Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

Computer Simulation of Centrifugal Casting Process using FLOW-3D

Aneesh Kumar J1, a, K. Krishnakumar1, b and S. Savithri2, c 1 Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, Kerala, 2 Computational Modelling& Simulation Division, Process Engineering & Environmental Technology Division CSIR-National Institute for Interdisciplinary Science & Technology
Thiruvananthapuram, Kerala, India.
a aneesh82kj@gmail.com, b kkk@cet.ac.in, c sivakumarsavi@gmail.com, ssavithri@niist.res.in Key words: Mold filling, centrifugal casting process, computer simulation, FLOW- 3D™

Abstract

원심 주조 공정은 기능적으로 등급이 지정된 재료, 즉 구성 요소 간에 밀도 차이가 큰 복합 재료 또는 금속 재료를 생산하는 데 사용되는 잠재적인 제조 기술 중 하나입니다. 이 공정에서 유체 흐름이 중요한 역할을 하며 복잡한 흐름 공정을 이해하는 것은 결함 없는 주물을 생산하는 데 필수입니다. 금형이 고속으로 회전하고 금형 벽이 불투명하기 때문에 흐름 패턴을 실시간으로 시각화하는 것은 불가능합니다. 따라서 현재 연구에서는 상용 CFD 코드 FLOW-3D™를 사용하여 수직 원심 주조 공정 중 단순 중공 원통형 주조에 대한 금형 충전 시퀀스를 시뮬레이션했습니다. 수직 원심주조 공정 중 다양한 방사 속도가 충전 패턴에 미치는 영향을 조사하고 있습니다.

Centrifugal casting process is one of the potential manufacturing techniques used for producing functionally graded materials viz., composite materials or metallic materials which have high differences of density among constituents. In this process, the fluid flow plays a major role and understanding the complex flow process is a must for the production of defect-free castings. Since the mold spins at a high velocity and the mold wall being opaque, it is impossible to visualise the flow patterns in real time. Hence, in the present work, the commercial CFD code FLOW-3D™, has been used to simulate the mold filling sequence for a simple hollow cylindrical casting during vertical centrifugal casting process. Effect of various spinning velocities on the fill pattern during vertical centrifugal casting process is being investigated.

Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 2: Experimental data on height of
vertex formed [8]  / Figure 3: Vertex height as a function of time
Figure 2: Experimental data on height of vertex formed [8]/Figure 3: Vertex height as a function of time
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

References

[1] W. Shi-Ping, L. Chang-yun, G. Jing-jie, S. Yan-qing, L. Xiu-qiao, F. Heng-zhi, Numerical simulation and
experimental investigation of two filling methods in vertical centrifugal casting, Trans. Nonferrous Met. Soc.
China 16 (2006) 1035-1040.
10.1016/s1003-6326(06)60373-7
[2] G. Chirita, D. Soares, F.S. Silva, Advantages of the centrifugal casting technique for the production of
structural components with Al-Si alloys, Mater. Des. 29 (2008) 20-27.
10.1016/j.matdes.2006.12.011
[3] A. Kermanpur, Sh. Mahmoudi, A. Hajipour, Numerical simulation of metal flow and solidification in the
multi-cavity casting moulds of automotive components, J. Mater. Proc. Tech. 206 (208) 62-68.
10.1016/j.jmatprotec.2007.12.004
[4] D. McBride et. al. Complex free surface flows in centrifugal casting: Computational modelling and
validation experiments, Computers & Fluids 82 (2013) 63-72.
10.1016/j.compfluid.2013.04.021

Sketch of approach channel and spillway of the Kamal-Saleh dam

CFD modeling of flow pattern in spillway’s approach channel

Sustainable Water Resources Management volume 1, pages245–251 (2015)Cite this article

Abstract

Analysis of behavior and hydraulic characteristics of flow over the dam spillway is a complicated task that takes lots of money and time in water engineering projects planning. To model those hydraulic characteristics, several methods such as physical and numerical methods can be used. Nowadays, by utilizing new methods in computational fluid dynamics (CFD) and by the development of fast computers, the numerical methods have become accessible for use in the analysis of such sophisticated flows. The CFD softwares have the capability to analyze two- and three-dimensional flow fields. In this paper, the flow pattern at the guide wall of the Kamal-Saleh dam was modeled by Flow 3D. The results show that the current geometry of the left wall causes instability in the flow pattern and making secondary and vortex flow at beginning approach channel. This shape of guide wall reduced the performance of weir to remove the peak flood discharge.

댐 여수로 흐름의 거동 및 수리학적 특성 분석은 물 공학 프로젝트 계획에 많은 비용과 시간이 소요되는 복잡한 작업입니다. 이러한 수력학적 특성을 모델링하기 위해 물리적, 수치적 방법과 같은 여러 가지 방법을 사용할 수 있습니다. 요즘에는 전산유체역학(CFD)의 새로운 방법을 활용하고 빠른 컴퓨터의 개발로 이러한 정교한 흐름의 해석에 수치 방법을 사용할 수 있게 되었습니다. CFD 소프트웨어에는 2차원 및 3차원 유동장을 분석하는 기능이 있습니다. 본 논문에서는 Kamal-Saleh 댐 유도벽의 흐름 패턴을 Flow 3D로 모델링하였다. 결과는 왼쪽 벽의 현재 형상이 흐름 패턴의 불안정성을 유발하고 시작 접근 채널에서 2차 및 와류 흐름을 만드는 것을 보여줍니다. 이러한 형태의 안내벽은 첨두방류량을 제거하기 위해 둑의 성능을 저하시켰다.

Introduction

Spillways are one of the main structures used in the dam projects. Design of the spillway in all types of dams, specifically earthen dams is important because the inability of the spillway to remove probable maximum flood (PMF) discharge may cause overflow of water which ultimately leads to destruction of the dam (Das and Saikia et al. 2009; E 2013 and Novak et al. 2007). So study on the hydraulic characteristics of this structure is important. Hydraulic properties of spillway including flow pattern at the entrance of the guide walls and along the chute. Moreover, estimating the values of velocity and pressure parameters of flow along the chute is very important (Chanson 2004; Chatila and Tabbara 2004). The purpose of the study on the flow pattern is the effect of wall geometry on the creation transverse waves, flow instability, rotating and reciprocating flow through the inlet of spillway and its chute (Parsaie and Haghiabi 2015ab; Parsaie et al. 2015; Wang and Jiang 2010). The purpose of study on the values of velocity and pressure is to calculate the potential of the structure to occurrence of phenomena such as cavitation (Fattor and Bacchiega 2009; Ma et al. 2010). Sometimes, it can be seen that the spillway design parameters of pressure and velocity are very suitable, but geometry is considered not suitable for conducting walls causing unstable flow pattern over the spillway, rotating flows at the beginning of the spillway and its design reduced the flood discharge capacity (Fattor and Bacchiega 2009). Study on spillway is usually conducted using physical models (Su et al. 2009; Suprapto 2013; Wang and Chen 2009; Wang and Jiang 2010). But recently, with advances in the field of computational fluid dynamics (CFD), study on hydraulic characteristics of this structure has been done with these techniques (Chatila and Tabbara 2004; Zhenwei et al. 2012). Using the CFD as a powerful technique for modeling the hydraulic structures can reduce the time and cost of experiments (Tabbara et al. 2005). In CFD field, the Navier–Stokes equation is solved by powerful numerical methods such as finite element method and finite volumes (Kim and Park 2005; Zhenwei et al. 2012). In order to obtain closed-form Navier–Stokes equations turbulence models, such k − ε and Re-Normalisation Group (RNG) models have been presented. To use the technique of computational fluid dynamics, software packages such as Fluent and Flow 3D, etc., are provided. Recently, these two software packages have been widely used in hydraulic engineering because the performance and their accuracy are very suitable (Gessler 2005; Kim 2007; Kim et al. 2012; Milési and Causse 2014; Montagna et al. 2011). In this paper, to assess the flow pattern at Kamal-Saleh guide wall, numerical method has been used. All the stages of numerical modeling were conducted in the Flow 3D software.

Materials and methods

Firstly, a three-dimensional model was constructed according to two-dimensional map that was prepared for designing the spillway. Then a small model was prepared with scale of 1:80 and entered into the Flow 3D software; all stages of the model construction was conducted in AutoCAD 3D. Flow 3D software numerically solved the Navier–Stokes equation by finite volume method. Below is a brief reference on the equations that used in the software. Figure 1 shows the 3D sketch of Kamal-Saleh spillway and Fig. 2 shows the uploading file of the Kamal-Saleh spillway in Flow 3D software.

figure 1
Fig. 1
figure 2
Fig. 2

Review of the governing equations in software Flow 3D

Continuity equation at three-dimensional Cartesian coordinates is given as Eq (1).

vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,

(1)

where uvz are velocity component in the x, y, z direction; A xA yA z cross-sectional area of the flow; ρ fluid density; PSOR the source term; v f is the volume fraction of the fluid and three-dimensional momentum equations given in Eq (2).

∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,

(2)

where P is the fluid pressure; G xG yG z the acceleration created by body fluids; f xf yf z viscosity acceleration in three dimensions and v f is related to the volume of fluid, defined by Eq. (3). For modeling of free surface profile the VOF technique based on the volume fraction of the computational cells has been used. Since the volume fraction F represents the amount of fluid in each cell, it takes value between 0 and 1.

∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0

(3)

Turbulence models

Flow 3D offers five types of turbulence models: Prantl mixing length, k − ε equation, RNG models, Large eddy simulation model. Turbulence models that have been proposed recently are based on Reynolds-averaged Navier–Stokes equations. This approach involves statistical methods to extract an averaged equation related to the turbulence quantities.

Steps of solving a problem in Flow 3D software

(1) Preparing the 3D model of spillway by AutoCAD software. (2) Uploading the file of 3D model in Flow 3D software and defining the problem in the software and checking the final mesh. (3) Choosing the basic equations that should be solved. (4) Defining the characteristics of fluid. (5) Defining the boundary conditions; it is notable that this software has a wide range of boundary conditions. (6) Initializing the flow field. (7) Adjusting the output. (8) Adjusting the control parameters, choice of the calculation method and solution formula. (9) Start of calculation. Figure 1 shows the 3D model of the Kamal-Saleh spillway; in this figure, geometry of the left and right guide wall is shown.

Figure 2 shows the uploading of the 3D spillway dam in Flow 3D software. Moreover, in this figure the considered boundary condition in software is shown. At the entrance and end of spillway, the flow rate or fluid elevation and outflow was considered as BC. The bottom of spillway was considered as wall and left and right as symmetry.

Model calibration

Calibration of the Flow 3D for modeling the effect of geometry of guide wall on the flow pattern is included for comparing the results of Flow 3D with measured water surface profile. Calibration the Flow 3D software could be conducted in two ways: first, changing the value of upstream boundary conditions is continued until the results of water surface profile of the Flow 3D along the spillway successfully covered the measurement water surface profile; second is the assessment the mesh sensitivity. Analyzing the size of mesh is a trial-and-error process where the size of mesh is evaluated form the largest to the smallest. With fining the size of mesh the accuracy of model is increased; whereas, the cost of computation is increased. In this research, the value of upstream boundary condition was adjusted with measured data during the experimental studies on the scaled model and the mesh size was equal to 1 × 1 × 1 cm3.

Results and discussion

The behavior of water in spillway is strongly affected by the flow pattern at the entrance of the spillway, the flow pattern formation at the entrance is affected by the guide wall, and choice of an optimized form for the guide wall has a great effect on rising the ability of spillway for easy passing the PMF, so any nonuniformity in flow in the approach channel can cause reduction of spillway capacity, reduction in discharge coefficient of spillway, and even probability of cavitation. Optimizing the flow guiding walls (in terms of length, angle and radius) can cause the loss of turbulence and flow disturbances on spillway. For this purpose, initially geometry proposed for model for the discharge of spillway dam, Kamal-Saleh, 80, 100, and 120 (L/s) were surveyed. These discharges of flow were considered with regard to the flood return period, 5, 100 and 1000 years. Geometric properties of the conducting guidance wall are given in Table 1.Table 1 Characteristics and dimensions of the guidance walls tested

Full size table

Results of the CFD simulation for passing the flow rate 80 (L/s) are shown in Fig. 3. Figure 3 shows the secondary flow and vortex at the left guide wall.

figure 3
Fig. 3

For giving more information about flow pattern at the left and right guide wall, Fig. 4 shows the flow pattern at the right side guide wall and Fig. 5 shows the flow pattern at the left side guide wall.

figure 4
Fig. 4
figure 5
Fig. 5

With regard to Figs. 4 and 5 and observing the streamlines, at discharge equal to 80 (L/s), the right wall has suitable performance but the left wall has no suitable performance and the left wall of the geometric design creates a secondary and circular flow, and vortex motion in the beginning of the entrance of spillway that creates cross waves at the beginning of spillway. By increasing the flow rate (Q = 100 L/s), at the inlet spillway secondary flows and vortex were removed, but the streamline is severely distorted. Results of the guide wall performances at the Q = 100 (L/s) are shown in Fig. 6.

figure 6
Fig. 6

Also more information about the performance of each guide wall can be derived from Figs. 7 and 8. These figures uphold that the secondary and vortex flows were removed, but the streamlines were fully diverted specifically near the left side guide wall.

figure 7
Fig. 7
figure 8
Fig. 8

As mentioned in the past, these secondary and vortex flows and diversion in streamline cause nonuniformity and create cross wave through the spillway. Figure 9 shows the cross waves at the crest of the spillway.

figure 9
Fig. 9

The performance of guide walls at the Q = 120 (L/s) also was assessed. The result of simulation is shown in Fig. 10. Figures 11 and 12 show a more clear view of the streamlines near to right and left side guide wall, respectively. As seen in Fig. 12, the left side wall still causes vortex flow and creation of and diversion in streamline.

figure 10
Fig. 10
figure 11
Fig. 11
figure 12
Fig. 12

The results of the affected left side guide wall shape on the cross wave creation are shown in Fig. 13. As seen from Fig. 3, the left side guide wall also causes cross wave at the spillway crest.

figure 13
Fig. 13

As can be seen clearly in Figs. 9 and 13, by moving from the left side to the right side of the spillway, the cross waves and the nonuniformity in flow is removed. By reviewing Figs. 9 and 13, it is found that the right side guide wall removes the cross waves and nonuniformity. With this point as aim, a geometry similar to the right side guide wall was considered instead of the left side guide wall. The result of simulation for Q = 120 (L/s) is shown in Fig. 14. As seen from this figure, the proposed geometry for the left side wall has suitable performance smoothly passing the flow through the approach channel and spillway.

figure 14
Fig. 14

More information about the proposed shape for the left guide wall is shown in Fig. 15. As seen from this figure, this shape has suitable performance for removing the cross waves and vortex flows.

figure 15
Fig. 15

Figure 16 shows the cross section of flow at the crest of spillway. As seen in this figure, the proposed shape for the left side guide wall is suitable for removing the cross waves and secondary flows.

figure 16
Fig. 16

Conclusion

Analysis of behavior and hydraulic properties of flow over the spillway dam is a complicated task which is cost and time intensive. Several techniques suitable to the purposes of study have been undertaken in this research. Physical modeling, usage of expert experience, usage of mathematical models on simulation flow in one-dimensional, two-dimensional and three-dimensional techniques, are some of the techniques utilized to study this phenomenon. The results of the modeling show that the CFD technique is a suitable tool for simulating the flow pattern in the guide wall. Using this tools helps the designer for developing the optimal shape for hydraulic structure which the flow pattern through them are important.

References

  • Chanson H (2004) 19—Design of weirs and spillways. In: Chanson H (ed) Hydraulics of open channel flow, 2nd edn. Butterworth-Heinemann, Oxford, pp 391–430Chapter Google Scholar 
  • Chatila J, Tabbara M (2004) Computational modeling of flow over an ogee spillway. Comput Struct 82:1805–1812Article Google Scholar 
  • Das MM, Saikia MD (2009) Irrigation and water power engineering. PHI Learning, New DelhiGoogle Scholar 
  • E, Department Of Army: U.S. Army Corps (2013) Hydraulic Design of Spillways. BiblioBazaar, CharlestonGoogle Scholar 
  • Fattor C, Bacchiega J (2009) Design conditions for morning-glory spillways: application to potrerillos dam spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2123–2128Google Scholar 
  • Gessler D (2005) CFD modeling of spillway performance. Impacts Glob Clim Change. doi:10.1061/40792(173)398
  • Kim D-G (2007) Numerical analysis of free flow past a sluice gate. KSCE J Civ Eng 11:127–132Article Google Scholar 
  • Kim D, Park J (2005) Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J Civ Eng 9:161–169Article Google Scholar 
  • Kim S, Yu K, Yoon B, Lim Y (2012) A numerical study on hydraulic characteristics in the ice Harbor-type fishway. KSCE J Civ Eng 16:265–272Article Google Scholar 
  • Ma X-D, Dai G-Q, Yang Q, Li G-J, Zhao L (2010) Analysis of influence factors of cavity length in the spillway tunnel downstream of middle gate chamber outlet with sudden lateral enlargement and vertical drop aerator. J Hydrodyn Ser B 22:680–686Article Google Scholar 
  • Milési G, Causse S (2014) 3D numerical modeling of a side-channel spillway. In: Gourbesville P, Cunge J, Caignaert G (eds) Advances in hydroinformatics. Springer, Singapore, pp 487–498Chapter Google Scholar 
  • Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608Article Google Scholar 
  • Novak P, Moffat AIB, Nalluri C, Narayanan R (2007) Hydraulic structures. Taylor & Francis, LondonGoogle Scholar 
  • Parsaie A, Haghiabi A (2015a) Computational modeling of pollution transmission in rivers. Appl Water Sci. doi:10.1007/s13201-015-0319-6
  • Parsaie A, Haghiabi A (2015b) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Res Manag 29:973–985Article Google Scholar 
  • Parsaie A, Yonesi H, Najafian S (2015) Predictive modeling of discharge in compound open channel by support vector machine technique. Model Earth Syst Environ 1:1–6Article Google Scholar 
  • Su P-L, Liao H-S, Qiu Y, Li CJ (2009) Experimental study on a new type of aerator in spillway with low Froude number and mild slope flow. J Hydrodyn Ser B 21:415–422Article Google Scholar 
  • Suprapto M (2013) Increase spillway capacity using Labyrinth Weir. Procedia Eng 54:440–446Article Google Scholar 
  • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83:2215–2224Article Google Scholar 
  • Wang J, Chen H (2009) Experimental study of elimination of vortices along guide wall of bank spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2059–2063Google Scholar 
  • Wang Y, Jiang C (2010) Investigation of the surface vortex in a spillway tunnel intake. Tsinghua Sci Technol 15:561–565Article Google Scholar 
  • Zhenwei MU, Zhiyan Z, Tao Z (2012) Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng 28:808–812Article Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Water Engineering, Lorestan University, Khorram Abad, IranAbbas Parsaie, Amir Hamzeh Haghiabi & Amir Moradinejad

Corresponding author

Correspondence to Abbas Parsaie.

Reprints and Permissions

About this article

Cite this article

Parsaie, A., Haghiabi, A.H. & Moradinejad, A. CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag. 1, 245–251 (2015). https://doi.org/10.1007/s40899-015-0020-9

Download citation

  • Received28 April 2015
  • Accepted28 August 2015
  • Published15 September 2015
  • Issue DateSeptember 2015
  • DOIhttps://doi.org/10.1007/s40899-015-0020-9

Share this article

Anyone you share the following link with will be able to read this content:Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Approach channel
  • Kamal-Saleh dam
  • Guide wall
  • Flow pattern
  • Numerical modeling
  • Flow 3D software
    Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

    BC Hydro Assesses Spillway Hydraulics with FLOW-3D

    by Faizal Yusuf, M.A.Sc., P.Eng.
    Specialist Engineer in the Hydrotechnical Department at BC Hydro

    BC Hydro, a public electric utility in British Columbia, uses FLOW-3D to investigate complex hydraulics issues at several existing dams and to assist in the design and optimization of proposed facilities.

    Faizal Yusuf, M.A.Sc., P.Eng., Specialist Engineer in the Hydrotechnical department at BC Hydro, presents three case studies that highlight the application of FLOW-3D to different types of spillways and the importance of reliable prototype or physical hydraulic model data for numerical model calibration.

    W.A.C. Bennett Dam
    At W.A.C. Bennett Dam, differences in the spillway geometry between the physical hydraulic model from the 1960s and the prototype make it difficult to draw reliable conclusions on shock wave formation and chute capacity from physical model test results. The magnitude of shock waves in the concrete-lined spillway chute are strongly influenced by a 44% reduction in the chute width downstream of the three radial gates at the headworks, as well as the relative openings of the radial gates. The shock waves lead to locally higher water levels that have caused overtopping of the chute walls under certain historical operations.Prototype spill tests for discharges up to 2,865 m3/s were performed in 2012 to provide surveyed water surface profiles along chute walls, 3D laser scans of the water surface in the chute and video of flow patterns for FLOW-3D model calibration. Excellent agreement was obtained between the numerical model and field observations, particularly for the location and height of the first shock wave at the chute walls (Figure 1).

    W.A.C에서 Bennett Dam, 1960년대의 물리적 수력학 모델과 프로토타입 사이의 여수로 형상의 차이로 인해 물리적 모델 테스트 결과에서 충격파 형성 및 슈트 용량에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 콘크리트 라이닝 방수로 낙하산의 충격파 크기는 방사형 게이트의 상대적인 개구부뿐만 아니라 헤드워크에 있는 3개의 방사형 게이트 하류의 슈트 폭이 44% 감소함에 따라 크게 영향을 받습니다. 충격파는 특정 역사적 작업에서 슈트 벽의 범람을 야기한 국부적으로 더 높은 수위로 이어집니다. 최대 2,865m3/s의 배출에 대한 프로토타입 유출 테스트가 2012년에 수행되어 슈트 벽을 따라 조사된 수면 프로필, 3D 레이저 스캔을 제공했습니다. FLOW-3D 모델 보정을 위한 슈트의 수면 및 흐름 패턴 비디오. 특히 슈트 벽에서 첫 번째 충격파의 위치와 높이에 대해 수치 모델과 현장 관찰 간에 탁월한 일치가 이루어졌습니다(그림 1).
    Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.
    Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.

    The calibrated FLOW-3D model confirmed that the design flood could be safely passed without overtopping the spillway chute walls as long as all three radial gates are opened as prescribed in existing operating orders with the outer gates open more than the inner gate.

    The CFD model also provided insight into the concrete damage in the spillway chute. Cavitation indices computed from FLOW-3D simulation results were compared with empirical data from the USBR and found to be consistent with the historical performance of the spillway. The numerical analysis supported field inspections, which concluded that deterioration of the concrete conditions in the chute is likely not due to cavitation.

    Strathcona Dam
    FLOW-3D was used to investigate poor approach conditions and uncertainties with the rating curves for Strathcona Dam spillway, which includes three vertical lift gates on the right abutment of the dam. The rating curves for Strathcona spillway were developed from a combination of empirical adjustments and limited physical hydraulic model testing in a flume that did not include geometry of the piers and abutments.

    Numerical model testing and calibration was based on comparisons with prototype spill observations from 1982 when all three gates were fully open, resulting in a large depression in the water surface upstream of the leftmost bay (Figure 2). The approach flow to the leftmost bay is distorted by water flowing parallel to the dam axis and plunging over the concrete retaining wall adjacent to the upstream slope of the earthfill dam. The flow enters the other two bays much more smoothly. In addition to very similar flow patterns produced in the numerical model compared to the prototype, simulated water levels at the gate section matched 1982 field measurements to within 0.1 m.

    보정된 FLOW-3D 모델은 외부 게이트가 내부 게이트보다 더 많이 열려 있는 기존 운영 명령에 규정된 대로 3개의 방사형 게이트가 모두 열리는 한 여수로 낙하산 벽을 넘지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다.

    CFD 모델은 방수로 낙하산의 콘크리트 손상에 대한 통찰력도 제공했습니다. FLOW-3D 시뮬레이션 결과에서 계산된 캐비테이션 지수는 USBR의 경험적 데이터와 비교되었으며 여수로의 역사적 성능과 일치하는 것으로 나타났습니다. 수치 분석은 현장 검사를 지원했으며, 슈트의 콘크리트 상태 악화는 캐비테이션 때문이 아닐 가능성이 높다고 결론지었습니다.

    Strathcona 댐
    FLOW-3D는 Strathcona Dam 여수로에 대한 등급 곡선을 사용하여 열악한 접근 조건과 불확실성을 조사하는 데 사용되었습니다. 여기에는 댐의 오른쪽 접합부에 3개의 수직 리프트 게이트가 포함되어 있습니다. Strathcona 여수로에 대한 등급 곡선은 경험적 조정과 교각 및 교대의 형상을 포함하지 않는 수로에서 제한된 물리적 수리 모델 테스트의 조합으로 개발되었습니다.

    수치 모델 테스트 및 보정은 세 개의 수문이 모두 완전히 개방된 1982년의 프로토타입 유출 관측과의 비교를 기반으로 했으며, 그 결과 가장 왼쪽 만의 상류 수면에 큰 함몰이 발생했습니다(그림 2). 최좌단 만으로의 접근 흐름은 댐 축과 평행하게 흐르는 물과 흙채움댐의 상류 경사면에 인접한 콘크리트 옹벽 위로 떨어지는 물에 의해 왜곡됩니다. 흐름은 훨씬 더 원활하게 다른 두 베이로 들어갑니다. 프로토타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도 게이트 섹션에서 시뮬레이션된 수위는 1982년 현장 측정과 0.1m 이내로 일치했습니다.

    Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
    Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.

    The calibrated CFD model produces discharges within 5% of the spillway rating curve for the reservoir’s normal operating range with all gates fully open. However, at higher reservoir levels, which may occur during passage of large floods (as shown in Figure 3), the difference between simulated discharges and the rating curves are greater than 10% as the physical model testing with simplified geometry and empirical corrections did not adequately represent the complex approach flow patterns. The FLOW-3D model provided further insight into the accuracy of rating curves for individual bays, gated conditions and the transition between orifice and free surface flow.

    보정된 CFD 모델은 모든 게이트가 완전히 열린 상태에서 저수지의 정상 작동 범위에 대한 여수로 등급 곡선의 5% 이내에서 배출을 생성합니다. 그러나 대규모 홍수가 통과하는 동안 발생할 수 있는 더 높은 저수지 수위에서는(그림 3 참조) 단순화된 기하학과 경험적 수정을 사용한 물리적 모델 테스트가 그렇지 않았기 때문에 모의 배출과 등급 곡선 간의 차이는 10% 이상입니다. 복잡한 접근 흐름 패턴을 적절하게 표현합니다. FLOW-3D 모델은 개별 베이, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 등급 곡선의 정확도에 대한 추가 통찰력을 제공했습니다.

    Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.
    Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

    John Hart Dam
    The John Hart concrete dam will be modified to include a new free crest spillway to be situated between an existing gated spillway and a low level outlet structure that is currently under construction. Significant improvements in the design of the proposed spillway were made through a systematic optimization process using FLOW-3D.

    The preliminary design of the free crest spillway was based on engineering hydraulic design guides. Concrete apron blocks are intended to protect the rock at the toe of the dam. A new right training wall will guide the flow from the new spillway towards the tailrace pool and protect the low level outlet structure from spillway discharges.

    FLOW-3D model results for the initial and optimized design of the new spillway are shown in Figure 4. CFD analysis led to a 10% increase in discharge capacity, significant decrease in roadway impingement above the spillway crest and improved flow patterns including up to a 5 m reduction in water levels along the proposed right wall. Physical hydraulic model testing will be used to confirm the proposed design.

    존 하트 댐
    John Hart 콘크리트 댐은 현재 건설 중인 기존 배수로와 저층 배수로 사이에 위치할 새로운 자유 마루 배수로를 포함하도록 수정될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 여수로 설계의 상당한 개선이 이루어졌습니다.

    자유 마루 여수로의 예비 설계는 엔지니어링 수력학 설계 가이드를 기반으로 했습니다. 콘크리트 앞치마 블록은 댐 선단부의 암석을 보호하기 위한 것입니다. 새로운 오른쪽 훈련 벽은 새 여수로에서 테일레이스 풀로 흐름을 안내하고 여수로 배출로부터 낮은 수준의 배출구 구조를 보호합니다.

    새 여수로의 초기 및 최적화된 설계에 대한 FLOW-3D 모델 결과는 그림 4에 나와 있습니다. CFD 분석을 통해 방류 용량이 10% 증가하고 여수로 마루 위의 도로 충돌이 크게 감소했으며 최대 제안된 오른쪽 벽을 따라 수위가 5m 감소합니다. 제안된 설계를 확인하기 위해 물리적 수압 모델 테스트가 사용됩니다.

    Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
    Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

    Conclusion

    BC Hydro has been using FLOW-3D to investigate a wide range of challenging hydraulics problems for different types of spillways and water conveyance structures leading to a greatly improved understanding of flow patterns and performance. Prototype data and reliable physical hydraulic model testing are used whenever possible to improve confidence in the numerical model results.

    다양한 유형의 여수로 및 물 수송 구조로 인해 흐름 패턴 및 성능에 대한 이해가 크게 향상되었습니다. 프로토타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과의 신뢰도를 향상시키기 위해 가능할 때마다 사용됩니다.

    About Flow Science, Inc.
    Based in Santa Fe, New Mexico USA, Flow Science was founded in 1980 by Dr. C. W. (Tony) Hirt, who was one of the principals in pioneering the “Volume-of-Fluid” or VOF method while working at the Los Alamos National Lab. FLOW-3D is a direct descendant of this work, and in the subsequent years, we have increased its sophistication with TruVOF, boasting pioneering improvements in the speed and accuracy of tracking distinct liquid/gas interfaces. Today, Flow Science products offer complete multiphysics simulation with diverse modeling capabilities including fluid-structure interaction, 6-DoF moving objects, and multiphase flows. From inception, our vision has been to provide our customers with excellence in flow modeling software and services.

    Numerical analysis of energy dissipator options using computational fluid dynamics modeling — a case study of Mirani Dam

    전산 유체 역학 모델링을 사용한 에너지 소산자 옵션의 수치적 해석 — Mirani 댐의 사례 연구

    Arabian Journal of Geosciences volume 15, Article number: 1614 (2022) Cite this article

    Abstract

    이 연구에서 FLOW 3D 전산 유체 역학(CFD) 소프트웨어를 사용하여 파키스탄 Mirani 댐 방수로에 대한 에너지 소산 옵션으로 미국 매립지(USBR) 유형 II 및 USBR 유형 III 유역의 성능을 추정했습니다. 3D Reynolds 평균 Navier-Stokes 방정식이 해결되었으며, 여기에는 여수로 위의 자유 표면 흐름을 캡처하기 위해 공기 유입, 밀도 평가 및 드리프트-플럭스에 대한 하위 그리드 모델이 포함되었습니다. 본 연구에서는 5가지 모델을 고려하였다. 첫 번째 모델에는 길이가 39.5m인 USBR 유형 II 정수기가 있습니다. 두 번째 모델에는 길이가 44.2m인 USBR 유형 II 정수기가 있습니다. 3번째와 4 번째모델에는 길이가 각각 48.8m인 USBR 유형 II 정수조와 39.5m의 USBR 유형 III 정수조가 있습니다. 다섯 번째 모델은 네 번째 모델과 동일하지만 마찰 및 슈트 블록 높이가 0.3m 증가했습니다. 최상의 FLOW 3D 모델 조건을 설정하기 위해 메쉬 민감도 분석을 수행했으며 메쉬 크기 0.9m에서 최소 오차를 산출했습니다. 세 가지 경계 조건 세트가 테스트되었으며 최소 오류를 제공하는 세트가 사용되었습니다. 수치적 검증은 USBR 유형 II( L = 48.8m), USBR 유형 III( L = 35.5m) 및 USBR 유형 III 의 물리적 모델 에너지 소산을 0.3m 블록 단위로 비교하여 수행되었습니다( L= 35.5m). 통계 분석 결과 평균 오차는 2.5%, RMSE(제곱 평균 제곱근 오차) 지수는 3% 미만이었습니다. 수리학적 및 경제성 분석을 바탕으로 4 번째 모델이 최적화된 에너지 소산기로 밝혀졌습니다. 흡수된 에너지 백분율 측면에서 물리적 모델과 수치적 모델 간의 최대 차이는 5% 미만인 것으로 나타났습니다.

    In this study, the FLOW 3D computational fluid dynamics (CFD) software was used to estimate the performance of the United States Bureau of Reclamation (USBR) type II and USBR type III stilling basins as energy dissipation options for the Mirani Dam spillway, Pakistan. The 3D Reynolds-averaged Navier–Stokes equations were solved, which included sub-grid models for air entrainment, density evaluation, and drift–flux, to capture free-surface flow over the spillway. Five models were considered in this research. The first model has a USBR type II stilling basin with a length of 39.5 m. The second model has a USBR type II stilling basin with a length of 44.2 m. The 3rd and 4th models have a USBR type II stilling basin with a length of 48.8 m and a 39.5 m USBR type III stilling basin, respectively. The fifth model is identical to the fourth, but the friction and chute block heights have been increased by 0.3 m. To set up the best FLOW 3D model conditions, mesh sensitivity analysis was performed, which yielded a minimum error at a mesh size of 0.9 m. Three sets of boundary conditions were tested and the set that gave the minimum error was employed. Numerical validation was done by comparing the physical model energy dissipation of USBR type II (L = 48.8 m), USBR type III (L =35.5 m), and USBR type III with 0.3-m increments in blocks (L = 35.5 m). The statistical analysis gave an average error of 2.5% and a RMSE (root mean square error) index of less than 3%. Based on hydraulics and economic analysis, the 4th model was found to be an optimized energy dissipator. The maximum difference between the physical and numerical models in terms of percentage energy absorbed was found to be less than 5%.

    Keywords

    • Numerical modeling
    • Spillway
    • Hydraulic jump
    • Energy dissipation
    • FLOW 3D

    References

    • Abbasi S, Fatemi S, Ghaderi A, Di Francesco S (2021) The effect of geometric parameters of the antivortex on a triangular labyrinth side weir. Water (Switzerland) 13(1). https://doi.org/10.3390/w13010014
    • Amorim JCC, Amante RCR, Barbosa VD (2015) Experimental and numerical modeling of flow in a stilling basin. Proceedings of the 36th IAHR World Congress 28 June–3 July, the Hague, the Netherlands, 1, 1–6
    • Asaram D, Deepamkar G, Singh G, Vishal K, Akshay K (2016) Energy dissipation by using different slopes of ogee spillway. Int J Eng Res Gen Sci 4(3):18–22Google Scholar 
    • Boes RM, Hager WH (2003) Hydraulic design of stepped spillways. J Hydraul Eng 129(9):671–679. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(671)Article Google Scholar 
    • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7):0780011–0780014. https://doi.org/10.1115/1.2960953Article Google Scholar 
    • Chen Q, Dai G, Liu H (2002) Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. J Hydraul Eng 128(7):683–688. 10.1061/共ASCE兲0733-9429共2002兲128:7共683兲 CE
    • Damiron R (2015) CFD modelling of dam spillway aerator. Lund University Sweden
    • Dunlop SL, Willig IA, Paul GE (2016) Cabinet Gorge Dam spillway modifications for TDG abatement – design evolution and field performance. 6th International Symposium on Hydraulic Structures: Hydraulic Structures and Water System Management, ISHS 2016, 3650628160, 460–470. 10.15142/T3650628160853
    • Fleit G, Baranya S, Bihs H (2018) CFD modeling of varied flow conditions over an ogee-weir. Period Polytech Civ Eng 62(1):26–32. https://doi.org/10.3311/PPci.10821Article Google Scholar 
    • Frizell KW, Frizell KH (2015) Guidelines for hydraulic design of stepped spillways. Hydraulic Laboratory Report HL-2015-06, May
    • Ghaderi A, Abbasi S (2021) Experimental and numerical study of the effects of geometric appendance elements on energy dissipation over stepped spillway. Water (Switzerland) 13(7). https://doi.org/10.3390/w13070957
    • Ghaderi A, Dasineh M, Aristodemo F, Ghahramanzadeh A (2020) Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J Hydroinform 22(6):1554–1572. https://doi.org/10.2166/HYDRO.2020.298Article Google Scholar 
    • Güven A, Mahmood AH (2021) Numerical investigation of flow characteristics over stepped spillways. Water Sci Technol Water Supply 21(3):1344–1355. https://doi.org/10.2166/ws.2020.283Article Google Scholar 
    • Herrera-Granados O, Kostecki SW (2016) Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage. J Hydrol Hydromech 64(1):67–74. https://doi.org/10.1515/johh-2016-0013Article Google Scholar 
    • Ho DKH, Riddette KM (2010) Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Aust J Civ Eng 6(1):81–104. https://doi.org/10.1080/14488353.2010.11463946Article Google Scholar 
    • Kocaer Ö, Yarar A (2020) Experimental and numerical investigation of flow over ogee spillway. Water Resour Manag 34(13):3949–3965. https://doi.org/10.1007/s11269-020-02558-9Article Google Scholar 
    • Kumcu SY (2017) Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE J Civ Eng 21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-zArticle Google Scholar 
    • Li S, Li Q, Yang J (2019) CFD modelling of a stepped spillway with various step layouts. Math Prob Eng 2019:1–12. https://doi.org/10.1155/2019/6215739Article Google Scholar 
    • Muthukumaran N, Prince Arulraj G (2020) Experimental investigation on augmenting the discharge over ogee spillways with nanocement. Civ Eng Archit 8(5):838–845. https://doi.org/10.13189/cea.2020.080511Article Google Scholar 
    • Naderi V, Farsadizadeh D, Lin C, Gaskin S (2019) A 3D study of an air-core vortex using HSPIV and flow visualization. Arab J Sci Eng 44(10):8573–8584. https://doi.org/10.1007/s13369-019-03764-3Article Google Scholar 
    • Nangare PB, Kote AS (2017) Experimental investigation of an ogee stepped spillway with plain and slotted roller bucket for energy dissipation. Int J Civ Eng Technol 8(8):1549–1555Google Scholar 
    • Parsaie A, Moradinejad A, Haghiabi AH (2018) Numerical modeling of flow pattern in spillway approach channel. Jordan J Civ Eng 12(1):1–9Google Scholar 
    • Pasbani Khiavi M, Ali Ghorbani M, Yusefi M (2021) Numerical investigation of the energy dissipation process in stepped spillways using finite volume method. J Irrig Water Eng 11(4):22–37Google Scholar 
    • Peng Y, Zhang X, Yuan H, Li X, Xie C, Yang S, Bai Z (2019) Energy dissipation in stepped spillways with different horizontal face angles. Energies 12(23). https://doi.org/10.3390/en12234469
    • Raza A, Wan W, Mehmood K (2021) Stepped spillway slope effect on air entrainment and inception point location. Water (Switzerland) 13(10). https://doi.org/10.3390/w13101428
    • Reeve DE, Zuhaira AA, Karunarathna H (2019) Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways. Water Sci Eng 12(1):62–72. https://doi.org/10.1016/j.wse.2019.04.002Article Google Scholar 
    • Rice CE, Kadavy KC (1996) Model study of a roller compacted concrete stepped spillway. J Hydraul Eng 122(6):292–297. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(292)Article Google Scholar 
    • Rong Y, Zhang T, Peng L, Feng P (2019) Three-dimensional numerical simulation of dam discharge and flood routing in Wudu reservoir. Water (Switzerland) 11(10). https://doi.org/10.3390/w11102157
    • Saqib N, Akbar M, Pan H, Ou G, Mohsin M, Ali A, Amin A (2022) Numerical analysis of pressure profiles and energy dissipation across stepped spillways having curved risers. Appl Sci 12(448):1–18Google Scholar 
    • Saqib N, Ansari K, Babar M (2021) Analysis of pressure profiles and energy dissipation across stepped spillways having curved treads using computational fluid dynamics. Intl Conf Adv Mech Eng :1–10
    • Saqib Nu, Akbar M, Huali P, Guoqiang O (2022) Numerical investigation of pressure profiles and energy dissipation across the stepped spillway having curved treads using FLOW 3D. Arab J Geosci 15(1):1363–1400. https://doi.org/10.1007/s12517-022-10505-8Article Google Scholar 
    • Sarkardeh H, Marosi M, Roshan R (2015) Stepped spillway optimization through numerical and physical modeling. Int J Energy Environ 6(6):597–606Google Scholar 
    • Serafeim A, Avgeris V, Hrissanthou V (2015) Experimental and numerical modeling of flow over a spillway. Eur Water Publ 14(2015):55–59. https://doi.org/10.15224/978-1-63248-042-2-11Article Google Scholar 
    • Sorensen RM (1986) Stepped spillway model investigation. J Hydraul Eng I(12):1461–1472. https://ascelibrary.org/doi/full/10.1061/%28ASCE%290733-
    • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83(27):2215–2224. https://doi.org/10.1016/j.compstruc.2005.04.005Article Google Scholar 
    • Valero D, Bung DB, Crookston BM, Matos J (2016) Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways. 6th International Symposium on Hydraulic Structures: Hydraulic Structures and Water System Management, ISHS 2016, 3406281608, 635–646. https://doi.org/10.15142/T340628160853
    • Versteeg H, Malalasekera W (1979) An introduction to computational fluid mechanics. (Vol. 2). https://doi.org/10.1016/0010-4655(80)90010-7
    • WAPDA model studies cell, IRI Lahore (2003) Mirani Dam Project hydraulic model studies for the spillway. November 2003
    • Yakhot V, Orszag S (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51Article Google Scholar 
    Figure 3. Comparison of water surface profiles over porous media with 12 mm particle diameter in laboratory measurements (symbols) and numerical results (lines).

