnel sections.
Figure 1. Typical road and rail tunnel sections.
Figure 2. Tunnel zone/layer schematic.
Figure 2. Tunnel zone/layer schematic.
Figure 3. Schematic of plume mass flows°
Figure 3. Schematic of plume mass flows°

References

  1. Bertrand, A., “Opening Address,”Safety in Road and Rail Tunnels, 1992.
  2. Haack, A., “Fire Protection Traffic Tunnels-Initial Recognitions from Large Scale Tests,”Safety in Road and Rail Tunnels, 1992.
  3. Luchian, S.F., “The Central Artery/Tunnel Project Memorial Tunnel Fire Test Program,”Safety in Road and Rail Tunnels, 1992.
  4. Thomas, P.H., “The Movement of Buoyant Fluid Against a Stream and the Venting of Underground Fires,”Fire Research Note 351/1958, Fire Research Station, U.K., 1958.Google Scholar 
  5. Thomas, P.H., “The Movement of Smoke in Horizontal Passages Against an Air Flow,”Fire Research Note 723/1968, Fire Research Station, U.K., 1968.Google Scholar 
  6. Charters, D.A., “Fire Risk Assessment in Rail Tunnels,”Safety in Road and Rail Tunnels, 1992.
  7. Considine, M., Parry, S.T., and Blything, K.,Risk Assessments of Hazardous Substances Through Road Tunnels in the United Kingdom, Department of Transport, 1989.
  8. Miclea, P.C. and Murphy, R.E., “Assessment of Emergency Ventilation Capability in Case of Train Fire in a Tunnel Using Subway Environment Simulation (SES) Computer Program,”Proceedings of 4th U.S. Mine Ventilation Symposium, SME, 1989.
  9. Laage, L.W. and Yang, H., “Mine Fire Experiments at the Waldo Mine,”Proceedings of 5th U.S. Mine Ventilation Symposium, SME, 1991.
  10. Kumar, S. and Cox, G.,Mathematical Modeling of Fire in Road Tunnels—Validation of JASMINE Department of Transport, 1986.
  11. Simcox, S., Wilkies, N.S. and Jones, I.P., “Computer Simulation of the Flows of Hot Gases from Fire at King’s Cross Underground Station,”Institution of Mechanical Engineers, 1989.
  12. Charters, D.A., Gray, W. A., and McIntosh, A.C.,FASIT Tunnel Fire Computer Model—Physical Basis, AEA Technology/Leeds University, 1993.
  13. Heskestad, G., “Fire Plumes,”The SFPE Handbook of Fire Protection Engineering, SFPE/NFPA, 1988, Chapters 1–6.
  14. Drysdale, D.D.,An Introduction to Fire Dynamics, Wiley, 1985.
  15. British Standard (Draft for Development) 180,Guide for the Assessment of Toxic Hazards in Fire in Buildings and Transport British Standards Institution, 1989.
  16. Vantelon, J.P.,et al., Investigation of Fire-Induced Smoke Movement in Tunnels and Stations: An Application to the Paris Metro, Third International Symposium on Fire Safety Science, Elsevier, 1991.
  17. Heselden, A.J.M., “Studies of Fire and Smoke Behavior Relevant to Tunnels,”Current Paper CP66/78, Building Research Establishment, 1978.
  18. Emmons, H.W., “The Ceiling Jet in Fires,”Proceedings of the 3rd International Symposium of Fire Safety Science, Elsevier, 1991.
  19. Carslaw, H.S. and Jaeger, J.C.,Conduction of Heat in Solids, 2nd edition, Oxford University Press, 1959.
  20. Final Report on the Tests in the Ofenegg Tunnel, Commission for Safety Measures in Road Tunnels, Bern, 1965.
  21. Feizlmayr, A.H.,Brandversuche in Einen Tunnel, Bundesministerium für Banten und Technik, Heft 50, Vienna, 1976.Google Scholar 
  22. Keski-Rahkonen, O., Holmlund, C., Loikkanen, P., Ludrigsen, H., and Mikkola, E.,Two Full-Scale Pilot Fire Experiments in a Tunnel, VTT Finland, 1986.
  23. Marshall, I.A., Hines, M.A., Cutler, D.P., and Packer, S.D.,Fire Gallery Tests for Non-Metallic Materials Intended for Underground Use Project No. 7255-10/058, CEC, 1984.
  24. Private communication between Beckett, H. (HSE) and Burke, G. (AEA), 1986.
  25. McCaughey, M.N. and Fletcher, D.F.,Simulation of a Fire in a Tunnel, SRD, 1992.
  26. Fletcher, D.F. and Owens, M.P.,Tunnel Fire Modeling Using FLOW 3D: Progress and Suggested Future Work, SRD, 1993.
Fig. 2 Schematic diagram of the experimental Rijke tube

RIJKE 튜브 내부의 열음향 장에 대한 새로운 조사

A novel investigation of the thermoacoustic field inside a Rijke tube

B. EntezamW. Van Moorhem and J. MajdalaniPublished Online:22 Aug 2012 https://doi.org/10.2514/6.1998-2582

Abstract

이 논문에서는 Rijke 튜브 내부의 시간 종속 유동장의 실험 연구 및 계산 시뮬레이션에서 진행한 결과를 제시하고 해석합니다. 기존의 추측과 스케일링 분석을 기반으로 한 이론적 논의가 진행됩니다. 주요 결과에는 열 구동 진동에서 중요한 역할을 하는 것으로 보이는 유사성 매개변수가 포함됩니다. 이 매개변수는 열 섭동을 속도, 압력 및 특성 길이의 제곱과 관련시킵니다. 열 진동을 압력 및 속도 진동의 결합된 효과에 기인하는 간단한 이론은 계산, 실험 및 스케일링 고려 사항을 통해 논의됩니다. 이전의 분석 이론은 열 진동을 속도 또는 압력 진동에 연결했기 때문에 현재 분석 모델은 기존 추측에 동의하고 조정합니다. Rayleigh 기준에 따라 열원은 Rijke-tube 하단에서 1/4의 임계 거리에 위치해야 공명이 발생합니다. 이 관찰은 결합이 최대화되는 임계점이 음향 속도와 압력의 곱인 음향 강도가 가장 큰 공간 위치에 해당하기 때문에 제안된 해석을 확인합니다. 수치 시뮬레이션은 Rijke 튜브 내부의 압력 진동이 열 입력이 증가함에 따라 기하급수적으로 증가한다는 것을 보여줍니다. 충분히 작은 열 입력으로 음향 싱크가 소스를 초과하고 음향 감쇠가 발생합니다. 열 입력이 임계 임계값 이상으로 증가하면 음향 싱크가 불충분해져서 ​​내부 에너지 축적으로 인해 빠른 음향 증폭이 발생합니다.

In this paper, results proceeding from experimental studies and computational simulations of the time-dependent flowfield inside a Rijke tube are presented and interpreted. A theoretical discussion based on existing speculations and scaling analyses is carried out. The main results include a similarity parameter that appears to play an important role in the heat driven oscillations. This parameter relates heat perturbations to velocity, pressure, and the square of a characteristic length. A simple theory that attributes heat oscillations to the combined effects of pressure and velocity oscillations is discussed via computational, experimental, and scaling considerations. Since previous analytical theories link heat oscillations to either velocity or pressure oscillations, the current analytical model agrees with and reconciles between existing speculations. In compliance with the Rayleigh criterion, it is found that the heat source must be positioned at a critical distance of 1/4 from the Rijke-tube lower end for resonance to occur. This observation confirms our proposed interpretation since the critical point where coupling is maximized corresponds to a spatial location where the acoustic intensity, product of both acoustic velocities and pressures, is largest. Numerical simulations show that pressure oscillations inside the Rijke tube grow exponentially with increasing heat input With a sufficiently small heat input, the acoustic sinks exceed the sources and acoustic damping takes place. When the heat input is augmented beyond a critical threshold, acoustic sinks become insufficient causing rapid acoustic amplification by virtue of internal energy accumulation.

Fig. 2 Schematic diagram of the experimental Rijke tube
Fig. 2 Schematic diagram of the experimental Rijke tube
A novel investigation of the thermoacoustic field inside a Rijke tube
A novel investigation of the thermoacoustic field inside a Rijke tube

References

‘Entezam, B., Majdalani, J., and Van Moorhem, W. K.,
“Modeling of a Rijke-Tube Pulse Combustor Using
Computational Fluid Dynamics,” AIAA Paper 97-2718,
Seattle, WA, July 1997.

2George, W., and Reethof, G., “On the Fragility of
Acoustically Agglomerated Submicron Fly Ash
Particles,” Journal of Vibration, Acoustics, Stress, and
Reliability in Design, Vol. 108, July 1986, pp. 322-329.
3Tiwary R., and Reethof, G., “Hydrodynamic
Interaction of Spherical Aerosol Particles in a High
Intensity Acoustic Field,” Journal of Sound and
Vibration, Vol. 108, 1986, pp. 33-49.
4Reethof, G., “Acoustic Agglomeration of Power Plant
Fly Ash for Environmental and Hot Gas Clean-up,”
Transaction of the ASME, Vol. 110, Oct., 1988, pp.
552-557.
5
Song, L., Reethof, G., and Koopmann, G. H., “An
Improved Simulation Model of Acoustic
Agglomeration,” NCA Vol. 5, 89-WA, American
Society of Mechanical Engineers, Winter Annual
Meeting, San Francisco, CA, Dec., 10-15, 1989.
6Reethof, G., Koopmann, G. H., and Dorchak, T.,
“Acoustic Agglomeration for Paniculate Control at
High Temperature and high Pressure – Some Recent
results,” NCA Vol. 4, 89-WA, American Society of
Mechanical Engineers, Winter Annual Meeting, San
Francisco, CA, Dec., 10-15, 1989.
7Richards , G. A., and Bedick, R. C, “Application of
Acoustics in Advanced Energy Systems,” NCA Vol. 3,
89-WA, American Society of Mechanical Engineers,
Winter Annual Meeting, San Francisco, CA, Dec., 10-
15, 1989.
8Yavuzkurt, S., Ha, M. Y., Reethof, G., and Koopmann,
G., “Effect of Acoustic Field on the Combustion of
Coal Particles in a Rat Flame Burner,” Proceedings of
the Ist
Annual Pittsburgh Coal Conference, Pittsburgh,
PA, Sep., 1984, pp. 53-58.
^rice, E. W., “Review of Combustion Instability
Characteristics of Solid Propellants,” Advances in
Tactical Rocket Propulsion, AGARD Conference
Proceedings, No. 1, Part 2, Chap. 5, Technivision
Services, Maidenhead, England, 1968, pp. 141-194.
10Zinn, B.T., “State of the Art and Research Needs of
Pulsating Combustion,” NCA Vol. 19, 84-WA,
American Society of Mechanical Engineers, 1984.
“Rayleigh, J.W.S., The Theory of Sound, Vol. 1 and 2,
Dover Publications, New York, 1945, pp. 231-235.
12Zinn, B.T., Miller, N., Carvalho, J.A. Jr., and Daniel.
B. R., “Pulsating Combustion of Coal in a Rijke Type
Combustor,” Proceedings of the 19th International
Symposium on Combustion, 1982, pp. 1197-1203.
13Evans, R.E., and Putnam, A.A., “Rijke Tube
Apparatus,” Journal of Applied Physics, Vol. 360,
1966.
14Feldman, K. T., “Review of the Literature on Rijke
Thermoacoustic Phenomena, ” Journal of Sound and
Vibration, Vol. 7, 1968, pp. 83-89.
15Carvalho, J.R., Ferreira, C., Bressan, C., and Ferreira,
G., “Definition of Heater Location to Drive Maximum
Amplitude Acoustic Oscillations hi a Rijke Tube,”
Combustion and Flame, Vol. 76, 1989, pp. 17-27.
16Raun, R.L., Beckstead, M. W., Finlinson, J. C. , and
Brooks, K. P., “A Review of Rijke Tubes, Rijke
Burners and Related Devices,” Progress in Energy and
Combustion Science, Vol. 19, 1993, pp. 313-364.
17Chu, B. T., “Stability of Systems Containing a HeatSource-The Rayleigh Criterion, “NACA Research
Memorandum 56D27, 1956.
18Zinn, B. T., Daniel, B. R., and Shesdari, T.S.,
“Application of Pulsating Combustion in the Burning of
Solid Fuels,” Proceedings of the Symposium on Pulse
Combustion Technology for Heating Applications,
Argonne National Laboratory, 1979, pp. 239-248.
19Feldman, K.T., “Review of the Literature on
Soundhauss Thermoacoustic Phenomena ” Journal of
Sound and Vibration, Vol. 7, 1968, pp. 71-82.
20Flow Science Incorporated, Los Alamos, New
Mexico.

Mesh conditions: a) mesh block; b) computational cells c) boundary conditions applied in simulation

FLOW-3D를 이용한 Λ자 단차가 있는 계단식 배수로의 에너지 소산 조건 연구

A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ-shaped step Using FLOW-3D

Authors:

Abbas Mansoori at Islamic Azad University

Abbas Mansoori

Shadi Erfanian

Abstract and Figures

본 연구에서는 특정 유형의 계단식 배수로에서 에너지 소산을 조사했습니다. 목적은 여수로 하류에서 최고 수준의 에너지 소산을 달성하는 것이었습니다.

큰 러프니스로 계단에 대한 특정 유형의 기하학을 제공하여 수행되었습니다. 여기에서 계단은 흐름에 대한 큰 거칠기로 인식되었습니다.

이 단계에서 최대 흐름 에너지가 최소화될 수 있도록 모양과 수를 설계했습니다. 따라서 하류의 구조에서 가장 높은 에너지 소산률을 얻을 수 있다고 말할 수 있습니다. 또한, 이에 따라 프로젝트에서 저유조를 설계하고 건설함으로써 부과되는 막대한 비용을 최소화할 수 있었습니다.

이 연구에서는 FLOW-3D를 사용하여 에너지 소산율을 분석하고 구했습니다. 최대 에너지 소산을 달성할 수 있는 계단의 최상의 기하학은 관련 문헌을 검토하고 FLOW-3D에서 제안된 모델을 발명하여 결정되었습니다.

제안된 방법을 평가하기 위해 앞서 언급한 방법들과 함께 시행착오를 통해 메쉬망 크기를 분석하고 그 결과를 다른 연구들과 비교하였습니다. 즉, 스무드 스텝에 비해 에너지 소산율이 25도 각도에서 Λ자 스텝으로 가장 최적의 상태를 얻었습니다.

In the present study, energy dissipation was investigated in a specific type of stepped spillways. The purpose was to achieve the highest level of energy dissipation in downstream of the spillway. It was performed by providing a specific type of geometry for step as a great roughness. Here, steps were recognized as great roughness against flow. Their shape and number were designed in such a way that the maximum flow energy can be minimized in this stage, i.e. over steps before reaching to downstream. Accordingly, it can be stated that the highest energy dissipation rate will be obtained in the structure at downstream. Moreover, thereby, heavy costs imposed by designing and constructing stilling basin on project can be minimized. In this study, FLOW-3D was employed to analyse and obtain energy dissipation rate. The best geometry of the steps, through which the maximum energy dissipation can be achieved, was determined by reviewing related literature and inventing the proposed model in FLOW-3D. To evaluate the proposed method, analyses were performed using trial and error in mesh networks sizes as well as the mentioned methods and the results were compared to other studies. In other words, the most optimal state was obtained with Λ-shaped step at angel of 25 degree with respect to energy dissipation rate compare to smooth step.

Figure 2. Three-dimensional design of the spillway using SolidWorks 2012
Figure 2. Three-dimensional design of the spillway using SolidWorks 2012
The results obtained from energy dissipation computation
Geometrical characteristics of the í µíº²-shaped stepped spillway To investigate flow filed and hydraulic conditions, boundary and initial conditions should be applied to each of the models in FLOW-3D. 
Mesh conditions: a) mesh block; b) computational cells; c) boundary conditions applied in simulation 
Figure 6. a) 3D Numerical modelling of flow over Spillway; b) 3D experimental modelling of flow over Spillway (with the discharge of  )
Figure 6. a) 3D Numerical modelling of flow over Spillway; b) 3D experimental modelling of flow over Spillway (with the discharge of  )
Figure 7. 2D model of flow depth for each angle of the-shaped steps
Figure 7. 2D model of flow depth for each angle of the-shaped steps

References

[1] Chanson, Hubert. Hydraulics of stepped chutes and spillways. CRC Press, 2002.
[2] Cassidy, John J. “Irrotational flow over spillways of finite height.” Journal of the Engineering Mechanics Division 91, no. 6 (1965): 155-176.
[3] Sorensen, Robert M. “Stepped spillway hydraulic model investigation.” Journal of Hydraulic Engineering 111, no. 12 (1985): 1461-1472.
[4] Pegram, Geoffrey GS, Andrew K. Officer, and Samuel R. Mottram. “Hydraulics of skimming flow on modeled stepped spillways.” Journal of hydraulic engineering 125, no. 5 (1999): 500-510.
[5] Tabbara, Mazen, Jean Chatila, and Rita Awwad. “Computational simulation of flow over stepped spillways.” Computers & structures 83, no. 27 (2005): 2215-2224.
[6] Pedram, A and Mansoori, A. “Study on the end sill stepped spillway energy dissipation”, Seventh Iranian Hydraulic Conference, Power and Water University of Technology, Tehran, Iran, (2008) (In Persian).
[7] Naderi Rad, A et al. “Energy dissipation in various types of stepped spillways including simple, sills, and sloped ones using FLUENT numerical model”, journal of civil and environmental engineering 39, no 1 (2009) (In Persian).
[8] Stephenson, D. “Energy dissipation down stepped spillways.” International water power & dam construction 43, no. 9 (1991): 27-30.
[9] Soori, S and Mansoori, A. “compared energy dissipation in Nappe flow and Skimming flow regime using FLOW-3D”, International Conference on Civil, Architecture and Urban Development, Islamic Azad University, Tabriz, Iran, (2013) (In Persian).
[10] Pfister, Michael, Willi H. Hager, and Hans-Erwin Minor. “Bottom aeration of stepped spillways.” Journal of Hydraulic Engineering 132, no. 8 (2006): 850-853.
[11] Pfister, Michael, and Willi H. Hager. “Self-entrainment of air on stepped spillways.” International Journal of Multiphase Flow 37, no. 2 (2011): 99-107.
[12] Hamedi, Amirmasoud, Mohammad Hajigholizadeh, and Abbas Mansoori. “Flow Simulation and Energy Loss Estimation in the Nappe Flow Regime of Stepped Spillways with Inclined Steps and End Sill: A Numerical Approach.” Civil Engineering Journal 2, no. 9 (2016): 426-437.
[13] Sedaghatnejad, S. “Investigation of energy dissipation in the end sill stepped spillways”, Master thesis, Sharif University of Technology, (2009).

Forming characteristics and control method of weld bead for GMAW on curved surface

곡면에 GMAW용 용접 비드의 형성 특성 및 제어 방법

Forming characteristics and control method of weld bead for GMAW on curved surface

The International Journal of Advanced Manufacturing Technology (2021)Cite this article

Abstract

곡면에서 GMAW 기반 적층 가공의 용접 성형 특성은 중력의 영향을 크게 받습니다. 성형면의 경사각이 크면 혹 비드(hump bead)와 같은 심각한 결함이 발생합니다.

본 논문에서는 양생면에서 용접 비드 형성의 형성 특성과 제어 방법을 연구하기 위해 용접 용융 풀 유동 역학의 전산 모델을 수립하고 제안된 모델을 검증하기 위해 증착 실험을 수행하였습니다.

결과는 용접 비드 경사각(α)이 증가함에 따라 역류의 속도가 증가하고 상향 용접의 경우 α > 60°일 때 불규칙한 험프 결함이 나타나는 것으로 나타났습니다.

상부 과잉 액체의 하향 압착력과 하부 상향 유동의 반동력과 표면장력 사이의 상호작용은 용접 혹 형성의 주요 요인이었다. 하향 용접의 경우 양호한 형태를 얻을 수 있었으며, 용접 비드 경사각이 증가함에 따라 용접 높이는 감소하고 용접 폭은 증가하였습니다.

하향 및 상향 용접을 위한 곡면의 용융 거동 및 성형 특성을 기반으로 험프 결함을 제어하기 위해 위브 용접을 통한 증착 방법을 제안하였습니다.

성형 궤적의 변화로 인해 용접 방향의 중력 성분이 크게 감소하여 용융 풀 흐름의 안정성이 향상되었으며 복잡한 표면에서 안정적이고 일관된 용접 비드를 얻는 데 유리했습니다.

하향 용접과 상향 용접 사이의 단일 비드의 치수 편차는 7% 이내였으며 하향 및 상향 혼합 혼합 비드 중첩 증착에서 비드의 변동 편차는 0.45로 GMAW 기반 적층 제조 공정에서 허용될 수 있었습니다.

이러한 발견은 GMAW를 기반으로 하는 곡선 적층 적층 제조의 용접 비드 형성 제어에 기여했습니다.

The weld forming characteristics of GMAW-based additive manufacturing on curved surface are dramatically influenced by gravity. Large inclined angle of the forming surface would lead to severe defects such as hump bead. In this paper, a computational model of welding molten pool flow dynamics was established to research the forming characteristic and control method of weld bead forming on cured surface, and deposition experiments were conducted to verify the proposed model. Results indicated that the velocity of backward flows increased with the increase of weld bead tilt angle (α) and irregular hump defects appeared when α > 60° for upward welding. The interaction between the downward squeezing force of the excess liquid at the top and the recoil force of the upward flow at the bottom and the surface tension were primary factors for welding hump formation. For downward welding, a good morphology shape could be obtained, and the weld height decreased and the weld width increased with the increase of weld bead tilt angle. Based on the molten behaviors and forming characteristics on curved surface for downward and upward welding, the method of deposition with weave welding was proposed to control hump defects. Gravity component in the welding direction was significantly reduced due to the change of forming trajectory, which improved the stability of the molten pool flow and was beneficial to obtain stable and consistent weld bead on complex surface. The dimensional deviations of the single bead between downward and upward welding were within 7% and the fluctuation deviation of the bead in multi-bead overlapping deposition with mixing downward and upward welding was 0.45, which could be acceptable in GMAW-based additive manufacturing process. These findings contributed to the weld bead forming control of curve layered additive manufacturing based on GMAW.

Keywords

  • Molten pool behaviors
  • GMAW-based WAAM
  • Deposition with weave welding
  • Welding on curved surface
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10
  • Fig. 11extended data figure 11
  • Fig. 12extended data figure 12
  • Fig. 13extended data figure 13
  • Fig. 14extended data figure 14
  • Fig. 15extended data figure 15
  • Fig. 16extended data figure 16
  • Fig. 17extended data figure 17
  • Fig. 18extended data figure 18
  • Fig. 19extended data figure 19
  • Fig. 20extended data figure 20
  • Fig. 21extended data figure 21
  • Fig. 22extended data figure 22
  • Fig. 23extended data figure 23
  • Fig. 24extended data figure 24
  • Fig. 25extended data figure 25
  • Fig. 26extended data figure 26
  • Fig. 27extended data figure 27
  • Fig. 28extended data figure 28
  • Fig. 29extended data figure 29
  • Fig. 30extended data figure 30
  • Fig. 31extended data figure 31
  • Fig. 32extended data figure 32
  • Fig. 33extended data figure 33
  • Fig. 34extended data figure 34
  • Fig. 35extended data figure 35
  • Fig. 36extended data figure 36
  • Fig. 37extended data figure 37
  • Fig. 38extended data figure 38

References

  1. 1.Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P (2016) Wire + arc additive manufacturing. Mater Sci Technol (United Kingdom) 32:641–647. https://doi.org/10.1179/1743284715Y.0000000073Article Google Scholar 
  2. 2.Pan ZX, Ding DH, Wu BT, Cuiuri D, Li HJ, Norrish J (2018) Arc welding processes for additive manufacturing: a review. In: Transactions on intelligent welding manufacturing. Springer Singapore, pp 3–24. https://doi.org/10.1007/978-981-10-5355-9_1
  3. 3.Panchagnula JS, Simhambhatla S (2018) Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing. Robot Comput Integr Manuf 49:194–203. https://doi.org/10.1016/j.rcim.2017.06.003Article Google Scholar 
  4. 4.Lu S, Zhou J, Zhang JS (2015) Optimization of welding thickness on casting-steel surface for production of forging die. Int J Adv Manuf Technol 76:1411–1419. https://doi.org/10.1007/s00170-014-6371-9Article Google Scholar 
  5. 5.Huang B, Singamneni SB (2015) Curved layer adaptive slicing (CLAS) for fused deposition modelling. Rapid Prototyp J 21:354–367. https://doi.org/10.1108/RPJ-06-2013-0059Article Google Scholar 
  6. 6.Jin Y, Du J, He Y, Fu GQ (2017) Modeling and process planning for curved layer fused deposition. Int J Adv Manuf Technol 91:273–285. https://doi.org/10.1007/s00170-016-9743-5Article Google Scholar 
  7. 7.Xie FB, Chen LF, Li ZY, Tang K (2020) Path smoothing and feed rate planning for robotic curved layer additive manufacturing. Robot Comput Integr Manuf 65. https://doi.org/10.1016/j.rcim.2020.101967
  8. 8.Ding YY, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44:67–76. https://doi.org/10.1016/j.rcim.2016.08.008Article Google Scholar 
  9. 9.Cho DW, Na SJ (2015) Molten pool behaviors for second pass V-groove GMAW. Int J Heat Mass Transf 88:945–956. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.021Article Google Scholar 
  10. 10.Cho DW, Na SJ, Cho MH, Lee JS (2013) A study on V-groove GMAW for various welding positions. J Mater Process Technol 213:1640–1652. https://doi.org/10.1016/j.jmatprotec.2013.02.015Article Google Scholar 
  11. 11.Hejripour F, Valentine DT, Aidun DK (2018) Study of mass transport in cold wire deposition for wire arc additive manufacturing. Int J Heat Mass Transf 125:471–484. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.092Article Google Scholar 
  12. 12.Yuan L, Pan ZX, Ding DH, He FY, Duin SV, Li HJ, Li WH (2020) Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf 63. https://doi.org/10.1016/j.rcim.2019.101916
  13. 13.Nguyen MC, Medale M, Asserin O, Gounand S, Gilles P (2017) Sensitivity to welding positions and parameters in GTA welding with a 3D multiphysics numerical model. Numer Heat Transf Part A Appl 71:233–249. https://doi.org/10.1080/10407782.2016.1264747Article Google Scholar 
  14. 14.Gu H, Li L (2019) Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 140:51–65. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.081Article Google Scholar 
  15. 15.Cho MH, Farson DF (2007) Understanding bead hump formation in gas metal arc welding using a numerical simulation. Metall Mater Trans B Process Metall Mater Process Sci 38:305–319. https://doi.org/10.1007/s11663-007-9034-5Article Google Scholar 
  16. 16.Nguyen TC, Weckman DC, Johnson DA, Kerr HW (2005) The humping phenomenon during high speed gas metal arc welding. Sci Technol Weld Join 10:447–459. https://doi.org/10.1179/174329305X44134Article Google Scholar 
  17. 17.Philip Y, Xu ZY, Wang Y, Wang R, Ye X (2019) Investigation of humping defect formation in a lap joint at a high-speed hybrid laser-GMA welding. Results Phys 13. https://doi.org/10.1016/j.rinp.2019.102341
  18. 18.Hu ZQ, Qin XP, Shao T, Liu HM (2018) Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW. Int J Adv Manuf Technol 95:2357–2368. https://doi.org/10.1007/s00170-017-1392-9Article Google Scholar 
  19. 19.Tang SY, Wang GL, Huang C, Li RS, Zhou SY, Zhang HO (2020) Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyp J 26:1183–1195. https://doi.org/10.1108/RPJ-08-2019-0229Article Google Scholar 
  20. 20.Bai X, Colegrove P, Ding J, Zhou XM, Diao CL, Bridgeman P, Honnige JR, Zhang HO, Williams S (2018) Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 124:504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085Article Google Scholar 
  21. 21.Siewert E, Schein J, Forster G (2013) Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon-iron. J Phys D Appl Phys 46. https://doi.org/10.1088/0022-3727/46/22/224008
  22. 22.Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. https://doi.org/10.1007/BF02667333Article Google Scholar 
  23. 23.Fachinotti VD, Cardona A (2008) Semi-analytical solution of the thermal field induced by a moving double-ellipsoidal welding heat source in a semi-infinite body. Mec Comput XXVII:1519–1530
  24. 24.Nguyen NT, Mai YW, Simpson S, Ohta A (2004) Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Weld J 83:82–93Google Scholar 
  25. 25.Goldak J, Chakravarti A, Bibby M (1985) A double ellipsoid finite element model for welding heat sources. IIW Doc. No. 212-603-85
  26. 26.Gu Y, Li YD, Yong Y, Xu FL, Su LF (2019) Determination of parameters of double-ellipsoidal heat source model based on optimization method. Weld World 63:365–376. https://doi.org/10.1007/s40194-018-00678-wArticle Google Scholar 
  27. 27.Wu CS, Tsao KC (1990) Modelling the three-dimensional fluid flow and heat transfer in a moving weld pool. Eng Comput 7:241–248. https://doi.org/10.1108/eb023811Article Google Scholar 
  28. 28.Zhan XH, Liu XB, Wei YH, Chen JC, Chen J, Liu HB (2017) Microstructure and property characteristics of thick Invar alloy plate joints using weave bead welding. J Mater Process Technol 244:97–105. https://doi.org/10.1016/j.jmatprotec.2017.01.014Article Google Scholar 
  29. 29.Zhan XH, Zhang D, Liu XB, Chen J, Wei YH, Liu RP (2017) Comparison between weave bead welding and multi-layer multi-pass welding for thick plate Invar steel. Int J Adv Manuf Technol 88:2211–2225. https://doi.org/10.1007/s00170-016-8926-4Article Google Scholar 
  30. 30.Xu GX, Li L, Wang JY, Zhu J, Li PF (2018) Study of weld formation in swing arc narrow gap vertical GMA welding by numerical modeling and experiment. Int J Adv Manuf Technol 96:1905–1917. https://doi.org/10.1007/s00170-018-1729-zArticle Google Scholar 
  31. 31.Li YZ, Sun YF, Han QL, Zhang GJ, Horvath I (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Mater Process Technol 252:838–848. https://doi.org/10.1016/j.jmatprotec.2017.10.017Article Google Scholar 
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China

Barrier Lake의 홍수 침수 진행 및 평가지역 생태 시공간 반응 사례 연구 (쓰촨-티베트 지역)

Flood Inundation Evolution of Barrier Lake and Evaluation of Regional Ecological Spatiotemporal Response — A Case Study of Sichuan-Tibet Region

Abstract

중국 쓰촨-티베트 지역은 댐 호수의 발생과 붕괴를 동반한 지진 재해가 빈번한 지역이었습니다. 댐 호수의 붕괴는 하류 직원의 생명과 재산 안전을 심각하게 위협합니다.

동시에 국내외 학자들은 주변의 댐 호수에 대해 우려하고 있으며 호수에 대한 생태 연구는 거의 없으며 댐 호수가 생태에 미치는 영향은 우리 호수 건설 프로젝트에서 매우 중요한 계몽 의의를 가지고 있습니다.

이 기사의 목적은 방벽호의 댐 붕괴 위험을 과학적으로 예측하고 생태 환경에 대한 영향을 조사하며 통제 조치를 제시하는 것입니다. 본 논문은 쓰촨-티베트 지역의 Diexihaizi, Tangjiashan 댐호, Hongshihe 댐의 4대 댐 호수 사건을 기반으로 원격 감지 이미지에서 수역을 추출하고 HEC-RAS 모델을 사용하여 위험이 있는지 여부를 결정합니다.

댐 파손 여부 및 댐의 경로 예측; InVEST 모델을 이용하여 1990년부터 2020년까지 가장 작은 행정 구역(군/구)이 위치한 서식지를 평가 및 분석하고, 홍수 침수 결과를 기반으로 평가합니다. 결과는 공학적 처리 후 안정적인 댐 호수(Diexi Haizi)가 서식지 품질 지수에 안정화 효과가 있음을 보여줍니다.

댐 호수의 형성은 인근 토지 이용 유형과 지역 경관 생태 패턴을 변화 시켰습니다. 서식지 품질 지수는 사이 호수 주변 1km 지역에서 약간 감소하지만 3km 지역과 5km 지역에서 서식지 품질이 향상됩니다. 인공 홍수 방류 및 장벽 호수의 공학적 보강이 필요합니다.

이 논문에서 인간의 통제가 강한 지역은 다른 지역의 서식지 질 지수보다 더 잘 회복될 것입니다.

The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel.

At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures.

Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation.

The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern.

The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions’ habitat quality index.

