인텔 : 모델명이 ‘2’로 시작하고 ‘V’로 끝나는 코어 울트라 시리즈 2(Core Ultra Series 2). 예를 들면 인텔 코어 울트라 5 226V(시리즈2)가 있다.
AMD : 라이젠 AI 300 시리즈. 예시로 AMD 라이젠 AI 7 프로 360.
퀄컴 : 스냅드래곤 X 시리즈의 플러스(Plus) 또는 엘리트(Elite) 제품
이 세 가지 프로세서는 성능과 배터리 수명 면에서 애플 맥북의 M 시리즈와 경쟁하도록 설계됐다. 그러나 노트북을 선택할 때는 프로세서뿐 아니라 다양한 요소를 함께 고려해야 한다.
인텔 프로세서
인텔의 최신 프로세서는 다음 세 가지 범주로 나뉜다.
인텔 코어 울트라(Intel Core Ultra) : 프리미엄 칩으로, AI 전용 프로세서를 탑재했다(예 : 인텔 코어 울트라 7 155U).
인텔 코어(Intel Core) : 주류 노트북에 사용되는 칩으로, 코어 울트라보다 한 단계 아래다(예 : 인텔 코어 7 150U).
인텔 프로세서(Intel Processor) : 과거 펜티엄과 셀러론 브랜드를 대체하는 저가형 PC 칩이다(예 : 인텔 프로세서 N200).
인텔은 프로세서를 성능 등급에 따라 ‘3’, ‘5’, ‘7’, ‘9’로 세분화했다. 숫자가 높을수록 더 많은 코어를 가지고 있다는 의미이며, 이미지 처리 및 비디오 작업 속도가 향상된다. 코어 5와 코어 울트라 5 칩은 웹 브라우징 및 오피스 작업에 적합하다.
Intel
모델명 뒤에 붙는 접미사도 중요하다. 이 글자는 프로세서가 어떻게 최적화되었는지를 나타낸다. 긴 접미사 목록 중에 알아두어야 할 주요 단어는 ‘U’와 ‘H’다. U는 배터리 수명을, H는 성능을 강조한다. 코어 울트라 5 226V의 ‘V’는 코어 울트라 제품 라인에만 적용되는 접미사다.
구형 모델은 12세대 코어 i5 1235U처럼 이름에 ‘i’와 세대 번호가 포함되어 있다. 14세대에 이르러 인텔은 모든 것을 재설정하고 이제 ‘시리즈 1’부터 세기 시작했다(예 : 코어 울트라 155U). 즉, 최신 인텔 칩의 모델명은 구형 모델보다 짧다. 가격이 적당한 경우라면 구형 모델도 여전히 고려해 볼만하다.
AMD 프로세서
AMD는 인텔만큼 브랜딩 개편에 적극적이지는 않다. 애플 및 퀄컴과 경쟁하는 AI 300 시리즈 칩 외에 나머지 프로세서는 2023년 도입된 더 길고 혼란스러운 명명 체계를 따르고 있다.
AMD
예시로 AMD 라이젠 5 8640HS를 살펴본다.
첫 번째 숫자 ‘8’은 세대를 의미하며, 2024년에 출시된 칩을 나타낸다(7735HS는 2023년 제품).
‘5’는 성능 등급을 나타내며, 인텔과 마찬가지로 숫자가 높을수록 성능이 좋다는 의미다. 인텔 코어 5와 코어 7 체계와 유사하게 홀수로 계산된다.
마지막 글자는 프로세서의 최적화 방식이다. ‘U’는 배터리 수명, ‘H’는 성능을 우선시한다.
이 명명 체계를 따르는 칩은 AMD의 구형 젠 4(Zen 4) 아키텍처를 기반으로 하지만, 최신 AI 300 시리즈는 젠 5 아키텍처를 사용한다. AMD가 프로세서 라인 대부분을 최신 아키텍처로 전환함에 따라 이에 맞는 새로운 브랜드가 등장할 것으로 예상된다.
퀄컴 프로세서
퀄컴은 올해 초 전력 효율성에 중점을 두고 PC CPU 경쟁에 합류했다. 퀄컴의 스냅드래곤 X 칩은 휴대폰, 태블릿, 애플의 M 시리즈 프로세서에서 볼 수 있는 것과 동일한 Arm 기반 아키텍처를 사용하며, 우수한 PC 성능과 긴 배터리 수명을 제공한다. 무엇보다 퀄컴의 직관적인 브랜드 전략이 신선하게 다가온다.
스냅드래곤 X 엘리트(Snapdragon X Elite) : 최고급 모델
스냅드래곤 X 플러스(Snapdragon X Plus) : 그보다 한 단계 낮은 모델
마이크로소프트 서피스 노트북에 탑재된 스냅드래곤 X 플러스를 사용해 본 경험에 따르면, 충분한 성능과 하루 종일 지속되는 배터리 수명을 제공했다.
다만, Arm 기반 프로세서가 모든 윈도우 소프트웨어와 호환되는 것은 아니다. 스냅드래곤 PC에서 Arm이 아닌 앱을 실행하는 마이크로소프트의 에뮬레이션 엔진에서도 호환성 문제가 발생할 수 있다. 에뮬레이션 개선과 Arm 버전의 소프트웨어를 출시하는 개발자가 늘어나면서 상황이 점점 개선되고 있지만, 인텔과 AMD 노트북에서는 겪지 않아도 될 골칫거리가 여전히 남아 있다.
CPU 시장의 긍정적인 변화
복잡한 이름을 살펴보는 것이 혼란스러울 수 있고 AI에 대한 강조가 다소 과장된 면이 있지만, PC 프로세서 분야에서 3가지 업체가 경쟁하는 덕분에 상황은 개선되고 있다. 지난 4년간 애플은 전력 효율성 측면에서 독보적인 성과를 보여줬다. 그러나 인텔, AMD, 퀄컴이 새로운 프로세서를 내놓으며 애플의 수준에 도달하고 있다.
물론 복잡한 브랜드와 명명 체계는 단점이지만, 이런 경쟁 덕분에 더 나은 성능과 배터리 수명을 갖춘 제품이 등장하고 있다. 사용자에게 긍정적인 변화다. dl-itworldkorea@foundryco.com
아래 과거 자료도 선택에 큰 도움이 됩니다.
2023년 01월 11일
본 자료는 IT WORLD에서 인용한 자료입니다.
일반적으로 수치해석을 주 업무로 사용하는 경우 노트북을 사용하는 경우는 그리 많지 않습니다. 그 이유는 CPU 성능을 100%로 사용하는 해석 프로그램의 특성상 발열과 부품의 성능 측면에서 데스크탑이나 HPC의 성능을 따라 가기는 어렵기 때문입니다.
그럼에도 불구하고, 이동 편의성이나 발표, Demo 등의 업무 필요성이 자주 있는 경우, 또는 계산 시간이 짧은 경량 해석을 주로 하는 경우, 노트북이 주는 이점이 크기 때문에 수치해석용 노트북을 고려하기도 합니다.
보통 수치해석용 컴퓨터를 검토하는 경우 CPU의 Core수나 클럭, 메모리, 그래픽카드 등을 신중하게 검토하게 되는데 모든 것이 예산과 직결되어 있기 때문입니다. 따라서 해석용 컴퓨터 구매 시 어떤 것을 선정 우선순위에 두는지에 따라 사양이 달라지게 됩니다.
해석용으로 노트북을 고려하는 경우, 보통 CPU의 클럭은 비교적 선택 기준이 명확합니다. 메모리 또한 용량에 따라 가격이 정해지기 때문에 이것도 비교적 명확합니다. 나머지 가격에 가장 큰 영향을 주는 것이 그래픽카드인데, 이는 그래픽 카드의 경우 일반적인 게임용이나 포토샵으로 일반적인 이미지 처리 작업을 수행하는 그래픽카드와 3차원 CAD/CAE에 사용되는 업무용 그래픽 카드는 명확하게 분리되어 있고, 이는 가격 측면에서 매우 차이가 많이 납니다.
통상 게임용 그래픽카드는 수치해석의 경우 POST 작업시 문제가 발생하는 경우가 종종 발생하기 때문에 일반적으로 선택 우선 순위에서 충분한 확인을 한 후 구입하는 것이 좋습니다.
FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 적합합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 NVIDIA의 Quadro K 시리즈와 AMD의 Fire Pro W 시리즈입니다.
특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.
MSI가 새로운 노트북 CPU 벤치마크, 그리고 그 CPU가 내장돼 있는 신제품 노트북 제품군을 모두 CES 2023에서 공개했다. CES에서 인텔은 노트북용 13세대 코어 칩, 코드명 랩터 레이크와 핵심 제품인 코어 i9-13980HX를 발표했다.
ⓒ PCWorld
새로운 노트북용 13세대 코어 칩이 게임 플레이에서 12% 더 빠르다는 정도의 약간의 정보는 이미 알려져 있다. 사용자가 기다리는 것은 실제 CPU가 탑재된 노트북에서의 성능이지만 보통 벤치마크는 제품 출시가 임박해서야 공개되는 것이 보통이다. 올해는 다르다.
CES 2023에서 MSI는 인텔 최고급 제품군인 코어 i9-13980HX 프로세서가 탑재된 타이탄 GT77 HX과 레이더 GE78 HX를 공개했다. 이례적으로 여기에 더해 PCI 익스프레서 5 SSD의 실제 성능을 측정하는 크리스털디스크마크, 모바일 프로세서 실행 속도를 측정하는 시네벤치 벤치마크 점수도 함께 제공했다. 다음 영상의 결과부터 말하자면 인텔 최신 프로세서를 큰 폭으로 따돌릴 만한 수치다.
MSI는 레이더 GE78 HX 외에도 레이더 GE68 HX 그리고 게이밍 노트북 같지 않은 외관의 스텔스 16 스튜디오, 스텔스 14, 사이보그 14 등 2023년에 출시될 다른 노트북도 전시했다. 오래된 PC 애호가라면 MSI 노트북 전면을 장식한 화려한 복고풍의 라이트 브라이트(Lite Brite) LED를 반가워할지도 모른다. 바닥면 섀시가 투명한 플라스틱 소재로 MSI 로고가 새겨져 있는 제품도 있다. 상세한 가격, 출시일, 사양 등은 추후 공개 예정이다. editor@itworld.co.kr
고성능 노트북을 구매할 때는 코어 i7과 코어 i9 사이에서 선택의 갈림길에 서게 된다. 코어 i7 CPU도 강력하지만 코어 i9는 최고의 성능을 위해 만들어진 CPU이며 보통 그에 상응하는 높은 가격대로 판매된다.
CPU에 초점을 둔다면 관건은 성능이다. 성능을 좌우하는 두 가지 주요소는 CPU의 동작 클록 속도(MHz), 그리고 탑재된 연산 코어의 수다. 그러나 노트북에서 한 가지 중요한 제약 요소는 냉각이다. 냉각이 제대로 되지 않으면 고성능도 쓸모가 없다. 가장 적합한 노트북 CPU를 결정하는 데 도움이 되도록 인텔의 지난 3개 세대 CPU의 코어 i7과 i9에 대한 정보를 모았다. 최신 세대부터 시작해 역순으로 살펴보자.
11세대: 코어 i9 vs. 코어 i7
인텔의 11세대 타이거 레이크(Tiger Lake) H는 한 가지 큰 이정표를 달성했다. 인텔이 2015년부터 H급 CPU에 사용해 온 14nm 공정을 마침내 최신 10nm 슈퍼핀(SuperFin) 공정으로 바꾼 것이다. 오랫동안 기다려온 변화다.
인텔이 자랑할 만한 10nm 고성능 칩을 내놓자 타이거 레이크 H를 장착한 노트북도 속속 발표됐다. 얇고 가볍고 예상외로 가격도 저렴한 에이서 프레데터 트라이톤(Acer Predator Triton) 300 SE를 포함해 일부는 벌써 매장에 출시됐다. 모든 타이거 레이크 H 칩이 8코어 CPU라는 점도 달라진 부분이다. 이전 세대의 경우 같은 제품군 내에서 코어 수에 차이를 둬 성능 기대치를 구분했다.
클록 차이도 크지 않다. 코어 i7-11800H의 최대 클록은 4.6GHz, 코어 i9-11980HK는 5GHz로, 클록 속도 증가폭은 약 8.6% 차이다. 나쁘지 않은 수치지만 둘 다 8코어 CPU임을 고려하면 대부분의 사용자에게 코어 i9는 큰 매력은 없다.
다만 코어 i9에 유리한 부분을 하나 더 꼽자면 코어 i9-11980HK가 65W의 열설계전력(TDP)을 옵션으로 제공한다는 점이다. 높은 TDP는 최상위 코어 i9에만 제공되는데, 이는 전력 및 냉각 요구사항을 충족하는 노트북에서는 코어 i7 버전보다 더 높은 지속 클록 속도를 제공할 수 있음을 의미한다.
