
Groynes 주변의 지형 및 수리학적 수치 시뮬레이션
연구 배경 및 목적
문제 정의
- 하천 및 하구에서 발생하는 침식 문제를 해결하기 위해 Groynes(제방 구조물)이 널리 사용됨.
- Groynes 주변의 흐름과 침식 현상을 정확히 이해하는 것은 수로 보호 및 유지관리에 필수적임.
- 실험적 연구는 시간과 비용이 많이 소요되므로 컴퓨터 기반 CFD(전산유체역학) 시뮬레이션을 활용하여 수리학적 특성을 분석하는 연구가 필요함.
연구 목적
- FLOW-3D를 이용하여 Groynes 주변의 유동 및 세굴(scour) 현상을 수치적으로 분석.
- 실험 결과와 비교하여 FLOW-3D 모델의 정확성을 검증.
- SSIIM 2.0 소프트웨어와의 비교 분석을 통해 다양한 모델의 예측 정확도 평가.
연구 방법
FLOW-3D 모델링 및 시뮬레이션 설정
- VOF(Volume of Fluid) 기법을 사용하여 자유 수면을 추적.
- RNG k-ε 난류 모델을 적용하여 난류 흐름을 해석.
- 지형 모델링: Soulsby-Whitehouse 방정식을 이용하여 세굴 예측.
- 경계 조건:
- 유입: Froude 수 기반의 흐름 조건 적용.
- 유출: 자연 배출 경계 조건 설정.
- 바닥: 이동 가능한 퇴적층으로 설정.
주요 결과
유동 및 세굴 특성 분석
- Groynes 주변에서 강한 와류(vortex) 발생 → 세굴 형성에 주요 원인.
- Froude 수가 낮을수록 모델 예측 정확도 향상.
- SSIIM 2.0 대비 FLOW-3D가 보다 정확한 흐름 및 세굴 패턴 예측.
- 실험 결과와 비교 시 최대 세굴 깊이 차이가 10% 이내로 나타남.
결론 및 향후 연구
결론
- FLOW-3D를 활용한 수치 시뮬레이션이 실험 결과와 높은 일치도를 보이며, Groynes 주변의 유동 및 세굴 현상을 효과적으로 예측 가능.
- Froude 수와 유속 비(Uavg/Ucr)에 따라 모델 정확도가 달라지며, 추가적인 실험 검증이 필요.
향후 연구 방향
- LES(Large Eddy Simulation)와 같은 고급 난류 모델 적용을 통한 예측 정확도 향상.
- 다양한 하천 형상 및 유량 조건에서 추가적인 검증 수행.
- 실제 하천 데이터와의 비교를 통한 모델 보정.
연구의 의의
이 연구는 FLOW-3D를 활용하여 Groynes 주변의 유동 및 세굴 현상을 정량적으로 분석하고, 수치 모델의 정확성을 실험적으로 검증하였다. 하천 관리 및 구조물 설계의 최적화에 기여할 수 있는 데이터와 분석 방법을 제공한다.



References
- Acharya, A., and Duan, J.G. (2011). Three dimensional simulation of flow field around series of spur dikes. In: Reston, V.A. (ed.) ASCE copyright Proceedings of the 2011 World environmental and water resources congress, California, USA.
- Alemi, M., and Maia, R. (2018). “Numerical simulation of the flow and local scour process around single and complex bridge piers.” Int. J. Civil Eng., 16(5), 475-487. doi:10.1007/s40999-016-0137-8
- Barbhuiya, A.K., and Dey, S. (2004). “Local scour at abutments: A review.” Sadhana, 29(5), 449-476. doi:10.1007/BF02703255
- Blocken, B., and Gualtieri, C. (2012). “Ten iterative steps for model development and evaluation applied to computational fluid. dynamics for environmental fluid mechanics.” Environ. Model. Softw., 33, 1-22. doi:10.1016/j.envsoft.2012.02.001
- Chiew, Y.M. (1992). “Scour protection at bridge piers.” J. Hydraul. Eng., 118(9), 1260-1269. doi:10.1061/(ASCE)0733-9429(1992)118:9(1260)
- Choufu, L., Abbasi, S., Pourshahbaz, H., Taghvaei, P., and Tfwala, S. (2019). “Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study.” Water, 11(2), 235. doi:10.3390/w11020235
- Daneshfaraz, R., Ghaderi, A., and Ghahremanzadeh, A. (2015). “An analysis of flowing pattern around T-shaped Spur Dike at 90 Arc, based on fluent and flow-3D models.” Int. Bull. Water Resour. Dev., 3(3), 1-9.
- Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and Ghaderi, A. (2019). “3-D Numerical simulation of water flow over a broad-crested weir with openings.” ISH J. Hydraul. Eng., 1-9. doi:10.1080/09715010.2019.1581098
- Duan, J.G., and Nanda, S.K. (2006). “Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field.” J. Hydrol., 327(3-4), 426-437. doi:10.1016/j.jhydrol.2005.11.055
- Flow Science, Inc. (2016). “Flow-3d User Manual: V11.2” Flow Science, Inc.: Santa Fe, NM, USA.
- Garde, R.J., Subramanya, K.S., and Nambudripad, K.D. (1961). “Study of scour around spur-dikes.” J. Hydraul. Div., 87(6), 23-37.
- Ghaderi, A., and Abbasi, S. (2019). “CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar.” Sadhana, 44(10), 216. doi:10.1007/s12046-019-1196-8
- Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M. (2020a). Efficiency of trapezoidal labyrinth shaped stepped spillways, Flow Measurement and Instrumentation, 101711. https://doi.org/10.1016/j.flowmeasinst.2020.101711
- Ghaderi, A., Daneshfaraz, R., Abbasi, S., and Abraham, J. (2020b). “Numerical analysis of the hydraulic characteristics of modified labyrinth weirs.” Int. J. Energy Water Resour., 1–12. https://doi.org/10.1007/s42108-020-00082-5
- Ghaderi, A., Dasineh, M., Abbasi, S., and Abraham, J. (2020c). “Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD.” Appl. Water Sci., 10(1), 31. doi:10.1007/s13201-019-1112-8
- Gualtieri, C. (2010). “RANS-based simulation of transverse turbulent mixing in a 2D geometry.” Environ. Fluid Mech., 10(1–2), 137–156. doi:10.1007/s10652-009-9119-6
- Gualtieri, C., Angeloudis, A., Bombardelli, F., Jha, S., and Stoesser, T. (2017). “On the values for the turbulent Schmidt number in environmental flows.” Fluids, 2(2), 17.
- Gualtieri, C., Jiménez, L., and Rodríguez, J.M. (2010). “Modelling turbulence and solute transport in a square dead zone.” In 1st European IAHR Congress, Edinburgh (Gran Bretagna). May (Vol. 4, No. 6).
- Jakeman, A.J., Letcher, R.A., and Norton, J.P. (2006). “Ten iterative steps in development and evaluation of environmental models.” Environ. Model. Softw., 21(5), 602–614. doi:10.1016/j.envsoft.2006.01.004
- Karami, H., Basser, H., Ardeshir, A., and Hosseini, S.H. (2014). “Verification of numerical study of scour around spur dikes using experimental data.” Water Environ. J., 28(1), 124–134. doi:10.1111/wej.12019
- Kuhnle, R.A., Alonso, C.V., and Shields, F.D., Jr. (2002). “Local scour associated with angled spur dikes.” J. Hydraul. Eng., 128(12), 1087–1093. doi:10.1061/(ASCE)0733-9429(2002)128:12(1087)
- Mastbergen, D.R., and Van Den Berg, J.H. (2003). “Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons.” Sedimentology, 50(4), 625–637. doi:10.1046/j.1365-3091.2003.00554.x
- Omara, H., Elsayed, S.M., Abdeelaal, G.M., Abd-Elhamid, H.F., and Tawfik, A. (2019). “Hydromorphological numerical model of the local scour process around bridge piers.” Arab. J. Sci. Eng., 44(5), 4183–4199. doi:10.1007/s13369-018-3359-z
- Pandey, M., Ahmad, Z., and Sharma, P.K. (2016). “Estimation of maximum scour depth near a spur dike.” Can. J. Civil Eng., 43(3), 270–278. doi:10.1139/cjce-2015-0280
- Pandey, M., Ahmad, Z., and Sharma, P.K. (2018). “Scour around impermeable spur dikes: A review.” ISH J. Hydraul. Eng., 24(1), 25–44. doi:10.1080/09715010.2017.1342571
- Pandey, M., Azamathulla, H.M., Chaudhuri, S., Pu, J.H., and Pourshahbaz, H. (2020a). “Reduction of time-dependent scour around piers using collars.” Ocean Eng., 213, 107692. doi:10.1016/j.oceaneng.2020.107692