Fengshan Jiang (  florachaing@mail.ynu.edu.cn )
Yunnan University https://orcid.org/0000-0001-6231-6180
Xiaoai Dai
Chengdu University of Technology https://orcid.org/0000-0003-1342-6417
Zhiqiang Xie
Yunnan University
Tong Xu
Yunnan University
Siqiao Yin
Yunnan University
Ge Qu
Chengdu University of Technology
Shouquan Yang
Yunnan University
Yangbin Zhang
Yunnan University
Zhibing Yang
Yunnan University
Jiarui Xu
Yunnan University
Zhiqun Hou
Kunming institute of surveying and mapping

Keywords

dammed lake, regional ecology, flood simulation, habitat quality

Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, China
Figure 8 Habitat quality changes in Maoxian County
Figure 8 Habitat quality changes in Maoxian County
Figure 9 Habitat quality changes in Beichuan County
Figure 9 Habitat quality changes in Beichuan County
Figure 10 Habitat quality change map of Qingchuan County
Figure 10 Habitat quality change map of Qingchuan County

References

  1. Chaoying Hu H S, Tianming Zhang. 2017. Environmental impact assessment of barrier lake treatment project based on
    ecological footprint[J]. People’s Yangtze River, 48: 30-32
  2. Dai F C, Lee C F, Deng J H, et al. 2004. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on
    the Dadu River, southwestern China[J]. Geomorphology, 65.
  3. Dongjing Chen Z X 2002. Research on Ecological Security Evaluation of Inland River Basin in Northwest China——A Case
    Study of Zhangye Region in the Middle Reaches of Heihe River Basin[J]. Arid zone geography: 219-224
  4. Dongsheng Chang L Z, Yao Xu, Runqiu Huang. 2009. Risk Assessment of Overtopping Dam Burst in Hongshi River Barrier
    Lake[J]. Journal of Engineering Geology, 17: 50-55
  5. Fan X, Yunus Ali P, Jansen John D, et al. 2019. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi
    area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27–42[J].
    Geomorphology.
  6. Feng Yu X L, Hong Wang, Hongjing Yu. 2006. Land Use Change and Ecological Security Evaluation in Huangfuchuan
    Watershed[J]. Acta Geographica Sinica: 645-653.
  7. Hafiyyan Q, Adityawan M B, Harlan D, et al. 2021. Comparison of Taylor Galerkin and FTCS models for dam-break
    simulation[J]. IOP Conference Series: Earth and Environmental Science, 737.
  8. Haiwen Li X B 2020. Comprehensive Evaluation of the Restoration Status of Damaged Ecological Space along the
    Plateau Fragile Area of the Sichuan-Tibet Railway[J]. Journal of Railway Science and Engineering, 17: 2412-2422.
  9. Haohao Li X R, Huabin Yang. 2008. Rescue construction and thinking of Hongshihe dammed lake in Qingchuan
    County[J]. Water Conservancy and Hydropower Technology (Chinese and English): 50-51+62
  10. Hejun Chai, Runqiu Huang, Hanchao Liu I O E G, Chengdu University of Technology 1997. Analysis and Evaluation of the
    Dangerous Degree of Landslide Blocking the River[J]. Chinese Journal of Geological Hazard and Control: 2-8+16
  11. Hong Wang Y L, Lili Song, Yun Chen. 2020. Comparison of characteristics of thunderstorm and gale activity and
    environmental factors in Sichuan-Tibet area[J]. Journal of Applied Meteorology, 31: 435-446.
  1. Hongyan X, Xu H, Jiang H, et al. 2020. Potential pollen evidence for the 1933 M 7.5 Diexi earthquake and implications for
    post-seismic landscape recovery[J]. Environmental Research Letters, 15.
  2. Hui Xu J C, Zhijiu Cui, Pei Guo. 2019. Analysis of Grain Size Characteristics of Sediment in Dammed Lake——Taking Diexi
    Ancient Dammed Lake in the Upper Minjiang River as an Example[J]. Acta Sedimentologica Sinica, 37: 51-61
  3. Jian Yang B P, Min Zhao. 2014. Research on Ecological Restoration Technology in Wenchuan Earthquake-Stricken Area
    ——Taking Tangjiashan Barrier Lake Area as an Example[J]. Sichuan Building Science Research, 40: 164-167.
  4. Jian Yang B P 2017. Evaluation of Ecological Quality of Tangjiashan Dammed Lake Region in Beichuan County[J].
    People’s Yangtze River, 48: 27-32
  5. Jianfeng Chen Y W, Yang Li. 2006. Application of HEC-RAS model in flood simulation[J]. Northeast Water Resources and
    Hydropower: 12-13+42+71.
  6. Jiankang Liu Z C, Tao Yu. 2016. Dam failure risk and its impact of Hongshiyan dammed lake in Ludian, Yunnan[J].
    Journal of Mountain Science, 34: 208-215
  7. Jianrong Fan B T, Genwei Cheng, Heping Tao, Jianqiang Zhang,Dong Yan, Fenghuan Su. 2008. Information extraction of
    dammed bodies induced by the May 12 Wenchuan earthquake based on multi-source remote sensing data[J]. Journal of
    Mountain Science: 257-262.
  8. Jinghuan Tian K Z, Meng Chen, Fuxin Chai. 2012. Research on the application of HEC-RAS model in flood risk analysis
    and assessment[J]. Hydropower Energy Science, 30: 23-25
  9. Juan He X W 2015. Dam-break flood analysis based on HEC-RAS and HEC-GeoRAS[J]. Journal of Water Resources and
    Water Transport Engineering: 112-116
  10. Junwei Gan L Y, Jinjun Li. 2017. Research on the Influencing Factors of Sichuan-Tibet Tourism Industry Competitiveness
    Based on DEMATEL[J]. Arid Land Resources and Environment, 31: 197-202
  11. Lansheng Wang L Y, Xiaoqun Wang, Liping Duan 2005. Discovery of the ancient dammed lake in Diexi, Minjiang River[J].
    Journal of Chengdu University of Technology (Natural Science Edition): 1-11
  12. Ma S, Zhu J, Ya. H. Year. Construction of Risk Assessment System of Dam-break in Barrier Lake Based on Collaborative
    Workflow: 9.
  13. Ming Zeng Y C, Bingyu Zou. 2019. Discussion on the Method of Forecasting the Flood Evolution of Barrier Lake Burst——
    Taking “11·3” Jinsha River Baige Barrier Lake as an Example[J]. Water Resources and Hydropower Express, 40: 11-14
  14. Ouyang C, An H, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at
    Baige village along the Jinsha River, China Landslides[J]. 16.
  15. Peng M, Zhang L M 2012. Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian
    networks[J]. Natural Hazards, 64.
  16. Qianfeng Li Y L, Gang Liu, Zhiyun Ouyang, Hua Zheng. 2013. The Impact of Land Use Change on Ecosystem Service
    Function——Taking Miyun Reservoir Watershed as an Example[J]. Acta Ecologica Sinica, 33: 726-736.
  17. Qiang Xu G Z, Weile Li, Zhaoyang He, Xiujun Dong, Chen Guo, Wenkai Feng. 2018. Analysis and study of two landslides
    and dams blocking the river in Baige on the Jinsha River in October and November 2018[J]. Journal of Engineering
    Geology, 26: 1534-1551
  18. Qin Ji J Y, Hongju Chen, Man Li. 2019. Analysis of Economic Differences Along the Sichuan-Tibet Railway from the
    Perspective of Spatial and Industrial Decomposition[J]. Glacier permafrost: 1-14
  19. Qingchun Li Y H, Yubing Shi. 2020. Study on the stability of the residual dam in Tangjiashan dammed lake[J]. Journal of
    Underground Space and Engineering, 16: 993-998
  20. Qiwen Xiang J P, Guangze Zhang, Zhengxuan Xu, Dingkai Zhang, Wenli Tu. 2020. Monitoring and Analysis of Surface
    Deformation in Zheduo Mountain Area of Sichuan-Tibet Railway Based on SBAS Technology[J]. Surveying Engineering,
    29: 48-54+59
  1. Shangfu Kuang X W, Jinchi Huang, Yinqi Wei 2008. Analysis and Evaluation of Dam-Break Risk of Barred Lake and Its
    Influence[J]. China Water Resources: 17-21.
  2. Sheng-Hsueh Y, Yii-Wen P, Jia-Jyun D, et al. 2013. A systematic approach for the assessment of flooding hazard and risk
    associated with a landslide dam[J]. Natural Hazards, 65.
  3. Sun L 2021. Research on Fast Perception and Simulation Calculation Method of Landslide Dam in Alpine and Gorge
    Area: Taking Baige Dammed Lake as an Example[J]. Water Conservancy and Hydropower Technology (Chinese and
    English), 52: 44-52
  4. Tamiru H, O. D M 2021. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River
    Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 36.
  5. Tao Pan S W, Erfu Dai, Yujie Liu. 2013. Spatio-temporal changes of water supply services in the ecosystem of the Three
    Rivers Source Region based on InVEST model[J]. Journal of Applied Ecology, 24: 183-189
  6. Vera K, Sergey C, Inna K, et al. 2017. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment
    in the downstream valley[J]. Frontiers of Earth Science, 11.
  7. Wang Z 1985. Preliminary Discussion on the Evaluation of Ecological Environment Quality in Minjiang River Basin[J].
    Journal of ecology: 29-32
  8. Wei Chen Z S, Hui Guo,Hao Wang, Ting Wei, Nan Li, Kaiyi Zhang Shuxiang Yang, Kaijia Dai. 2007. Analysis of Bird
    Resources and Habitats in Wuhan Urban Lakes and Urban Wetlands in Winter[J]. Forestry Investigation and Planning: 46-
    50
  9. Wei G, Gaohong X, Jun S, et al. 2020. Simulation of Flood Process Based on the Model of Improved Barrier Lake’s
    Gradual Dam Break Model %J Journal of Coastal Research[J]. 104.
  10. Wei X, Jiang H, Xu H, et al. 2021. Response of sedimentary and pollen records to the 1933 Diexi earthquake on the
    eastern Tibetan Plateau[J]. Ecological Indicators, 129.
  11. Wei Xu M L, Jie Yang, Chunzhi Li, Xiaojuan Shang. 2011. Risk Analysis of Flood Overflow in Huainan Section of Huaihe
    River Based on HEC-RAS[J]. Journal of Yangtze River Scientific Research Institute, 28: 13-18
  12. Weiwei Zhan R H, Xiangjun Pei, Weile Li. 2017. Research on empirical prediction model of channel type landslide-debris
    flow movement distance[J]. Journal of Engineering Geology, 25: 154-163
  13. Xianju Zheng H L, Wenhai Huang. 2015. Numerical Simulation of Reconstruction of Natural Dams Induced by Heavy Rain
    ——An Example of Tangjiashan Dammed Lake[J]. Business story: 62-63
  14. Xiao-Qun W, Xin H, Man S, et al. 2020. Possible relatedness between the outburst of the Diexi ancient dammed lake and
    ancient Chengdu’s cultural change[J]. Journal of Mountain Science, 17: 2497-2511.
  15. Xingbo Zhou X D, Yu Yao. 2019. Analysis of the dam-break flood of the Baige dammed lake on the Jinsha River[J].
    Hydroelectric Power, 45: 8-12+32
  16. Xinhua Zhang R X, Ming Wang, Zhiqiu Yu, Bingdong Li, Bo Wang. 2020. Investigation and analysis of flood disaster
    caused by dam break of Baige landslide on Jinsha River[J]. Engineering Science and Technology, 52: 89-100
  17. Xinxiao Yu B Z, Xizhi Lv, Zhige Yang. 2012. Evaluation of Forest Water Conservation Function of Beijing Mountainous
    Area Based on InVEST Model[J]. Forestry Science, 48: 1-5
  18. Xu J, Guo J, Zhang J, et al. 2021. Route choice model based on cellular automata and cumulative prospect theory: Case
    analysis of transportation network in Sichuan-Tibet region[J]. Journal of Intelligent & Fuzzy Systems, 40.
  19. Xuan Liang Z Z 2021. Research on the Influence of Numerical Simulation of Tailings Pond Based on FLOW-3D on
    Downstream[J]. Jiangxi Water Conservancy Science and Technology, 47: 11-20
  20. Yu Zheng P Z, Feng Tang, Li Zhao, Xu Zhao. 2018. Research on the Impact of Land Use Change on Habitat Quality in
    Changli County Based on InVEST Model[J]. China’s Agricultural Resources and Regionalization, 39: 121-128
  21. Yuanyuan Yang E D, Hua Fu. 2012. Research Framework of Value Evaluation of Ecosystem Service Function Based on
    InVEST Model[J]. Journal of Capital Normal University (Natural Science Edition), 33: 41-47
  1. Yunfei Ma T L, Jinbiao Xiong. 2021. Numerical simulation of dam-break flow based on VOF method and DFBI model[J].
    Applied Technology, 48: 23-28
  2. Zhe Wu X C, Beibei Liu, Jinfeng Chu, Lixu Peng. 2013. Research progress of InVEST model and its application[J]. Tropical
    Agriculture Science, 33: 58-62
  3. Zhengpeng Li Y H, Yilun Li, Yuehong Ying, Zehua Huangfu. 2021. Numerical simulation of dam-break flood in Qianping
    Reservoir based on BIM+GIS technology[J]. People’s Yellow River, 43: 160-164
  4. Zhenming Shi X X, Ming Peng, Minglang Lin. 2015. Analysis of Seepage Stability of Barrier Dam with High Permeability
    Area——Taking Hongshihe Barrier Dam as an Example[J]. Journal of Hydraulic Engineering, 46: 1162-1171.
  5. Zhu J, Qi H, Hu Y, et al. 2012. A DVGE service system for risk assessment of dam-break in barrier lake[J]. International
    Conference on Automatic Control and Artificial Intelligence (ACAI 2012).
  6. Zhu Y, Peng M, Cai S, et al. 2021. Risk-Based Warning Decision Making of Cascade Breaching of the Tangjiashan
    Landslide Dam and Two Smaller Downstream Landslide Dams[J]. Frontiers in Earth Science.
  7. Zuyu Chen G H, Qiang Zhang, Shuaifeng Wu. 2020. Disaster Mitigation Analysis of Cascade Hydropower Stations on the
    Jinsha River in “11.03” Baige Barrier Lake Emergency Treatment[J]. Hydropower, 46: 59-63
  8. Zuyu Chen S C, Lin Wang, Qiming Zhong, Qiang Zhang, Songli Jin. 2020. Inversion analysis of the “11.03” Baige barrier
    lake burst flood in the upper reaches of the Jinsha River[J]. Science in China: Technological Science, 50: 763-774.
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2

원추형 중앙 배플 수로의 CFD 시뮬레이션

CFD Simulations of Conical Central Baffle Flumes

Abstract

Ankur KapoorAniruddha D. Ghare; and Avinash M. Badar

원추형 중앙 배플 수로는 개방 채널에서 임시 유량 측정을 위한 효과적인 솔루션을 제공합니다. 

원추형 중앙 배플 수로는 원뿔 모양의 장애물 또는 열린 수로의 중심에서 수직으로 향하는 중앙 배플로 구성됩니다. 본 연구에서, 원추형 중앙 배플 수로를 사용하여 개방 채널에서 유량 측정을 위해 이전에 개발된 배출 예측 모델은 더 넓은 적용 범위를 커버하기 위해 직사각형 및 사다리꼴 채널에서 사용하기 위해 실험적으로 재 보정되었습니다. 

제안된 보정 방정식은 FLOW-3D를 사용한 전산유체역학(CFD) 시뮬레이션 결과를 사용하여 확장된 범위의 흐름 및 기하학적 매개변수에 대해 검증되었습니다. 

시뮬레이션 연구는 두 단계로 수행됩니다. 첫 번째 단계는 시뮬레이션의 수면 프로파일과 동일한 배출 및 흐름 조건에 대한 실험 흐름을 비교하여 설정한 정의된 시뮬레이션 문제의 검증입니다. 

두 번째 단계는 무차원 방전 및 측면 경사(중1= 0중1=0, 0.50, 1.00 및 1.50). 80% 미만의 수중에서 방전 예측의 오류는 평균값이 거의 3%로 항상 10% 미만인 것으로 나타났습니다. 

CFD 분석 결과에 따르면 보정된 배출 예측 모델의 사용은 수중 한계 80%까지 권장되었으며, 그 이상에서는 오차가 10% 이상인 것으로 나타났습니다.

Conical central baffle flumes present an effective solution for temporary flow measurements in open channels. A conical central baffle flume consists of a cone-shaped obstruction, or a central baffle, oriented vertically at the center of an open channel. In the present study, a previously developed discharge prediction model for flow measurements in open channels using the conical central baffle flumes has been experimentally recalibrated for use in rectangular and trapezoidal channels to cover a wider application range. The proposed calibration equation has been validated for an extended range of flow and geometrical parameters using the results of computational fluid dynamics (CFD) simulations using Flow-3D. The simulation studies are carried out in two steps. The first step is the validation of the defined simulation problem set up by comparing the water surface profiles of the simulation and experiment flows for the same discharge and flow conditions. The second step is the validation of the proposed discharge prediction model for the extended range (0–0.50) of the dimensionless discharge and side slopes (m1=0m1=0, 0.50, 1.00, and 1.50). It is found that for submergence less than 80%, the error in discharge prediction is always less than 10% with a mean value of nearly 3%. Based on the results of the CFD analysis, the use of the calibrated discharge prediction model has been recommended up to a submergence limit of 80%, beyond which the errors are found to be greater than 10%.

ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
ASCE Library CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
CFD Simulations of Conical Central Baffle Flumes | Journal of Irrigation and Drainage Engineering | Vol 148, No 2
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Channel Flow Measurement Using Portable Conical Central Baffle | Journal of Irrigation and Drainage Engineering | Vol 145, No 11
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]
Experimental and Numerical Investigation of Hydrodynamic Performance of a Sloping Floating Breakwater with and Without Chain-Net

Chain-Net이 있거나 없는 경사 부유식 방파제의 유체역학적 성능에 대한 실험 및 수치적 조사

Experimental and Numerical Investigation of Hydrodynamic Performance of a Sloping Floating Breakwater with and Without Chain-Net

Keywords

  • Sloping floating breakwater
  • Chain net
  • Anchorage system
  • Hydrodynamic performance

Abstract

두 개의 부유체 사이에 간격이 있는 경사진 부유식 방파제(FB)에 대한 새로운 연구가 제안되었습니다. 구조물의 기울기는 파동 에너지 소산을 유발할 수 있습니다. 경사진 구조물의 문제는 파도가 넘친다는 것입니다. 이 문제를 해결하기 위해 두 플로터 사이의 간격을 고려합니다. 

오버 토핑이 발생하면 마루를 통과하는 물이 두 플로터 사이의 틈으로 쏟아지며 결과적으로 파도 에너지가 감쇠됩니다. 체인 네트가 모델에 추가되고 전송 계수에 대한 영향이 연구됩니다. 또한, 구조물의 유체역학적 성능에 대한 자유도의 영향을 조사하기 위해 말뚝으로 고정된(1 자유도) 계류 라인으로 고정된(3도의 자유도) 두 가지 고정 시스템에서 자유 모델을 연구했습니다.

게다가, 실험은 5개의 다른 파도 주기와 4개의 다른 파도 높이를 가진 규칙파에서 수행됩니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다.

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 

흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다.

A novel study of sloping floating breakwater (FB) that has a gap between two floaters is proposed. The slope of a structure can cause wave energy dissipation. A problem with sloping structures is wave overtopping. To solve this problem, a gap is considered between the two floaters. If overtopping occurs, water passing the crest will pour into the gap between the two floaters, as a result wave energy will be attenuated. A chain net is added to the model and its effect on the transmission coefficient is studied. Furthermore, in order to investigate the effects of the degree of freedom on the hydrodynamic performance of the structure, the model is studied in the two anchorage systems which are anchored by pile (1 degree of freedom) and anchored by mooring lines (3 degree of freedom). Moreover, the experiments are performed under regular waves with five different wave periods and four different wave heights. The results of the experiments show a sloping floating breakwater that has a better performance than that of rectangular box type by 15% as maximum value. The transmission coefficients for the FB anchored by pile are lower about 14% as maximum value than that of the FB anchored by cable in shorter waves and are higher about 4–10% in longer waves. With increasing the draft, the transmission coefficient decreases but the freeboard should meet the minimum requirements to restrict overtopping in the allowable rate. The model with a chain net exhibits a better performance as compared with the model without it by a maximum 14% reduction in the transmission coefficients.

  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10
  • Fig. 11extended data figure 11
  • Fig. 12extended data figure 12
  • Fig. 13extended data figure 13
  • Fig. 14extended data figure 14
  • Fig. 15extended data figure 15
  • Fig. 16extended data figure 16
  • Fig. 17extended data figure 17
  • Fig. 18extended data figure 18
  • Fig. 19extended data figure 19
  • Fig. 20extended data figure 20
  • Fig. 21extended data figure 21
  • Fig. 22extended data figure 22
  • Fig. 23extended data figure 23
  • Fig.24extended data figure 24
  • Fig. 25extended data figure 25
  • Fig. 26extended data figure 26
  • Fig. 27extended data figure 27

References

  1. Abul-Azm AG, Gesraha MR (2000) Approximation to the hydrodynamics of floating pontoons under oblique waves. Ocean Eng 27:365–384Article Google Scholar 
  2. Biesheuvel AC (2013) Effectiveness of floating breakwaters. Delf University of Technology, DissertaionGoogle Scholar 
  3. Chen Zh, Wang Y, Dong H, Zheng B (2012) Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. J Water Sci Eng 5(3):291–303Google Scholar 
  4. Daneshfaraz R, Kaya B (2008) solution of the propagation of the waves in open channels by the transfer matrix method. J Ocean Eng 35:1075–1079Article Google Scholar 
  5. Daneshfaraz R, Sadeghfam S, Tahni A (2020) exprimental investigation of screen as energy dissipators in the movable-Bed channel. Iran J Sci Technol Trans Civil Eng 44:1237–1246Article Google Scholar 
  6. Deng Zh, Wang L, Zhao X, Huang Zh (2019) Hydrodynamic performance of a T-shaped floating breakwater. J Appl Ocean Res 82:325–336Article Google Scholar 
  7. Dong GH, Zheng YN, Li YC, Teng B, Guan CT, Lin DF (2008) Experiments on wave transmission coefficients of floating breakwaters. Ocean Eng 35:931–938Article Google Scholar 
  8. Duan WY, Xu SP, Xu QL et al (2017) Performance of an F-type floating break water: a numerical and experimental study. Proc I MechE Part M 231(2):583–599Google Scholar 
  9. Gesraha MR (2006) Analysis of π shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Appl Ocean Res 28:327–338Article Google Scholar 
  10. He F, Huang Zh, Wing-Keung Law A (2013) An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. J Appl Energy 106:222–231Article Google Scholar 
  11. Ikeno M, Shimoda N, Iwata K (1988) A new type of breakwater utilizing air compressibility. In: Proceedings of the 21st Coastal Engineering Conference, ASCE. pp 2426–2339
  12. Ji Ch, Cheng Y, Cui J, Yuan Zh, Gaidai O (2018) Hydrodynamic performance of floating breakwaters in long wave regime: an experimental study. J Ocean Eng 152:154–166Article Google Scholar 
  13. Koutandos E, Prinos P, Gironella X (2005) Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics. J Hydraul Res 43(2):174–188Article Google Scholar 
  14. Liu Zh, Wang Y, Wang W, Hua X (2019) Numerical modeling and optimization of a winged box-type floating breakwater by Smoothed Particle Hydrodynamics. J Ocean Eng 188:106246Article Google Scholar 
  15. LotfollahiYaghin MA, Mojtahedi A, Aminfar MH (2012) Physical model studies and system identification of hydrodynamics around a vertical square-section cylinder in irregular sea waves. J Ocean Eng 55:10–22Article Google Scholar 
  16. Mansard E, Funke E (1980) The measurement of the incident and reflected spectra using the least squares method. In: Proceedings of the 17th Coastal Engineering Conference ASCE, Sydney. pp 154–172
  17. Mojtahedi A, ShokatianBeiragh M, Farajpour I, Mohammadian M (2020) Investigation on hydrodynamic performance of an enviromentally friendly pile breakwater. J Ocean Eng 217:107942Article Google Scholar 
  18. Noroozi B, Bazargan J, Safarzadeh A (2021) Introducing the T-shaped weir: a new nonlinear weir. Water Supply. https://doi.org/10.2166/ws.2021.144Article Google Scholar 
  19. Pena E, Ferreras J, Sanchez-Tembleque F (2011) Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. J Ocean Eng 38:1150–1160Article Google Scholar 
  20. Safarzadeh A, Zaji AH, Bonakdari H (2017) Comparative Assessment of the Hybrid Genetic Algorithm-Artificial neural network and genetic programming methods for the predicition of longitudinal velocity field around a single straight groyne. Appl Soft Comput 60:213–228Article Google Scholar 
  21. Tang HJ, Huang CC, Chen WM (2011) Dynamics of dual pontoon floating structure for cage aquaculture in a two-dimensional numerical wave tank. J Fluid Struct 27:918–936Article Google Scholar 
  22. U.S. Army coastal engineering research center (1984) Shore protection manual. U.S. Government Printing Office, WashingtonGoogle Scholar 
  23. Williams AN, Lee HS, Huang Z (2000) Floating pontoon breakwaters. Ocean Eng 27:221–240Article Google Scholar 
  24. Yang Zh, Xie M, Gao Zh, Xu T, Guo W, Ji X, Yuan Ch (2018) Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater. J Ocean Eng 167:77–94Article Google Scholar 
  25. Zhang X, Ma Sh, Duan W (2018) A new L type floating breakwater derived from vortex dissipation simulation. J Ocean Eng 164:455–464Article Google Scholar 
Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).

복합 광대보의 방류계수 예측을 위한 실험적 해석과 CFD 해석의 비교연구

Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir

ABSTRACT

Present study highlights the behavior of weir crest head and width parameter on the discharge coefficient of compound broad crested (CBC) weir. Computational fluid dynamics model (CFD) is validated with laboratory experimental investigations.

In the discharge analysis through broad crested weirs, the upstream head over the weir crest (h) is crucial, where the result is mainly dependent upon the weir crest length (L) in transverse direction to flow, water depth from channel bed. Currently, minimal investigations are known for CFD validations on compound broad crested weirs.

The hydraulic research for measuring discharge numerically is carried out using FLOW 3D software. The model applies renormalized group (RNG) using volume of fluid (VOF) method for improved accuracy in free surface simulations. Structured hexagonal meshes of cubic elements define discretized meshing.

The comparative analysis of the numerical simulations and experimental observations confirm the performance of CBC weir for precise measurement of a wide range of discharges. Series of CFD model studies and experimental validation have led to constant range of discharg coefficients for various head over weir crest. The correlation coefficient of discharge predictions is 0.999 with mean error of 0.28%.

현재 연구에서는 CBC(compound broad crested) 위어의 배출 계수에 대한 위어 볏 머리 및 너비 매개변수의 거동을 강조합니다. 전산 유체 역학 모델(CFD)은 실험실 실험 조사를 통해 검증되었습니다.

넓은 볏이 있는 둑을 통한 유출 분석에서 둑 마루의 상류 수두(h)가 중요합니다. 여기서 결과는 주로 흐름에 대한 횡 방향의 둑 마루 길이(L), 수로 바닥에서 수심에 따라 달라집니다. . 현재 복합 넓은 볏 둑에 대한 CFD 검증에 대해 최소한의 조사가 알려져 있습니다.

수압 연구는 FLOW 3D 소프트웨어를 사용하여 수치적으로 측정합니다. 이 모델은 자유 표면 시뮬레이션의 정확도 향상을 위해 VOF(유체 체적) 방법을 사용하여 RNG(재정규화 그룹)를 적용합니다. 정육면체 요소의 구조화된 육각형 메쉬는 이산화된 메쉬를 정의합니다.

수치 시뮬레이션과 실험적 관찰의 비교 분석을 통해 광범위한 배출의 정확한 측정을 위한 CBC 둑의 성능을 확인했습니다. 일련의 CFD 모델 연구와 실험적 검증을 통해 다양한 head over weir crest에 대한 일정한 범위의 방전 계수가 나타났습니다. 방전 예측의 상관 계수는 0.999이고 평균 오차는 0.28%입니다.

Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).
Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).
Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).
Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).
Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).
Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).
Table 8 | Range of Froude number, Reynold number and Weber number
Table 8 | Range of Froude number, Reynold number and Weber number

Key words

compound weir, flow 3D, flow measurement, numerical technique, open channel

HIGHLIGHTS

• The Head-Discharge relation is established for discharge measurement using compound broad crested weir, experimentally and numerically.
• Assessment of head over weir crest for different step widths of proposed weir on discharge coefficient is executed.
• Experimental and CFD results of weir performance demonstrate good agreement between the theoretical discharges by traditional rectangular weir formulae keeping Cd constant.

CONCLUSION

  1. The head discharge relationship established for compound rectangular broad crested weir for various discharge ranges was validated by CFD technique. A three dimensional simulation software FLOW 3D was used for this purpose.
  2. Original theoretical compound weir model depicts the relative average error between discharge predictions with Flow 3D simulation as 4.96% which is found less than the predictions made by graphical interpolation technique which is 5.33%.
  3. The standard deviation in Cd parameter for CFD simulation model is less i.e. 0.0146 as compared to experimental output of 0.0502.
  4. The correlation coefficient for physical and CFD studies for modified compound weir model is high, around 0.999 with
    error in discharge predictions being 0.28% as compared to the accuracy limits of about +3–5% stated in literature so far.
  5. Discharge coefficient by experimental and CFD approach is maintained constant and equal to design input value of 0.6.
    Thus, the proposed CBC weir can be operated for various discharge ranges by maintaining constant discharge coefficients.
    Good agreement between the theoretical, experimental and CFD simulation results for obtaining discharge through compound broad crested weir ascertains the fact that CFD model can be used as an effective tool towards modeling flow through compound broad crested weir.

REFERENCES

Abd El-Hady Rady, R. M. 2011 2D 3D modeling of flow over sharp crested weirs. Journal of Applied Sciences Research 7 (12), 2495–2505.
ISSN 1819-544X.
Ackers, P., White, W. R. & Harrison, A. J. M. 1978 Weirs and Flumes for Flow Measurement. Wiley, New York.
Aydin, M. C. 2016 Investigation of a sill effect on rectangular side-weir flow by using CFD. Journal of Irrigation and Drainage Engineering
142 (2), 04015043.
Azimi, A. H. & Rajaratnam, N. 2009 Discharge characteristics of weirs of finite crest length. Journal of Hydraulic Engineering 135 (12),
1081–1085.
Bijankhan, M., Di Stefano, C., Ferro, V. & Kouchakzadeh, S. 2014 New stage discharge relationship for weirs of finite crest length. Journal of
Irrigation and Drainage Engineering 140 (3), 06013006.
Boiten, W. & Pitlo, H. R. 1982 The V- shaped broad-crested weir. Journal of Irrigation and Drainage Engineering 108 (2), 142–160.
Bos, M. G. 1989 Discharge Measurement Structures, 3rd edn. International Institute for Land Reclamation and Improvement, Publication 20,
Wageningen, The Netherlands.
Gogus, M., Defne, Z. & Ozkandemir, V. 2006 Broad-crested weirs with rectangular compound cross sections. Journal of Irrigation and
Drainage Engineering 132 (3), 272–280.