대신 이런 노트북은 두껍고 크기도 클 가능성이 높다. 따라서 두 개의 얇은 랩톱 중에서(하나는 코어 i9, 하나는 코어 i7) 고민하는 사람에겐 열 및 전력 측면의 여유분은 두께와 크기를 희생할 만큼의 가치는 없을 것이다.
*11세대의 승자: 대부분의 사용자에게 코어 i7
10세대: 코어 i9 vs. 코어 i7
인텔은 10세대 코멧 레이크(Comet Lake) H 제품군에서 14nm를 고수했다. 그 대신 코어 i9 CPU 외에 코어 i7에도 8코어 CPU를 도입, 사용자가 비싼 최상위 CPU를 사지 않고도 더 뛰어난 성능을 누릴 수 있게 했다.
11세대 노트북이 나오기 시작했지만 10세대 CPU 제품 중에서도 아직 괜찮은 제품이 많다. 예를 들어 MSI GE76 게이밍 노트북은 빠른 CPU와 고성능 155W GPU를 탑재했고, 전면 모서리에는 RGB 라이트가 달려 있다.
11세대 칩과 마찬가지로 코어와 클록 속도의 차이가 크지 않으므로 대부분의 사용자에게 코어 i7과 코어 i9 간의 차이는 미미하다. 코어 i9-10980HK의 최대 부스트 클록은 5.3GHz, 코어 i7-10870H는 5GHz로, 두 칩의 차이는 약 6%다. PC를 최대 한계까지 사용해야 하는 경우가 아니라면 더 비싼 비용을 들여 10세대 코어 i9를 구매할 이유가 없다.
*10세대 승자: 대부분의 사용자에게 코어 i7
9세대: 코어 i9 대 코어 i7
인텔은 9세대 커피 레이크 리프레시(Coffee Lake Refresh) 노트북 H급 CPU에서 14nm 공정을 계속 유지했다. 코어 i9는 더 높은 클록 속도(최대 5GHz)를 제공하며 8개의 CPU 코어를 탑재했다. 물론 이 칩은 2년 전에 출시됐지만 인텔이 설계를 도운 XPG 제니아(Xenia) 15 등 아직 괜찮은 게이밍 노트북이 있다. 얇고 가볍고 빠르며 엔비디아 RTX GPU를 내장했다.
8코어 4.8GHz 코어 i9-9880HK와 4.6GHz 6코어 코어 i7-9850의 클록 속도 차이는 약 4%로, 실제 사용 시 유의미한 차이로 이어지는 경우는 극소수다. 두 CPU 모두 기업용 노트북에 많이 사용됐다. 대부분의 소비자용 노트북에는 8코어 5GHz 코어 i9-9880HK와 6코어 4.5GHz 코어 i7-9750H가 탑재됐다. 이 두 CPU의 클록 차이는 약 11%로, 이 정도면 유의미한 차이지만 마찬가지로 대부분의 경우 실제로 체감하기는 어렵다.
그러나 코어 수의 차이는 멀티 스레드 애플리케이션에서 큰 체감 효과로 이어지는 경우가 많다. 3D 모델링 테스트인 씨네벤치(Cinebench) R20에서 코어 i9-9980HK를 탑재한 구형 XPS 15의 점수는 코어 i7-9750H를 탑재한 게이밍 노트북보다 42% 더 높았다. 8코어 코어 i9의 발열을 심화하는 무거운 부하에서는 성능 차이가 약 7%로 줄어들었다. 여기에는 노트북의 설계가 큰 영향을 미칠 것이다. 어쨌든 일부 상황에서는 8코어가 6코어보다 유리하다.
또한 수치해석의 경우 결과를 분석하는 작업중의 많은 부분이 POST 작업으로 그래픽처리가 필요하다. 따라서 아래 영상편집을 위한 노트북에 대한 자료도 선택에 도움이 될것으로 보인다.
영상 편집을 위한 최고의 노트북 9선
Brad Chacos, Ashley Biancuzzo, Sam Singleton | PCWorld
영상을 편집하다 보면 컴퓨터의 여러 리소스를 집약적으로 사용하기 마련이다. 그래서 영상 편집은 대부분 데스크톱 PC에서 하는 경우가 많지만, 노트북에서 영상을 편집하려 한다면 PC만큼 강력한 사양이 뒷받침되어야 한다.
ⓒ Gordon Mah Ung / IDG
영상 편집용 노트북을 구매할 때 가장 비싼 제품을 선택할 필요는 없다. 사용 환경에 맞게 프로세서, 디스플레이의 품질, 포트 종류 등을 다양하게 고려해야 한다. 다음은 영상 편집에 최적화된 노트북 제품이다. 추천 제품을 확인한 후 영상 편집용 노트북을 테스트하는 팁도 참고하자.
1. 영상 편집용 최고의 노트북, 델 XPS 17(2022)
ⓒ IDG
장점 • 가격 대비 강력한 기능 • 밝고 풍부한 색채의 대형 디스플레이 • 썬더볼트 4 포트 4개 제공 • 긴 배터리 수명 • 시중에서 가장 빠른 GPU인 RTX 3060
단점 • 무겁고 두꺼움 • 평범한 키보드 • USB-A, HDMI, 이더넷 미지원
델 XPS 17(2022)이야말로 콘텐츠 제작에 최적화된 노트북이다. 인텔 12세대 코어 i7-12700H 프로세서 및 엔비디아 지포스 RTX 3060는 편집을 위한 뛰어난 성능을 제공한다. 1TB SSD도 함께 지원되기에 데이터를 옮길 때도 편하다.
XPS 17은 SD카드 리더, 여러 썬더볼트 4 포트, 3840×2400 해상도의 17인치 터치스크린 패널, 16:10 화면 비율과 같은 영상 편집자에게 필요한 기능을 포함한다. 무게도 2.5kg 대로 비교적 가볍다. 배터리 지속 시간은 한번 충전 시 11시간인데, 이전 XPS 17 버전보다 1시간 이상 늘어난 수치다.
2. 영상 편집에 최적화된 스크린, 델 XPS 15 9520
ⓒ IDG
장점 • 뛰어난 OLED 디스플레이 • 견고하고 멋진 섀시(Chassis) • 강력한 오디오 • 넓은 키보드 및 터치패드
단점 • 다소 부족한 화면 크기 • 실망스러운 배터리 수명 • 시대에 뒤떨어진 웹캠 • 제한된 포트
델 XPS 15 9520은 놀라운 OLED 디스플레이를 갖추고 있으며, 최신 인텔 코어 i7-12700H CPU 및 지포스 RTX 3050 Ti 그래픽이 탑재되어 있다. 컨텐츠 제작 및 영상 편집용으로 가장 선호하는 제품이다. 시스템도 좋지만 투박하면서 금속 소재로 이루어진 외관이 특히 매력적이다.
15인치 노트북이지만 매일 갖고 다니기에 다소 무거운 것은 단점이다. XPS 17 모델에서 제공되는 포트도 일부 없다. 그러나 멋진 OLED 디스플레이가 단연 돋보이며, 3456X2160 해상도, 16:10 화면 비율, 그리고 매우 선명하고 정확한 색상을 갖추고 있어 좋다.
3. 최고의 듀얼 모니터 지원, 에이수스 젠북 프로 14 듀오 올레드
ⓒ IDG
장점 • 놀라운 기본 디스플레이와 보기 쉬운 보조 디스플레이 • 탁월한 I/O 옵션 및 무선 연결 • 콘텐츠 제작에 알맞은 CPU 및 GPU 성능
단점 • 생산성 노트북 치고는 부족한 배터리 수명 • 작고 어색하게 배치된 트랙패드 • 닿기 어려운 포트 위치
에이수스 젠북 프로 14 듀오(Asus Zenbook Pro 14 Duo OLED)는 일반적이지 않은 노트북이다. 일단 사양은 코어 i7 프로세서, 지포스 RTX 3050 그래픽, 16GB DDR5 메모리, 빠른 1TB NVMe SSD를 포함해 상당한 성능을 자랑한다. 또한 초광도의 547니트로 빛을 발하는 한편 DCI-P3 색영역의 100%를 커버하는 14.5인치 4K 터치 OLED 패널을 갖추고 있다. 사실상 콘텐츠 제작자를 위해 만들어진 제품이라 볼 수 있다.
가장 흥미로운 부분은 키보드 바로 위에 위치한 12.7인치 2880×864 스크린이다. 윈도우에서는 해당 모니터를 보조 모니터로 간주하며, 사용자는 번들로 제공된 에이수스 소프트웨어를 사용해 트랙패드로 사용하거나 어도비 앱을 위한 터치 제어 패널을 표시할 수 있다. 어떤 작업이든 유용하게 써먹을 수 있다.
젠북 프로 14 듀오 올레드는 기본적으로 휴대용이자 중간급 워크스테이션이다. 단, 배터리 수명은 평균 수준이기 때문에 중요한 작업 수행이 필요한 경우, 반드시 충전 케이블을 가지고 다녀야 한다. 그럼에도 불구하고 젠북 프로 14 듀오 올레드는 3D 렌더링 및 인코딩과 같은 작업에서 탁월한 성능을 보여 콘텐츠 제작자들에게 맞춤화 된 컴퓨터이다. 듀얼 스크린은 역대 최고의 기능이다.
4. 영상 편집하기 좋은 포터블 노트북, 레이저 블레이드 14(2021)
ⓒ IDG
장점 • AAA 게임에서 뛰어난 성능 • 훌륭한 QHD 패널 • 유난히 적은 소음
단점 • 700g으로 무거운 AC 어댑터 • 비싼 가격 • 썬더볼트 4 미지원
휴대성이 핵심 고려 사항이라면, 레이저 블레이드 14(Razer Blade 14) (2021)를 선택해 보자. 노트북 두께는 1.5cm, 무게는 1.7kg에 불과해 비슷한 수준의 노트북보다 훨씬 가볍다. 사양은 AMD의 8-코어 라이젠 9 5900HX CPU, 엔비디아의 8GB 지포스 RTX 3080, 1TB NVMe SSD, 16GB 메모리를 탑재하고 있어 사양도 매우 좋다.
그러나 휴대성을 대가로 몇 가지 이점을 포기해야 할 수 있다. 일단 14인치 IPS 등급 스크린은 공장에서 보정된 상태로 제공되지만, 최대 해상도는 2560×1440다. 또 풀 DCI-P3 색영역을 지원하지만 4K 영상 편집은 불가능하다. 거기에 레이저 블레이드 14는 SD 카드 슬롯도 없다. 다만 편집 및 렌더링을 위한 강력한 성능을 갖추고 있고 가방에 쉽게 넣을 수 있는 제품인 것은 분명하다.
5. 배터리 수명이 긴 노트북, 델 인스피론 16
ⓒ Dell
장점 • 넉넉한 16인치 16:10 디스플레이 • 긴 배터리 수명 • 경쟁력 있는 애플리케이션 성능 • 편안한 키보드 및 거대한 터치패드 • 쿼드 스피커(Quad speakers)
단점 • GPU 업그레이드 어려움 • 512GB SSD 초과 불가 • 태블릿 모드에서는 어색하게 느껴질 수 있는 큰 스크린
긴 배터리 수명을 가장 최우선으로 고려한다면, 델 인스피론 16(Dell Inspiron 16)을 살펴보자. 콘텐츠 제작 작업을 하며테스트해보니, 인스피론 16은 한 번 충전으로 16.5시간 동안 이용할 수 있다. 외부에서 작업을 마음껏 편집할 수 있는 시간이다. 그러나 무거운 배터리로 인해 무게가 2.1 kg에 달하므로 갖고 다니기에 적합한 제품은 아니다.
가격은 저렴한 편이나 몇 가지 단점이 있다. 일단 인텔 코어 i7-1260P CPU, 인텔 아이리스 Xe 그래픽, 16GB 램, 512GB SSD 스토리지를 탑재하고 있다. 이 정도 사양으로 영상 편집 프로젝트 대부분을 작업할 수 있으나, 스토리지 용량이 부족하기 때문에 영상 파일을 저장할 경우 외장 드라이브가 필요하다. 그러나 델 인스피론 16이 진정으로 빛을 발하는 부분은 단연 배터리 수명이다. 또한 강력한 쿼드 스피커 시스템도 사용해 보면 만족할 것이다. 포트의 경우, USB 타입-C 2개, USB-A 3.2 Gen 1 1개, HDMI 1개, SD 카드 리더 1개, 3.5mm 오디오 잭 1개가 제공된다.