    다공층에 대한 돌발 댐 붕괴의 3차원 유동 수치해석 시뮬레이션

    A. Safarzadeh1*, P. Mohsenzadeh2, S. Abbasi3
    1 Professor of Civil Eng., Water Engineering and Mineral Waters Research Center, Univ. of Mohaghegh Ardabili,Ardabil, Iran
    2 M.Sc., Graduated of Civil-Hydraulic Structures Eng., Faculty of Eng., Univ. of Mohaghegh Ardabili, Ardabil, Iran
    3 M.Sc., Graduated of Civil -Hydraulic Structures Eng., Faculty of Eng., Univ. of Mohaghegh Ardabili, Ardabil, Iran Safarzadeh@uma.ac.ir

    Highlights

    유체 이동에 의해 생성된 RBF는 Ls-Dyna에서 Fluent, ICFD ALE 및 SPH 방법으로 시뮬레이션되었습니다.
    RBF의 과예측은 유체가 메인 도메인에서 고속으로 분리될 때 발생합니다.
    이 과잉 예측은 요소 크기, 시간 단계 크기 및 유체 모델에 따라 다릅니다.
    유체 성능을 검증하려면 최대 RBF보다 임펄스가 권장됩니다.

    Abstract

    Dam break is a very important problem due to its effects on economy, security, human casualties and environmental consequences. In this study, 3D flow due to dam break over the porous substrate is numerically simulated and the effect of porosity, permeability and thickness of the porous bed and the water depth in the porous substrate are investigated. Classic models of dam break over a rigid bed and water infiltration through porous media were studied and results of the numerical simulations are compared with existing laboratory data. Validation of the results is performed by comparing the water surface profiles and wave front position with dam break on rigid and porous bed. Results showed that, due to the effect of dynamic wave in the initial stage of dam break, a local peak occurs in the flood hydrograph. The presence of porous bed reduces the acceleration of the flood wave relative to the flow over the solid bed and it decreases with the increase of the permeability of the bed. By increasing the permeability of the bed, the slope of the ascending limb of the flood hydrograph and the peak discharge drops. Furthermore, if the depth and permeability of the bed is such that the intrusive flow reaches the rigid substrate under the porous bed, saturation of the porous bed, results in a sharp increase in the slope of the flood hydrograph. The maximum values of the peak discharge at the end of the channel with porous bed occurred in saturated porous bed conditions.

    댐 붕괴는 경제, 보안, 인명 피해 및 환경적 영향으로 인해 매우 중요한 문제입니다. 본 연구에서는 다공성 기재에 대한 댐 파괴로 인한 3차원 유동을 수치적으로 시뮬레이션하고 다공성 기재의 다공성, 투과도 및 다공성 층의 두께 및 수심의 영향을 조사합니다. 단단한 바닥에 대한 댐 파괴 및 다공성 매체를 통한 물 침투의 고전 모델을 연구하고 수치 시뮬레이션 결과를 기존 실험실 데이터와 비교합니다. 결과 검증은 강체 및 다공성 베드에서 댐 파단과 수면 프로파일 및 파면 위치를 비교하여 수행됩니다. 그 결과 댐파괴 초기의 동적파동의 영향으로 홍수수문곡선에서 국부첨두가 발생하는 것으로 나타났다. 다공성 베드의 존재는 고체 베드 위의 유동에 대한 홍수파의 가속을 감소시키고 베드의 투과성이 증가함에 따라 감소합니다. 베드의 투수성을 증가시켜 홍수 수문곡선의 오름차순 경사와 첨두방류량이 감소한다. 더욱이, 만약 층의 깊이와 투과성이 관입 유동이 다공성 층 아래의 단단한 기질에 도달하는 정도라면, 다공성 층의 포화는 홍수 수문곡선의 기울기의 급격한 증가를 초래합니다. 다공층이 있는 채널의 끝단에서 최대 방전 피크값은 포화 다공층 조건에서 발생하였다.

    Keywords

    Keywords: Dams Break, 3D modeling, Porous Bed, Permeability, Flood wave

    Reference

    [1] D.L. Fread, In: Maidment, D.R. (Ed.), Flow Routing in Handbook of Hydrology, McGraw-Hill Inc., New York, USA, pp. 10(1) (1993) 1-36.
    [2] M. Morris, CADAM: Concerted Action on Dambreak Modeling – Final Report, Rep. SR 571. HR Wallingford, 2000.
    [3] H. Chanson, The Hydraulics of Open Channel Flows: an Introduction, ButterworthHeinemann, Oxford, 2004.
    [4] A. Ritter, Die Fortpflanzung der Wasserwellen (The Propagation of Water Waves), Zeitschrift Verein Deutscher Ingenieure, 36 (33) (1892) 947–954 [in German].
    [5] B. Ghimire, Hydraulic Analysis of Free-Surface Flows into Highly Permeable Porous Media and its Applications, Phd. Thesis, Kyoto University, 2009.
    [6] R. Dressler, Hydraulic Resistance Effect Upon the Dam-Break Function, Journal of Research of the National Bureau of Standards, 49 (3) 1952.
    [7] G. Lauber, and W.H. Hager, Experiments to Dambreak Wave: horizontal channel, Journal of Hydraulic Research. 36 (3) (1998) 291–307.
    [8] L.W. Tan, and V.H. Chu, Lagrangian Block Hydrodynamics of Macro Resistance in a River-Flow Model,
    [9] L. Tan, V.H. Lauber and Hager’s Dam-Break Wave Data for Numerical Model Validation, Journal of Hydraulic Research, 47 (4) (2009) 524-528.
    [10] S. Mambretti, E.D. Larcan, and D. Wrachien, 1D Modelling of Dam-Break Surges with Floating Debris, J. of Biosystems engineering, 100 (2) (2008) 297-308.
    [11] M. Pilotti, M. Tomirotti, G. Valerio, and B. Bacchi, Simplified Method for the Characterization of the Hydrograph Following a Sudden Partial Dam Break, Journal of Hydraulic Engineering, 136 (10) (2010) 693-704.
    [12] T.J. Chang, H.M. Kao, K.H. Chang, and Mi.H. Hsu, Numerical Simulation of ShallowWater Dam Break Flows in Open Channels Using Smoothed Particle Hydrodynamics, J. Hydraul. Eng., 408 (78–90) 2011.
    [13] T. Tawatchai, and W. Rattanapitikon, 2-D Modelling of Dambreak Wave Propagation on Initially Dry Bed, Thammasat Int. J. Sc. 4 (3) 1999.
    [14] Y.F. Le, Experimental Study of landslide Dam-Break Flood over Erodible Bed in open Channels. Journal of Hydrodynamics, Ser. B, 21 (5) 2006.
    [15] O. Castro-Orgaz, & H. Chanson, Ritter’s Dry-Bed Dam-Break Flows: Positive and Negative Wave Dynamics, J. of Environmental Fluid Mechanics, 17 (4) (2017) 665-694.
    [16] A. Jozdani, A.R. Kabiri-Samani, Application of Image Processing Method to Analysis of Flood Behavior Due to Dam Break, 9th Iranian Hydraulic Conference. Univ. of Tarbiat Moddares, 2011.(in persian)
    [17] A. Safarzadeh, Three Dimensional Hydrodynamics of Sudden Dam Break in Curved Channels, Journal of Modares Civil Engineering, 17(3) (2017) 77-86. (in persian)
    [18] P. C. Carman, Fluid Flow Through Granular Beds, Transactions, Institution of Chem. Eng. Res. Des. 75 (Dec): S32–S48, London, 15, (1937) 150-166.
    [19] P. Forchheimer, Wasserbewegung Durch Boden. Z. Ver. Deutsch. Ing. 45 (1901) 1782– 1788.
    [20] S. Ergun, Fluid Flow through Packed Columns. Chemical Engineering Progress, 48(2) (1952) 89-93.
    [21] A. Parsaei, S. Dehdar-Behbahani, Numerical Modeling of Cavitation on Spillway’s Flip Bucket, Frontiers of Structural and Civil Engineering, 10 (4) (2016) 438-444.
    [22] S. Dehdar-Behbahani, A. Parsaei, Numerical Modeling of Flow Pattern in Dam Spillway’s Guide Wall. Case study: Balaroud dam, Iran, Alexandria Engineering Journal, 55(1) (2016) 467-473.
    [23] A. Parsaei, AH. Haghiabi, A. Moradnejad, CFD Modeling of Flow Pattern in Spillway’s ACCEPTED MANUSCRIPT 19 Approach Channel, Sustainable Water Resources Management, 1(3) (2015) 245-251.
    [24] SH. Najafian, H. Yonesi, A. Parsaei, PH. Torabi, Physical and Numerical Modeling of Flow in Heterogeneous Roughness Non-Prismatic Compound Open Channel, Irrigation and Drainage Structures Engineering Research, 17(66) (2016) 87-104.
    [25] SH. Najafian, H. Yonesi, A. Parsaei, PH. Torabi, Physical and Numerical Modeling of Flow Properties in Prismatic Compound Open Channel with Heterogeneous Roughness, Irrigation and Drainage Structures Engineering Research, 18(68) (2017) 1-16.
    [26] A. Safarzadeh, S.H. Mohajeri, Hydrodynamics of Rectangular Broad-Crested Porous Weirs, Journal of Irrig. & Drain. Eng., 144(10) (2018) 1-12.
    [27] M. Fathi-moghaddam, M.T. Sadrabadi, M, Rahamnshahi, Numerical Simulation of the Hydraulic Performance of Triangular and Trapezoidal Gabion Weirs in Free Flow Condition, Journal of Flow Measurement & Instrumentation, 62 (2018) 93-104.
    [28] A. Parsaei, A. Moradnejad, Numerical Modeling of Flow Pattern in Spillway Approach Channel, Jordan Journal of Civil Engineering, 12(1) (2018) 1-9.

    Figure 1 Mitochondrial Weir Dam

    The Three-dimensional Simulation of Granular
    Mixtures Weir

    Shen Zhen-dong*1, 2, Zhang Yang1, 2
    1Zhejiang Guangchuan Engineering Consultation Co., Ltd., Hangzhou, 310020,
    Zhejiang, China
    2Zhejiang Institute of Hydraulics &Estuary, Hangzhou 310020, Zhejiang, China
    E-mail: zdshen1991@126.com

    Abstract

    최근 몇 년 동안 생태학적 수자원 보존 공학의 발전으로 많은 새로운 댐 디자인이 등장했습니다. 본 논문에서는 체계적인 소면보 연구와 조사를 바탕으로 새로운 종류의 입상 혼합물 위어를 제시하였습니다.

    입상보의 수치해석은 Flow-3D를 이용하여 수행하였으며, 그 결과를 물리적 모델 실험결과와 비교하였습니다. 유속, 유속 분포 및 둑의 파손에 대한 수치 시뮬레이션 결과는 실험 결과와 잘 일치하며, 이는 3차원 수학적 모델이 물리적 모델 실험과 결합되어 모든 입상 혼합물 둑을 시뮬레이션할 수 있음을 나타냅니다.

    이 방법을 이용하여 특성 및 수리학적 매개변수를 분석하면 생태보의 후속 연구를 위한 기술적 지원을 제공할 수 있습니다.

    In recent years, with the development of ecological water conservancy engineering,
    many new weir designs have also emerged. This paper has put forward a new kind of granular
    mixtures weir based on the systematic carding weir researches, combined with investigation. The
    numerical simulation of granular weir is carried out by using Flow-3D,and the results are
    compared with the physical model experiment results. The numerical simulation results of the
    flow velocity, flow distribution and the failure of the weir are in good agreement with the
    experimental results, which indicates that the 3-D mathematical model can be combined with
    physical model experiments to simulate the granular mixtures weir in all directions. Using this
    method to analysis the characteristics and hydraulic parameters can provide technical support
    for the follow-up research of ecological weir.

    Figure 1 Mitochondrial Weir Dam
    Figure 1 Mitochondrial Weir Dam
    Table 1 Numerical simulation programme table
    Table 1 Numerical simulation programme table
    Figure 4 Final Damage of Weir in Different Projects
    Figure 4 Final Damage of Weir in Different Projects

    References

    [1] Ma Y.Y, Yan Y, Wang S.Y, Jin D, Gong Y.x, Lu Q, Wang Y.T, Yue F.J. (2012) Study on
    Distribution Characteristics and Historical Value of Ancient Weirs in Zhejiang Province .
    Zhejiang Hydrotechnics, 04:47-50.
    [2] Jin H.J. (2016) Design of Weir Dam in Flood Control Engineering. A Brief Discussion Science
    and Technology Economic Guide 9.
    [3] Chang Q. (2017) Experimental Study on Flow Characteristics of Tooth Weir and Z Weir.
    Shandong Agricultural University.
    [4] Wu G.J, Liu X.P, Fang S.S, Sun W.H, Hou B. (2011) Hydraulic Characteristics of Low Practical
    Weir and Its Influence on Engineering; Journal of Yangtze River Scientific Research Institute,
    28(09):21-24.
    [5] Jiang D, Li G.D, Li S.S. (2019) Experimental study on discharge characteristics of different
    upstream-downstream overhang ratios of piano key weir; Water Resources and Hydropower
    Engineering, 50(07):124-130.
    [6] Liu X.P, Hu S.L, Ren Q.M, Zhao J. (2015) Study on impact from sedimentation of low-head
    broken line practical weir. Water Resources and Hydropower Engineering, (03):136-140.
    [7] GUAN D,MELVILLE B,FRIEDRICH H. (2014) Flow patterns and turbulence structures in a
    scour hole downstream of a submerged weir. Journal of Hydraulic Engineering, 140(1):68-
    76.
    [8] Lu WANG. GUAN D.W, Yan Y.X, Zheng J.H, Bruce MELVILLE, Lu W. (2017) Research
    Progress on scour at weir-like structures. Advances Water Science , 28(02):311-318.
    [9] Zhang C, Sun S.K. (2017) Study and improvement on hydraulic characteristics of turning-section
    pools with various angles for vertical slot fish way. Water Resources and Hydropower
    Engineering, 48(11):20-25.
    [10] Bian Y.H. (2015)Study on Several Hydraulic Problems of Vertical Slot Fishways. China Institute
    of Water Resources and Hydropower Research.
    [11] Zhang D.R. The Influence of Water-related Engineering on Flood-control in Mountainous
    Watershed on Mike21FM. China Institute of Water Resources and Hydropower Research.
    [12] Chen D.H, Chen Z. (2005) Three dimensional simulation of flow over weirs. Engineering Journal
    of Wuhan University, (05):56-58+64.
    [13] MOHAMMADPOUR R,GHANI A A, AZAMATHULLA H M. (2013) Numerical modeling of
    3-d flow on porous broad crested weirs. Applied Mathematical Modelling, 37(22):9324-9337.

    Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

    Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

    Ehsan OveiciOmid Tayari & Navid Jalalkamali
    KSCE Journal of Civil Engineering volume 25, pages4240–4251 (2021)Cite this article

    Abstract

    본 논문은 경사가 완만한 수로에서 손상되거나 손상되지 않은 교각 주변의 유동 패턴을 분석했습니다. 실험은 길이가 12m이고 기울기가 0.008인 직선 수로에서 수행되었습니다. Acoustic Doppler Velocimeter(ADV)를 이용하여 3차원 유속 데이터를 수집하였고, 그 결과를 PIV(Particle Image Velocimetry) 데이터와 분석하여 비교하였습니다.

    다중 블록 옵션이 있는 취수구의 퇴적물 시뮬레이션(SSIIM)은 이 연구에서 흐름의 수치 시뮬레이션을 위해 통합되었습니다. 일반적으로 비교에서 얻은 결과는 수치 데이터와 실험 데이터 간의 적절한 일치를 나타냅니다. 결과는 모든 경우에 수로 입구에서 2m 거리에서 기복적 수압 점프가 발생했음을 보여주었습니다.

    경사진 수로의 최대 베드 전단응력은 2개의 손상 및 손상되지 않은 교각을 설치하기 위한 수평 수로의 12배였습니다. 이와 같은 경사수로 교각의 위치에 따라 상류측 수위는 수평수로의 유사한 조건에 비해 72.5% 감소한 반면, 이 감소량은 경사면에서 다른 경우에 비해 8.3% 감소하였다. 채널 또한 두 교각이 있는 경우 최대 Froude 수는 수평 수로의 5.7배였습니다.

    This paper analyzed the flow pattern around damaged and undamaged bridge piers in a channel with a mild slope. The experiments were carried out on a straight channel with a length of 12 meters and a slope of 0.008. Acoustic Doppler velocimeter (ADV) was employed to collect three-dimensional flow velocity data, and the results were analyzed and compared with particle image velocimetry (PIV) data. Sediment Simulation in Intakes with Multiblock option (SSIIM) was incorporated for the numerical simulation of the flow in this study. Generally, the results obtained from the comparisons referred to the appropriate agreement between the numerical and the experimental data. The results showed that an undular hydraulic jump occurred at a distance of two meters from the channel entrance in every case; the maximum bed shear stress in the sloped channel was 12 times that in a horizontal channel for installing two damaged and undamaged piers. With this position of the piers in the sloped channel, the upstream water level underwent a 72.5% reduction compared to similar conditions in a horizontal channel, while the amount of this water level decrease was equal to 8.3% compared to the other cases in a sloped channel. In addition, with the presence of both piers, the maximum Froude number was 5.7 times that in a horizontal channel.

    This is a preview of subscription content, access via your institution.

    References

    Download references

    Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators

    2상 유동 해석을 통한 슈트 폭기 시스템 효율에 대한 램프 각도의 영향 조사

    Investigation of the Effect of Ramp Angle on Chute Aeration System Efficiency by Two-Phase Flow Analysis

    Authors

    1 Associate Professor, Civil Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran

    2 Instructor in Civil Engineering Department Jundi-Shapur University of Technology, Dezful,Iran.

     10.22055/JISE.2021.37743.1980

    Abstract

    Flow aeration in chute spillway is one of the most effective and economic ways to prevent cavitation damage. Surface damage is significantly reduced when very small values of air are scattered in a water prism. A structure known as an aerator may be used for this purpose. Besides, ramp angle is one of the factors influencing aerator efficiency. In this research, the value of air entraining the flow through the Jarreh Dam’s spillway at the ramp angles of 6, 8 and 10 degrees, as three different scenarios, was simulated using the Flow-3D software. In order to validate the results of the inlet air into the flowing fluid at a ramp angle of 6 degrees, the observational results of the dam spillway physical model from the laboratory of TAMAB Company in Iran were used. According to the results, raising the ramp angle increases the inlet air to the water jet nappe, and a ten-degree ramp angle provides the best aeration efficiency. The Flow-3D model can also simulate the two-phase water-air flow on spillways, according to the results.

    슈트 여수로의 흐름 폭기는 캐비테이션 손상을 방지하는 가장 효과적이고 경제적인 방법 중 하나입니다. 수중 프리즘에 아주 작은 양의 공기가 흩어지면 표면 손상이 크게 줄어듭니다. 이를 위해 폭기 장치로 알려진 구조를 사용할 수 있습니다. 또한, 램프 각도는 폭기 효율에 영향을 미치는 요인 중 하나입니다. 이 연구에서는 FLOW-3D 소프트웨어를 사용하여 3가지 다른 시나리오인 6, 8 및 10도의 램프 각도에서 Jarreh 댐의 방수로를 통해 흐름을 동반하는 공기의 값을 시뮬레이션했습니다. 6도의 경사각에서 유동 유체로 유입되는 공기의 결과를 검증하기 위해이란 TAMAB Company의 실험실에서 댐 방수로 물리적 모델의 관찰 결과를 사용했습니다. 결과에 따르면 램프 각도를 높이면 워터제트 기저귀로 유입되는 공기가 증가하고 10도 램프 각도는 최고의 폭기 효율을 제공합니다. Flow-3D 모델은 결과에 따라 여수로의 2단계 물-공기 흐름을 시뮬레이션할 수도 있습니다.

    Keywords

    Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
    Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
    (a) The full-scale map of the Jarreh spillway’s plan and profile.
    (a) The full-scale map of the Jarreh spillway’s plan and profile.
    Fig. 2- Experimental setup (Shamloo et al., 2012)
    Fig. 2- Experimental setup (Shamloo et al., 2012)

    References

    1- Baharvand, S., & Lashkar-Ara, B. (2021). Hydraulic design criteria of the modified meander C-type
    fishway using the combined experimental and CFD models. Ecological Engineering, 164.
    https://doi.org/10.1016/j.ecoleng.2021.106207
    2- Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF
    technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated,
    skimming flow in stepped spillways. Journal of Hydro-Environment Research, 19, 137–149.
    https://doi.org/10.1016/j.jher.2017.10.002
    3- Brethour, J. M., & Hirt, C. W. (2009). Drift Model for Two-Component Flows. Flow Science, Inc., FSI09-TN83Rev, 1–7.
    4- Chanson, H. (1989). Study of air entrainment and aeration devices. Journal of Hydraulic Research, 27(3),
    301–319. https://doi.org/10.1080/00221688909499166
    5- Dong, Z., Wang, J., Vetsch, D. F., Boes, R. M., & Tan, G. (2019). Numerical simulation of air-water twophase flow on stepped spillways behind X-shaped flaring gate piers under very high unit discharge. Water
    (Switzerland), 11(10). https://doi.org/10.3390/w11101956
    6- Flow-3D, V. 11. 2. (2017). User Manual. Flow Science Inc.: Santa Fe, NM, USA;
    7- Hirt, C. W. (2003). Modeling Turbulent Entrainment of Air at a Free Surface. Flow Science, Inc., FSI-03-
    TN6, 1–9.
    8- Hirt, C. W. (2016). Dynamic Droplet Sizes for Drift Fluxes. Flow Science, Inc., 1–10.
    9- Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries.
    Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
    10- Kherbache, K., Chesneau, X., Zeghmati, B., Abide, S., & Benmamar, S. (2017). The effects of step
    inclination and air injection on the water flow in a stepped spillway: A numerical study. Journal of
    Hydrodynamics, 29(2), 322–331. https://doi.org/10.1016/S1001-6058(16)60742-4
    11- Kramer, M., & Chanson, H. (2019). Optical flow estimations in aerated spillway flows: Filtering and
    discussion on sampling parameters. Experimental Thermal and Fluid Science, 103, 318–328.
    https://doi.org/10.1016/j.expthermflusci.2018.12.002
    12- Mahmoudian, Z., Baharvand, S., & Lashkarara, B. (2019). Investigating the Flow Pattern in Baffle
    Fishway Denil Type. Irrigation Sciences and Engineering (JISE), 42(3), 179–196.
    13- Meireles, I. C., Bombardelli, F. A., & Matos, J. (2014). Air entrainment onset in skimming flows on
    steep stepped spillways: An analysis. Journal of Hydraulic Research, 52(3).
    https://doi.org/10.1080/00221686.2013.878401
    14- Parsaie, A., & Haghiabi, A. H. (2019). Inception point of flow aeration on quarter-circular crested stepped
    spillway. Flow Measurement and Instrumentation, 69.
    https://doi.org/10.1016/j.flowmeasinst.2019.101618
    15- Richardson, J. F., & Zaki W N. (1979). Sedimentation and Fluidisation. Part 1. Trans. Inst. Chem. Eng,
    32, 35–53.
    16- Shamloo, H., Hoseini Ghafari, S., & Kavianpour, M. (2012). Experimental study on the effects of inlet
    flows on aeration in chute spillway (Case study: Jare Dam, Iran). 10th International Congress on
    Advances in Civil Engineering, Middle East Technical University, Ankara, Turkey.
    17- Wang, S. Y., Hou, D. M., & Wang, C. H. (2012). Aerator of stepped chute in Murum Hydropower
    Station. Procedia Engineering, 28, 803–807. https://doi.org/10.1016/j.proeng.2012.01.813.
    18- Wei, W., Deng, J., & Zhang, F. (2016). Development of self-aeration process for supercritical chute
    flows. International Journal of Multiphase Flow, 79, 172–180.
    https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.003
    19- Wu, J., QIAN, S., & MA, F. (2016). A new design of ski-jump-step spillway. Journal of Hydrodynamics,
    05, 914–917.
    20- Xu, Y., Wang, W., Yong, H., & Zhao, W. (2012). Investigation on the cavity backwater of the jet flow from the chute aerators. Procedia Engineering, 31, 51–56. https://doi.org/10.1016/j.proeng.2012.01.989
    21- Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory.
    Journal of Scientific Computing, 1(1), 3–51. https://doi.org/10.1007/BF01061452
    22- Yang, J., Teng, P., & Lin, C. (2019). Air-vent layouts and water-air flow behaviors of a wide spillway
    aerator. Theoretical and Applied Mechanics Letters, 9(2), 130–143.
    https://doi.org/10.1016/j.taml.2019.02.009
    23- Zhang, G., & Chanson, H. (2016). Interaction between free-surface aeration and total pressure on a
    stepped chute. Experimental Thermal and Fluid Science, 74, 368–381.
    https://doi.org/10.1016/j.expthermflusci.2015.12.011

    Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)

    고정 베드의 불침투성 토양에서 흐름 패턴의 수치 시뮬레이션

    NUMERICAL SIMULATION OF FLOW PATTERN IN SERIES OF IMPERMEABLE GROYNES IN FIXED BED

    Kafle, Mukesh Raj1
    1Asst. Professor, Department of Civil Engineering, Institute of Engineering, Pulchowk Campus, Nepal
    Email: mkafle@pcampus.edu.np

    Abstract

    This paper presents a numerical simulation of recirculating flow patterns in groyne fields. Moreover, it entails the concept determination of proper spacing of vertical unsubmerged and impermeable groynesin seriesto control the bank erosion. Flow pattern between the groynes varies along their space. The flow in groyne field may significantly affect the flow change, bed change, bank erosion and condition of habitat. In this regard, an assessment of flow along the space of groynes will yield important data needed to diversify the object of groyne installation. So, knowledge about determination of the proper spacing of groynes in groyne field is important. Space of vertical groynes was set from 1.5 to 10 times the length of groynes. The velocity field between groynes was simulated by using Computational Fluid Dynamics (CFD) model Nays 2D. Simulated velocity field was compared with existing experimentaldata for the same parameter, which agreed satisfactorily. Based on simulated results,the optimal spacing of vertical groynes to control the bank erosion was recommended.

    이 논문은 groyne 필드에서 재순환 흐름 패턴의 수치 시뮬레이션을 제공합니다. 더욱이, 그것은 제방 침식을 제어하기 위해 수직 비침수 및 불침투성 그로이네신 시리즈의 적절한 간격의 개념 결정을 수반합니다. groynes 사이의 흐름 패턴은 공간에 따라 다릅니다. groyne field의 흐름은 흐름 변화, 하상 변화, 제방 침식 및 서식지 상태에 중대한 영향을 미칠 수 있습니다. 이와 관련하여, groyne 공간을 따른 흐름의 평가는 groyne 설치 대상을 다양화하는 데 필요한 중요한 데이터를 산출할 것입니다. 따라서, groyne field에서 groyne의 적절한 간격 결정에 대한 지식이 중요합니다. 수직 여백의 간격은 여아 길이의 1.5배에서 10배 사이로 설정하였다. groyne 사이의 속도장은 CFD(Computational Fluid Dynamics) 모델 Nays 2D를 사용하여 시뮬레이션되었습니다. 시뮬레이션된 속도장은 동일한 매개변수에 대해 기존 실험 데이터와 비교되었으며 만족스럽게 일치했습니다. 모의 결과를 바탕으로 제방 침식을 억제하기 위한 최적의 수직 제방 간격을 제안하였다.

    1. Introduction
      Spur dikes or groynes are used to protect river banks from erosion and also keep the channel
      navigable.Depending upon the flow characteristics, spur-dikes may be classified as submerged and unsubmerged. Also, based on the permeability, spur dikes are further classified as permeable and
      impermeable. Herein, un-submerged !impermeable spur dikes are dealt. These structures are built from the river bank into the stream flow and usually built in group. Construction of groyne against the flow causes significant changes in flow pattern in channel. Those changes may result in scour phenomenon around groynes which may lead structure instability and changes in river morphology. Moreover, in series of groynes, spacing of groynes leads different types of recirculating flow patterns.Therefore, investigating the characteristics of flow pattern around groynes have been a great interest in river engineering. Numerous researchers like Sukhodolov et al. (2002), Hao Zhang et al.(2009), Beheshti (2010), Duan (2009), Naji(2010), Karami(2011) made a variety of experiments in order to determine the flow pattern around groynes. Most of these researchers studied effect of single groyne, while using series of groynes is more effective in protection of rivers. Besides experimental studies, variety of CFD models have been developed for computing flow pattern around hydraulic structures; like Fluent, Flow 3D, Nays 2D, Nays CUBE and SSIIM. In this study, Nays 2D numerical modelling has been used to investigate flow and recirculating pattern around a series of groynes and streamlines including components of velocities.
    1. Flow pattern in groyne fields
      Under conditions where the groynes are not submerged, the groyne fields are not really part of the wetted cross section of a river. Because of that, the flow pattern in the groyne-field is not directly the result of the discharge in the main channel. Reducing the main stream velocity has no effect on the flow pattern itself, whereas lowering the water level does (Uijttewaal et al.2001). Moreover, the flow pattern inside a groyne field may change with the change of its geometry, location along the river (inner curve, outer curve, or straight part), and/ or the groynes orientation( Przedwojski et al.1995). However, there is an indirect effect of the discharge on the flow pattern in the groyne field. Because of the flow that is diverted from the main channel into the groyne fields, water flows into the groyne field with low velocity through the downstream half of the interfacial section between the groyne field and the main channel. This water flows back to the main channel through a small width of, just downstream the upstream groyne of the groyne field ( Termes et al.1991). Flow separates on a groyne head and forms a secondary flow represented by a large scale vortex with a vertical axis of rotation called primary gyre. Deflection of the flow inside the groyne field by banks and upstream groynes leads to the development of a secondary gyre with an opposite direction of rotation to the primary gyre. Location, mutual interactions, and energy exchange between gyres are the factors that create a specific recirculation pattern, and, consequently assuming correspondence with sedimentation processes, they define deposition patterns.
    2. Model Formulation
      The CFD model selected for this study is the publically available software NAYS 2D (iRIC 2.0), which is an analytical solver for calculation of unsteady two-dimensional plane flow and riverbed deformation using boundary-fitted coordinates within general curvilinear coordinates. A numerical channel of length 8.0m and width 0.9m was created with grid size of 0.01m im stream wise and 0.03m in cross stream directions. Groynes or spur dikes of length 0.15 and width 0.01m were chosen in series. Groyne field with various aspect ratio (b/x) 0.7, 0.25, 0.17, 0.125 and 0.10, where b=length of spur dike, x=spacing of two dikes. Discharge of 0.0175 m3 /s was applied. For boundary conditions, water surface at downstream and velocity at upstream were considered as uniform flow. Relaxation coefficient for water surface calculation was considered as 0.8. For the finite-difference method, the CIP method was applied to the advection terms in equations of motion. For the turbulent field calculation, Constant eddy viscosity, Zero-equation model and k-G models were applied and compared. The model!s accuracy in predicting the velocity magnitudes is evaluated using statistical parameters- mean absolute error (MAE), mean square error(MSE), and root mean square error (RMSE). The comparison of results shows the importance of selecting an appropriate turbulence model in simulating flow field around a spur dike. From the comparison, k-I model is found superior over zero energy model and eddy viscosity model. So, k-I model is chosen as appropriate turbulence closure model.
    3. Model!s Validation
      The capability of CFD model Nays 2D to simulate the velocity field and recirculation pattern in groyne field was compared with experimental data of laboratory experiments by Sukhodolov et al. (2002). The numerical simulation was validated for aspect ratio (R=b/x=0.7) and R=0.25. For aspect ratio R=0.7, one gyre system occupies the whole area of the groyne field. The areas with lower-than-average velocity values are clearly seen in the central part of the gyre and near its corners. Velocities increase towards the margins of the gyre. For aspect ratio R=0.25, two gyre velocity fields were observed in the groyne field. In the downstream part of the groyne field a large gyre, covering two-thirds of the area is clearly visible. The left part(upstream) contains second gyre rotating much more slowly and in the direction opposed to the primary gyre. The simulated and observed velocity field pattern and gyre found satisfactorily agreed. Now, after validation, the model was used for further analysis of velocity field for various aspect ratios.
    Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)
    Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)
    1. Results and Discussions
      The calibrated model was applied to five different cases of un-submerged and impermeable groyne fields with aspect ratios R=0.70,0.25,0.17,0.125 & 0.10 and flow pattern was numerically simulated. For aspect ratio R=0.7 i.e x/b=1.5, Fig 1(a) only one lateral primary gyre was formed inside the groyne field. The circulation pattern in this case is distinguished by the main flow that is deflected outside the groyne field. The developed primary gyre prevents the main flow from penetrating the groyne field. Therefore, this pattern is desirable for navigation purposes as a continuous deep channel is maintained along the face of the groyne field. Simulated velocity pattern satisfactorily agrees with the observed velocity field Fig 1(b) for the same aspect ratio by Sukhodolov (2002). The spacing of the groyne was further increased maintaining aspect ratio R= 0.25 i. e x/b=4 Fig 2(a) and flow pattern inside the groyne field was simulated. In this case, in the downstream part of the groyne field, a primary gyre occupying almost two-third area was formed. In addition, deflection of the flow inside the groyne field by banks and upstream groynes leads to the development of a secondary gyre with an opposite direction of rotation to the primary gyre covering almost one-third part of the groyne field. Likewise in the first case, the main current is maintained deflected outside the groyne field. Simulated velocity pattern satisfactorily agrees with the observed velocity field Fig 2(b) for the same aspect ratio by Sukhodolov (2002). The spacing of the groyne was further increased maintaining aspect ratio R=0.17 i.e x/b=6. In this case the flow pattern was similar to the aspect ratio R=0.25. The spacing of the groynes was further increased maintaining aspect ratio R=0.125 i. e x/b=8. In this case, similar to the previous scenarios two longitudinal gyres but with different positions are formed. The main current is directed in to the groyne field (Fig 3) creating a much more stronger eddy near the upstream groyne and greater turbulence along the upstream face and at the groyne lower head. As the spacing between groynes increased maintaining aspect ratio R=0.10 i. e x/b=10 (Fig 4), still primary and secondary gyres are generated. The formed gyres deflect the main flow thus preventing to enter in to the groyne field in upstream part. However, in the downstream of the primary gyre and just upstream of the second groyne, the flow attacks the bank directly. The resultant velocity profiles at the deflected region y/b=3 were plotted and how the spacing of second groyne affect the result was analyzed. Spacing of groynes makes little change in upstream resultant velocity. However, in the deflected region, its effect is significant. Higher value of spacing of groyne leads higher average deviation in resultant velocity. For aspect ratio R=0.7, the average deviation estimated as 0.02%. In the case of aspect ratio R=0.25, this value was reached to 1.57%. Further increment of spacing i. e decreasing the aspect ratio R=0.17, average deviation was found 3.82%. For the aspect ratio R=0.125, that value was estimated as 4.16%.
    2. Conclusions
      Geometry of the groyne fields; width and length of the groyne field mainly cause the specific flow patterns including number and shape of eddies or gyres. Eddies developed inside the groyne field deflects the main flow preventing it entering into the dead zone. An aspect ratio close to unity gives rise to a single eddy. A smaller aspect ratio (higher spacing between groynes) gives room to two stationary eddies, a large one called primary eddy, in the downstream part of the groyne field, and a smaller secondary eddy emerges near the upstream groyne. The extreme long groyne field -case of length to width ratio of larger thaneight shows penetration of main flow into the groyne field. The two eddies remain in a relatively stable position, while the main flow zone starts to penetrate into groyne field further downstream. In all cases, there is an eddy detaches from the upstream groyne tip that travels along the main channel groyne field interface and eventually merges with the primary eddy. The simulated results indicate that the spacing of groynes or spur dikes from the controlling of bank erosion point of view should be limited within six times the length of groyne.
    Fig 3 Computed velocity field for aspect ratio 0.125
    Fig 3 Computed velocity field for aspect ratio 0.125
    Fig 4 Computed velocity field for aspect ratio 0.10
    Fig 4 Computed velocity field for aspect ratio 0.10
    Fig 5 Resultant velocity profiles at y/b=3
    Fig 5 Resultant velocity profiles at y/b=3
    Fig 5 Resultant velocity profiles at y/b=3
    Fig 5 Resultant velocity profiles at y/b=3

    References

    1. Holtz, K.P  Numerical simulation of recirculating flow at groynes.Å Computer Methods in Water Resources, Vol 2, No 2 (1991).
    2. Hossein, Bassar; Abdollah, Ardeshir; Hojat, Karami.  Numerical simulation of flow pattern around spur dikes series in rigid bed.Å 9th international congress on civil engineering, May 8- 10,2012, Isfahan University of Technology (IUT) , Isfahan, Iran (2012).
    3. Kang, J.G; Yeo, H.K; Kim,S.J An experimental study on a characteristics of flow around groyne area by install conditions.Å www.SciRP.org/journal/eng(2012).
    4. Shimizu,Y; Nelson,JIntroduction of Nays solver in iRIC.Åwww.i-ric.org(2012).
    5. Sukhodolov, A. Uijttewaal, W. S. J., and Engelhardt, C. On the correspondence between morphological and hydro dynamical patterns of groyne fields.Å Earth Surf. Processes Landforms, 27(3) (2002).
    6. Uijttewall, W.S.J; Lehman,D; VanMazijk,A.  Exchange process between a river and its groyne fields-model experiments.Å Journal of Hydraulic Engineering, ASCE, 127(11) (2001).
    7. Uijttewall, W.S.J Groyne field velocity patterns determined with particle tracking
      velocimetryÅ.28th IAHR congress, Graz, Austria (1999).
    8. Yossef, Mohamed  Flow details near groynes: Experimental investigations.Å Journal of Hydraulic Engineering, ASCE, 137 (2011).
    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation

    Understanding dry-out mechanism in rod bundles of boiling water reactor

    끓는 물 원자로 봉 다발의 건조 메커니즘 이해

    Liril D.SilviaDinesh K.ChandrakercSumanaGhoshaArup KDasb
    aDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee, India
    bDepartment of Mechanical Engineering, Indian Institute of Technology, Roorkee, India
    cReactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India

    Abstract

    Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod’s dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.