Gogus, M., Al-Khatib, I. A., Atalay, A. E. & Khatib, J. I. 2016 Discharge prediction in flow measurement flumes with different downstream
transition slopes. Flow Measurement and Instrumentation 47, 28–34.
Hager, W. H. & Schwalt, M. 1994 Broad – crested weir. Journal of Irrigation and Drainage Engineering 120 (1), 13–25.
Harrison, A. J. M. 1967 The streamlined broad-crested weir. Proceedings of the Institution of Civil Engineers 38, 657–678.
Hinge, G. A., Balkrishna, S. & Khare, K. C. 2010 Improved design of stilling basin for deficient tail water. Journal of Basic and Applied
Scientific Research 1 (1), 31–40.
Hinge, G. A., Balkrishna, S. & Khare, K. C. 2011 Experimental and numerical study of compound broad crested weir. International Journal of
Fluids Engineering 3 (2), 197–202.
Horton, R. E. 1907 Weir Experiments, Coefficients, and Formulas. Dept. of the Interior, U.S. Geological Survey, Water-Supply and Irrigation
Paper 200. Government Printing Office, Washington, DC.
Khan, L. A., Wicklein, E. A. & Teixeira, E. C. 2006 Validation of a three-dimensional computational fluid dynamics model of a contact tank.
Journal of Hydraulic Engineering 132 (7), 741–746.
Kindsvater, C. E. & Carter, R. W. 1959 Discharge characteristics of rectangular thin-plate weirs. Paper No. 3001, Transactions, American
Society of Civil Engineers 124.
Kulin, G. & Compton, P. R. 1975 A Guide to Methods and Standards for the Measurement of Water Flow. Special Publication 421, National
Bureau of Standards.
Kulkarni, K. H. & Hinge, G. A. 2017 Compound broad crested weir for measurement of discharge – a novel approach. In: Proceedings
International Conference Organized by Indian Society of Hydraulics – ISH HYDRO, 21–23 Dec 2017, India, pp. 678–687.
Kulkarni, K. H. & Hinge, G. A. 2020 Experimental study for measuring discharge through compound broad crested weir. Flow Measurement
Instrumentation 75, 101803. ISSN 0955-5986.
Man, C., Zhang, G., Hong, V., Zhou, S. & Feng, Y. 2019 Assessment of turbulence models on bridge-pier scour using flow-3D. World Journal
of Engineering and Technology 7, 241–255. ISSN Online: 2331-4249.
Omer, B., Cihan, A. M., Emin, E. M. & Miller, C. J. 2018 Experimental and CFD analysis of circular labyrinth weirs. Journal of Irrigation and
Drainage Engineering 144 (6), 04018007.
RangaRaju, K. G. 1981 Flow Through Open Channels. McGraw-Hill, New York.
Roushangar, K., Nouri, A., Shahnazi, S. & Azamathulla, H. M. 2021 Towards design of compound channels with minimum overall cost
through grey wolf optimization algorithm. IWA – Journal of Hydroinformatics (In – press).
Safarzadeh, A. & Mohajeri, S. H. 2018 Hydrodynamics of rectangular broad-crested porous weir. Journal of Irrigation and Drainage
Engineering 144 (10), 04018028.
Salmasi, F., Poorescandar, S., Dalir, A. H. & Zadeh, D. F. 2012 Discharge relations for rectangular broad crested weirs. Journal of
Agricultural Sciences 17, 324–336.
Samadi, A. & Arvanaghi, H. 2014 CFD simulation of flow over contracted compound arched rectangular sharp crested weirs. International
Journal of Optimization in Civil Engineering 4 (4), 549–560.
Savage, B. M. & Johnson, M. C. 2001 Flow over ogee spillway: physical and numerical model case study. Journal of Hydraulic Engineering
127 (8), 640–649.
Swamee, P. K. 1988 Generalized rectangular weir equations. Journal of Hydraulic Engineering 945–952. doi:10.1061/(ASCE),0733-9429
114:8(945).
The United States Bureau of Reclamation (USBR) 2001 Water Measurement Manual, Chapter 7 – Weirs. U.S. Government Printing Office,
Washington, DC, p. 20402. Available from: http://www/usbr.gov/pmts/hydraulics_lab/pubs/wmm.
Zahiri, A. & Azamathulla, H. M. 2014 Comparison between linear genetic programming and M5 tree models to predict flow discharge in
compound channels. Neural Computing and Application 24, 413–420.

Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

능동 가압의 경우 극저온 탱크의 열 및 물질 전달

Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

하이라이트

헤닝 슈플러 옌스 게르스트만DLR 독일 항공 우주 센터, 우주 시스템 연구소, 28359 Bremen, Germany

상변화 및 공액 열전달을 포함하는 압축성 2상 솔버 개발.

분석 솔루션으로 솔버를 성공적으로 검증.

극저온 탱크의 압력 및 온도 변화에 대한 정확한 시뮬레이션.

자유 표면에서의 물질 전달 분석.

Abstract

압력 요구 사항을 예측하는 것은 극저온 추진 시스템의 주요 과제 중 하나입니다. 이러한 맥락에서 증발 및 응축 현상을 고려한 탱크 여압을 시뮬레이션하기 위한 수치 모델을 개발하여 적용하였습니다. 

새로운 솔버는 PISO(splitting of operator) 알고리즘이 있는 압력 암시적 방법을 기반으로 하는 OpenFOAM의 약한 압축성 다상 솔버와 기울기 기반 위상 변화 모델을 결합합니다. 날카로운 인터페이스를 유지하기 위해 인터페이스에 인접한 셀에 질량 소스 용어가 적용됩니다. 

첫째, 모델은 1차원 상 변화 문제와 중력이 없는 상태에서 과열된 액체에서 증기 기포의 성장이라는 두 가지 분석 솔루션에 대해 검증되었습니다. 

두 번째 단계에서는 검증된 모델을 극저온 가압 실험에 적용했습니다. 측정된 압력 거동은 수치 모델이 양호한 근사값으로 확인될 수 있습니다. 

수치 모델을 사용하면 물리적 거동에 대한 추가 통찰력을 얻을 수 있습니다. 응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다.

Predicting the pressurant requirements is one of the key challenges for cryogenic propulsion systems. In this context, a numerical model to simulate the tank pressurization that considers evaporation and condensation phenomena was developed and applied. The novel solver combines the a gradient-based phase change model with a weakly compressible multiphase solver of OpenFOAM based on the pressure implicit method with splitting of operator (PISO) algorithm. To maintain a sharp interface the mass source terms are applied to the cells adjacent to the interface. First, the model is validated against two analytical solutions: the one-dimensional phase change problem and secondly, the growth of a vapor bubble in a superheated liquid in the absence of gravity. In a second step, the validated model was applied to a cryogenic pressurization experiment. The measured pressure behavior could be confirmed with the numerical model being in a good approximation. With the numerical model further insights into the physical behavior could be achieved. The condensation and evaporation effects have a significant impact on the pressure development during and after the pressurization. The mass flows due to phase change occurring at the vapor-liquid interface depend on interface location and time. Directly at the wall, evaporation becomes dominant while condensation occurs at the center area of the liquid surface.

  1. Fig. 1. Calculation of the gradient at the interface: On the left side the interface…
  2. Fig. 2. Mass source term distribution: First the sharp mass source term ρ0, which is…
  3. Fig. 3. a) Layout of the Stefan-Problem: a vapor is located between a liquid and a…
  4. Fig. 4. Bubble in a superheated liquid: The left side depicts the calculated and…
  5. Fig. 5. Modified drawing of the dewar (as documented in [5] [6]; dimensions in mm) and…
  6. Fig. 6. Schematic presentation of the pressure evoluation in the dewar: Initial…
  7. Fig. 7. Simulation of the pressurization phase: The diagram shows the pressure…
  8. Fig. 8. Turbulent thermal diffusivity in pressurization and relaxation phase
  9. Fig. 9. Comparison of the pressure evolution in the relaxation phase of the solver with…
  10. Fig. 10. On the left side the temperature evolution in the bulk of the gas phase is shown
  11. Fig. 11. Heat Flux profile over the interface caused by evaporation with details of the…
  12. Fig. 12. Temperatures field with velocity vectors at 420 seconds after the start of the…
  13. Fig. 13. Heat transfer to the liquid from the wall and the freesurface with and without…

Hide figures

키워드

Pressurization, Phase Change, CFD, Propellant Management, 가압, 상 변화, 추진제 관리

Figure 1- The experimental model [17]

와류형 우수 저류지의 수치 모델링에 대한 난류 슈미트 수의 영향 조사

Investigation of the Turbulent Schmidt Number Effects On Numerical Modelling Of Vortex-Type Stormwater Retention Ponds

S. M. Yamini1; H. Shamloo2; S. H. Ghafari3
1M.Eng., Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran.
smyamini@alumni.kntu.ac.ir
2Associate Professor, Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran.
hshamloo@kntu.ac.ir
3Ph.D., Dep. of Civil Engineering Univ. of Tehran, Enqelab St., Tehran, Iran. sarvenazghafari@ut.ac.ir

Abstract

정확하고 신뢰할 수 있는 CFD 모델링 결과를 얻는 것은 이러한 시뮬레이션에서 입력의 중요성 때문에 종종 정밀 조사의 대상입니다.

난류 모델링이 RANS(Reynolds-Averaged Navier-Stokes) 방정식을 기반으로 하는 경우 난류 스칼라 전송을 추정하려면 난류 흐름에서 질량 1에 대한 운동량 확산의 비율로 정의되는 난류 슈미트 수(Sct)의 정의가 필요합니다.

그러나 이 매개변수는 난류 흐름의 속성이므로 보편적인 값이 허용되지 않았습니다. 우수 저류지의 수치 연구에서 적절한 Sct를 설정하는 실제 역할은 수력 효율의 평가가 추적자 테스트의 출력 질량 농도를 기반으로 하기 때문에 가장 중요합니다.

본 연구에서는 FLOW-3D를 사용하여 와류형 우수 저류지의 여러 수치 시뮬레이션을 체계적으로 수행했습니다. 다양한 난류 슈미트 수의 범위는 메쉬 감도를 조사하기 위해 다른 수의 계산 셀에 의해 수행된 수치 시뮬레이션에 도입되었습니다.

또한 사용자 정의 또는 자동 계산 값으로 최대 난류 혼합 길이의 영향을 평가했습니다. 이 연구의 결과는 실험 결과와 밀접한 일치를 제공하는 Sct= 0.625와 함께 수리학적 직경의 7%와 동일한 최대 난류 혼합 길이의 일정한 값을 갖는 확립된 수치 모델입니다.

특히 수치적 무차원 RDT 곡선의 피크 값은 극적으로 감소하여 실험 결과와 거의 일치했습니다. 이것은 FLOW-3D가 난류 유동의 와류형 물리학에서 질량 확산도를 적절하게 예측하는 상당한 능력을 가지고 있다는 결론을 내립니다.

– Achieving accurate and reliable CFD modelling results often is the subject of scrutiny because of the importance of the inputs in those simulations. If turbulence modelling is based on Reynolds-Averaged Navier-Stokes (RANS) equations, estimating the turbulent scalar transport requires the definition of the turbulent Schmidt number (Sct), defined as the ratio of momentum diffusivity to mass one in a turbulent flow. However, no universal value has been accepted for this parameter as it is a property of turbulent flows.

The practical role of establishing a suitable Sct in numerical studies of stormwater retention ponds is of the utmost importance because the assessment of the hydraulic efficiency of them is based on output mass concentration of tracer tests. In this study, several numerical simulations of a vortex-type stormwater retention pond were systematically carried out using FLOW-3D. A range of various turbulent Schmidt numbers were introduced in numerical simulations performed by different number of computational cells to investigate mesh sensitivity.

Moreover, the effects of maximum turbulent mixing length as a user-defined or automatically computed value were assessed. The outcome of this study is an established numerical model with a constant value of maximum turbulent mixing length equal to 7% of the hydraulic diameter along with Sct= 0.625 which provides a close agreement with experimental results.

Noticeably, the peak values of numerical dimensionless RDT curves are dramatically decreased, resulted in a close match with experimental results. This concludes that FLOW-3D has a considerable ability to appropriately predict mass diffusivity in vortex-type physics of turbulent flows.

Keywords:

turbulent Schmidt number – maximum turbulent mixing length – CFD – mesh sensitivity – vortex-type
stormwater retention pond – environmental fluid mechanics

Figure 1- The experimental model [17]
Figure 1- The experimental model [17]
Figure 2- Schematic of boundary conditions in the numerical model
Figure 2- Schematic of boundary conditions in the numerical model
Figure 3- Positioning of mesh blocks
Figure 3- Positioning of mesh blocks

References

[1] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser, “On the Values for the Turbulent Schmidt Number
in Environmental Flows,” Fluids, vol. 2, p. 17, 2017.
[2] Å. Adamsson, L. Bergdahl, and S. Lyngfelt, “Measurement and three-dimensional simulation of flow in a rectangular
detention tank,” Urban Water Journal, vol. 2, no. 4, pp. 277-287, 2005/12/01 2005, doi: 10.1080/15730620500386545.
[3] C. Gualtieri, “Numerical simulation of flow and tracer transport in a disinfection contact tank,” 2006.
[4] S. Khan, B. Melville, and A. Shamseldin, Modeling the Layouts of Stormwater Retention Ponds using Residence Time.
2009, pp. 77-83.
[5] F. Martínez-Solano, P. L. I. Rey, C. Gualtieri, and P. López-Jiménez, “Modelling flow and concentration field in
rectangular water tanks,” 2010.
[6] W. B. Rauen, A. Angeloudis, and R. A. Falconer, “Appraisal of chlorine contact tank modelling practices,” Water
Research, vol. 46, no. 18, pp. 5834-5847, 2012/11/15/ 2012, doi: https://doi.org/10.1016/j.watres.2012.08.013.

[7] J. Zhang, A. Tejada-Martínez, and Q. Zhang, “Evaluation of LES and RANS for Determining Hydraulic Performance
of Disinfection Systems for Water Treatment,” Journal of Fluids Engineering, vol. 136, 05/15 2014, doi:
10.1115/1.4027652.
[8] J. Zhang, A. E. Tejada-Martínez, and Q. Zhang, “Developments in computational fluid dynamics-based modeling for
disinfection technologies over the last two decades: A review,” Environmental Modelling & Software, vol. 58, pp. 71-
85, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.envsoft.2014.04.003.
[9] C. Gualtieri and F. Salzano, “DIscussion on “The effect of baffle spacing on hydrodynamics and solute transport in
serpentine contact tanks”,” Journal of Hydraulic Research, vol. 52, pp. 152-154, 02/28 2014, doi:
10.1080/00221686.2013.877528.
[10] A. Angeloudis, T. Stoesser, R. A. Falconer, and D. Kim, “Flow, transport and disinfection performance in small- and
full-scale contact tanks,” Journal of Hydro-environment Research, vol. 9, no. 1, pp. 15-27, 2015/03/01/ 2015, doi:
https://doi.org/10.1016/j.jher.2014.07.001.
[11] A. Angeloudis, T. Stoesser, C. Gualtieri, and R. A. Falconer, “Contact Tank Design Impact on Process Performance,”
Environmental Modeling & Assessment, vol. 21, no. 5, pp. 563-576, 2016/10/01 2016, doi: 10.1007/s10666-016-9502-
x.
[12] D. Valero and D. B. Bung, “Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in
crossflow,” Environmental Modelling & Software, vol. 82, pp. 218-228, 2016/08/01/ 2016, doi:
https://doi.org/10.1016/j.envsoft.2016.04.030.
[13] F. Sonnenwald, I. Guymer, and V. Stovin, “Computational fluid dynamics modelling of residence times in vegetated
stormwater ponds,” Proceedings of the Institution of Civil Engineers – Water Management, vol. 171, pp. 1-11, 11/07
2017, doi: 10.1680/jwama.16.00117.
[14] F. Sonnenwald, I. Guymer, and V. Stovin, “A CFD-Based Mixing Model for Vegetated Flows,” Water Resources
Research, vol. 55, no. 3, pp. 2322-2347, 2019, doi: https://doi.org/10.1029/2018WR023628.
[15] S. B. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000.
[16] R. Rossi and G. Iaccarino, “Numerical simulation of scalar dispersion downstream of a square obstacle using gradienttransport type models,” Atmospheric Environment, vol. 43, no. 16, pp. 2518-2531, 2009/05/01/ 2009, doi:
https://doi.org/10.1016/j.atmosenv.2009.02.044.
[17] R. Chowdhury, M. Ahadi, K. A. Mazurek, G. Putz, D. Bergstrom, and C. Albers, “Physical Scale and Computational
Modeling in the Development of a Vortex-Type Stormwater Retention Pond,” in World Environmental and Water
Resources Congress 2016, 2016, pp. 388-397.
[18] V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” Journal
of Scientific Computing, vol. 7, no. 1, pp. 35-61, 1992/03/01 1992, doi: 10.1007/BF01060210.
[19] Flow Science, Inc., FLOW-3D User manual. Santa Fe, NM, USA. (2015).
[20] M. M. Bishop, J. M. Morgan, B. Cornwell, and D. K. Jamison, “Improving the Disinfection Detention Time of a Water
Plant Clearwell,” Journal AWWA, vol. 85, no. 3, pp. 68-75, 1993, doi: https://doi.org/10.1002/j.1551-
8833.1993.tb05958.x.
[21] F. L. Hart, “Improved Hydraulic Performance of Chlorine Contact Chambers.,” Jounal of Water Pollution Control
Federation, vol. 51(12), pp. 2868–2875, 1979.

Hydraulic Analysis of Submerged Spillway Flows and Performance Evaluation of Chute Aerator Using CFD Modeling: A Case Study of Mangla Dam Spillway

CFD 모델링을 이용한 침수 배수로 흐름의 수리학적 해석 및 슈트 폭기장치 성능 평가: Mangla Dam 배수로 사례 연구

Hydraulic Analysis of Submerged Spillway Flows and Performance Evaluation of Chute Aerator Using CFD Modeling: A Case Study of Mangla Dam Spillway

Muhammad Kaleem SarwarZohaib NisarGhulam NabiFaraz ul HaqIjaz AhmadMuhammad Masood & Noor Muhammad Khan 

Abstract

대용량 배출구가 있는 수중 여수로는 일반적으로 홍수 처리 및 침전물 세척의 이중 기능을 수행하기 위해 댐 정상 아래에 제공됩니다. 이 방수로를 통과하는 홍수 물은 난류 거동을 나타냅니다. 

게다가 이러한 난류의 수력학적 분석은 어려운 작업입니다. 

따라서 본 연구는 파키스탄 Mangla Dam에 건설된 수중 여수로의 수리학적 거동을 수치해석을 통해 조사하는 것을 목적으로 한다. 또한 다양한 작동 조건에서 화기의 유압 성능을 평가했습니다. 

Mangla Spillway의 흐름을 수치적으로 모델링하는 데 전산 유체 역학 코드 FLOW 3D가 사용되었습니다. 레이놀즈 평균 Navier-Stokes 방정식은 난류 흐름을 수치적으로 모델링하기 위해 FLOW 3D에서 사용됩니다. 

연구 결과에 따르면 개발된 모델은 최대 6%의 허용 오차로 흐름 매개변수를 계산하므로 수중 여수로 흐름을 시뮬레이션할 수 있습니다. 

또한, 여수로 슈트 베드 주변 모델에 의해 계산된 공기 농도는 폭기 장치에 램프를 설치한 후 6% 이상으로 상승한 3%로 개발된 모델도 침수형 폭기 장치의 성능을 평가할 수 있음을 보여주었습니다.

Submerged spillways with large capacity outlets are generally provided below the dam crest to perform the dual functions of flood disposal and sediment flushing. Flood water passing through these spillways exhibits turbulent behavior. Moreover; hydraulic analysis of such turbulent flows is a challenging task. Therefore, the present study aims to use numerical simulations to examine the hydraulic behavior of submerged spillways constructed at Mangla Dam, Pakistan. Besides, the hydraulic performance of aerator was also evaluated at different operating conditions. Computational fluid dynamics code FLOW 3D was used to numerically model the flows of Mangla Spillway. Reynolds-averaged Navier–Stokes equations are used in FLOW 3D to numerically model the turbulent flows. The study results indicated that the developed model can simulate the submerged spillway flows as it computed the flow parameters with an acceptable error of up to 6%. Moreover, air concentration computed by model near spillway chute bed was 3% which raised to more than 6% after the installation of ramp on aerator which showed that developed model is also capable of evaluating the performance of submerged spillway aerator.

Keywords

  • Aerator
  • CFD
  • FLOW 3D
  • Froude number
  • Submerged spillway
  • Fig. 1extended data figure 1Fig. 2extended data figure 2Fig. 3extended data figure 3Fig. 4extended data figure 4Fig. 5extended data figure 5Fig. 6extended data figure 6Fig. 7extended data figure 7Fig. 8

References

  1. Aydin MC (2018) Aeration efficiency of bottom-inlet aerators for spillways. ISH J Hydraul Eng 24(3):330–336. https://doi.org/10.1080/09715010.2017.1381576Article Google Scholar 
  2. Bennett P, Chesterton J, Neeve D, Ucuncu M, Wearing M, Jones SEL (2018) Use of CFD for modelling spillway performance. Dams Reserv 28(2):62–72. https://doi.org/10.1680/jdare.18.00001Article Google Scholar 
  3. Bhosekar VV, Jothiprakash V, Deolalikar PB (2012) Orifice Spillway Aerator: Hydraulic Design. J Hydraul Eng 138(6):563–572. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000548Article Google Scholar 
  4. Chanel PG, Doering JC (2008) Assessment of spillway modeling using computational fluid dynamics. Can J Civ Eng 35(12):1481–1485. https://doi.org/10.1139/L08-094Article Google Scholar 
  5. Flow Sciences, Inc. (2013) FLOW 3D user manual version 10.1.
  6. Gadge PP, Jothiprakash V, Bhosekar VV (2018) Hydraulic investigation and design of roof profile of an orifice spillway using experimental and numerical models. J Appl Water Eng Res 6(2):85–94. https://doi.org/10.1080/23249676.2016.1214627Article Google Scholar 
  7. Gadge PP, Jothiprakash V, Bhosekar VV (2019) Hydraulic design considerations for orifice spillways. ISH J Hydraul Eng 25(1):12–18. https://doi.org/10.1080/09715010.2018.1423579Article Google Scholar 
  8. Gu S, Ren L, Wang X, Xie H, Huang Y, Wei J, Shao S (2017) SPHysics simulation of experimental spillway hydraulics. Water 9(12):973. https://doi.org/10.3390/w9120973Article Google Scholar 
  9. Gurav NV (2015) Physical and Numerical Modeling of an Orifice Spillway. Int J Mech Prod Eng 3(10):71–75Google Scholar 
  10. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5Article MATH Google Scholar 
  11. Ho DKH, Riddette KM (2010) Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia. Aust J Civ Eng 6(1):81–104. https://doi.org/10.1080/14488353.2010.11463946Article Google Scholar 
  12. Jothiprakash V, Bhosekar VV, Deolalikar PB (2015) Flow characteristics of orifice spillway aerator: numerical model studies. ISH J Hydraul Eng 21(2):216–230. https://doi.org/10.1080/09715010.2015.1007093Article Google Scholar 
  13. Kumcu SY (2017) Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE J Civ Eng 21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-zArticle Google Scholar 
  14. Lian J, Qi C, Liu F, Gou W, Pan S, Ouyang Q (2017) Air entrainment and air demand in the spillway tunnel at the Jinping-I Dam. Appl Sci 7(9):930. https://doi.org/10.3390/app7090930Article Google Scholar 
  15. Luo M, Khayyer A, Lin P (2021) Particle methods in ocean and coastal engineering. Appl Ocean Res 114:102734Article Google Scholar 
  16. Moreira A, Leroy A, Violeau D, Taveira-Pinto F (2019) Dam spillways and the SPH method: two case studies in Portugal. J Appl Water Eng Res 7(3):228–245. https://doi.org/10.1080/23249676.2019.1611496Article Google Scholar 
  17. Moreira AB, Leroy A, Violeau D, Taveira-Pinto FA (2020) Overview of large-scale smoothed particle hydrodynamics modeling of dam hydraulics. J Hydraul Eng 146(2):03119001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001658Article Google Scholar 
  18. O’Connor J, Rogers BD (2021) A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2021.103312Article Google Scholar 
  19. Sarwar MK, Bhatti MT, Khan NM (2016) Evaluation of air vents and ramp angles on the performance of orifice spillway aerators. J Eng Appl Sci 35(1):85–93Google Scholar 
  20. Sarwar MK, Ahmad I, Chaudary ZA, Mughal H-U-R (2020) Experimental and numerical studies on orifice spillway aerator of Bunji Dam. J Chin Inst Eng 43(1):27–36. https://doi.org/10.1080/02533839.2019.1676652Article Google Scholar 
  21. Saunders K, Prakash M, Cleary PW, Cordell M (2014) Application of smoothed particle hydrodynamics for modelling gated spillway flows. Appl Math Model 38(17–18):4308–4322. https://doi.org/10.1016/j.apm.2014.05.008Article MATH Google Scholar 
  22. Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  23. Shadloo MS, Oger G, le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput Fluids. https://doi.org/10.1016/j.compfluid.2016.05.029MathSciNet Article MATH Google Scholar 
  24. Shao Z, Jahangir Z, MuhammadYasir Q, Atta-ur-Rahman, Mahmood S (2020) Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 12(11):3249. https://doi.org/10.3390/w12113249Article Google Scholar 
  25. Shimizu Y, Khayyer A, Gotoh H, Nagashima K (2020) An enhanced multiphase ISPH-based method for accurate modeling of oil spill. Coast Eng J 62(4):625–646. https://doi.org/10.1080/21664250.2020.1815362Article Google Scholar 
  26. Teng P, Yang J (2016) CFD modeling of two-phase flow of a spillway chute aerator of large width. J Appl Water Eng Res 4(2):163–177. https://doi.org/10.1080/23249676.2015.1124030Article Google Scholar 
  27. Teng P, Yang J, Pfister M (2016) Studies of two-phase flow at a chute aerator with experiments and CFD modelling. Model Simul Eng 2016:1–11. https://doi.org/10.1155/2016/4729128Article Google Scholar 
  28. Wapda (2004) Mangla dam raising project-sectional physical model study report of main spillway: Wapda model study cell, Gujrawala, Pakistan
  29. Yang J, Andreasson P, Teng P, Xie Q (2019) The past and present of discharge capacity modeling for spillways—a Swedish perspective. Fluids 4(1):10. https://doi.org/10.3390/fluids4010010Article Google Scholar 
  30. Yang J, Teng P, Xie Q, Li S (2020) Understanding water flows and air venting features of spillway—a case study. Water 12(8):2106. https://doi.org/10.3390/w12082106Article Google Scholar 
  31. Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301Article Google Scholar 
  32. Zhan X, Qin H, Liu Y, Yao L, Xie W, Liu G, Zhou J (2020) Variational Bayesian neural network for ensemble flood forecasting. Water 12(10):2740. https://doi.org/10.3390/w12102740Article Google Scholar 

Download references

그림 3. 수중 4차 횡파 영향

Validation of Sloshing Simulations in Narrow Tanks

This case study was contributed by Peter Arnold, Minerva Dynamics.

이 작업의 목적은 FLOW-3D  를 검증하는 것입니다. 밀폐된 좁은 스팬 직사각형 탱크의 출렁거림 문제에 대비하여 탱크의 내부 파동 공명 주기에 가깝거나 같은 주기로 롤 운동을 하여 측면 및 지붕 파동 충격 이벤트가 발생합니다.

탱크는 물이나 해바라기 기름으로 두 가지 다른 수준으로 채워졌고 위의 공간은 공기로 채워졌습니다. 압력 센서는 여러 장소의 벽에 설치되었으며 처음 4개의 출렁이는 기간 동안 기록된 롤 각도와 시간 이력이 있습니다. 오일을 사용하는 경우의 흐름은 레이놀즈 수가 1748인 층류인 반면, 물로 채워진 경우의 흐름은 레이놀즈 수가 97546인 난류입니다. 

CFD 시뮬레이션은 탱크의 고조파 롤 운동을 복제하기 위해 본체력 방법을 사용했으며, 난류 및 공기 압축성을 설명하기 위해 다른 모델링 가정과 함께 그리드 의존성 테스트를 수행했습니다.

The objective of this work is to validate FLOW-3D against a sloshing problem in a sealed narrow span rectangular tank, subjected to roll motion at periods close to or equal to the tank’s internal wave resonance period, such that side and roof wave impact events occur. The tank was filled to two different levels with water or sunflower oil, with the space above filled by air. Pressure sensors were installed in the walls at several places and their time histories, along with the roll angle, recorded for the first four sloshing periods. For the cases using oil, the flow is laminar with a Reynolds number of 1748, while for the cases filled with water the flow is turbulent with a Reynolds number of 97546. The CFD simulations used the body force method to replicate the harmonic roll motion of the tank, while grid dependence tests were performed along with different modelling assumptions to account for turbulence and air compressibility.

Experimental Problem Setup

원래 실험은 Souto-Iglesias 및 Botia-Vera[1]에 의해 수행되었으며 모든 실험 데이터 파일은 문제 설명, 비디오 및 불확실성 분석과 함께 사용할 수 있습니다. 그림 1에 표시된 형상은 길이 900mm, 높이 508mm, 스팬 62mm의 직사각형 탱크로 구성되어 있으며 물이나 해바라기 기름으로 93mm 또는 355.3mm로 채워져 있으므로 4가지 경우가 고려됩니다. 탱크 벽과 같은 높이로 설치된 압력 센서의 위치도 표시됩니다. 탱크 회전 중심은 수평에 대한 회전 각도와 함께 그림 1에 나와 있습니다. 각 실험 실행은 반복성을 평가할 수 있도록 100번 수행되었습니다.

The original experiment was performed by Souto-Iglesias and Botia-Vera [1] and all experimental data files are available along with problem description, videos and an uncertainty analysis. The geometry shown in Fig. 1 consists of a rectangular tank of 900mm length, 508mm height and 62mm span, filled to either 93mm or 355.3 mm with either water or sunflower oil, hence four cases are considered. The locations of the pressure sensors that were installed flush with the tank walls are also shown. The tank rotation center is shown in Fig. 1, along with the rotation angle relative to the horizontal. Each of the experimental runs was performed 100 times to enable their repeatability to be assessed.

Tank dimensions and locations of pressure sensors
Figure 1. Tank dimensions and locations of pressure sensors

Numerical Simulation

문제는 FLOW-3D 내에서 비관성 기준 좌표계 모델을 사용하여 비교적 간단하게 설정할 수 있으며  , 이는 로컬 기준 좌표계의 가속도에 따라 유체에 체력 을 적용합니다. Z축 회전 속도는 탱크의 롤 운동을 시뮬레이션하기 위한 주기 함수로 정의되었으며 음의 수직 방향으로 작용하는 일정한 중력이 가해졌습니다.

메쉬 미세화, 운동량 이류에 대한 수치 근사 순서, 층류 대 난류 모델 및 탱크 내 공기에 대한 세 가지 다른 처리(즉, 일정 압력, 압축성 기체 및 비압축성 기체)와 같은 것을 조사하기 위해 여러 시뮬레이션을 수행했습니다.

93mm 깊이로 채워진 모든 케이스에 대해 압력은 압력 센서 P1에서만 실험 값과 비교되었으며, 355.3mm 깊이로 채워진 모든 케이스에서는 P3 센서의 데이터만 비교되었습니다.

The problem was relatively simple to set up using the non-inertial reference frame model within FLOW-3D, which applies a body force to the fluid depending on the acceleration of the local reference frame. The Z axis rotational velocity was defined as a periodic function to simulate a roll motion of the tank, and a constant gravity force acting in the negative vertical direction was applied.

Multiple simulations were performed to investigate such things as mesh refinement, the numerical approximation order for momentum advection, laminar versus turbulent models and three different treatments for the air in the tank (i.e., constant pressure, compressible gas and incompressible gas).

For all 93mm depth-filled cases, the pressure was compared to the experimental values at pressure sensor P1 only, while for all 355.3mm depth-filled cases, only data at the P3 sensor was compared.

Results

P1에서 측정된 측면 워터 슬로싱에 대한 메쉬 해상도의 영향은 그림 2에서 볼 수 있습니다. 피크 값 예측 측면에서 특별한 편향을 보이지 않습니다. 모든 측면 사례에서 초기 피크 직후의 압력은 시뮬레이션에서 일관되게 과대 평가되었습니다. 모든 메쉬는 피크의 타이밍 측면에서 우수한 일치를 보입니다. 100회 실행에서 보고된 실험 시간 기록은 평균 값에 가장 가까운 최고 압력을 가진 기록입니다.

The effect of mesh resolution on lateral water sloshing measured at P1 is seen in Fig. 2. It shows no particular bias in terms of the prediction of peak values. In all the Lateral cases, the pressures immediately after the initial peaks are consistently over estimated in the simulations. All meshes have excellent agreement in terms of the timing of the peaks. The experimental time histories reported from the 100 runs made are those with peak pressures closest to the average values.

Lateral water case
Figure 2. Tank dimensions and locations of pressure sensors

실험 결과의 반복성은 Souto-Iglesias & Elkin Botia-Vera[1]에 의해 각 테스트를 100번 실행하고 처음 4개의 피크 압력의 평균 및 표준 편차를 측정하여 평가했습니다. CFD 실행이 다른 실험 실행으로 간주되는 경우 오류 막대 내에 있을 확률이 95%입니다. 그러나 CFD 결과의 16개 피크 압력 중 9개만 실험 결과의 2 표준 편차 내에 있으므로 CFD 모델이 실험을 대표하지 않거나 피크 압력이 정규 분포를 따르지 않는다는 결론을 내려야 합니다.

어쨌든 표준 편차는 피크 자체에 비해 상당히 크며, 수성 케이스와 측면 오일의 비율이 가장 작은 피크 값에 대한 표준 편차의 비율이 가장 큰 것으로 나타났습니다. 이러한 결과는 그림 1과 2에서 볼 수 있는 벽 충격 역학의 복잡성을 고려할 때 그리 놀라운 일이 아닙니다. 3,4.