6. 게이밍과 영상 편집 모두에 적합한 노트북, MSI GE76 레이더
ⓒ MSI
장점 • 뛰어난 성능을 발휘하는 12세대 코어 i9-12900HK • 팬 소음을 크게 줄이는 AI 성능 모드 • 1080p 웹캠과 훌륭한 마이크 및 오디오로 우수한 화상 회의 경험 제공
단점 • 동일한 유형의 세 번째 버전 • 어수선한 UI • 비싼 가격
사양이 제일 좋은 제품을 찾고 있을 경우, 크고 무거운 게이밍 노트북을 선택해 보자. MSI GE76 레이더(Raider)는 강력한 14-코어 인텔 코어 i9-12900HK 칩, 175와트의 엔비디아 RTX 3080 Ti가 탑재됐고, 충분한 내부 냉각 성능 덕분에 UL의 프로시온(Procyon) 벤치마크의 어도비 프리미어 테스트에서 다른 노트북보다 훨씬 뛰어난 성능을 보였다. MSI GE76 레이더는 심지어 고속 카드 전송을 위해 PCle 버스에 연결된 SD 익스프레스(SD Express) 카드 리더도 갖추고 있다.
동일한 제품의 작년 모델은 게이머 중심의 360Hz 1080p 디스플레이를 지원한다. 영상 편집 과정에서는 그닥 이상적이지 않은 사양이다. 그러나 2022년의 12UHS 고급 버전은 4K, 120Hz 패널을 추가했는데, 이 패널은 콘텐츠 생성에 맞춰 튜닝 되지는 않았으나 17.3인치의 넓은 스크린 크기이기에 영상 편집자에게 꽤 유용하다.
7. 가성비 좋은 노트북, HP 엔비 14t-eb000(2021)
ⓒ IDG
장점 • 높은 가격 대비 우수한 성능 • 환상적인 배터리 수명 • 성능 조절이 감지되지 않을 정도의 저소음 팬 • 썬더볼트 4 지원
단점 • 약간 특이한 키보드 레이아웃 • 비효율적인 웹캠의 시그니처 기능
가장 빠른 영상 편집 및 렌더링을 원할 경우 하드웨어에 더 많은 비용을 들여야 하지만, 예산이 넉넉하지 않을 때가 있다. 이때 HP 엔비(Envy) 14 14t-eb000) (2021)를 이용해보면 좋다. 가격은 상대적으로 저렴한 편이고 견고한 기본 컨텐츠 제작에 유용하다.
엔트리 레벨의 지포스 GTX 1650 Ti GPU 및 코어 i5-1135G7 프로세서는 그 자체로 업계 최고 제품은 아니다. 하지만 일반적인 편집 작업을 충분히 수행할 수 있는 사양이다. 분명 가성비 좋은 제품이다. 14인치 1900×1200 디스플레이는 16:10 화면 비율로 생산성을 향상하고, 공장 색 보정과 DCI-P3는 지원하지 않지만 100% sRGB 지원을 제공한다. 그뿐만 아니라, HP 엔비 14의 경우 중요한 SD 카드 및 썬더볼트 포트가 포함되며, 놀라울 정도로 조용하게 실행된다.
8. 컨텐츠 제작에 알맞은 또다른 게이밍 노트북, 에이수스 ROG 제피러스 S17
ⓒ
장점 • 뛰어난 CPU 및 GPU 성능 • 강력하고 혁신적인 디자인 • 편안한 맞춤형 키보드
단점 • 약간의 압력이 필요한 트랙패드 • 상당히 높은 가격
에이수스 ROG 제피러스(Zephyrus) S17은 영상 편집자의 궁극적인 꿈이다. 이 노트북은 초고속 GPU 및 CPU 성능과 함께 120Hz 화면 재생률을 갖춘 놀라운 17.3인치 4K 디스플레이를 탑재하고 있다. 견고한 전면 금속 섀시, 6개의 스피커 사운드 시스템 및 맞춤형 키보드는 프리미엄급 경험을 더욱 향상한다. 거기다 SD 카드 슬롯 및 풍부한 썬더볼트 포트가 포함되어 있어 더욱 좋다. 그러나 이를 위해 상당한 비용을 지불해야 한다. 예산이 넉넉하고 최상의 제품을 원한다면 제피루스 S17을 선택하면 된다.
9. 강력한 휴대성을 가진 노트북, XPG 제니아 15 KC
ⓒ XPG
장점 • 가벼운 무게 • 조용함 • 상대적으로 빠른 속도
단점 • 중간 수준 이하의 RGB • 평범한 오디오 성능 • 느린 SD 카드 리더
사양이 좋은 노트북의 경우, 대부분 부피가 크고 무거워서 종종 2.2kg 또는 2.7kg를 넘기도 한다. XPG 제니아 15 KC(XPG Xenia 15 KC)만은 예외다. XPG 제니아 15 KC의 무게는 1.8kg가 조금 넘는 수준으로, 타제품에 비해 상당히 가볍다. 또한 소음도 별로 없다. 원래 게이밍 노트북 자체가 소음이 크기에 비교해보면 큰 장점이 될 수 있다. 1440p 디스플레이와 상대적으로 느린 SD 카드 리더 성능으로 인해 일부 콘텐츠 제작자들이 구매를 주저할 수 있으나, 조용하고 휴대하기 좋은 제품을 찾고 있다면 제니아 15 KC가 좋은 선택지다.
영상 편집 노트북 구매 시 고려 사항
영상 편집 노트북 구매 시 고려해야 할 가장 중요한 사항은 CPU 및 GPU다. 하드웨어가 빨라질수록 편집 속도도 빨라진다. 필자는 UL 프로시온 영상 편집 테스트(UL Procyon Video Editing Test)를 통해 속도를 테스트해보았다. 이 벤치마크는 2개의 서로 다른 영상 프로젝트를 가져와 색상 그레이딩 및 전환과 같은 시각적 효과를 적용한 다음, 1080p와 4K 모두에서 H.264, H.265를 사용해 내보내는 작업을 어도비 프리미어가 수행하도록 한다.
ⓒ Gordon Mah Ung / IDG
성능은 인텔의 11세대 프로세서를 실행하는 크고 무거운 노트북에서 가장 높았고, AMD의 비피 라이젠 9(beefy Ryzen 9) 프로세서를 탑재한 노트북이 바로 뒤를 이었다. 10세대 인텔 칩은 여전히 상당한 점수를 기록하고 있다. 위의 차트에는 없으나 새로운 인텔 12세대 노트북은 더 빨리 실행된다. 최고 성능의 노트북은 모두 최신 인텔 CPU 및 엔비디아의 RTX 30 시리즈 GPU를 결합했는데, 두 기업 모두 어도비 성능 최적화에 많은 시간 및 리소스를 투자했기 때문에 놀라운 일은 아니다.
GPU는 어도비 프리미어 프로에서 CPU보다 더 중요하지만, 매우 빠르게 수확체감 지점에 다다른다. 최고급 RTX 3080 그래픽을 사용하는 노트북은 RTX 3060 그래픽을 사용하는 노트북보다 영상 편집 속도가 더 빠르나, 속도 차이가 크지는 않다. 델 XPS 17 9710의 점수를 살펴보면, 지포스 RTX 3060 노트북 GPU는 MSI GE76 레이더의 가장 빠른 RTX 3080보다 14% 더 느릴 수 있다. 특히 GE76 레이더가 델 노트북에 비해 얼마나 더 크고 두꺼운지를 고려할 때 수치가 크지는 않다.
일반적으로 그래픽과 영상 편집을 위해 적어도 RTX 3060을 갖추는 것을 권장한다. 그러나 영상 편집은 워크플로에 크게 의존한다. 특정 작업 및 도구는 CPU 집약적이거나 프리미어보다 GPU에 더 의존할 수 있다. 이 경우 원하는 요소의 우선순위를 조정하길 바란다. 앞서 언급한 목록은 기본적으로 여러 요소를 종합적으로 고려해서 만든 내용이다.
인텔 및 엔비디아는 각각 퀵 싱크(Quick Sync) 및 쿠다(CUDA)와 같은 도구를 구축하는 데 수년을 보냈고, 이로 인해 많은 영상 편집 앱의 속도는 크게 향상될 수 있다. AMD 하드웨어는 영상 편집에 적합하나 특히 워크플로가 공급업체별 소프트웨어 최적화에 의존하는 경우, 특별한 이유가 없는 한 인텔 및 엔비디아를 사용하는 것을 추천한다.
영상 촬영 ⓒ Gordon Mah Ung/IDG
그러나 내부 기능만 신경 써서는 안된다. PC월드의 영상 디렉터인 아담 패트릭 머레이는 “영상 편집에 이상적인 노트북에는 카메라로 촬영 중 영상 파일을 저장하는 SD 카드 리더가 포함되어 있다”라고 강조한다. 또한 머레이는 영상 편집에 이상적인 게임용 노트북에서 흔히 볼 수 있는 초고속 1080p 패널보다 4k, 60Hz 패널을 갖춘 노트북을 선택할 것을 추천한다.
4K 영상을 잘 편집하려면 4K 패널이 필요하며, 초고속 화면 재생률은 게임에서처럼 영상 편집에는 아무런 의미가 없다. 예를 들어, 개인 유튜브 채널용으로 일상적인 영상만 만드는 경우 색상 정확도가 중요하지 않을 수 있다. 그러나 색상 정확도가 중요할 경우, 델타 E < 2 색상 정확도와 더불어 DCI-P3 색 영역 지원은 필수적이다.
게임용 노트북은 사양이 좋지만 콘텐츠 제작용으로는 조금 부족해 보일 수 있다. 게임용과 콘텐츠 제작용으로 함께 쓰는 노트북을 원한다면, 게임용으로 노트북 한 대를 구매하고, 색상을 정확히 파악하기 위한 모니터를 추가로 구매하는 것도 방법이다. editor@itworld.co.kr
코어가 많은 그래픽카드의 경우 가격이 상상 이상으로 높습니다. 빠르면 빠를수록 좋겠지만 어디까지나 예산에 맞춰 구매를 해야 하는 현실을 감안할 수 밖에 없는 것 같습니다.
한가지 유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 모델에 따라 다르기는 하지만, 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상이어야 하고 1GB이상을 권장합니다.
2021-12-15 현재 그래픽카드의 성능 순위는 위와 다음과 같습니다. 출처: https://www.videocardbenchmark.net/high_end_gpus.html
주요 Notebook
출시된 모든 그래픽 카드가 노트북용으로 장착되어 출시되지는 않기 때문에, 현재 오픈마켓 검색서비스를 제공하는 네이버에서 Lenovo Quadro 그래픽카드를 사용하는 노트북을 검색하면 아래와 같습니다. 검색 시점에 따라 상위 그래픽카드를 장착한 노트북의 대략적인 가격을 볼 수 있을 것입니다.
<검색 방법> 네이버 쇼핑 검색 키워드 : 컴퓨터 제조사 + 그래픽카드 모델 + NoteBook 형태로 검색 Lenovo quadro notebook or HP quadro notebook 또는 Lenovo firepro notebookorHP firepronotebook
( 2021-12-15기준)
대부분 검색 시점에 따라 최신 CPU와 최신 그래픽카드를 선택하여 검색을 하면 예산에 적당한 노트북을 자신에게 맞는 최상의 노트북을 어렵지 않게 선택할 수 있습니다.
PCI-Express(또는 PCI-E) 표준을 사용하는 최근 출시된 AMD 비디오 카드(예: AMD RX 6950 XT)와 nVidia 그래픽 카드(예: nVidia GeForce RTX 3090)는 하이엔드 비디오 카드 차트에서 흔히 볼 수 있습니다.
PassMark – G3D Mark High End Videocards / Price
FLOW-3D POST 성능과 밀접한 그래픽카드의 이해
FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.
고품질 그래픽 하드웨어
최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.
다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조).
대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다.
FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다.
NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.
노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션
이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.
비디오 드라이버 업데이트
비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.
RAM, RAM, RAM!
메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.
초대형 (2 억 개 이상의 셀) : 최소 128GB
대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
중간 (3 천만 ~ 6 천만 셀) : 32-64GB
소형 (3,000 만 셀 이하) : 최소 32GB
FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.
그래픽 카드를 업그레이드 교체 설치하는 방법
그래픽 카드를 업그레이드하는 것은 성능 향상을 위한 좋은 방법이다. 그래픽 카드 업그레이드를 통해 시각적으로 고사양을 요구하는 POST 작업을 쉽게 소화할 수 있는 컴퓨터로 진화할 수 있다.
업그레이드를 위한 그래픽 카드 구매시 고려 사항, 기존 PC에 적합한가?
원하는 그래픽 카드를 결정하는 것은 복잡하고 미묘한 문제다. AMD와 엔비디아는 200달러 미만에서부터 최대 1,500달러에 이르는 지포스(GeForce) RTX 3090에 이르기까지 거의 모든 예산에 대한 선택지를 제공하기 때문이다.
카드의 소음, 발열, 전력 소비 등과 같은 사항을 고려할 수 있겠지만, 일반적으로는 비용 대비 가장 큰 효과를 제공하는 그래픽 카드를 원한다.
컴퓨터가 새 그래픽 카드를 지원하는 적절한 하드웨어인지 확인한다.