    현재 작업은 원형 배열에 있는 7개의 핀으로 구성된 핵연료봉 다발 어셈블리로 구성된 일반적인 끓는 물 원자로(BWR) 내부의 물의 증기 및 액체상의 동시 흐름 동안 계면 역학에 대한 수치적 이해를 보고합니다.

    원형 배열의 막대 사이에 두 개의 대표적인 간격이 시뮬레이션을 수행하는 데 사용됩니다. 문헌에서 원자로의 유동 비등은 기계론적 모델 또는 평균 방정식으로 처리됩니다.

    따라서 VOF(Volume of Fluid) 기반 다상 모델을 사용하는 본 연구에서는 BWR에서 유동 비등 동안 계면의 파괴 및 생성에 대한 자세한 수치적 이해를 목표로 합니다.

    우리의 작업은 막대 번들 시나리오에서 거의 사실적인 증기 기포 및 액체 흐름 역학을 묘사합니다. 연료봉에 대한 일정한 벽 열유속과 입구 패치에서 액체의 균일한 속도가 경계 조건으로 적용됩니다. 물의 포화 특성은 30bar 압력에서 취합니다.

    기포 핵 생성, 성장, 병합, 국소 건조, 액체 패치로 재습윤 및 완전한 건조를 포함하는 유동 비등 단계가 설명됩니다. 액체가 존재하지 않는 건조 현상은 다양한 축 단면에서 위상 분율 윤곽으로 수치적으로 관찰됩니다.

    다른 축 평면에서 액상 분율의 정량화는 점진적인 건조 메커니즘을 강조하면서 시간이 지남에 따라 표시됩니다. 내부 막대와 외부 막대의 액-증기 분포를 비교하면 내부 막대의 건조가 외부 막대보다 더 빨리 발생함을 알 수 있습니다. 각 경우의 방열 용량을 식별하기 위한 열 전달 계수도 보고됩니다.

    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
    Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
    Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
    Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
    Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
    Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
    Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
    Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
    Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
    Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
    Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
    Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
    Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
    Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
    Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
    Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.
    Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.

    References

    [1] J. Würtz, An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 Bar, Risø National Laboratory,
    Roskilde, 1978.
    [2] W. Tian, A. Myint, Z. Li, S. Qiu, G.H. Su, D. Jia, Experimental study on dryout point in vertical narrow annulus under low flow conditions, in: International Conference on Nuclear Engineering, 4689, 2004, pp. 643–648. Jan
    1Vol.
    [3] K.M. Becker, C.H. Ling, S. Hedberg, G. Strand, An experimental investigation of
    post dryout heat transfer, R. Inst. Technol. (1983).
    [4] K.M. Becker, A Burnout Correlation for Flow of Boiling Water in Vertical Rod
    Bundles, AB Atomenergi, 1967.
    [5] Jr J.R. Barbosa, G.F. Hewitt, S.M. Richardson, High-speed visualisation of nucleate boiling in vertical annular flow, Int. J. Heat Mass Transf. 46 (26) (2003)
    5153–5160 1, doi:10.1016/S0017-9310(03)00255-2.
    [6] Y. Mizutani, A. Tomiyama, S. Hosokawa, A. Sou, Y. Kudo, K. Mishima, Twophase flow patterns in a four by four rod bundle, J. Nucl. Sci. Technol. 44 (6)
    (2007) 894–901 1, doi:10.1080/18811248.2007.9711327.
    [7] S.S. Paranjape, Two-Phase Flow Interfacial Structures in a Rod Bundle Geometry, Purdue University, 2009.
    [8] D. Lavicka, J. Polansky, Model of the cooling of a nuclear reactor fuel rod, Multiph. Sci. Technol. 25 (2-4) (2013), doi:10.1615/MultScienTechn.v25.i2-4.90.
    [9] M. Thurgood, J. Kelly, T. Guidotti, R. Kohrt, K. Crowell, Tech. rep., Pacific Northwest National Laboratory, 1983.
    [10] S. Sugawara, Droplet deposition and entrainment modeling based on the
    three-fluid model, Nucl. Eng. Des. 122 (1-3) (1990) 67–84, doi:10.1016/
    0029-5493(90)90197-6.
    [11] C. Adamsson, J.M. Le Corre, Modeling and validation of a mechanistic tool
    (MEFISTO) for the prediction of critical power in BWR fuel assemblies, Nucl.
    Eng. Des. 241 (8) (2011) 2843–2858, doi:10.1016/j.nucengdes.2011.01.033.
    [12] S. Talebi, H. Kazeminejad, A mathematical approach to predict dryout in a rod
    bundle, Nucl. Eng. Des. 249 (2012) 348–356, doi:10.1016/j.nucengdes.2012.04.
    016.
    [13] H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, CFD prediction of flow and
    phase distribution in fuel assemblies with spacers, Nucl. Eng. Des. 177 (1-3)
    (1997) 215–228, doi:10.1016/S0029-5493(97)00195-7.
    [14] H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the
    Eulerian–Lagrangian approach, Ann. Nucl. Energy 77 (2015) 415–424, doi:10.
    1016/j.anucene.2014.12.002.
    [15] G. Sorokin, A. Sorokin, Experimental and numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions, Prog. Nucl. Energy 47 (1-4) (2005) 656–663, doi:10.1016/j.pnucene.2005.
    05.069.
    [16] W.D. Pointer, A. Tentner, T. Sofu, D. Weber, S. Lo, A. Splawski, Eulerian
    two-phase computational fluid dynamics for boiling water reactor core analysis, Joint International Topical Meeting on Mathematics and Computation and
    Supercomputing in Nuclear Applications (M and C± SNA), 2007.
    [17] K. Podila, Y. Rao, CFD modelling of supercritical water flow and heat transfer
    in a 2 × 2 fuel rod bundle, Nucl. Eng. Des. 301 (2016) 279–289, doi:10.1016/j.
    nucengdes.2016.03.019.
    [18] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, Numerical investigation of subcooled flow boiling in an annulus under the influence of eccentricity, Appl. Therm. Eng. 129 (2018) 1604–1617, doi:10.1016/j.applthermaleng.
    2017.10.105.
    [19] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, CFD modeling of
    critical heat flux in flow boiling: validation and assessment of closure models,
    Appl. Therm. Eng. 150 (2019) 651–665, doi:10.1016/j.applthermaleng.2019.01.
    030.
    [20] W. Fan, H. Li, H. Anglart, A study of rewetting and conjugate heat transfer
    influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach, Int. J. Heat Mass Transf. 163 (2020) 120503, doi:10.1016/j.
    ijheatmasstransfer.2020.120503.
    [21] R. Zhang, T. Cong, G. Su, J. Wang, S. Qiu, Investigation on the critical heat
    flux in typical 5 by 5 rod bundle at conditions prototypical of PWR based
    on CFD methodology, Appl. Therm. Eng. 179 (2020) 115582, doi:10.1016/j.
    applthermaleng.2020.115582.

    [22] L.D. Silvi, A. Saha, D.K. Chandraker, S. Ghosh, A.K. Das, Numerical analysis of
    pre-dryout sequences through the route of interfacial evolution in annular gasliquid two-phase flow with phase change, Chem. Eng. Sci. 212 (2020) 115356,
    doi:10.1016/j.ces.2019.115356.
    [23] L.D. Silvi, D.K. Chandraker, S. Ghosh, A.K. Das, On-route to dryout through sequential interfacial dynamics in annular flow boiling around temperature and
    heat flux controlled heater rod, Chem. Eng. Sci. 229 (2021) 116014, doi:10.1016/
    j.ces.2020.116014.
    [24] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface
    tension, J. Comput. Phys. 100 (2) (1992) 335–354, doi:10.1016/0021-9991(92)
    90240-Y.
    [25] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging
    and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1)
    (1994) 134–147, doi:10.1006/jcph.1994.1123.
    [26] I. Tanasawa, Advances in condensation heat transfer, Ad. Heat Transf. 21 (1991)
    55–139 Vol, doi:10.1016/S0065-2717(08)70334-4.
    [27] V.H. Del Valle, D.B. Kenning, Subcooled flow boiling at high heat flux, Int.
    J. Heat Mass Transf. 28 (10) (1985) 1907–1920, doi:10.1016/0017-9310(85)
    90213-3.
    [28] B. Matzner, G.M. Latter, Reduced pressure drop space for boiling water reactor
    fuel bundles, US Patent US5375154A, (1993)
    [29] C. Unal, O. Badr, K. Tuzla, J.C. Chen, S. Neti, Pressure drop at rod-bundle spacers
    in the post-CHF dispersed flow regime, Int. J. Multiphase Flow 20 (3) (1994)
    515–522, doi:10.1016/0301-9322(94)90025-6.
    [30] D.K. Chandraker, A.K. Nayak, V.P. Krishnan, Effect of spacer on the dryout of
    BWR fuel rod assemblies, Nucl. Eng. Des. 294 (2015), doi:10.1016/j.nucengdes.
    2015.09.004.
    [31] S.K Verma, S.L. Sinha, D.K. Chandraker, A comprehensive review of the spacer
    effect on performance of nuclear fuel bundle using computational fluid dynamics methodology, Mater. Today: Proc. 4 (2017) 100030–110034, doi:10.
    1016/j.matpr.2017.06.315.
    [32] S.K Verma, S.L. Sinha, D.K. Chandraker, Experimental investigation on the effect
    of space on the turbulent mixing in vertical pressure tube-type boiling water
    reactor, Nucl. Sci. Eng. 190 (2) (2018), doi:10.1080/00295639.2017.1413874.
    [33] T. Zhang, Y. Liu, Numerical investigation of flow and heat transfer characteristics of subcooled boiling in a single rod channel with/without spacer grid,
    Case Stud. Therm. Eng. 20 (2020) 100644, doi:10.1016/j.csite.2020.100644.
    [34] K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, AB Atomenergi
    (1965).
    [35] A. Saha, A.K. Das, Numerical study of boiling around wires and influence of
    active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Transf.
    130 (2019) 440–454, doi:10.1016/j.ijheatmasstransfer.2018.10.117.
    [36] M. Reimann, U. Grigull, Heat transfer with free convection and film boiling in
    the critical area of water and carbon dioxide, Heat Mass Transf. 8 (1975) 229–
    239, doi:10.1007/BF01002151.
    [37] M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J.
    Appl. Phys. 25 (4) (1954) 493–500, doi:10.1063/1.1721668.
    [38] N. Samkhaniani, M.R. Ansari, Numerical simulation of superheated vapor bubble rising in stagnant liquid, Heat Mass Transf. 53 (9) (2017) 2885–2899,
    doi:10.1007/S00231-017-2031-6.
    [39] N. Samkhaniani, M.R. Ansari, The evaluation of the diffuse interface method
    for phase change simulations using OpenFOAM, Heat Transf. Asian Res. 46 (8)
    (2017) 1173–1203, doi:10.1002/htj.21268.
    [40] P. Goel, A.K. Nayak, M.K. Das, J.B. Joshi, Bubble departure characteristics in a
    horizontal tube bundle under cross flow conditions, Int. J. Multiph. Flow 100
    (2018) 143–154, doi:10.1016/j.ijmultiphaseflow.2017.12.013.
    [41] K.M. Becker, J. Engstorm, B.Scholin Nylund, B. Sodequist, Analysis of the dryout
    incident in the Oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6)
    (1990) 959–974, doi:10.1016/0301-9322(90)90101-N.
    [42] H.G. Weller, A New Approach to VOF-Based Interface Capturing Methods
    for Incompressible and Compressible Flow, A New Approach to VOF-Based
    Interface Capturing Methods for Incompressible and Compressible Flow, 4,
    OpenCFD Ltd., 2008 Report TR/HGW.
    [43] G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, selfsimilarity and the limits of prediction, Systems 4 (4) (2016) 37, doi:10.3390/
    systems4040037.

    Effect of roughness on separation zone dimensions.

    Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

    조도 계수 및 역전 수준 변화가 개선된 90도 측면 분출구에서의 유동에 대한 실험적 및 수치적 연구

    Maryam BagheriSeyed M. Ali ZomorodianMasih ZolghadrH. Md. AzamathullaC. Venkata Siva Rama Prasad

    Abstract

    측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 출력 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다. 본 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 7가지 유형의 거칠기 요소를 분기구 입구에 설치하고 4가지 다른 배출(총 84번의 실험을 수행)과 함께 3개의 서로 다른 베드 반전 레벨을 조사했습니다. 또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면, 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

    Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

    HIGHLIGHTS

    Listen

    • Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance.
    • Installation of 7 types of roughening elements at the turnout entrance and 3 different bed level inverts were investigated.
    • Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow.
    • Combining both methods can reduce the separation zone dimensions by up to 63%.
    Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
    Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

    Keywords

    discharge ratioflow separation zoneintakethree dimensional simulation

    INTRODUCTION

    Listen

    Turnouts or intakes are amongst the oldest and most widely used hydraulic structures in irrigation networks. Turnouts are also used in water distribution, transmission networks, power generation facilities, and waste water treatment plants etc. The flows that enter a turnout have a strong momentum in the direction of the main waterway and that is why flow separation occurs inside the turnout. The horizontal vortex formed in the separation area is a suitable place for accumulation and deposition of sediments. The separation zone is a vulnerable area for sedimentation and for reduction of effective flow due to a contracted flow region in the lateral channel. Sedimentaion in the entrance of the intake can gradually be transfered into the lateral channel and decrease the capacity of the higher order channels over time (Jalili et al. 2011). On the other hand, the existence of coarse-grained materials causes erosion and destruction of the waterway side walls and bottom. In addition, sedimentation creates conditions for vegetation to take root and damage the waterway cover, which causes water to leak from its perimeter. Therefore, it is important to investigate the pattern of the flow separation area in turnouts and provide solutions to reduce the dimensions of this area.

    The three-dimensional flow structure at turnouts is quite complex. In an experimental study by Neary & Odgaard (1993) in a 90-degree water turnout it was found that the secondary currents and separation zone varies from the bed to the water surface. They also found that at a 90-degree water turnout, the bed roughness and discharge ratio play a critical role in flow structure. They asserted that an explanation of sediment behavior at a diversion entrance requires a comprehensive understanding of 3D flow patterns around the lateral-channel entrance. In addition, they suggested that there is a strong similarity between flow in a channel bend and a diversion channel, and that this similarity can rationalize the use of bend flow models for estimation of 3D flow structures in diversion channels.

    Some of the distinctive characteristics of dividing flow in a turnout include a zone of separation immediately near the entrance of the lateral turnout (separation zone), a contracted flow region in the branch channel (contracted flow), and a stagnation point near the downstream corner of the junction (stagnation zone). In the region downstream of the junction, along the continuous far wall, separation due to flow expansion may occur (Ramamurthy et al. 2007), that is, a separation zone. This can both reduce the turnout efficiency and the effective width of flow while increasing the sediment deposition in the turnout entrance (Jalili et al. 2011). Installation of submerged vanes in the turnout entrance is a method which is already applied to reduce the size of flow separation zones. The separation zone draws sediments and floating materials into themselves. This reduces effective cross-section area and reduces transmission capacity. These results have also been obtained in past studies, including by Ramamurthy et al. (2007) and in Jalili et al. (2011). Submerged vanes (Iowa vanes) are designed in order to modify the near-bed flow pattern and bed-sediment motion in the transverse direction of the river. The vanes are installed vertically on the channel bed, at an angle of attack which is usually oriented at 10–25 degrees to the local primary flow direction. Vane height is typically 0.2–0.5 times the local water depth during design flow conditions and vane length is 2–3 times its height (Odgaard & Wang 1991). They are vortex-generating devices that generate secondary circulation, thereby redistributing sediment within the channel cross section. Several factors affect the flow separation zone such as the ratio of lateral turnout discharge to main channel discharge, angle of lateral channel with respect to the main channel flow direction and size of applied submerged vanes. Nakato et al. (1990) found that sediment management using submerged vanes in the turnout entrance to Station 3 of the Council Bluffs plant, located on the Missouri River, is applicable and efficient. The results show submerged vanes are an appropriate solution for reduction of sediment deposition in a turnout entrance. The flow was treated as 3D and tests results were obtained for the flow characteristics of dividing flows in a 90-degree sharp-edged, junction. The main and lateral channel were rectangular with the same dimensions (Ramamurthy et al., 2007).

    Keshavarzi & Habibi (2005) carried out experiments on intake with angles of 45, 67, 79 and 90 degrees in different discharge ratios and reported the optimum angle for inlet flow with the lowest flow separation area to be about 55 degrees. The predicted flow characteristics were validated using experimental data. The results indicated that the width and length of the separation zone increases with the increase in the discharge ratio Qr (ratio of outflow per unit width in the turnout to inflow per unit width in the main channel).

    Abbasi et al. (2004) performed experiments to investigate the dimensions of the flow separation zone at a lateral turnout entrance. They demonstrated that the length and width of the separation zone decreases with the increasing ratio of lateral turn-out discharge. They also found that with a reducing angle of lateral turnout, the length of the separation zone scales up and width of separation zone reduces. Then they compared their observations with results of Kasthuri & Pundarikanthan (1987) who conducted some experiments in an open-channel junction formed by channels of equal width and an angle of lateral 90 degree turnout, which showed the dimensions of the separation zone in their experiments to be smaller than in previous studies. Kasthuri & Pundarikanthan (1987) studied vortex and flow separation dimensions at the entrance of a 90 degree channel. Results showed that increasing the diversion discharge ratio can reduce the length and width of the vortex area. They also showed that the length and width of the vortex area remain constant at diversion ratios greater than 0.7. Karami Moghaddam & Keshavarzi (2007) analyzed the flow characteristics in turnouts with angles of 55 and 90 degrees. They reported that the dimensions of the separation zone decrease by increasing the discharge ratio and reducing the turnout angle with respect to the main channel. Studies about flow separation zone can be found in Jalili et al. (2011)Nikbin & Borghei (2011)Seyedian et al. (2008).

    Jamshidi et al. (2016) measured the dimensions of a flow separation zone in the presence of submerged vanes with five arrangements (parallel, stagger, compound, piney and butterflies). Results showed that the ratio of the width to the length of the separation zone (shape index) was between 0.2 and 0.28 for all arrangements.

    Karami et al. (2017) developed a 3D computational fluid dynamic (CFD) code which was calibrated by measured data. They used the model to evaluate flow pattern, diversion ratio of discharge, strength of the secondary flow, and dimensions of the vortex inside the channel in various dikes and submerged vane installation scenarios. Results showed that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation area in the main channel. A dike, perpendicular to the flow, doubles the ratio of diverted discharge and reduces the suspended sediment load compared with the base-line situation by creating outer arch conditions. In addition, increasing the longitudinal distance between vanes increases the velocity gradient between the vanes and leads to a more severe erosion of the bed near the vanes.Figure 1VIEW LARGEDOWNLOAD SLIDE

    Laboratory channel dimensions.

    Al-Zubaidy & Hilo (2021) used the Navier–Stokes equation to study the flow of incompressible fluids. Using the CFD software ANSYS Fluent 19.2, 3D flow patterns were simulated at a diversion channel. Their results showed good agreement using the comparison between the experimental and numerical results when the k-omega turbulence viscous model was employed. Simulation of the flow pattern was then done at the lateral channel junction using a variety of geometry designs. These improvements included changing the intake’s inclination angle and chamfering and rounding the inner corner of the intake mouth instead of the sharp edge. Flow parameters at the diversion including velocity streamlines, bed shear stress, and separation zone dimensions were computed in their study. The findings demonstrated that changing the 90° lateral intake geometry can improve the flow pattern and bed shear stress at the intake junction. Consequently, sedimentation and erosion problems are reduced. According to the conclusions of their study, a branching angle of 30° to 45° is the best configuration for increasing branching channel discharge, lowering branching channel sediment concentration.

    The review of the literature shows that most of the studies deal with turnout angle, discharge ratio and implementation of vanes as techniques to reduce the area of the separation zone. This study examines the effect of roughness coefficient and drop implementation at the entrance of a 90-degree lateral turnout on the dimensions of the separation zone. As far as the authors are aware, these two variables have never been studied as a remedy to decrease the separation zone dimensions whilst enhancing turnout efficiency. Additionally, a three-dimensional numerical model is applied to simulate the flow pattern around the turnout. The numerical results are verified against experimental data.

    METHOD

    Experimental setup

    Listen

    The experiments were conducted in a 90 degree dividing flow laboratory channel. The main channel is 15 m long, 0.5 m wide and 0.4 m high and the branch channel is 3 m long, 0.35 m wide and 0.4 m high, as shown in Figure 1. The tests were carried out at 9.65 m from the beginning of the flume and were far enough from the inlet, so we were sure that the flow was fully developed. According to Kirkgöz & Ardiçlioğlu (1997) the length of the developing region would be approximantly 65 and 72 times the flow depth. In this study, the depth is 9 cm, which makes this condition.

    Both the main and lateral channel had a slope of 0.0003 with side walls of concrete. A 100 hp pump discharged the water into a stilling basin at the entrance of the main flume. The discharge was measured using an ultrasonic discharge meter around the discharge pipe. Eighty-four experiments in total were carried out at range of 0.1<Fr<0.4 (Froude numbers in main channel and upstream of turnout). The depth of water in the main channel in the experiments was 9 cm, in which case the effect of surface tension can be considered; according to research by Zolghadr & Shafai Bejestan (2020) and Zolghadr et al. (2021), when the water depth is more than 6 cm, the effect of surface tension is reduced and can be ignored given that the separation phenomenon occurs in the boundary layer, the height of the roughness creates disturbances in growth and development of the boundary layer and, as a result, separation growth is also faced with disruption and its dimensions grow less compared to smooth surfaces. Similar conditions occur in case of drop implementation. A disturbance occurs in the growth of the boundary layer and as a result the separation zone dimensions decrease. In order to investigate the effect of roughness coefficient and drop implementation on the separation zone dimensions, four different discharges (16, 18, 21, 23 l/s) in subcritical conditions, seven Manning (Strickler) roughness coefficients (0.009, 0.011, 0.017, 0.023, 0.028, 0.030, 0.032) as shown in Figure 2 and three invert elevation differences between the main channel and lateral turnout invert (0, 5 and 10 cm) at the entrance of the turnout were considered. The Manning roughness coefficient values were selected based on available and feasible values for real conditions, so that 0.009 is equivalent to galvanized sheet roughness and selected for the baseline tests. 0.011 is for concrete with neat surface, 0.017 and 0.023 are for unfinished and gunite concrete respectively. 0.030 and 0.032 values are for concrete on irregular excavated rock (Chow 1959). The roughness coefficients were created by gluing sediment particles on a thin galvanized sheet which was installed at the upstream side of the lateral turnout. The values of roughness coefficients were calculated based on the Manning-Strickler formula. For this purpose, some uniformly graded sediment samples were prepared and the Manning roughness coefficient of each sample was determined with respect to the median size (D50) value pasted into the Manning-Strickler formula. Some KMnO4 was sifted in the main channel upstream to visualize and measure the dimensions of the separation zone. Consequently, when KMnO4 approached the lateral turnout a photo of the separation zone was taken from a top view. All the experiments were recorded and several photos were taken during the experiment after stablishment of steady flow conditions. The photos were then imported to AutoCAD to measure the separation zone dimensions. Because all the shooting was done with a high-definition camera and it was possible to zoom in, the results are very accurate.Figure 2VIEW LARGEDOWNLOAD SLIDE

    Roughness plates.

    The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in transverse direction (perpendicular to the flow direction).

    The water level was also measured by depth gauges with a accuracy of 0.1 mm, and velocity in one direction with a single-dimensional KENEK LP 1100 with an accuracy of ±0.02 m/s (0–1 m/s), ± 0.04 m/s (1–2 m/s), ± 0.08 m/s (2–4 m/s), ±0.10 m/s (4–5 m/s).

    Numerical simulation

    ListenA FLOW-3D numerical model was utilized as a solver of the Navier-Stokes equation to simulate the three-dimensional flow field at the entrance of the turnout. The governing equations included continuity momentum equations. The continuity equation, regardless of the density of the fluid in the form of Cartesian coordinates x, y, and z, is as follows:

    formula

    (1)where uv, and w represent the velocity components in the x, y, and z directions, respectively; AxAy, and Az are the surface flow fractions in the xy, and z directions, respectively; VF denotes flow volume fraction; r is the density of the fluid; t is time; and Rsor refers to the source of the mass. Equations (2)–(4) show momentum equations in xy and z dimensions respectively :

    formula

    (2)

    formula

    (3)

    formula

    (4)where GxGy, and Gz are the accelerations caused by gravity in the xy, and z directions, respectively; and fxfy, and fz are the accelerations caused by viscosity in the xy, and z directions, respectively.

    The turbulence models used in this study were the renormalized group (RNG) models. Evaluation of the concordance of the mentioned models with experimental studies showed that the RNG model provides more accurate results.

    Two blocks of mesh were used to simulate the main channels and lateral turnout. The meshes were denser in the vicinity of the entrance of the turnout in order to increase the accuracy of computations. Boundary conditions for the main mesh block included inflow for the channel entrance (volumetric flow rate), outflow for the channel exit, ‘wall’ for the bed and the right boundary and ‘symmetry’ for the top (free surface) and left boundaries (turnout). The side wall roughness coefficient was given to the software as the Manning number in surface roughness of any component. Considering the restrictions in the available processor, a main mesh block with appropriate mesh size was defined to simulate the main flow field in the channel, while the nested mesh-block technique was utilized to create a very dense solution field near the roughness plate in order to provide accurate results around the plates and near the entrance of the lateral turnout. This technique reduced the number of required mesh elements by up to 60% in comparison with the method in which the mesh size of the main solution field was decreased to the required extent.

    The numerical outputs are verified against experimental data. The hydraulic characteristics of the experiment are shown in Table 1.Table 1

    Hydraulic conditions of the flow

    Q(L/s)FrY1 (m)Q2/Q1
    16 0.449 0.09 0.22 
    18 0.335 0.09 0.61 
    21 0.242 0.09 0.71 
    23 0.180 0.09 1.04 

    RESULTS AND DISCUSSION

    Experimental results

    Listen

    During the experiments, the dimensions of the separation zone were recorded with an HD camera. Some photos were imported to AutoCad software. Then, the separation zones dimensions were measured and compared in different scenarios.

    At the beginning, the flow pattern in the separation zone for four different hydraulic conditions was studied for seven different Manning roughness coefficients from 0.009 to 0.032. To compare the obtained results, roughness of 0.009 was considered as the base line. The percentage of reduction in separation zone area in different roughness coefficients is shown in Figure 3. According to this figure, by increasing the roughness of the turnout side wall, the separation zone area ratio reduces (ratio of separation zone area to turnout area). In other words, in any desired Froud number, the highest dimensions of the separation zone area are related to the lowest roughness coefficients. In Figure 3, ‘A’ is the area of the separation zone and ‘Ai’ represents the total area of the turnout.Figure 3VIEW LARGEDOWNLOAD SLIDE

    Effect of roughness on separation zone dimensions.Figure 4VIEW LARGEDOWNLOAD SLIDE

    Effect of roughness on separation zone dimensions.

    It should be mentioned that the separation zone dimensions change with depth, so that the area is larger at the surface than near the bed. This study measured the dimensions of this area at the surface. Figure 4 show exactly where the roughness elements were located.Figure 5VIEW LARGEDOWNLOAD SLIDE

    Comparison of separation zone for n=0.023 and n=0.032.

    Figure 5 shows images of the separation zone at n=0.023 and n=0.032 as examples, and show that the separation area at n=0.032 is smaller than that of n=0.023.

    The difference between the effect of the two 0.032 and 0.030 roughnesses is minor. In other words, the dimensions of the separation zone decreased by increasing roughness up to 0.030 and then remained with negligable changes.

    In the next step, the effect of intake invert relative to the main stream (drop) on the dimensions of the separation zone was investigated. To do this, three different invert levels were considered: (1) without drop; (2) a 5 cm drop between the main canal and intake canal; and (3) a 10 cm drop between the main canal and intake canal. The without drop mode was considered as the control state. Figure 6 shows the effect of drop implementation on separation zone dimensions. Tables 2 and 3 show the reduced percentage of separation zone areas in 5 and 10 cm drop compared to no drop conditions as the base line. It was found that the best results were obtained when a 10 cm drop was implemented.Table 2

    Decrease percentage of separation zone area in 5 cm drop

    Frn=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
    0.08 10.56 11.06 25.27 33.03 35.57 36.5 
    0.121 7.66 11.14 11.88 15.93 34.59 36.25 
    0.353 1.38 2.63 8.17 14.39 31.20 31.29 
    0.362 11.54 19.56 25.73 37.89 38.31 

    Table 3

    Decrease percentage of separation zone area in 10 cm drop

    Frn=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
    0.047 4.30 8.75 23.47 31.22 34.96 35.13 
    0.119 11.01 13.16 15.02 21.48 39.45 40.68 
    0.348 3.89 5.71 9.82 16.09 29 30.96 
    0.354 2.84 10.44 18.42 25.45 35.68 35.76 

    Figure 6VIEW LARGEDOWNLOAD SLIDE

    Effect of drop implementation on separation zone dimensions.

    The combined effect of drop and roughness is shown in Figure 7. According to this figure, by installing a drop structure at the entrance of the intake, the dimensions of the separation zone scales down in any desired roughness coefficient. Results indicated that by increasing the roughness coefficient or drop implementation individually, the separation zone area decreases up to 38 and 25% respectively. However, employing both techniques simultaneously can reduce the separation zone area up to 63% (Table 4). The reason for the reduction of the dimensions of the separation zone area by drop implementation can be attributed to the increase of discharge ratio. This reduces the dimensions of the separation zone area.Table 4

    Reduction in percentage of combined effect of roughness and 10 cm drop

    Qin=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
    16 32.3 35.07 37.2 45.7 58.01 59.1 
    18 44.5 34.15 36.18 48.13 54.2 56.18 
    21 43.18 32.33 42.30 37.79 57.16 63.2 
    23 40.56 34.5 34.09 46.25 50.12 57.2 

    Figure 7VIEW LARGEDOWNLOAD SLIDE

    Combined effect of roughness and drop on separation zone dimensions.

    This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Some other researchers reported that increasing the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007Ramamurthy et al. 2007). However, these researchers employed other methods to enhance the discharge ratio. Drop implementation is simple and applicable in practice, since there is normally an elevation difference between the main and lateral canal in irrigation networks to ensure gravity flow occurance.

    Table 4 depicts the decrease in percentage of the separation zone compared to base line conditions in different arrangements of the combined tests.Figure 8VIEW LARGEDOWNLOAD SLIDE

    Velocity profiles for various roughness coefficients along turnout width.

    A comparison between the proposed methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. Figure 8 shows the comparison of the results. The comparison shows that the new techniques can be highly influential and still practical. In this research, with no change in structural geometry (enhancement of roughness coefficient) or minor changes with respect to drop implementation, the dimensions of the separation zone are decreased noticeably. The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in a transverse direction (perpendicular to the flow direction). The results are shown in Figure 9.Figure 9VIEW LARGEDOWNLOAD SLIDE

    Effect of roughness on separation zone dimensions in numerical study.

    Numerical results

    Listen

    This study examined the flow patterns around the entrance of a diversion channel due to various wall roughnesses in the diversion channel. Results indicated that increasing the discharge ratio in the main channel and diversion channel reduces the area of the separation zone in the diversion channel.Figure 10VIEW LARGEDOWNLOAD SLIDE

    Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).A laboratory and numerical error rate of 0.2605 was calculated from the following formula,

    formula

    where Uexp is the experimental result, Unum is the numerical result, and N is the number of data.

    Figure 9 shows the effect of roughness on separation zone dimensions in numerical study. Figure 10 compares the vortex area (software output) for three roughnesses, 0.009, 0.023 and 0.032 and Figure 11 shows the flow lines (tecplot output) that indicate the effect of roughness on flow in the separation zone. Numerical analysis shows that by increasing the roughness coefficient, the dimensions of the separation zone area decrease, as shown in Figure 10 where the separation zone area at n=0.032 is less than the separation zone area at n=0.009.Figure 11VIEW LARGEDOWNLOAD SLIDE

    Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.Figure 12VIEW LARGEDOWNLOAD SLIDE

    Velocity vector for flow condition Q1/422 l/s, near surface.

    The velocities intensified moving midway toward the turnout showing that the effective area is scaled down. The velocity values were almost equal to zero near the side walls as expected. As shown in Figure 12 the approach vortex area velocity decreases. Experimental and numerical measured velocity at x=0.15 m of the diversion channel compared in Figure 13 shows that away from the separation zone area, the velocity increases. All longitudinal velocity contours near the vortex area are distinctly different between different roughnesses. The separation zone is larger at less roughness both in length and width.Figure 13VIEW LARGEDOWNLOAD SLIDE

    Exprimental and numerical measured velocity.

    CONCLUSION

    Listen

    This study introduces practical and feasible methods for enhancing turnout efficiency by reducing the separation zone dimensions. Increasing the roughness coefficient and implementation of inlet drop were considered as remedies for reduction of separation zone dimensions. A data set has been compiled that fully describes the complex, 3D flow conditions present in a 90 degree turnout channel for selected flow conditions. The aim of this numerical model was to compare the results of a laboratory model in the area of the separation zone and velocity. Results showed that enhancing roughness coefficient reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%. Further research is proposed to investigate the effect of roughness and drop implementation on sedimentation pattern at lateral turnouts. The dimensions of the separation zone decreases with the increase of the non-dimensional parameter, due to the reduction ratio of turnout discharge increasing in all the experiments.

    This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Other researchers have reported that intensifying the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007Ramamurthy et al. 2007). However, they employed other methods to enhance the discharge ratio. Employing both techniques simultaneously can decrease the separation zone dimensions up to 63%. A comparison between the new methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. The comparison shows that the new techniques can be highly influential and still practical. The numerical and laboratory models are in good agreement and show that the method used in this study has been effective in reducing the separation area. This method is simple, economical and can prevent sediment deposition in the intake canal. Results show that CFD prediction of the fluid through the separation zone at the canal intake can be predicted reasonably well and the RNG model offers the best results in terms of predictability.

    DATA AVAILABILITY STATEMENT

    Listen

    All relevant data are included in the paper or its Supplementary Information.

    REFERENCES

    Abbasi A., Ghodsian M., Habibi M. & Salehi Neishabouri S. A. 2004 Experimental investigation on dimensions of flow separation zone at lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).Google Scholar Al-Zubaidy R. & Hilo A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.Google Scholar Chow V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.Jalili H., Hosseinzadeh Dalir A. & Farsadizadeh D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern. Iranian Water Research Journal 5 (9), 1–10. (In Persian).Google Scholar Jamshidi A., Farsadizadeh D. & Hosseinzadeh Dalir A. 2016 Variations of flow separation zone at lateral intake entrance using submerged vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.Google Scholar Karami Moghaddam K. & Keshavarzi A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge. In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).Google Scholar Karami H., Farzin S., Sadrabadi M. T. & Moazeni H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.Google ScholarCrossref  Kasthuri B. & Pundarikanthan N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering 113 (4), 543–548.Google ScholarCrossref  Keshavarzi A. & Habibi L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552. https://doi.org/10.1002/ird.207.Google ScholarCrossref  Kirkgöz M. S. & Ardiçlioğlu M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering 1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).Google Scholar Nakato T., Kennedy J. F. & Bauerly D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).Google Scholar Neary V. S. & Odgaard J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119 (11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).Google ScholarCrossref  Nikbin S. & Borghei S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90° openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://civilica.com/doc/120494.Google Scholar Odgaard J. A. & Wang Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.Google ScholarCrossref  Ramamurthy A. S., Junying Q. & Diep V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).Google Scholar Seyedian S., Karami Moghaddam K. & Shafai Begestan M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian). Available from: https://civilica.com/doc/56251.Google Scholar Zolghadr M. & Shafai Bejestan M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.Google Scholar Zolghadr M., Zomorodian S. M. A., Shabani R. & Azamatulla H.Md. 2021 Migration of sand mining pit in rivers: an experimental, numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.Google Scholar © 2022 The AuthorsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

    Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

    Xiang WangLin-Jie ZhangJie Ning, and Suck-Joo Na
    Published Online:8 Apr 2022https://doi.org/10.1089/3dp.2021.0159

    Abstract

    A 3D numerical model of heat transfer and fluid flow of molten pool in the process of laser wire deposition was presented by computational fluid dynamics technique. The simulation results of the deposition morphology were also compared with the experimental results under the condition of liquid bridge transfer mode. Moreover, they showed a good agreement. Considering the effect of recoil pressure, the morphology of the deposit metal obtained by the simulation was similar to the experiment result. Molten metal at the wire tip was peeled off and flowed into the molten pool, and then spread to both sides of the deposition layer under the recoil pressure. In addition, the results of simulation and high-speed charge-coupled device presented that a wedge transition zone, with a length of ∼6 mm, was formed behind the keyhole in the liquid bridge transfer process, where the height of deposited metal decreased gradually. After solidification, metal in the transition zone retained the original melt morphology, resulting in a decrease in the height of the tail of the deposition layer.