The repeatability of the experimental results was assessed by Souto-Iglesias & Elkin Botia-Vera [1] running each test 100 times and measuring the average and standard deviation of the first four peak pressures. If a CFD run is considered to be another experimental run there is a 95% chance it will lie within the error bars. However, only nine of the 16 peak pressures from the CFD results fall within two standard deviations of the experimental results, so we must conclude that either the CFD model is not representative of the experiment or that the peak pressures are not normally distributed.

In any event, the standard deviations are quite large compared to the peaks themselves, with the largest ratio of standard deviation to peak values occurring for the water-based cases and the lateral oil having the smallest ratio. These results are perhaps not too surprising when one considers the complexity of the wall impact dynamics as seen in Figs. 3,4.

Lateral Wave Impact in Water
Figure 3. 4th Lateral Wave Impact in Water
Wave Impact of Water on Roof
Figure 4. 4th Wave Impact of Water on Roof

Conclusions

좁은 탱크 슬로싱 문제의 네 가지 구성은 자유 표면 흐름을 위해 설계된 상용 CFD 코드를 사용하여 수치적으로 시뮬레이션되었습니다. 대략 2 X 10 3  및 1 X 10 5 의 Reynolds 수에 해당하는 두 가지 다른 유체  와 두 가지 유체 깊이가 네 가지 경우를 정의하는 데 사용되었습니다. 4가지 경우 모두에 대해 메쉬 셀 크기 독립성 테스트를 수행했지만 메쉬 해상도가 증가함에 따라 실험 결과에 대해 약한 수렴만 발견되었습니다. 조사는 또한 두 가지 다른 운동량 이류 수치 차분 계획을 테스트했으며 두 번째 방법을 사용하여 더 가까운 일치를 발견했습니다 1차 체계를 사용하는 것보다 차수 단조성 보존 체계. 기본 층류 흐름을 포함한 세 가지 난류 모델이 테스트되었지만 더 낮은 계산 비용으로 인해 층류 이외의 모델에 대한 선호도가 발견되지 않았습니다. 실험 데이터와 공기 감소 일치의 압축성을 포함하여 그 이유는 불분명합니다.

실험 압력 프로브 시간 이력 데이터 세트에는 100회 반복 테스트에서 파생된 각 압력 피크에 대해 100개의 값이 포함되어 있으므로 CFD 시뮬레이션과의 일치의 통계적 유의성을 조사할 수 있었습니다. 수치 시뮬레이션과 실험 모두 출렁이는 파동 충격에 해당하는 매우 가파른 압력 펄스를 발생시켰고 실험 결과는 피크 값에서 높은 정도의 자연적 변동성을 갖는 것으로 나타났습니다. CFD 시뮬레이션의 감도 테스트(예: 약간 다른 초기 시작 조건 사용)는 공식적으로 수행되지 않았지만 수치 솔루션은 또한 다른 메쉬, 차분 체계 및 난류 모델,

모든 경우에 압력 피크가 발생하는 수치해의 타이밍은 매우 정확함을 알 수 있었다. 그러나 가장 난이도가 낮은 Lateral Oil의 경우에도 압력 피크와 바로 뒤따르는 압력 값이 과대 평가되어 수치 모델링의 단점이 나타났습니다. 실험적 피크 압력 변동성을 고려할 때 CFD 생성 값은 CFD 솔루션이 통계적 유의성을 나타내기 위해 필요한 15개 이상이 아니라 16개 피크 중 9개에서 2개의 표준편차 한계 내에 떨어졌습니다. 실험을 대표했다. 이것은 피크가 정규 분포를 따르지 않거나 CFD 모델이 피크를 예측하는 데 어떤 식으로든 결함이 있음을 나타냅니다.

Four configurations of a narrow tank sloshing problem were numerically simulated using a commercial CFD code designed for free surface flow. Two different fluids corresponding to Reynolds numbers of approximately 2 X 103 and 1 X 105 and two fluid depths were used to define the four cases. Mesh cell size independence tests were conducted for all four cases, but only a weak convergence towards the experimental results with increasing mesh resolution was found. The investigation also tested two different momentum advection numerical differencing schemes and found closer agreement using the 2nd order monotonicity preserving scheme than by using a first order scheme. Three turbulence models, including the default laminar flow, were tested but no preference was found for any model other than the laminar by virtue of its lower computational cost. Including the compressibility of the air-reduced agreement with the experimental data, the reasons for this are unclear.

The experimental pressure probe time history data sets included 100 values for each of the pressure peaks derived from 100 repeat tests, and thus we were able to examine the statistical significance of the agreement with the CFD simulations. Both the numerical simulations and the experiments gave rise to very steep pressure pulses corresponding to the sloshing wave impacts, and the experimental results were found to have a high degree of natural variability in the peak values. Although sensitivity tests of the CFD simulations (using, for example, slightly different initial starting conditions) were not formally conducted, the numerical solutions also showed a high degree of variability in the pressure peak magnitudes resulting from the use of different meshes, differencing schemes and turbulence models, which could be considered to show that the numerical solution also had a high degree of natural variability.

In all cases, the numerical solutions’ timing of the occurrence of the pressure peaks were found to be very accurate. However, even for the least challenging Lateral Oil case, the pressure peaks and the immediately following pressure values were overestimated, which indicated a shortcoming in the numerical modelling. When the experimental peak pressure variability was taken into account, the CFD-generated values fell inside the two Standard Deviation margin in nine of the 16 peaks rather than the 15 or more that would be required to show statistical significance in the sense that the CFD solution was representative of the experiment. This indicates that either the peaks are not normally distributed and/or the CFD model is in some way deficient at predicting them. Further work is required to establish how the peak pressures are distributed and/or to establish the physical reasons why the CFD model is overestimating the pressure peaks for even the least challenging Lateral Oil configuration.

References

  1. Spheric Benchmark Test Case, Sloshing Wave Impact Problem, Antonio Souto-Iglesias & Elkin Botia-Vera, https://wiki.manchester.ac.uk/spheric/index.php/Test10
  2. Peregrine DH (1993). Water-wave impact on walls. Annual Review of Fluid Mechanics. Vol 35, pp 23-43.

Editor’s Note

The complete document from which this note was extracted and the related data and input files are available on our Users Site. Readers are encouraged to read the original validation to get a full appreciation of the detail in this work investigating comparisons between simulation and experimental data. This study is especially noteworthy since it deals with highly non-linear sloshing of fluids interacting with the boundaries of a confining tank.

With regard to the author’s conclusions, it should be mentioned that the over prediction of fluid impact pressures in simulations could be the result of not allowing for sufficient compressibility effects in the liquids. For instance, in Fig. 3, it appears that there has been some air entrained in the liquid near the side wall. Also, negative pressures (i.e., below atmospheric) recorded experimentally might result from liquid drops remaining on the pressure sensors after the main body of liquid has drained away. Such details, which may be hard to quantify, only emphasize the difficulties involved in undertaking detailed validation studies. The author is commended for his excellent work.

Fig. 6. Configuration of Johnson (1958) hydraulic experiment.

전체 수심 범위에서 선박 파고에 대한 방정식

Equation for ship wave crests in the entire range of water depths

Byeong Wook Lee a
, Changhoon Lee b,
*a Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea
b Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea

ABSTRACT

An equation for ship wave crests y/x in the entire range of water depths is developed using the linear dispersion relation. In deep water, the developed equation is reduced to the equation of Kelvin (1906). The locations of ship wave crests in the x – and y -directions are obtained using a dimensionless constant C. The wave ray angle θc at the cusp locus is determined using the condition that θc is maximal at the cusp locus and the cusp locus angle is determined as αc=−tan−1(y/x)max. Numerical experiments are conducted using the FLOW-3D to simulate ship wave propagation. The cusp locus angles of the FLOW-3D are similar to both those of the present theory and Havelock (1908) theory in the entire range of the Froude number. Both the present theory and the FLOW-3D yield that, with the increase of ship speed, the Froude number increases and does the wavelength. For the Froude number equal to or greater than unity, the wavelength becomes infinitely large and the transverse waves disappear. The wavelengths of the FLOW-3D are slightly smaller than those of the present theory because the FLOW-3D considers the decrease of wavelength due to energy dissipation which happens because of viscosity of water and turbulence of high-speed particle velocities.

Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s,  kh � 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh � 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh � 0:003π). Line definition: red solid line ¼ present theory; yellow  dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation  of the references to colour in this figure legend, the reader is referred to the  Web version of this article.)
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s, kh >= 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh >= 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh >= 0:003π). Line definition: red solid line ¼ present theory; yellow dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Keywords

Ship wave crests
Cusp locus angle
Entire range of water depths
Theoretical solution
Numerical experiment

References

kylas, T.R., 1984. On the excitation of long nonlinear water waves by a moving pressure
distribution. J. Fluid Mech. 141, 455–466.

Chen, X.N., Sharma, S.D., 1995. A slender ship moving at a near-critical speed in a
shallow channel. J. Fluid Mech. 291, 263–285.
David, C.G., Roeber, V., Goseberg, N., Schlurmann, T., 2017. Generation and propagation
of ship-borne waves – solutions from a Boussinesq-type model. Cost Eng. 127,
170–187.
Ersan, D.B., Beji, S., 2013. Numerical simulation of waves generated by a moving
pressure field. Ocean Eng. 59, 231–239.
Ertekin, R.C., Webster, W.C., Wehausen, J.V., 1986. Waves caused by a moving
disturbance in a shallow channel of finite width. J. Fluid Mech. 169, 275–292.
Fang, M.-C., Yang, R.-Y., Shugan, I.V., 2011. Kelvin ship wake in the wind waves field
and on the finite sea depth. J. Mech. 27 (1), 71–77.
Havelock, T.H., 1908. The propagation of groups of waves in dispersive media with
application to waves on water produced by a travelling disturbance. Proc. Royal Soc.
London Ser. A 398–430.
Hennings, I., Romeiser, R., Alpers, W., Viola, A., 1999. Radar imaging of Kelvin arms of
ship wakes. Int. J. Remote Sens. 20 (13), 2519–2543.
Hur, D.S., Lee, J., Choi, D.S., Lee, H.W., 2011. On run-up characteristics of revetment
under interaction among ocean wave, current and ship induced wave in the canal.
In: Proceedings of the 37th Conference on the Korean Society of Civil Engineers,
pp. 588–591 (in Korean).
Johnson, J.W., 1958. Ship waves in navigation channels. In: Proceedings of the 6th
Conference on Coastal Engineering, pp. 666–690.
Kang, Y.S., Kim, P.J., Hyun, S.K., Sung, H.K., 2008. Numerical simulation of ship-induced
wave using FLOW-3D. J. Korean Soc. Coast. Ocean Eng. 20 (3), 255–267 (in Korean).
Kelvin, 1887. On ship waves. In: Proceedings of the Institution of Mechanical
Engineering, pp. 409–433.
Kelvin, 1906. Deep sea ship-waves. Proc. R. Soc. Edinb. 25 (2), 1060–1084.
Lamb, H., 1945. Hydrodynamics. Dover Publications.
Lee, C., Lee, B.W., Kim, Y.J., Ko, K.O., 2011. Ship wave crests in intermediate-depth
water. In: Proceedings of the 6th International Conference on Asian and Pacific
Coasts, pp. 1818–1825.
Lee, B.W., Lee, C., Kim, Y.J., Ko, K.O., 2013. Prediction of ship wave crests on varying
water depths and verification by FLOW-3D. J. Korean Soc. Civil Eng. 33 (4),
1447–1454 (in Korean).
Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves: I. Flood movement in long
rivers; II. Theory of traffic flow on long crowded roads. Proc. R. Soc. A 229, 281–345.
Newman, J.N., 1970. Recent research on ship waves. In: Proceedings of the 8th
Symposium on Naval Hydrodynamics, pp. 519–545.
Newman, J.N., 1977. Marine Hydrodynamics. The MIT Press.
Reed, A.M., Milgram, J.H., 2002. Ship wakes and their radar images. Annu. Rev. Fluid
Mech. 34, 469–502.
Shemdin, O.H., 1990. Synthetic aperture radar imaging of ship wakes in the Gulf of
Alaska. J. Geophys. Res. 95 (C9), 16319–16338.
Shi, F., Malej, M., Smith, J.M., Kirby, J.T., 2018. Breaking of ship bores in a Boussinesqtype ship-wake model. Cost Eng. 132, 1–12.
Sorensen, R.M., 1967. Investigation of ship-generated waves. J. Waterw. Harb. Div.
85–99. ASCE.
Sorensen, R.M., 1969. Waves generated by model ship hull. J. Waterw. Harb. Div.
513–538. ASCE.
Sorensen, R.M., Weggel, J.R., 1984. Development of ship wave design information. In:
Proceedings of the 19th Conference on Coastal Engineering, pp. 3227–3243. ASCE.
Stoker, J.J., 1957. Water Waves: the Mathematical Theory with Applications.
Interscience Publishers.
Tuck, E.O., 1966. Shallow-water flows past slender bodies. J. Fluid Mech. 26, 81–95.
Wu, D.M., Wu, T.Y., 1982. Three-dimensional nonlinear long waves due to moving
surface pressure. In: Proceedings of the 14th Symposium on Naval Hydrodynamics,
pp. 103–129.

Fig. 11. Velocity vectors along x-direction through the center of the box culvert for B0, B30, B50, and B70 respectively.

Numerical investigation of scour characteristics downstream of blocked culverts

막힌 암거 하류의 세굴 특성 수치 조사

NesreenTahabMaged M.El-FekyaAtef A.El-SaiadaIsmailFathya
aDepartment of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
bLab Manager, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

횡단 구조물을 통한 막힘은 안정성을 위협하는 위험한 문제 중 하나입니다. 암거의 막힘 형상 및 하류 세굴 특성에 미치는 영향에 관한 연구는 거의 없습니다.

이 연구의 목적은 수면과 세굴 모두에서 상자 암거를 통한 막힘의 작용을 수치적으로 논의하는 것입니다. 이를 위해 FLOW 3D v11.1.0을 사용하여 퇴적물 수송 모델을 조사했습니다.

상자 암거를 통한 다양한 차단 비율이 연구되었습니다. FLOW 3D 모델은 실험 데이터로 보정되었습니다. 결과는 FLOW 3D 프로그램이 세굴 다운스트림 상자 암거를 정확하게 시뮬레이션할 수 있음을 나타냅니다.

막힌 경우에 대한 속도 분포, 최대 세굴 깊이 및 수심을 플롯하고 비차단된 사례(기본 사례)와 비교했습니다.

그 결과 암거 높이의 70% 차단율은 상류의 수심을 암거 높이의 2.3배 증가시키고 평균 유속은 기본 경우보다 3배 더 증가시키는 것으로 입증되었다. 막힘 비율의 함수로 상대 최대 세굴 깊이를 추정하는 방정식이 만들어졌습니다.

Blockage through crossing structures is one of the dangerous problems that threaten its stability. There are few researches concerned with blockage shape in culverts and its effect on characteristics of scour downstream it.

The study’s purpose is to discuss the action of blockage through box culvert on both water surface and scour numerically. A sediment transport model has been investigated for this purpose using FLOW 3D v11.1.0. Different ratios of blockage through box culvert have been studied. The FLOW 3D model was calibrated with experimental data.

The results present that the FLOW 3D program was capable to simulate accurately the scour downstream box culvert. The velocity distribution, maximum scour depth and water depths for blocked cases have been plotted and compared with the non-blocked case (base case).

The results proved that the blockage ratio 70% of culvert height makes the water depth upstream increases by 2.3 times of culvert height and mean velocity increases by 3 times more than in the base case. An equation has been created to estimate the relative maximum scour depth as a function of blockage ratio.

1. Introduction

Local scour is the removal of granular bed material by the action of hydrodynamic forces. As the depth of scour hole increases, the stability of the foundation of the structure may be endangered, with a consequent risk of damage and failure [1]. So the prediction and control of scour is considered to be very important for protecting the water structures from failure. Most previous studies were designed to study the different factors that impact on scour and their relationship with scour hole dimensions like fluid characteristics, flow conditions, bed properties, and culvert geometry. Many previous researches studied the effect of flow rate on scour hole by information Froude number or modified Froude number [2][3][4][5][6]. Cesar Mendoza [6] found a good correlation between the scour depth and the discharge Intensity (Qg−.5D−2.5). Breusers and Raudkiv [7] used shear velocity in the outlet-scour prediction procedure. Ali and Lim [8] used the densimetric Froude number in estimation of the scour depth [1][8][9][10][11][12][13][14]. “The densimetric Froude number presents the ratio of the tractive force on sediment particle to the submerged specific weight of the sediment” [15](1)Fd=uρsρ-1gD50

Ali and Lim [8] pointed to the consequence of tailwater depth on scour behavior [1][2][8][13]. Abida and Townsend [2] indicated that the maximum depth of local scour downstream culvert was varying with the tailwater depth in three ways: first, for very shallow tailwater depths, local scouring decreases with a decrease in tailwater depth; second, when the ratio of tailwater depth to culvert height ranged between 0.2 and 0.7, the scour depth increases with decreasing tailwater depth; and third for a submerged outlet condition. The tailwater depth has only a marginal effect on the maximum depth of scour [2]. Ruff et al. [16] observed that for materials having similar mean grain sizes (d50) but different standard deviations (σ). As (σ) increased, the maximum scour hole depth decreased. Abt et al. [4] mentioned to role of soil type of maximum scour depth. It was noticed that local scour was more dangerous for uniform sands than for well-graded mixtures [1][2][4][9][17][18]. Abt et al [3][19] studied the culvert shape effect on scour hole. The results evidenced that the culvert shape has a limited effect on outlet scour. Under equivalent discharge conditions, it was noted that a square culvert with height equal to the diameter of a circular culvert would reduce scour [16][20]. The scour hole dimension was also effected by the culvert slope. Abt et al. [3][21] showed that the culvert slope is a key element in estimating the culvert flow velocity, the discharge capacity, and sediment transport capability. Abt et al. [21][22] tested experimentally culvert drop height effect on maximum scour depth. It was observed that as the drop height was increasing, the depth of scour was also increasing. From the previous studies, it could have noticed that the most scour prediction formula downstream unblocked culvert was the function of densimetric Froude number, soil properties (d50, σ), tailwater depth and culvert opening size. Blockage is the phenomenon of plugging water structures due to the movement of water flow loaded with sediment and debris. Water structures blockage has a bad effect on water flow where it causes increasing of upstream water level that may cause flooding around the structure and increase of scour rate downstream structures [23][24]. The blockage phenomenon through was studied experimentally and numerical [15][25][26][27][28][29][30][31][32][33]. Jaeger and Lucke [33] studied the debris transport behavior in a natural channel in Australia. Froude number scale model of an existing culvert was used. It was noticed that through rainfall event, the mobility of debris was impressed by stream shape (depth and width). The condition of the vegetation (size and quantities) through the catchment area was the main factor in debris transport. Rigby et al. [26] reported that steep slope was increasing the ability to mobilize debris that form field data of blocked culverts and bridges during a storm in Wollongong city.

Streftaris et al. [32] studied the probability of screen blockage by debris at trash screens through a numerical model to relate between the blockage probability and nature of the area around. Recently, many commercial computational fluid programs (CFD) such as SSIIM, Fluent, and FLOW 3D are used in the analysis of the scour process. Scour and sediment transport numerical model need to validate by using experimental data or field data [34][35][36][37][38]. Epely-Chauvin et al. [36] investigated numerically the effect of a series of parallel spur diked. The experimental data were compared by SSIIM and FLOW 3D program. It was found that the accuracy of calibrated FLOW 3D model was better than SSIIM model. Nielsen et al. [35] used the physical model and FLOW 3D model to analyze the scour process around the pile. The soil around the pile was uniform coarse stones in the physical models that were simulated by regular spheres, porous media, and a mixture of them. The calibrated porous media model can be used to determine the bed shear stress. In partially blocked culverts, there aren’t many studies that explain the blockage impact on scour dimensions. Sorourian et al. [14][15] studied the effect of inlet partial blockage on scour characteristics downstream box culvert. It resulted that the partial blockage at the culvert inlet could be the main factor in estimating the depth of scour. So, this study is aiming to investigate the effects of blockage through a box culvert on flow and scour characteristics by different blockage ratios and compares the results with a non-blocked case. Create a dimensionless equation relates the blockage ratio of the culvert with scour characteristics downstream culvert.

2. Experimental data

The experimental work of the study was conducted in the Hydraulics and Water Engineering Laboratory, Faculty of Engineering, Zagazig University, Egypt. The flume had a rectangular cross-section of 66 cm width, 65.5 cm depth, and 16.2 m long. A rectangular culvert was built with 0.2 m width, 0.2 m height and 3.00 m long with θ = 25° gradually outlet and 0.8 m fixed apron. The model was located on the mid-point of the channel. The sediment part was extended for a distance 2.20 m with 0.66 m width and 0.20 m depth of coarse sand with specific weight 1.60 kg/cm3, d50 = 2.75 mm and σ (d90/d50) = 1.50. The particle size distribution was as shown in Fig. 1. The experimental model was tested for different inlet flow (Q) of 25, 30, 34, 40 l/s for different submerged ratio (S) of 1.25, 1.50, 1.75.

3. Dimensional analysis

A dimensional analysis has been used to reduce the number of variables which affecting on the scour pattern downstream partial blocked culvert. The main factors affecting the maximum scour depth are:(2)ds=f(b.h.L.hb.lb.Q.ud.hu.hd.D50.ρ.ρs.g.ls.dd.ld)

Fig. 2 shows a definition sketch of the experimental model. The maximum scour depth can be written in a dimensionless form as:(3)dsh=f(B.Fd.S)where the ds/h is the relative maximum scour depth.

4. Numerical work

The FLOW 3D is (CFD) program used by many researchers and appeared high accuracy in solving hydrodynamic and sediment transport models in the three dimensions. Numerical simulation with FLOW 3D was performed to study the impacts of blockage ratio through box culvert on shear stress, velocity distribution and the sediment transport in terms of the hydrodynamic features (water surface, velocity and shear stress) and morphological parameters (scour depth and sizes) conditions in accurately and efficiently. The renormalization group (RNG) turbulence model was selected due to its high ability to predict the velocity profiles and turbulent kinetic energy for the flow through culvert [39]. The one-fluid incompressible mode was used to simulate the water surface. Volume of fluid (VOF) method was employed in FLOW 3D to tracks a liquid interface through arbitrary deformations and apply the correct boundary conditions at the interface [40].1.

Governing equations

Three-dimensional Reynolds-averaged Navier Stokes (RANS) equation was applied for incompressible viscous fluid motion. The continuity equation is as following:(4)VF∂ρ∂t+∂∂xρuAx+∂∂yρvAy+∂∂zρwAz=RDIF(5)∂u∂t+1VFuAx∂u∂x+vAy∂u∂y+ωAz∂u∂z=-1ρ∂P∂x+Gx+fx(6)∂v∂t+1VFuAx∂v∂x+vAy∂v∂y+ωAz∂v∂z=-1ρ∂P∂y+Gy+fy(7)∂ω∂t+1VFuAx∂ω∂x+vAy∂ω∂y+ωAz∂ω∂z=-1ρ∂P∂z+Gz+fz

ρ is the fluid density,

VF is the volume fraction,

(x,y,z) is the Cartesian coordinates,

(u,v,w) are the velocity components,

(Ax,Ay,Az) are the area fractions and

RDIF is the turbulent diffusion.

P is the average hydrodynamic pressure,

(Gx, Gy, Gz) are the body accelerations and

(fx, fy, fz) are the viscous accelerations.

The motion of sediment transport (suspended, settling, entrainment, bed load) is estimated by predicting the erosion, advection and deposition process as presented in [41].

The critical shields parameter is (θcr) is defined as the critical shear stress τcr at which sediments begin to move on a flat and horizontal bed [41]:(8)θcr=τcrgd50(ρs-ρ)

The Soulsby–Whitehouse [42] is used to predict the critical shields parameter as:(9)θcr=0.31+1.2d∗+0.0551-e(-0.02d∗)(10)d∗=d50g(Gs-1ν3where:

d* is the dimensionless grain size

Gs is specific weight (Gs = ρs/ρ)

The entrainment coefficient (0.005) was used to scale the scour rates and fit the experimental data. The settling velocity controls the Soulsby deposition equation. The volumetric sediment transport rate per width of the bed is calculated using Van Rijn [43].2.

Meshing and geometry of model

After many trials, it was found that the uniform cell size with 0.03 m cell size is the closest to the experimental results and takes less time. As shown in Fig. 3. In x-direction, the total model length in this direction is 700 cm with mesh planes at −100, 0, 300, 380 and 600 cm respectively from the origin point, in y-direction, the total model length in this direction is 66 cm at distances 0, 23, 43 and 66 cm respectively from the origin point. In z-direction, the total model length in this direction is 120 cm. with mesh planes at −20, 0, 20 and 100 cm respectively.3.

Boundary condition

As shown in Fig. 4, the boundary conditions of the model have been defined to simulate the experimental flow conditions accurately. The upstream boundary was defined as the volume flow rate with a different flow rate. The downstream boundary was defined as specific pressure with different fluid elevation. Both of the right side, the left side, and the bottom boundary were defined as a wall. The top boundary defined as specified pressure with pressure value equals zero.

5. Validation of experimental results and numerical results

The experimental results investigated the flow and scour characteristics downstream culvert due to different flow conditions. The measured value of maximum scour depth is compared with the simulated depth from FLOW 3D model as shown in Fig. 5. The scour results show that the simulated results from the numerical model is quite close to the experimental results with an average error of 3.6%. The water depths in numerical model results is so close to the experimental results as shown in Fig. 6 where the experiment and numerical results are compared at different submerged ratios and flow rates. The results appear maximum error percentage in water depths upstream and downstream the culvert is about 2.37%. This indicated that the FLOW 3D is efficient for the prediction of maximum scour depth and the flow depths downstream box culvert.

6. Computation time

The run time was chosen according to reaching to the stability limit. Hydraulic stability was achieved after 50 s, where the scour development may still go on. For run 1, the numerical simulation was run for 1000 s as shown in Fig. 7 where it mostly reached to scour stability at 800 s. The simulation time was taken 500 s at about 95% of scour stability.

7. Analysis and discussions

Fig. 8 shows the study sections where sec 1 represents to upstream section, sec2 represents to inside section and sec3 represents to downstream stream section. Table 1 indicates the scour hole dimensions at different blockage case. The symbol (B) represents to blockage and the number points to blockage ratio. B0 case signifies to the non-blocked case, B30 is that blockage height is 30% to the culvert height and so on.

Table 1. The scour results of different blockage ratio.

Casehb cmB = hb/hQ lit/sSFdd50 mmds/h measuredls/hdd/hld/hds/h estimated
B000351.261.692.50.581.500.275.000.46
B3060.30351.261.682.50.481.250.274.250.40
B50100.50351.221.742.50.451.100.244.000.37
B70140.70351.231.732.50.431.500.165.500.33

7.1. Scour hole geometry

The scour hole geometry mainly depends on the properties of soil of the bed downstream the fixed apron. From Table 1, the results show that the maximum scour depth in B0 case is about 0.58 of culvert height while the maximum deposition in B0 is 0.27 culvert height. There is a symmetric scour hole as shown in Fig. 9 in B0 case. An asymmetric scour hole is created in B50 and B70 due to turbulences that causes the deviation of the jet direction from the center of the flume where appear in Fig. 11 and Fig. 19.

7.2. Flow water surface

Fig. 10 presents the relative free surface water (hw/h) along the x-direction at center of the box culvert. From the mention Figure, it is easy to release the effect of different blockage ratios. The upstream water level rises by increasing the blockage ratio. Increasing upstream water level may cause flooding over the banks of the waterway. In the 70% blockage case, the upstream water level rises to 2.3 times of culvert height more than the non-blocked case at the same discharge and submerged ratio. The water surface profile shows an increase in water level upstream the culvert due to a decrease in transverse velocity. Because of decreasing velocity downstream culvert, there is an increase in water level before it reaches its uniform depth.

7.3. Velocity vectors

Scour downstream hydraulic structures mainly affects by velocities distribution and bed shear stress. Fig. 11 shows the velocity vectors and their magnitude in xz plane at the same flow conditions. The difference in the upstream water level due to the different blockage ratios is so clear. The maximum water level is in B70 and the minimum level is in B0. The inlet mean velocity value is about 0.88 m/s in B0 increases to 2.86 m/s in B70. As the blockage ratio increases, the inlet velocity increases. The outlet velocity in B0 case makes downward jet causes scour hole just after the fixed apron in the middle of the bed while the blockage causes upward water flow that appears clearly in B70. The upward jet decreases the scour depth to 0.13 culvert height less than B0 case. After the scour hole, the velocity decreases and the flow becomes uniform.

7.4. Velocity distribution

Fig. 12 represents flow velocity (Vx) distribution along the vertical depth (z/hu) upstream the inlet for the different blockage ratios at the same flow conditions. From the Figure, the maximum velocity creates closed to bed in B0 while in blocked case, the maximum horizontal velocity creates at 0.30 of relative vertical depth (z/hu). Fig. 13 shows the (Vz) distribution along the vertical depth (z/hu) upstream culvert at sec 1. From the mentioned Figure, it is easy to note that the maximum vertical is in B70 which appears that as the blockage ratio increases the vertical ratio also increases. In the non-blocked case. The vertical velocity (Vz) is maximum at (z/hu) equals 0.64. At the end of the fixed apron (sec 3), the horizontal velocity (Vx) is slowly increasing to reach the maximum value closed to bed in B0 and B30 while the maximum horizontal velocity occurs near to the top surface in B50 and B70 as shown in Fig. 14. The vertical velocity component along the vertical depth (z/hd) is presented in Fig. 15. The vertical velocity (Vz) is maximum in B0 at vertical depth (z/hd) 0.3 with value 0.45 m/s downward. Figs. 16 and 17 observe velocity components (Vx, Vz) along the vertical depth just after the end of blockage length at the centerline of the culvert barrel. It could be noticed the uniform velocity distribution in B0 case with horizontal velocity (Vx) closed to 1.0 m/s and vertical velocity closed to zero. In the blocked case, the maximum horizontal velocity occurs in depth more than the blockage height.

7.5. Bed velocity distribution

Fig. 18 presents the x-velocity vectors at 1.5 cm above the bed for different blockage ratios from the velocity vectors distribution and magnitude, it is easy to realize the position of the scour hole and deposition region. In B0 and B30, the flow is symmetric so that the scour hole is created around the centerline of flow while in B50 and B70 cases, the flow is asymmetric and the scour hole creates in the right of flow direction in B50. The maximum scour depth is found in the left of flow direction in B70 case where the high velocity region is found.

8. Maximum scour depth prediction

Regression analysis is used to estimate maximum scour depth downstream box culvert for different ratios of blockage by correlating the maximum relative scour by other variables that affect on it in one formula. An equation is developed to predict maximum scour depth for blocked and non-blocked. As shown in the equation below, the relative maximum scour depth(ds/hd) is a function of densimetric Froude number (Fd), blockage ratio (B) and submerged ratio (S)(11)dsh=0.56Fd-0.20B+0.45S-1.05

In this equation the coefficient of correlation (R2) is 0.82 with standard error equals 0·08. The developed equation is valid for Fd = [0.9 to 2.10] and submerged ratio (S) ≥ 1.00. Fig. 19 shows the comparison between relative maximum scour depths (ds/h) measured and estimated for different blockage ratios. Fig. 20 clears the comparison between residuals and ds/h estimated for the present study. From these figures, it could be noticed that there is a good agreement between the measured and estimated relative scour depth.

9. Comparison with previous scour equations

Many previous scour formulae have been produced for calculation the maximum scour depth downstream non-blockage culvert. These equations have been included the effect of flow regime, culvert shape, soil properties and the flow rate on maximum scour depth. Two of previous experimental studies data have been chosen to be compared with the present study results in non-blocked study data. Table 2 shows comparison of culvert shape, densmetric Froude number, median particle size and scour equations for these previous studies. By applying the present study data in these studies scour formula as shown in Fig. 21, it could be noticed that there are a good agreement between present formula results and others empirical equations results. Where that Lim [44] and Abt [4] are so closed to the present study data.

Table 2. Comparison of some previous scour formula.

ResearchersFdCulvert shaped50(mm)Proposed equationSubmerged ratio
Present study0.9–2.11square2.75dsh=0.56Fd-0.20B+0.45S-1.051.25–1.75
Lim [44]1–10Circular1.65dsh=0.45Fd0.47
Abt [4]Fd ≥ 1Circular0.22–7.34-dsh=3.67Fd0.57∗D500.4∗σ-0.4

10. Conclusions

The present study has shown that the FLOW 3D model can accurately simulate water surface and the scour hole characteristics downstream the box culvert with error percentage in water depths does not exceed 2.37%. Velocities distribution through and outlets culvert barrel helped on understanding the scour hole shape.