사용자가 겪는 가장 일반적인 문제는 부적절한 파워 서플라이(power supply)다. 충분한 전력을 공급할 수 없거나 사용 가능한 PCI-E 전원 커넥터가 충분하지 않을 수 있다. 필자의 경험상 파워 서플라이는 적어도 제조업체에서 권장하는 파워 서플라이의 요구 사항을 충족해야 한다. 예를 들어, 350W를 소비하는 지포스 GTX 3090을 구입했다면 8핀 전원 커넥터 한 쌍과 함께 엔비디아에서 제안한 최소 750W의 전력 공급 장치를 갖춰야 한다.
현재 파워 서플라이가 얼마나 많은 전력을 제공하는지 알아보려면 PC 본체를 열고 모든 파워 서플라이에 기본 정보가 나열된 표준 식별 스티커를 확인하면 된다. 또한 사용 가능한 6핀 및 8핀 PCI-E 커넥터의 수를 확인할 수 있다.
ⓒ Thomas Ryan 파워서플라이
마지막으로 본체 내부에 새 그래픽 카드를 넣을 충분한 공간이 있는지 확인한다. 일부 고급 그래픽 카드는 길이가 상당히 길어 30Cm 이상일 수 있으며, 확장 슬롯이 2개 또는 3개가 될 수 있다. 해당 그래픽 카드의 실제 크기는 제조업체 웹사이트에서 찾을 수 있다.
여기까지 해결했다면 이제 본격적으로 설치 작업에 착수한다.
생각보다 간단한 그래픽 카드 설치 작업
그래픽 카드 설치에는 새 그래픽 카드, 컴퓨터, 그리고 십자 드라이버 3가지만 있으면 된다. 설치하기 전 PC를 끄고 전원 플러그를 뽑는다.
기존 GPU를 제거해야 하는 경우가 아니면, 먼저 프로세서의 방열판에 가장 가까운 긴 PCI-E x16 슬롯을 찾아야 한다. 이 슬롯은 메인보드의 첫 번째 또는 두 번째 확장 슬롯이다.
이 슬롯에 접근을 차단하는 느슨한 전선이 없는지 확인한다. 기존 그래픽 카드를 교체하는 경우, 연결된 케이블을 모두 분리하고, PC 본체 후면 내부에 고정 브래킷에서 나사를 제거한 다음, 카드를 제거한다. 대부분의 메인보드에는 그래픽 카드를 제자리에 고정하는 PCI-E 슬롯 끝에 작은 플라스틱 걸쇠(latch)가 있다. 이 걸쇠를 눌러 이전 그래픽 카드의 잠금을 해제하고 분리한다.
ⓒ Thomas Ryan PCI-E x16 슬롯에 설치
이제 새 그래픽 카드를 개방형 PCI-E x16 슬롯에 설치할 수 있다. 카드를 슬롯에 완전히 삽입한 다음, PCI-E 슬롯 끝에 있는 플라스틱 걸쇠를 눌러 제자리에 고정한다. 그런 다음 나사를 사용해 그래픽 카드의 금속 고정 브래킷을 PC 본체에 고정한다. 덮개 브래킷 또는 이전 그래픽 카드를 고정했던 나사를 재사용할 수 있다.
ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결
대부분의 게임용 그래픽 카드에는 추가 전원 커넥터가 필요하다. 추가 전원이 필요한 경우, 해당 PCI-E 전원 케이블을 연결했는지 확인한다. 전원이 제대로 공급되지 않으면 그래픽 카드가 제대로 작동하지 않는다. 이 PCI-E 전원 케이블을 연결하지 않으면 PC 자체가 부팅되지 않을 수 있다.
그래픽 카드를 고정하고 난 후, 전원을 켠 상태에서 본체 측면 패널을 제자리로 밀어넣고 디스플레이 케이블을 새 그래픽 카드에 연결해 작업을 완료한다. 이제 컴퓨터를 켠다.
이제 그래픽 카드의 소프트웨어를 업그레이드할 단계가 왔다.
새 그래픽 카드가 이전 카드와 동일한 브랜드일 경우에는 절차가 간단하다. 제조업체의 웹사이트로 이동해 운영체제에 맞는 최신 드라이버 패키지를 다운로드한다. 그래픽 드라이버는 일반적으로 약 500MB로, 상당히 크다. 인터넷 연결 속도에 따라 다운로드하는 데 시간이 걸릴 수도 있다. 드라이버를 설치하고 컴퓨터를 다시 시작하면 이제 새 그래픽 카드가 제공하는 부드럽고 매끄러운 프레임 속도를 즐길 수 있다.
그래픽 카드 제조업체가 바뀐 경우(인털에서 AMD로, 혹은 AMD에서 인텔로), 새 그래픽 카드용 드라이버를 설치하기 전에 이전 그래픽 드라이버를 제거하고 컴퓨터를 다시 시작해야 한다. 이전 드라이버를 제거하지 않으면 새 드라이버와 충돌할 수 있다.
editor@itworld.co.kr 기사 일부 발췌 인용
그래픽 카드 GPU 온도 확인하는 방법
그래픽 카드 온도 확인은 아주 쉽다. 윈도우에서 바로 온도를 확인할 수 있는 내장 도구도 추가됐다. 또한, 무료 GPU 모니터링 도구가 많이 있고 그중 대다수가 온도를 측정해준다. 조금 더 자세히 알아보자.
ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인
마이크로소프트가 윈도우 10 2020년 5월 업데이트에서 GPU 온도 모니터링 툴을 작업 관리자에 추가했다. 무려 24년이나 걸렸다.
Ctrl+Shift+Esc를 열어 작업 관리자 대화창을 열거나 Ctrl+Alt+Delete에서 ‘작업 관리자’를 선택하거나 윈도우 시작 메뉴 아이콘을 오른쪽 클릭해서 ‘작업 관리자’를 선택한다. 여기에서 ‘성능’ 탭으로 들어가면 왼쪽에 GPU를 확인할 수 있을 것이다. 윈도우 10 2020년 5월 업데이트 혹은 그 이후 버전의 윈도우가 설치되어 있을 때만 사용할 수 있는 기능이다.
하지만 이 기능은 매우 단순하다. 시간 흐름에 따른 온도 변화를 추적하지 않고, 현재의 온도만을 보여준다. 그리고 업무를 하거나 오버클럭 조정 중에 작업 관리자를 여는 것도 귀찮을 수 있다. 마침내 윈도우에 GPU 온도를 확인할 수 있는 기능이 들어간 것은 환영하지만, 뒤이어 설명할 서드파티 도구가 훨씬 더 나은 GPU 온도 확인 옵션을 제공한다.
AMD 라데온 그래픽 카드 사용자가 라데온 세팅(Radeon Setting) 앱을 최신 버전으로 유지하고 있다면 방법은 쉽다. 2017년 AMD는 시각 설정을 변경할 수 있는 라데온 오버레이(Radeon Overlay)를 출시했다. 여기에도 GPU 온도와 다른 중요한 정보를 확인할 수 있는 성능 모니터 기능이 있다.
프로그램을 활성화하려면 Alt+R 키를 눌러 라데온 오버레이를 불러온다. 성능 모니터링 섹션에서 원하는 탭을 선택한다. Ctrl+Shift + 0을 눌러서 성능 모니터링 도구 설정을 단독으로 불러올 수 있다.
라데온 세팅 앱에서 오버클럭 도구인 와트맨(Wattman)으로 이동해 GPU 온도를 확인할 수 있다. 윈도우 바탕 화면을 우클릭하고, 라데온 설정을 선택한 후 게이밍(Gaming) > 글로벌 세팅(Global Setting) > 글로벌 와트맨(Global Wattman) 항목으로 이동한다. 도구를 사용해 지나친 오버클럭으로 그래픽 카드를 날려버리지 않겠다고 서약한 후에는 와트맨에 액세스하고 GPU 온도, 그리고 그래프 형태로 된 핵심적 통계 수치를 볼 수 있다. 여기까지가 전부다.
라데온 사용자가 아닌 사람도 많을 것이다. 스팀의 하드웨어 설문 조사는 전체 응답자 PC 중 75%가 엔비디아 지포스 그래픽 카드를 탑재했다는 결과를 발표했다. 그리고 지포스 익스피리언스 소프트웨어는 GPU 온도 확인 기능을 제공하지 않아서 서드파티 소프트웨어의 손을 빌려야 한다.
그래픽 카드 제조 업체는 보통 GPU 오버 클럭을 위한 특수한 소프트웨어를 제공한다. 이 도구에는 라데온 오버레이처럼 가장 중요한 측정을 실행할 때 OSD(On-Screen Display)를 지속하는 옵션 등이 있다. 여러 종류 중에서 가장 추천하는 것은 다재다능함을 갖춘 MSI의 애프터버너(Afterburner) 도구다. 이 제품은 오랫동안 인기를 얻었는데 엔비디아 지포스, AMD 라데온 그래픽 카드 두 제품 모두에서 잘 작동하고, 반길 만한 다른 기능도 더했다.
이제 그래픽 카드를 모니터링하는 소프트웨어를 갖췄다. 하지만 화면을 채우는 숫자는 맥락이 없이는 아무것도 아니다. 그래픽 카드 온도는 어디까지 괜찮은 것일까?
쉬운 대답은 없다. 제품마다 다르다. 이럴 때는 구글이 친구가 된다. 대다수 칩은 섭씨 90도 중반에도 작동하고, 게이밍 노트북에서도 90도까지 온도가 올라가는 경우가 흔히 있다. 그러나 일반 데스크톱 PC 온도가 90도 이상으로 올라간다면 구조 신호나 다름없다. 공기 흐름이 원활한 GPU 1대 시스템에서는 80도 이상 올라가면 위험하다. 팬이 여러 개 달린 커스텀 그래픽 카드는 무거운 워크로드 하에서도 60~70도가 적당하고, 수냉쿨러가 달린 GPU라면 온도가 더 낮아야 할 것이다.
그래픽 카드가 최근 5년 안에 생산된 제품이고 90도 이상으로 뜨거워진다면, 또는 최근 몇 주간 온도가 급격히 상승했다면 다음의 냉각 방법을 고려해보자.
그래픽 카드 온도 낮추는 법
그래픽 카드 온도가 높아졌을 때 하드웨어 업그레이드에 돈을 들이지 않고 개선하지 않기란 어렵다. 그러나 돈을 쏟아붓기 전에 정말 그래야 하는지 필요성을 점검해 보자. 다시 한번 강조하지만 그래픽 카드는 뜨거운 온도를 버틸 수 있도록 설계되어 있다. PC가 무거운 게임이나 영상 편집 중에 강제 종료되는 경우가 아니라면 아마도 걱정할 필요가 없을 것이다.
우선, 시스템의 케이블을 깨끗하게 정리해 GPU 주변의 공기가 원활하게 순환되는지 확인하라. 케이블이 깔끔하게 정리됐다면 케이스에 팬을 추가하는 것도 고려한다. 모든 PC는 최적의 성능을 위해 공기를 빨아들이고 내보내는 팬이 여럿 달려 있는데, POST PC라면 팬은 더 많아야 한다. 저렴한 팬은 10달러부터 구입할 수 있고, RGB 조명이 붙은 화려한 제품은 조금 더 가격이 높다.
마지막으로, GPU와 히트싱크의 써멀 페이스트가 오래되어 말라 있다면 효율이 떨어질 수 있다. 특히 오래된 그래픽 카드라면 더더욱 그렇다. 그리고 아주 드문 경우지만 품질이 좋지 않은 써멀 페이스트가 발라져서 출시되는 경우도 있다. 다른 방법이 모두 효과가 없다면 써멀 페이스트를 다시 바르는 것을 시도해보자. 그러나 과정이 매우 어려울 수 있고 카드마다 조금씩 다르고, 잘못 손댈 경우 사용자 보증 기한의 보호를 받을 수 없게 된다.
온도를 확실하게 낮추려면 수랭 쿨러를 위한 쿨링 시스템을 고려한다. 대다수 사용자에게는 지나친 모험이지만 대부분 수냉쿨러는 발열과 노이즈 감소 효과가 확실하고 공기 냉각에 있어 병목 현상도 없다.
“업무 효율 향상의 기본” 멀티 모니터 구축 가이드
듀얼 모니터를 사용하면 업무 생산성이 높아진다는 연구 결과가 있지만, 모니터가 많을수록 생산성이 높아지는지 여부에 대해서는 아직 이렇다 할 근거는 없다. 그러나 업무 생산성을 생각하지 않더라도 모니터를 여러 대(3대~6대까지) 사용하는 것은 멋진 일이며, 많은 화면을 봐야 하는 엔지니어는 정말 필요할지도 모른다.
모니터를 세로로 세워두면 긴 문서를 볼 때 스크롤을 적게 해도 된다는 장점이 있다. 멀티 디스플레이 환경을 구축하기 위해 고려해야 할 모든 것들을 살펴보겠다.
멀티 모니터 구축 가이드(www.itworld.co.kr)
1단계 : 그래픽 카드 확인하기
보조 모니터를 구입하기 전에 컴퓨터가 물리적으로 이 모든 모니터들을 감당할 수 있을지 점검해 봐야 한다. 가장 쉬운 방법은 PC의 뒷면을 보고, 그래픽 포트(DVI, HDMI, 디스플레이포트, VGA 등)가 몇 개나 있는지 확인하는 것이다.