    Keywords

    LWD, CFD, liquid bridge transfer, fluid dynamics, wedge transition zone

    Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
    Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
    Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
    Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

    References

    1. Matthews MJ, Guss G, Khairallah SA, et al. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42. CrossrefGoogle Scholar

    2. Ge WJ, Han SW, Fang YC, et al. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns. Appl Surf Sci 2017;419:150–158. CrossrefGoogle Scholar

    3. Bai XW, Colegrove P, Ding JL, et al. Numerical analyswas of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 2018;124:504–516. CrossrefGoogle Scholar

    4. Torkamany MJ, Kaplan AFH, Ghaini FM. Wire deposition by a laser-induced boiling front. Opt Laser Technol 2015;69:104–112. CrossrefGoogle Scholar

    5. Yu Y, Huang W, Wang G. Investigation of melting dynamics of filler wire during wire feed laser welding. J Mec Sci Technol 2013;27:1097–1108. CrossrefGoogle Scholar

    6. Ma G, Li L, Chen Y. Effects of beam confgurations on wire melting and transfer behaviors in dual beam laser welding with fller wire. Opt Laser Technol 2017;91:138–148. CrossrefGoogle Scholar

    7. Abioye TE, Folkes J, Clare AT. A parametric study of Inconel 625 wire laser deposition. J Mater Process Tech 2013;213:2145–2151. CrossrefGoogle Scholar

    8. Wei S, Wang G, Shin YC, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transf 2018;125:1356–1368. CrossrefGoogle Scholar

    9. Gu H, Li L. Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 2019;140:51–65. CrossrefGoogle Scholar

    10. Hu R, Luo M, Liu T, et al. Thermal fluid dynamics of liquid bridge transfer in laser wire deposition 3D printing. Sci Technolf Weld Join 2019;24:1–11. Google Scholar

    11. Chatterjee D, Chakraborty S. A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Phys Lett A 2006;351:359–367. CrossrefGoogle Scholar

    12. Wu L, Cheon J, Kiran DV, et al. CFD simulations of GMA welding of horizontal fillet joints based on coordinate rotation of arc models. J Mater Process Tech 2016;231:221–238. CrossrefGoogle Scholar

    13. Gerhard W, Boyer RR, Collings EW. Materials Properties Handbook: Titanium Alloys. ASM International: Almere, The Netherlands, 1994. Google Scholar

    14. Colegrove P, Simiand PE, Varughese A, et al. Evaluation of a drilling model approach to represent laser spot microwelding. In: ASM Proceedings of the international conference: trends in welding research; 2009. Google Scholar

    15. Boivineau M, Cagran C, Doytier D, et al. Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J Thermophys 2006;27:507–529. CrossrefGoogle Scholar

    16. Shejndlin AE, Kenisarin MM, Chekhovskoj VY. Melting point of yttrium oxide. AN SSSR 1974;216:582–584. Google Scholar

    17. Cho JH, Na SJ. Teflection and Fresnel absorption of laser beam in keyhole. J Phys D Appl Phys 2006;39:5372–5378. CrossrefGoogle Scholar

    18. Han SW, Ahn J, Na SJ. A study on ray tracing method for CFD simulations of laser keyhole welding: Progressive search method. Weld World 2016;60:247–258. CrossrefGoogle Scholar

    19. Allmen MV. Laser-Beam Interactions with Materials. Springer, Berlin-Heidelberg, 1995. Google Scholar

    20. Dobson PJ. Absorption and scattering of light by small particles. Phys Bull 1984;35:104. CrossrefGoogle Scholar

    21. Greses J, Hilton PA, Barlow CY. Plume attenuation under high power Nd:yttritium aluminum garnet laser welding. J Laser Appl 2004;16:9–15. CrossrefGoogle Scholar

    22. Shcheglov PY, Uspenskiy SA, Gumenyuk AV, et al. Plume attenuation of laser radiation during high power fiber laser welding. Laser Phys Lett 2011;8:475–480. CrossrefGoogle Scholar

    23. Yang P, Liou KN. Effective refractive index for determining ray propagation in an absorbing dielectric particle. J Quant Spectrosc Radiat Transf 2009;110:300–306. CrossrefGoogle Scholar

    24. Barber PW. Absorption and scattering of light by small particles. J Colloid Interface Sci 1984;98:290–291. Google Scholar

    25. Hu ZR, Chen X, Yang G, et al. Metal transfer in wire feeding-based electron beam 3D printing: Modes, dynamics, and transition criterion. Int J Heat Mass Transf 2018;126:877–887. CrossrefGoogle Scholar

    26. David SA, Babu SS, Vitek JM. Welding: Solidification and microstructure. JOM 2013;55:14–20. CrossrefGoogle Scholar

    27. Zhong ML, Liu W. Laser surface cladding: The state of the art and challenges. Proc Inst Mech Eng Part C J Mech Eng Sci 2010;224:1041–1060. CrossrefGoogle Scholar

    28. Kobryn PA, Semiatin S. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J Mater Process Technol 2003;135:330–339. CrossrefGoogle Scholar

    29. Debroy T, David S. Physical processes in fusion welding. Rev Mod Phys 1995;67:85–112. CrossrefGoogle Scholar

    30. Lee YS, Nordin M, Babu SS, et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall Trans B 2014;45:1520–1528. CrossrefGoogle Scholar

    31. Rappaz M, David SA, Vitek JM, et al. Development of microstructures in Fe15Ni15Cr single crystal electron beam welds. Metall Trans A 1989;20:1125–1138. CrossrefGoogle Scholar

    Numerical study of the effect of flow velocity and flood roughness components on hydraulic flow performance in composite sections with converging floodplains

    Numerical study of the effect of flow velocity and flood roughness components on hydraulic flow performance in composite sections with converging floodplains

    Authors

    1 Civil Enigneering Department, Lahijan Branch.Islamic Azad University.Lahijan.Iran

    2 Department of Civil Engnieering, University of Qom,Qom,Iran

    3 Civil Engineering Department, Lahijan Branch,Islamic Azad Univeristy,Lahijan,Iran

    Abstract

    홍수와 그 위험을 통제해야 할 필요성은 누구에게도 숨겨져 있지 않습니다. 또한 이 현상으로 인해 다양한 경제, 사회 및 환경 문제가 영향을 받습니다. 홍수 제어 방법의 설계 및 최적 관리의 첫 번째 단계는 홍수 중 하천 거동을 올바르게 식별하는 것입니다.

    홍수 경로 지정, 하상 및 하천 면적 결정 등과 같은 대부분의 하천 엔지니어링 프로젝트에서 하천 단면의 수리학적 매개변수의 평균값을 계산하는 것으로 충분합니다. 오늘날 유체 환경 연구에서 수치 및 분석 방법의 사용이 성장하고 발전했습니다.

    신뢰할 수 있는 결과 생성으로 인해 물리적 모델에 대한 좋은 대안이 될 수 있었습니다. 오늘날 수치 모델의 급속한 발전과 컴퓨터 계산 속도의 증가로 인해 3D 수치 모델의 사용이 선호되며 또한 강의 속도 분포 및 전단 응력을 측정하는 데 시간이 많이 걸리고 비용이 많이 들기 때문에 결과 3D 수치 모델의 가치가 있을 것입니다.

    한편, 본 연구에서는 복합단면에 대해 FLOW-3D 모델을 이용한 종합적인 수치연구가 이루어지지 않았음을 보여주고 있어 적절한 연구기반을 제공하고 있습니다.

    따라서 본 연구의 혁신은 발산 및 수렴 범람원을 동반하는 비 각형 복합 단면에서 흐름의 상태 및 수리 성능에 대한 거칠기와 같은 매개 변수의 영향에 대한 수치 연구입니다.

    수치해석 결과를 검증하기 위해 Younesi(2013) 연구를 이용하였습니다. 이 실험에서는 먼저 고정층이 있는 복합 프리즘 및 비 프리즘 단면의 수리 흐름을 조사한 다음 조건을 유지하면서 프리즘 및 비 프리즘 모드에서 퇴적물 이동 실험을 수행했습니다.

    실험은 15미터 길이의 연구 채널에서 수행되었습니다. 이 운하는 초당 250리터의 시스템에서 재순환을 위해 제공될 수 있는 유속과 0.0088 000의 종경사를 가진 폭 400mm의 두 개의 대칭 범람원이 있는 합성 운하입니다. 범람원의 가장자리는 0.18미터와 같고 주요 운하의 너비는 0.4미터와 같습니다(그림 1).

    본수로의 바닥과 벽을 거칠게 하기 위해 평균직경 0.65mm의 퇴적물을 사용하였으며, 각 단계에서 범람원의 벽과 바닥은 평균직경 0.65, 1.3, 1.78의 퇴적물로 거칠게 하였습다. (mm). 삼각형 오버플로는 운하 상류에서 운하로의 유입량을 측정하는 데 사용됩니다.

    상대깊이 0.15와 0.25, 직경 14mm의 마이크로몰리나 실험과 상대깊이 0.35의 실험에서는 유속을 측정하기 위해 3차원 속도계(ADV)를 사용하였습니다. 수위는 0.1mm의 정확도로 깊이 게이지로 측정 되었습니다.

    본 연구에서는 수면 프로파일의 수치적 모델을 검증하기 위해 실험 0.25-2에서 발산대의 시작, 중간 및 끝에서 세 단면의 평균 깊이 속도 분포 및 경계 전단 응력) -11.3-NP 및 0.25-2-5.7-NP 및 또한 각형 복합 단면의 0.25-2-2 P 테스트가 평가되었습니다.

    각형 합성 단면의 P.20-2-2-P 테스트와 관련된 RMSE 및 NRMSE 지수 값 및 표 (2) 실험 11.3에서 RMSE 및 NRMSE 지수 값 -2-0.25-NP 및 -0.25. 2-5.7-NP가 제공됩니다. 실험 0.25-2-5.7-NP-11.3-2-0.25, NP 및 P.2.0-2-2-P의 평균 깊이 속도의 검증과 관련된 결과가 표시됩니다. 0.25-2-5.7-NP 실험에서 초, 중, 기말 NRMSE의 양은 각각 5.7, 11.8, 10.3%로 계산되었으며, 이는 초급이 우수, 중급이 양호, 최종 성적. 배치. 보시다시피, RMSE 값은 각각 0.026, 0.037 및 0.026으로 계산됩니다.

    실험 11.3-2-0.25, NP에서 초급, 중급 및 최종 수준의 NRMSE 값은 각각 7, 11.2 및 15.4%로 계산되었으며, 이는 초급에서 우수 범주 및 우수 범주에서 중간 및 최종 수준. 가져 가다. 보시다시피, RMSE 값은 각각 0.032, 0.038, 0.04로 계산됩니다. 0.25-2-P 실험에서 NRMSE 값은 1.7%로 계산되어 우수 범주에 속한다. 보시다시피 RMSE 값도 0.004로 계산됩니다. 중간 깊이의 속도 분포와 관련하여 수치 모델은 실험실 결과에 적합하며 접합 영역에 작은 오류만 입력되었다고 말할 수 있습니다. 이는 2차 전지의 이동 결과로 간주될 수 있습니다. 모서리를 향해.
    결론: 본 연구에서는 3차원 유동 해석이 가능한 Flow 3D 소프트웨어를 사용하여 각형 및 비각형 단면이 복합된 수로의 유동 패턴을 조사했습니다. 3개의 다른 상대 거칠기(1, 2 및 2.74)와 3개의 상대 깊이(0.15, 0.25 및 0.35) 및 5.7 및 11.3도의 발산 각도에 대해 속도의 세로 성분 변화, 평균 깊이 속도 분포, 경계 범람원에 의해 전달되는 유속뿐만 아니라 전단 응력 분포를 조사했습니다.

    결과는 수로를 따라 범람원의 폭이 증가함에 따라 유속량이 감소함을 보여주었다. 또한 조도가 유동패턴에 미치는 영향에 대한 연구는 일반적으로 벽의 거칠기에 따라 모든 구간에서 유속량이 감소하는 것으로 나타났으며, 또한 본관과 범람원의 교차점에서의 유동패턴은 벽의 거칠기 영향을 더 많이 받는 것으로 나타났습니다. 결과는 또한 상대 깊이가 증가하거나 상대 거칠기가 감소함에 따라 주 수로와 범람원 사이의 속도 구배가 감소함을 보여주었습니다.

    Intrpduction: The need to control floods and their dangers is not hidden from anyone. In addition, a wide range of economic, social and environmental issues are affected by this phenomenon. The first step in the design and optimal management of flood control methods is the correct identification of river behavior during floods. In most river engineering projects such as flood routing, determining the bed and river area, etc., calculating the average values of hydraulic parameters of the river section is sufficient. Today, the use of numerical and analytical methods in the study of fluid environment have grown and developed. Due to the production of reliable results, they have been able to be a good alternative to physical models. Today, with the rapid development of numerical models and increasing the speed of computer calculations, the use of 3D numerical models is preferred and also due to the fact that measuring the velocity distribution and shear stress in rivers is very time consuming and expensive, the results of 3D numerical models It will be valuable. On the other hand, the present studies show that comprehensive numerical research using FLOW-3D model has not been performed on composite sections, so a suitable ground for research is provided. Therefore, the innovation of the present study is the numerical study of the effects of parameters such as roughness on the status and hydraulic performance of the flow in non-prismatic composite sections, which are accompanied by divergent and convergent floodplains, which have received less attention numerically.

    Methodology: Younesi (2013) research has been used to validate the results of numerical simulation. In these experiments, first the hydraulic flow in composite prismatic and non-prismatic sections with fixed bed was examined and then, while maintaining the conditions, sediment transfer experiments were performed in prismatic and non-prismatic mode. The experiments were performed in a research channel 15 meters long. This canal is a composite canal with two symmetrical floodplains with a width of 400 mm with a flow rate that can be provided for recirculation in the system of 250 liters per second and a longitudinal slope of 0.0088 000. The depth of the main canal to the edge of the floodplain is equal to 0.18 meters and the width of the main canal is equal to 0.4 meters (Figure 1). In order to roughen the bed and walls of the main canal, sediments with an average diameter of 0.65 mm have been used and at each stage, the walls and bed of floodplains have been roughened by sediments with an average diameter of 0.65, 1.3 and 1.78 (mm). A triangular overflow is used to measure the inflow to the canal, upstream of the canal. In order to measure the flow velocity in experiments with relative depth of 0.15 and 0.25, a micromolina with a diameter of 14 mm and in experiments with relative depth of 0.35, a three-dimensional speedometer (ADV) was used. The water level was also taken by depth gauges with an accuracy of 0.1 mm.
    Result and Diccussion: In the present study, in order to validate the numerical model of water surface profile, average depth velocity distribution and boundary shear stress in the three sections at the beginning, middle and end of the divergence zone) in experiments 0.25-2-11.3-NP and 0.25-2-5.7-NP and Also, the 0.25-2-2 P test of the prismatic composite section has been evaluated. In Table (1) the values of RMSE and NRMSE indices related to the P.20-2-2-P test of the prismatic composite section, and also in Table (2) the values of the RMSE and NRMSE indices in the experiments 11.3-2-0.25-NP and -0.25. 2-5.7-NP is provided. The results related to the validation of the average depth velocity of the experiments 0.25-2-5.7- NP-11.3-2-0.25, NP and P.2.0-2-2-P are shown. In 0.25-2-5.7-NP experiment, the amount of NRMSE in elementary, middle and final grades was calculated to be 5.7, 11.8 and 10.3%, respectively, which is in the excellent grade in the elementary grade and good in the middle and final grades. Placed. As can be seen, the RMSE values are calculated as 0.026, 0.037 and 0.026, respectively. In the experiment 11.3-2-0.25, NP, the NRMSE values in the primary, middle and final levels were calculated as 7, 11.2 and 15.4%, respectively, which are in the excellent category in the primary level and in the good category in the middle and final levels. Take. As can be seen, the RMSE values are calculated as 0.032, 0.038 and 0.04, respectively. In the 0.25-2-P experiment, the NRMSE value was calculated to be 1.7%, which is in the excellent category. As can be seen, the RMSE value is also calculated to be 0.004. Regarding the medium-depth velocity distribution, it can be said that the numerical model has an acceptable compliance with the laboratory results and only a small error has been entered in the junction area, which can be considered as a result of the movement of secondary cells towards the corners.
    Conclusion: in this research The flow pattern in waterways with composite prismatic and non-prismatic sections was investigated using Flow 3D software that is capable of three-dimensional flow analysis. For three different relative roughnesses (1, 2 and 2.74) as well as three relative depths (0.15, 0.25 and 0.35) and divergence angles of 5.7 and 11.3 degrees, changes in the longitudinal component of velocity, The average depth velocity distribution, the boundary shear stress distribution as well as the flow rate transmitted by the floodplains were investigated. The results showed that with increasing the width of floodplains along the canal, the amount of velocity decreases. Also, the study of the effect of roughness on the flow pattern showed that in general, with wall roughness, the amount of velocity has decreased in all sections and also the flow pattern at the junction of the main canal and floodplain is more affected by wall roughness. The results also showed that with increasing relative depth or decreasing relative roughness, the velocity gradient between the main channel and floodplains decreases

    Keywords

    Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].

    Application of Numerical and Experimental Modeling to Improve the Efficiency of Parshall Flumes: A Review of the State-of-the-Art

    Parshall Flumes의 효율성 향상을 위한 수치 및 실험 모델링의 적용: 최신 기술 검토

    Mehdi Heyrani 1,* , Abdolmajid Mohammadian 1, Ioan Nistor 1 and Omerul Faruk Dursun 2

    Abstract

    열린 채널에서 흐름을 관리하는 기본 단계 중 하나는 속성을 결정하는 것입니다. 개방 수로의 흐름에 관한 추가 정보를 제공하기 위해 경험적 방정식이 개발되었습니다. 이러한 실험 방정식을 얻는 것은 비용과 시간이 많이 소요됩니다. 따라서 대체 솔루션이 모색되었습니다.

    지난 세기 동안 움직이는 부분이 없는 정적 측정 장치인 Parshall 수로가 개방 수로의 흐름을 측정하는 데 중요한 역할을 했습니다. 많은 연구자들이 관개 및 폐수 관리와 같은 다양한 분야에서 Parshall 수로의 적용을 연구하는 데 관심을 집중해 왔습니다.

    여러 학자들이 실험 결과를 사용하여 Parshall 수로의 등급 방정식을 향상시켰지만 다른 학자들은 수치 시뮬레이션을 사용하여 높이-방전 관계 방정식을 재보정하기 위해 대체 데이터 소스를 사용했습니다. 컴퓨팅 하드웨어가 지난 수십 년 동안 크게 발전하여 과거에 경험했던 제한된 해상도를 뛰어넘는 것이 가능해짐에 따라 CFD(Computational Fluid Dynamic) 소프트웨어가 오늘날 대중화되고 있습니다.

    여러 CFD 모델은 가용성에 따라 오픈 소스 또는 상업적으로 허가되어 수위 결과를 생성하기 위해 다양한 구성의 수로, 특히 Parshall 수로에 대한 수치 시뮬레이션을 수행하는 데 사용되었습니다.

    FLOW-3D, Ansys Fluent, OpenFOAM 등 지금까지 사용되어 온 다양한 CFD 도구에 대해 실험 데이터로 정밀 교정한 결과, 출력이 안정적이고 실제 시나리오에 구현할 수 있음이 확인되었습니다.

    결과를 생성하기 위해 이 기술을 사용하는 이점은 필요한 경우 유속 또는 구조적 형상과 같은 초기 조건을 조정하는 CFD 접근 방식의 능력입니다. 수로 크기와 수로가 위치한 부지의 조건과 관련하여 상황에 적합한 특정 Parshall 수로로 선택이 좁혀집니다.

    표준 Parshall 수로를 선택하는 것이 항상 가능한 것은 아닙니다. 따라서 엔지니어는 가장 가까운 수로 크기에 약간의 수정을 제공하고 정확한 유량을 생성하기 위해 새로운 등급 곡선을 제공합니다.

    이 검토는 기존 등급 방정식을 향상시키거나 구조의 기하학에 대한 추가 수정을 제안하기 위해 Parshall 수로에서 수치 시뮬레이션 및 물리적 실험 데이터의 적용을 목표로 하는 여러 학자의 작업에 대해 수행되었습니다.

    One of the primary steps in managing the flow in an open channel is determining its properties. Empirical equations are developed to provide further information regarding the flow in open channels. Obtaining such experimental equations is expensive and time consuming; therefore, alternative solutions have been sought. Over the last century, the Parshall flume, a static measuring device with no moving parts, has played a significant role in measuring the flow in open channels. Many researchers have focused their interest on studying the application of Parshall flumes in various fields like irrigation and wastewater management. Although various scholars used experimental results to enhance the rating equation of the Parshall flume, others used an alternative source of data to recalibrate the height–discharge relation equation using numerical simulation. Computational Fluid Dynamic (CFD) software is becoming popular nowadays as computing hardware has advanced significantly within the last few decades, making it possible to go beyond the limited resolution that was experienced in the past. Multiple CFD models, depending on their availability, either open-source or commercially licensed, have been used to perform numerical simulations on different configurations of flumes, especially Parshall flumes, to produce water level results. Regarding various CFD tools that have been used, i.e., FLOW-3D, Ansys Fluent, or OpenFOAM, after precise calibration with experimental data, it has been determined that the output is reliable and can be implemented to the actual scenarios. The benefit of using this technique to produce results is the ability of the CFD approach to adjust the initial conditions, like flow velocity or structural geometry, where necessary. With respect to channel size and the condition of the site where the flume is located, the choices are narrowed to the specific Parshall flume suitable to the situation. It is not always possible to select the standard Parshall flume; therefore, engineers provide some modification to the closest flume size and provide a new rating curve to produce accurate flowrates. This review has been performed on the works of a number of scholars who targeted the application of numerical simulation and physical experimental data in Parshall flumes to either enhance the existing rating equation or propose further modification to the structure’s geometry.

    Keywords

    Parshall flume; CFD; OpenFOAM; FLOW-3D; numerical simulation; turbulence model

    Figure 1. Parshall flume measuring structure, installed [2].
    Figure 1. Parshall flume measuring structure, installed [2].
    Figure 2. Parshall flume measuring structure, uninstalled [3]
    Figure 2. Parshall flume measuring structure, uninstalled [3]
    Figure 4. Mesh sensitivity analysis: top view and side view of the Parshall flume: (a) contains 27,000 cells; (b) 52,000 cells; (c) 75,000 cells; (d) 270,000 cells. The C setup was used in their simulation [7].
    Figure 4. Mesh sensitivity analysis: top view and side view of the Parshall flume: (a) contains 27,000 cells; (b) 52,000 cells; (c) 75,000 cells; (d) 270,000 cells. The C setup was used in their simulation [7].
    Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].
    Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].
    Figure 8. Computational grid system in the Side A flume. (a) contains a triangular grid system (b) demonstrates the rectangular grid system. (c) and (d) are three-dimensional schematics showing the superimposed grid system. (e) magnifies the dashed section in (b). (Reprinted with permission from Ref. [11]. 2020 ELSEVIER). ).
    Figure 8. Computational grid system in the Side A flume. (a) contains a triangular grid system (b) demonstrates the rectangular grid system. (c) and (d) are three-dimensional schematics showing the superimposed grid system. (e) magnifies the dashed section in (b). (Reprinted with permission from Ref. [11]. 2020 ELSEVIER). ).
    Figure 10. The results of flow patterns in different flumes; (a) Cutthroat flume, (b) airfoil-shaped flume, (c) airfoil pillar-shaped flume, (d) optimized airfoil-shaped flume [23]
    Figure 10. The results of flow patterns in different flumes; (a) Cutthroat flume, (b) airfoil-shaped flume, (c) airfoil pillar-shaped flume, (d) optimized airfoil-shaped flume [23]
    Figure 11. Experimental setup: contraction ratio used on each flume [23].
    Figure 11. Experimental setup: contraction ratio used on each flume [23].
    Figure 12. Entire flume geometry [25]
    Figure 12. Entire flume geometry [25]

    References

    1. Cone, V.M. The Venturi Flume; U.S. Government Printing Office: Washington, DC, USA, 1917.
    2. 20-Foot Concrete Parshall Flume with Radius Wing Walls. Available online: https://www.openchannelflow.com/assets/uploads/
      media/_large/20-foot-parshall-flume-curved-wing-walls.jpg (accessed on 12 January 2021).
    3. Fiberglass 6-Inch Parshall Flume with Gauge. Available online: https://www.openchannelflow.com/assets/uploads/media/
      _large/flume-parshall-6-inch-fiberglass.png (accessed on 12 January 2021).
    4. Parshall, R.L. The Parshall Measuring Flume; Colorado State College, Colorado Experiment Station: Fort Collins, CO, USA, 1936.
    5. Selecting Between a Weir and a Flume. 2022. Available online: https://www.openchannelflow.com/blog/selecting-a-primarydevice-part-1-choosing-between-a-weir-and-a-flume (accessed on 29 December 2021).
    6. Parshall, R.L. The Improved Venturi Flume. Trans. Am. Soc. Civ. Eng. 1928, 89, 841–851. [CrossRef]
    7. Heyrani, M.; Mohammadian, A.; Nistor, I. Numerical Simulation of Flow in Parshall Flume Using Selected Nonlinear Turbulence
      Models. Hydrology 2021, 8, 151. [CrossRef]
    8. Heyrani, M.; Mohammadian, A.; Nistor, I.; Dursun, O.F. Numerical Modeling of Venturi Flume. Hydrology 2021, 8, 27. [CrossRef]
    9. Alfonsi, G. Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling. Appl. Mech. Rev. 2009, 62, 040802. [CrossRef]
    10. Imanian, H.; Mohammadian, A. Numerical Simulation of Flow over Ogee Crested Spillways under High Hydraulic Head Ratio.
      Eng. Appl. Comput. Fluid Mech. 2019, 13, 983–1000. [CrossRef]
    11. Khosronejad, A.; Herb, W.; Sotiropoulos, F.; Kang, S.; Yang, X. Assessment of Parshall Flumes for Discharge Measurement of
      Open-Channel Flows: A Comparative Numerical and Field Case Study. Measurement 2020, 167, 108292. [CrossRef]
    12. Dursun, O.F. An Experimental Investigation of the Aeration Performance of Parshall Flume and Venturi Flumes. KSCE J. Civ. Eng.
      2016, 20, 943–950. [CrossRef]
    13. Shih, T.-H.; Liu, N.-S.; Chen, K.-H. A Non-Linear k-Epsilon Model for Turbulent Shear Flows. In Proceedings of the 34th
      AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13 July 1998; p. 3983.
    14. Lien, F.S. Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations. In Proceedings of the 3rd Symposium on Engineering Turbulence Modelling and Measurement, Heraklion, Greece, 27 May 1996.
    15. Davis, R.W.; Deutsch, S. A Numerical-Experimental Study of Parhall Flumes. J. Hydraul. Res. 1980, 18, 135–152. [CrossRef]
    16. Xiao, Y.; Wang, W.; Hu, X.; Zhou, Y. Experimental and Numerical Research on Portable Short-Throat Flume in the Field. Flow
      Meas. Instrum. 2016, 47, 54–61. [CrossRef]
    17. Wright, S.J.; Tullis, B.P.; Long, T.M. Recalibration of Parshall Flumes at Low Discharges. J. Irrig. Drain. Eng. 1994, 120, 348–362.
      [CrossRef]
    18. Heiner, B.; Barfuss, S.L. Parshall Flume Discharge Corrections: Wall Staff Gauge and Centerline Measurements. J. Irrig. Drain.
      Eng. 2011, 137, 779–792. [CrossRef]
    19. Savage, B.M.; Heiner, B.; Barfuss, S. Parshall Flume Discharge Correction Coefficients through Modelling. Proc. ICE Water Manag.
      2013, 167, 279–287. [CrossRef]
    20. Zerihun, Y.T. A Numerical Study on Curvilinear Free Surface Flows in Venturi Flumes. Fluids 2016, 1, 21. [CrossRef]
    21. Sun, B.; Zhu, S.; Yang, L.; Liu, Q.; Zhang, C.; Zhang, J. ping Experimental and Numerical Investigation of Flow Measurement
      Mechanism and Hydraulic Performance on Curved Flume in Rectangular Channel. Arab. J. Sci. Eng. 2020. [CrossRef]
    22. Hu, H.; Huang, J.; Qian, Z.; Huai, W.; Yu, G. Hydraulic Analysis of Parabolic Flume for Flow Measurement. Flow Meas. Instrum.
      2014, 37, 54–64. [CrossRef]
    23. Sun, B.; Yang, L.; Zhu, S.; Liu, Q.; Wang, C.; Zhang, C. Study on the Applicability of Four Flumes in Small Rectangular Channels.
      Flow Meas. Instrum. 2021, 80, 101967. [CrossRef]
    24. Willeitner, R.P.; Barfuss, S.L.; Johnson, M.C. Using Numerical Modeling to Correct Flow Rates for Submerged Montana Flumes. J.
      Irrig. Drain. Eng. 2013, 139, 586–592. [CrossRef]
    25. Ran, D.; Wang, W.; Hu, X. Three-Dimensional Numerical Simulation of Flow in Trapezoidal Cutthroat Flumes Based on FLOW-3D.
      Front. Agric. Sci. Eng. 2018, 5, 168–176. [CrossRef]
    26. Kim, S.-Y.; Lee, J.-H.; Hong, N.-K.; Lee, S.-O. Numerical Simulation for Determining Scale of Parshall Flume. Proc. Korea Water
      Resour. Assoc. Conf. 2010, 719–723.
    27. Tekade, S.A.; Vasudeo, A.D.; Ghare, A.D.; Ingle, R.N. Measurement of Flow in Supercritical Flow Regime Using Cutthroat Flumes.
      Sadhana 2016, 41, 265–272. [CrossRef]
    28. Wahl, T.L.; Replogle, J.A.; Wahlin, B.T.; Higgs, J.A. New Developments in Design and Application of Long-Throated Flumes. In
      Proceedings of the Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis,
      MN, USA, 30 July–2 August 2000.
    29. Howes, D.J.; Burt, C.M.; Sanders, B.F. Subcritical Contraction for Improved Open-Channel Flow Measurement Accuracy with an
      Upward-Looking ADVM. J. Irrig. Drain. Eng. 2010, 136, 617–626. [CrossRef]
    30. Tiwari, N.K.; Sihag, P. Prediction of Oxygen Transfer at Modified Parshall Flumes Using Regression Models. ISH J. Hydraul. Eng.
      2020, 26, 209–220. [CrossRef]
    31. Thornton, C.I.; Smith, B.A.; Abt, S.R.; Robeson, M.D. Supercritical Flow Measurement Using a Small Parshall Flume. J. Irrig.
      Drain. Eng. 2009, 135, 683–692. [CrossRef]
    32. Cox, A.L.; Thornton, C.I.; Abt, S.R. Supercritical Flow Measurement Using a Large Parshall Flume. J. Irrig. Drain. Eng. 2013, 139,
      655–662. [CrossRef]
    1. Ribeiro, Á.S.; Sousa, J.A.; Simões, C.; Martins, L.L.; Dias, L.; Mendes, R.; Martins, C. Parshall Flumes Flow Rate Uncertainty
      Including Contributions of the Model Parameters and Correlation Effects. Meas. Sens. 2021, 18, 100108. [CrossRef]
    2. Singh, J.; Mittal, S.K.; Tiwari, H.L. Discharge Relation for Small Parshall Flume in Free Flow Condition. Int. J. Res. Eng. Technol.
      2014, 3, 317–321.
    3. Kim, S.-D.; Lee, H.-J.; Oh, B.-D. Investigation on Application of Parshall Flume for Flow Measurement of Low-Flow Season in
      Korea. Meas. Sci. Rev. 2010, 10, 111. [CrossRef]
    4. Willeitner, R.P.; Barfuss, S.L.; Johnson, M.C. Montana Flume Flow Corrections under Submerged Flow. J. Irrig. Drain. Eng. 2012,
      138, 685–689. [CrossRef]
    5. Dufresne, M.; Vazquez, J. Head–Discharge Relationship of Venturi Flumes: From Long to Short Throats. J. Hydraul. Res. 2013, 51,
      465–468. [CrossRef]
    Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.

    스키밍 흐름 영역에서 계단형 여수로의 수리 성능에 대한 삼각형 프리즘 요소의 영향: 실험 연구 및 수치 모델링

    The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: an experimental study and numerical modeling 

    Kiyoumars RoushangarSamira AkhgarSaman Shahnazi

    계단식 여수로는 댐의 여수로 위로 흐르는 큰 물의 에너지를 분산시키는 비용 효율적인 유압 구조입니다. 이 연구에서는 삼각주형 요소(TPE)가 계단식 배수로의 수력 성능에 미치는 영향에 초점을 맞췄습니다. 9개의 계단식 배수로 모델이 TPE의 다양한 모양과 레이아웃으로 실험 및 수치적으로 조사되었습니다. 적절한 난류 모델을 채택하려면 RNG k – ε 및 표준 k – ε모델을 활용했습니다. 계산 모델 결과는 계단 표면의 속도 분포 및 압력 프로파일을 포함하여 실험 사례의 계단 여수로에 대한 복잡한 흐름을 만족스럽게 시뮬레이션했습니다. 결과는 계단식 여수로에 TPE를 설치하는 것이 캐비테이션 효과를 줄이는 효과적인 방법이 될 수 있음을 나타냅니다. 계단식 여수로에 TPE를 설치하면 에너지 소실률이 최대 54% 증가했습니다. 계단식 배수로의 성능은 TPE가 더 가깝게 배치되었을 때 개선되었습니다. 또한, 실험 데이터를 이용하여 거칠기 계수( f )와 임계 깊이 대 단차 거칠기( yc / k )의 비율 사이의 관계를 높은 정확도로 얻었다.

    Keywords

    energy dissipationFlow-3Droughness coefficientstepped spillwaytriangular prismatic elements

    에너지 소산 , Flow-3D , 거칠기 계수 , 계단식 배수로 , 삼각형 프리즘 요소

    Figure 1 | General schematics of laboratory flume facilities.
    Figure 1 | General schematics of laboratory flume facilities.
    Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).
    Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).
    Figure 3 | Geometry and alignment of TPE in the numerical study.
    Figure 3 | Geometry and alignment of TPE in the numerical study.
    Figure 5 | Comparison of turbulence models in Flow-3D.
    Figure 5 | Comparison of turbulence models in Flow-3D.
    Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A and B.
    Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A and B.
    Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.
    Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.
    Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillway
    Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillway
    Figure 9 | Velocity distributions on the vertical surface of step number 4.
    Figure 9 | Velocity distributions on the vertical surface of step number 4.
    Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.
    Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.
    Figure 11 | Pressure distribution on the vertical surface of the fourth step.
    Figure 11 | Pressure distribution on the vertical surface of the fourth step.
    Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.
    Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.
    Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.
    Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.
    Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.
    Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.
    Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.
    Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.
    Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).
    Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).

    REFERENCES

    Abbasi, S. & Kamanbedast, A. A. 2012 Investigation of effect of changes in dimension and hydraulic of stepped spillways for maximization
    energy dissipation. World Applied Sciences Journal 18 (2), 261–267.
    Arjenaki, M. O. & Sanayei, H. R. Z. 2020 Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using
    experimental model development approach. Modeling Earth Systems and Environment 1–12.
    Attarian, A., Hosseini, K., Abdi, H. & Hosseini, M. 2014 The effect of the step height on energy dissipation in stepped spillways using
    numerical simulation. Arabian Journal for Science and Engineering 39 (4), 2587–2594.
    Azhdary Moghaddam, M. 1997 The Hydraulics of Flow on Stepped Ogee-Profile Spillways. Doctoral Dissertation, University of Ottawa,
    Canada.
    Bakhtyar, R. & Barry, D. A. 2009 Optimization of cascade stilling basins using GA and PSO approaches. Journal of Hydroinformatics 11 (2),
    119–132.
    Barani, G. A., Rahnama, M. B. & Sohrabipoor, N. 2005 Investigation of flow energy dissipation over different stepped spillways. American
    Journal of Applied Sciences 2 (6), 1101–1105.
    Boes, R. M. & Hager, W. H. 2003 Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
    Chamani, M. R. & Rajaratnam, N. 1994 Jet flow on stepped spillways. Journal of Hydraulic Engineering 120 (2), 254–259.
    Chanson, H. 1994 Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic
    Research 32 (2), 213–218.
    Felder, S., Guenther, P. & Chanson, H. 2012 Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of
    Several Pooled Stepped Configurations. No. CH87/12. School of Civil Engineering, The University of Queensland.
    Harlow, F. H. & Nakayama, P. I. 1968 Transport of Turbulence Energy Decay Rate. No. LA-3854. Los Alamos Scientific Lab, N. Mex.
    Hekmatzadeh, A. A., Papari, S. & Amiri, S. M. 2018 Investigation of energy dissipation on various configurations of stepped spillways
    considering several RANS turbulence models. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (2),
    97–109.
    Henderson, F. M. 1966 Open Channel Flow. MacMillan Company, New York.
    Kavian Pour, M. R. & Masoumi, H. R. 2008 New approach for estimating of energy dissipation over stepped spillways. International Journal
    of Civil Engineering 6 (3), 230–237.
    Li, S., Li, Q. & Yang, J. 2019 CFD modelling of a stepped spillway with various step layouts. Mathematical Problems in Engineering.
    Li, S., Yang, J. & Li, Q. 2020 Numerical modelling of air-water flows over a stepped spillway with chamfers and cavity blockages. KSCE
    Journal of Civil Engineering 24 (1), 99–109.
    Moghadam, M. K., Amini, A. & Moghadam, E. K. 2020 Numerical study of energy dissipation and block barriers in stepped spillways. Journal
    of Hydroinformatics.
    Morovati, K., Eghbalzadeh, A. & Javan, M. 2016 Numerical investigation of the configuration of the pools on the flow pattern passing over
    pooled stepped spillway in skimming flow regime. Acta Mechanic Journal 227, 353–366.
    Parsaie, A. & Haghiabi, A. H. 2019 The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation
    70, 101624.
    Peng, Y., Zhang, X., Yuan, H., Li, X., Xie, C., Yang, S. & Bai, Z. 2019 Energy dissipation in stepped spillways with different horizontal face
    angles. Energies 12 (23), 4469.
    Roushangar, K., Foroudi, A. & Saneie, M. 2019 Influential parameters on submerged discharge capacity of converging ogee spillways based
    on experimental study and machine learning-based modeling. Journal of Hydroinformatics 21 (3), 474–492.
    Sarkardeh, H., Marosi, M. & Roshan, R. 2015 Stepped spillway optimization through numerical and physical modeling. International Journal
    of Energy and Environment 6 (6), 597.
    Shahheydari, H., Nodoshan, E. J., Barati, R. & Moghadam, M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway
    under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
    Tabari, M. M. R. & Tavakoli, S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science
    and Engineering 41 (4), 1215–1224.
    Toombes, L. & Chanson, H. 2000 Air-water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes. In
    Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zurich, Switzerland, pp. 22–24.
    Torabi, H., Parsaie, A., Yonesi, H. & Mozafari, E. 2018 Energy dissipation on rough stepped spillways. Iranian Journal of Science and
    Technology, Transactions of Civil Engineering 42 (3), 325–330.
    Wüthrich, D. & Chanson, H. 2014 Hydraulics, air entrainment, and energy dissipation on a Gabion stepped weir. Journal of Hydraulic
    Engineering 140 (9), 04014046.
    Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1), 3–51.
    Yakhot, V. & Smith, L. M. 1992 The renormalization group, the ɛ-expansion and derivation of turbulence models. Journal of Scientific
    Computing 7 (1), 35–61.

    Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.

    Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes

    조도 계수 및 역 고도 변화가 향상된 90도 측면 회전에서 유동의 실험 및 수치 연구

    Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. MD. Azamathulla d,*
    and C. Venkata Siva Rama Prasade
    a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran
    b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
    c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran
    d Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad
    e Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India
    *Corresponding author. E-mail: azmatheditor@gmail.com

    ABSTRACT

    Flow separation at the upstream side of the lateral turnouts (intakes) is a critical issue causing eddy currents at the turn-out entrance. It reduces the effective width of flow, turn-out capacity and efficiency.

    Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turn-out entrance and 3 different bed level inverts, with 4 different discharges (total of 84 experiments) were examined in this study as a method to reduce the dimensions of
    the separation zone.

    Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

    측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 턴아웃 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

    이 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 4가지 다른 배출(총 84개 실험)과 함께 7가지 유형의 조면화 요소를 출구 입구에 설치하고 3가지 서로 다른 베드 레벨 반전 장치를 조사했습니다.

    또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다.

    두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

    Key words

    discharge ratio, flow separation zone, intake, three dimensional simulation

    Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes
    Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes
    Figure 2 | Roughness plates.
    Figure 2 | Roughness plates.
    Figure 3 | Effect of roughness on separation zone dimensions
    Figure 3 | Effect of roughness on separation zone dimensions
    Figure 4 | Effect of roughness on separation zone dimensions.
    Figure 4 | Effect of roughness on separation zone dimensions.
    Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.
    Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.
    Figure 6 | Effect of drop implementation on separation zone dimensions
    Figure 6 | Effect of drop implementation on separation zone dimensions
    Figure 7 | Combined effect of roughness and drop on separation zone dimensions
    Figure 7 | Combined effect of roughness and drop on separation zone dimensions
    Figure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared with other methods.
    Figure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared with other methods.
    Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.
    Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.
    Figure 10 | Effect of roughness on sepration zone dimensions in numerical study
    Figure 10 | Effect of roughness on sepration zone dimensions in numerical study
    Figure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).
    Figure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).
    Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032
    Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032
    Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.
    Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.
    Figure 14 | Exprimental and numerical measured velocity.
    Figure 14 | Exprimental and numerical measured velocity.

    REFERENCES

    Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at
    lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi (in Persian) 62, 38–44.
    Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).
    Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.
    Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and flow pattern at lateral.
    Iranian Water Research Journal(InPersian) 5 (9), 1–10.
    Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intakes entrance using submerged
    vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.
    Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes 55° and 900
    ° with rounded entrance edge.
    In: 03 National Congress on Civil Engineering University of Tabriz. (In Persian). Available from: https://civilica.com/doc/16317.
    Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and
    submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
    Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering
    113 (4), 543–548.
    Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.
    https://doi.org/10.1002/ird.207.
    Kirkgöz, M. S. & Ardiçlioğ
    lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering
    1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).
    Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.
    https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).

    Neary, V. S., Sotiropoulos, F. & Odgaard, A. J. 1999 Three-dimensional numerical model of lateral-intake in flows. Journal of Hydraulic
    Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(126).
    Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at 90°
    openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://
    civilica.com/doc/120494.
    Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.
    Ouyang, H. T. 2009 Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels. Journal of
    Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(209).
    Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic
    Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).
    Samimi Behbahan, T. 2011 Laboratory investigation of submerged vane shapes effect on river banks protection. Australian Journal of Basic
    and Applied Sciences 5 (12), 1402–1407.
    Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determine the optimal radius in lateral intakes 55° and 90° using variation
    of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT) (in Persian). Available from:
    https://civilica.com/doc/56251.
    Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.
    International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.
    Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2020 Migration of sand mining pit in rivers: an experimental,
    numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.

    Figure 2 Idea and details of T-shaped weir.

    Introducing the T-shaped weir: a new nonlinear weir

    Behzad NorooziJalal BazarganAkbar Safarzadeh

    Abstract

    본 연구에서는 LW(Labyrinth Weir)와 PKW(Piano Key Weir)가 결합된 T자형 웨어(TSW)라는 새로운 비선형 웨어를 도입하여 수압 성능을 비교하였다.

    PKW. 입구 키, 출구 키 또는 두 키 모두에서 수직 벽의 존재에 따라 TSW 위어는 각각 A, B 또는 C 유형 웨어로 분류되었습니다. 다른 TSW 사례의 흐름 패턴을 분석하고 배출 계수 곡선을 제공했습니다. 또한 테스트된 둑의 유체역학을 정확하게 연구하기 위해 FLOW-3D 소프트웨어를 사용하여 3D 수치 시뮬레이션을 수행했습니다.

    결과는 출구 키(C-TSW 유형)의 상류에 수직 벽을 삽입하는 것이 PKW의 유압 성능에 미미한 영향을 미치는 것으로 나타났습니다. B-TSW의 토출계수는 PKW 대비 최대 16% 증가하였으며, Ht/p 0.45까지 수직벽의 성능향상 효과 증가 B-TSW는 유지되었습니다.

    실험적 및 수치적 실험을 통해 가장 높은 방전 용량을 갖는 B-TSW에서 수직벽의 최적 높이비(Pd/P)는 0.4로 결정되었다.

    In the present study, a new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), was introduced, and its hydraulic performance was compared with the PKW. Based on the presence of the vertical walls at the inlet key, outlet key, or both keys, the TSW weirs were classified as type A, B, or C weirs, respectively. The flow pattern of different TSW cases was analyzed, and the discharge coefficient curves were provided. Furthermore, to accurately study the hydrodynamics of the tested weirs, 3D numerical simulations were performed using the FLOW-3D software. The results showed that inserting a vertical wall at the upstream of the outlet keys (C-TSW type) has a negligible effect on the hydraulic performance of the PKW. A maximum increase of 16% occurred in the discharge coefficient of the B-TSW in comparison to the PKW, and up to a head to height ratio (Ht/p) of 0.45, the effect of the vertical wall on increasing the performance of the B-TSW was maintained. Based on the experimental and numerical tests, the optimal height ratio of the vertical wall (Pd/P) in B-TSW with highest discharge capacity was determined to be equal to 0.4.

    HIGHLIGHTS

    Listen

    • A new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), is introduced.
    • To investigate the hydrodynamics of the tested weirs in more detail, 3D numerical models are developed on the CFD-software FLOW-3D.
    • By testing different vertical wall sizes, the optimal size of the vertical wall is determined for B-TSW weir.

    Keywords

    discharge coefficientlabyrinth weirlocal submergencepiano key weirT-shaped weir

    Figure 2 Idea and details of T-shaped weir.
    Figure 2 Idea and details of T-shaped weir.

    Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.
    Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.
    Figure 21 Transverse water surface profile in the outlet key of tested weirs  for H/P = 0.4.
    Figure 21 Transverse water surface profile in the outlet key of tested weirs for H/P = 0.4.

    REFERENCES

    Anderson R. M. & Tullis B. P. 2011 Influence of Piano Key Weirs Geometry on Discharge. In Labyrinth and Piano Key Weirs – PKW 2011. CRC Press, Leiden, pp. 75–80.

    Anderson R. M. & Tullis B. P. 2012 Comparison of piano key and rectangular labyrinth weir hydraulics. Journal of Hydraulic Engineering 138 (4), 358–361.

    Azamathulla H. M., Haghiabi A. H. & Parsaie A. 2016 Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply 16 (4), 1002–1016.

    Bremer F. L. & Oertel M. 2017 Numerical investigation of wall thickness influence on Piano key Weir discharge coefficients: A preliminary study. In Labyrinth and Piano Key Weirs III – PKW 2017. CRC Press, London, UK, pp. 101–108.

    Cicero G. M., Delisle J. R., Lefebvre V. & Vermeulen J. 2013 Experimental and Numerical Study of the Hydraulic Performance of A Trapezoidal PKW. In Labyrinths and Piano Key Weirs PKW 2013. CRC Press, Boca Raton, FL, pp. 265–272.

    Crookston B. & Tullis B. 2012 Labyrinth Weirs: Nappe interference and local submergence. Journal of Irrigation and Drainage Engineering 138 (8), 757–765.

    Crookston B., Anderson R. M. & Tullis B. P. 2017 Free-flow discharge estimation method for piano key weir geometries. Journal of Hydro-Environment Research 19, 60–167.

    Ghasemlounia R. & Saghebian S. M. 2021 Uncertainty assessment of kernel based approaches on scour depth modeling in downstream of ski-jump bucket spillways. Water Supply 21 (5), 2333–2346. doi:10.2166/ws.2021.063.

    Kabiri-Samani A. & Javaheri A. 2012 Discharge coefficients for free and submerged flow over piano key weirs. Journal of Hydraulic Research 50 (1), 114–120.

    Lefebvre V., Vermeulen J. & Blancher B. 2013 Influence of Geometrical Parameters on PK-Weirs Discharge with 3D Numerical Analysis. In: Labyrinth and Piano key Weirs II – PKW 2013. CRC Press, London, pp. 49–56.

    Lempérière F. & Ouamane A. 2003 The piano keys weir: a new cost-effective solution for spillways. International Journal on Hydropower & Dams 10 (5), 144–149.

    Machiels O., Erpicum S., Archambeau P., Dewals B. J. & Pirotton M. 2011 Influence of piano key weir height on its discharge capacity. In Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B, pp. 59–66.

    Machiels O., Pirotton M., Pierre A., Dewals B. & Erpicum S. 2014 Experimental parametric study and design of piano key weirs. Journal of Hydraulic Research 52 (3), 326–335.

    Parsaie A., Azamathulla H. M. & Haghiabi A. H. 2018 Prediction of discharge coefficient of cylindrical weir-gate using GMDH-PSO. ISH Journal of Hydraulic Engineering 24 (2), 116–123.

    Paxson G. & Savage B. 2006 Labyrinth spillways: comparison of two popular USA design methods and consideration of non-standard approach conditions and geometries. Division of Civil Engineering, p.37.

    Pourshahbaz H., Abbasi S., Pandey M., Pu J. H., Taghvaei P. & Tofangdar N. 2020 Morphology and hydrodynamics numerical simulation around groynes. ISH Journal of Hydraulic Engineering 1–9.

    Pralong J., Vermeulen J., Blancher B., Laugier F., Erpicum S., Machiels O., Pirotton M., Boillat J.-L., Leite Ribeiro M. & Schleiss A. 2011a A naming convention for the Piano Key Weirs geometrical parameters. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 271–278.

    Pralong J., Montarros F., Blancher B. & Laugier F. 2011b A sensitivity analysis of Piano Key Weirs geometrical parameters based on 3D numerical modelling. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 133–139.

    Ribeiro M. L., Bieri M., Boillat J. L., Schleiss A., Delorme F. & Laugier F. 2009 Hydraulic capacity improvement of existing spillways–design of a piano key weir. In Proceedings (on CD) of the 23rd Congress of the Int. Commission on Large Dams CIGB-ICOLD, Brasilia, Vol. 2, No. CONF, pp. 100–118.

    Ribeiro M. L., Pfister M., Schleiss A. J. & Boillat J. L. 2012 Hydraulic design of A-type piano key weirs. Journal of Hydraulic Research 50 (4), 400–408.

    Roache P. 1994 Perspective: a method for uniform reporting of grid refinement studies. Journal of Fluids Engineering 116 (3), 405–413.

    Safarzadeh A. & Mohajeri S. H. 2018 Hydrodynamics of rectangular broad-crested porous weirs. Journal of Irrigation and Drainage Engineering 144 (10), 04018028.

    Safarzadeh A. & Noroozi B. 2014 Three dimensional hydrodynamics of arced piano key spillways. Journal of Hydraulics 9 (3), 61–79.

    Safarzadeh A. & Noroozi B. 2017 3D hydrodynamics of trapezoidal piano key spillways. International Journal of Civil Engineering 15 (1), 89–101.

    Safarzadeh A., Zaji A. H. & Bonakdari H. 2017 Comparative assessment of the hybrid genetic algorithm–artificial neural network and genetic programming methods for the prediction of longitudinal velocity field around a single straight groyne. Applied Soft Computing 60, 213–228.

    Tullis B. P., Young J. C. & Chandler M. A. 2007 Head-discharge relationships for submerged labyrinth weirs. Journal of Hydraulic Engineering 133 (3), 248–254.

    Xinlei G., Zhiping L., Tao Wang H., Jiazhen L., Qingfu X. & Yongxin G. 2019 Discharge capacity evaluation and hydraulic design of a piano key weir. Water Supply 19 (3), 871–878.

    Zahiri A., Azamathulla H. M. & Bagheri S. 2013 Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. Journal of Hydrology 480, 162–166.

    Zahiri A., Tang X. & Azamathulla H. M. 2014 Mathematical modeling of flow discharge over compound sharp-crested weirs. Journal of Hydro-Environment Research 8 (3), 194–199.

    Numerical investigation on effective parameters on hydraulic flows in a sluice gate with sill on free-flow condition

    자유 흐름 조건에서 문턱이 있는 수문의 유압 흐름에 대한 유효 매개변수에 대한 수치적 조사

    Numerical investigation on effective parameters on hydraulic flows in a sluice gate with sill on free-flow condition

    Authors

    1 Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran

    2 Water Engineering Department, University of Tabriz, Tabriz, Iran

    3 M.Sc. Student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran

    Abstract

    The importance of water control and distribution in irrigation and behind dams requires the use of practical and modern methods. The presence of sill under sluice gate is one of the solutions to control the flow rate. Therefore, this study was conducted to numerically investigate the discharge coefficient (Cd) of sluice gate with different heights and widths of sills in free flow conditions. The simulations were performed using FLOW-3D software and finite volume method. The results of numerical study showed that the gate opening has a good effect on the Cd with sill and non-sill condition. In both cases, the gate opening is inversely related to the Cd. This means that the Cd increases as the gate opening decreases. Results showed that reducing the gate opening from 5 cm to 2 cm increases the Cd in the gate with sill by 9% compared to the non-sill gate. The results also indicate that the height of the sill is one of the parameters affecting the Cd. The minimum and maximum discharge coefficients in gate with sill compared to the non-sill condition were estimated at 1.5% and 18%, respectively. Examination of sill width changes showed that decreasing the width reduces the discharge coefficient by reducing the amount of velocity and flow pressure along the sill sides. The effect of three parameters of gate opening, sill height and sill width were compared. The results showed that increasing the sill width compared to the two mentioned parameters has the maximum increase in the Cd

    관개 및 댐 뒤에서 물 관리 및 분배의 중요성은 실용적이고 현대적인 방법의 사용을 요구합니다. 수문 아래 문턱의 존재는 유량을 제어하는 ​​솔루션 중 하나입니다. 

    따라서 본 연구는 자유유동 조건에서 문턱의 높이와 너비가 다른 수문의 토출계수(Cd)를 수치적으로 조사하기 위해 수행되었습니다. 시뮬레이션은 FLOW-3D 소프트웨어와 유한 체적 방법을 사용하여 수행되었습니다. 

    수치 연구의 결과는 게이트 개방이 sill 및 non-sill 조건에서 Cd에 좋은 영향을 미치는 것으로 나타났습니다. 두 경우 모두 게이트 개방은 Cd와 반비례합니다. 이것은 게이트 개방이 감소함에 따라 Cd가 증가한다는 것을 의미합니다. 

    결과에 따르면 게이트 개구부를 5cm에서 2cm로 줄이면 비문이 있는 게이트에 비해 씰이 있는 게이트의 Cd가 9% 증가합니다. 결과는 또한 문턱의 높이가 Cd에 영향을 미치는 매개변수 중 하나임을 나타냅니다. 

    문턱이 없는 문에 비해 문턱이 있는 문에서 최소 및 최대 배출 계수는 각각 1.5% 및 18%로 추정되었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다. 

    게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수에 비해 씰 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다. 

    결과는 또한 문턱의 높이가 Cd에 영향을 미치는 매개변수 중 하나임을 나타냅니다. 문턱이 없는 문에 비해 문턱이 있는 문에서 최소 및 최대 배출 계수는 각각 1.5% 및 18%로 추정되었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다. 

    게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수와 비교하여 문턱 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다. 

    결과는 또한 문턱의 높이가 Cd에 영향을 미치는 매개변수 중 하나임을 나타냅니다. 문턱이 없는 문에 비해 문턱이 있는 문에서 최소 및 최대 배출 계수는 각각 1.5% 및 18%로 추정되었습니다. 

    문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다. 게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수에 비해 씰 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다. 

    게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수에 비해 씰 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다. 

    게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수와 비교하여 문턱 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다.

    Keywords

    Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d' is the water depth above the crest; y' is the distance normal to the crest invert

    Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D

    Khosro Morovati , Afshin Eghbalzadeh 
    International Journal of Numerical Methods for Heat & Fluid Flow

    ISSN: 0961-5539

    Article publication date: 3 April 2018

    Abstract

    많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.

    이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.

    얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.

    여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.

    모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.

    Study of inception point, void fraction and pressure over pooled
    stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.

    Design/methodology/approach

    압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.

    Findings

    마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.

    Keywords

    Citation

    Morovati, K. and Eghbalzadeh, A. (2018), “Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 28 No. 4, pp. 982-998. https://doi.org/10.1108/HFF-03-2017-0112

    Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h  step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):  d' is the water depth above the crest; y' is the distance normal to the crest invert
    Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d’ is the water depth above the crest; y’ is the distance normal to the crest invert
    Figure 2- meshing domain and distribution of blocks
    Figure 2- meshing domain and distribution of blocks
    Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
    Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A); mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
    Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  Flat stepped spillway (slope: 0 26 6. )
    Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A); Flat stepped spillway (slope: 0 26 6. )
    Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled  and flat stepped spillways (slope: 0 9.8 )
    Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled and flat stepped spillways (slope: 0 9.8 )
    Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),  288941 (model 2), 323578 (model 3) and 343154 (model 4)
    Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1), 288941 (model 2), 323578 (model 3) and 343154 (model 4)
    Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with  experimental work conducted by Felder et al. (2012A); (slope 26.60 )
    Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with experimental work conducted by Felder et al. (2012A); (slope 26.60 )
    Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with  empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
    Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
    Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
    Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
    Figure 10- Comparison of pressure distribution between numerical simulation and experimental work  conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
    Figure 10- Comparison of pressure distribution between numerical simulation and experimental work conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
    Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the  free surface profile along the crest of the spillway.  Note: x' indicates the longitudinal distance from the starting point of the crest.
    Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the free surface profile along the crest of the spillway. Note: x’ indicates the longitudinal distance from the starting point of the crest.
    Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
    Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
    Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x'' indicatesthe  longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y" is the distance from the intersection of the horizontal and vertical faces in the vertical direction
    Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the distance from the intersection of the horizontal and vertical faces in the vertical direction
    Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
    Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
    Table1- Used discharges for assessments of mesh convergence analysis and hydraulic  characteristics
    Table1- Used discharges for assessments of mesh convergence analysis and hydraulic characteristics

    Conclusion

    본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.

    낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.

    In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.

    The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.

    References

    1. André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis,
      Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
    2. Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy
      Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and
      Engineering, 39(4), 2587-2594.
    3. Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical
      simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped
      spillways”. Environmental fluid mechanics, 11(3) 263-288.
    4. Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”.
      International Journal of Hydraulic Engineering; 2(3): 47-52.
    5. Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway.
      Journal of computational multiphase flows”, Volume 7. Number 1.
    6. Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure
      observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
    7. Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation
      of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
    8. Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”.
      Science in China Series E: Technological Sciences, 49(6), 674-684.
    9. Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings
      of the world water congress.
    10. Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid
      dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
    11. Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy
      Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources
      Congress ASCE.
    12. Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air
      entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
    13. Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a
      Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a
      Broad-Crested Weir: a Physical study
    14. Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped
      spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,.
      Brisbane, Australia.
    15. Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary
      flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
    16. Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on
      pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
    17. Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”.
      Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
    18. Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of
      embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
    19. Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped
      spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The
      University of Queensland,. Brisbane, Australia.
    20. Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
    21. Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of
      Hydraulic Engineering, 139(6), 630-636.
    22. Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”,
      department of civil engineering, Brisbane, Australia, Phd thesis.
    23. Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An
      experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
    24. Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and
      pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
    25. Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped
      Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources
      Congress, ASCE.
    26. Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
    27. Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng.,
      139(1), 60–64.
    28. Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped
      Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
    29. Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over
      RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E.
      Minor and W.H. Hager. Balkema. 69–76.
    30. Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment
      dams”. J. Hydraul. Eng., 135(8), 685–689.
    31. Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D
      RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
    32. Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on
      the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI
      10.1007/s00707-015-1444-x
    33. Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped
      spillway”. Civil Engineering Journal. Vol. 2, No. 5.
    34. Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
    35. Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE
      Convention.
    36. Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of
      a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
    37. Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with
      wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
    38. Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop
      on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema,
      137–146.
    39. Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply
      Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan
      University of Technology (IUT), Isfahan, Iran.
    40. Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case
      study.” Journal of Hydraulic Engineering 127.8:640-649.
    41. Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy
      dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI
      10.1007/s12205-013-0749-3.
    42. Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”.
      Computers & structures, 83(27) 2215-2224.
    43. Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte
      Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced
      unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
    44. WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration
      characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015-
      5783-6.
    45. Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped
      spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
    46. Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall
      Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY
      .1943-7900.0000630.
    47. Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped
      spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
    48. Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and
      velocity fields. Journal of Hydraulic Engineering, 142(7).
    49. Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF
      Method”. Procedia Engineering, 28, 808-812.
    50. Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”.
      Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
    51. ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water
      flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
    Numerical Simulation of the Geothechnical Effects on Local Scour in Inclined Pier Group with FLow-3D Softaware

    FLOW-3D 소프트웨어를 사용한 경사 교각 그룹의 국부 세굴에 대한 지반 공학 효과의 수치 시뮬레이션

    Numerical Simulation of the Geothechnical Effects on Local Scour in Inclined Pier Group with FLow-3D Softaware

    Authors

    Abstract

    1 Civil Engineering,Enginnering Faculty,,Univeristy of Qom.Qom.Iran
    2 Civil Engineering Department,Engineering Faculty,Islamic Azad University of Lahijan,Iran

    교각이 물의 흐름 앞에 위치하면 소용돌이가 형성되고 그 활동으로 교각 주변의 하상 재료가 침식되고 세굴 구멍이 생성됩니다. 기초 깊이와 교각 말뚝이 충분하지 않으면 교량은 실패합니다.

    말뚝 캡의 다른 레벨링에서 유동층의 총 전단 응력 연구는 말뚝 캡 위치가 동일할 때 가장 높은 전단 응력이 생성됨을 보여줍니다. 강바닥과 같은 수준; 강바닥보다 낮은 위치에 파일 캡을 설치하여 최대 전단 응력을 감소시킵니다. 

    이 경우에 해당하기 때문일 수 있습니다. 교각 그룹 사이의 거리가 증가하고 두 번째 교각의 존재는 교각 그룹의 유량을 감소시키고 한 교각 그룹의 다른 교각은 흐름 패턴 형성에서 두 개의 독립적인 교각으로 작용합니다. 

    파일 캡의 다른 레벨링에서 세굴의 최종 길이 방향 단면을 비교함으로써 세굴 깊이의 가장 큰 감소는 에어로포일 모양의 파일 캡에서 발생하며 더 날카로운 노즈와 더 나은 공기 역학적 모양을 가진 파일 캡이 제어하기에 좋은 옵션이라는 결론을 내렸습니다. 말굽 와류를 제거하고 경사 교각 그룹 주변의 세굴 깊이를 줄입니다.

    When the bridge piers are located in front of the water flow, vortices are formed against it and due to their activity, the materials of the river bed are eroded around the bridge piers and the scouring hole is created. If the foundation depth and bridge pier piles are insufficient, the bridge will fail.The study of total shear stress in the flow bed at different leveling of the pile caps shows that the highest shear stress is created when the pile cap position is at the same level as the river bed; by installing the pile cap at a lower level than the river bed, the maximum shear stress decreases. This may be due to the fact that in this case, the distance between the pier group increases and the presence of the second pier decreases the flow rate in the pier group and different pier in the one pier group acts as the two independent piers in the formation of the flow pattern. By comparing the final longitudinal sections of the scouring at different leveling of the pile cap, it is concluded that the largest reduction in scouring depth occurs in aerofoil-shaped pile caps and pile caps with the sharper nose and better aerodynamic shapes are good options to control the horseshoe vortices and will reduce the scouring depth around the inclined pier group.

    Keywords

    Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)

    교각의 형태학적 변화가 물의 이동 특성에 미치는 영향에 관한 연구

    Study on the effect of morphological changes of bridge piers on water movement properties

    Xianqi Zhanga,b,c, Tao Wanga,* and Bingsen Duana
    a Water Conservancy College, North china University of Water Resources and Electric Power, Zhengzhou 450046, China
    b Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450046, China c Technology Research Center of Water Conservancy and Marine Tra

    ABSTRACT

    하천을 가로지르는 교각의 다른 형태는 하천의 유동에 큰 영향을 미치며, 교각의 형태 변화가 물의 유동 특성에 미치는 영향에 대한 연구는 교량 설계 및 하천 범람에 큰 가치가 있습니다.

    유체 역학 모델은 하천 흐름 패턴의 변화를 효과적으로 시뮬레이션하고 예측할 수 있으므로 하천 관리에 대한 과학적 데이터 지원을 제공할 수 있습니다.

    본 논문은 Mike21을 기반으로 유체역학 모델을 구축하고 이를 황하 하류의 하천 유체역학 수치해석에 적용하고, 타원 교각을 예로 들어 교각 형태 변화가 유속에 미치는 영향을 모사한다. 강의 수위와 흐름장. 결과는 하천의 흐름 특성에 대한 타원형 교각 형태의 영향이 중요하다는 것을 보여줍니다.

    동일한 유량에서 최대 축 비율에서 교각의 혼잡 값은 최소 축 비율의 1.65배이며 축 비율이 클수록 혼잡이 심각합니다. 최대 축 비율에서 유속의 차이는 최소 축 비율의 2.33배에 달할 수 있습니다.

    The different shapes of bridge piers across rivers have a great influence on the river water movement, and the study of the influence of pier morphology changes on the water movement characteristics is of great value for bridge design and river flooding. The hydrodynamic model can effectively simulate and predict the changes of river flow patterns, which can provide scientific data support for river management. This paper constructs a hydrodynamic model based on Mike21 and applies it to the numerical simulation of river hydrodynamics in the lower reaches of the Yellow River, taking elliptical piers as an example, and simulates the effect of the change of pier morphology on the flow velocity, water level and flow field of the river. The results show that the effect of elliptical pier morphology on the flow characteristics of the river channel is significant; under the same flow rate, the congestion value of the pier at the maximum axis ratio is 1.65 times of the minimum axis ratio, and the larger the axis ratio, the more serious the congestion; the difference in flow velocity at the maximum axis ratio can reach 2.33 times of the minimum axis ratio.

    Key words

    bridge pier axial ratio, flow regime, MIKE21 flow model, numerical simulation, yellow river

    Figure 2 | Location map of the study area.
    Figure 2 | Location map of the study area.
    Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)
    Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)

    REFERENCES

    Bates, P. D., Horritt, M. S. & Hervouet, J. M. 2015 Investigating two-dimensional, finite element predictions of floodplain
    inundation using fractal generated topography. Hydrological Processes 12(8), 1257–1277.
    Costabile, P., Macchione, F., Natale, L. & Petaccia, G. 2015 Comparison of scenarios with and without bridges and analysis of
    backwater effect in 1-D and 2-D river flood modeling. CMES-Computer Modeling in Engineering & Sciences 109–110(2),
    81–103.
    David, Y. Y., Dan, M. & Frangopol, 2019 Physics-based assessment of climate change impact on long-term regional bridge
    scour risk using hydrologic modeling: application to Lehigh River watershed. Journal of Bridge Engineering 24(11).
    Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D. & Efstratiadis, A.
    2016 Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for
    uncertainty assessment in flood mapping. Journal of Hydrology 534, 478–492.
    Echeverribar, I., Morales-Hernández, M., Brufau, P. & García-Navarro, 2019 2D numerical simulation of unsteady flows for
    large scale floods prediction in real time. Advances in Water Resources 134.
    Hai, X. S. & Wei, P. L. 2018 Numerical simulation of turbulent width of square bridge pier in curved river channel. Water
    Transport Engineering (01), 134–141.
    Liu, X. C., Geng, P. C., Cao, L. & Sun, X. L. 2020 Mike21 simulates the influence of cross-river bridge on river regime. People’s
    Yellow River 42(S1), 24–25 þ 29.
    Luo, W. G., Lu, J. & Lai, H. 2015 Research on the backwater in front of multiple parallel bridge piers at equal distances. Journal
    of Sichuan University: Engineering Science Editio 47(4), 6–13.
    Majedul, M. M., Ekaterina, S. & Nynke, H. 2018 Modelling of river faecal indicator bacteria dynamics as a basis for faecal
    contamination reduction. Journal of Hydrology 563.
    Mao, M. X., Huang, H. M. & Wang, Y. G. 2018 Effects of grid size on numerical simulation of river hydrodynamics [J]. Influence
    of grid size on numerical simulation of river hydrodynamics. Water Transport Engineering (3), 135–142.
    Tang, Y. H. 2014 Application of TUFLOW in simulating the impact of bridge piers on flooding evaluation. Hydropower Energy
    Science 32(02), 55–59.
    Tewodros, A. N. & Abdusselam, A. 2019 Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul,
    Turkey, using the MIKE 21 FM model. Natural Hazards 99(2).
    Wan, L. M. & Li, P. J. 2018 Numerical simulation of navigable flow conditions of bridges across rivers. Water Conservancy
    Science and Technology and Economy 24(02), 28–33.
    Wang, W. & Jing, H. 2019 Effects of bridge piers on flood hazards: a case study on the Jialing river in China. Water 11(6), 1181.
    Wang, Q. N., Peng, W. Q., Dong, F. & Nan, O. 2020 Simulating flow of an urban river course with complex cross sections based
    on the MIKE21 FM model. Water 12(3).
    Xu, T. 2010 Overview of Danish MIKE21 model and application examples. Water Technology and Economics 16(08), 867–869.
    Yan, J. C., Xu, H. & Jiao, Z. X. 2020 Prediction and numerical simulation of bridge pier congestion based on conservation of
    momentum. People’s Changjiang 51(S2), 280–284.
    Yu, P. & Zhu, Z. W. 2019 Refinement of local scour simulation for tandem double cylindrical bridge piers. Chinese Journal of
    Highways 32(01), 107–116.
    Yuan, X. Y., Feng, S. L., Wang, Z. K., Xu, W. & Si, L. C. 2020 Two-dimensional numerical simulation of the effect of bridge pier
    shape on water flow. People’s Yellow River 42(S2), 37–39 þ 42.
    Zhang, S. G., Yin, J. B. & Zhang, G. G. 2020 Flow-3D-based simulation of local scour large eddies for cylindrical bridge piers.
    Sediment Research 45(01), 67–73.
    Zhang, X. Q., Wang, T. & Lu, X. B. 2021 Influence of bridge piers shapes on the flow of the lower Yellow River. Water Practice
    & Technology 16(2), 661–680.

    Fig. 1. Hydraulic jump flow structure.

    Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

    낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

    ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

    Abstract

    A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

    CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

    VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

    모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

    Keywords

    CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

    References

    Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
    review. J. Hydraulic Res. 35 (1), 81e98.
    Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
    reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
    Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
    Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
    Fluid Mech. 42 (2010), 111e133.
    Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

    OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
    Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
    (Paris, France).
    Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
    Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
    Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
    Characterising performance of environmental models. Environ. Model. Softw.
    40, 1e20.
    Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
    Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
    Science, Technology and Medicine, UK.
    Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
    Remou et sur la Propagation des Ondes, 12, pp. 21e112.
    Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
    problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
    Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
    evaluation applied to computational fluid dynamics for environmental fluid
    mechanics. Environ. Model. Softw. 33, 1e22.
    Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
    Fluid Mech. 11 (3), 263e288.
    Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
    past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
    Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
    Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
    three-hole conductivity probe for void fraction and velocity measurement in
    airewater flows. Exp. fluids 48 (1), 17e31.
    Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
    Mech. 286, 1e23.
    Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
    translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
    Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
    jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
    Division.
    Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
    heat fluid flow 18 (1), 45e54.
    Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
    Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
    Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
    Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
    Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
    Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
    hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
    Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
    uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
    (7), 1e4.
    Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
    Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
    Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
    Fluids 26.3(2007) 367e384.
    Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
    Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
    & Francis Group, ABalkema Book.
    Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
    hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
    Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
    computational fluid dynamics (CFD) model for air entrainment at spillway
    aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
    Can. J. Civ. Eng. 37 (1), 135e138.
    Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
    load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
    Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
    Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
    a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
    Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
    J. Hydraulic Res. 51 (3), 223e243.
    Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
    Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
    Environ. Model. Softw. 13 (3), 247e255.
    Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
    York.
    Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
    calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
    De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
    jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
    Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
    for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
    Conf. Hydroinformatics 1, 63e70.
    Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
    N. 81, 26429.
    Fawer, C., 1937. Etude de quelquesecoulements permanents 
    a filets courbes (‘Study
    of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
    Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
    air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
    217e238.
    Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
    hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
    Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
    basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
    101e113.
    Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
    Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
    Res. 27 (5), 565e583.
    Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
    modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
    1685e1695.
    Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
    Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
    boundaries. J. Comput. Phys. 39 (1), 201e225.
    Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
    Nonlinear Phenom. 12 (1), 396e407.
    Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
    discharge formulations for transient flow in 1D and 2D situations.
    J. Hydroinformatics 15 (4).
    Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
    Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
    Elsevier.
    Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
    on flow and dispersion in urban street canyons using the RNG keε turbulence
    model. Atmos. Environ. 38 (19), 3039e3048.
    Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
    J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
    Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
    low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
    Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
    Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
    http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
    27th 2014.
    Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
    jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
    Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
    transport in a hydraulic jump using two-fluid RANS and DES turbulence
    models. Heat Mass Transf. 47 (8), 911e919.
    Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
    measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
    2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
    Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
    flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
    McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
    Gas Turbine Cascades.
    Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
    Hydraulic Research. Taylor &Francis 37 (4), 541e558.
    Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
    Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
    turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
    Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
    surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
    Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
    bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
    Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
    scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
    11, 1581e1595.
    Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
    of the Fifth International Conference on Numerical Methods in Fluid Dynamics
    June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
    Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
    laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
    Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
    Institute for Fluid Dynamics.
    Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
    neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
    OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
    Software Foundation Inc.
    Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
    resources technical publication. Eng. Monogr. 25.
    Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
    Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
    hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
    Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
    Cambridge University Press.
    Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
    (HY5), 107e132.
    Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
    Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
    Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
    hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
    resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
    Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
    Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
    High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
    Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
    application aux crues des riviereset a l’introduction de mareesdansleurslits.
    Comptesrendus des seances de l’Academie des Sciences.
    Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
    Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
    Fluid Flow 21 (3), 252e263.
    Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
    separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
    Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
    University of Stavanger, Norway.
    Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
    Imperial College of Science, Technology and Medicine, UK.
    Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
    spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
    10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
    Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
    moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
    World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
    Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
    Comput. Phys 23 (3), 263e275.
    Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
    Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
    Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
    flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
    (DOI: 10.1007/s00348-014-1847-9).
    Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
    technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
    s00348-014-1775-8.
    Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
    hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
    HY.1943-7900.0001010. Paper 04015010, 10 pages.
    Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
    jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
    Netherlands.
    Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
    12, 620e631.
    Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
    Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
    dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

    1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
      sciencedirect.com/science/article/pii/S0301932215000336.
      Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
      Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
      Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
      turbulence models for shear flows by a double expansion technique, Physics of
      Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
      Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
      code. Tech. Rep. 44 (92), 35e35.
      Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
      free-surface fluctuation and integral turbulent scale measurements. Environ.
      fluid Mech. 13 (2), 189e204.
      Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
      velocities in free hydraulic jumps for small to intermediate froude numbers.
      J. Hydraulic Eng.
    Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

    Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

    Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션

    by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater202113(5), 674; https://doi.org/10.3390/w13050674

    Abstract

    The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.

    Keywords: submerged hydraulic jumptriangular macroroughnessesTKEbed shear stress coefficientvelocityFLOW-3D model

    수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.

    이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.

    내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.

     Introduction

    격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].

    베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.

    Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.

    Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.

    그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.

    Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.

    자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.

    Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.

    Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.

    Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.