The blockage through culvert had caused of increasing of water surface upstream structure where the upstream water level in B70 was 2.3 of culvert height more than non-blocked case at the same discharge that could be dangerous on the stability of roads above. The depth averaged velocity through culvert barrel increased by 3 times its value in non-blocked case.

On the other hand, blockage through culvert had a limited effect on the maximum scour depth. The little effect of blockage on maximum scour depth could be noticed in Fig. 11. From this Figure, it could be noted that the residual part of culvert barrel after the blockage part had made turbulences. These turbulences caused the deviation of the flow resulting in the formation of asymmetric scour hole on the side of channel. This not only but in B70 the blockage height caused upward jet which made a wide far scour hole as cleared from the results in Table 1.

An empirical equation was developed from the results to estimate the maximum scour depth relative to culvert height function of blockage ratio (B), submerged ratio (S), and densimetric Froude number (Fd). The equation results was compared with some scour formulas at the same densimetric Froude number rang where the present study results was in between the other equations results as shown in Fig. 21.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]P. Sarathi, M. Faruque, R. BalachandarInfluence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jetsJ. Hydraul. Res., 46 (2) (2008), pp. 158-175CrossRefView Record in ScopusGoogle Scholar[2]H. Abida, R. TownsendLocal scour downstream of box-culvert outletsJ. Irrig. Drain. Eng., 117 (3) (1991), pp. 425-440CrossRefView Record in ScopusGoogle Scholar[3]S.R. Abt, C.A. Donnell, J.F. Ruff, F.K. DoehringCulvert Slope and Shape Effects on Outlet ScourTransp. Res. Rec., 1017 (1985), pp. 24-30View Record in ScopusGoogle Scholar[4]S.R. Abt, R.L. Kloberdanz, C. MendozaUnified culvert scour determinationJ. Hydraul. Eng., 110 (10) (1984), pp. 1475-1479CrossRefView Record in ScopusGoogle Scholar[5]J.P. Bohan, Erosion And Riprap Requirements At Culvert And Storm-Drain Outlets, ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS1970.Google Scholar[6]C. Mendoza, S.R. Abt, J.F. RuffHeadwall influence on scour at culvert outletsJ. Hydraul. Eng., 109 (7) (1983), pp. 1056-1060CrossRefView Record in ScopusGoogle Scholar[7]H. Breusers, A. Raudkivi, Scouring, hydraulic structures design manual, vol. 143, IAHR, AA Balkema, Rotterdam, 1991.Google Scholar[8]K. Ali, S. LimLocal scour caused by submerged wall jetsProc. Inst. Civ. Eng., 81 (4) (1986), pp. 607-645CrossRefView Record in ScopusGoogle Scholar[9]O. Aderibigbe, N. RajaratnamEffect of sediment gradation on erosion by plane turbulent wall jetsJ. Hydraul. Eng., 124 (10) (1998), pp. 1034-1042View Record in ScopusGoogle Scholar[10]F.W. Blaisdell, C.L. AndersonA comprehensive generalized study of scour at cantilevered pipe outletsJ. Hydraul. Res., 26 (4) (1988), pp. 357-376CrossRefView Record in ScopusGoogle Scholar[11]Y.-M. Chiew, S.-Y. LimLocal scour by a deeply submerged horizontal circular jetJ. Hydraul. Eng., 122 (9) (1996), pp. 529-532View Record in ScopusGoogle Scholar[12]R.A. Day, S.L. Liriano, W.R. WhiteEffect of tailwater depth and model scale on scour at culvert outletsProc. Instit. Civil Eng. – Water Marit. Eng., 148 (3) (2001), pp. 189-198http://www.icevirtuallibrary.com/doi/10.1680/wame.2001.148.3.18910.1680/wame.2001.148.3.189View Record in ScopusGoogle Scholar[13]S. Emami, A.J. SchleissPrediction of localized scour hole on natural mobile bed at culvert outletsScour and Erosion (2010), pp. 844-853CrossRefView Record in ScopusGoogle Scholar[14]S. Sorourian, A. Keshavarzi, J. Ball, B. SamaliStudy of Blockage Effect on Scouring Pattern Downstream of a Box Culvert under Unsteady FlowAustr. J Water Resor. (2013)Google Scholar[15]S. Sorourian, Turbulent Flow Characteristics At The Outlet Of Partially Blocked Box Culverts, in: 36th IAHR World Congress, The Hague, the Netherlands, 2015.Google Scholar[16]J. Ruff, S. Abt, C. Mendoza, A. Shaikh, R. KloberdanzScour at culvert outlets in mixed bed materialsUnited States. Federal Highway Administration. Office of Research and Development (1982)Google Scholar[17]S.A. Ansari, U.C. Kothyari, K.G.R. RajuInfluence of cohesion on scour under submerged circular vertical jetsJ. Hydraul. Eng., 129 (12) (2003), pp. 1014-1019View Record in ScopusGoogle Scholar[18]B. Crookston B. Tullis, Scour and Riprap Protection in a Bottomless Arch Culvert, in: World Environmental and Water Resources Congress 2008: Ahupua’A, 2008, pp. 1–10.Google Scholar[19]S.R. Abt, J. Ruff, F. Doehring, C. DonnellInfluence of culvert shape on outlet scourJ. Hydraul. Eng., 113 (3) (1987), pp. 393-400View Record in ScopusGoogle Scholar[20]Y.H. Chen, Scour at outlets of box culverts, Colorado State University, 1970.Google Scholar[21]S. Abt, P. Thompson, T. LewisEnhancement of the culvert outlet scour estimation equationsTransp. Res. Rec. J. Transp. Res. Board, 1523 (1996), pp. 178-185View Record in ScopusGoogle Scholar[22]F.K. Doehring, S.R. AbtDrop height influence on outlet scourJ. Hydraul. Eng., 120 (12) (1994), pp. 1470-1476CrossRefView Record in ScopusGoogle Scholar[23]W. Weeks, A. Barthelmess, E. Rigby, G. Witheridge, R. Adamson, Australian rainfall and runoff revison project 11: blockage of hydraulic structures, 2009.Google Scholar[24]W. Weeks, G. Witheridge, E. Rigby, A. BarthelmessProject 11: blockage of hydraulic structuresEngineers Australia (2013)Google Scholar[25]S.R. Abt, T.E. Brisbane, D.M. Frick, C.A. McKnightTrash rack blockage in supercritical flowJ. Hydraul. Eng., 118 (12) (1992), pp. 1692-1696View Record in ScopusGoogle Scholar[26]E. Rigby, M. Boyd, S. Roso, P. Silveri, A. Davis, Causes and effects of culvert blockage during large storms, in: Global solutions for urban drainage, 2002, pp. 1–16.Google Scholar[27]S. Roso, M. Boyd, E. Rigby, R. VanDrie“Prediction of increased flooding in urban catchments due to debris blockage and flow diversionsProceedings Novatech (2004), pp. 8-13View Record in ScopusGoogle Scholar[28]C.-D. Jan, C.-L. ChenDebris flows caused by Typhoon Herb in Taiwanin Debris-Flow Hazards and Related Phenomena, Springer (2005), pp. 539-563CrossRefGoogle Scholar[29]L.W. Zevenbergen, P.F. Lagasse, P.E. Clopper, Effects of debris on bridge pier scour, in: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, 2007, pp. 1–10.Google Scholar[30]A. Barthelmess, E. Rigby, Estimating Culvert and Bridge Blockages-a Simplified Procedure, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 39.Google Scholar[31]E. Rigby, A. Barthelmess, Culvert Blockage Mechanisms and their Impact on Flood Behaviour, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 380.Google Scholar[32]G. Streftaris, N. Wallerstein, G. Gibson, S. ArthurModeling probability of blockage at culvert trash screens using Bayesian approachJ. Hydraul. Eng., 139 (7) (2012), pp. 716-726Google Scholar[33]R. Jaeger, T. LuckeInvestigating the relationship between rainfall intensity, catchment vegetation and debris mobilityInt. J. GEOMATE, 12 (33) (2017), pp. 22-29 Download PDFView Record in ScopusGoogle Scholar[34]S. Amiraslani, J. Fahimi, H. Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect On the Scour of Plunge Pool, in: XVIII International conference on water resources, Tehran University, Iran, 2008.Google Scholar[35]A.W. Nielsen, X. Liu, B.M. Sumer, J. FredsøeFlow and bed shear stresses in scour protections around a pile in a currentCoast. Eng., 72 (2013), pp. 20-38ArticleDownload PDFView Record in ScopusGoogle Scholar[36]G. Epely-Chauvin, G. De Cesare, S. SchwindtNumerical modelling of plunge pool scour evolution in non-cohesive sedimentsEng. Appl. Comput. Fluid Mech., 8 (4) (2014), pp. 477-487 Download PDFCrossRefView Record in ScopusGoogle Scholar[37]H. Karami, H. Basser, A. Ardeshir, S.H. HosseiniVerification of numerical study of scour around spur dikes using experimental dataWater Environ. J., 28 (1) (2014), pp. 124-134CrossRefView Record in ScopusGoogle Scholar[38]S.-H. Oh, K.S. Lee, W.-M. JeongThree-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plantRenew. Energy, 92 (2016), pp. 462-473ArticleDownload PDFView Record in ScopusGoogle Scholar[39]M.A. Khodier, B.P. TullisExperimental and computational comparison of baffled-culvert hydrodynamics for fish passageJ. Appl. Water Eng. Res. (2017), pp. 1-9CrossRefView Record in ScopusGoogle Scholar[40]F.S. Inc., FLOW-3D user’s manual, Flow Science, Inc., 2009.Google Scholar[41]G. Wei, J. Brethour, M. Grünzner, J. BurnhamSedimentation scour modelFlow Science Report, 7 (2014), pp. 1-29View Record in ScopusGoogle Scholar[42]R. Soulsby, R. Whitehouse, Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, vol. 1, Centre for Advanced Engineering, University of Canterbury, 1997, pp. 145.Google Scholar[43]L.C.v. RijnSediment transport, part II: suspended load transportJ. Hydraul. Eng., 110 (11) (1984), pp. 1613-1641View Record in ScopusGoogle Scholar[44]S Y LIMScour below unsubmerged full-flowing culvert outletsProc. Instit. Civil Eng. – Water Marit. Energy, 112 (2) (1995), pp. 136-149http://www.icevirtuallibrary.com/doi/10.1680/iwtme.1995.2765910.1680/iwtme.1995.27659View Record in ScopusGoogle Scholar

Peer review under responsibility of Faculty of Engineering, Alexandria University.

Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study

International Journal of Civil Engineering (2021)Cite this article

Abstract

이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.

그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.

이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.

다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.

저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.

이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.

This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.

Keywords

  • Dam spillway
  • Flip bucket
  • Ski jump
  • Dynamic pressure
  • Numerical modeling
  • FLOW-3D
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10

References

  1. 1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar 
  2. 2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar 
  3. 3.Novak P, Moffat AIB, Nalluri C, Narayanan R (2006) Hydraulics structures. Spon, LondonGoogle Scholar 
  4. 4.Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Co., New YorkGoogle Scholar 
  5. 5.Balloffet A (1961) Pressures on spillway flip buckets. J Hydraul Div ASCE 87(5):87–98. https://doi.org/10.1061/JYCEAJ.0000650Article Google Scholar 
  6. 6.Chen TC, Yu YS (1965) Pressure distribution on spillway flip buckets. J Hydraul Div ASCE 91(2):51–63. https://doi.org/10.1061/JYCEAJ.0001228Article Google Scholar 
  7. 7.Lenau CW, Cassidy JJ (1969) Flow through spillway flip bucket. Journal of the Hydraulics Division ASCE 95(2):633–648. https://doi.org/10.1061/JYCEAJ.0002029Article Google Scholar 
  8. 8.Juon R, Hager WH (2000) Flip bucket without and with deflectors. J Hydraul Eng 126(11):837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)Article Google Scholar 
  9. 9.Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  10. 10.Heller V, Hager WH, Minor HE (2005) Ski jump hydraulics. J Hydraul Eng 131(5):347–355. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)Article Google Scholar 
  11. 11.Larese A, Rossi R, Onate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4):385–425. https://doi.org/10.1108/02644400810874976Article MATH Google Scholar 
  12. 12.Steiner R, Heller V, Hager WH, Minor HE (2008) Deflector ski jump hydraulics. J Hydraul Eng 134(5):562–571. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(562)Article Google Scholar 
  13. 13.Kirkgoz MS, Akoz MS, Oner AA (2009) Numerical modeling of flow over a chute spillway. J Hydraul Res 47(6):790–797. https://doi.org/10.3826/jhr.2009.3467Article Google Scholar 
  14. 14.Jorabloo M, Maghsoodi R, Sarkardeh H (2011) 3D simulation of flow over flip buckets at dams. J Am Sci 7(6):931–936Google Scholar 
  15. 15.Nazari O, Jabbari E, Sarkardeh H (2015) Dynamic pressure analysis at chute flip buckets of five dam model studies. Int J Civil Eng 13(1):45–54. http://ijce.iust.ac.ir/article-1-951-en.html
  16. 16.Yamini OA, Kavianpour MR, Movahedi A (2015) Pressure distribution on the bed of the compound flip buckets. J Comput Multiphase Flows 7(3):181–194. https://doi.org/10.1260/1757-482X.7.3.181Article Google Scholar 
  17. 17.Hojjati SH, Mohammadiun S, Salehi Neyshabouri SAA (2016) Effects of different turbulence models on flow over a triangular flip- bucket. Modares Civil Eng J 16(4):69–81 (in Persian)Google Scholar 
  18. 18.Lauria A, Alfonsi G (2020) Numerical investigation of ski jump hydraulics. J Hydraul Eng 146(4):121–127. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001718Article MATH Google Scholar 
  19. 19.Muralha A, Melo J, Ramos HM (2020) Assessment of CFD solvers and turbulent models for water free jets in spillways. Fluids 5(3):104. https://doi.org/10.3390/fluids5030104Article Google Scholar 
  20. 20.Novak P, Cabelka J (1981) Model in hydraulic engineering. Pitman Advanced Publishing Program, LondonGoogle Scholar 
  21. 21.Flow Science, Inc. FLOW-3D User Manual Version 11.2.
  22. 22.Water Research Institute (2003) Hydraulic model of Shafaroud Dam flood control system. Final Report, vol 5. Hydraulic structures Divisions, Tehran, Iran, Chapter 5, pp 1–35 (in Persian)Google Scholar
Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Metals and Materials International (2021)Cite this article

Abstract

선택적 레이저 용융 동안 CP-Ti의 열 거동을 연구하기 위해 무작위 패킹 분말 베드 모델을 기반으로 하는 메조스코프 시뮬레이션이 설정되었습니다. 레이저와 분말의 상호 작용에 따른 용융 풀의 특성과 레이저 출력이 용융 풀의 열 거동, 유체 역학 및 표면 형태 변화에 미치는 영향을 연구했습니다.

결과는 레이저 출력이 증가함에 따라 최대 온도, 온도 변화율, 용융 풀의 수명 및 크기가 크게 향상되었음을 보여줍니다. 또한 본 연구에서는 이중궤도 하의 용융지의 특성과 열거동을 주로 연구하였다.

두 번째 트랙의 용융 풀의 최대 온도, 수명 및 길이와 너비는 첫 번째 트랙보다 더 높고 레이저 출력이 증가함에 따라 용융 풀에서 두 번째 트랙의 길이 너비 비율이 증가함을 알 수 있습니다. 더 커집니다.

A mesoscopic simulation based on random packing powder bed model was established to study the heat behavior of CP-Ti during selective laser melting. The characteristics of the molten pool under the interaction of laser and powder, and the influence of laser power on the thermal behavior, hydrodynamics and surface morphology evolution of the molten pool were studied. The results show that with the increase of laser power, the maximum temperature, temperature change rate, lifetime of molten pool and size are greatly improved. In addition, the characteristics and heat behavior of the molten pool under the double track are mainly studied in this study. It is found that the maximum temperature, lifetime, and the length and width of the molten pool of the second track are higher than those in the first, and with the increase of laser power, the length width ratio of the second track in molten pool becomes larger.

Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting
Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Keywords

  • Additive manufacturing
  • Selective laser melting
  • Numerical simulation
  • Thermal behavior

References

  • 1.D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Acta Biomater. 7, 1398 (2011)CAS Article Google Scholar 
  • 2.A.K. Patnaik, N. Poondla, C.C. Menzemer, T.S. Srivatsan, Mater. Sci. Eng. A 590, 390 (2014)CAS Article Google Scholar 
  • 3.D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012)CAS Article Google Scholar 
  • 4.H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sci. Eng. A 593, 170 (2014)CAS Article Google Scholar 
  • 5.J. Shen, B. Chen, J. Umeda, K. Kondoh, Mater. Sci. Eng. A 716, 1 (2018)CAS Article Google Scholar 
  • 6.E. Santos, K. Osakada, M. Shiomi, M. Morita, F. Abe, Fabrication of titanium dental implants by selective laser melting. in Proceedings of the 5th International Symposium on Laser Precision Microfabrication, Nara, 11–14 May 2004
  • 7.C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, JOM 60, 46 (2008)CAS Article Google Scholar 
  • 8.J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Child, CIRP Ann.-Manuf. Techn. 56, 730 (2007)Article Google Scholar 
  • 9.D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57, 133 (2012)CAS Article Google Scholar 
  • 10.​T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)CAS Article Google Scholar 
  • 11.D.D. Gu, H.Q. Wang, G.Q. Zhang, Metall Mater. Trans. A 45, 464 (2014)CAS Article Google Scholar 
  • 12.M. Das, V.K. Balla, D. Basu, S. Bose, A. Bandyopadhyay, Scripta Mater. 63, 438 (2010)CAS Article Google Scholar 
  • 13.X.P. Li, J. Van Humbeeck, J.P. Kruth, Mater. Design 116, 352 (2017)CAS Article Google Scholar 
  • 14.N. Jeyaprakash, C.-H. Yang, K.R. Ramkumar, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00933-0Article Google Scholar 
  • 15.Y. Li, D. Gu, Addit. Manuf. 1–4, 99 (2014)Google Scholar 
  • 16.P. Lu, M. Wu, X. Liu, W. Duan, J. Han, Met. Mater. Int. 26, 1182 (2020)Google Scholar 
  • 17.B. Schoinochoritis, D. Chantzis, K. Salonitis, P. I. Mech. Eng. B J. Eng. 231, 96 (2014)Article Google Scholar 
  • 18.G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)CAS Article Google Scholar 
  • 19.W.J. Sames, K.A. Unocic, R.R. Dehof, T. Lolla, S.S. Babu, J. Mater. Res. 29, 1920 (2014)Google Scholar 
  • 20.P.S. Cook, A.B. Murphy, Addit. Manuf. 31, 100909 (2020)Google Scholar 
  • 21.A. Raghavan, H.L. Wei, T.A. Palmer, T. DebRoy, J. Laser. Appl. 25, 052006 (2013)Article CAS Google Scholar 
  • 22.C.-J. Li, T.-W. Tsai, C.-C. Tseng, Phys. Procedia 83, 1444 (2016)CAS Article Google Scholar 
  • 23.C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto, Scripta Mater. 105, 14 (2015)CAS Article Google Scholar 
  • 24.M. Markl, C. Körner, Annu. Rev. Mater. Res. 46, 93 (2016)CAS Article Google Scholar 
  • 25.E.J.R. Parteli, T. Pöschel, Powder Technol. 288, 96 (2016)CAS Article Google Scholar 
  • 26.Y.S. Lee, W. Zhang, Modeling of heat transfer, Addit. Manuf. 12, 178 (2016)CAS Google Scholar 
  • 27.I. Kovaleva, O. Kovalev, I. Smurov, Phys. Procedia 56, 400 (2014)Article Google Scholar 
  • 28.Y.S. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. in Proceedings of 26th Solid Freeform Fabrication Symposium, Austin, 10-12 ​August 2015
  • 29.W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, Acta Mater. 134, 324 (2017)CAS Article Google Scholar 
  • 30.I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Tech. 210, 1624 (2010)CAS Article Google Scholar 
  • 31.L. Cao, Int. J. Heat Mass Tran. 141, 1036 (2019)Article Google Scholar 
  • 32.Y. Li, D. Gu, Mater. Design 63, 856 (2014)CAS Article Google Scholar 
  • 33.S. Liu, J. Zhu, H. Zhu, J. Yin, C. Chen, X. Zeng, Opt. Laser Technol. 123, 105924 (2020)Article CAS Google Scholar 
  • 34.Z. Wang, W. Yan, W.K. Liu, M. Liu, Comput. Mech. 63, 649 (2019)Article Google Scholar 
  • 35.C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)Article Google Scholar 
  • 36.EDEM, User Guide, DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright © (2011). http://tm.spbstu.ru/images/2/28/EDEM2.4_user_guide.pdf. Accessed 25 Aug 2021
  • 37.Y. Hu, J. Li, J. Mater. Process. Tech. 249, 426 (2017)CAS Article Google Scholar 
  • 38.H. Hertz, J. Reine Angew. Math. 92, 156 (1881)
  • 39.R.D. Mindlin, J. Appl. Mech. 16, 259 (1949)Article Google Scholar 
  • 40.R.D. Mindlin, H. Deresiewicz, J. Appl. Mech. 20, 327 (1953)Article Google Scholar 
  • 41.Y. Tsuji, T. Tanaka, T. Ishida, Powder Technol. 71, 239 (1992)CAS Article Google Scholar 
  • 42.P.A. Cundall, O.D.L. Strack, Géotechnique 30, 331 (1980)Article Google Scholar 
  • 43.H. Sakaguchi, E. Ozaki, T. Igarashi, Int. J. Mod. Phys. B 7, 1949 (1993)
  • 44.Flow3D: Version 11 0.1.2: User Manual, Flow Science, Santa Fe, NM, USA, (2014)
  • 45.S. Kolossov, E. Boillat, R. Glardon, P. Fischer, M. Locher, Int. J. Mach. Tool. Manu. 44, 117 (2004)Article Google Scholar 
  • 46.V.R. Voller, A.D. Brent, C. Prakash, Int. J. Heat Mass Tran. 32, 1719 (1989)CAS Article Google Scholar 
  • 47.Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, W.-S. Hwang, J. Mater. Process. Tech. 254, 72 (2018)Article Google Scholar 
  • 48.B. Cheng, X. Li, C. Tuile, A. Ilin, H. Willeck, U. Hartel, Multi-physics modeling of single-track scanning in selective laser melting: powder compaction effect. in Proceedings of 29th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Austin, 13–15 ​August 2018
  • 49.B. Liu, G. Fang, L. Lei, W. Liu, Appl. Math. Model. 79, 506 (2020)Article Google Scholar 
  • 50.S. Lee, J. Kim, J. Choe, S.-W. Kim, J.-K. Hong, Y.S. Choi, Met. Mater. Int. 27, 78 (2021)
  • 51.S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)CAS Article Google Scholar 
  • 52.K. Dai, L. Shaw, Acta Mater. 53, 4743 (2005)
  • 53.L. Cao, Comp. Mater. Sci. 179, 109686 (2020)CAS Article Google Scholar 
  • 54.W. Yuan, H. Chen, T. Cheng, Q. Wei, Mater. Design 189, 108542 (2020)Article Google Scholar 
  • 55.S.A. Khairallah, A. Anderson, J. Mater. Process. Tech. 214, 2627 (2014)CAS Article Google Scholar 
  • 56.R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Int. J. Adv. Manuf. Tech. 59, 1025 (2012)Article Google Scholar 
  • 57.D. Dai, D. Gu, Int. J. Mach. Tool. Manu. 100, 14 (2016)
  • 58.A. Simchi, H. Pohl, Mater. Sci. Eng. A 359, 119 (2003)Article CAS Google Scholar
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

유체 역학 및 응용 유압 분야에서 사용하기 위한 수치 모델링(CFD)을 적용한 가상 실험실 실습 매뉴얼

This manual was developed with the purpose of presenting and executing basic numerical models in the software known as Flow 3D within the virtual laboratories of Fluid Mechanics and Applied Hydraulics, to complement and reinforce what was learned in class, the development of the manual covers a theoretical content and an exemplified práctical part for the handling of the software, besides including some feedback for the students, in order to mark the characteristics that the software has. With the handling of the Flow 3D program, the student will be introduced to the concept of Computational Fluid Dynamics or CFD, and a simple procedure to represent numerically and graphically the behavior of hydraulic structures. The hydraulic structures presented in the laboratory manual are: thin and thick wall orifices, gates with free and submerged discharge, thin and thick wall spillways with free and submerged discharge, WES type spillway, submerged intake with pressure conduction and as a complement, hydrostatic pressures on vertical, curved and inclined walls were added. Each of the mentioned hydraulic structures obtained a práctical verification as a verification within the Flow 3D software, presenting a consistency in the results obtained in both ways.

이 매뉴얼은 Fluid Mechanics 및 Applied Hydraulics의 가상 연구실 내에서 Flow 3D로 알려진 소프트웨어에서 기본 수치 모델을 제시하고 실행하기 위해 개발되었으며, 수업에서 배운 내용을 보완하고 강화하기 위해 개발되었으며, 매뉴얼 개발은 이론적인 내용을 다룹니다. 소프트웨어의 특성을 표시하기 위해 학생들을 위한 일부 피드백을 포함하는 것 외에도 소프트웨어 처리에 대한 내용 및 예시된 실제적인 부분. Flow 3D 프로그램을 다루면서 학생은 전산유체역학(Computational Fluid Dynamics) 또는 CFD의 개념과 수력학적 구조의 거동을 수치 및 그래픽으로 표현하는 간단한 절차를 소개합니다. 실험실 매뉴얼에 제시된 유압 구조는 얇고 두꺼운 벽 오리피스, 자유 및 수중 배출이 있는 수문, 자유 및 수중 배출이 있는 얇고 두꺼운 벽 여수로, WES 유형 방수로, 압력 전도 및 보완으로 수중 유입이 있는 수중 흡입구입니다. 수직, 곡선 및 경사 벽에 추가되었습니다. 언급된 각 수력학적 구조는 Flow 3D 소프트웨어 내에서 검증으로 실제 검증을 획득하여 두 가지 방식에서 얻은 결과의 일관성을 나타냅니다.

Keywords: Flow 3D, numerical modeling, manual, practice, Fluid Mechanics.

e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

REFERENCIAS

Anguisa, M., & Maza, X.(2012). Estudio de los procesos de flujo en una obra de
camptación mediante experimentación de un modelo físico de escala reducida.
[Tesis de grado,Universidad de Cuenca]. Archivo Digital
http://dspace.ucuenca.edu.ec/bitstream/123456789/775/1/ti901.pdf
Arreaga, W., & Mantilla, D. (2016). Determinación de coeficientes de descarga en
orificios circulares, de pared delgada en descarga libre para diferentes
diámetros en modelos físicos. [Tesis de grado,Universidad de Guayaquil].
Archivo Digital
http://repositorio.ug.edu.ec/bitstream/redug/15855/1/ARREAGA_WILLIAM_
MANTILLA_DIEGO_TRABAJO_TITULACIÓN_HIDRÁULICA_DICIEMB
RE_2016.pdf
Arrecis, J., (2018). Evaluación de las carácterísticas del prefil tipo Creager. [Tesis de
grado,Universidad de San Carlos de Guatemala]. Archivo Digital
http://www.repositorio.usac.edu.gt/11372/1/Jared%20Alexander%20V%C3%A
9liz%20Arrecis.pdf
Barba, C. A. B. (2020). Modelación numérica (CDF) del flujo combinado superior e
inferior en una compuerta plana con el program Flow 3D. [Tesis de
Maestria,Escuela Politénica Nacional]. Archivo Digital
Bureau of Reclamation, (2007). Traducida por: Martínez, M., Batanero, A., Martínez,
G., Martínez, O., Gonzáles, O.: Diseño de Presas Peuqeñas(3ra ed). España:
Editorial Bellisco.
Calderon, F. V., Cazares, L. G., & Camacho, F. F. (2017). Dificultades conceptuales
para la comprensión de la Ecuación de Bernoulli. Revista Eureka Sobre
Enseñanza y Divulgación de Las Ciencias, 14(12), 339–352.
Fernández, J.(2012).Técnicas numéricas en ingeniería de fluido: Introducción a la
dinámica de fluidos computacional (CFD) por el método de volúmenes
finitos.Barcelona , España.:Editorial Reverté, S.A.
Flow Science. (2008). Manual de Flow 3D.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=r
ja&uact=8&ved=2ahUKEwie6p3mpfTsAhWJpFkKHRWpAHcQFjADegQIBh
AC&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FAli_Agha7%
2Fpost%2FSomebody_can_recommend_me_the_tutorials_pdf_video_of_Flow_
3d_v101_software%2Fattachment%2F59d6285e79197b8077986bf3%2FAS%2
53A330000659173377%25401455689696420%2Fdownload%2F%255BFlow_
Science%255D_FLOW3D_V9.3_User_Manual%252C_Volume_1%2528BookZZ.org%2529.pdf&usg
=AOvVaw3ALDHf9jsqn-wDYnhAXNB1
Intituto Internacional de la Investigación de Tecnología Educativa INITE. (2006).
Ecuaciones fundamentales de la hidráulica.
https://gc.scalahed.com/recursos/files/r144r/w226w/Problema_2/Problema2_Hi
draulica_Ecuaciones.pdf
Inciso, C. (2016). Análisis comparativo de las descargas en orificios y boquillas en
laboratorio de Hidráulica de un UPN, Cajamarca. [Tesis de grado,Universidad
Privada del Norte, Cajamarca. Perú]. Archivo Digital
https://repositorio.upn.edu.pe/bitstream/handle/11537/9980/Inciso%20Pajares%
20%20Carlos%20Jonathan.pdf?sequence=1&isAllowed=y

Gutiérrez, Y. (2016). Modelación numérica computacional del diseño de un vertedor
de pared delgada de sección compuesta. [Tesis de grado,Universidad Central
Marta Abreu de las Villas]. Archivo Digital
https://dspace.uclv.edu.cu/bitstream/handle/123456789/6671/Tesis%20Yunior%
20Gutierrez.pdf?sequence=1&isAllowed=y
Guncay, K. (2017). Estudio del desempeño hidráulico del canal multipropósito del
laboratorio de hidráulica y dinámica de fluidos LH&DF del campus Balzay.
[Tesis de grado,Universidad de Cuenca]. Archivo Digital
Jiménez, J., Jiménez J. (2018). Elaboración del modelo físico y la guia metodológica
para la práctica: vertederos de pared delgada, de la asignatura Mecánica de
Fluidos de la Universidad de Azuay. [Tesis de grado,Universidad de Cuenca].
Archivo Digital
http://dspace.uazuay.edu.ec/bitstream/datos/8371/1/14091.pdf
Monroy, M. (2010). Medidores De Flujo En Canales Abiertos. [Tesis de
grado,Universidad de San Carlos de Guatemala]. Archivo Digital
http://biblioteca.usac.edu.gt/tesis/08/08_3165_C.pdf
Penagos, D. F. R. (2012). Diseño y modelación de las uniones soldadas de las
compuertas planas para presas. [Tesis de posgrado,Universidad Libre de
Colombia]. Archivo Digital
https://core.ac.uk/download/pdf/198447125.pdf
Sotelo, A. (1997). Hidráulica General, Volumen 1(18va ed). Balderas 95, México,
D.F.: Editorial Limusa, S.A.
Vega, D. (2004). Vertederos de pared delgada.Centro Andino para la gestión y uso
del agua. Cochabamba.
https://www.academia.edu/6129654/Serie_T%C3%A9cnica_Agua_y_Suelo_N_
1_VERTEDEROS_DE_PARED_DELGADA_Rectangular_y_Triangular
Ven Te Chow. (1994). Hidráulica de canales abiertos. Santafé de Bogotá, Colombia.:
Editorial Martha Edna Suárez R.

Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)

교각의 형태학적 변화가 물의 이동 특성에 미치는 영향에 관한 연구

Study on the effect of morphological changes of bridge piers on water movement properties

Xianqi Zhanga,b,c, Tao Wanga,* and Bingsen Duana
a Water Conservancy College, North china University of Water Resources and Electric Power, Zhengzhou 450046, China
b Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450046, China c Technology Research Center of Water Conservancy and Marine Tra

ABSTRACT

하천을 가로지르는 교각의 다른 형태는 하천의 유동에 큰 영향을 미치며, 교각의 형태 변화가 물의 유동 특성에 미치는 영향에 대한 연구는 교량 설계 및 하천 범람에 큰 가치가 있습니다.

유체 역학 모델은 하천 흐름 패턴의 변화를 효과적으로 시뮬레이션하고 예측할 수 있으므로 하천 관리에 대한 과학적 데이터 지원을 제공할 수 있습니다.