별도의 그래픽 카드가 없다면 포트를 2개밖에 발견하지 못할 것이다. 그래픽이 통합된 대부분의 마더보드는 모니터 2개 밖에 설치하지 못한다. 별도의 그래픽 카드가 있다면, 마더보드의 포트를 제외하고 최소 3개의 포트를 발견할 수 있을 것이다.
팁 : 마더보드와 별도 그래픽 카드의 포트를 모두 이용해서 멀티 모니터를 설치할 수도 있지만, 이 경우 성능 저하와 모니터끼리의 속도 차이가 발생할 것이다. 그래도 이렇게 하고 싶다면, PC의 BIOS에서 Configuration > Video > Integrated graphics 로 진입한 다음, ‘always enable’로 설정한다.
그러나 별도의 그래픽 카드에 3개 이상의 포트가 있다고 해서 이것을 모두 동시에 사용할 수 있다는 의미는 아니다. 예를 들어서 구형 엔비디아 카드는 포트가 2개 이상이어도 하나의 카드에 모니터를 2개 이상 연결할 수 없다. 자신의 그래픽 카드가 멀티 모니터를 지원하는지 판단하는 가장 좋은 방법은 그래픽 카드 모델명을 찾아서 원하는 모니터 개수와 함께 검색하는 것이다. 예를 들어, ‘엔비디아 GTX 1660 모니터 4대’라고 검색하면 된다.
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG
그래픽 카드가 원하는 만큼 충분히 모니터를 지원할 수 있으면 좋지만, 그렇지 않다면 추가 그래픽 카드를 구입해야 한다. 그래픽 카드를 추가로 구입하기 전 타워 안에 충분한 공간(PCI 슬롯)이 있는지, 전원 공급은 충분한지 확인해야 한다.
멀티 모니터용으로만 그래픽 카드를 구입한다면 최신 그래픽 카드 중에서도 저렴한 옵션을 선택하는 것이 좋다.
아니면 멀티 스트리밍이 지원되는 디스플레이포트를 탑재한 신형 모니터를 사용하는 방법도 있다. 그래픽 카드의 디스플레이포트 1.2에 연결하고, 디스플레이포트 케이블을 사용해 다음 모니터로 연결하는 것이다. 모니터의 크기나 해상도가 같지 않아도 된다. 뷰소닉(ViewSonic)의 VP2468이 이런 제품 중 하나다. 아마존에서 약 210달러에 판매되는 이 24인치 모니터는 디스플레이포트 아웃 외에도 프리미엄 IPS 스크린, 아주 얇은 베젤 등 멀티 모니터 설정에 이상적인 특징을 제공한다.
2단계 : 모니터 선택하기
그래픽 카드에 대해서 파악했다면 이제 추가 모니터를 구입할 차례다. 사용자에 따라서 기존에 사용하고 있는 모니터, 책상 크기, 추가 모니터 용도 등에 따라서 완벽한 모니터가 달라질 것이다.
필자의 경우, 이미 24인치 모니터 2대를 가지고 있었기 때문에 중앙에 설치할 더 큰 모니터가 필요해서 27인치 모니터를 선택했다. 게임을 하지 않기 때문에 모니터 크기 차이는 상관없었다. 하지만 사용자에 따라서 멀티 모니터로 POST를 하거나 동영상을 보기 위해서는 이러한 구성보다 같은 모니터를 연결하는 것이 더 좋을 것이다.
모니터를 구입하기 전에 PC와 모니터의 포트 호환성을 설펴야 한다. DVI-HDMI 혹은 디스플레이포트-DVI 등 전환해주는 케이블을 이용할 수도 있지만 다소 귀찮다. 그러나 PC나 모니터에 VGA 포트가 있다면, 교체를 권한다. VGA는 아날로그 커넥터이기 때문에 선명도가 떨어진다.
3단계 : PC설정
모니터를 구입하고 나면 PC에 연결하고 PC의 전원을 켠다. 이것으로 모니터 설치가 끝났다. 하지만 완전히 끝난 것은 아니다.
윈도우가 멀티 모니터 환경에서 잘 동작하게 만들어야 하는데, 윈도우 7이나 윈도우 8 사용자라면 바탕화면에서 오른쪽 클릭하고 ‘화면 해상도’를 선택한다. 윈도우 10 사용자라면 ‘디스플레이 설정’을 클릭한다. 그러면 디스플레이를 정렬할 수 있는 창이 나타난다.
ⓒ ITWorld 디스플레이 설정
여기서 모니터들이 모두 탐지되는지 확인할 수 있다. ‘식별’을 클릭하면 각 디스플레이에 큰 숫자가 나타난다. 주 모니터(작업 표시줄과 시작 버튼이 나타나는 모니터)로 사용할 모니터에 1번이 나타나야 하는데, 원하는 것을 선택한 다음 아래 여러 디스플레이 설정에서 ‘이 디스플레이를 주 모니터로 만들기’를 클릭한다. 그 다음 ‘다중 디스플레이’ 드롭다운 메뉴에서 복제할 것인지 확장할 것인지를 선택하면 되는데, 대부분의 경우 ‘디스플레이 확장’이 적합하다.
GPU 제어판에서도 다중 모니터를 설정할 수 있다. 바탕화면에서 오른쪽 클릭을 하고 엔비디아, AMD, 인텔 등 그래픽 제조사의 제어판 메뉴를 열어 윈도우와 유사한 방식으로 디스플레이를 설정할 수 있다.
멀티 디스플레이를 구축할 경우에는 같은 모델을 이용하는 것이 해상도나 선명도, 색보정 등의 문제가 발생하지 않아 ‘끊김 없는’ 경험을 할 수 있다.
우리는 해석용 컴퓨터를 구매하기 전에 수많은 선택지를 고민하게 됩니다. 성능과 가격, 컴퓨터 최신 CPU, Memory, Chipset, HDD/SSD, Power Supply 등, 그 중에서도 당연코 선택 고민은 CPU 입니다.
이는 수 많은 검토 요인중에 해석 속도와 매우 밀접한 관계를 가지고 있기 때문입니다. 하지만 우리가 직접 테스트를 해볼 수 없지만, 다행히 아래와 같이 전문적으로 테스트를 수행하여 그 결과를 알려주는 보고서를 참고할 수 있습니다.
<샘플 비교자료>
AMD Ryzen AI 9 HX 370 대 Intel i9-14900HX
아래 두 CPU 모두 작년에 출시(또는 첫 벤치마크)되었고, Intel Core i9-14900HX는 멀티스레드(CPU 마크) 테스트에서 약 22% 더 빠르고, 싱글스레드 테스트에서는 약 7% 더 빠릅니다. 그러나 AMD Ryzen AI 9 HX 370은 훨씬 적은 전력을 사용합니다. 이 비교에서 선택된 CPU는 데스크톱, 노트북과 같은 다른 CPU 클래스에 속합니다. 더 적절한 비교를 위해 유사한 CPU 클래스에서 CPU를 선택하는 것을 고려하세요. 아래 값은 PerformanceTest 소프트웨어와 결과에서 제출된 1202개의 벤치마크를 합친 결과이며, 새로운 제출을 포함하도록 매일 업데이트됩니다.
첫 번째 섹션에서는 선택한 각 CPU에 대한 기본 정보가 표시됩니다.
추가 그래프는 선택된 각 CPU의 CPU 마크 및 단일 스레드 값을 보여줍니다.
가격 데이터가 있는 경우 그래프를 통해 달러당 CPU 마크/스레드 등급을 기준으로 비용 대비 가치를 확인할 수 있습니다.
1Average user usage is typically low and can vary from task to task. An estimate load 25% is nominal. 2Typical power costs vary around the world. Check your last power bill for details. Values of $0.15 to $0.45 per kWh are typical.
Shown CPU power usage is based on linear interpolation of Max TDP (i.e. max load). Actual CPU power profile may vary.
CPU 성능비교 방법
아래 사이트를 방문하여 구입을 원하는 CPU에 대한 성능을 비교해 볼 수 있습니다. 비교 방법은 아래 그림에서 처럼 “Add other CPU:” 검색창에 원하는 CPU 모델명을 입력한 후 “Compare” 버튼을 클릭하면 아래와 같이 여러개의 CPU 비교 내용을 볼 수 있습니다.
자료출처 : 본 기사는 PCWorld Australia의 내용과 www.itworld.co.kr의 기사를 기반으로 일부 가필하여 게재한 내용입니다.
해석용 컴퓨터를 선정하기 위해서는 가장 먼저 선택해야 하는 것이 있다. AMD인가, 인텔인가? 두 업체는 CPU 시장의 양대산맥과도 같다. 인텔이 새롭게 출시한 12세대 앨더 레이크 CPU 시리즈가 벤치마크 기록을 깼지만, 지난해 출시된 AMD의 라이젠 5000 아키텍처를 고수하거나, 다른 신제품을 기다릴만한 이유도 있다. 인텔과 AMD CPU를 자세히 살펴보자.
ⓒ Gordon Mah Ung
비교 대상 제품
2021.11.09
PC 조립 부품을 예산 기준으로 결정하고, 반도체 수급난에서 CPU를 정가에 구매할 수 있다고 가정했을 때, 인텔과 AMD 제품 선택지를 몇 가지로 압축할 수 있다.
인텔
성능/효율 코어
쓰레드
가격
Core i9 12900K/KF
8/8
24
590달러/570달러
Core i7 12700K/KF
8/4
20
410달러/390달러
Core i5 12600K/KF
6/4
16
290달러/270달러
AMD
성능 코어
쓰레드
가격
Ryzen 9 5950X
16
32
800달러
Ryzen 9 5900X
12
24
550달러
Ryzen 7 5800X
8
16
450달러
Ryzen 5 5600X
6
12
300달러
비교적 저렴한 인텔 CPU인 F 시리즈는 통합 그래픽카드가 없어 별도의 GPU가 필요하다. 라이젠 프로세서는 외장 그래픽카드와 짝을 이루어야 한다. 인텔이 ‘한 방’을 노리고 있기 때문에 이 비교에서는 최상급인 16코어 라이젠 9 5950X도 함께 살펴볼 예정이다. 12900KF가 최대 8코어이기 때문에 라이젠 9 5950X와 직접적인 비교 대상은 아니지만, 인텔은 AMD와 꽤 대등하게 싸우고 있다. CPU에만 80만원을 지출할 계획이라면 더 큰 파워 서플라이가 필요하다.
인텔 코어 CPU 에 대한 이해
인텔 코어 CPU에 대한 자료를 찾아보면 쿼드(Quad) 코어, 하이퍼-스레딩(Hyper-Threading), 터보-부스팅(Turbo-Boosting), 캐시(Cache) 크기 같은 용어를 많이 볼 수 있다. 인텔 코어 i3, i5, i7, i9는 각각 어떻게 다를까? 칩셋에는 세대가 있는데, 세대의 의미와 차이는 무엇일까? 하이퍼-스레딩은 무엇이고 클럭 속도는 어느 정도가 적합할까?
새 프로세서를 구입하기 전에 먼저 현재 사용하고 있는 인텔 CPU를 이해해보자. 지금 내 PC 성능이 어느 정도인지 알기 위해서이다. 가장 빠른 방법은 제어판 > 시스템 및 보안 항목에서 시스템을 선택하는 것이다.
여기에서 현재 PC에 설치된 CPU, RAM, 운영체제 정보를 확인할 수 있다. 프로세서 아래에 현재 설치된 인텔 CPU가 무엇인지, 인텔 코어 i7-4790, 인텔 코어 i7-8500U 같은 모델명을 확인할 수 있을 것이다. 또 Ghz가 단위인 CPU 클럭 속도를 알 수 있다. 나중에 이와 관련해 더 자세히 설명을 하겠다.
일단 CPU부터 알아보자. CPU 모델명에는 숫자가 많아 어려워 보이지만, 이 숫자가 무슨 의미인지 이해하는 것은 어려운 일이 아니다.
모델명의 앞 부분인 “인텔 코어”는 인텔이 만든 코어 시리즈 프로세스 중 하나라는 의미다. 코어는 인텔에서 가장 크고, 인기있는 제품군이다. 따라서 많은 인텔 제품 데스크톱과 노트북 컴퓨터에서 인텔 코어라는 표기를 발견할 수 있다.
참고 : 인텔은 셀룰론(Celeron), 펜티엄(Pentium), 제온(Xeon) 등 다양한 프로세스 제품군을 판매하고 있지만, 이 기사는 인텔 코어 프로세스에 초점을 맞춘다.