    ReferenceShape Bed-Channel Type-
    Jump Type
    Channel Dimension (m)Roughness (mm)Fr1Investigated Flow
    Properties
    Ead and Rajaratnam [10]-Smooth and rough beds-Rectangular channel-Free jumpCL1 = 7.60
    CW2 = 0.44
    CH3 = 0.60
    -Corrugated sheets (RH4 = 13 and 22)4–10-Upstream and tailwater depths-Jump length-Roller length-Velocity-Water surface profile
    Tokyay et al. [11]-Smooth and rough beds-Rectangular channel-Free jumpCL = 10.50
    CW = 0.253
    CH = 0.432
    -Two sinusoidal corrugated (RH = 10 and 13)5–12-Depth ratio-Jump length-Energy loss
    Izadjoo and Shafai-Bejestan [14]-Smooth and rough beds-Two rectangular-channel-Free jumpCL = 1.2, 9
    CW = 0.25, 0.50
    CH = 0.40
    Baffle with trapezoidal cross section
    (RH: 13 and 26)
    6–12-Upstream and tailwater depths-Jump length-Velocity-Bed shear stress coefficient
    Abbaspour et al. [12]-Horizontal bed with slope 0.002-Rectangular channel—smooth and rough beds-Free jumpCL = 10
    CW = 0.25
    CH = 0.50
    -Sinusoidal bed (RH = 15,20, 25 and 35)3.80–8.60-Water surface profile-Depth ratio-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
    Shafai-Bejestan and Neisi [13]-Smooth and rough beds-Rectangular channel-Free jumpCL = 7.50
    CW = 0.35
    CH = 0.50
    Lozenge bed4.50–12-Sequent depth-Jump length
    Elsebaie and Shabayek [18]-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jumpCL = 9
    CW = 0.295
    CH = 0.32
    -Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)50-Water surface profile-Sequent depth-Jump length-Bed shear stress coefficient
    Samadi-Boroujeni et al. [19]-Rectangular channel-Smooth and rough beds-Free jumpCL = 12
    CW = 0.40
    CH = 0.40
    -Six triangular corrugated (RH = 2.5)6.10–13.10-Water surface profile-Sequent depth-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
    Ahmed et al. [20]-Smooth and rough beds-Rectangular channel-Submerged jumpCL = 24.50
    CW = 0.75
    CH = 0.70
    -Triangular corrugated sheet (RH = 40)1.68–9.29-Conjugated and tailwater depths-Submerged ratio-Deficit depth-Relative jump length-Jump length-Relative roller jump length-Jump efficiency-Bed shear stress coefficient
    Nikmehr and Aminpour [15]-Horizontal bed with slope 0.002-Rectangular channel-Rough bed-Free jumpCL = 12
    CW = 0.25
    CH = 0.50
    -Trapezoidal blocks (RH = 2, 3 and 4)5.01–13.70-Water surface profile-Sequent depth-Jump length-Roller length-Velocity
    Ghaderi et al. [17]-Smooth and rough beds-Rectangular channel-Free and submerged jumpCL = 4.50
    CW = 0.75
    CH = 0.70
    -Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
    Present studyRectangular channel
    Smooth and rough beds
    Submerged jump
    CL = 4.50
    CW = 0.75
    CH = 0.70
    -Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss

    CL1: channel length, CW2: channel width, CH3: channel height, RH4: roughness height.

    이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.

    베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.

    다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.

    CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].

    본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.

    Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
    Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.

    Table 2. Effective parameters in the numerical model.

    Bed TypeQ
    (l/s)
    I
    (cm)
    T (cm)d (cm)y1
    (cm)
    y4
    (cm)
    Fr1= u1/(gy1)0.5SRe1= (u1y1)/υ
    Smooth30, 4551.62–3.839.64–32.101.7–9.30.26–0.5039,884–59,825
    Triangular macroroughnesses30, 454, 8, 12, 16, 20451.62–3.846.82–30.081.7–9.30.21–0.4439,884–59,825
    Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
    Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).

    Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).

    ModelsBed TypeQ (l/s)d (cm)y1 (cm)u1 (m/s)Fr1
    Numerical and PhysicalSmooth4551.62–3.831.04–3.701.7–9.3
    T/I = 0.54551.61–3.831.05–3.711.7–9.3
    T/I = 0.254551.60–3.841.04–3.711.7–9.3
    Figure 3. The boundary conditions governing the simulations.
    Figure 3. The boundary conditions governing the simulations.
    Figure 4. Sketch of mesh setup.
    Figure 4. Sketch of mesh setup.

    Table 4. Characteristics of the computational grids.

    MeshNested Block Cell Size (cm)Containing Block Cell Size (cm)
    10.551.10
    20.651.30
    30.851.70

    Table 5. The numerical results of mesh convergence analysis.

    ParametersAmounts
    fs1 (-)7.15
    fs2 (-)6.88
    fs3 (-)6.19
    K (-)5.61
    E32 (%)10.02
    E21 (%)3.77
    GCI21 (%)3.03
    GCI32 (%)3.57
    GCI32/rp GCI210.98
    Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
    Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
    Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
    Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
    Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
    Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
    Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
    Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
    Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
    Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
    Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
    Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
    Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
    Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
    Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
    Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
    Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
    Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
    Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
    Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
    Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
    Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
    Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
    Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
    Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
    Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
    Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
    Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).

    Conclusions

    • 본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
    • 개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
    • T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
    • 삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
    • 삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
    • 매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
    • 삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
    • 거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
    • 일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 ​​대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.

    References

    1. White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
    2. Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci. 197919, 81–128. [Google Scholar] [CrossRef]
    3. McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
    4. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 201234, 35–46. [Google Scholar] [CrossRef]
    5. Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A 201394, 83–87. [Google Scholar] [CrossRef]
    6. Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016797, 60–94. [Google Scholar] [CrossRef]
    7. Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc. 2016108, 425–432. [Google Scholar] [CrossRef]
    8. Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng. 201742, 3751–3760. [Google Scholar] [CrossRef]
    9. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech. 201818, 849–870. [Google Scholar] [CrossRef]
    10. Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002128, 656–663. [Google Scholar] [CrossRef]
    11. Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
    12. Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 20093, 109–117. [Google Scholar] [CrossRef]
    13. Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci. 20092, 436–445. [Google Scholar] [CrossRef]
    14. Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 20077, 1164–1169. [Google Scholar] [CrossRef]
    15. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng. 201764, 396–407. [Google Scholar] [CrossRef]
    16. Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
    17. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform. 202022, 1554–1572. [Google Scholar] [CrossRef]
    18. Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS 201010, 37–47. [Google Scholar]
    19. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng. 201340, 841–847. [Google Scholar] [CrossRef]
    20. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J. 20145, 1033–1042. [Google Scholar] [CrossRef]
    21. Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 201911, 28. [Google Scholar] [CrossRef]
    22. Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 2016142, 04015037. [Google Scholar] [CrossRef]
    23. Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng. 2017143, 04016091. [Google Scholar] [CrossRef]
    24. Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div. 196591, 107–132. [Google Scholar] [CrossRef]
    25. Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
    26. Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res. 199028, 437–460. [Google Scholar] [CrossRef]
    27. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
    28. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
    29. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
    30. Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
    31. Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water 201911, 235. [Google Scholar] [CrossRef]
    32. Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol. 201634, 186–190. [Google Scholar]
    33. Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 200846, 739–752. [Google Scholar] [CrossRef]
    34. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 201680, 322–335. [Google Scholar] [CrossRef]
    35. Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 20205, 182. [Google Scholar] [CrossRef]
    36. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 201944, 216. [Google Scholar] [CrossRef]
    37. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water 202012, 1992. [Google Scholar] [CrossRef]
    38. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 202072, 101711. [Google Scholar] [CrossRef]
    39. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef] [PubMed]
    40. Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water 20168, 545. [Google Scholar] [CrossRef]
    41. Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour. 20204, 425–436. [Google Scholar] [CrossRef]
    42. Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 200962. [Google Scholar] [CrossRef]
    43. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water 202113, 14. [Google Scholar] [CrossRef]
    44. Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008130, 0780011–0780013. [Google Scholar]
    45. Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis. 20069, 57–68. [Google Scholar] [CrossRef]
    46. Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math. 2020, 1–13. [Google Scholar] [CrossRef]
    47. Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 201227, 100–111. [Google Scholar] [CrossRef]
    48. Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
    49. Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
    50. Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 2015105, 160–175. [Google Scholar] [CrossRef]
    51. Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 201439, 6969–6981. [Google Scholar] [CrossRef]
    52. Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996122, 540–548. [Google Scholar] [CrossRef]
    53. De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 201715, 1–12. [Google Scholar] [CrossRef]
    Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
    Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

    Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

    1Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
    2William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA
    *Author to whom correspondence should be addressed.
    Sensors 202020(11), 3030; https://doi.org/10.3390/s20113030
    Received: 16 April 2020 / Revised: 21 May 2020 / Accepted: 25 May 2020 / Published: 27 May 2020
    (This article belongs to the Special Issue Lab-on-a-Chip and Microfluidic Sensors)

    Abstract

    The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.

    Keywords: particle magnetophoresisCFDcross sectionchip fabrication

    Korea Abstract

    생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를위한 기능화 된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드를 자기 적으로 회수하여 분석 또는 진단 테스트를 수행 할 수 있습니다. 연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 

    따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다. 그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는 데있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜주의를 기울였습니다. 

    여기에서 우리는 자기 비드가 혈액에서 분리되고 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 YY 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다. 

    이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증 된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다. 우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 

    따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.

    Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
    Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
    Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
    Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
    Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and U-shaped (right) cross section channels, and (b) particle location in these cross sections.
    Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and U-shaped (right) cross section channels, and (b) particle location in these cross sections.
    Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
    Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
    Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
    Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
    Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
    Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
    Figure 7. Dependence of bead capture on the (a) functional channel volume and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.
    Figure 7. Dependence of bead capture on the (a) functional channel volume and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.

    References

    1. Gómez-Pastora, J.; Xue, X.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017172, 16–31. [Google Scholar] [CrossRef]
    2. Wise, N.; Grob, T.; Morten, K.; Thompson, I.; Sheard, S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015384, 328–334. [Google Scholar] [CrossRef]
    3. Khashan, S.A.; Elnajjar, E.; Haik, Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011323, 2960–2967. [Google Scholar] [CrossRef]
    4. Khashan, S.A.; Furlani, E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014125, 311–318. [Google Scholar] [CrossRef]
    5. Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials 20103, 2412–2446. [Google Scholar] [CrossRef]
    6. Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 201647, 241–246. [Google Scholar]
    7. Gómez-Pastora, J.; Bringas, E.; Lázaro-Díez, M.; Ramos-Vivas, J.; Ortiz, I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs). In Drug Delivery Systems; Stroeve, P., Mahmoudi, M., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 207–244. ISBN 9789813201057. [Google Scholar]
    8. Ruffert, C. Magnetic bead-magic bullet. Micromachines 20167, 21. [Google Scholar] [CrossRef]
    9. Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors 201616, 1585. [Google Scholar] [CrossRef]
    10. Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous biosensing based on magnetic particle labels. Sensors 201616, 828. [Google Scholar] [CrossRef]
    11. He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014101, 84–101. [Google Scholar] [CrossRef]
    12. Ha, Y.; Ko, S.; Kim, I.; Huang, Y.; Mohanty, K.; Huh, C.; Maynard, J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 20181, 512–521. [Google Scholar] [CrossRef]
    13. Gómez-Pastora, J.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018344, 487–497. [Google Scholar] [CrossRef]
    14. Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 20183, 60. [Google Scholar] [CrossRef]
    15. Nanobiotechnology; Concepts, Applications and Perspectives; Niemeyer, C.M.; Mirkin, C.A. (Eds.) Wiley-VCH: Weinheim, Germany, 2004; ISBN 3527305068. [Google Scholar]
    16. Khashan, S.A.; Dagher, S.; Alazzam, A.; Mathew, B.; Hilal-Alnaqbi, A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 201727, 055016. [Google Scholar] [CrossRef]
    17. Basauri, A.; Gomez-Pastora, J.; Fallanza, M.; Bringas, E.; Ortiz, I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019209, 900–907. [Google Scholar] [CrossRef]
    18. Abdollahi, P.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020231, 115875. [Google Scholar] [CrossRef]
    19. Khashan, S.A.; Alazzam, A.; Furlani, E. A novel design for a microfluidic magnetophoresis system: Computational study. In Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013), Nara, Japan, 18–23 November 2013. [Google Scholar]
    20. Pamme, N. Magnetism and microfluidics. Lab Chip 20066, 24–38. [Google Scholar] [CrossRef]
    21. Gómez-Pastora, J.; Amiri Roodan, V.; Karampelas, I.H.; Alorabi, A.Q.; Tarn, M.D.; Iles, A.; Bringas, E.; Paunov, V.N.; Pamme, N.; Furlani, E.P.; et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C 2019123, 10065–10080. [Google Scholar] [CrossRef]
    22. Gómez-Pastora, J.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 20199, 7265. [Google Scholar] [CrossRef]
    23. Tarn, M.D.; Pamme, N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In Microchip Diagnostics Methods and Protocols; Taly, V., Viovy, J.L., Descroix, S., Eds.; Humana Press: New York, NY, USA, 2017; pp. 69–83. [Google Scholar]
    24. Phurimsak, C.; Tarn, M.D.; Peyman, S.A.; Greenman, J.; Pamme, N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 201486, 10552–10559. [Google Scholar] [CrossRef]
    25. Wu, X.; Wu, H.; Hu, Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 201111, 11–24. [Google Scholar] [CrossRef]
    26. Vojtíšek, M.; Tarn, M.D.; Hirota, N.; Pamme, N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 201213, 625–635. [Google Scholar] [CrossRef]
    27. Gómez-Pastora, J.; González-Fernández, C.; Real, E.; Iles, A.; Bringas, E.; Furlani, E.P.; Ortiz, I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 201818, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
    28. Forbes, T.P.; Forry, S.P. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 201212, 1471–1479. [Google Scholar] [CrossRef]
    29. Nandy, K.; Chaudhuri, S.; Ganguly, R.; Puri, I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008320, 1398–1405. [Google Scholar] [CrossRef]
    30. Plouffe, B.D.; Lewis, L.H.; Murthy, S.K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 20115, 013413. [Google Scholar] [CrossRef] [PubMed]
    31. Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics 20148, 044118. [Google Scholar] [CrossRef] [PubMed]
    32. Becker, H.; Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 200021, 12–26. [Google Scholar] [CrossRef]
    33. Pekas, N.; Zhang, Q.; Nannini, M.; Juncker, D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip 201010, 494–498. [Google Scholar] [CrossRef]
    34. Wang, T.; Chen, J.; Zhou, T.; Song, L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines 20189, 269. [Google Scholar] [CrossRef]
    35. Castaño-Álvarez, M.; Pozo Ayuso, D.F.; García Granda, M.; Fernández-Abedul, M.T.; Rodríguez García, J.; Costa-García, A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008130, 436–448. [Google Scholar] [CrossRef]
    36. Prakash, S.; Kumar, S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015229, 1273–1288. [Google Scholar] [CrossRef]
    37. Leester-Schädel, M.; Lorenz, T.; Jürgens, F.; Ritcher, C. Fabrication of Microfluidic Devices. In Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells; Dietzel, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 23–57. ISBN 9783319269207. [Google Scholar]
    38. Bartlett, N.W.; Wood, R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 201626, 115013. [Google Scholar] [CrossRef]
    39. Ng, P.F.; Lee, K.I.; Yang, M.; Fei, B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers 201911, 64. [Google Scholar] [CrossRef] [PubMed]
    40. Furlani, E.P.; Sahoo, Y.; Ng, K.C.; Wortman, J.C.; Monk, T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 20079, 451–463. [Google Scholar] [CrossRef]
    41. Tarn, M.D.; Peyman, S.A.; Robert, D.; Iles, A.; Wilhelm, C.; Pamme, N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009321, 4115–4122. [Google Scholar] [CrossRef]
    42. Furlani, E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications; Academic Press: Waltham, MA, USA, 2001. [Google Scholar]
    43. White, F.M. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
    44. Mathew, B.; Alazzam, A.; El-Khasawneh, B.; Maalouf, M.; Destgeer, G.; Sung, H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015153, 99–107. [Google Scholar] [CrossRef]
    45. Furlani, E.J.; Furlani, E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007312, 187–193. [Google Scholar] [CrossRef]
    46. Furlani, E.P.; Ng, K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 200673, 061919. [Google Scholar] [CrossRef]
    47. Eibl, R.; Eibl, D.; Pörtner, R.; Catapano, G.; Czermak, P. Cell and Tissue Reaction Engineering; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
    48. Pamme, N.; Eijkel, J.C.T.; Manz, A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006307, 237–244. [Google Scholar] [CrossRef]
    49. Alorabi, A.Q.; Tarn, M.D.; Gómez-Pastora, J.; Bringas, E.; Ortiz, I.; Paunov, V.N.; Pamme, N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip 201717, 3785–3795. [Google Scholar] [CrossRef]
    50. Zhang, H.; Guo, H.; Chen, Z.; Zhang, G.; Li, Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 200717, 775–780. [Google Scholar] [CrossRef]
    51. Mourzina, Y.; Steffen, A.; Offenhäusser, A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 200511, 135–140. [Google Scholar] [CrossRef]
    52. Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 200616, 276–284. [Google Scholar] [CrossRef]
    53. Su, N. 8 2000 Negative Tone Photoresist Formulations 2002–2025; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
    54. Su, N. 8 2000 Negative Tone Photoresist Formulations 2035–2100; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
    55. Fu, C.; Hung, C.; Huang, H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 200634, 330–335. [Google Scholar] [CrossRef]
    56. Kazoe, Y.; Yamashiro, I.; Mawatari, K.; Kitamori, T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines 20167, 142. [Google Scholar] [CrossRef]
    57. Sharp, K.V.; Adrian, R.J.; Santiago, J.G.; Molho, J.I. Liquid flows in microchannels. In MEMS: Introduction and Fundamentals; Gad-el-Hak, M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 10-1–10-46. ISBN 9781420036572. [Google Scholar]
    58. Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 201212, 515–545. [Google Scholar] [CrossRef]
    59. Bruus, H. Theoretical Microfluidics; Oxford University Press: New York, NY, USA, 2008; ISBN 9788578110796. [Google Scholar]
    60. Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 20024, 261–286. [Google Scholar] [CrossRef] [PubMed]
    61. Yalikun, Y.; Tanaka, Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines 20167, 83. [Google Scholar] [CrossRef] [PubMed]
    62. Van Heeren, H.; Verhoeven, D.; Atkins, T.; Tzannis, A.; Becker, H.; Beusink, W.; Chen, P. Design Guideline for Microfluidic Device and Component Interfaces (Part 2), Version 3; Available online: http://www.makefluidics.com/en/design-guideline?id=7 (accessed on 9 March 2020).
    63. Scheuble, N.; Iles, A.; Wootton, R.C.R.; Windhab, E.J.; Fischer, P.; Elvira, K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 201789, 9116–9123. [Google Scholar] [CrossRef] [PubMed]
    64. Lynch, E.C. Red blood cell damage by shear stress. Biophys. J. 197212, 257–273. [Google Scholar]
    65. Paul, R.; Apel, J.; Klaus, S.; Schügner, F.; Schwindke, P.; Reul, H. Shear stress related blood damage in laminar Couette flow. Artif. Organs 200327, 517–529. [Google Scholar] [CrossRef] [PubMed]
    66. Gómez-Pastora, J.; Karampelas, I.H.; Xue, X.; Bringas, E.; Furlani, E.P.; Ortiz, I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 2017121, 7466–7477. [Google Scholar] [CrossRef]
    67. Lim, J.; Yeap, S.P.; Leow, C.H.; Toh, P.Y.; Low, S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014421, 170–177. [Google Scholar] [CrossRef] [PubMed]
    68. Culbertson, C.T.; Sibbitts, J.; Sellens, K.; Jia, S. Fabrication of Glass Microfluidic Devices. In Microfluidic Electrophoresis: Methods and Protocols; Dutta, D., Ed.; Humana Press: New York, NY, USA, 2019; pp. 1–12. ISBN 978-1-4939-8963-8. [Google Scholar]
    Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

    Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

    Scientific Reports volume 9, Article number: 7265 (2019) Cite this article

    Abstract

    이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 위해 연속 흐름 마이크로 채널 내부의 비드 자기 영동에 대한 수치 흐름 중심 연구를 보고합니다.

    수치 모델은 Lagrangian 접근 방식을 포함하며 영구 자석에 의해 생성 된 자기장의 적용에 의해 혈액에서 비드 분리 및 유동 버퍼로의 수집을 예측합니다.

    다음 시나리오가 모델링됩니다. (i) 운동량이 유체에서 점 입자로 처리되는 비드로 전달되는 단방향 커플 링, (ii) 비드가 점 입자로 처리되고 운동량이 다음으로부터 전달되는 양방향 결합 비드를 유체로 또는 그 반대로, (iii) 유체 변위에서 비드 체적의 영향을 고려한 양방향 커플 링.

    결과는 세 가지 시나리오에서 비드 궤적에 약간의 차이가 있지만 특히 높은 자기력이 비드에 적용될 때 유동장에 상당한 변화가 있음을 나타냅니다.

    따라서 높은 자기력을 사용할 때 비드 운동과 유동장의 체적 효과를 고려한 정확한 전체 유동 중심 모델을 해결해야 합니다. 그럼에도 불구하고 비드가 중간 또는 낮은 자기력을 받을 때 계산적으로 저렴한 모델을 안전하게 사용하여 자기 영동을 모델링 할 수 있습니다.

    Sketch of the magnetophoresis process in the continuous-flow microdevice.
    Sketch of the magnetophoresis process in the continuous-flow microdevice.
    Schematic view of the microdevice showing the working conditions set in the simulations.
    Schematic view of the microdevice showing the working conditions set in the simulations.
    Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
    Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
    Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
    Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
    (a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
    (a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
    luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
    luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
    Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
    Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
    Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.
    Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.

    References

    1. 1.Keshipour, S. & Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organometal. Chem. 30, 653–656 (2016).CAS Article Google Scholar 
    2. 2.Neamtu, M. et al. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 8(1), 6278 (2018).ADS MathSciNet Article Google Scholar 
    3. 3.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014).Article Google Scholar 
    4. 4.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 47, 241–246 (2016).Google Scholar 
    5. 5.Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-Cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7(1), 7672 (2017).ADS Article Google Scholar 
    6. 6.Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017).Article Google Scholar 
    7. 7.Lee, H. Y. et al. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew. Chem. Int. Ed. 48, 1239–1243 (2009).CAS Article Google Scholar 
    8. 8.Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).Article Google Scholar 
    9. 9.Roux, S. et al. Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010).ADS CAS Article Google Scholar 
    10. 10.Gómez-Pastora, J., Bringas, E., Lázaro-Díez, M., Ramos-Vivas, J. & Ortiz, I. In Drug Delivery Systems (Stroeve, P. & Mahmoudi, M. ed) 207–244 (World Scientific, 2017).
    11. 11.Selmi, M., Gazzah, M. H. & Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 7(1), 5721 (2017).ADS Article Google Scholar 
    12. 12.Gómez-Pastora, J., González-Fernández, C., Fallanza, M., Bringas, E. & Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 344, 487–497 (2018).Article Google Scholar 
    13. 13.Pamme, N. Magnetism and microfluidics. Lab Chip 6, 24–38 (2006).CAS Article Google Scholar 
    14. 14.Alorabi, A. Q. et al. On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab Chip 17, 3785–3795 (2017).CAS Article Google Scholar 
    15. 15.Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep. Purif. Technol. 172, 16–31 (2017).Article Google Scholar 
    16. 16.Tarn, M. D. & Pamme, N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnosis. Methods Mol. Biol. 1547, 69–83 (2017).CAS Article Google Scholar 
    17. 17.Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci. Rep. 6, 19801 (2016).ADS CAS Article Google Scholar 
    18. 18.Gómez-Pastora, J. et al. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 121, 7466–7477 (2017).Article Google Scholar 
    19. 19.Furlani, E. P. Magnetic biotransport: analysis and applications. Materials 3, 2412–2446 (2010).ADS CAS Article Google Scholar 
    20. 20.Khashan, S. A. & Furlani, E. P. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 12, 565–580 (2012).Article Google Scholar 
    21. 21.Modak, N., Datta, A. & Ganguly, R. Cell separation in a microfluidic channel using magnetic microspheres. Microfluid. Nanofluid. 6, 647–660 (2009).CAS Article Google Scholar 
    22. 22.Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. & Monk, T. E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 9, 451–463 (2007).CAS Article Google Scholar 
    23. 23.Furlani, E. P. & Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D: Appl. Phys. 39, 1724–1732 (2006).ADS CAS Article Google Scholar 
    24. 24.Tarn, M. D. et al. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 321, 4115–4122 (2009).ADS CAS Article Google Scholar 
    25. 25.Fonnum, G., Johansson, C., Molteberg, A., Morup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).ADS CAS Article Google Scholar 
    26. 26.Xue, W., Moore, L. R., Nakano, N., Chalmers, J. J. & Zborowski, M. Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS – A comparison. J. Magn. Magn. Mater. 474, 152–160 (2019).ADS CAS Article Google Scholar 
    27. 27.Moore, L. R. et al. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol. Bioeng. 115, 1521–1530 (2018).CAS Article Google Scholar 
    28. 28.Furlani, E. P. & Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid. 13, 589–602 (2012).CAS Article Google Scholar 
    29. 29.Furlani, E. P. & Xue, X. A model for predicting field-directed particle transport in the magnetofection process. Pharm. Res. 29, 1366–1379 (2012).CAS Article Google Scholar 
    30. 30.Furlani, E. P. Permanent Magnet and Electromechanical Devices; MaterialsAnalysis and Applications, (Academic Press, 2001).
    31. 31.Balachandar, S. & Eaton, J. K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010).ADS Article Google Scholar 
    32. 32.Wakaba, L. & Balachandar, S. On the added mass force at finite Reynolds and acceleration number. Theor. Comput. Fluid. Dyn. 21, 147–153 (2007).Article Google Scholar 
    33. 33.White, F. M. Viscous Fluid Flow, (McGraw-Hill, 1974).
    34. 34.Rietema, K. & Van Den Akker, H. E. A. On the momentum equations in dispersed two-phase systems. Int. J. Multiphase Flow 9, 21–36 (1983).Article Google Scholar 
    35. 35.Furlani, E. P. & Ng, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 73, 1–10 (2006).Article Google Scholar 
    36. 36.Eibl, R., Eibl, D., Pörtner, R., Catapano, G. & Czermak, P. Cell and Tissue Reaction Engineering, (Springer, 2009).
    37. 37.Gómez-Pastora, J. et al. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 18, 1593–1606 (2018).Article Google Scholar 
    38. 38.Khashan, S. A. & Furlani, E. P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 125, 311–318 (2014).CAS Article Google Scholar 
    39. 39.Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. ProcFourth International ConfShip Hydro., National Academic of Science, Washington, DC., (1985).
    40. 40.Crank, J. Free and Moving Boundary Problems, (Oxford University Press, 1984).
    41. 41.Bruus, H. Theoretical Microfluidics, (Oxford University Press, 2008).
    42. 42.Liang, L. & Xuan, X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid. Nanofluid. 13, 637–643 (2012).

    Author information

    1. Edward P. Furlani is deceased.

    Affiliations

    1. Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, SpainJenifer Gómez-Pastora, Eugenio Bringas & Inmaculada Ortiz
    2. Flow Science, Inc, Santa Fe, New Mexico, 87505, USAIoannis H. Karampelas
    3. Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
    4. Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
    Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

    Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

    Abstract

    This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD software) is an effective tool for studying droplet dynamics and mixing in microfluidic devices. The first example studied is a T-junction where flow patterns for both droplet generation and passive mixing are analyzed. The second example studied is a co-flowing device where the formation and breakup of bubbles is simulated. The effect of viscosity on bubble formation is also analyzed. For a T-junction the bubble size is corroborated with experimental data. Both the bubble size and frequency are studied and corroborated with experimental data for a co-flowing device. The third example studied is the electrowetting phenomenon observed in a small water droplet resting on a dielectric material. The steady-state contact angle is plotted against the voltage applied. The results are compared with both the Young-Lippmann curve and experimental results. 

    이 논문은 FLOW-3D (범용 CFD 소프트웨어)의 유체 부피 (TruVOF) 방법이 미세 유체 장치에서 액적 역학 및 혼합을 연구하는데 효과적인 도구임을 보여줍니다.

    연구된 첫 번째 예는 액적 생성 및 수동 혼합에 대한 흐름 패턴이 분석되는 T- 접합입니다. 연구된 두 번째 예는 기포의 형성 및 분해가 시뮬레이션 되는 동시 유동 장치입니다.

    기포 형성에 대한 점도의 영향도 분석됩니다. T 접합의 경우 기포 크기는 실험 데이터로 확증됩니다. 기포 크기와 빈도 모두 공동 유동 장치에 대한 실험 데이터로 연구되고 확증됩니다.

    연구된 세 번째 예는 유전 물질 위에 놓인 작은 물방울에서 관찰 된 전기 습윤 현상입니다. 정상 상태 접촉각은 적용된 전압에 대해 플롯됩니다. 결과는 Young-Lippmann 곡선 및 실험 결과와 비교됩니다.

    Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
    Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
    Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2
    Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2

    References

    Formation of bubbles in a simple co-flowing micro-channel

    SaveAlertResearch FeedFormation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

    SaveAlertResearch FeedCreating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,

    SaveAlertResearch FeedFLOW DEVELOPMENT OF CO-FLOWING STREAMS IN RECTANGULAR MICRO-CHANNELS

    SaveAlertResearch FeedA microfluidic system for controlling reaction networks in time.

    SaveAlertResearch FeedElectrowetting: from basics to applications

    SaveAlertResearch FeedVolume of fluid (VOF) method for the dynamics of free boundaries

    Fig.4 Schematic of a package structure

    Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling

    Junichi Saeki and Tsutomu Kono
    Production Engineering Research Laboratory, Hitachi Ltd.
    292, Y shida-cho, Totsuka-ku, Yokohama, 244-0817 Japan

    Abstract

    Thermosetting molding compounds are widely used for encapsulating semiconductor devices and electronic modules. In recent years, the number of electronic parts encapsulated in an electronic module has increased, in order to meet the requirements for high performance. As a result, the configuration of inserted parts during molding has become very complicated. Meanwhile, package thickness has been reduced in response to consumer demands for miniaturization. These trends have led to complicated flow patterns of molten compounds in a mold cavity, increasing the difficulty of predicting the occurrence of void formation or gold-wire deformation.

    A method of three-dimensional (3-D) flow analysis of thermosetting compounds has been developed with the objective of minimizing the trial term before mass production and of enhancing the quality of molded products. A constitutive equation model was developed to describe isothermal viscosity changes as a function of time and temperature. This isothermal model was used for predicting non-isothermal viscosity changes. In addition, an empirical model was developed for calculating the amount of wire deformation as a function of viscosity, wire configuration, and other parameters. These models were integrated with FLOW-3D® software, which is used for multipurpose 3-D flow analysis.

    The mold-filling dynamics of an epoxy compound were analyzed using the newly developed modeling software during transfer molding of an actual high performance electronic module. The changes in the 3-D distributions of parameters such as temperature, viscosity, velocity, and pressure were compared with the flow front patterns. The predicted results of cavity filling behavior corresponded well with actual short shot data. As well, the predicted amount of gold-wire deformation at each LSI chip with a substrate connection also corresponded well with observed data obtained by X-ray inspection of the molded product.

    Korea Abstract

    열경화성 몰딩 컴파운드는 반도체 장치 및 전자 모듈을 캡슐화하는 데 널리 사용됩니다. 최근에는 고성능에 대한 요구 사항을 충족시키기 위해 전자 모듈에 캡슐화되는 전자 부품의 수가 증가하고 있습니다.

    그 결과 성형시 삽입 부품의 구성이 매우 복잡해졌습니다. 한편, 소비자의 소형화 요구에 부응하여 패키지 두께를 줄였다. 이러한 경향은 몰드 캐비티에서 용융된 화합물의 복잡한 흐름 패턴을 야기하여 보이드 형성 또는 금선 변형의 발생을 예측하기 어렵게합니다.

    열경화성 화합물의 3 차원 (3-D) 유동 분석 방법은 대량 생산 전에 시험 기간을 최소화하고 성형 제품의 품질을 향상시킬 목적으로 개발되었습니다. 시간과 온도의 함수로서 등온 점도 변화를 설명하기 위해 구성 방정식 모델이 개발되었습니다. 이 등온 모델은 비등 온 점도 변화를 예측하는 데 사용되었습니다.

    또한 점도, 와이어 구성 및 기타 매개 변수의 함수로 와이어 변형량을 계산하기위한 경험적 모델이 개발되었습니다. 이 모델은 다목적 3D 흐름 분석에 사용되는 FLOW-3D® 소프트웨어와 통합되었습니다.

    실제 고성능 전자 모듈의 트랜스퍼 몰딩 과정에서 새로 개발 된 모델링 소프트웨어를 사용하여 에폭시 화합물의 몰드 충전 역학을 분석했습니다. 온도, 점도, 속도 및 압력과 같은 매개 변수의 3D 분포 변화를 유동 선단 패턴과 비교했습니다.

    캐비티 충전 거동의 예측 결과는 실제 미 성형 데이터와 잘 일치했습니다. 또한, 기판 연결이 있는 각 LSI 칩에서 예상되는 금선 변형량은 성형품의 X-ray 검사에서 얻은 관찰 데이터와도 잘 일치했습니다.

    Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
    Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
    Fig.2 Procedure for determining viscosity changes of thermosetting compounds
    Fig.2 Procedure for determining viscosity changes of thermosetting compounds
    Fig.4 Schematic of a package structure
    Fig.4 Schematic of a package structure
    Fig.6 Calculated results of filling behavior and temperature  distribution in the runner
    Fig.6 Calculated results of filling behavior and temperature distribution in the runner
    Fig.8 Comparison of cavity filling
    Fig.8 Comparison of cavity filling

    References

    1)J.Saeki et al. ,6th annual meeting of PPS, 12KN1(1990)
    2)J.Saeki et al. , JSME International Journal Series Ⅱ, 33,486(1990)
    3)J.Saeki et al.,SEIKEI KAKOU,12,67(2000)
    4) J.Saeki et al.,SEIKEI KAKOU,12,788(2000)
    5) J.Saeki et al.,SEIKEI KAKOU,13,49(2001)

    Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software

    Flow-3D를 이용한 나팔형 여수로의 방류계수에 대한 와류방지 블레이드 45 도의 효과

    Effect of Vortex Breaker Blades 45 Degree on Discharge Coefficient of Morning Glory Spillway Using Flow-3D

    Authors

    S. Noruzi1
    and J. Ahadiyan2*
    1– M.Sc. Student, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
    2*-Corresponding Author, Associate Professor, Faculty of Water Sciences Engineering, Shahid Chamran
    University of Ahvaz, Iran.

    Abstract

    The discharge coefficient of morning glory spillway is decreased with eddies created by vortex at the inlet part of weir. However, a series of specific blades can reduce vortices which result in the spillway efficiency is increased. Hence, in this research numerical modeling of installed breaker blade on morning glory spillway was evaluated using Flow-3D model. To achieve these purposes, morning glory spillway was modeled without and with blades 3, 4 and 6 blades at 45 degree angle. To simulate the turbulence fluctuations, the modified k-e model (RNG k-e) was used and its results were compared to the experimental data. Results showed that by installing blades, the discharge coefficient increases up to 42 percent with 25 percent decreasing in the upstream water level. Moreover, among the three different arrangements of blades, the six-blade model was found to have more satisfactory results than other models. In comparison to control model, for H/D between 0 to 0.1 and 0.1 to 0.2 the discharge coefficient has been increased 40 and 57 percent for six-blade arrangement, respectively. 

    모닝 글로리의 방류계수는 위어 입구 부분의 와류에 의해 생성된 소용돌이로 감소합니다. 그러나 일련의 특정 블레이드는 와류를 줄여 여수로 효율성을 높일 수 있습니다. 따라서 본 연구에서는 모닝 글로리 여수로에 설치된 브레이커 블레이드의 수치 모델링을 FLOW-3D 모델을 사용하여 평가했습니다. 이러한 목적을 달성하기 위해 모닝 글로리 여수로는 45도 각도로 블레이드 3, 4 및 6 블레이드 있는 모델과 없는 모델로 모델링되었습니다. 난류 변동을 시뮬레이션하기 위해 수정된 k-e 모델 (RNG k-e)을 사용하고 그 결과를 실험 데이터와 비교했습니다. 결과에 따르면 블레이드를 설치하면 상류 수위가 25 % 감소하면서 배출 계수가 42 %까지 증가합니다. 또한 3 개의 서로다른 블레이드 배열 중 6 개 블레이드 모델이 다른 모델보다 더 만족스러운 결과를 나타냈다. 기본 모델과 비교하여 H / D가 0 ~ 0.1 및 0.1 ~ 0.2 인 경우, 6개 블레이드 배열에서 방류계수가 각각 40 % 및 57 % 증가했습니다.