본 논문은 Mike21을 기반으로 유체역학 모델을 구축하고 이를 황하 하류의 하천 유체역학 수치해석에 적용하고, 타원 교각을 예로 들어 교각 형태 변화가 유속에 미치는 영향을 모사한다. 강의 수위와 흐름장. 결과는 하천의 흐름 특성에 대한 타원형 교각 형태의 영향이 중요하다는 것을 보여줍니다.

동일한 유량에서 최대 축 비율에서 교각의 혼잡 값은 최소 축 비율의 1.65배이며 축 비율이 클수록 혼잡이 심각합니다. 최대 축 비율에서 유속의 차이는 최소 축 비율의 2.33배에 달할 수 있습니다.

The different shapes of bridge piers across rivers have a great influence on the river water movement, and the study of the influence of pier morphology changes on the water movement characteristics is of great value for bridge design and river flooding. The hydrodynamic model can effectively simulate and predict the changes of river flow patterns, which can provide scientific data support for river management. This paper constructs a hydrodynamic model based on Mike21 and applies it to the numerical simulation of river hydrodynamics in the lower reaches of the Yellow River, taking elliptical piers as an example, and simulates the effect of the change of pier morphology on the flow velocity, water level and flow field of the river. The results show that the effect of elliptical pier morphology on the flow characteristics of the river channel is significant; under the same flow rate, the congestion value of the pier at the maximum axis ratio is 1.65 times of the minimum axis ratio, and the larger the axis ratio, the more serious the congestion; the difference in flow velocity at the maximum axis ratio can reach 2.33 times of the minimum axis ratio.

Key words

bridge pier axial ratio, flow regime, MIKE21 flow model, numerical simulation, yellow river

Figure 2 | Location map of the study area.
Figure 2 | Location map of the study area.
Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)
Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)

REFERENCES

Bates, P. D., Horritt, M. S. & Hervouet, J. M. 2015 Investigating two-dimensional, finite element predictions of floodplain
inundation using fractal generated topography. Hydrological Processes 12(8), 1257–1277.
Costabile, P., Macchione, F., Natale, L. & Petaccia, G. 2015 Comparison of scenarios with and without bridges and analysis of
backwater effect in 1-D and 2-D river flood modeling. CMES-Computer Modeling in Engineering & Sciences 109–110(2),
81–103.
David, Y. Y., Dan, M. & Frangopol, 2019 Physics-based assessment of climate change impact on long-term regional bridge
scour risk using hydrologic modeling: application to Lehigh River watershed. Journal of Bridge Engineering 24(11).
Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D. & Efstratiadis, A.
2016 Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for
uncertainty assessment in flood mapping. Journal of Hydrology 534, 478–492.
Echeverribar, I., Morales-Hernández, M., Brufau, P. & García-Navarro, 2019 2D numerical simulation of unsteady flows for
large scale floods prediction in real time. Advances in Water Resources 134.
Hai, X. S. & Wei, P. L. 2018 Numerical simulation of turbulent width of square bridge pier in curved river channel. Water
Transport Engineering (01), 134–141.
Liu, X. C., Geng, P. C., Cao, L. & Sun, X. L. 2020 Mike21 simulates the influence of cross-river bridge on river regime. People’s
Yellow River 42(S1), 24–25 þ 29.
Luo, W. G., Lu, J. & Lai, H. 2015 Research on the backwater in front of multiple parallel bridge piers at equal distances. Journal
of Sichuan University: Engineering Science Editio 47(4), 6–13.
Majedul, M. M., Ekaterina, S. & Nynke, H. 2018 Modelling of river faecal indicator bacteria dynamics as a basis for faecal
contamination reduction. Journal of Hydrology 563.
Mao, M. X., Huang, H. M. & Wang, Y. G. 2018 Effects of grid size on numerical simulation of river hydrodynamics [J]. Influence
of grid size on numerical simulation of river hydrodynamics. Water Transport Engineering (3), 135–142.
Tang, Y. H. 2014 Application of TUFLOW in simulating the impact of bridge piers on flooding evaluation. Hydropower Energy
Science 32(02), 55–59.
Tewodros, A. N. & Abdusselam, A. 2019 Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul,
Turkey, using the MIKE 21 FM model. Natural Hazards 99(2).
Wan, L. M. & Li, P. J. 2018 Numerical simulation of navigable flow conditions of bridges across rivers. Water Conservancy
Science and Technology and Economy 24(02), 28–33.
Wang, W. & Jing, H. 2019 Effects of bridge piers on flood hazards: a case study on the Jialing river in China. Water 11(6), 1181.
Wang, Q. N., Peng, W. Q., Dong, F. & Nan, O. 2020 Simulating flow of an urban river course with complex cross sections based
on the MIKE21 FM model. Water 12(3).
Xu, T. 2010 Overview of Danish MIKE21 model and application examples. Water Technology and Economics 16(08), 867–869.
Yan, J. C., Xu, H. & Jiao, Z. X. 2020 Prediction and numerical simulation of bridge pier congestion based on conservation of
momentum. People’s Changjiang 51(S2), 280–284.
Yu, P. & Zhu, Z. W. 2019 Refinement of local scour simulation for tandem double cylindrical bridge piers. Chinese Journal of
Highways 32(01), 107–116.
Yuan, X. Y., Feng, S. L., Wang, Z. K., Xu, W. & Si, L. C. 2020 Two-dimensional numerical simulation of the effect of bridge pier
shape on water flow. People’s Yellow River 42(S2), 37–39 þ 42.
Zhang, S. G., Yin, J. B. & Zhang, G. G. 2020 Flow-3D-based simulation of local scour large eddies for cylindrical bridge piers.
Sediment Research 45(01), 67–73.
Zhang, X. Q., Wang, T. & Lu, X. B. 2021 Influence of bridge piers shapes on the flow of the lower Yellow River. Water Practice
& Technology 16(2), 661–680.

Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s.

Optimization Algorithms and Engineering: Recent Advances and Applications

Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.


강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1 The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 4 Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 9 Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 14 Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 19 Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 20 Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 21 Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Watershed area

Analysis on inundation characteristics by compound external forces in coastal areas

연안 지역의 복합 외력에 의한 침수 특성 분석

Taeuk KangaDongkyun SunbSangho Leec*
강 태욱a선 동균b이 상호c*
aResearch Professor, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreabResearcher, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreacProfessor, Department of Civil Engineering, Pukyong National University, Busan, Korea
a부경대학교 방재연구소 전임연구교수b부경대학교 방재연구소 연구원c부경대학교 공과대학 토목공학과 교수*Corresponding Author

ABSTRACT

연안 지역은 강우, 조위, 월파 등 여러가지 외력에 의해 침수가 발생될 수 있다. 이에 이 연구에서는 연안 지역에서 발생될 수 있는 단일 및 복합 외력에 의한 지역별 침수 특성을 분석하였다. 연구에서 고려한 외력은 강우와 폭풍 해일에 의한 조위 및 월파이고, 분석 대상지역은 남해안 및 서해안의 4개 지역이다. 유역의 강우-유출 및 2차원 지표면 침수 분석에는 XP-SWMM이 사용되었고, 폭풍 해일에 의한 외력인 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 모형과 FLOW-3D 모형이 각각 활용되었다. 단일 외력을 이용한 분석 결과, 대부분의 연안 지역에서는 강우에 의한 침수 영향보다 폭풍 해일에 의한 침수 영향이 크게 나타났다. 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 지역의 침수 피해 저감을 위해서는 복합 외력을 고려한 분석이 요구되는 것으로 판단되었다.키워드연안 지역 침수 분석 강우 폭풍 해일 복합 외력

The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn’t appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.KeywordsCoastal area Inundation analysis Rainfall Storm surge Compound external forces

MAIN

1. 서 론

우리나라는 반도에 위치하여 삼면이 바다로 둘러싸여 있는 지리적 특성을 가지고 있다. 이에 따라 해양 산업을 중심으로 부산, 인천, 울산 등 대규모의 광역도시가 발달하였을 뿐만 아니라, 창원, 포항, 군산, 목포, 여수 등의 중․소규모 도시들도 발달되어 있다. 또한, 최근에는 연안 지역이 바다를 전망으로 하는 입지 조건을 가지고 있어 개발 선호도가 높고, 이에 따라 부산시 해운대의 마린시티, 엘시티와 같은 주거 및 상업시설의 개발이 지속되고 있다(Kang et al., 2019b).

한편, 최근 기후변화에 따른 지구 온난화 현상으로 평균 해수면이 상승하고, 해수면 온도도 상승하면서 태풍 및 강우의 강도가 커지고 있어 전 세계적으로 자연 재해로 인한 피해가 증가하고 있다(Kim et al., 2016). 실제로 2020년에는 최장기간의 장마가 발생하여 부산, 울산은 물론, 전국에서 50명의 인명 피해와 3,489세대의 이재민이 발생하였다1). 특히, 연안 지역은 강우, 만조 시 해수면 상승, 폭풍 해일(storm surge)에 의한 월파(wave overtopping) 등 복합적인 외력(compound external forces)에 의해 침수될 수 있다(Lee et al., 2020). 일례로, 2016년 태풍 차바 시 부산시 해운대구의 마린시티는 강우와 폭풍 해일에 의한 월파가 발생함에 따라 대규모 침수를 유발하였다(Kang et al., 2019b). 또한, 2020년 7월 23일에 부산에서는 시간당 81.6 mm의 집중호우와 약최고고조위를 상회하는 만조가 동시에 발생하였고, 이로 인해 감조 하천인 동천의 수위가 크게 상승하여 하천이 범람하였다(KSCE, 2021).

연안 지역의 복합 외력을 고려한 침수 분석에 관한 사례로서, 우선 강우와 조위를 고려한 연구 사례는 다음과 같다. Han et al. (2014)은 XP-SWMM을 이용하여 창원시 배수 구역을 대상으로 침수 모의를 수행하였는데, 연안 도시의 침수 모의에는 조위의 영향을 반드시 고려해야 함을 제시하였다. Choi et al. (2018a)은 경남 사천시 선구동 일대에 대하여 초과 강우 및 해수면 상승 시나리오를 조합하여 침수 분석을 수행하였다. Choi et al. (2018b)은 XP-SWMM을 이용하여 여수시 연등천 및 여수시청 지역에 대하여 강우 시나리오와 해수위 상승 시나리오를 고려한 복합 원인에 의한 침수 모의를 수행하여 홍수예경보 기준표를 작성하였다. 한편, 강우, 조위, 월파를 고려한 연구 사례로서, Song et al. (2017)은 부산시 해운대구 수영만 일원에 대하여 XP-SWMM으로 월파량의 적용 유무에 따른 침수 면적을 비교하였다. Suh and Kim (2018)은 부산시 마린시티 지역을 대상으로 태풍 차바 때 EurOtop의 경험식을 ADSWAN에 적용하여 월파량을 반영하였다. Chen et al. (2017)은 TELEMAC-2D 및 SWMM을 기반으로 한 극한 강우, 월파 및 조위를 고려하여 중국 해안 원자력 발전소의 침수를 예측하고 분석하기 위한 결합 모델을 개발한 바 있다. 한편, Lee et al. (2020)은 수리‧수문학 분야와 해양공학 분야에서 사용되는 물리 모형의 기술적 연계를 통해 연안 지역의 침수 모의의 재현성을 높였다.

상기의 연구들은 공통적으로 연안 지역에 대하여 복합 외력을 고려했을 때 발생되는 침수 현상의 재현 또는 예측을 목적으로 수행되었다. 이 연구는 이와 차별하여 복합 외력을 고려하는 경우 나타날 수 있는 연안 지역의 침수 특성 분석을 목적으로 수행되었다. 이를 위해 단일 외력을 독립적으로 고려했을 때 발생되는 침수 양상과 동시에 고려하는 경우의 침수 현상을 비교, 분석하였다. 복합 외력에 의한 지역적 침수 특성 분석은 우리나라 남해안과 서해안에 위치한 4개 지역에 대하여 적용되었다.

1) 장연제, 47일째 이어진 긴 장마, 50명 인명피해… 9년만에 최대, 동아닷컴, 2020년 8월 9일 수정, 2021년 3월 4일 접속, https://www.donga.com/news/article/all/20200809/102369692/2

2. 연구 방법

2.1 연안 지역의 침수 영향 인자

연안 지역의 침수는 크게 세 가지의 메카니즘으로 발생될 수 있다. 우선, 연안 지역은 바다와 인접하고 있기 때문에 그 영향을 직접적으로 받는다. Kim (2018)에 의하면, 연안 지역의 침수는 폭풍 해일에 의해 상승한 조위와 월파로 인해 발생될 수 있다(Table 1). 특히, 경상남도의 창원과 통영, 인천광역시의 소래포구 어시장 등 남해안 및 서해안 지역의 일부는 백중사리, 슈퍼문(super moon) 등 만조 시 조위의 상승으로 인한 침수가 발생하는 지역이 존재한다(Kang et al., 2019a). 두 번째는 강우에 의한 내수 침수 발생이다. ME (2011)에서는 도시 지역의 우수 관거를 10 ~ 30년 빈도로 계획하도록 지정하고 있고, 펌프 시설은 30 ~ 50년 빈도의 홍수를 배수시킬 수 있도록 정하고 있다. 하지만 최근에는 기후변화의 영향으로 도시 지역 배수시설의 설계 빈도를 초과하는 강우가 빈번하게 나타나고 있다. 실제로 2016년의 태풍 차바 시 울산 기상관측소에 관측된 시간 최대 강우량은 106.0 mm로서, 이는 300년 빈도 이상의 강우량에 해당하였다(Kang et al., 2019a). 따라서 배수시설의 설계 빈도 이상의 강우는 연안 도시 지역의 침수를 유발할 수 있다. 세 번째, 하천이 인접한 연안 도시에서는 하천의 범람으로 인해 침수가 발생할 수 있다. 하천의 경우, 기본계획이 수립되기는 하지만, 설계 빈도를 상회하는 강우의 발생, 제방, 수문 등 홍수 방어시설의 기능 저하, 예산 등의 문제로 하천기본계획 이행의 지연 등에 의해 범람할 가능성이 존재한다.

Table 1.

Type of natural hazard damage in coastal areas (Kim, 2018)

ItemRisk factor
Facilities damage∙ Breaking of coastal facilities by wave
– Breakwater, revetment, lighters wharf etc.
∙ Local scouring at the toe of the structures by wave
∙ Road collapse by wave overtopping
Inundation damage∙ Inundation damage by wave overtopping
∙ Inundation of coastal lowlands by storm surge
Erosion damage∙ Backshore erosion due to high swell waves
∙ Shoreline changes caused by construction of coastal erosion control structure
∙ Sediment transport due to the construction of artificial structures

상기의 내용을 종합하면, 연안 지역은 조위 및 월파에 의한 침수, 강우에 의한 내수 침수, 하천 범람에 의한 침수로 구분될 수 있다. 이 연구에서는 폭풍 해일에 의한 조위 상승 및 월파와 강우를 연안 지역의 침수 유발 외력으로 고려하였다. 하천 범람의 경우, 상대적으로 사례가 희소하여 제외하였다.

2.2 복합 외력을 고려한 침수 모의 방법

이 연구에서는 조위 및 월파와 강우를 연안 지역의 침수 발생에 관한 외력 조건으로 고려하였다. 따라서 해당 외력 조건을 고려하여 침수 분석을 수행할 수 있어야 한다. 이와 관련하여 Lee et al. (2020)은 Fig. 1과 같이 수리‧수문 및 해양공학 분야에서 사용되는 물리 기반 모형의 연계를 통해 조위, 월파, 강우를 고려한 침수 분석 방법을 제시하였고, 이 연구에서는 해당 방법을 이용하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F1.jpg
Fig. 1.

Connection among the models for inundation analysis in coastal areas (Lee et al., 2020)

우선, 태풍에 의해 발생되는 폭풍 해일의 영향을 분석하기 위해서는 태풍에 의해 발생되는 기압 강하, 해상풍, 진행 속도 등을 고려하여 해수면의 변화 양상 및 조석-해일-파랑을 충분히 재현 가능해야 한다. 이 연구에서는 국내․외에서 검증 및 공인된 폭풍 해일 모형인 ADCIRC 모형과 파랑 모형인 UnSWAN이 결합된 ADCSWAN (coupled model of ADCIRC and UnSWAN)을 이용하였다. 정수압 가정의 ADCSWAN은 월파량 산정에 단순 경험식을 적용하는 단점이 있지만 넓은 영역을 모의할 수 있고, FLOW-3D는 해안선의 경계를 고해상도로 재현이 가능하다. 이에 연구에서는 먼 바다 영역에 대해서는 ADCSWAN을 이용하여 분석하였고, 연안 주변의 바다 영역과 월파량 산정에 대해서는 FLOW-3D 모형을 이용하였다. 한편, 연안 지역의 침수 모의를 위해서는 유역에서 발생하는 강우-유출 현상과 우수 관거 등의 배수 체계에 대한 분석이 가능해야 한다. 또한, 배수 체계로부터 범람한 물이 지표면을 따라 흘러가는 현상을 해석할 수 있어야 하고, 바다의 조위 및 월파량을 경계조건으로 반영할 수 있어야 한다. 이 연구에서는 이러한 현상을 모의할 수 있고, 도시 침수 모의에 활용도가 높은 XP-SWMM을 이용하였다.

2.3 침수 분석 대상지역

연구의 대상지역은 조위 및 월파에 의한 침수와 강우에 의한 내수 침수의 영향이 복합적으로 발생할 수 있는 남해안과 서해안에 위치한 4개 지역이다. Table 2는 침수 분석 대상지역을 정리하여 나타낸 표이고, Fig. 2는 각 지역의 유역 경계를 나타낸 그림이다.

Table 2.

Target region for inundation analysis

ClassificationAdministrative districtTarget regionArea
(km2)
Main cause of inundationPump
facility
Number of
major outfall
The south
coast
Haundae-gu, BusanMarine City area0.53Wave overtopping9
Haundae-gu, BusanCentum City area4.76Poor interior drainage at high tide level12
The west
coast
GunsanJungang-dong area0.79Poor interior drainage at high tide level23
BoryeongOcheon Port area0.41High tide level5

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F2.jpg
Fig. 2.

Watershed area

남해안의 분석 대상지역 중 부산시 해운대구의 마린시티는 바다 조망을 중심으로 조성된 주거지 및 상업시설 중심의 개발지역이다. 마린시티는 2016년 태풍 차바 및 2018년 태풍 콩레이 등 태풍 내습 시 월파에 의한 해수 월류로 인해 도로 및 상가 일부가 침수를 겪은 지역이다. 부산시 해운대구의 센텀시티는 과거 수영만 매립지였던 곳에 조성된 주거지 및 상업시설 중심의 신도시 지역이다. 센텀시티 유역의 북쪽은 해발고도 El. 634 m의 장산이 위치하는 등 산지 특성도 가지고 있어 상대적으로 유역 면적이 넓고, 배수시설의 규모도 크고 복잡하다. 하지만 수영강 하구의 저지대 지역에 위치함에 따라 강우 시 내수 배제가 불량하고, 특히 만조 시 침수가 잦은 지역이다.

서해안 분석 대상지역 중 전라북도 군산시의 중앙동 일원은 군산시 내항 내측에 조성된 구도시로서, 금강 및 경포천 하구에 위치하는 저지대이다. 이에 따라 군산시 풍수해저감종합계획에서는 해당 지역을 3개의 영역으로 구분하여 내수재해 위험지구(영동지구, 중동지구, 경암지구)로 지정하였고, 이 연구에서는 해당 지역을 모두 고려하였다. 한편, 군산시 중앙동 일원은 특히, 만조 시 내수 배제가 매우 불량하여 2개의 펌프시설이 운영되고 있다. 충청남도 보령시의 오천면에 위치한 오천항은 배후의 산지를 포함한 소규모 유역에 위치한다. 서해안의 특성에 따라 조석 간만의 차가 크고, 특히 태풍 내습 시 폭풍 해일에 의한 침수가 잦은 지역이다. 산지의 강우-유출수는 복개된 2개의 수로를 통해 바다로 배제되고, 상가들이 위치한 연안 주변 지역에는 강우-유출수 배제를 위한 3개의 배수 체계가 구성되어 있다.

3. 연구 결과

3.1 침수 모의 모형 구축

XP-SWMM을 이용하여 분석 대상지역별 침수 모의 모형을 구축하였다. 적절한 침수 분석 수행을 위해 지역별 수치지형도, 도시 공간 정보 시스템(urban information system, UIS), 하수 관망도 등의 수치 자료와 현장 조사를 통해 유역의 배수 체계를 구성하였다. 그리고 2차원 침수 분석을 위해 무인 드론 및 육상 라이다(LiDAR) 측량을 수행하여 평면해상도가 1 m 이하인 고해상도 수치지형모형(digital terrain model, DTM)을 구성하였고, 침수 모의 격자를 생성하였다.

Fig. 3은 XP-SWMM의 상세 구축 사례로서 부산시 마린시티 배수 유역에 대한 소유역 및 관거 분할 등을 통해 구성한 배수 체계와 고해상도 측량 결과를 이용하여 구성한 수치표면모형(digital surface model, DSM)을 나타낸다. Fig. 4는 각 대상지역에 대해 XP-SWMM을 이용하여 구축한 침수 모의 모형을 나타낸다. 침수 분석을 위해서는 침수 모의 영역에 대한 설정이 필요한데, 다수의 사전 모의를 통해 유역 내에서 침수가 발생되는 지역을 검토하여 결정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F3.jpg
Fig. 3.

Analysis of watershed drainage system and high-resolution survey for Marine City

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F4.jpg
Fig. 4.

Simulation model for inundation analysis by target region using XP-SWMM

한편, 이 연구에서는 월파량 및 조위의 산정 과정과 침수 모의 모형의 보정에 관한 내용 등은 다루지 않았다. 관련된 내용은 선행 연구인 Kang et al. (2019b)와 Lee et al. (2020)을 참조할 수 있다.

3.2 침수 모의 설정

3.2.1 분석 방법

복합 외력에 의한 침수 영향을 검토하기 위해서는 외력 조건에 대한 빈도와 지속기간의 설정이 필요하다. 이 연구에서는 재해 현상이 충분히 나타날 수 있도록 강우와 조위 및 월파의 빈도를 모두 100년으로 설정하였다. 이때, 조위와 월파량의 산정에는 만조(약최고고조위) 시, 100년 빈도에 해당하는 태풍 내습에 따른 폭풍 해일의 발생 조건을 고려하였다.

지역별 강우 발생 특성과 유역 특성을 고려하기 위해 MOIS (2017)의 방재성능목표 기준에 따라 임계 지속기간을 결정하여 대상지역별 강우의 지속기간으로 설정하였다. 이때, 강우의 시간 분포는 MLTM (2011)의 Huff 3분위를 이용하였다. 그리고 조위와 월파의 경우, 일반적인 폭풍 해일의 지속기간을 고려하여 5시간으로 결정하였다. 한편, 침수 모의를 위한 계산 시간 간격, 2차원 모의 격자 등의 입력자료는 분석 대상지역의 유역 규모와 침수 분석 대상 영역을 고려하여 결정하였다. 참고로 침수 분석에 사용된 수치지형모형은 1 m 급의 고해상도로 구성되었지만, 2차원 침수 모의 격자의 크기는 지역별로 3 ~ 4 m이다. 이는 연구에서 사용된 XP-SWMM의 격자 수(100,000개) 제약에 따른 설정이나, Sun (2021)은 민감도 분석을 통해 2차원 침수 분석을 위한 적정 격자 크기를 3 ~ 4.5 m로 제시한 바 있다.

Table 3은 이 연구에서 설정한 침수 모의 조건과 분석 방법을 정리하여 나타낸 표이다.

Table 3.

Simulation condition and method

ClassificationTarget regionSimulation conditionSimulation method
RainfallStorm surgeSimulation time interval2D
grid size
Return
period
DurationTemporal
distribution
Return
period
DurationWatershed
routing
Channel
routing
2D
inundation
The south coastMarine City area100 yr1 hr3rd quartile
of Huff’s
method
1005 hr5 min10 sec1 sec3 m
Centum City area1 hr1005 min10 sec1 sec4 m
The west coastJungang-dong area2 hr1005 min10 sec1 sec3.5 m
Ocheon Port area1 hr1001 min10 sec1 sec3 m

3.2.2 복합 재해의 동시 고려

이 연구의 대상지역들은 모두 소규모의 해안가 도시지역이고, 이러한 지역에 대한 강우의 임계지속기간은 1시간 ~ 2시간이나, 이 연구에서 분석한 폭풍 해일의 지속기간은 5시간으로 강우의 지속기간과 폭풍 해일의 지속기간이 상이하다. 이에 이 연구에서는 서로 다른 지속기간을 가진 강우와 폭풍 해일 또는 조위를 고려하기 위해 강우의 중심과 폭풍 해일의 중심이 동일한 시간에 위치하도록 설정하였다(Fig. 5).

XP-SWMM은 폭풍 해일이 지속되는 5시간 전체를 모의하도록 설정하였고, 폭풍 해일이 가장 큰 시점에 강우의 중심이 위치하도록 강우 발생 시기를 결정하였다. 다만, 부산 마린시티의 경우, 폭풍 해일에 의한 피해가 주로 월파에 의해 발생되므로 강우의 중심과 월파의 중심을 일치시켰고(Fig. 5(a)), 상대적으로 조위의 영향이 큰 3개 지역은 강우의 중심과 조위의 중심을 맞추었다. Fig. 5(b)는 군산시 중앙동 지역의 복합 외력에 의한 침수 분석에 사용된 강우와 조위의 조합이다.

한편, 100년 빈도의 확률강우량만을 고려한 침수 분석에서는 유역 유출부의 경계조건으로 우수 관거의 설계 조건을 고려하여 약최고고조위가 일정하게 유지되도록 설정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F5.jpg
Fig. 5.

Consideration of external force conditions with different durations

3.2.3 XP-SWMM의 월파량 고려

XP-SWMM에 ADCSWAN 및 FLOW-3D 모형에 의해 산정된 월파량을 입력하기 위해 해안가 지역에 절점을 생성하여 월파 현상을 구현하였다. XP-SWMM에서 월파량을 입력하기 위한 절점의 위치는 FLOW-3D 모형에서 월파량을 산정한 격자의 중심 위치이다.

Fig. 6(a)는 마린시티 지역에 대한 월파량 입력 지점을 나타낸 것으로서, 유역 경계 주변에 동일 간격으로 원으로 표시한 지점들이 해당된다. Fig. 6(b)는 XP-SWMM에 월파량 입력 지점들을 반영하고, 하나의 절점에 월파량 시계열을 입력한 화면을 나타낸다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F6.jpg
Fig. 6.

Considering wave overtopping on XP-SWMM

3.3 침수 모의 결과

3.3.1 단일 외력에 의한 침수 모의 결과

Fig. 7은 단일 외력을 고려한 지역별 침수 모의 결과이다. 즉, Fig. 7의 왼쪽 그림들은 지역별로 100년 빈도 강우에 의한 침수 모의 결과를 나타내고, Fig. 7의 오른쪽 그림들은 만조 시 100년 빈도 폭풍 해일에 의한 침수 모의 결과이다. 대체로 강우에 의한 침수 영역은 유역 중․상류 지역의 유역 전반에 걸쳐 발생하였고, 폭풍 해일에 의한 침수 영역은 해안가 전면부에 위치하는 것을 볼 수 있다. 이는 폭풍 해일에 의한 조위 상승과 월파의 영향이 상류로 갈수록 감소하기 때문이다.

한편, 4개 지역 모두에서 공통적으로 강우에 비해 폭풍 해일에 의한 침수 영향이 상대적으로 크게 분석되었다. 이러한 결과는 연안 지역의 경우, 폭풍 해일에 대비한 침수 피해 저감 노력이 보다 중요함을 의미한다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F7.jpg
Fig. 7.

Simulation results by single external force (left: rainfall, right: storm surge)

3.3.2 복합 외력에 의한 침수 모의 결과

Fig. 8은 복합 외력을 고려한 지역별 침수 모의 결과이다. 즉, 강우 및 폭풍 해일을 동시에 고려함에 따라 발생된 침수 영역을 나타낸다. 복합 외력을 고려하는 경우, 단일 외력만을 고려한 분석 결과(Fig. 7)보다 침수 영역은 넓어졌고, 침수심은 깊어졌다.

복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였고, 이는 일반적으로 예상할 수 있는 결과이다. 주목할만한 결과는 군산시 중앙동의 침수 분석에서 나타났다. 즉, 군산시 중앙동의 경우, 단일 외력만을 고려한 침수 모의 결과에서 나타나지 않았던 새로운 침수 영역이 발생하였다(Fig. 8(c)). 이와 관련된 상세 내용은 3.4절의 고찰에서 기술하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F8.jpg
Fig. 8.

Simulation results by compound external forces

3.4 결과 고찰

외력 조건별 침수의 영향을 정량적으로 비교하기 위해 침수 면적을 이용하였다. 이 연구에서는 강우만에 의해 유발된 침수 면적을 기준(기준값: 1)으로 하고, 폭풍 해일(조위+월파량)에 의한 침수 면적과 복합 외력에 의한 침수 면적의 상대적 비율로 분석하였다(Table 4).

Table 4.

Impact evaluation for inundation area by external force

ConditionMarine City, BusanCentum City, BusanJungang-dong area,
Gunsan
Ocheon Port area,
Boryeong
Inundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
Rate
Single
external force
Rainfall (①)0.01641.00.07591.00.04571.00.01751.0
Storm surge (②)0.03632.210.06850.900.14633.200.04122.35
Compound
external forces
Combination
(①+②)
0.05243.190.15051.980.26325.760.04732.70

분석 결과, 부산 센텀시티를 제외한 3개 지역은 모두 폭풍 해일에 의한 침수 면적이 강우에 의한 침수 면적에 비해 2.2 ~ 3.2배 넓은 것으로 분석되었다. 한편, 복합 외력에 의한 침수 면적은 마린시티와 센텀시티의 경우, 각각의 외력에 의한 침수 면적의 합과 유사하게 나타났다. 이는 각각의 외력에 의한 침수 영역이 상이하여 거의 중복되지 않음을 의미한다. 반면에, 오천항에서는 각각의 외력에 의한 침수 면적의 합이 복합 외력에 의한 면적보다 크게 나타났다. 이는 오천항의 경우, 유역면적이 작고 배수 체계가 비교적 단순하여 강우와 폭풍 해일에 의한 침수 영역이 중복되기 때문인 것으로 분석되었다(Fig. 7(d)).

군산시 중앙동 일대의 경우, 복합 외력에 의한 침수 면적이 각각의 독립적인 외력 조건에 의한 침수 면적의 합에 비해 37.1% 크게 나타났다. 이러한 현상의 원인을 분석하기 위해 복합 외력 조건에서만 나타난 우수 관거(Fig. 8(c)의 A 구간)에 대하여 종단을 검토하였다(Fig. 9). Fig. 9(a)는 강우만에 의해 분석된 우수 관거 내 흐름 종단을 나타내고, Fig. 9(b)는 폭풍 해일만에 의한 우수 관거의 종단이다. 그림을 통해 각각의 독립적인 외력 조건 하에서는 해당 구간에서 침수가 발생되지 않은 것을 볼 수 있다. 다만, 강우만을 고려하더라도 우수 관거는 만관이 된 상태를 확인할 수 있다(Fig. 9(a)). 반면에, 만관 상태에서 폭풍 해일이 함께 고려됨에 따라 해수 범람과 조위 상승에 의해 우수 배제가 불량하게 되었고, 이로 인해 침수가 유발된 것으로 분석되었다(Fig. 9(c)). 따라서 이러한 지역은 복합 외력에 대한 취약지구로 판단할 수 있고, 단일 외력의 고려만으로는 침수를 예상하기 어려운 지역임을 알 수 있다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F9.jpg
Fig. 9.

A part of drainage profiles by external force in Jungang-dong area, Gunsan

4. 결 론

이 연구에서는 외력 조건에 따른 연안 지역의 침수 특성을 분석하였다. 연구에서 고려된 외력 조건은 두 가지로서 강우와 폭풍 해일(조위와 월파)이다. 분석 대상 연안 지역으로는 남해안에 위치하는 2개 지역(부산시 해운대구의 마린시티와 센텀시티)과 서해안의 2개 지역(군산시 중앙동 일원 및 보령시 오천항)이 선정되었다.

복합 외력을 고려한 연안 지역의 침수 모의를 위해서는 유역의 강우-유출 현상과 바다의 조위 및 월파량을 경계조건으로 반영할 수 있는 침수 모의 모형이 요구되는데, 이 연구에서는 XP-SWMM을 이용하였다. 한편, 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 및 FLOW-3D 모형이 이용되었다.