그 다음 “i7”은 CPU 내부 마이크로 아키텍처 디자인의 종류이다. 자동차가 클래스와 엔진 종류로 나눠지는 것과 비슷하다. 이들 ‘엔진’이 하는 일은 동일하다. 그러나 차량 브랜드에 따라 일을 하는 방법이 다르다. 인텔의 경우 코어 브랜드 CPU의 클래스인 i3, i5, i7이 각각 사양이 다르다. 여기서 사양이란 코어의 수, 클럭 속도, 캐시 크기, 터보 부스트 2.0과 하이퍼스레딩 같은 고급 기능 지원 여부를 말한다. 코어 i5와 i7 데스크톱 프로세서는 통상 쿼드 코어(코어가 4개)이고, 로우엔드(저가) 코어 i3 데스크톱 프로세스는 듀얼 코어(코어가 2개)다.
이제 SKU와 세대에 대해 알아보자. 앞서 예로 들은 “4790”으로 설명하겠다. 첫 번째 숫자인 “4”는 CPU의 세대이고, “790”는 일종의 일련번호, 또는 ID 번호이다. 즉 인텔 코어 i7이 4세대 CPU라는 이야기이다.
그런데 ‘접미사’가 붙는 경우가 있다. 위에서 예로 든 모델에는 접미사가 없지만 “Intel Core i7-8650U” 같이 끝에 접미사가 붙은 모델이 있다. 여기에서 “U”는 “Ultra Low Power(초저전력)”를 의미한다. 인텔은 모델명에 다양한 접미사를 사용하는데 세대에 따라 의미가 바뀌는 경우가 있다. 따라서 현재 사용하고 있는 CPU 모델을 정확히 해석하려면 링크된 인텔의 ‘접미사 목록’ 페이지를 참고하자.
CPU의 세대는 중요할까?
꽤 중요하다. 간단히 말해, 그리고 일반적으로 세대가 높을 수록, 즉 새로울 수록 더 좋다. 하지만 세대별로 개선된 정도는 각기 다르다.
인텔에 따르면, 최신 8세대 인텔 코어 프로세스는 7세대보다 최대 40%까지 성능이 향상됐다. 물론 비교 대상에 따라 성능 향상치가 크게 다르다. SKU가 세대별로 다를 수 있기 때문이다. 예를 들어, 인텔 코어 i7-8850U는 있지만 인텔 코어 i7-7850U는 없다.
세대가 높을 수록 최신 프로세서라는 것이 기본 원칙이다. 더 발전한 기술과 설계의 이점을 누릴 수 있다는 의미이며, PC 성능도 따라서 향상될 것이다.
코어가 많을 수록 좋을까? 간단히 대답하면, 일반적으로 코어 수가 적은 것보다 많은 것이 좋다. 코어가 1개인 프로세서는 한 번에 스레드 1개만 처리할 수 있다. 그리고 코어가 2개인 프로세서는 2개를, 코어가 4개인 쿼드 코어 프로세서는 4개를 처리할 수 있다.
그렇다면 스레드(Thread)는 무엇일까? 아주 간단히 설명하면, 스레드는 특정 프로그램에서 나와 프로세서를 통과하는 연속된 데이터 데이터 흐름을 말한다. PC의 모든 것은 프로세서를 통과하는 스레드로 귀결된다.
즉, 논리적으로 코어가 많을 수록 한 번에 처리할 수 있는 스레드가 많다. PC가 더 빠르고 효율적으로 데이터를 처리하고 명령을 실행할 수 있다는 이야기이다. 그러나 새 CPU를 조사하면서 코어 수에만 초점을 맞추면 자칫 코어 수만큼 중요한 수치인 클럭 속도를 무시할 위험이 있다.
CPU의 각 코어에는 Ghz가 단위인 클럭 속도가 있다. 클럭 속도는 CPU 실행 속도다. 클럭 속도가 빠를 수록, CPU가 한 번에 처리 및 실행할 수 있는 명령이 많다.
클럭 속도는 통상 높을 수록 더 좋다. 그러나 발열과 관련된 제약 때문에 프로세서의 코어 수가 많을 수록 클럭 속도가 낮은 경향이 있다. 이런 이유로 코어 수가 많은 PC가 최고의 성능을 발휘하지 못하는 경우도 있다. 그렇다면 가장 알맞은 클럭 속도는 어느 정도일까?
클럭 속도는 PC로 하려는 일에 따라 달라진다. 일부 애플리케이션은 싱글스레드로 실행된다. 반면, 여러 스레드를 활용하도록 만들어진 애플리케이션도 있다. 비디오 렌더링이나 일부 게임 환경이 여기에 해당된다. 이 경우, 코어 수가 많은 프로세서가 클럭 속도가 높지만 코어가 하나인 프로세스보다 성능이 훨씬 더 높다. 수치해석의 경우는 계산량이 많은 큰 해석의 경우 멀티코어가 훨씬 유리하다.
웹 브라우징 같은 일상적인 작업에서는 클럭 속도가 높은 i5 프로세서가 i7보다 가격 대비 성능이 훨씬 더 높다는 의미이다. 즉, 코어 수가 많은 프로세서보다 클럭 속도는 높고 코어 수가 적은 프로세서를 구입하는 것이 훨씬 경제적인 대안이 될 수도 있다.
하이퍼-스레딩이란?
앞서 언급했듯, 일반적으로 프로세서 코어 하나가 한 번에 하나의 스레드만 처리할 수 있다. 즉, CPU가 듀얼 코어라면 동시에 처리할 수 있는 스레드가 2개다. 그러나 인텔은 하이퍼-스레딩이라는 기술을 개발해 도입했다. 가상으로 운영체제가 인식하는 코어를 2배 증가시키는 방법으로 하나의 코어가 동시에 여러 스레드를 처리할 수 있는 기술이다.
즉 i5의 물리적 코어 수는 4개이지만, 여러 스레드를 지원하는 애플리케이션을 실행시키면 하이퍼-스레딩이 코어 수를 가상으로 2배 늘려서 성능을 크게 향상하는 방법이다.
터보 부스트(Turbo Boost)란?
인텔의 터보 부스트는 프로세서가 필요한 경우 동적으로 클럭 속도를 높이는 기능이다. 터부 부스트로 높을 수 있는 최대 클럭 속도는 활성 코어의 수, 추정되는 전류 및 전력 소모량, 프로세서 온도에 따라 달라진다.
알기 쉽게 설명하면, 인텔 터보 부스트 기술은 사용자의 프로세서 사용 현황을 모니터링, 프로세서가 ‘열 설계 전력’의 최대치에 얼마나 가까이 도달했는지 판단한 후 적절한 수준으로 클럭 속도를 높인다. 기본적으로 가장 적절하고 우수한 클럭 속도와 코어 수를 제공한다.
현재 터보 부스트 테크놀로지 2.0 버전이 사용되고 있으며, 여러 다양한 7세대 및 8세대 인텔 코어 i7과 i5 CPU에서 이를 지원한다.
i3, i5, i7, i9 프로세서 중 하나를 선택하기 전에 클럭 속도, 코어 수와 함께 기억해야 할 한 가지가 또 있다.
캐시 크기
CPU가 동일한 데이터를 계속 사용하는 경우, CPU는 이 데이터를 프로세서의 일부분인 캐시라는 곳에 저장된다. 캐시는 RAM과 비슷하다. 그러나 메인보드가 아닌 CPU에 구축되어 있어 훨씬 더 빠르다. 캐시 크기가 크면 더 빨리 더 많은 데이터에 액세스 할 수 있다. 클럭 속도 및 코어 수와 다르게, 캐시 크기는 무조건 클 수록 더 좋다. 메모리가 많을 수록 CPU 성능이 향상된다.
7세대 코어 i3 및 코어 i5 프로세서 U 및 Y 시리즈 캐시 크기는 3MB, 4MB이다. 코어 i7의 캐시 크기는 4MB이다. 현재 8세대 프로세서의 캐시 메모리는 6MB, 8MB, 9MB, 12MB이다.
코어 i3, i5, i7, i9의 차이점은 무엇일까? 일반적으로 코어 i7은 코어 i5, 코어 i5는 코어 i3보다 나은 프로세서이다. 코어 i7의 코어 수는 7개가 아니다. 코어 i3 역시 코어 수가 3개가 아니다. 코어 수나 클럭 속도가 아닌 상대적인 연산력의 차이를 알려주는 수치다.
2017년 출시된 코어 i9 시리즈는 고가의 고성능 프로세서이다. 최상급인 코어 i9-7980X의 코어 수와 클럭 속도는 18개와 2.6GHz, 한 번에 처리할 수 있는 스레드는 32개이다. 가장 저렴한 코어 i9-7900X의 경우 각각 10코어, 3.3GHz(기본 클럭 속도), 20 스레드이다.
수치해석 측면에서 구입해야 할 컴퓨터를 고려한다면 CPU 성능은 현재 최신코어인 i7과 i9을 구입하는 것이 원하는 성능을 정확히 제공하는 CPU를 선택하는 방법이지만 예산과 성능이라는 선택의 문제가 존재한다.
editor@itworld.co.kr
AMD CPU 에 대한 이해
썸네일
AMD CPU 이름 규칙 및 코드명, 종류, 세대, 소켓 알아보기
AMD 1600, AMD 2400G, Athlon 240GE, AMD 3990X 등 AMD에 다양한 종류의, 다양한 모델명을 가진 cpu들이 있습니다. AMD cpu, apu의 종류와 세대, 소켓에 대해서 알아보도록 하며 이 글에서는 2017년 3월 3일 이후 나온 ‘라이젠’ 시리즈의 cpu, apu에 대해서만 다루도록 하겠습니다.
AMD 라이젠 시리즈는 현재 3세대까지 출시되었으며, 크게 일반 cpu, 하이엔드 cpu(스레드리퍼), 일반 APU, 모바일 APU으로 나뉩니다. 또한 소켓은 현재까지 나온 cpu 중 하이엔드 cpu를 제외한 cpu는 모두 am4소켓입니다.
AMD CPU 이름 규칙
이름 규칙
AMD 라이젠 시리즈는 ‘AMD 라이젠 7 1700X’를 예로 들면, 앞의 ‘AMD’는 회사 이름을 나타내며
뒤에 ‘라이젠 7’은 성능을 나타냅니다. ‘라이젠 3’은 메인스트림, ‘라이젠 5’는 고성능, ‘라이젠 7’은 최고 성능입니다.
그리고 뒤에 ‘1’은 세대를 나타냅니다. ‘1700’은 Zen 1세대이며, ‘AMD 라이젠 5 2400G’와 같이 APU는 기존 세대에 비해 조금 개선되긴 했지만, 다음 세대 정도까지에 개선은 아니라서 세대는 같지만, ‘400G’앞에 붙는 숫자는 1이 더해져서 나옵니다.
그리고 두번째 자리 ‘7’은 성능을 나타냅니다. ‘2,3’은 메인스트림, ‘4,5,6’은 고성능, ‘7,8’은 최고 성능입니다.
그리고 세네번째 자리는 세세한 기능의, 세세한 성능의 변화 정도로 생각하시면 됩니다.
출처: https://minikupa.com/52 [미니쿠파]
인텔 코어 i9-12900K 리뷰 | 왕좌 탈환 노리는 ‘인텔의 귀환’
2021.11.09
Gordon Mah Ung | PCWorld구원 서사를 좋아하지 않는 사람은 없다. 인텔 12세대 코어 i9-12900K는 오랫동안 회자될 귀환 이야기의 주인공이다. 한때 강력하고 득의양양했던 챔피언은 수 년 전 부활한 AMD 라이젠 프로세서의 손에 굴욕적인 패배를 겪었고 어떻게 해서든 다시 한번 싸울 방법을 찾아 마침내 승리를 외치려고 한다. 이제 카메라가 페이드아웃 되면서 엔딩 크레딧으로 넘어간 셈이다.
인생이나 기술은 그런 헐리우드식 결말을 맺기 어렵지만, 인텔 코어 i9-12900K는 그런 드라마의 주인공 역할을 상당히 잘 해낸 것 같다. 지난 몇 년 동안 AMD 프로세서에 두들겨 맞은 후 태어난 12900K는 경쟁 제품인 라이젠 9 5950X보다 훨씬 더 나은 CPU로 더 많은 사용자에게 활용 가능성을 안겼다. 화끈한 KO 승리를 거둔 것은 전혀 아니지만, 인텔 12세대 앨더 레이크 프로세서의 뛰어난 장점과 기능을 고려할 때 바로 오늘 구입할 수 있는 하이엔드 데스크톱 프로세서다.
ⓒ Gordon Mah Ung
12세대 앨더 레이크는 어떤 CPU?
인텔 12세대 앨더 레이크는 근본적으로 인텔 7 공정을 기반으로 만들어진 하이브리드 CPU 설계다. 사실 이것만으로도 엄청난 일이다. 14나노 트랜지스터 기술에 5년 이상을 허비한 끝에, 앨더 레이크는 마침내 하나의 노드를 뛰어넘었다. (기존 10나노 공정이 리브랜드된 후 인텔 7이라는 이름으로 불린다.)