    Keywords

    Figure 1 - Dimensions of the vortex blade
    Figure 1 – Dimensions of the vortex blade
    Figure 3 - A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
    Figure 3 – A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
    Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software
    Figure 5 – Modeling a simple lotus overflow symmetrically in FLOW-3D software
    Figure 7 - Comparison of Ashley flow chart with numerical model and laboratory
    Figure 7 – Comparison of Ashley flow chart with numerical model and laboratory
    Figure 8 - Comparison of flow coefficient diagram - immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades
    Figure 8 – Comparison of flow coefficient diagram – immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades

    Reference

    1 -حیدری ارجلو، س.، موسوی جهرمی، س. ح. و ادیب، ا. 1386 .بررسی تاثیر شیب بر تعداد بهینه پلکانها در سرریزهای پلکانی، مجله علوم و مهندسی
    .)123-136 :)2(33 ،كشاورزی علمی )آبیاری
    2 -حاجیپور، گ. 1363 .بررسی آزمایشگاهی تأثیر تیغههای گردابشکن بر هیدرولیک جریان سرریز نیلوفری. پایاننامه كارشناسی ارشد رشته سازههای آبی،
    دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
    3 -رنجبر ملکشاه، م.، 1363 .بررسی رفتار سرریز نیلوفری با پایین دست تاج پلکانی بوسیله مدلسازی رایانهای، پایاننامه كارشناسی ارشد مهندسی عمران،
    دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی.
    4 -رمضانی، س. كاویانپور، م ر. و ع. حسنی نژاد. 1362 .بررسی پارامترهای مؤثر بر آبگذری سرریزهای نیلوفری. هفتمین كنگره ملی مهندسی عمران،
    دانشکده مهندسی شهید نیکبخت، زاهدان.
    1 -سامانی، م. 1331 .طراحی سازههای هیدرولیکی. انتشارات شركت مهندسی مشاور دز آب اهواز
    1 -قاسمزاده، ف. 1362 .شبیه سازی مسائل هیدرولیکی در 3D-FLOW .تهران، نوآور.
    3 -كمانبدست، 1 ،.موسوی، س.ر. 1361 .مطالعه آزمایشگاهی تأثیر تعداد و زاویه گرداب شکن بر مشخصات جریان در سرریز نیلوفری مربعی، نشریه علوم
    آب و خاک )غعلوم و فنون كشاورزی و منابع طبیعی(، سال بیستم، شماره 38 ،صفحه 182-131 .
    8 -نظری پوركیانی، ع ا. 1363 .بررسی فشار و سرعت جریان در سرریز نیلوفری سد البرز با استفاده از نرمافزار 3D-FLOW .اولین كنفرانس سراسری
    توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران.
    6 -نوحانی، ا.، جمالی امام قیس، ر. 1364 .بررسی آزمایشگاهی تأثیرشکل تیغه های ضد گرداب برراندمان تخلیهی سرریزهای نیلوفری، نشریه آبیاری و
    زهکشی ایران، جلد 6 ،شماره 1 ،صفحه 346-341 .
    10-Akbari, A A., Nohani, E and A. Afrous. 2015. Numerical study of the effect of anti-vortex plates on the
    inflow pattern in shaft spillways. Indian Journal of Fundamental and Applied Life Sciences, 5(S1):
    3819-3826.
    11-Anonymous, 1965. Design of Small Dams. Water Resources Technical publication, U.S Department of
    the interior Bureau of Reclamation.
    12-Bagheri, A., Shafai Bajestan, M., Mousavi Jahromi, H., Kashkuli, H. and H. Sedghi. 2010. Hydraulic
    evaluation of the flow over polyhedral morning glory spillways. Word Applied Sciences Journal, 9(7):
    712-717.
    13- Fattor, C. A. and J. D. Bacchiega. 2003. Analysis of instabilities in the charge of regime in morning
    glory spillways. Journal of Hydraulic Research, 40(4): 114-123.
    14- Khatsuria, R. M. 2005. Hydraulics of spillways and energy dissipaters. Marcel Dekker. Department of
    Civil and Environmental Engineering Georgia, Institute of Technology Atlanta, Newyork, USA.
    15-Mousavi. S. R., Kamanbedast, A.A., and H. Fathian. 2013. Experimental investigation of the effect of
    number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet.
    Technical Journal of Engineering and Applied Sciences, 3(24): 3534-3540.
    16- Novak, P. 2007. Hydraulic Structures, Fourth edition published by Taylor and Francis. University of
    New Castle upon, Tyne, UK, Landon and Network.
    17-Tavana, M H., Mousavi Jahromi, H., Shafai Bajestan, M., Masjedi, A. R. and H. Sedghi. 2011.
    Optimization of number and direction of vortex breakers in the morning glory spillway using physical
    model. Economy, Environmental and Conservation Journal, 17(2): 435-440.
    18-Vresteeg. H. K and W. Malalasekera. 1995. An introduction to computational fluid dynamics. Longman
    Scientific and Technical. New York.
    19-Yakhot. V and L. M. Smith. 1992. The renormalization group. The e-expansion and of turbulence
    models. Journal of Computing, 7(1): 35-61.

    Journal of Irrigation Sciences and Engineering (JISE)

    FLOW-3D 모델을 사용하여 오리피스 업스트림의 종 방향 및 횡 방향 속도 프로파일 모델링

    Modeling Longitudinal and Transverse Velocity Profiles Upstream of an Orifice Using the FLOW-3D Model

    Authors

    1 MS Student, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

    2 Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

    3 shahid chamran university

    Abstract

    Due to the crisis of water scarcity, water resources management has become inevitable in Iran. Dam reservoirs are among the most important used water resources. Construction of a dam on a river reduces the flow velocity in the reservoir, finally resulting in the deposit of sediments in it. The depositing of sediments in the dam reservoir reduces its useful volume and disturbs the dam’s performance in terms of water storage. Therefore, solutions have always been proposed to manage and discharge sediments in the reservoir during the service period. In this regard, pressurized flushing is a common solution for eliminating sediments. In this method, by opening the bottom gates, the upstream water pressure discharges the sediments through the orifice. The volume of the exited sediments is a function of factors, such as gate diameter, sediments type and size, water height upstream the gate, and outflow discharge. Numerous studies have been conducted on the effect of the mentioned factors on the volume of sediments exited from an orifice. Shahmirzadi et al. (2010) experimentally evaluated the effect of the diameter of bottom dischargers on the dimensions of the flushing cone. Powell and Khan (2015) conducted tests to investigate the flow pattern upstream of a dam orifice under the fixed bed and equilibrium scour (mobile bed) conditions. Their results demonstrated that the velocity’s horizontal component was almost equal for both fixed and equilibrium scour conditions. The same conditions were also the case for the vertical component of the velocity.

    Keywords : Flushing, orifice, turbulence model, shear stress

    물 부족의 위기로 이란에서는 수자원 관리가 불가피해졌습니다. 댐 저수지는 가장 중요한 사용 수자원 중 하나 입니다. 강에 댐을 건설하면 저수지의 유속이 감소하여 결국 침전물이 퇴적됩니다. 댐 저수지에 퇴적물이 쌓이면 유용한 부피가 줄어들고 물 저장 측면에서 댐의 성능이 저하됩니다.

    따라서 서비스 기간 동안 저수지의 퇴적물을 관리하고 배출하는 솔루션이 항상 제안 되었습니다. 이와 관련하여 가압 플러싱은 침전물 제거를 위한 일반적인 솔루션입니다.

    이 방법에서는 하단 게이트를 열면 상류 수압이 오리피스를 통해 퇴적물을 배출합니다. 배출된 퇴적물의 부피는 게이트 직경, 퇴적물의 유형 및 크기, 게이트 상류의 수위, 유출 배출과 같은 요인의 함수입니다.

    오리피스에서 배출되는 퇴적물의 양에 대한 언급 된 요인의 영향에 대한 수많은 연구가 수행되었습니다. Shahmirzadi et al. (2010)은 바닥 배출기의 직경이 플러싱 콘의 치수에 미치는 영향을 실험적으로 평가했습니다.

    Powell and Khan (2015)은 고정층 아래의 댐 오리피스 상류의 유동 패턴과 평형 수색 (이동 층) 조건을 조사하기 위해 테스트를 수행했습니다. 그들의 결과는 속도의 수평 성분이 고정 및 평형 수색 조건 모두에서 거의 동일하다는 것을 보여주었습니다. 속도의 수직 성분에 대해서도 동일한 조건이 적용되었습니다.

    The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

    Numerical investigation of flow characteristics over stepped spillways

    Güven, Aytaç
    Mahmood, Ahmed Hussein
    Water Supply (2021) 21 (3): 1344–1355.
    https://doi.org/10.2166/ws.2020.283Article history

    Abstract

    Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

    배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

    세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

    수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

    HIGHLIGHTS

    ListenReadSpeaker webReader: Listen

    • A numerical model was developed for stepped spillways.
    • The turbulent flow was simulated by the Renormalized Group (RNG) model.
    • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

    Keyword

    CFDnumerical modellingslope changestepped spillwayturbulent flow

    INTRODUCTION

    댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

    수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

    그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

    계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

    계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

    또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

    CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

    Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

    Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

    Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

    Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

    Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

    METHODOLOGY

    ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

    formula

    (1)

    formula

    (2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

    Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

    The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

    formula

    (3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

    formula

    (4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

    formula

    (5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

    formula

    (6)where ⁠: the turbulent length scale.

    VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

    formula

    (7)

    formula

    (8)

    formula

    (9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

    The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

    Case study

    ListenReadSpeaker webReader: Listen

    In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

    The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

    Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
    Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

    Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

    Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

    Location of pressure sensors on horizontal step faces

    Θ(°)L(m)x/l (–)
    50.0 0.050 0.35 0.64 – – – 
    30.0 0.104 0.17 0.50 0.84 – – 
    18.6 0.178 0.10 0.30 0.50 0.7 0.88 
    Location of pressure sensors on horizontal step faces
    Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
    Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

    Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

    Numerical model set-up

    ListenReadSpeaker webReader: Listen

    A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

    Variables used in test runs

    Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
    50 18.6 0.06 0.045 0.1 2.6 
    50 18.6 0.06 0.082 0.235 4.6 
    50 30.0 0.06 0.045 0.1 2.6 
    50 30.0 0.06 0.082 0.235 4.6 
    Table 2 Variables used in test runs

    For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

    The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

    Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

    The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
    Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

    Figure 3VIEW LARGEDOWNLOAD SLIDE

    The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

    When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

    There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

    The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

    RESULTS AND DISCUSSION

    ListenReadSpeaker webReader: Listen

    The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

    Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
    Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

    Figure 4VIEW LARGEDOWNLOAD SLIDE

    Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

    Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
    Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

    Figure 5VIEW LARGEDOWNLOAD SLIDE

    Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

    Figure 6VIEW LARGEDOWNLOAD SLIDE

    Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
    Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

    Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

    Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
    Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

    Figure 7VIEW LARGEDOWNLOAD SLIDE

    Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

    But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

    The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

    Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

    Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
    Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

    Figure 8VIEW LARGEDOWNLOAD SLIDE

    Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

    Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
    Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

    Figure 9VIEW LARGEDOWNLOAD SLIDE

    Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

    The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

    Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

    Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
    Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

    Figure 10VIEW LARGEDOWNLOAD SLIDE

    Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

    Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

    Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
    Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

    Figure 11VIEW LARGEDOWNLOAD SLIDE

    Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

    CONCLUSION

    ListenReadSpeaker webReader: Listen

    In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

    Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

    The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

    이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

    Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

    Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

    DATA AVAILABILITY STATEMENT

    ListenReadSpeaker webReader: Listen

    All relevant data are included in the paper or its Supplementary Information.

    REFERENCES

    Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
    Google Scholar
    Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
    Google Scholar
    Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
    Google Scholar
    Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
    Google Scholar
    Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
    Google Scholar
    Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
    Google Scholar
    Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
    Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
    Google Scholar
    Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
    Google Scholar
    Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
    Google Scholar
    Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
    Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
    Google Scholar
    Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
    Google Scholar
    Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
    Google Scholar
    Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
    Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
    Google Scholar
    Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
    Google Scholar
    Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
    Google Scholar
    Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
    Google Scholar
    © 2021 The Authors
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

    Fig. 2 Temperature distributions of oil pans (Cycling)

    내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

    A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

    한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineersv.17 no.3 = no.99 , 2009년, pp.45 – 53  신현우 (두원공과대학 메카트로닉스과 ) ;  정연준 ( 현대자동차(주) ) ;  강승구 ( 인지AMT(주))

    Abstract

    Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

    Keywords: 오일팬 , 내열마그네슘합금, 알루미늄 합금,  다이캐스팅, 유동해석

    서론

    크랭크케이스의 하부에 부착되는 오일팬은 오일 펌프에 의해 펌핑된 오일이 윤활작용을 마치고 다시 모이는 부품이다. 오일의 온도에 의해 가열되므로 일반적으로 사용되는 마그네슘 합금인 AZ나 AM계열의 합금은 사용이 불가하며 내열소재의 적용이 불가피하다.

    현재 ADC12종 알루미늄 오일팬 둥이 적용되고 있으며, 이를 마그네슘으로 대체할 경우 밀도가 알루미늄 2.8g/cm3‘, 마그네슘 1.8g/cm3‘이므로 약 35%의 경량화가 가능하다고 단순하게 말할 수 있다.

    그러나 탄성계수는 알루미늄 73GPa이 고 마그네슘 45GPa이므로 외부 하중을 지지하고 있는 부품의 경우는 단순한 재질의 변경만으로는 알루미늄과 같은 정도의 강성을 나타내지 못하므로 형상의 변경 등을 통한 설계 최적화가 요구된다.

    마그네슘은 현재까지 개발된 여러 가지 구조용 합금들 중에서 최소의 밀도를 가지고 있으며 동시에 우수한 비강도 및 비탄성 계수를 가지고 있다.1.2)

    그러나 이러한 우수한 특성을 가지는 마그네슘 합금은 경쟁 재료에 비해 절대 강도 및 인성이 낮으며 고온에서 인장 강도가 급격히 감소하고 내부식 성능이 떨어지는 등의 문제점이 있다. 현재까지 자동차 부품 중 마그네슘 합금은 Cylinder head cover, Steering wheel, Instrument panel, Seat frame 등 비교적 내열성이 요구되지 않는 부분에만 한정적으로 적용되고 있다.
    자동차 산업에서 좀 더 많은 부품에 마그네슘 합금을 적용하기 위해서는 내열성을 향상 시키고 고온강도를 향상시키기 위한 새로운 합금의 개발이 이루어져야 한다. 최근 마그네슘 합금개발에 대한 연구동향은 비교적 저가인 원소를 값비싼 원소가 첨가된 합금계에 부분적으로 첨가하거나 대체함으로써 비슷한 내열 특성을 가지는 합금을 개발하고,34) 이를 자동차 산업이나 전자 산업의 내열 부품 적용으로 확대하기 위하여 진행되고 있다. 현재 마그네슘 내열 부품은 선진국에서 자동차 부품으로 개발되고 있으나6-8)

    국내에서는 아직 자동차 부품에 폭 넓게 적용되고 있지 않다. 그러므로 국내 자동차 산업이 치열한 국제 시장에서 생존하기 위해서는 마그네슘 합금의 내열 부품 제조기술을 조기에 개발하여 선진국보다 기술적, 경제적 우위를 확보하는 것이 절실히 요구된다.

    본 연구에서는 내열 마그네슘합금을 이용하여 알루미늄 오일팬을 대체할 수 있는 새로운 오일팬의 개발올 위한 적절한 다이캐스팅 공정방안을 도출하고자 한다.

    <중략>…….

    Fig. 1 Current Al oil pan and cooling lines
    Fig. 1 Current Al oil pan and cooling lines
    Fig. 2 Temperature distributions of oil pans (Cycling)
    Fig. 2 Temperature distributions of oil pans (Cycling)
    Fig. 3 Developed Mg oil pan and cooling lines
    Fig. 3 Developed Mg oil pan and cooling lines
    Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
    Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
    Fig. 5 Filling pattern of current Al oil pan
    Fig. 5 Filling pattern of current Al oil pan
    Fig. 11 Temperature distribution at t-=1.825sec
    Fig. 11 Temperature distribution at t-=1.825sec

    <중략>…….

    결론

    오일팬은 엔진 내부에서 순환되어 돌아오는 오일의 열을 외부로 발산하는 냉각기능 및 엔진으로부터 발생하는 소음이 외부로 전달되지 않도록 소음을 차단하는 역할을 수행하는 매우 중요한 부품 중의 하나이다. 본 연구에서는 현재 개발 중에 있는 새로운 내열 마그네슘 합금을 이용하여 현재 사용하고 있는 알루미늄 오일팬을 대체할 마그네슘 오일팬을 개발하고 시험 생산하였으며 다음과 같은 결론을 얻었다.

    1. 알루미늄 합금과 마그네슘 합금의 단위 부피당 열 용량은 각각 3.07x10J/m/K, 2.38x10J/m/K로서 동일 주조 조건 시 응고 속도 차이가 제품 성형에 영향을 미칠 것으로 예상되었으며, 주조해석 및 제품분석을 통해 확인하였다. 따라서 주조 조건에 가장 큰 영향을 미치는 것으로 확인된 용탕, 금형온도, 주조속도 등을 변경하여 최적 주조공정 조건을 확립하였다.
    2. 제품 및 시험편 성형에 영향을 미치는 것으로 확인된 런너의 곡률 반경을 증대시키고 게이트의 갯수 및 오버플로우 위치와 형상을 조절함으로서 제품 및 시험편의 용탕 흐름을 원활하게 조절 할 수 있었다.
    3. MRI153M 합금은 AE44 합금에 비해 응고 시작점에서 완료점까지의 응고시간이 길어 응고 완료 후, 내부 수축기포가 보다 많이 관찰되었다.
      따라서 MRI153M 합금 주조시 슬리브 충진율, 게이트 통과속도, 충진시간 등을 달리하여 최적 주조 품을 생산할 수 있었다.

    Reference

    1. W. Sebastian, K. Droder and S. Schumann, Properties and Processing of Magnesium Wrought Products for Automotive Applications; Conference Paper at Magnesium Alloys and Their Applications,Munich, Germany, 2000 
    2. J. Hwang and D. Kang, “FE Analysis on the press forging of AZ31 Magnesium alloys,” Transactions ofKSAE, Vo1.14, No.1, pp.86-91, 2006  원문보기 
    3. S. Koike, K. Washizu, S. Tanaka, K. Kikawa and T. Baba, “Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines,” SAE 2000-01-1117, 2000 
    4. D.M. Kim, H.S. Kim and S.I. Park, “Magnesium for Automotive Application,” Journal ofKSAE, Vo1.18, No.5, pp.53-67, 1996 
    5. P. Lyon, J. F. King and K. Nuttal, “A New Magnesium HPDC Alloy for Elevated Temperature Use,” Proceedings of the 3rd International Magnesium Conference, ed. G. W. Lorimer, Manchester, UK, pp.1 0-12, 1996 
    6. S. Schumann and H. Friedrich, The Use ofMg in Cars – Today and in Future, Conference Paper at Mg Alloys and Their Applications, Wolfsburg, Germany, 1998 
    7. F. von Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger and D. Eliezer, “New Die Casting Alloy MRI 153 for Power Train Applications,” Magnesium Technology 2002, pp.61-68, 2002 
    8. M.C. Kang and K.Y. Sohn, “The Trend and Prospects of Magnesium Alloys Consumption for Automotive Parts in Europe,” Proceedings of KSAE Autumn Conference, pp.1569-l576, 2003 
    Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.

    The effect of alloying elements of gas metal arc welding (GMAW) wire on weld pool flow and slag formation location in cold metal transfer (CMT)

    가스 금속 아크 용접 (GMAW) 와이어의 합금 원소가 CMT (Cold Metal Transfer)에서 용접 풀 흐름 및 슬래그 형성 위치에 미치는 영향

    Md. R. U. Ahsan1,3, Muralimohan. Cheepu2, Yeong-Do Park* 2,3
    1Department of Mechanical Engineering, International University of Business, Agriculture and Technology,
    Dhaka 1230, Bangladesh.
    r.ahsan06me@gmail.com
    2Department of Advanced Materials and Industrial Management Engineering, Dong-Eui University, Busan
    47340, Republic of Korea.
    muralicheepu@gmail.com
    3Department of Advanced Materials Engineering, Dong-Eui University, B

    Abstract

    용접시 표면 장력 구동 흐름 또는 마랑고니 흐름은 용접 비드 모양을 제어하는데 중요한 역할을 하므로 용접 접합 품질에 영향을 미칩니다. 용해된 금속의 표면 장력은 보통 음의 온도 계수를 가지므로 용접 풀이 중심에서 토우 방향으로 흐르게 됩니다.

    표면 장력의 이 온도 계수는 황(S), 산소(O), 셀레늄(Se) 및 텔루륨(Te)과 같은 표면 활성 요소가 있는 경우 양의 계수로 변경할 수 있습니다. 소모품에 존재하는 탈산화 원소의 양이 용접 금속에 존재하는 산소량을 결정합니다. 탈산화제 양이 적으면 용접 금속에 산소 농도가 높아집니다.

    적절한 양의 산소가 있으면 용융지에 표면 장력 구배의 양의 온도 계수가 발생할 수 있습니다. 이 경우 용접 풀은 토우에서 중앙 방향으로 흐릅니다. 그 결과, 아크와 용융지에 있는 화농성 반응의 경우, 합금 요소의 다양한 산화물이 슬래그(slag)라고 합니다. 슬래그는 용융지 표면에 떠서 용융지 흐름 패턴에 따라 누적됩니다.

    그 결과, 슬래그는 용융지 흐름 패턴에 따라 용접 비드 중심 또는 토우 중심을 따라 형성됩니다. 슬래그는 용접 비드의 외관과 도장 접착력을 저하시키므로 제거해야 합니다. 쉽게 분리할 수 있기 때문에 용접 비드 중심 부근에서 슬래그가 형성되는 것이 좋습니다.

    용접 풀의 현장 고속 비디오 촬영, 용접 금속 화학 성분 분석, 소모품 합금 요소가 용접 풀 흐름 패턴 및 슬래그 형성 위치에 미치는 영향이 공개되어 CMT-GMAW의 생산성 향상을 위해 용접 소모품 선택을 용이하게 할 수 있습니다.

    The surface tension driven flow or Marangoni flow in welding plays an important role in governing weld bead shape hence affecting the weld joint quality. The surface tension of molten metal usually has a negative temperature coefficient causing the weld pool to flow from the center towards the toe.

    This temperature coefficient of the surface tension can be altered to be a positive one in the presence of surface-active elements like sulfur (S), oxygen (O), selenium (Se) and tellurium (Te). The amount of deoxidizing elements present in the consumables governs the amount of oxygen present in the weld metal. The presence of a lower amount of deoxidizers results in higher concentration of oxygen in the weld metal.

    The presence of adequate amount of oxygen can result in a positive temperature coefficient of surface tension gradient in the weld pool. In such situation, the weld pool flows from the toe towards the direction of the center. As a result, of pyrometallurgical reactions in the arc and the weld pool various oxides of the alloying elements are former which are referred as slag.

    The slags float on the weld pool surface and accumulate following the weld pool flow pattern. As a result, slags form either along the center of the weld bead or the toe depending on the weld pool flow pattern. The slags need to be removed as they degrade the weld bead appearance and paint adhesiveness.

    Due to easy detachability, slag formation near the center of the weld bead is desired. From in-situ high-speed videography of weld pool, weld metal chemical composition analysis, the effect of consumables alloying elements on weld pool flow pattern and slag formation location are disclosed, which can facilitate the selection of the welding consumables for better productivity in CMT-GMAW.

    Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
    Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
    Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
    Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
    Fig. 3: Quantitative analysis data on slag formation for different wire.
    Fig. 3: Quantitative analysis data on slag formation for different wire.

    References

    [1] S. Lu, H. Fujii, and K. Nogi: “Marangoni convection and weld shape variations in He-CO2 shielded gas
    tungsten arc welding on SUS304 stainless steel,” J. Mater. Sci., Vol. 43, No. 13 (2008), pp. 4583–4591.
    [2] Y. Wang and H. L. Tsai: “Effects of surface active elements on weld pool fluid flow and weld penetration in
    gas metal arc welding,” Metall. Mater. Trans. B, Vol. 32, No. 3 (2001), pp. 501–515.
    [3] P. Sahoo, T. Debroy, and M. J. McNallan: “Surface tension of binary metal-surface active solute systems under
    conditions relevant to welding metallurgy,” Metall. Trans. B, Vol. 19, No. 2 (1988), pp. 483–491.
    [4] M. J. Mcnallan and T. Debroy: “Effect of Temperature and in Fe-Ni-Cr Alloys Containing Sulfur,”Metall.
    Trans. B,Vol. 22, No. 4 (1991) pp. 557-560.
    [5] S. Kou, C. Limmaneevichitr, and P. S. Wei: “Oscillatory Marangoni flow: A fundamental study by conductionmode laser spot welding,” Weld. J., Vol. 90, No. 12 (2011), pp. 229–240.
    [6] M. Hasegawa, M. Watabe, and W. H. Young: “Theory of the surface tension of liquid metals,” J. Phys. F Met.
    Phys., Vol. 11, No. 8 (2000), pp. 173–177.
    [7] C. Heiple and J. Roper: “Effect of selenium on GTAW fusion zone geometry,” Weld. J., (1981), pp. 143–145.
    [8] C. R. Heiple and J. R. Roper: “Mechanism for Minor Element Effect on {GTA} Fusion Zone Geometry,”
    Weld. J., Vol. 61, (1982)pp. 97–102.
    [9] C. Heiple, J. Roper, R. Stagner, and R. Aden: “Surface active element effects on the shape of GTA, laser and
    electron beam welds,” Weld. J., (1983) pp. 72–77.
    [10] C. R. Heiple and P. Burgardt: “Effects of SO2 Shielding Gas Additions on GTA Weld Shape,” Weld. J., (1985)
    pp. 159–162.
    [11] P. F. Mendez, and T. W. Eagar: “Penetration and Defect Formation in High-Current Arc Welding,” Weld. J.,
    (2003) pp. 296–306.
    [12] B. Ribic, S. Tsukamoto, R. Rai, and T. DebRoy: “Role of surface-active elements during keyhole-mode laser
    welding,” J. Phys. D. Appl. Phys., Vol. 44, No. 48 (2011), pp. 485–203.
    [13] C. Limmaneevichitr and S. Kou, “Experiments to simulate effect of Marangoni convection on weld pool shape,”
    Weld. J., Vol. 79, (2000)pp. 231–237.
    [14] C. Limmaneevichitr and S. Kou: “Visualization of Marangoni convection in simulated weld pools containing a
    surface-active agent,” Weld. J., vol. 79, No. 11 (2000), pp. 324–330.
    [15] Y. Wang and H. L. Tsai: “Impingement of filler droplets and weld pool dynamics during gas metal arc welding
    process,” Int. J. Heat Mass Transf., Vol. 44, No. 11 (2001), pp. 2067–2080.
    [16] S. Liu: “Pyrometallurgical Studies of Molten Metal Droplets for the Characterization of Gas Metal Arc
    Welding,” Proc 9thTrends in Welding Research Conf., Chicago, Illinois, June 2012, pp. 353–361.
    [17] Y. Umehara, R. Suzuki and T. Nakano: “Development of the innovative GMA wire improving the flow
    direction of molten pool” Quart. J. Japan Weld. Soc., Vol. 27, NO. 2 (2009), pp. 163–168.

    Figure 4. Structure of artificial neural network [37]

    Turbulent Flow Modeling at Tunnel Spillway Concave Bends and Prediction of Pressure using Artificial Neural Network

    터널 배수로 오목 굴곡에서 난류 유동 모델링 인공 신경망을 이용한 압력 예측 및 예측

    Zeinab Bashari Moghaddam 1
    Hossein Mohammad Vali Samani2
    Seyed Habib Mousavi Jahromi 3

    Abstract

    터널 배수로는 높은 자유 표면 유속이 설정되는 배수로 유형 중 하나입니다. 회전 가속과 난류 흐름의 불규칙성으로 인해 오목한 수직 굽힘에서 압력이 증가합니다. 물리적 모델은 이 현상을 분석하는 가장 좋은 도구입니다.

    모든 실제 프로토 타입 상태 분석을 포괄하는 데 필요한 물리적 모델의 수가 너무 많아 배치 및 비용 측면에서 비실용적입니다. 따라서 FLOW-3D 소프트웨어는 가능한 모든 실제 대안을 포괄하는 오목한 굴곡 터널의 난류 흐름 데이터베이스를 분석하고 생성하기 위해 선택되었습니다.

    이 소프트웨어는 방전과 형상이 다른 다양한 터널을 시뮬레이션했습니다. 수치 결과는 Alborz Dam 터널 배수로의 건설 된 물리적 모델의 실험 결과로 검증되었으며 만족스러운 동의를 얻었습니다. 차원 분석은 문제의 관련 변수를 차원 없는 매개 변수로 그룹화하는 데 사용됩니다.

    이러한 매개 변수는 인공 신경망 시뮬레이션에 사용됩니다. 결과는 Flow-3D 소프트웨어로 얻은 무 차원 매개 변수와 신경망에 의해 예측된 변수 사이의 상관 계수 R2 = 0.95를 보여 주었으며, 이와 관련하여 난류 모델링을 통해 얻은 데이터베이스를 기반으로 한 인공 신경망이 결론을 내릴 수있었습니다. 압력 예측을 위한 강력한 도구입니다.

    Keywords: Flow-3D, Tunnel spillway concave bend, Numerical simulation, Turbulent flow,
    Artificial neural network

    본문 내용 생략 : 본문 내용은 내용 하단부에 첨부된 본문 링크를 참조하시기 바랍니다.

    Figure 1. Flow in a concave curvature
    Figure 1. Flow in a concave curvature
    Figure 2. Flow in the curvature of the flip bucket
    Figure 2. Flow in the curvature of the flip bucket
    Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
    Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
    Figure 4. Structure of artificial neural network [37]
    Figure 4. Structure of artificial neural network [37]
    Figure 5. Correlation coefficient of the Neural Network simulation and Flow-3D in the training
stage
    Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
    Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
    Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
    Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
    Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
    Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
    Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
    Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
    Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)
    Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)

    현재 연구에서 FLOW-3D 소프트웨어는 처음에 다양한 크기와 배출의 터널 배수로에서 난류 흐름을 시뮬레이션하는데 사용되었습니다. 결과는 이란 에너지부 물 연구소에서 제공한 Alborz 저장 댐에서 얻은 실제 데이터와 비교하여 검증되었습니다.

    시뮬레이션에는 다양한 난류 모델이 사용되었으며 RNG 방법이 관찰된 실제 결과와 가장 잘 일치하는 것으로 나타났습니다. 직경이 3 ~ 15m 인 다양한 터널 배수로, 곡률 반경 3 개, 거의 모든 실제 사례를 포괄하는 3개의 배출이 시뮬레이션에 사용되었습니다.

    차원 분석을 사용하여 무 차원 매개 변수를 생성하고 문제의 변수 수를 줄였으며 마지막으로 두 개의 주요 무 차원 그룹이 결정되었습니다. 이러한 무 차원 변수 간의 관계를 얻기 위해 신경망을 사용하고 터널 배수로의 오목한 굴곡에서 압력 예측 단계에서 0.95의 상관 계수를 얻었습니다.

    압력 계산 결과는 다른 일반적인 방법으로 얻은 결과와 비교되었습니다. 비교는 신경망 결과가 훨씬 더 정확하고 배수로 터널의 오목한 곡률에서 압력을 예측하는 강력한 도구로 간주 될 수 있음을 나타냅니다.

    References

    1. Kim, D. G., & Park, J. H. (2005). Analysis of flow structure over ogee-spillway in
      consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil
      Engineering, 9(2), 161-169.
    2. Sabbagh-Yazdi, S. R., Rostami, F., & Mastorakis, N. E. (2008, March). Simulation of selfaeration at steep chute spillway flow using VOF technique in a 3D finite volume software. In
      Am. Conf. on Appl. Maths. Harvard, Mass, 24-28.
    1. Nohani, E. (2015). Numerical simulation of the flow pattern on morning glory spillways.
      International Journal of Life Sciences, 9(4): 28-31.
    2. Parsaie, A., Dehdar-Behbahani, S., & Haghiabi, A. H. (2016). Numerical modeling of
      cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering, 10(4),
      438-444.
    3. Teuber, K., Broecker, T., Bay´on, A., N¨utzmann, G. and Hinkelmann, R. (2019) ‘CFDmodelling of free surface flows in closed conduits’, Progress in Computational Fluid
      Dynamics, 19(6), 368–380.
    4. Ghazanfari-Hashemi, R.S., Namin, M.M., Ghaeini-Hessaroeyeh, M. and Fadaei-Kermani,
      E., 2020. A Numerical Study on Three-Dimensionality and Turbulence in Supercritical Bend
      Flow. International Journal of Civil Engineering, 18(3), 381-391.
    5. Sha, H. F., Wu, S. Q., & Zhou, H. (2009). Flow characteristics in a circular-section bend of
      high head spillway tunnel. Advances in Water Science, (6), 14.
    6. Liu, Z., Zhang, D., Zhang, H., & Wu, Y. (2011). Hydraulic characteristics of converse
      curvature section and aerator in high-head and large discharge spillway tunnel. Science
      China Technological Sciences, 54(1), 33-39.
    7. Zheng, Q. W., Luo, S. J., & Zhang, F. X. (2012). The Effect of Concave Types on the
      Hydraulic Characteristics in Spillway Tunnels with High-Speed Velocity. China Rural
      Water and Hydropower, 4.
    8. Hongmin, G. U. O., Jiang, L. I., Shan, Q. I. N., & Yang, X. I. E. (2014). Three-Dimensional
      Numerical Simulation on Spillway Tunnel of Pankou Hydropower Station. Water Resources
      and Power, (4), 22.
    9. Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic
      Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration, 2018.
    10. Wei, W., Deng, J. and Xu, W. (2020). Numerical investigation of air demand by the free
      surface tunnel flows. Journal of Hydraulic Research, 1-8.
    11. Xu, W., Dang, Y., Li, G., Shao, J. and Chen, G. (2007) ‘Three-dimensional numerical
      simulation of the bi-tunnel spillway flow [J] ‘, Journal of Hydroelectric Engineering, 1, 56-
      60.
    12. Huang, H.Y., Gong, A.M., Qiu, Y. and Wangliang, Z.A. (2015) ‘ 3D Numerical Simulation
      and Experimental Analysis of Spillway Tunnel’ In Applied Mechanics and Materials. Trans
      Tech Publications Ltd. 723, 171-175.
    13. Li, S., Zhang, J. M., Xu, W. L., Chen, J. G., Peng, Y., Li, J. N., & He, X. L. (2016).
      Simulation and experiments of aerated flow in curve-connective tunnel with high head and
      large discharge. International Journal of Civil Engineering, 14(1), 23-33.
    14. Shilpakar, R., Hua, Z., Manandhar, B., Shrestha, N., Zafar, M. R., Iqbal, T., & Hussain, Z.
      (2017, August). Numerical simulation on tunnel spillway of Jingping-I hydropower project
      with four aerators. In IOP Conference Series: Earth and Environmental Science. 82, 012013.
    15. Song, C. C., & Zhou, F. (1999). Simulation of free surface flow over spillway. Journal of
      Hydraulic Engineering, 125(9), 959-967.
    16. Fais, L.M.C.F., Filho, J.G.D., Genovez, A.I.B. (2015). Geometry influence and discharge
      curve correction in morning glory spillways. Proceedings of the 36th IAHR World
      Congress.
    17. Falvey, H. T. (1990). Cavitation in chutes and spillways. Denver: US Department of the
      Interior, Bureau of Reclamation. 49-57.
    18. Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
    1. Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2007). Hydraulic structures.
      Fourth Edition, Taylor & Francis, New York , 246–265.
    2. Jorabloo, M., Maghsoodi, R., Sarkardeh, H., & Branch, G. (2011). 3D simulation of flow
      over flip buckets at dams. Journal of American Science, 7(6), 931-936.
    3. Khani, S., Moghadam, M. A., & Nikookar, M. (2017). Pressure Fluctuations Investigation
      on the Curve of Flip Buckets Using Analytical and Numerical Methods. Vol. 03(04), 165-
      171.
    4. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
      activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    5. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
      computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
    6. Wu,C.L. Huang, B. Xie, C.B. (2008) . Comparison of calculation methods for irrigation
      district water inlet, China Rural Water and Hydropower ,5 (71) ,74–77.
    7. Qiu,J. Huang, B.S. . Lai, G.W. (2002). Research and application of discharge coefficient of
      wide crest weir, China Rural Water and Hydropower ,9 ,41–42.
    8. Xiang, H.Q .Ba,D.D. Liu, J.J. (2012) . Acquiring of curved practical weir flow coefficient by
      curve-fitting based on Matlab, Hydropower Energy Sci. 3 ,97–99.
    9. Ye,Y.T. He,J.J.(2013).Experimental study on hydraulic calculation of discharge under plane
      gate on broad-crested weir, J. Water Resour. Archit. Eng. 11 (2), 138–141.
    10. Salmasi, F., Yıldırım, G., Masoodi, A., & Parsamehr, P. (2013). Predicting discharge
      coefficient of compound broad-crested weir by using genetic programming (GP) and
      artificial neural network (ANN) techniques. Arabian Journal of Geosciences, 6(7), 2709-
      2717.
    11. Noori, R.; Hooshyaripor, F. (2014). Effective prediction of scour downstream of ski-jump
      buckets using artificial neural networks. Water Resour. 41, 8–18.
    12. Flow-Science. (2014). FLOW-3D user manual. version11. In: Flow Science Santa Fe, NM.
    13. Yakhot, V. S. A. S. T. B. C. G., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G.
      (1992). Development of turbulence models for shear flows by a double expansion technique.
      Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
    14. Report on the hydraulic model of Alborz dam reservoir. (2001). Iran Water Research
      Institute
    15. Lippman, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine,
      4(2), pp.4-22.
    16. Baylar, A., Ozgur, K.I.S.I. and Emiroglu, M.E. (2009). Modeling air entrainment rate and
      aeration efficiency of weirs using ANN approach. Gazi University Journal of Science, 22(2),
      107-116.
    17. Maureen, C. and Caudill, M. (1989). Neural network primer: Part I. AI Expert, 2(12),
      p.1987.
    Fig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm from the streambed in tandem pies

    3D numerical simulation of flow field around twin piles

    트윈 말뚝 주위의 유동장 3D 수치 시뮬레이션

    Amini, A; Parto, AA
    Amini, A (reprint author), AREEO, Kurdistan Agr & Nat Resources Res & Educ Ctr, Sanandaj, Iran.
    , 2017; 65 (6): 1243

    Abstract

    이 연구에서는, 파일 그룹 주위의 흐름 패턴과 국소적 스크루 메커니즘을 식별하기 위해, 플로우 필드를 FLOW-3D 소프트웨어를 사용해 시뮬레이션했다. 편평한 침대 채널에 나란히 배열되어 있는 한 쌍의 말뚝이 조사되었다. Navier-Stokes 방정식을 확립하기 위해 RNGk-epsilon 난류 모델을 사용하였고 실험 데이터를 사용하여 결과를 검증하였다. FLOW-3D 기능의 경우, 소프트웨어가 파일 그룹 간의 예상 상호작용을 적절히 시뮬레이션할 수 있는 것으로 확인되었다. 플로우 필드 시뮬레이션 결과는 레이놀즈 숫자와 말뚝 간격이 vortices 형성에 가장 큰 영향을 미치는 변수라는 것을 보여주었다. 탠덤 더미 주변의 흐름과 웨이크 바이크 주변의 하향 흐름은 측면 배치와 단일 더미에 비해 더 강렬하고 복잡했다.

    In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier–Stokes equations, the RNGk-e turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.