연안 지역별 침수 모의는 100년 빈도의 강우와 폭풍 해일을 독립적으로 고려한 경우와 복합적으로 고려한 경우를 구분하여 수행되었다. 우선, 외력을 독립적으로 고려한 결과, 대체로 폭풍 해일만 고려한 경우가 강우만 고려한 경우에 비해 침수 영향이 크게 나타났다. 따라서 연안 지역의 경우, 폭풍 해일에 의한 침수 피해 방지 계획이 상대적으로 중요한 것으로 분석되었다. 두 번째, 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수 모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 결과는 독립적인 외력 조건에서는 우수 관거가 만관 또는 그 이하의 상태가 되지만, 두 가지의 외력이 동시에 고려됨에 따라 우수 관거의 통수능 한계를 초과하여 나타났다. 이러한 지역은 복합 외력에 대한 취약지구로 판단되었고, 해당 지역의 적절한 침수 방지 대책 수립을 위해서는 복합적인 외력 조건이 고려되어야 함을 시사하였다.

현행, 자연재해저감종합계획에서는 침수와 관련된 재해 원인 지역을 내수재해, 해안재해, 하천재해 등으로 구분하고 있다. 하지만 이 연구에서 검토된 바와 같이, 연안 지역의 침수 원인은 복합적으로 나타날 뿐만 아니라, 복합 외력을 고려함에 따라 추가적으로 나타날 수 있는 침수 위험 지역도 존재한다. 따라서 기존의 획일적인 재해 원인의 구분보다는 지역의 특성에 맞는 복합적인 재해 원인을 검토할 필요가 있음을 제안한다.

Acknowledgements

본 논문은 행정안전부 극한 재난대응 기반기술 개발사업의 일환인 “해안가 복합재난 위험지역 피해저감 기술개발(연구과제번호: 2018-MOIS31-008)”의 지원으로 수행되었습니다.

References

1
Chen, X., Ji, P., Wu, Y., and Zhao, L. (2017). “Coupling simulation of overland flooding and underground network drainage in a coastal nuclear power plant.” Nuclear Engineering and Design, Vol. 325, pp. 129-134. 10.1016/j.nucengdes.2017.09.028
2
Choi, G., Song, Y., and Lee, J. (2018a). “Analysis of flood occurrence type according to complex characteristics of coastal cities.” 2018 Conference of the Korean Society of Hazard Mitigation, KOSHAM, p. 180.
3
Choi, J., Park, K., Choi, S., and Jun, H. (2018b). “A forecasting and alarm system for reducing damage from inland inundation in coastal urban areas: A case study of Yeosu City.” Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 475-484. 10.9798/KOSHAM.2018.18.7.475
4
Han, H., Kim, Y., Kang, N., and, Kim, H.S. (2014). “Inundation analysis of a coastal urban area considering tide level.” 2014 Conference of Korean Society of Civil Engineers, KSCE, pp. 1507-1508.
5
Kang, T., Lee, S., and Sun, D. (2019a). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in Coastal Areas (1): Proposal for analytical method.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 35-43. 10.9798/KOSHAM.2019.19.5.35
6
Kang, T., Lee, S., Choi, H., and Yoon, S. (2019b). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in coastal areas (2): Case analysis for application.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 45-53. 10.9798/KOSHAM.2019.19.5.45
7
Kim, J.O., Kim, J.Y., and Lee, W.H. (2016). “Analysis on complex disaster information contents for building disaster map of coastal cities.” Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 3, pp. 43-60. 10.11108/kagis.2016.19.3.043
8
Kim, P.J. (2018). Improvement measures on the risk area designation of coastal disaster in consideration of natural hazards. Ph.D. dissertation, Chonnam National University.
9
Korean Society of Civil Engineers (KSCE) (2021). A report on the cause analysis and countermeasures establishment for Dongcheon flooding and lowland inundation. Busan/Ulsan, Gyungnam branch.
10
Lee, S., Kang, T., Sun, D., and Park, J.J. (2020). “Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed.” Sustainability, Vol. 12, No. 16, 6572. 10.3390/su12166572
11
Ministry of Environment (ME) (2011). Standard for sewerage facilities. Korea Water and Wastewater Works Association.
12
Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and complementary research for probability rainfall.
13
Ministry of the Interior and Safety (MOIS) (2017). Criteria for establishment and operation of disaster prevention performance target by region: Considering future climate change impacts.
14
Song, Y., Joo, J., Lee, J., and Park, M. (2017). “A study on estimation of inundation area in coastal urban area applying wave overtopping.” Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 501-510. 10.9798/KOSHAM.2017.17.2.501
15
Suh, S.W., and Kim, H.J. (2018). “Simulation of wave overtopping and inundation over a dike caused by Typhoon Chaba at Marine City, Busan, Korea.” Journal of Coastal Research, Vol. 85, pp. 711-715.
16
Sun, D. (2021). Sensitivity analysis of XP-SWMM for inundation analysis in coastal area. M.Sc. Thesis, Pukyong National University.

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract

레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.

SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.

결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.

그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.

이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

Keywords

Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing

付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動

奥 川 将 行*・宮 田 雄一朗*・王     雷*・能 勢 和 史*
小 泉 雄一郎*・中 野 貴 由*
Masayuki OKUGAWA, Yuichiro MIYATA, Lei WANG, Kazufumi NOSE,
Yuichiro KOIZUMI and Takayoshi NAKANO

Abstract

적층 제조(AM) 기술은 복잡한 형상의 3D 부품을 쉽게 만들고 미세 구조 제어를 통해 재료 특성을 크게 제어할 수 있기 때문에 많은 관심을 받았습니다. PBF(Powderbed fusion) 방식의 AM 공정에서는 금속 분말을 레이저나 전자빔으로 녹이고 응고시키는 과정을 반복하여 3D 부품을 제작합니다.

일반적으로 응고 미세구조는 Hunt[Mater. 과학. 영어 65, 75(1984)]. 그러나 CET 이론이 일반 316L 스테인리스강에서도 높은 G와 R로 인해 PBF형 AM 공정에 적용될 수 있을지는 불확실하다.

본 연구에서는 미세구조와 응고 조건 간의 관계를 밝히기 위해 전자빔 조사에 의해 유도된 316L 강의 응고 미세구조를 분석하고 CtFD(Computational Thermal-Fluid Dynamics) 방법을 사용하여 고체/액체 계면에서의 응고 조건을 평가했습니다.

CET 이론과 반대로 높은 G 조건에서 등축 결정립이 종종 형성되는 것으로 밝혀졌다. CtFD 시뮬레이션은 약 400 mm s-1의 속도까지 유체 흐름이 있음을 보여 주며 수상 돌기의 파편 및 이동의 영향으로 등축 결정립이 형성됨을 시사했습니다.

Additive manufacturing(AM)technologies have attracted much attention because it enables us to build 3D parts with complicated geometry easily and control material properties significantly via the control of microstructures. In the powderbed fusion(PBF)type AM process, 3D parts are fabricated by repeating a process of melting and solidifying metal powders by laser or electron beams. In general, the solidification microstructures can be predicted from solidification conditions defined by the combination of temperature gradient G and solidification rate R on the basis of columnar-equiaxed transition(CET)theory proposed by Hunt [Mater. Sci. Eng. 65, 75(1984)]. However, it is unclear whether the CET theory can be applied to the PBF type AM process because of the high G and R, even for general 316L stainless steel. In this study, to reveal relationships between microstructures and solidification conditions, we have analyzed solidification microstructures of 316L steel induced by electronbeam irradiation and evaluated solidification conditions at the solid/liquid interface using a computational thermal-fluid dynamics (CtFD)method. It was found that equiaxed grains were often formed under high G conditions contrary to the CET theory. CtFD simulation revealed that there is a fluid flow up to a velocity of about 400 mm s-1, and suggested that equiaxed grains are formed owing to the effect of fragmentations and migrations of dendrites.

Keywords

Additive Manufacturing, 316L Stainless Steel, Powder Bed Fusion, Electron Beam Melting, Computational Thermal
Fluid Dynamics Simulation

Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity

References

1) M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R.
Fabbro and P. Peyre: “Influence of beam diameter on Laser Powder

Bed Fusion(L-PBF)process”, Addit. Manuf. 36(2020), 101532.
2) J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G.
Zhou and S.N. Schiffres: “Influence of processing and microstructure
on the local and bulk thermal conductivity of selective laser melted
316L stainless steel”, Addit. Manuf. 32(2020), 100996.
3) S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia and F. List:
“Microstructure and High Temperature Tensile properties of 316L
Fabricated by Laser Powder-Bed Fusion”, Addit. Manuf. 37(2020),
101723.
4) S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T.
Nakano: “Excellent mechanical and corrosion properties of austenitic
stainless steel with a unique crystallographic lamellar microstructure
via selective laser melting”, Scr. Mater. 159(2019), 89-93.
5) T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano and T. Nakano:
“Crystallographic orientation control of 316L austenitic stainless
steel via selective laser melting”, ISIJ Int. 60(2020), 1758-1764.
6) T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun and T. Nakano:
“Crystallographic texture control of beta-type Ti-15Mo-5Zr3Al alloy by selective laser melting for the development of novel
implants with a biocompatible low Young’s modulus”, Scr. Mater.
132(2017), 34-38.
7) X. Ding, Y. Koizumi, D. Wei and A. Chiba: “Effect of process
parameters on melt pool geometry and microstructure development
for electron beam melting of IN718: A systematic single bead
analysis study”, Addit. Manuf. 26(2019), 215-226.
8) K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang,
S. Ghosh, T. Duong, I. Karaman, A. Elwany and R. Arróyave: “Finite
interface dissipation phase field modeling of Ni-Nb under additive
manufacturing conditions”, Acta Mater. 185(2020), 320-339.
9) M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T.
Pearce and R.R. Dehoff: “Strategy for Texture Management in
Metals Additive Manufacturing”, JOM, 69(2017), 523-531.
10) S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M.
Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee and
R.R. Dehoff: “Additive Manufacturing of Nickel Superalloys:
Opportunities for Innovation and Challenges Related to
Qualification”, Metall. Mater. Trans. A. 49(2018), 3764-3780.
11) M.R. Gotterbarm, A.M. Rausch and C. Körner: “Fabrication of
Single Crystals through a μ-Helix Grain Selection Process during
Electron Beam Metal Additive Manufacturing”, Metals, 10(2020),
313.
12) J.D.D. Hunt: “Steady state columnar and equiaxed growth of
dendrites and eutectic”, Mater. Sci. Eng. 65(1984), 75-83.
13) S. Bontha, N.W. Klingbeil, P.A. Kobryn and H.L. Fraser: “Effects of
process variables and size-scale on solidification microstructure in
beam-based fabrication of bulky 3D structures”, Mater. Sci. Eng. A.
513-514(2009), 311-318.
14) J. Gockel and J. Beuth: “Understanding Ti-6Al-4V microstructure
control in additive manufacturing via process maps”, 24th Int. SFF
Symp. – An Addit. Manuf. Conf. SFF 2013.(2013), 666-674.
15) B. Schoinochoritis, D. Chantzis and K. Salonitis: “Simulation of
metallic powder bed additive manufacturing processes with the finite
element method: A critical review”, Proc. of Instit. Mech. Eng., Part
B: J. Eng. Manuf. 231(2017), 96-117.
16)小泉雄一郎: “計算機シミュレーションを用いたAdditive
Manufacturing プロセス最適化予測”, スマートプロセス学会誌,
8-4(2019), 132-138.
17) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba:
“Molten pool behavior and effect of fluid flow on solidification
conditions in selective electron beam melting(SEBM)of a
biomedical Co-Cr-Mo alloy”, Addit. Manuf. 26(2019), 202-214.
18) C. Tang, J.L. Tan and C.H. Wong: “A numerical investigation on
the physical mechanisms of single track defects in selective laser
melting”, Int. J. Heat Mass Transf. 126(2018), 957-968.
19) Technical data for Iron, [Online]. Available: http://periodictable.com/
Elements/026/data.html. [Accessed: 8-Feb-2021].
20) N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J.
Turner, N. Carl-son and S.S. Babu: “Numerical modeling of heattransfer and the influence of process parameters on tailoring the grain
morphology of IN718 in electron beam additive manufacturing”,
Acta Mater. 112(2016), 303-314.
21) S. Morita, Y. Miki and K. Toishi: “Introduction of Dendrite
Fragmentation to Microstructure Calculation by Cellular Automaton
Method”, Tetsu-to-Hagane. 104(2018), 559-566.
22) H. Esaka and M. Tamura: “Model Experiment Using Succinonitrile
on the Formation of Equiaxed Grains caused by Forced Convection”,
Tetsu-to-Hagane. 86(2000), 252-258.

Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

WenjunLiua  BoWangb  YakunGuoc

a State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College Of Water Resource and Hydropower, Chengdu, 610065, China
faculty of Engineering & Informatics, University of Bradford, BD7 1DP, UK

Abstract

The bed slope and the tailwater depth are two important ones among the factors that affect the propagation of the dam-break flood and Favre waves. Most previous studies have only focused on the macroscopic characteristics of the dam-break flows or Favre waves under the condition of horizontal bed, rather than the internal movement characteristics in sloped channel. The present study applies two numerical models, namely, large eddy simulation (LES) and shallow water equations (SWEs) models embedded in the CFD software package FLOW-3D to analyze the internal movement characteristics of the dam-break flows and Favre waves, such as water level, the velocity distribution, the fluid particles acceleration and the bed shear stress, under the different bed slopes and water depth ratios. The results under the conditions considered in this study show that there is a flow state transition in the flow evolution for the steep bed slope even in water depth ratio α = 0.1 (α is the ratio of the tailwater depth to the reservoir water depth). The flow state transition shows that the wavefront changes from a breaking state to undular. Such flow transition is not observed for the horizontal slope and mild bed slope. The existence of the Favre waves leads to a significant increase of the vertical velocity and the vertical acceleration. In this situation, the SWEs model has poor prediction. Analysis reveals that the variation of the maximum bed shear stress is affected by both the bed slope and tailwater depth. Under the same bed slope (e.g., S0 = 0.02), the maximum bed shear stress position develops downstream of the dam when α = 0.1, while it develops towards the end of the reservoir when α = 0.7. For the same water depth ratio (e.g., α = 0.7), the maximum bed shear stress position always locates within the reservoir at S0 = 0.02, while it appears in the downstream of the dam for S0 = 0 and 0.003 after the flow evolves for a while. The comparison between the numerical simulation and experimental measurements shows that the LES model can predict the internal movement characteristics with satisfactory accuracy. This study improves the understanding of the effect of both the bed slope and the tailwater depth on the internal movement characteristics of the dam-break flows and Favre waves, which also provides a valuable reference for determining the flood embankment height and designing the channel bed anti-scouring facility.

댐붕괴 홍수와 파브르 파도의 전파에 영향을 미치는 요인 중 하상경사와 후미수심은 두 가지 중요한 요소이다. 대부분의 선행 연구들은 경사 수로에서의 내부 이동 특성보다는 수평층 조건에서 댐파괴류나 Favre파동의 거시적 특성에만 초점을 맞추었다.

본 연구에서는 CFD 소프트웨어 패키지 FLOW-3D에 내장된 LES(Large Eddy Simulation) 및 SWE(Shallow Water Equation) 모델의 두 가지 수치 모델을 적용하여 댐-파괴 흐름 및 Favre 파도의 내부 이동 특성을 분석합니다.

수위, 속도 분포, 유체 입자 가속도 및 층 전단 응력, 다양한 층 경사 및 수심 비율로. 본 연구에서 고려한 조건하의 결과는 수심비 α = 0.1(α는 저수지 수심에 대한 tailwater 깊이의 비율)에서도 급경사면에 대한 유동상태 전이가 있음을 보여준다. 유동 상태 전이는 파면이 파단 상태에서 비정형으로 변하는 것을 보여줍니다.

수평 경사와 완만한 바닥 경사에서는 이러한 흐름 전이가 관찰되지 않습니다. Favre 파의 존재는 수직 속도와 수직 가속도의 상당한 증가로 이어집니다. 이 상황에서 SWE 모델은 예측이 좋지 않습니다.

분석에 따르면 최대 바닥 전단 응력의 변화는 바닥 경사와 꼬리 수심 모두에 영향을 받습니다. 동일한 바닥 경사(예: S0 = 0.02)에서 최대 바닥 전단 응력 위치는 α = 0.1일 때 댐의 하류에서 발생하고 α = 0.7일 때 저수지의 끝쪽으로 발생합니다.

동일한 수심비(예: α = 0.7)에 대해 최대 바닥 전단 응력 위치는 항상 S0 = 0.02에서 저수지 내에 위치하는 반면, S0 = 0 및 0.003에 대해 흐름이 진화한 후 댐 하류에 나타납니다. 수치적 시뮬레이션과 실험적 측정을 비교한 결과 LES 모델이 내부 움직임 특성을 만족스러운 정확도로 예측할 수 있음을 알 수 있습니다.

본 연구는 댐 파절류 및 Favre파의 내부 이동 특성에 대한 하상 경사 및 후미 수심의 영향에 대한 이해를 향상 시키며, 이는 또한 제방 높이를 결정하고 수로 저반위 설계를 위한 귀중한 참고자료를 제공한다.

Keywords

Figure Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale
Figure Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

Dam-break flow, Bed slope, Wet bed, Velocity profile, Bed shear stress, Large eddy simulation
댐파괴유동, 하상경사, 습상, 유속분포, 하상전단응력, 대와류 시뮬레이션

Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon Spangenberg
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

이 논문은 재료 압출 적층 제조에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션을 제공합니다. 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료를 인쇄하는 동안 레이어 변형을 캡처합니다.

물리학은 일반화된 뉴턴 유체로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다.

시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도가 높을수록 증착된 레이어에서 변형이 커집니다. 또한 인쇄 속도, 압출 속도, 층 높이 및 노즐 직경이 인쇄된 층의 변형에 미치는 영향을 조사했습니다.

마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

Stability and deformations of deposited layers in material extrusion additive manufacturing
Stability and deformations of deposited layers in material extrusion additive manufacturing

Keywords

Viscoplastic MaterialsMaterial Extrusion Additive Manufacturing (MEX-AM)Multiple-Layers DepositionComputational Fluid Dynamics (CFD)Deformation Control

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4*
유 형주1 주 성식2 권 범재3 이 승오4*
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정
2㈜헥코리아 수자원환경사업부 이사
3㈜이산 수자원부 이사
4홍익대학교 건설환경공학과 교수*Corresponding Author

ABSTRACT

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.

그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.

이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.

수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.

따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.

이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.

그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

키워드

보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress

1. 서 론

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

2. 본 론

2.1 이론적 배경

2.1.1 3차원 수치모형의 기본이론

FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

2.1.2 유동해석의 지배방정식

1) 연속 방정식(Continuity Equation)

FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

(1)

∇·v=0

(2)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

2) 운동량 방정식(Momentum Equation)

각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

(3)

∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

(4)

∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

(5)

∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

2.1.3 소류력 산정

호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

1) Schoklitsch 공식

Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

(6)

τ=γRI=γC2V2

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

2) Manning 조도계수를 고려한 공식

Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

(7)

τ=γn2V2R1/3

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

2.2 하천호안 설계기준

하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

Table 1.

Standard of Permissible Velocity and Shear on Revetment

Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
KoreaRiver Construction Design Practice Guidelines
(MOLIT, 2016)
Vegetated5.00.50
Stone5.00.80
USAASTM D’6460Vegetated6.10.81
Unvegetated5.00.28
JAPANDynamic Design Method of Revetment5.0

2.3. 보조여수로 운영에 따른 하류하천 영향 분석

2.3.1 모형의 구축 및 경계조건

본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

(8)

n=ks1/68.1g1/2

여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

Table 2.

Mesh sizes and numerical conditions

MeshNumbers49,102,500 EA
Increment (m)DirectionExisting SpillwayAuxiliary Spillway
∆X0.99 ~ 4.301.00 ~ 4.30
∆Y0.99 ~ 8.161.00 ~ 5.90
∆Z0.50 ~ 1.220.50 ~ 2.00
Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
Xmax, Ymin, Zmin / ZmaxWall / Symmetry
Turbulence ModelRNG model
Table 3.

Case of numerical simulation (Qp : Design flood discharge)

CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
1Qp0Reference case
20Qp
300.58QpReview of discharge capacity on
auxiliary spillway
400.48Qp
500.45Qp
600.32Qp
70.50Qp0.50QpDetermination of optimal division
ratio on Spillways
80.61Qp0.39Qp
90.39Qp0.61Qp
100.42Qp0.58Qp
110.32Qp0.45QpDetermination of permissible
division on Spillways
120.35Qp0.48Qp
130.38Qp0.53Qp
140.41Qp0.56Qp
Table 4.

Roughness coefficient and roughness height

CriteriaRoughness coefficient (n)Roughness height (ks, m)
Structure (Concrete)0.0140.00061
River0.0330.10496
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
Fig. 1

Layout of spillway and river in this study

2.3.2 보조 여수로의 방류능 검토

본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
Fig. 2

Region of interest in this study

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
Fig. 3

Maximum velocity and location of Vmax according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
Fig. 4

Maximum shear according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
Fig. 5

Maximum water surface elevation and location of ηmax according to Qa

Table 5.

Numerical results for each cases (Case 1 ~ Case 6)

CaseMaximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation
in terms of Vp
Evaluation
in terms of τp
1
(Qa = 0)
9.150.54No GoodNo Good
2
(Qa = Qp)
8.870.56No GoodNo Good
3
(Qa = 0.58Qp)
6.530.40No GoodNo Good
4
(Qa = 0.48Qp)
6.220.36No GoodNo Good
5
(Qa = 0.45Qp)
4.220.12AccpetAccpet
6
(Qa = 0.32Qp)
4.040.14AccpetAccpet

2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
Fig. 6

Maximum velocity on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
Fig. 7

Maximum shear on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
Fig. 8

Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
Fig. 9

Maximum water surface elevation on section 1 & 2 according to Qa

Table 6.

Numerical results for each cases (Case 7 ~ Case 10)

Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
7
Qe : 0.50QpQa : 0.50Qp
8.106.230.640.30No GoodNo GoodNo GoodNo Good
8
Qe : 0.61QpQa : 0.39Qp
8.886.410.610.34No GoodNo GoodNo GoodNo Good
9
Qe : 0.39QpQa : 0.61Qp
6.227.330.240.35No GoodNo GoodAcceptNo Good
10
Qe : 0.42QpQa : 0.58Qp
6.394.790.300.19No GoodAcceptNo GoodAccept

2.3.4 방류량 배분 비율의 허용 방류량 검토

계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

Table 7.

Numerical results for each cases (Case 11 ~ Case 14)

Case (Qe &amp; Qa)Maximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
11
Qe : 0.32QpQa : 0.45Qp
3.634.530.090.26AcceptAcceptAcceptAccept
12
Qe : 0.35QpQa : 0.48Qp
5.745.180.230.22No GoodNo GoodAcceptAccept
13
Qe : 0.38QpQa : 0.53Qp
6.704.210.280.11No GoodAcceptAcceptAccept
14
Qe : 0.41QpQa : 0.56Qp
6.545.240.280.24No GoodNo GoodAcceptAccept
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
Fig. 10

Maximum velocity on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
Fig. 11

Maximum shear on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
Fig. 12

Maximum water surface elevation on section 1 & 2 according to total outflow

3. 결 론

본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

Acknowledgements

본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

References

1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

Korean References Translated from the English

1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.
9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.
10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션

by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater202113(5), 674; https://doi.org/10.3390/w13050674

Abstract

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.

Keywords: submerged hydraulic jumptriangular macroroughnessesTKEbed shear stress coefficientvelocityFLOW-3D model

수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.

이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.

내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.

 Introduction

격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].

베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.

Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.

Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.

그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.

Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.

자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.

Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.

Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.

Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.

ReferenceShape Bed-Channel Type-
Jump Type
Channel Dimension (m)Roughness (mm)Fr1Investigated Flow
Properties
Ead and Rajaratnam [10]-Smooth and rough beds-Rectangular channel-Free jumpCL1 = 7.60
CW2 = 0.44
CH3 = 0.60
-Corrugated sheets (RH4 = 13 and 22)4–10-Upstream and tailwater depths-Jump length-Roller length-Velocity-Water surface profile
Tokyay et al. [11]-Smooth and rough beds-Rectangular channel-Free jumpCL = 10.50
CW = 0.253
CH = 0.432
-Two sinusoidal corrugated (RH = 10 and 13)5–12-Depth ratio-Jump length-Energy loss
Izadjoo and Shafai-Bejestan [14]-Smooth and rough beds-Two rectangular-channel-Free jumpCL = 1.2, 9
CW = 0.25, 0.50
CH = 0.40
Baffle with trapezoidal cross section
(RH: 13 and 26)
6–12-Upstream and tailwater depths-Jump length-Velocity-Bed shear stress coefficient
Abbaspour et al. [12]-Horizontal bed with slope 0.002-Rectangular channel—smooth and rough beds-Free jumpCL = 10
CW = 0.25
CH = 0.50
-Sinusoidal bed (RH = 15,20, 25 and 35)3.80–8.60-Water surface profile-Depth ratio-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Shafai-Bejestan and Neisi [13]-Smooth and rough beds-Rectangular channel-Free jumpCL = 7.50
CW = 0.35
CH = 0.50
Lozenge bed4.50–12-Sequent depth-Jump length
Elsebaie and Shabayek [18]-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jumpCL = 9
CW = 0.295
CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)50-Water surface profile-Sequent depth-Jump length-Bed shear stress coefficient
Samadi-Boroujeni et al. [19]-Rectangular channel-Smooth and rough beds-Free jumpCL = 12
CW = 0.40
CH = 0.40
-Six triangular corrugated (RH = 2.5)6.10–13.10-Water surface profile-Sequent depth-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Ahmed et al. [20]-Smooth and rough beds-Rectangular channel-Submerged jumpCL = 24.50
CW = 0.75
CH = 0.70
-Triangular corrugated sheet (RH = 40)1.68–9.29-Conjugated and tailwater depths-Submerged ratio-Deficit depth-Relative jump length-Jump length-Relative roller jump length-Jump efficiency-Bed shear stress coefficient
Nikmehr and Aminpour [15]-Horizontal bed with slope 0.002-Rectangular channel-Rough bed-Free jumpCL = 12
CW = 0.25
CH = 0.50
-Trapezoidal blocks (RH = 2, 3 and 4)5.01–13.70-Water surface profile-Sequent depth-Jump length-Roller length-Velocity
Ghaderi et al. [17]-Smooth and rough beds-Rectangular channel-Free and submerged jumpCL = 4.50
CW = 0.75
CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present studyRectangular channel
Smooth and rough beds
Submerged jump
CL = 4.50
CW = 0.75
CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss

CL1: channel length, CW2: channel width, CH3: channel height, RH4: roughness height.

이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.

베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.

다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.

CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].

본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.

Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.

Table 2. Effective parameters in the numerical model.

Bed TypeQ
(l/s)
I
(cm)
T (cm)d (cm)y1
(cm)
y4
(cm)
Fr1= u1/(gy1)0.5SRe1= (u1y1)/υ
Smooth30, 4551.62–3.839.64–32.101.7–9.30.26–0.5039,884–59,825
Triangular macroroughnesses30, 454, 8, 12, 16, 20451.62–3.846.82–30.081.7–9.30.21–0.4439,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).

Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).

ModelsBed TypeQ (l/s)d (cm)y1 (cm)u1 (m/s)Fr1
Numerical and PhysicalSmooth4551.62–3.831.04–3.701.7–9.3
T/I = 0.54551.61–3.831.05–3.711.7–9.3
T/I = 0.254551.60–3.841.04–3.711.7–9.3
Figure 3. The boundary conditions governing the simulations.
Figure 3. The boundary conditions governing the simulations.
Figure 4. Sketch of mesh setup.
Figure 4. Sketch of mesh setup.

Table 4. Characteristics of the computational grids.

MeshNested Block Cell Size (cm)Containing Block Cell Size (cm)
10.551.10
20.651.30
30.851.70

Table 5. The numerical results of mesh convergence analysis.

ParametersAmounts
fs1 (-)7.15
fs2 (-)6.88
fs3 (-)6.19
K (-)5.61
E32 (%)10.02
E21 (%)3.77
GCI21 (%)3.03
GCI32 (%)3.57
GCI32/rp GCI210.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).

Conclusions

  • 본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
  • 개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
  • T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
  • 삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
  • 삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
  • 매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
  • 삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
  • 거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
  • 일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 ​​대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.

References

  1. White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
  2. Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci. 197919, 81–128. [Google Scholar] [CrossRef]
  3. McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
  4. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 201234, 35–46. [Google Scholar] [CrossRef]
  5. Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A 201394, 83–87. [Google Scholar] [CrossRef]
  6. Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016797, 60–94. [Google Scholar] [CrossRef]
  7. Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc. 2016108, 425–432. [Google Scholar] [CrossRef]
  8. Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng. 201742, 3751–3760. [Google Scholar] [CrossRef]
  9. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech. 201818, 849–870. [Google Scholar] [CrossRef]
  10. Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002128, 656–663. [Google Scholar] [CrossRef]
  11. Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
  12. Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 20093, 109–117. [Google Scholar] [CrossRef]
  13. Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci. 20092, 436–445. [Google Scholar] [CrossRef]
  14. Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 20077, 1164–1169. [Google Scholar] [CrossRef]
  15. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng. 201764, 396–407. [Google Scholar] [CrossRef]
  16. Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
  17. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform. 202022, 1554–1572. [Google Scholar] [CrossRef]
  18. Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS 201010, 37–47. [Google Scholar]
  19. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng. 201340, 841–847. [Google Scholar] [CrossRef]
  20. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J. 20145, 1033–1042. [Google Scholar] [CrossRef]
  21. Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 201911, 28. [Google Scholar] [CrossRef]
  22. Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 2016142, 04015037. [Google Scholar] [CrossRef]
  23. Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng. 2017143, 04016091. [Google Scholar] [CrossRef]
  24. Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div. 196591, 107–132. [Google Scholar] [CrossRef]
  25. Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
  26. Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res. 199028, 437–460. [Google Scholar] [CrossRef]
  27. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
  28. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
  29. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
  30. Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
  31. Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water 201911, 235. [Google Scholar] [CrossRef]
  32. Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol. 201634, 186–190. [Google Scholar]
  33. Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 200846, 739–752. [Google Scholar] [CrossRef]
  34. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 201680, 322–335. [Google Scholar] [CrossRef]
  35. Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 20205, 182. [Google Scholar] [CrossRef]
  36. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 201944, 216. [Google Scholar] [CrossRef]
  37. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water 202012, 1992. [Google Scholar] [CrossRef]
  38. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 202072, 101711. [Google Scholar] [CrossRef]
  39. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef] [PubMed]
  40. Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water 20168, 545. [Google Scholar] [CrossRef]
  41. Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour. 20204, 425–436. [Google Scholar] [CrossRef]
  42. Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 200962. [Google Scholar] [CrossRef]
  43. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water 202113, 14. [Google Scholar] [CrossRef]
  44. Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008130, 0780011–0780013. [Google Scholar]
  45. Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis. 20069, 57–68. [Google Scholar] [CrossRef]
  46. Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math. 2020, 1–13. [Google Scholar] [CrossRef]
  47. Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 201227, 100–111. [Google Scholar] [CrossRef]
  48. Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
  49. Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
  50. Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 2015105, 160–175. [Google Scholar] [CrossRef]
  51. Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 201439, 6969–6981. [Google Scholar] [CrossRef]
  52. Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996122, 540–548. [Google Scholar] [CrossRef]
  53. De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 201715, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).

Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

17-4 PH 스테인리스강의 레이저 분말 베드 융합: 열처리가 미세조직의 진화 및 기계적 특성에 미치는 영향에 대한 비교 연구

panelS.Saboonia, A.Chaboka, S.Fenga,e, H.Blaauwb, T.C.Pijperb,c, H.J.Yangd, Y.T.Peia
aDepartment of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
bPhilips Personal Care, Oliemolenstraat 5, 9203 ZN, Drachten, The Netherlands
cInnovation Cluster Drachten, Nipkowlaan 5, 9207 JA, Drachten, The Netherlands
dShi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
eSchool of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China

Abstract

17-4 PH (precipitation hardening) stainless steel is commonly used for the fabrication of complicated molds with conformal cooling channels using laser powder bed fusion process (L-PBF). However, their microstructure in the as-printed condition varies notably with the chemical composition of the feedstock powder, resulting in different age-hardening behavior. In the present investigation, 17-4 PH stainless steel components were fabricated by L-PBF from two different feedstock powders, and subsequently subjected to different combinations of post-process heat treatments. It was observed that the microstructure in as-printed conditions could be almost fully martensitic or ferritic, depending on the ratio of Creq/Nieq of the feedstock powder. Aging treatment at 480 °C improved the yield and ultimate tensile strengths of the as-printed components. However, specimens with martensitic structures exhibited accelerated age-hardening response compared with the ferritic specimens due to the higher lattice distortion and dislocation accumulation, resulting in the “dislocation pipe diffusion mechanism”. It was also found that the martensitic structures were highly susceptible to the formation of reverted austenite during direct aging treatment, where 19.5% of austenite phase appeared in the microstructure after 15 h of direct aging. Higher fractions of reverted austenite activates the transformation induced plasticity and improves the ductility of heat treated specimens. The results of the present study can be used to tailor the microstructure of the L-PBF printed 17-4 PH stainless steel by post-process heat treatments to achieve a good combination of mechanical properties.