새롭게 설계된 고성능 CPU 코어와 더 작아진 효율 코어를 혼합하여 성능 대 전력 비율의 균형을 최적화했다. 완전히 재설계된 큰 코어를 가진 인텔의 첫 번째 인텔 7 프로세스 데스크톱 CPU라고 이해하는 것이 가장 쉽다. 그리고 여기에 더해 여러 개의 나머지 효율성 코어 성능이 이전 10세대 코어만큼 우수하다. 또한, 12세대 앨더 레이크는 PCIe 5.0, DDR5 메모리, LGA1700 소켓을 비롯해 새로운 표준을 다수 지원한다.
ⓒ Intel
CPU 렌더링 성능
인텔의 전통점 강점이 아니었던 3D 렌더링과 모델링부터 시작하자. 지금까지는 PC에서 3D 모델링 애플리케이션 실사용자가 많지 않아서, 이들 전문 애플리케이션의 실행 성능에 큰 의미를 두지 않았다는 것이 인텔의 주장이었다. 라이젠 CPU의 눈부신 성능에 뒤지는 경우에만 렌더링 성능에서 피벗을 뺐다는 점에 주목하는 사람도 많다.
맥슨 시네벤치 R23부터 시작한다. 맥슨 시네마4D 애플리케이션에 사용되는 렌더링 엔진 테스트이며, 같은 렌더링 엔진이 일부 어도비 애플리케이션에도 내장되어 있다.
최신 버전은 10분 쓰로틀링 테스트를 기본값으로 제안한다. 인텔 10세대, 11세대 칩과 윈도우 11 환경을 테스트한 결과는 없지만, 윈도우 10과 10코어 코어 i9-10900K가 1만 4,336점을 받았고 8코어 코어 i9-11900K는 1만 6,264점을 받았다. 사실 둘 다 2만 2,168점을 받은 AMD 12코어 라이젠 9 5900X과는 상대가 되지 않는다. 그래서 굳이 16코어 라이젠 9 5950X와 비교할 필요가 없었다.
눈길을 끄는 것은 코어 i9-12900K의 긴 파란 막대다. 인텔이 앨더 레이크에서 추구한 하이브리드 설계를 추구하는 것에 여러 가지 말이 많았지만, 12900K는 오랫동안 라이젠의 홈그라운드였던 렌더링 벤치마크에서 AMD의 1, 2위 CPU를 아주 약간이나마 능가해 호사가의 입을 단속한다.
ⓒ IDG
하지만 인텔이 옳다. 모든 CPU 코어와 쓰레드를 다 쓰는 애플리케이션을 사용하는 사람은 그다지 많지 않다. 따라서 시네벤치로 단일 쓰레드 성능을 살펴보는 것도 중요하다. 시네벤치 멀티코어 성능은 라이트룸 클래식 올코어 영상 인코딩이나 사진 내보내기 성능을 알려주고, 시네벤치 R23 단일 쓰레드 성능은 그보다는 오피스나 포토샵 실행에 조금 더 가깝다. 다시 한번 강조하지만, 코어 i9-10900K와 윈도우 11 결과는 없지만, 10세대 제품의 기존 점수는 1,325점, 11세대 제품은 1,640점을 기록한 AMD 라이젠과 비슷한 수준이다.
그러나 인텔 최신 성능 코어는 라이젠 9 5950X보다 성능이 19% 높고, 구형 10세대 칩보다 31%나 나아져 당혹스러울 정도였다. 맥북 프로 M1 맥스와 앨더 레이크를 비교하면 어떨지를 궁금해 하는 이에게 알려주자면, 앨더 레이크가 우세하다. 모바일 칩과 데스크톱 칩을 비교하는 단일 쓰레드 성능 테스트에서 12세대 앨더 레이크 CPU는 애플 최신 M1 칩보다 약 20%나 더 빨랐다. 물론 인텔 제품은 노트북용 칩이 아니었지만, 인텔 12세대 CPU를 탑재한 노트북이 출시되면 충분히 맥북 프로의 경쟁자가 될 것이다.
ⓒ IDGⓒ IDGⓒ IDGⓒ IDGⓒ IDGⓒ IDG
압축 성능
CPU의 압축 성능은 인기있고 무료인 7-Zip 내부 벤치마크로 측정했다. 벤치마크는 CPU 쓰레드 수를 살펴보고 테스트하면서 자체적으로 여러 번 스풀링을 반복한다. 압축 테스트에서는 코어를 전부 사용하는 경우 압축 성능에서 24%, 압축 해제 성능에서 35% 더 높은 수치를 보여준 라이젠이 가장 큰 승자다.
7-cpu.com에 따르면, 압축 측면에서는 메모리 지연 시간, 데이터 캐시의 크기 및 TLB(translation look ahead buffer)가 중요한 반면, 압축을 풀 때는 정수 및 분기 예측 실패 패널티(branch misprediction penalties)가 중요하다. 결국, 실제 애플리케이션으로 파일 압축하거나 압축을 푸는 것은 보통 단일 쓰레드에 의존하기 때문에 멀티 쓰레드 성능과의 상관 관계는 이론에 그친다고 할 수 있다.
12세대 코어 i9의 문제는 심지어 압축 성능도 화려하지 않다는 것이다. 실제로 11세대 코어 i9은 윈도우 10 단일 쓰레드 성능에서 7,916으로 약간 더 빠르다. 간단히 요약하면 라이젠 9이 7-zip 테스트에서 압축 성능 우위를 유지했다. 이견은 있을 수 없다. 일부는 초기 DDR5 메모리의 지연 시간과 7-Zip이 특별한 명령을 사용하지 않는 이유도 있겠지만, 어쨌든 압축 테스트에서는 라이젠이 승리했다.
ⓒ IDG
인코딩 성능
CPU 인코딩 테스트는 무료이자 오픈소스인 핸드브레이크 트랜스코더/인코더를 사용하여 무료이자 오픈소스인 4K 티어스 오브 스틸(Tears of Steel) 영상을 H.265 코덱과 1080p 해상도로 변환하는 작업을 수행한다. 라이젠 9은 인코딩을 약 6% 더 빨리 끝내면서 다시 1위를 차지했다. 압도적인 승리는 아니지만 어쨌거나 1등이다.
ⓒ IDG
합성 테스트
이제 긱벤치 5로 옮겨간다. 이 테스트는 21개의 작은 개별 루프로 구성된 합성 벤치마크인데, 개발자인 프라이메이트 랩스(Primate Labs)는 텍스트 렌더링에서 HDR, 기계 언어 및 암호화 성능에 이르기까지 모든 분야에서 인기있는 애플리케이션을 모델링했다고 한다. 긱벤치는 과거 논란의 중심에 있었지만, 여전히 인기가 높은 벤치마크다. 3D 렌더링과 압축, 인코딩 등에서 순위가 오르내렸던 코어 i9-12900K는 라이젠 9 5950X보다 8%가량
긱벤치 벤치마크는 과거에 논란의 대상이 되었지만, 오늘날에는 비난받지 않고서 어떤 테스트를 유지하는 것이 어렵다. 하지만 이 제품은 어리석게도 인기가 있고, 당신이 긱벤치 5에 대해 어떻게 생각하든 간에, 사람들은 CPU가 거기에서 어떻게 작동하는지 보고 싶어한다. 3D 렌더링, 압축 및 인코딩을 어느 정도 반복한 결과, 인텔 코어 i9-12900K가 라이젠 9 5950X보다 약 8% 앞서는 것으로 나타났다.
ⓒ IDGⓒ IDG
콘텐츠 제작 성능
전체 점수는 코어 i9-12900K가 라이젠 9 59050X에 비해 4% 더 앞선다. 프로시언 2.0은 이미지 보정(retouch)와 일괄 내보내기라는 2가지 방식으로 결과를 나눈다. 프로시언에 따르면, 이미지 보정에서는 기본적으로 12세대 코어 i9과 라이젠 9이 동점이었다. 주로 라이트룸 클래식 사진 내보내기 성능을 시험한 일괄 처리에서는 코어 i9가 최대 5%까지 앞섰다. 라이트룸 사진 내보내기가 멀티코어 성능에 의존하는 경향이 크기 때문에 마지막 결과에 놀랐다. 라이젠 9의 승리를 예상했기 때문이다. 결과는 그렇지 않았다.
ⓒ IDGⓒ IDGⓒ IDGⓒ IDGⓒ IDG
AI 성능
ⓒ IDGⓒ IDG
실생활 성능
비싼 컴퓨터로 인디 영화를 위한 특수 효과를 만들거나 이국적인 여행에서 찍은 사진을 편집하는 것을 상상하기 쉽지만, 세상 일의 대다수는 청구서를 지불하는 지루한 작업과 더 연관이 깊다. 따라서 마이크로소프트 오피스 성능을 UL의 프로시언 2.0 오피스 생산성 테스트를로 측정했다. 어도비와 마찬가지로, 다루는 마이크로소프트 워드, 엑셀, 파워포인트 및 아웃룩에서 고품질 미디어를 많이 다루는 작업을 대상으로 한다. 현실이 지루한 것처럼, 이런 작업이 가장 현실적이라고 할 수 있을 것이다.
오피스나 사무적이고 딱딱한 아웃룩 성능에 열광하는 사람에게는 라이젠보다 16% 빠른 코어 i9-12900K가 유리한 것으로 나타났다. 개별 애플리케이션을 결과에 따르면 12세대 코어 i9는 워드에서 14%, 엑셀에서 19%, 파워포인트에서 10%, 아웃룩에서 19% 더 빠르다.
ⓒ IDGⓒ IDG
게이밍 성능
첫 번째 차트의 수직 축 눈금은 60와트에서 340와트까지를 표시하며, 0은 시간 수평 축을 의미한다. 먼저 모든 코어를 사용하여 시네벤치 R20을 실행했는데, 12900K(빨간색) 막대가 320와트의 총소비량까지 올라간 것을 볼 수 있다. 이것은 거의 라이젠 9 5950X(보라색)의 최대치보다 거의 100와트 더 많다. 약 45% 더 많은 양이다. 일단 모든 코어에 대해 두 칩 모두 시네벤치를 완료하면, 단일 코어나 쓰레드를 사용하여 칩을 실행한다. 이제 115와트 범위의 12세대 코어 i9의 총 시스템 전력을 볼 수 있는데, 라이젠 9가 약 10와트를 더 소비한다. 코어 i9가 테스트를 더 빨리 끝내고 라이젠 9 시스템보다 더 적은 전력을 사용한 것도 확인할 수 있다.
ⓒ IDG
전력 소비
ⓒ IDGⓒ IDG
쓰레드 스케일링
인텔의 11세대부터 12세대까지의 세대별 성능 변화는 경이롭다. 단일 쓰레드를 사용함으로써 코어 i9-12900K는 이전 제품보다 42% 더 빠르며 그 속도에서 조금 올라간다. 8개 쓰레드에서 최신 세대의 코어 i9 최대치를 기록할 때 12세대 코어 i9은 놀랍게도 82% 더 빠르다. 지난 3월 출시된 11세대 칩과 비교하면 완전히 놀라운 변화다. 직접 전력 양을 추적해보지는 않았지만, 이전 11세대 코어 i9-11900K는 시네벤치 R20 실행에 거의 380와트 가까이를 사용한 반면, 12세대 코어 i9는 약 320와트를 사용했다. 따라서, 12세대 코어는 훨씬 적은 전력을 사용하면서도 훨씬 더 빠르다.
ⓒ IDGⓒ IDG
인텔 코어 i9-12900K, 결론
조금 의외일지도 모르겠다. 최고의 CPU라는 것은 존재하지 않는다는 것이 결론이다.
그보다는 특정 요구에 가장 적합한 CPU가 곧 최고의 CPU다. 이 긴 벤치마크는 각 요구사항을 6개 부문으로 나눠 각 분야에서 어떤 칩이 승리했는지를 확인했다. 인텔에 좋은 소식은 거의 모든 부문에서 좋은 위치를 차지하고 있다는 것이다.
렌더링 / 하이쓰레드 카운트 하이 쓰레드 카운트 애플리케이션 및 렌더링에서 코어 i9-12900K는 시네벤치 R23 테스트에서 가까스로 승리라는 결과를 냈지만, 다른 CPU 렌더링 테스트에서는 훨씬 미묘한 결과가 나왔다. 솔직히 90% 렌더링 PC용 칩을 선택한다면, 라이젠 9 5950X가 아마 더 나은 선택일 것이다. 승리 : 라이젠 9 5950X.
콘텐츠 제작 앞서 살펴본 바와 같이, 콘텐츠 제작은 단순히 쓰레드가 제일 많기만 하면 되는 작업이 아니고, 12세대 코어 i9은 라이젠 9 5950X보다 더 많은 역량을 증명했다. 포토샵, 라이트룸 클래식, 프리미어 프로를 주로 다룬다면 인텔이 더 나은 선택이 될 것이다. 승리 : 코어 i9-12900K.