    Keywords : Bridge, Sediment, Flow pattern, Pile group, Local scour

    Fig. 1 General view of the channel and measured points a side by side b tandem arrangement
    Fig. 1 General view of the channel and measured points a side by side b tandem arrangement
    Fig. 2 Meshing around the two side by side piles: a plan and b side view
    Fig. 2 Meshing around the two side by side piles: a plan and b side view
    Fig. 3 Meshing around the two tandem piles: a plan and b side view
    Fig. 3 Meshing around the two tandem piles: a plan and b side view
    Fig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm from the streambed in tandem pies
    Fig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm from the streambed in tandem pies
    Fig. 5 Current lines in the horizontal level in: a 0.70 cm, and b 14 cm from the streambed in side by side piles
    Fig. 5 Current lines in the horizontal level in: a 0.70 cm, and b 14 cm from the streambed in side by side piles
    Fig. 6 Comparing iso-velocity line in longitudinal direction (u): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
    Fig. 6 Comparing iso-velocity line in longitudinal direction (u): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
    Fig. 7 Comparing iso-velocity line in latitudinal direction (v): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
    Fig. 7 Comparing iso-velocity line in latitudinal direction (v): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
    Fig. 8 3D velocity profiles in x–z plane in the center of the pile (Y = 0): a x = - 1.65D; b x = - 6.59D; c x = 0.69D; d x = 1.32D; e x = 3.69D and f x = 7.60D
    Fig. 8 3D velocity profiles in x–z plane in the center of the pile (Y = 0): a x = – 1.65D; b x = – 6.59D; c x = 0.69D; d x = 1.32D; e x = 3.69D and f x = 7.60D
    Fig. 9 Comparison of simulated and observed velocity in x–y plane in center of piles
    Fig. 9 Comparison of simulated and observed velocity in x–y plane in center of piles

    References

    • Akilli AA, Karakus C (2004) Flow characteristics of circular cylinders arranged side-by- side in shallow water. Flow Meas Instrum 15(4):187–189
    • Amini A, Mohammad TM (2017) Local scour prediction in complex pier. Mar Georesour Geotechnol 35(6):857–864
    • Amini A, Melville B, Thamer M, Halim G (2012) Clearwater local scour around pile groups in shallow-water flow. J Hydraul Eng (ASCE) 138(2):177–185
    • Amini A, Mohd TA, Ghazali H, Bujang H, Azlan A (2011) A local scour prediction method for pile cap in complex piers. ICE-water Manag. 164(2):73–80
    • Aslani A (2008) Experimental evaluation of flow pattern around double piles. MSc thesis, Sharif University, Tehran
    • Gu ZF, Sun TF (1999) On interference between two circular cylinders in staged arrangement at high sub-critical Reynolds numbers. J Wind Eng Ind Aerodyn 80:287–309
    • Hang-Wook P, Hyun P, Yang-Ki C (2014) Evaluation of the applicability of pier local scour formulae using laboratory and field data. Mar Georesour Geotechnol. https://doi.org/10.1080/ 1064119X.2014.954658
    • Hannah CR (1978) Scour at pile groups. Research Rep. No. 78-3, Civil Engineering, Univ. of Canterbury, Christchurch
    • Hosseini R, Amini A (2015) Scour depth estimation methods around pile groups. J Civ Eng KSCE 19(7):2144–2156
    • Lanca R, Fael C, Maia R, Peˆgo J, Cardoso A (2013) Clear-water scour at pile groups. J Hydraul Eng. ttps://doi.org/10.1061/ (ASCE)HY.1943-7900.0000770
    • Mohamed HI (2013) Numerical simulation of flow and local scour at two submerged-emergent tandem cylindrical piers. J Eng Sci 41(1):1–19
    • Palau-Salvador G, Stoesser T, Rodi W (2008) LES of the flow around two cylinders in tandem. J Fluids Struct 24(8):1304–1312
    • Papaionannou GV, Yuea DKP, Triantafylloua MS, Karniadakis GE (2008) On the effect of spacing on the vortex-induced vibrations of tandem cylinders. J Fluids Struct 24:833–854
    • Price SJ, Paidoussis MP (1989) The flow induced response of a single flexible cylinder in an in-line array of rigid cylinder. J Fluid Struct 3:61–82
    • Raudkivi AJ (1998) Loose boundary hydraulics. A. A. Balkema, Rotterdam, pp 8–28. https://doi.org/10.1080/02508069608686502
    • Salim MS, Cheah SC (2009) Wall y ? strategy for dealing with wallbounded turbulent flows. In: Proceedings of the international multiconference of engineers and computer scientists, vol II, IMECS, Hong Kong
    • Shin JH, Park HI (2010) Neural network formula for local scour at piers using field data. Mar Georesour Geotechnol 28(1):37–48
    • Sicilian JM, Hirt CW, Harper RP (1987) FLOW-3D. Computational modeling power for scientists and engineers. Report FSI-87-00-Flow Science. Los Alamos, NM
    • Solaimani N, Amini A, Banejad H, Taheri P (2017) The effect of pile spacing and arrangement on bed formation and scour hole dimensions in pile groups. Int J River Basin Manag 15(2):219–225
    • Sumer BM, Fredsøe J (2002) The mechanics of scour in the marine environment. World Scientific, Farrer Road, Singapore
    • Sumer B, Chua L, Cheng N, Fredsøe J (2003) Influence of turbulence on bed load sediment transport. J Hydraul Eng. https://doi.org/ 10.1061/(ASCE)0733-9429(2003)129:8(585)
    • Sun TF, Gu ZF, He DX, Zhang LL (1992) Fluctuating pressure on two circular cylinder at high Reynolds number. J Wind Eng Ind Aero. 42:577–588
    Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.

    Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

    Cristina González Fernández,1 Jenifer Gómez Pastora,2 Arantza Basauri,1 Marcos Fallanza,1 Eugenio Bringas,1 Jeffrey J. Chalmers,2 and Inmaculada Ortiz1,*
    Author information Article notes Copyright and License information Disclaimer

    생체 유체에서 자성 입자의 연속 흐름 분리 : 마이크로 장치 형상이 분리 성능을 어떻게 결정합니까?

    Abstract

    The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.

    생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를 위한 기능화된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드는 자기적으로 회수되어 분석 또는 진단 테스트를 수행 할 수 있습니다.

    연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다.

    그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는데 있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜 주의를 기울였습니다.

    여기에서 우리는 자기 비드가 혈액에서 분리되어 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 Y-Y 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다.

    이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다.

    우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩 온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.

    Keywords: particle magnetophoresis, CFD, cross section, chip fabrication

    Figure 1 (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
    Figure 1 (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
    Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
    Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
    Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.
    Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.
    Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
    Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
    Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
    Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
    Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
    Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
    Figure 7. Dependence of bead capture on the (a) functional channel volume, and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.
    Figure 7. Dependence of bead capture on the (a) functional channel volume, and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.

    References

    1. Gómez-Pastora J., Xue X., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017;172:16–31. doi: 10.1016/j.seppur.2016.07.050. [CrossRef] [Google Scholar]
    2. Wise N., Grob T., Morten K., Thompson I., Sheard S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015;384:328–334. doi: 10.1016/j.jmmm.2015.02.031. [CrossRef] [Google Scholar]
    3. Khashan S.A., Elnajjar E., Haik Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011;323:2960–2967. doi: 10.1016/j.jmmm.2011.06.001. [CrossRef] [Google Scholar]
    4. Khashan S.A., Furlani E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014;125:311–318. doi: 10.1016/j.seppur.2014.02.007. [CrossRef] [Google Scholar]
    5. Furlani E.P. Magnetic biotransport: Analysis and applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. [CrossRef] [Google Scholar]
    6. Gómez-Pastora J., Bringas E., Ortiz I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 2016;47:241–246. [Google Scholar]
    7. Gómez-Pastora J., Bringas E., Lázaro-Díez M., Ramos-Vivas J., Ortiz I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs) In: Stroeve P., Mahmoudi M., editors. Drug Delivery Systems. World Scientific; Hackensack, NJ, USA: 2017. pp. 207–244. [Google Scholar]
    8. Ruffert C. Magnetic bead-magic bullet. Micromachines. 2016;7:21. doi: 10.3390/mi7020021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    9. Yáñez-Sedeño P., Campuzano S., Pingarrón J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors. 2016;16:1585. doi: 10.3390/s16101585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    10. Schrittwieser S., Pelaz B., Parak W.J., Lentijo-Mozo S., Soulantica K., Dieckhoff J., Ludwig F., Guenther A., Tschöpe A., Schotter J. Homogeneous biosensing based on magnetic particle labels. Sensors. 2016;16:828. doi: 10.3390/s16060828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    11. He J., Huang M., Wang D., Zhang Z., Li G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014;101:84–101. doi: 10.1016/j.jpba.2014.04.017. [PubMed] [CrossRef] [Google Scholar]
    12. Ha Y., Ko S., Kim I., Huang Y., Mohanty K., Huh C., Maynard J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 2018;1:512–521. doi: 10.1021/acsanm.7b00025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    13. Gómez-Pastora J., González-Fernández C., Fallanza M., Bringas E., Ortiz I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018;344:487–497. doi: 10.1016/j.cej.2018.03.110. [CrossRef] [Google Scholar]
    14. Gale B.K., Jafek A.R., Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C., Kamarapu S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018;3:60. doi: 10.3390/inventions3030060. [CrossRef] [Google Scholar]
    15. Niemeyer C.M., Mirkin C.A., editors. Nanobiotechnology; Concepts, Applications and Perspectives. Wiley-VCH; Weinheim, Germany: 2004. [Google Scholar]
    16. Khashan S.A., Dagher S., Alazzam A., Mathew B., Hilal-Alnaqbi A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 2017;27:055016. doi: 10.1088/1361-6439/aa666d. [CrossRef] [Google Scholar]
    17. Basauri A., Gomez-Pastora J., Fallanza M., Bringas E., Ortiz I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019;209:900–907. doi: 10.1016/j.seppur.2018.09.028. [CrossRef] [Google Scholar]
    18. Abdollahi P., Karimi-Sabet J., Moosavian M.A., Amini Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020;231:115875. doi: 10.1016/j.seppur.2019.115875. [CrossRef] [Google Scholar]
    19. Khashan S.A., Alazzam A., Furlani E. A novel design for a microfluidic magnetophoresis system: Computational study; Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013); Nara, Japan. 18–23 November 2013. [Google Scholar]
    20. Pamme N. Magnetism and microfluidics. Lab Chip. 2006;6:24–38. doi: 10.1039/B513005K. [PubMed] [CrossRef] [Google Scholar]
    21. Gómez-Pastora J., Amiri Roodan V., Karampelas I.H., Alorabi A.Q., Tarn M.D., Iles A., Bringas E., Paunov V.N., Pamme N., Furlani E.P., et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C. 2019;123:10065–10080. doi: 10.1021/acs.jpcc.9b01393. [CrossRef] [Google Scholar]
    22. Gómez-Pastora J., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 2019;9:7265. doi: 10.1038/s41598-019-43827-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    23. Tarn M.D., Pamme N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In: Taly V., Viovy J.L., Descroix S., editors. Microchip Diagnostics Methods and Protocols. Humana Press; New York, NY, USA: 2017. pp. 69–83. [Google Scholar]
    24. Phurimsak C., Tarn M.D., Peyman S.A., Greenman J., Pamme N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 2014;86:10552–10559. doi: 10.1021/ac5023265. [PubMed] [CrossRef] [Google Scholar]
    25. Wu X., Wu H., Hu Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 2011;11:11–24. doi: 10.1007/s10404-011-0768-7. [CrossRef] [Google Scholar]
    26. Vojtíšek M., Tarn M.D., Hirota N., Pamme N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 2012;13:625–635. doi: 10.1007/s10404-012-0979-6. [CrossRef] [Google Scholar]
    27. Gómez-Pastora J., González-Fernández C., Real E., Iles A., Bringas E., Furlani E.P., Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip. 2018;18:1593–1606. doi: 10.1039/C8LC00396C. [PubMed] [CrossRef] [Google Scholar]
    28. Forbes T.P., Forry S.P. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip. 2012;12:1471–1479. doi: 10.1039/c2lc40113d. [PubMed] [CrossRef] [Google Scholar]
    29. Nandy K., Chaudhuri S., Ganguly R., Puri I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008;320:1398–1405. doi: 10.1016/j.jmmm.2007.11.024. [CrossRef] [Google Scholar]
    30. Plouffe B.D., Lewis L.H., Murthy S.K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics. 2011;5:013413. doi: 10.1063/1.3553239. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    31. Hale C., Darabi J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics. 2014;8:044118. doi: 10.1063/1.4893772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    32. Becker H., Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21:12–26. doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7. [PubMed] [CrossRef] [Google Scholar]
    33. Pekas N., Zhang Q., Nannini M., Juncker D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip. 2010;10:494–498. doi: 10.1039/B912770D. [PubMed] [CrossRef] [Google Scholar]
    34. Wang T., Chen J., Zhou T., Song L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines. 2018;9:269. doi: 10.3390/mi9060269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    35. Castaño-Álvarez M., Pozo Ayuso D.F., García Granda M., Fernández-Abedul M.T., Rodríguez García J., Costa-García A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008;130:436–448. doi: 10.1016/j.snb.2007.09.043. [CrossRef] [Google Scholar]
    36. Prakash S., Kumar S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015;229:1273–1288. doi: 10.1177/0954405414535581. [CrossRef] [Google Scholar]
    37. Leester-Schädel M., Lorenz T., Jürgens F., Ritcher C. Fabrication of Microfluidic Devices. In: Dietzel A., editor. Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells. Springer; Basel, Switzerland: 2016. pp. 23–57. [Google Scholar]
    38. Bartlett N.W., Wood R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 2016;26:115013. doi: 10.1088/0960-1317/26/11/115013. [CrossRef] [Google Scholar]
    39. Ng P.F., Lee K.I., Yang M., Fei B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers. 2019;11:64. doi: 10.3390/polym11010064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    40. Furlani E.P., Sahoo Y., Ng K.C., Wortman J.C., Monk T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices. 2007;9:451–463. doi: 10.1007/s10544-007-9050-x. [PubMed] [CrossRef] [Google Scholar]
    41. Tarn M.D., Peyman S.A., Robert D., Iles A., Wilhelm C., Pamme N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009;321:4115–4122. doi: 10.1016/j.jmmm.2009.08.016. [CrossRef] [Google Scholar]
    42. Furlani E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications. Academic Press; Waltham, MA, USA: 2001. [Google Scholar]
    43. White F.M. Viscous Fluid Flow. McGraw-Hill; New York, NY, USA: 1974. [Google Scholar]
    44. Mathew B., Alazzam A., El-Khasawneh B., Maalouf M., Destgeer G., Sung H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015;153:99–107. doi: 10.1016/j.seppur.2015.08.026. [CrossRef] [Google Scholar]
    45. Furlani E.J., Furlani E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007;312:187–193. doi: 10.1016/j.jmmm.2006.09.026. [CrossRef] [Google Scholar]
    46. Furlani E.P., Ng K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E. 2006;73:061919. doi: 10.1103/PhysRevE.73.061919. [PubMed] [CrossRef] [Google Scholar]
    47. Eibl R., Eibl D., Pörtner R., Catapano G., Czermak P. Cell and Tissue Reaction Engineering. Springer; Berlin/Heidelberg, Germany: 2009. [Google Scholar]
    48. Pamme N., Eijkel J.C.T., Manz A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006;307:237–244. doi: 10.1016/j.jmmm.2006.04.008. [CrossRef] [Google Scholar]
    49. Alorabi A.Q., Tarn M.D., Gómez-Pastora J., Bringas E., Ortiz I., Paunov V.N., Pamme N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip. 2017;17:3785–3795. doi: 10.1039/C7LC00918F. [PubMed] [CrossRef] [Google Scholar]
    50. Zhang H., Guo H., Chen Z., Zhang G., Li Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 2007;17:775–780. doi: 10.1088/0960-1317/17/4/014. [CrossRef] [Google Scholar]
    51. Mourzina Y., Steffen A., Offenhäusser A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 2005;11:135–140. doi: 10.1007/s00542-004-0430-3. [CrossRef] [Google Scholar]
    52. Mata A., Fleischman A.J., Roy S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006;16:276–284. doi: 10.1088/0960-1317/16/2/012. [CrossRef] [Google Scholar]
    53. Su N. 8 2000 Negative Tone Photoresist Formulations 2002–2025. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
    54. Su N. 8 2000 Negative Tone Photoresist Formulations 2035–2100. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
    55. Fu C., Hung C., Huang H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 2006;34:330–335. doi: 10.1088/1742-6596/34/1/054. [CrossRef] [Google Scholar]
    56. Kazoe Y., Yamashiro I., Mawatari K., Kitamori T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines. 2016;7:142. doi: 10.3390/mi7080142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    57. Sharp K.V., Adrian R.J., Santiago J.G., Molho J.I. Liquid flows in microchannels. In: Gad-el-Hak M., editor. MEMS: Introduction and Fundamentals. CRC Press; Boca Raton, FL, USA: 2006. pp. 10-1–10-46. [Google Scholar]
    58. Oh K.W., Lee K., Ahn B., Furlani E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip. 2012;12:515–545. doi: 10.1039/C2LC20799K. [PubMed] [CrossRef] [Google Scholar]
    59. Bruus H. Theoretical Microfluidics. Oxford University Press; New York, NY, USA: 2008. [Google Scholar]
    60. Beebe D.J., Mensing G.A., Walker G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002;4:261–286. doi: 10.1146/annurev.bioeng.4.112601.125916. [PubMed] [CrossRef] [Google Scholar]
    61. Yalikun Y., Tanaka Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines. 2016;7:83. doi: 10.3390/mi7050083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
    62. Van Heeren H., Verhoeven D., Atkins T., Tzannis A., Becker H., Beusink W., Chen P. [(accessed on 9 March 2020)];Design Guideline for Microfluidic Device and Component Interfaces (Part 2) Version 3. Available online: http://www.makefluidics.com/en/design-guideline?id=7.
    63. Scheuble N., Iles A., Wootton R.C.R., Windhab E.J., Fischer P., Elvira K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 2017;89:9116–9123. doi: 10.1021/acs.analchem.7b01853. [PubMed] [CrossRef] [Google Scholar]
    64. Lynch E.C. Red blood cell damage by shear stress. Biophys. J. 1972;12:257–273. [PMC free article] [PubMed] [Google Scholar]
    65. Paul R., Apel J., Klaus S., Schügner F., Schwindke P., Reul H. Shear stress related blood damage in laminar Couette flow. Artif. Organs. 2003;27:517–529. doi: 10.1046/j.1525-1594.2003.07103.x. [PubMed] [CrossRef] [Google Scholar]
    66. Gómez-Pastora J., Karampelas I.H., Xue X., Bringas E., Furlani E.P., Ortiz I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C. 2017;121:7466–7477. doi: 10.1021/acs.jpcc.6b12835. [CrossRef] [Google Scholar]
    67. Lim J., Yeap S.P., Leow C.H., Toh P.Y., Low S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014;421:170–177. doi: 10.1016/j.jcis.2014.01.044. [PubMed] [CrossRef] [Google Scholar]
    68. Culbertson C.T., Sibbitts J., Sellens K., Jia S. Fabrication of Glass Microfluidic Devices. In: Dutta D., editor. Microfluidic Electrophoresis: Methods and Protocols. Humana Press; New York, NY, USA: 2019. pp. 1–12. [Google Scholar]
    Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.

    Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment

    by Ana L. Quaresma *OrcID andAntónio N. PinheiroOrcID
    CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal*
    Author to whom correspondence should be addressed.
    Academic Editor: Bommanna Krishnappan
    Water 2021, 13(6), 851; https://doi.org/10.3390/w13060851
    Received: 16 January 2021 / Revised: 8 March 2021 / Accepted: 18 March 2021 / Published: 20 March 2021
    (This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)

    Abstract

    이 연구에서는 전산 유체 역학 (CFD) 소프트웨어 (FLOW-3D®)를 사용하여 바닥 오리피스가 있는 풀형 어로에서 흐름의 3D 수치 모델링을 수행했습니다. 수치 결과는 음향 도플러 속도계 (ADV) 및 입자 이미지 속도계 (PIV) 측정에서 얻은 실험 데이터와 비교되었습니다.

    흐름 깊이, 흐름 패턴, 수속, 난류 운동 에너지, Reynolds 수직 응력 및 바닥 구성 요소에 평행한 Reynolds 전단 응력과 같이 어로 효율에 영향을 미치는 여러 유체 역학적 변수를 정성 및 정량적으로 비교했습니다.

    수치 모델은 복잡한 유동장을 정확하게 재현하여 수치 모델 예측과 분석 된 변수에 대한 실험 데이터 사이에 전반적으로 좋은 일치를 보여줍니다. 분석중인 모든 매개 변수에 대한 수치 모델 검증 수행의 중요성이 강조되었습니다.

    또한 프로토 타입 어로의 업 스케일 된 수치 모델을 실행하여 스케일링 효과를 분석했습니다. 스케일 효과의 증거없이 실제 모델과 프로토 타입 치수 모두에 대해 유사한 정확도로 모델을 수행했습니다.

    현재 연구는 CFD 모델 (즉, FLOW-3D®)이 새로운 수영장 유형 어로 형상을 위한 적절하고 효율적인 설계 및 분석 도구로 사용될 수 있으며 물리적 모델 테스트를 줄이고 보완 할 수 있다고 결론지었습니다.

    In this study, the 3D numerical modelling of flow in a pool-type fishway with bottom orifices was performed using computational fluid dynamics (CFD) software (FLOW-3D®). Numerical results were compared with experimental data obtained from acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) measurements. Several hydrodynamic variables that influence fishways efficiencies, such as flow depths, flow patterns, water velocity, turbulent kinetic energy, Reynolds normal stresses, and Reynolds shear stress parallel to the bottom component, were qualitatively and quantitatively compared. The numerical model accurately reproduced the complex flow field, showing an overall good agreement between the numerical model predictions and the experimental data for the analysed variables. The importance of performing a numerical model validation for all the parameters under analyses was highlighted. Additionally, scaling effects were analysed by running an upscaled numerical model of the prototype fishway. The model performed with similar accuracy for both physical model and prototype dimensions with no evidence of scale effects. The present study concludes that CFD models (namely FLOW-3D®) may be used as an adequate and efficient design and analysis tool for new pool-type fishways geometries, reducing and complementing physical model testing.Keywords: pool-type fishways3D numerical modellingLESscale effectsflow patternsCFD model assessment

    Introduction

    강의 종단 연결성을 복원하는 것은 담수 생태계의 회복에있어 여전히 중요한 문제입니다 [1,2]. 잘 설계되고 건설된 경우 어로는 물고기가 댐과 둑을 지나 계속 이동할 수 있는 경로를 제공합니다.

    물고기 통과 효율성에 대한 검토에서 Noonan et al. [3]은 기존의 많은 어로의 설계 특성이 어종의 요구를 적절하게 충족시키지 못했지만, 풀형 어로가 모든 어류 그룹에 대해 가장 높은 효율성을 보여 주었다는 것을 발견했습니다.
    여러 어종에 적합한 수영 조건을 제공하는 것은 어항의 흐름과 난류 패턴이 성공에 중요한 역할을 하기 때문에 다소 어려운 일입니다 [2,4,5,6,7,8,9,10,11,12].

    물리적 모델링은 풀형 유형 어로의 유체 역학을 연구하기 위한 주요 접근 방식이었습니다 (예 : [13,14,15,16,17,18,19,20,21,22]). 그러나 물리적 실험은 비용과 시간이 많이 소요됩니다. 따라서 컴퓨터 기술의 발전으로 인해 물리적 모델 테스트를 줄이기 위해 복잡한 기하학적 구조를 가진 유압 구조의 흐름 패턴을 분석하는 데 전산 유체 역학 (CFD) 3 차원 (3D) 모델이 점점 더 많이 사용되고 있습니다 [23,24].

    따라서 이러한 모델은 어로 유체 역학 연구 및 효율적인 어로 설계에 필수적인 역할을 할 수 있습니다.
    어로에 대한 수치 모델링 연구는 주로 수직 슬롯 어로에 초점을 맞추고 있습니다 [12,25,26,27,28,29,30,31,32,33,34,35,36,37]. 수영장의 주요 부분에서 수직 슬롯 어로 흐름은 거의 2 차원 (2D)이고 수직 속도 구성 요소가 수평 요소 [26]보다 훨씬 작기 때문에 이러한 연구의 대부분은 2D 모델을 사용했습니다.

    바닥 오리피스가있는 수영장 유형 어로에서는 흐름이 매우 복잡하고 3D이므로 정확한 유동장 특성화를 얻기 위해 3D 모델을 사용해야합니다. 이 어로 구성을 모델링하는 것은 높은 속도 구배, 높은 와도 및 높은 전단 영역을 포함하기 때문에 다소 어렵습니다.

    이 연구에서는 FLOW-3D® (Flow Science, Inc., Santa Fe, NM, USA)를 사용하여 바닥 오리피스가 있는 수영장 유형 어로의 3D 수치 시뮬레이션을 수행하여 흐름 깊이, 속도 및 난류 패턴을 예측하는 능력을 평가했습니다. .

    최근 몇 년 동안 실내에 가까운 프로토 타입 수영장 형 어로가 사이프 린드 종의 행동과 움직임을 연구하는데 사용되었습니다 [1,7,8,11,38,39,40,41,42,43]. Silva et al. [38]은 노치, 급락 및 스트리밍에 대한 두 가지 다른 유동 체제와 관련하여 조정 가능한 치수를 가진 침수된 오리피스와 표면 노치의 동시 존재에 대한 Iberian barbel Luciobarbus bocagei (Steindachner, 1864)의 반응을 평가했습니다.

    이 연구의 결과는 이베리아 바벨이 어로를 협상하기 위해 오리피스 (76 %)를 선호했으며 어로에 들어가는 데 걸리는 시간도 오리피스에 비해 훨씬 적다는 것을 보여주었습니다.

    Silva et al. [39] 오프셋 및 직선 오리피스가있는 수영장 유형 어로의 이베리아 바벨에 대한 적합성을 테스트했습니다. 이 연구는 오프셋 구성이 직선 오리피스 레이아웃 (28 %)에 비해 물고기 통과 성공률 (68 %)이 훨씬 더 높음을 발견했습니다. 어로를 성공적으로 협상하는 데 걸리는 시간도 오프셋 구성, 특히 작은 성인의 경우 훨씬 더 낮았습니다.

    이 연구에서는 유속과 난류 매개 변수가 물고기 수영 성능에 미치는 영향을 분석했습니다. 수영장의 유동장을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다.

    이 연구의 결과에 따르면 레이놀즈 전단 응력은 어로 내 이베리아 미늘의 움직임에 가장 큰 영향을 미치는 매개 변수임이 입증되었습니다. Branco et al. [40] 두 가지 다른 흐름을 가진 오리피스와 노치가 있는 풀형 유형 어로에서 형태 학적 및 생태학적 특성이 다른 두 종, 바닥 지향 이베리아 바벨 Luciobarbus bocagei 및 물기둥 수영 자 Iberian chub Squalius pyrenaicus의 거동과 성능을 평가했습니다.

    풀의 유체 역학을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다. 결과는 두 종 모두 흐름 흐름이있는 노치를 선호했으며 이 흐름 체제로 상류로 이동하는데 더 성공적이었습니다.
    이 연구에서는 이 시설의 1 : 2.5 스케일 어로 모델을 사용하여 Silva et al.에 의해 테스트된 바닥 오리피스 구성이 있는 풀형 유형 어로의 속도와 난류를 측정했습니다.

    [7,38] 효과가 입증된 바벨 사용. 2D 입자 이미지 속도계 (PIV) 시스템 및 음향 도플러 속도계 (ADV)를 사용하여 순간 속도의 광범위한 측정을 수행하고, 후 처리하고, 수치 모델 정확도를 평가하는 데 사용했습니다.

    Haque et al. [44] 대부분의 경우 수치 모델의 검증에 사용할 수있는 실험 데이터 세트에 높은 측정 오류가 있고 / 또는 측정 메시가 너무 거칠어 서 이들의 예측 기능을 올바르게 평가할 수없는 문제를 언급했습니다.

    모델. Blocken과 Gualtieri [23]는 검증 및 검증 연구가 필수적이며 CFD 연구를 검증하기위한 데이터를 제공하기 위해 고품질 실험이 필요하다고 언급합니다.

    Fuentes-Pérez et al. [35]는 특히 난류 메트릭에 대한 어로 연구에서 수치 모델 검증 데이터를 찾는 데 어려움을 언급합니다. 두 가지 측정 기술을 사용하고 상당한 양의 실험 데이터를 얻었기 때문에 이 연구에서는 이러한 문제를 극복했습니다.

    물리적 모델은 종종 Froude 수 유사성을 기반으로하며, 두 유사성 법칙을 모두 충족하는 데 어려움이있어 무시되는 레이놀즈 수 유사성입니다. 프로토 타입 레이놀즈 수가 일반적으로 훨씬 더 크기 때문에 레이놀즈 수 관련 스케일 효과가 도입될 수 있습니다.

    레이놀즈 수 증가는 속도 분포와 경계층 속성에 영향을 미칠 수 있습니다 [45]. 척도 효과를 평가하기 위해 수치 시뮬레이션을 사용할 수 있습니다 [46,47]. 따라서 본 연구에서는 바닥 오리피스 흐름이있는 풀형어도에 대한 스케일 효과를 분석하기 위해 두 가지 크기의 수치 모델을 개발했습니다.

    프로토 타입 치수의 대형 모델과 물리적 모델 치수의 스케일 된 소형 모델입니다. .
    바닥 오리피스가있는 수영장 형 어로의 유동장은 수직 슬롯 어로 (VSF)의 유동장보다 매우 3 차원 적이며 훨씬 더 복잡합니다. 이는 어로 수치 모델 검증에 대한 이전 연구에서 더 자주 고려 된 설계입니다 [26, 27,28,29,35].

    저자가 아는 한, 이것은 바닥 오리피스가있는 풀형 어로에 대한 최초의 CFD 연구이며, 여기에는 실험 속도 데이터와 풀형 어로에 대한 3 차원 수치 모델링 결과 간의 가장 광범위한 비교도 포함됩니다. 두 가지 다른 측정 기술 (PIV 및 ADV)이 사용되어 자세한 비교가 가능하고 이러한 유형의 유동장에 대한 CFD 시뮬레이션 결과에 대한 확신을 제공합니다.

    이 연구는 다른 어로 유형의 이전 수치 모델 연구에서 제시되지 않았던 난류 매개 변수를 포함하여 수치 모델 결과와 측정 간의 일치에 대한 통계적 테스트를 통해 정성적 비교 뿐만 아니라 상세한 정량적 비교도 제공합니다. 스케일 효과도 다룹니다.

    따라서 이 연구는 전 세계적으로 가장 많이 사용되는 풀 유형 어로의 CFD 모델 검증을 원활하게 할 것이며 [10] 설계자들의 사용을 장려 할 것입니다.
    또한 새로운 풀 유형 어로 형상을 위한 설계 도구로 CFD 모델 (즉, FLOW 3D®)을 사용하는 방법에 대해 설명합니다.

    Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
    Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
    Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
    Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
    Figure 3. Computational domain, showing Pool 3 mesh block.
    Figure 3. Computational domain, showing Pool 3 mesh block.
    Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
    Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
    Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
    Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
    Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
    Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).

    References

    1. Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [CrossRef]
    2. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of
      effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [CrossRef]
    3. Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [CrossRef]
    4. Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [CrossRef]
    5. Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power
      Administration: Portland, Oregon, 2002.
    6. Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [CrossRef]
    7. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [CrossRef]
    8. Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [CrossRef]
    9. Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [CrossRef]
    10. Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [CrossRef]
    11. Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714,
      145–154. [CrossRef]
    12. Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [CrossRef]
    13. Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [CrossRef]
    14. Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [CrossRef]
    15. Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [CrossRef]
    16. Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [CrossRef]
    17. Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130,10–23. [CrossRef]
    18. Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132,765–777. [CrossRef]
    19. Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [CrossRef]
    20. Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [CrossRef]
    21. Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [CrossRef]
    22. Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [CrossRef]
    23. Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for
      environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [CrossRef]
    24. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection
      technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [CrossRef]
    25. Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [CrossRef]
    26. Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [CrossRef]
    27. Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [CrossRef]
    28. Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [CrossRef]
    29. Bombaˇc, M.; Novak, G.; Rodiˇc, P.; Cetina, M. Numerical and physical model study of a vertical slot fishway. ˇ J. Hydrol. Hydromech.
      2014, 62, 150–159. [CrossRef]
    30. Bombaˇc, M.; Novak, G.; Mlacnik, J.; Cetina, M. Extensive field measurements of flow in vertical slot fishway as data for validation ˇ of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [CrossRef]
    31. Bombaˇc, M.; Cetina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. ˇ Ecol.
      Eng. 2017, 107, 126–136. [CrossRef]
    32. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [CrossRef]
    33. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [CrossRef]
    34. Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [CrossRef]
    35. Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of
      non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [CrossRef]
    36. Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid
      Mech. 2018, 18, 1435–1461. [CrossRef]
    37. Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard
      vertical slot fishways. Water 2019, 11, 199. [CrossRef]
    38. Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864)
      for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25,
      173–177. [CrossRef]
    39. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [CrossRef]
    40. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [CrossRef]
    41. Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance
      of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [CrossRef]
    42. Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [CrossRef]
    43. Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [CrossRef]
    44. Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [CrossRef]
    45. Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [CrossRef]
    46. Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [CrossRef]
    47. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
    48. Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [CrossRef]
    49. Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler
      velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [CrossRef]
    50. Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016.
    51. Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985.
    52. Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [CrossRef]
    53. Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [CrossRef]
    54. Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and
      turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [CrossRef]
    55. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
    56. Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [CrossRef]
    1. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [CrossRef]
    2. Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [CrossRef]
    3. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due
      to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [CrossRef]
    4. Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963,
      91, 99–164. [CrossRef]
    5. Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755.[CrossRef]
    6. Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [CrossRef]
    7. Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [CrossRef]
    8. Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [CrossRef]
    9. Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [CrossRef]
    10. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
    11. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
    12. Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [CrossRef]
    13. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
    14. Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological
      and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438.
    15. Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [CrossRef]
    16. Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [CrossRef]
    17. Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [CrossRef]
    18. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [CrossRef]
    19. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [CrossRef]
    20. Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [CrossRef]
    21. Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [CrossRef]
    Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.

    Numerical Study of Fluctuating Pressure on Stilling Basin Slab with Sudden Lateral Enlargement and Bottom Drop

    급격한 측면 확대 및 바닥 낙하에 따른 정류지(stilling basin) 슬래브의 변동 압력에 대한 수치 연구

    by Yangliang Lu,Jinbu Yin *OrcID,Zhou Yang,Kebang Wei andZhiming Liu
    College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road, Yangling 712100, China*
    Author to whom correspondence should be addressed.
    Water 2021, 13(2), 238; https://doi.org/10.3390/w13020238
    Received: 6 November 2020 / Revised: 7 January 2021 / Accepted: 11 January 2021 / Published: 19 January 2021
    (This article belongs to the Special Issue Physical Modelling in Hydraulics Engineering)

    Abstract

    갑작스런 확장 및 바닥 낙하가 있는 고요한 정류지(stilling basin) 유역은 복잡한 수력 특성, 특히 3D 공간 수력 점프 아래에서 변동하는 압력 분포로 이어집니다.

    이 논문은 FLOW-3D 소프트웨어를 기반으로 한 LES (Large Eddy Simulation) 모델과 TruVOF 방법을 사용하여 시간 평균 압력, 변동 압력의 RMS (Root Mean Square), 정물(stilling basin) 조 슬래브의 최대 및 최소 압력을 시뮬레이션했습니다.

    실제 모델 결과와 비교하여 시뮬레이션 결과는 LES 모델이 정물 유역의 변동하는 수류 압력을 안정적으로 시뮬레이션 할 수 있음을 보여줍니다. 변동 압력의 RMS의 최대 값은 정수조 전면과 측벽의 연장선 부근에 나타납니다.

    이 논문은 변동 압력의 생성 메커니즘과 Navier-Stokes 방정식에서 파생된 Poisson 방정식을 기반으로 영향 요인 (변동 속도, 속도 구배, 변동 와도)의 정량 분석과 특성의 정성 분석을 결합하는 연구 방법을 제공합니다.

    변동하는 압력의. 정류 지의 소용돌이 영역과 벽에 부착 된 제트 영역의 변동 압력 분포는 주로 각각 와류 및 변동 유속의 영향을 받으며 충돌 영역의 분포는 변동 속도, 속도 구배 및 변동에 의해 발생합니다.

    A stilling basin with sudden enlargement and bottom drop leads to complicated hydraulic characteristics, especially a fluctuating pressure distribution beneath 3D spatial hydraulic jumps. This paper used the large eddy simulation (LES) model and the TruVOF method based on FLOW-3D software to simulate the time-average pressure, root mean square (RMS) of fluctuating pressure, maximum and minimum pressure of a stilling basin slab. Compared with physical model results, the simulation results show that the LES model can simulate the fluctuating water flow pressure in a stilling basin reliably. The maximum value of RMS of fluctuating pressure appears in the vicinity of the front of the stilling basin and the extension line of the side wall. Based on the generating mechanism of fluctuating pressure and the Poisson Equation derived from the Navier–Stokes Equation, this paper provides a research method of combining quantitative analysis of influencing factors (fluctuating velocity, velocity gradient, and fluctuating vorticity) and qualitative analysis of the characteristics of fluctuating pressure. The distribution of fluctuating pressure in the swirling zone of the stilling basin and the wall-attached jet zone is mainly affected by the vortex and fluctuating flow velocity, respectively, and the distribution in the impinging zone is caused by fluctuating velocity, velocity gradient and fluctuating vorticity. 

    Keywords: submerged jumpsudden lateral enlargement and bottom droplarge eddy simulationvortexfluctuating pressure

    Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
    Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
    Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.
    Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.

    Table 1. Operating conditions.

    ConditionFlow Discharge
    (m3/s)
    Inflow Froude NumberInflow Velocity (m/s)Inflow Water Depth (m)
    10.9425.2955.6110.114
    20.6434.5454.4890.097
    30.2324.2273.0180.052
    Figure 3. Schematic diagram of fluctuating pressure data-processing process.
    Figure 3. Schematic diagram of fluctuating pressure data-processing process.
    Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.
    Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.

    Table 2. Grid independence test.

    GridContaining Block Cell Size (m)Nested Block Cell Size (m)Discharge
    (m3/s)
    Relative Error (%)
    10.0500.0250.9905.10
    20.0400.0200.9692.70
    30.0300.0150.9561.49
    40.0200.0100.9521.06
    Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
    Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
    Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
    Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
    Figure 7. Comparison of bottom velocity.
    Figure 7. Comparison of bottom velocity.
    Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
    Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
    Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
    Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
    Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
    Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
    Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
    Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
    Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
    Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
    Figure 13. Variance of fluctuating pressure coefficient (Cp′).
    Figure 13. Variance of fluctuating pressure coefficient (Cp′).

    References

    1. Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 199836, 55–68. [Google Scholar] [CrossRef]
    2. Liu, P.Q.; Li, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. J. Hydraul. Eng. 2007133, 618–624. [Google Scholar] [CrossRef]
    3. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 20208, 323. [Google Scholar] [CrossRef]
    4. Sun, S.-K.; Liu, H.-T.; Xia, Q.-F.; Wang, X.-S. Study on stilling basin with step down floor for energy dissipation of hydraulic jump in high dams. J. Hydraul. Eng. 200536, 1188–1193. (In Chinese) [Google Scholar]
    5. Li, Q.; Li, L.; Liao, H. Study on the Best Depth of Stilling Basin with Shallow-Water Cushion. Water 201810, 1801. [Google Scholar] [CrossRef]
    6. Luo, Y.-Q.; He, D.-M.; Zhang, S.-C.; Bai, S. Experimental Study o