17-4 PH(석출 경화) 스테인리스강은 레이저 분말 베드 융합 공정(L-PBF)을 사용하여 등각 냉각 채널이 있는 복잡한 금형 제작에 일반적으로 사용됩니다. 그러나 인쇄된 상태의 미세 구조는 공급원료 분말의 화학적 조성에 따라 크게 달라지므로 시효 경화 거동이 다릅니다.

현재 조사에서 17-4 PH 스테인리스강 구성요소는 L-PBF에 의해 두 가지 다른 공급원료 분말로 제조되었으며, 이후에 다양한 조합의 후처리 열처리를 거쳤습니다. 인쇄된 상태의 미세구조는 공급원료 분말의 Creq/Nieq 비율에 따라 거의 완전히 마르텐사이트 또는 페라이트인 것으로 관찰되었습니다.

480 °C에서 노화 처리는 인쇄된 구성 요소의 수율과 극한 인장 강도를 개선했습니다. 그러나 마텐자이트 구조의 시편은 격자 변형 및 전위 축적이 높아 페라이트 시편에 비해 시효 경화 반응이 가속화되어 “전위 파이프 확산 메커니즘”이 발생합니다.

또한 마르텐사이트 구조는 직접 시효 처리 중에 복귀된 오스테나이트의 형성에 매우 민감한 것으로 밝혀졌으며, 여기서 15시간의 직접 시효 후 미세 조직에 19.5%의 오스테나이트 상이 나타났습니다.

복귀된 오스테나이트의 비율이 높을수록 변형 유도 가소성이 활성화되고 열처리된 시편의 연성이 향상됩니다. 본 연구의 결과는 기계적 특성의 우수한 조합을 달성하기 위해 후처리 열처리를 통해 L-PBF로 인쇄된 17-4 PH 스테인리스강의 미세 구조를 조정하는 데 사용할 수 있습니다.

Keywords

Laser powder bed fusion17-4 PH stainless steelPost-process heat treatmentAge hardeningReverted austenite

Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).
Fig. 2. Optical (a, b) and TEM (c) micrographs of the wrought 17-4 PH stainless steel.
Fig. 2. Optical (a, b) and TEM (c) micrographs of the wrought 17-4 PH stainless steel.
Fig. 3. EBSD micrographs of the as-printed 17-4 PH steel fabricated with “powder A” (a, b) and “powder B” (c, d) on two different cross sections: (a, c) perpendicular to the building direction, and (b, d) parallel to the building direction.
Fig. 3. EBSD micrographs of the as-printed 17-4 PH steel fabricated with “powder A” (a, b) and “powder B” (c, d) on two different cross sections: (a, c) perpendicular to the building direction, and (b, d) parallel to the building direction.
Fig. 4. Microstructure of the as-printed 17-4 PH stainless steel fabricated with “powder A” (a) and “powder B” (b).
Fig. 4. Microstructure of the as-printed 17-4 PH stainless steel fabricated with “powder A” (a) and “powder B” (b).
Fig. 5. Simulated temperature history of the probes located at the cross section of the L-PBF 17-4 PH steel sample.
Fig. 5. Simulated temperature history of the probes located at the cross section of the L-PBF 17-4 PH steel sample.
Fig. 6. Dependency of the volume fraction of delta ferrite in the final microstructure of L-PBF printed 17-4 PH steel as a function of Creq/Nieq.
Fig. 6. Dependency of the volume fraction of delta ferrite in the final microstructure of L-PBF printed 17-4 PH steel as a function of Creq/Nieq.
Fig. 7. IQ + IPF (left column), parent austenite grain maps (middle column) and phase maps (right column, green color = martensite, red color = austenite) of the post-process heat treated 17-4 PH stainless steel: (a-c) direct aged, (d-f) HIP + aging, (g-i) SA + Aging, and (j-l) HIP + SA + aging (all sample were printed with “powder A”).
Fig. 7. IQ + IPF (left column), parent austenite grain maps (middle column) and phase maps (right column, green color = martensite, red color = austenite) of the post-process heat treated 17-4 PH stainless steel: (a-c) direct aged, (d-f) HIP + aging, (g-i) SA + Aging, and (j-l) HIP + SA + aging (all sample were printed with “powder A”).
Fig. 8. TEM micrographs of the post process heat treated 17-4 PH stainless steel: (a) direct aging and (b) HIP + aging (printed with “powder A”).
Fig. 8. TEM micrographs of the post process heat treated 17-4 PH stainless steel: (a) direct aging and (b) HIP + aging (printed with “powder A”).
Fig. 9. XRD patterns of the post-process heat treated 17-4 PH stainless steel printed with “powder A”.
Fig. 9. XRD patterns of the post-process heat treated 17-4 PH stainless steel printed with “powder A”.
Fig. 10. (a) Volume fraction of reverted austenite as a function of aging time for “direct aging” condition, (b) phase map (green color = martensite, red color = austenite) of the 15 h direct aged specimen printed with “powder A”.
Fig. 10. (a) Volume fraction of reverted austenite as a function of aging time for “direct aging” condition, (b) phase map (green color = martensite, red color = austenite) of the 15 h direct aged specimen printed with “powder A”.
Fig. 11. Microhardness variations of the “direct aged” specimens as a function of aging time at 480 °C.
Fig. 11. Microhardness variations of the “direct aged” specimens as a function of aging time at 480 °C.
Fig. 12. Kernel average misorientation graphs of the as-printed 17-4 PH steel with (a) martensitic structure (printed with “powder A”) and (b) ferritic structure (printed with “powder b”).
Fig. 12. Kernel average misorientation graphs of the as-printed 17-4 PH steel with (a) martensitic structure (printed with “powder A”) and (b) ferritic structure (printed with “powder b”).
Fig. 13. Typical stress-strain curves (a) along with the yield and ultimate tensile strengths (b) and elongation (c) of the as-printed and post-process heat treated 17-4 PH stainless steel (all sample are fabricated with “powder A”).
Fig. 13. Typical stress-strain curves (a) along with the yield and ultimate tensile strengths (b) and elongation (c) of the as-printed and post-process heat treated 17-4 PH stainless steel (all sample are fabricated with “powder A”).
Fig. 14. (a) IQ + IPF and (b) phase map (green color = martensite, red color = austenite) of the “direct aged” specimen after tensile test at a location nearby the rupture point (tension direction from left to right).
Fig. 14. (a) IQ + IPF and (b) phase map (green color = martensite, red color = austenite) of the “direct aged” specimen after tensile test at a location nearby the rupture point (tension direction from left to right).

References

[1]

P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jagle

Steels in additive manufacturing: A review of their microstructure and properties

Materials Science and Engineering: A, 772 (2020), Article 138633

ArticleDownload PDFView Record in ScopusGoogle Scholar

[2]

Y. Sun, R.J. Hebert, M. Aindow

Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel

Mater. Des., 156 (2018), pp. 429-440

ArticleDownload PDFView Record in ScopusGoogle Scholar

[3]

Zemin Wang, Xulei Fang, Hui Li, Wenqing Liu

Atom Probe Tomographic Characterization of nanoscale cu-rich Precipitates in 17-4 precipitate hardened stainless steel tempered at different temperatures

Microsc. Microanal., 23 (2017), pp. 340-349

View Record in ScopusGoogle Scholar

[4]

C.N. Hsiao, C.S. Chiou, J.R. Yang

Aging reactions in a 17-4 PH stainless steel

Mater. Chem. Phys., 74 (2002), pp. 134-142

ArticleDownload PDFView Record in ScopusGoogle Scholar

[5]

Hamidreza Riazi, Fakhreddin Ashrafizadeh, Sayed Rahman Hosseini, Reza Ghomashchi

Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel

Mater. Sci. Eng. A, 703 (2017), pp. 262-269

ArticleDownload PDFView Record in ScopusGoogle Scholar

[6]

M.S. Shinde, K.M. Ashtankar

Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes

Adv. Mech. Eng., 9 (2017), pp. 1-14

View Record in ScopusGoogle Scholar

[7]

A. Armillotta, R. Baraggi, S. Fasoli

SLM tooling for die casting with conformal cooling channels

Int. J. Adv. Manuf. Technol., 71 (2014), pp. 573-583

CrossRefView Record in ScopusGoogle Scholar

[8]

Amar M. Kamat, Yutao Pei

An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion

Additive Manufacturing, 29 (2019), Article 100796

ArticleDownload PDFView Record in ScopusGoogle Scholar

[9]

K.S. Prakash, T. Nancharaih, V.V. Subba Rao

Additive Manufacturing Techniques in Manufacturing – An Overview

Materials Today: Proceedings, 5 (2018), pp. 3873-3882

ArticleDownload PDFView Record in ScopusGoogle Scholar

[10]

R. Singh, A. Gupta, O. Tripathi, S. Srivastava, B. Singh, A. Awasthi, S.K. Rajput, P. Sonia, P. Singhal, K.K. Saxena

Powder bed fusion process in additive manufacturing: An overview

Materials Today: Proceedings, 26 (2020), pp. 3058-3070

ArticleDownload PDFGoogle Scholar

[11]

L. Zai, Ch Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong, Y. Tian

Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review

Metals, 10 (2020), p. 255

CrossRefView Record in ScopusGoogle Scholar

[12]

H. Khalid Rafi, Deepankar Pal, Nachiket Patil, Thomas L. Starr, Brent E. Stucker

Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

J. Mater. Eng. Perf, 23 (2014), pp. 4421-4428

Google Scholar

[13]

A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian

Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel

Int. J. Fatigue, 94 (2017), pp. 218-235

ArticleDownload PDFView Record in ScopusGoogle Scholar

[14]

M. Alnajjar, Frederic Christien, Cedric Bosch, Krzysztof Wolski

A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel

Materials Science and Engineering: A, 785 (2020), Article 139363

ArticleDownload PDFView Record in ScopusGoogle Scholar

[15]

M. Alnajjar, F. Christien, K. Wolski, C. Bosch

Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing

Addit. Manuf, 25 (2019), pp. 187-195

ArticleDownload PDFView Record in ScopusGoogle Scholar

[16]

P.D. Nezhadfar, K. Anderson-Wedge, S.R. Daniewicz, N. Phan, Sh Shao, N. Shamsaei

Improved high cycle fatigue performance of additively manufactured 17-4 PH stainless steel via in-process refining micro-/defect-structure

Additive Manufacturing, 36 (2020), Article 101604

ArticleDownload PDFView Record in ScopusGoogle Scholar

[17]

S. Feng, A.M. Kamat, S. Sabooni, Y. Pei

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

Virtual and Physical Prototyping, 16 (2021), pp. S66-S84, 10.1080/17452759.2021.1896970

CrossRefView Record in ScopusGoogle Scholar

[18]

W. Liu, J. Ma, M. Mazar Atabaki, R. Pillai, B. Kumar, U. Vasudevan, H. Sreshta, R. Kovacevic

Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

Lasers in Manufacturing and Materials Processing, 2 (2015), pp. 74-90

CrossRefView Record in ScopusGoogle Scholar

[19]

J.C. Lippold, D.J. Kotecki

Welding metallurgy and weldability of stainless steels

Wiley (2005)

Google Scholar

[20]

M. Shirdel, H. Mirzadeh, M.H. Parsa

Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

Mater. Charact., 103 (2015), pp. 150-161

ArticleDownload PDFView Record in ScopusGoogle Scholar

[21]

S. Kou

Solidification and liquation cracking issues in welding

JOM, 55 (2003), pp. 37-42

CrossRefView Record in ScopusGoogle Scholar

[22]

T.J. Lienert, J.C. Lippold

Improved Weldability Diagram for Pulsed Laser Welded Austenitic Stainless Steels

Sci. Technol. Weld. Join., 8 (2003), pp. 1-9

CrossRefView Record in ScopusGoogle Scholar

[23]

Ch Qiu, M. Al Kindi, A.S. Aladawi, I. Al Hatmi

A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel

Sci. Rep., 8 (2018), p. 7785

View Record in ScopusGoogle Scholar

[24]

P.A. Hooper

Melt pool temperature and cooling rates in laser powder bed fusion

Addit. Manuf, 22 (2018), pp. 548-559

ArticleDownload PDFView Record in ScopusGoogle Scholar

[25]

T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. Ded, W. Zhang

Additive manufacturing of metallic components – Process, structure and properties

Prog. Mater. Sci., 92 (2018), pp. 112-224

ArticleDownload PDFView Record in ScopusGoogle Scholar

[26]

S. Vunnam, A. Saboo, Ch Sudbrack, T.L. Starr

Effect of powder chemical composition on the as-built microstructure of 17- 4 PH stainless steel processed by selective laser melting

Additive Manufacturing, 30 (2019), Article 100876

ArticleDownload PDFView Record in ScopusGoogle Scholar

[27]

L. Couturier, F. De Geuser, M. Descoins, A. Deschamps

Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment

Mater. Des., 107 (2016), pp. 416-425

ArticleDownload PDFView Record in ScopusGoogle Scholar

[28]

C. Cayron, B. Artaud, L. Briottet

Reconstruction of parent grains from EBSD data

Mater. Charact., 57 (2006), pp. 386-401

ArticleDownload PDFView Record in ScopusGoogle Scholar

[29]

R. Bhambroo, S. Roychowdhury, V. Kain, V.S. Raja

Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainless steel

Mater. Sci. Eng. A, 568 (2013), pp. 127-133

ArticleDownload PDFView Record in ScopusGoogle Scholar

[30]

T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi

Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel

Mater. Des., 81 (2015), pp. 44-53

ArticleDownload PDFView Record in ScopusGoogle Scholar

[31]

T.H. Hsu, Y.J. Chang, C.Y. Huang, H.W. Yen, C.P. Chen, K.K. Jen, A.Ch Yeh

Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel

J. Alloys. Compd., 803 (2019), pp. 30-41

ArticleDownload PDFView Record in ScopusGoogle Scholar

[32]

Li Wang, Chaofang Dong, Cheng Man, Decheng Kong, Kui Xiao, Xiaogang Li

Enhancing the corrosion resistance of selective laser melted 15-5 PH martensite stainless steel via heat treatment

Corrosion Science, 166 (2020), Article 108427

ArticleDownload PDFView Record in ScopusGoogle Scholar

[33]

H. Kimura

Precipitation Behavior and 2-step Aging of 17-4PH Stainless Steel

Tetsu-to-Hagane, 86 (2000), pp. 343-348

CrossRefView Record in ScopusGoogle Scholar

[34]

G. Yeli, M.A. Auger, K. Wilford, G.D.W. Smith, P.A.J. Bagot, M.P. Moody

Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties

Acta. Mater., 125 (2017), pp. 38-49

ArticleDownload PDFView Record in ScopusGoogle Scholar

[35]

J.B. Ferguson, Benjamin F. Schultz, Dev Venugopalan1, Hugo F. Lopez, Pradeep K. Rohatgi, Kyu Cho, Chang-Soo Kim

On the Superposition of Strengthening Mechanisms in Dispersion Strengthened Alloys and Metal-Matrix Nanocomposites: Considerations of Stress and Energy

Met. Mater. Int., 20 (2014), pp. 375-388

CrossRefView Record in ScopusGoogle Scholar

[36]

H. Mirzadeh, A. Najafizadeh

Aging kinetics of 17-4 PH stainless steel

Mater. Chem. Phys., 116 (2009), pp. 119-124

ArticleDownload PDFView Record in ScopusGoogle Scholar

[37]

L.E. Murr, E. Martinez, J. Hernandez, Sh Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo

Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting

J. Mater. Res. Technol, 1 (2012), pp. 167-177

ArticleDownload PDFView Record in ScopusGoogle Scholar

[38]

Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, D. Raabe

Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

Mater. Sci. Eng. A, 636 (2015), pp. 551-564

ArticleDownload PDFView Record in ScopusGoogle Scholar

Laser powder bed fusion Figure

A study of transient and steady-state regions from single-track deposition in laser powder bed fusion

SubinShrestha KevinChou

J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, United States

Abstract

The surface morphology of parts made by the laser powder bed fusion (L-PBF) process is governed by the flow of the melt pool. The nature of the molten metal flow depends on the material properties, process parameters, and powder-bed particles, etc., and may result in potentially significant variations along a laser scanning path.

This study investigates the formation of transient and steady-state zones through a single-track l-PBF experiment using Inconel 625 powder. Single tracks with lengths of 1 mm and 2 mm were fabricated using 195 W laser power and scan speeds of 400 mm/s or 800 mm/s. The surface morphology of the track was analyzed using a white light interferometer (WLI), and an individual single track can be divided into three distinct zones based on the track width and height.

The initial transient region has a wider and taller solidified track geometry, the region near the end of a scan has a tapered profile with a decreasing track width and height, while the steady-state region in the middle has a smaller variation in the width and height.

A mesoscale numerical model was further developed using FLOW-3D to examine the formation of the transient and steady-state zones. At the start of a scan, strong flow occurs outward and backward, leading to the formation of a wider track with a bump. As the scan continues, the thermal gradient stabilizes, leading to a steady state, which resulted in a very small fluctuation in the width. Furthermore, the tapered end of the scan track is due to the half-lemniscate shape of the melt pool during laser scanning.

L-PBF(Laser Powder Bed fusion) 공정으로 만든 부품의 표면 형태는 용융 풀의 흐름에 따라 결정됩니다. 용융 금속 흐름의 특성은 재료 특성, 공정 매개변수 및 분말층 입자 등에 따라 달라지며 레이저 스캐닝 경로를 따라 잠재적으로 상당한 변동이 발생할 수 있습니다.

이 연구는 Inconel 625 분말을 사용하여 단일 트랙 l-PBF 실험을 통해 과도 및 정상 상태 영역의 형성을 조사합니다. 1 mm 및 2 mm 길이의 단일 트랙은 195 W 레이저 출력과 400 mm/s 또는 800 mm/s의 스캔 속도를 사용하여 제작되었습니다. 트랙의 표면 형태는 백색광 간섭계(WLI)를 사용하여 분석되었으며 개별 단일 트랙은 트랙 너비와 높이에 따라 3개의 별개 영역으로 나눌 수 있습니다.

초기 과도 영역은 더 넓고 더 높은 응고된 트랙 형상을 가지며, 스캔 끝 근처의 영역은 트랙 너비와 높이가 감소하는 테이퍼 프로파일을 갖는 반면, 중간의 정상 상태 영역은 너비와 높이에서 더 작은 변동을 가집니다. 신장. 중간 규모 수치 모델은 과도 및 정상 상태 영역의 형성을 조사하기 위해 FLOW-3D를 사용하여 추가로 개발되었습니다.

스캔이 시작될 때 강한 흐름이 바깥쪽과 뒤쪽으로 발생하여 범프가 있는 더 넓은 트랙이 형성됩니다. 스캔이 계속됨에 따라 열 구배가 안정화되어 정상 상태로 이어지며 폭의 변동이 매우 작습니다. 또한 스캔 트랙의 끝이 가늘어지는 것은 레이저 스캔 중 용융 풀의 반-렘니케이트 모양 때문입니다.

A study of transient and steady-state regions from single-track deposition in laser powder bed fusion
A study of transient and steady-state regions from single-track deposition in laser powder bed fusion

Keywords

Additive manufacturing, Laser powder bed fusion, Numerical modelling, Transient region

Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode

Abstract

국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, 특히 해상풍력은 풍력 자원이 풍부하고 육상보다 풍력 감소가 상대적으로 작아 다양하게 연구되고 있다. 본 연구에서는 해상 풍력기초의 세굴현상을 분석하기 위해서 Flow-3D 모형을 이용하여 모노 파일과 삼각대 파일 기초에 대하여 수치모의를 수행 하였다. 직경이 다른(D=5.0 m, d=1.69 m) 모노 파일 형식과 직경이 동일한(D=5.0 m) 모노파일에 대하여 세굴현상을 평가하 였다. 수치해석 결과, 동일한 직경을 가진 모노파일에서 하강류가 증가되었으며, 최대세굴심은 약 1.7배 이상 발생하였다. 삼각대 파일에 대하여 관측유속과 극치파랑 조건을 상류경계조건으로 각각 적용한 후 세굴현상을 평가하였다. 극치파랑조건 을 적용한 경우 최대 세굴심은 약 1.3배 정도 깊게 발생하였다. LES 모형을 적용하였을 경우 세굴심은 평형상태에 도달한 반면, RNG  모형은 해석영역 내 전반적으로 세굴현상이 발생하였으며, 세굴심은 평형상태에 도달하지 않았다. 해상풍 력기초에 대하여 세굴현상을 평가하기 위해서 수치모형 적용시 파랑조건 및 LES 난류모형을 적용하는 것이 타당할 것으로 판단된다.

Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

Keywords : Flow-3D, LES model, Mono pile, Offshore wind foundation, RNG k-e model, Scour phenomenon, Tripod pile

서론

지구환경문제에 대한 관심이 증가되고 있는 현실에 서, 풍력발전은 석유 대체에너지로서 뿐만 아니라, 이산 화탄소 등 온실효과 가스를 배출하지 않는 청청에너지의 발전방식으로 국내․외에서 개발이 증가되고 있다. 특 히, 해상풍력은 풍력 자원이 풍부하고, 육상보다 풍력 감 소가 상대적으로 작아 전기 출력량이 크기 때문에 신재 생에너지원 확보 차원에서 국내․외 해상풍력단지 사업 계획이 수립되어 추진되고 있는 실정이다. Fig. 1은 세계 최대 네델란드 해상풍력단지인 Nysted Offshore Wind Farm의 사진이다.

Fig. 1. Nysted Offshore Wind Farm
Fig. 1. Nysted Offshore Wind Farm

하천 내 교각 주변에서 세굴 현상은 발생하며 교각의 안정성 측면에서 세굴보호공을 설치한다. 해양에서 해상 풍력발전 기초를 설치할 경우 구조물로 인해 교란된 흐 름은 세굴을 유발시킨다. 따라서 해상풍력기초를 계획할 경우 안정성 측면에서 세굴현상을 검토할 필요가 있다. 특히 하천의 경우 교각 세굴보호공에 대하여 다양한 공 법들이 설계에 반영되고 있으나, 해양구조물 기초에 대 한 연구는 미흡한 상태이다.

이에 본 연구에서는 수치모 형을 이용하여 해상풍력기초에 대한 세굴현상을 분석하 였다. 수치모형을 이용하여 세굴현상을 예측함에 있어서 본 연구와 연관된 연구동향으로는 양원준과 최성욱(2002) 은 FLOW-3D 모형을 이용하여 세굴영향 평가를 함에 있어서 난류모형을 비교․분석 하였다. 전반적으로 수리 모형실험 자료와 좀 더 잘 일치하는 난류모형은 LES 모 형으로 분석되었다[1]. 여창건 등(2010)은 세굴영향 평 가를 위해 FLOW-3D 모형을 이용할 경우 세굴에 미치 는 중요한 인자에 대하여 매개변수 민감도분석을 수행하 였다.

검토결과, 세굴에 민감한 변수는 유사의 입경, 세 굴조절계수, 안식각 등의 순서로 민감한 것으로 검토되 었다[2]. 오명학 등(2012)은 해상풍력발전기초 시설 주 변에서 FLOW-3D 모형을 이용하여 세굴영향 검토를 수 행하였다. 오명학 등이 검토한 지역은 본 연구 지역과 동 일한 지역이나 경계조건 및 세굴평가에서 가장 중요한 평균입경이 다르다. 세굴검토를 위해 수치모형에 입력한 경계조건은 대조기 창조 최강유속 1.0 m/s을 상류경계조 건으로, 평균입경은 0.0353 mm를 적용하였다. 이와 같은 조건에서 모노파일에서 발생하는 최대세굴심은 약 5.24 m로 분석되었다[3].

Stahlmann과 Schlurmann(2010)은 본 과업에서 적용할 해상풍력기초와 유사한 기초를 가진 구조물에 대하여 수리모형실험을 수행하였다. 연구대상 지역은 독일 해안가에 의한 해상풍력단지에 대하여 삼각 대 형식의 해상풍력기초에 대하여 1/40과 1/12 축척으로 각각 수리모형실험을 수행하였다. 1/40과 1/12 축척에 따라서 세굴분포양상 및 최대세굴심의 위치가 다르게 관 측되었다[4].

본 연구에서는 3차원 수치모형인 Flow-3D를 이용하 여 세굴현상을 평가함에 있어서, 파일 형상 변화, 경계조 건이 다른 경우 및 서로 다른 난류모형을 적용하였을 경 우에 대하여 수치해석이 국부세굴 현상에 미치는 영향을 검토하였다. 이와 같은 연구는 향후 수치모형을 이용하 여 해상풍력발전 기초에 대하여 세굴현상을 평가함에 있 어서 기초 자료로 활용될 수 있을 것으로 판단된다.

Fig. 2. Shape of Pile
Fig. 2. Shape of Pile
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 4. Scour around Monopile
Fig. 4. Scour around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)

결론

본 연구에서는 해상풍력기초 형식이 모노파일과 삼각 대 파일일 경우 세굴현상을 평가하기 위해서 3차원 수치 모형인 Flow-3D를 이용하였다. 직경이 서로 다른(D=5.0 m, d=1.69 m) 모노파일과 직경이 동일한(D=5.0 m) 모노파일에 대하여 LES 모형 을 적용하여 세굴현상을 평가하였다. 서로 다른 직경을 가진 모노파일 주변에서 최대 세굴심은 4.13 m, 동일한 직경을 가진 모노파일 주변에서는 7.13 m의 최대 세굴 심이 발생하였다. 또한 동일한 직경을 가진 파일에서 하 강류가 증가되어 최대세굴심이 증가된 것으로 분석되었 다. 수치해석 결과, 세굴에 대한 기초의 안정성 측면에서 서로 다른 직경을 가진 기초 형식이 유리한 것으로 분석 되었다. 수치모형을 이용하여 세굴현상을 평가함에 있어서 경 계조건 및 난류모형의 선정은 중요하다. 본 연구에서는 서로 다른 직경을 가진 삼각대 형식의 해상풍력기초에 대하여 상류경계조건으로 관측유속과 극치파랑조건을 각각 적용하였을 경우 세굴현상을 평가하였다. 극치파랑 조건을 적용하였을 경우가 최대세굴심이 약 1.3배 정도 깊게 발생하였다. 또한 극치파랑조건에서 RNG 과 LES 모형을 적용하여 세굴현상을 평가하였다. LES 모 형을 적용하였을 경우 파일 주변에서 세굴현상이 발생하 였으며, 세굴심은 일정시간이 경과된 후에는 증가되지 않는 평형상태에 도달하였다. 그러나 RNG 모형을 적용한 경우는 평형상태에 도달하지 않고 계속해서 세굴 이 진행되어 세굴심을 평가할 수 없었다. 현재 해양구조 물 기초에 대한 세굴현상 연구는 미흡한 상태로 하천에 서 교각 세굴현상을 검토하기 위해서 적용되는 경계조건 을 적용하기보다는 해상 조건인 파랑조건을 적용하여 검 토하는 것이 기초의 안정성 측면에서 유리할 것으로 판 단된다. 또한 정확한 세굴현상을 예측하기 위해서는 RNG 모형보다는 LES 모형을 적용하는 것이 타당 할 것으로 판단된다. 향후 해상풍력기초에 대한 세굴관측을 수행하여 수치 모의 결과와 비교․분석이 필요하며, 또한 다양한 파랑 조건에서 난류모형에 대한 비교․분석이 필요할 것으로 생각된다.

References

[1] W. J. Yang, S. U. Choi. “Three- Dimensional Numerical
Simulation of Local Scour around the Bridge Pier using
Large Eddy Simulation”, Journal of KWRA, vol. 22, no.
4-B, pp. 437-446, 2002.
[2] C. G. Yeo, J. E. Lee, S. O. Lee, J. W. Song. “Sensitivity
Analysis of Sediment Scour Model in Flow-3D”,
Proceedings of KWRA, pp. 1750-1754, 2010.
[3] M. H. Oh, O. S. Kwon, W. M. Jeong, K. S. Lee.
“FLOW-3D Analysis on Scouring around Offshore Wind
Foundation”, Journal of KAIS, vol. 13, no. 3, pp.
1346-1351, 2012.
DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.1346

[4] A. Stahlmann, T. Schlurmann, “Physical Modeling of
Scour around Tripod Foundation Structures for Offshore
Wind Energy Converters”, Proceedings of 32nd
Conference on Coastal Engineering, Shanghai, China,
no. 32, pp. 1-12, 2010.
[5] Flow Science. Flow-3D User’s Manual. Los Alamos,
NM, USA, 2016.
[6] KEPRI. 『Test Bed for 2.5GW Offshore Wind Farm at
Yellow Sea』 Interim Design Report(in Korea), 2014.
[7] Germanischer Lloyd. Guideline for the Certification of
Offshore Wind Turbines. Hamburg, Germany, 2005.
[8] B. M. Sumer, J. Fredsøe, The Mechanics of Scour in the
Marine Environment. World Scientific Publishing Co.
Pte. Ltd. 2002.
[9] S. J. Ahn, U. Y. Kim, J. K. Lee. “Experimental Study
for Scour Protection around Bridge Pier by Falling-Flow
Interruption”, Journal of KSCE, vol. 19, no. II-1, pp.
57-65, 1999.
[10] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C.
G. Speziale, “Development of turbulence models for
shear flows by a double expansion technique”, Physics
of Fluids, vol. 4, no. 7, pp. 1510-1520, 1992.
DOI: https://doi.org/10.1063/1.858424

Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****

토목공학의 수치해석법

Abstract

The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.

이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.

Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements

Introduction

급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.

Fig. 1: Model made in Ardabil, Iran
Fig. 1: Model made in Ardabil, Iran
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 5: Variation of the RMSE varying cell size
Fig. 5: Variation of the RMSE varying cell size
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 8: Relative edge depth versus the relative critical depth
Fig. 8: Relative edge depth versus the relative critical depth
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth

Conclusions

현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.

References

References:
[1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A.,
“Experimental study of the energy dissipation on the rough ramps”,
ISH journal of hydraulic engineering, 2019, p. 1-9.
[2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and
Minkowycz, W.J., “Application of an Intermittency model for
laminar, transitional, and turbulent internal flows”, Journal of
Fluids Engineering, vol. 141, 2019, paper no. 071204.
[3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy
dissipation on block ramps with staggered boulders”, Journal of
hydraulic engineering, vol. 135(6), 2009, p. 522-526.
[4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R.,
“Computational modeling of the hydraulic jump in the stilling
basin with convergence walls using CFD codes”, Arabian Journal
for Science and Engineering, vol. 40(2), 2014, p. 381-395.
[5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical
simulations and laboratory measurements in hydraulic jumps”,
International conference on hydroinformatics. (2014, August) New
York city.
[6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S.,
and Abraham, J., “Experimental and numerical investigation for
energy dissipation of supercritical flow in sudden contractions”,
Journal of groundwater science and engineering, vol. 8(4), 2020a,
p. 396-406.
[7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and
Abraham, J., “Three-dimensional investigation of hydraulic
properties of vertical drop in the presence of step and grid
dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895.
[8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and
Bagherzadeh, M., “SVM performance for predicting the effect of
horizontal screen diameters on the hydraulic parameters of a
vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238.
[9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R.,
and Abraham, J. “Study of the performance of support vector
machine for predicting vertical drop hydraulic parameters in the
presence of dual horizontal screens”, Water supply, vol 21(1),
2021c, p. 217-231.
[10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of
inverse curvature ogee spillways”, Civil engineering journal, vol.
3(11), 2017, p. 1146-1156.
[11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M.,
“Experimental Investigation of the Energy Dissipation and the
Downstream Relative Depth of Pool in the Sloped Gabion Drop
and the Sloped simple Drop”, AUT Journal of Civil Engineering,
2020b (In persian).
[12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J.,
Norouzi, R., “The laboratory study of energy dissipation in inclined
drops equipped with a screen”, Journal of Applied Water
Engineering and Research, 2020c, p. 1-10.
[13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and
Ghaderi, A., “3-D Numerical simulation of water flow over a
broad-crested weir with openings”, ISH Journal of Hydraulic
Engineering, 2019, p.1-9.
[14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical
simulation of flow over stepped spillways”, Research in civil
engineering and environmental engineering, vol. 2(4), 2014, p.
190-198.
[15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M.,
“Efficiency of trapezoidal labyrinth shaped stepped spillways”,
Flow measurement and instrumentation, vol. 72, 2020a.
[16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco,
S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18.
[17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and
Azamathulla, H.M. “Experimental inv