- Pandey, M., Lam, W.H., Cui, Y., Khan, M.A., Singh, U.K., and Ahmad, Z. (2019). “Scour around spur dike in sand–gravel mixture bed.” Water, 11(7), 1417. doi:10.3390/w11071417
- Pandey, M., Valyrakis, M., Qi, M., Sharma, A., and Lodhi, A.S. (2020b). “Experimental assessment and prediction of temporal scour depth around a spur dike.” Int. J. Sediment Res. doi:10.1016/j.ijsrc. 2020.03.015
- Pourshahbaz, H., Abbasi, S., and Taghvaei, P. (2017). “Numerical scour modeling around parallel spur dikes in FLOW-3D.” Drink. Water Eng. Sci. Discuss. doi:10.5194/dwes-2017-21
- Pu, J.H. (2015). “Turbulence modelling of shallow water flows using Kolmogorov approach.” Comput. Fluids, 115, 66–74. doi:10.1016/j.compfluid.2015.03.010
- Pu, J.H. (2019). “Turbulent rectangular compound open channel flow study using multi-zonal approach.” Environ. Fluid Mech., 19(3), 785–800. doi:10.1007/s10652-018-09655-9
- Pu, J.H., Huang, Y., Shao, S., and Hussain, K. (2016). “Three-gorges dam fine sediment pollutant transport: turbulence SPH model simulation of multi-fluid flows.” J. Appl. Fluid Mech., 9(1), 1–10. doi:10.18869/acadpub.jafm.68.224.23919
- Pu, J.H., and Lim, S.Y. (2014). “Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment.” Environ. Fluid Mech., 14(1), 69–86. doi:10.1007/s10652-013-9286-3
- Pu, J.H., Pandey, M., and Hanmaiahgari, P.R. (2020). “Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows.” J. Hydro-Environ. Res., 32, 17–25. doi:10.1016/j.jher.2020.06.002
- Pu, J.H., Shao, S., and Huang, Y. (2014). “Numerical and experimental turbulence studies on shallow open channel flows.” J. Hydro-Environ. Res., 8(1), 9–19. doi:10.1016/j.jher.2012.12.001
- Pu, J.H., Tait, S., Guo, Y., Huang, Y., and Hanmaiahgari, P.R. (2018). “Dominant features in three-dimensional turbulence structure: Comparison of non-uniform accelerating and decelerating flows.” Environ. Fluid Mech., 18(2), 395–416. doi:10.1007/s10652-017-9557-5
- Richardson, E.V., Stevens, M.A., and Simons, D.B. (1975). “The design of spurs for river training.” In XVIth, IAHR congress (pp. 382–388). Sao Paulo, Brazil.
- Roache, P.J. (1997). “Quantification of uncertainty in computational fluid dynamics.” Annu. Rev. Fluid Mech., 29(1), 123–160. doi:10.1146/annurev.fluid.29.1.123
- Roache, P.J. (2009). “Perspective: Validation—What does it mean?” J Fluids Eng, 131, 3. doi:10.1115/1.3077134
- Strickler, A. (1923). Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen, Mitt. des Eidg. Amtes fu¨ r Wasserwirt. 16, Bern”
- Van Rijn, L.C. (1987). Mathematical modelling of morphological processes in the case of suspended sediment transport, Delft, Water loopkundig Laboratorium.
- Wei, G., Brethour, J., Grünzner, M., and Burnham, J. (2014). “The sedimentation scour model in FLOW-3D®.” Flow Sci. Rep., 3–14, Santa Fe, NM: Flow Science.
- Weitbrecht, V. (2004). Influence of dead-water zones on the dispersive mass transport in rivers, Ph.D. thesis, www.uvka.de/univerlag/volltexte/2004/11/–, Univ. of Karlsruhe, Karlsruhe, Germany.
- Xie, Z. (2011). “Theoretical and numerical research on sediment transport in pressurised flow conditions, Ph.D. Civil Engineering Theses, University of Nebraska, Lincoln., 2011.”
- Zhang, Q., Zhou, X.L., and Wang, J.H. (2017). “Numerical investigation of local scour around three adjacent piles with different arrangements under current.” Ocean Eng., 142, 625–638. doi:10.1016/j.oceaneng.2017.07.045
- Zheng, X.G., Pu, J.H., Chen, R.D., Liu, X.N., and Shao, S. (2016). “A novel explicit-implicit coupled solution method of SWE for long-term river meandering process induced by dam break.” J. Appl. Fluid Mech., 9(6), 2647–2660. doi:10.29252/jafm.09.06.25969