실생활 오피스 생산성과 크롬의 벤치마크를 통해 반응성이 더 높은 것이 인텔 CPU라는 점을 확인했다. 물론 결과에 동의하지만 동시에 라이젠 9 5950X도 두 사용례를 모두 잘 처리할 수 있다고도 믿는다. 아웃룩, 워드 실행이나 인터넷 검색이 주 작업인 하이엔드 데스크톱을 조립할 경우 약간 등급을 낮춰도 될 것 같다. 승리: 코어 i9-12900K.
게이밍 실제 게임 플레이에서 차이를 보려면 CPU보다 GPU에 더 집중해야 한다. 그렇지만 게임 테스트에서 인텔 12세대 코어 i9은 분명히 라이젠보다 점수가 높거나 거의 동점이었다. 의심의 여지없이 최고의 게임용 CPU다. 하지만 어느 쪽을 택해도 좋은 선택이다. 승리 : 코어 i9-12900K.
기능 인텔 12세대 플랫폼은 PCIe 5.0 및 DDR5 메모리라는 새로운 세계를 열었다. 또한, 필요한 경우 썬더볼트를 사용할 수 있고 와이파이 6E까지도 통합되어 있다. 물론, DDR5의 가치가 없다고 말하는 이들도 있고 그런 주장에도 이유가 있겠지만, 인텔로서는 충분히 새로운 점이 있다. 승리 : 코어 i9-12900K.
가치 아직도 AMD 라이젠 9 5950X가 그리 대단한 가치가 없다고 생각하는 사람도 있고, 그 전 해에 2,000달러나 했던 CPU와 성능이 동등한데도 가격이 750달러에 불과한 것을 칭찬하는 사람도 있다. 만약 라이젠 9의 가격이 터무니없이 저렴하다고 생각하는 쪽이라면, 589달러라는 코어 i9-12900K의 공격적인 가격표를 보고 당장 구매하겠다고 소리칠 것이다. 하지만 이 가격은 대량 구매시 적용되는 값이다. 그렇지만 전통적으로 대량구매 가격은 초기 수요가 확정되면 시중가와 몇 달러 차이 나지 않는다. 그렇다. 여기서 가격 대비 가치가 높은 제품은 인텔이다. 그야말로 해가 서쪽에서 뜰 기세다. 승리 : 코어 i9-12900K.
코어 i9-12900K는 위대한 과거 명성을 회복하고 다시 왕좌를 탈환하려고 나섰다. 앨더 레이크는 기다릴 가치가 충분했다. 인텔에게 박수를 보낸다, 브라보. editor@itworld.co.kr
본 자료는 Computer에 대한 전문적인 지식보다는 수치해석을 주 목적으로 FLOW-3D 를 이용하기 위한 해석용 컴퓨터를 선택할 때 도움을 주기 위한 자료입니다.
흔히 고성능 컴퓨터는 표준 데스크톱 컴퓨터와 어떻게 다른지 궁금하게 생각하는데, 보통 HPC(high performance computing)는 더욱 강력한 프로세서, 더 큰 메모리, 뛰어난 그래픽 성능을 갖추고 있어 일반적인 표준 데스크톱보다 훨씬 빠르게 여러 가지 복잡한 작업을 동시에 처리할 수 있습니다. 따라서 시중에서 판매하는 고사양의 컴퓨터에 CPU, Memory, Graphic Card 등을 보완하거나 고사양으로 만들어진 컴퓨터를 구매하게 되면, 단일 노드의 HPC(high performance computing)와 유사한 성능을 확보할 수 있습니다.
하지만 개인이 여러 컴퓨터를 대상으로 테스트를 수행하기 어렵기 때문에, 전문가들이 테스트를 수행하여 공개하는 보고서를 참조하여 도움을 얻는 것이 효율적입니다.
아래 전문 성능비교 테스트 보고서가 시스템 선택에 도움이 될 것으로 생각합니다. 참고로, 당사는 기사를 제공하는 기관과 전혀 관련이 없음을 알려드립니다.
In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.
개요
본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.
수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.
따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.
또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.
FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2022년 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.
CPU 최신 뉴스
2024년 04월 01일 기준
이미지 출처 : https://www.cpubenchmark.net/high_end_cpus.html
CPU의 선택
CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 Intel 과 AMD의 모델 번호와 사양을 이해하는 것이 어려워 보일 것입니다. 그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.
PassMark – CPU Mark
High End CPUs
Updated 31st of March 2024
수치해석을 수행하는 CPU의 경우 예산에 따라 Core가 많지 않은 CPU를 구매해야 하는 경우도 있을 수 있습니다. 보통 Core가 많다고 해석 속도가 선형으로 증가하지는 않으며, 해석 케이스에 따라 적정 Core수가 있습니다. 이 경우 예산에 맞는 성능 대비 최상의 코어 수가 있을 수 있기 때문에 Single thread Performance 도 매우 중요합니다. 아래 성능 도표를 참조하여 예산에 맞는 최적 CPU를 찾는데 도움을 받을 수 있습니다.
CPU 성능 분석 방법
부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.
FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.
특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.
이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.
CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.
예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.
다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.
<SPEC CPU 벤치마크 보고서>
벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.
Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.
일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.
CPU 아키텍처
CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.
오버클럭
해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.
하이퍼스레딩
<이미지출처:https://gameabout.com/krum3/4586040>
하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.
몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.
스케일링
여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.
AMD Ryzen 또는 Epyc CPU
AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다.
FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.
특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.
유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.
Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.
원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.
하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.
RAM 고려 사항
프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. POST Processor를 사용하여 후처리 작업을 할 경우 충분한 양의 RAM을 사용하는 것이 좋습니다.
현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.
일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기
초대형 (2억개 이상의 셀) : 최소 128GB
대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
중간 (30-60백만 셀) : 32-64GB
작음 (3 천만 셀 이하) : 최소 32GB
HDD 고려 사항
수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.
CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.
흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.
그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다. ( 참고 :해석용 컴퓨터 SSD 고르기 참조 )
기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.
하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다. 결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.
상기 벤치마크 테스트는 테스트 조건에 따라 그 성능 곡선이 달라질 수 있기 때문에 조건을 확인할 필요가 있습니다. 예를 들어 Windows7, windows8, windows10 , windows11 모두에서 테스트한 결과를 평균한 점수와 자신이 사용할 컴퓨터 O/S에서 테스트한 결과는 다를 수 있습니다. 상기 결과에 대한 테스트 환경에 대한 내용은 아래 사이트를 참고하시기 바랍니다.
Artificial Intelligence (AI) techniques, such as Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and dimensional analysis-based empirical equations (DAEEs), can estimate scour depth around bridge piers. AI’s accuracy depends on various architectures, while DAEEs’ performance depends on experimental data. This study evaluated the performance of AI and DAEEs for scour depth estimation using flow velocity, depth, size of bed sediment, critical approach velocity, and pier width. The data from a smooth rectangular (20 m × 1 m) flume and a high-precision particle image velocimetry to study the flow structure around the pier – width: 1.5 – 91.5 cm evaluated DAEEs. Various ANNs (5, 10, and 15 neurons), double layer (DL) and triple layers (TL), and different ANFIS settings were trained, tested, and verified. The Generalized Reduced Gradient optimization identified the parameters of DAEEs, and Nash–Sutcliffe efficiency (NSE) and Mean Square Error (MSE) evaluated the performance of different models. The study revealed that DL ANN-3 with 10 neurons (NSE = 0.986) outperformed ANFIS, other ANN (ANN1, ANN2, ANN4 & ANN5) models, and empirical equations with NSE values between 0.76 and 0.983. The study found pier dimensions to be the most influential parameter for pier scour.
Abadie J (1969) Generalization of the Wolfe reduced gradient method to the case of non-linear constraints. Optimization, 37–47
Abd El-Hady Rady R (2020) Prediction of local scour around bridge piers: Artificial-intelligence-based modeling versus conventional regression methods. Applied Water Science 10(2):57, DOI: https://doi.org/10.1007/s13201-020-1140-4ArticleGoogle Scholar
Akhlaghi E, Babarsad MS, Derikvand EM, Abedini M (2020) Assessment the effects of different parameters to rate scour around single piers and pile groups: A review. Archives of Computational Methods in Engineering 27(1):183–197, DOI: https://doi.org/10.1007/s11831-018-09304-wArticleGoogle Scholar
Alharbi S, Mills G (2022) Assessment of exposure to flash flooding in an arid environment: A case study of the jeddah city neighborhood abruq ar rughamah, saudi arabia. In: Wadi Flash Floods: Challenges and Advanced Approaches for Disaster Risk Reduction. Springer Nature Singapore, 383–397ChapterGoogle Scholar
Annad M, Lefkir A (2022) Analytic network process for local scour formula ranking with parametric sensitivity analysis and soil class clustering. Water Supply 22(11):8287–8304, DOI: https://doi.org/10.2166/ws.2022.357ArticleGoogle Scholar
Annad M, Lefkir A, Mammar-kouadri M, Bettahar I (2021) Development of a local scour prediction model clustered by soil class. Water Practice & Technology 16(4):1159–1172, DOI: https://doi.org/10.2166/wpt.2021.065ArticleGoogle Scholar
Arifin F, Robbani H, Annisa T, Ma’Arof N (2019) Variations in the number of layers and the number of neurons in artificial neural networks: Case study of pattern recognition. Journal of Physics: Conference Series 1413(1):12016, DOI: https://doi.org/10.1088/1742-6596/1413/1/012016Google Scholar
Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE (2012) Evaluating scour at bridges. Report No. FHWA-HIF-12-003 HEC-18, National Highway Institute, Arlington, VA, USAGoogle Scholar
Benedict ST, Caldwell AW (2014) A pier-scour database: 2427 Field and Laboratory Measurements of Pier Scour, Data Series No. 845, US Department of the Interior, US Geol. Surv. Reston, VA, USAGoogle Scholar
Cao J, Chen J, Zhu D, Wei S (2021) Evaluation of local scour calculation equations for bridge piers in sandy riverbed. IOP Conference Series: Earth and Environmental Science 692(4):042022, DOI: https://doi.org/10.1088/1755-1315/692/4/042022Google Scholar
Chabert J (1956) Etude des affouillements autour des piles de ponts. Laboratoire National d’Hydraulique, ChatouGoogle Scholar
Chavan R, Gualtieri P, Kumar B (2019) Turbulent flow structures and scour hole characteristics around circular bridge piers over nonuniform sand bed channels with downward seepage. Water 11(8):1580, DOI: https://doi.org/10.3390/w11081580ArticleGoogle Scholar
Chavan R, Kumar B (2020) Downward seepage effects on dynamics of scour depth and migrating dune-like bedforms at tandem piers. Canadian Journal of Civil Engineering 47(1):13–24, DOI: https://doi.org/10.1139/cjce-2017-0640ArticleGoogle Scholar
Cikojević A, Gilja G, Kuspilić N (2019) Sensitivity analysis of empirical equations applicable on bridge piers in sand-bed rivers, Proceedings of the 16th International Symposium on Water Management and Hydraulic Engineering, September 5–7, Skopje, Republic of Macedonia
Dimitriadis P, Koutsoyiannis D, Iliopoulou T, Papanicolaou P (2021) A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology 8(2):59, DOI: https://doi.org/10.3390/hydrology8020059ArticleGoogle Scholar
Ettema R (1980) Scour at bridge piers: A report submitted to the National Roads Board. PhD Thesis, The University of Auckland, Auckland, New ZealandGoogle Scholar
Farooq R, Ghumman AR, Ahmed A, Latif A, Masood A (2021) Performance evaluation of scour protection around a bridge pier through experimental approach. Tehnički Vjesnik 28(6):1975–1982, DOI: https://doi.org/10.17559/TV-20200213211932Google Scholar
Fattah MY, Hassan WH, Rasheed SE (2018) Behavior of flexible buried pipes under geocell reinforced subbase subjected to repeated loading. International Journal of Geotechnical Earthquake Engineering 9(1):22–41, DOI: https://doi.org/10.4018/IJGEE.2018010102ArticleGoogle Scholar
FHWA (1998) Recording and coding guide for the structural inventory and appraisal of the nations’ bridges. Report No. FHWA-PD-96-001, US Department of Transportation, Federal Highway Administration. Office of Engineering, Washigton DC, USAGoogle Scholar
Hassan WH, Hussein HH, Alshammari MH, Jalal HK, Rasheed SE (2022) Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results in Engineering 13:100353, DOI: https://doi.org/10.1016/j.rineng.2022.100353ArticleGoogle Scholar
Imhof D (2004) Risk assessment of existing bridge structures. PhD Thesis, University of Cambridge, Cambridge, UKGoogle Scholar
Jalal HK, Hassan WH (2020) Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. IOP Conference Series: Materials Science and Engineering 745(1): 12150, DOI: https://doi.org/10.1088/1757-899X/745/1/012150ArticleGoogle Scholar
Khassaf SI, Ahmed SI (2021) Development an empirical formula to calculate the scour depth at different shapes of non-uniform piers. Journal of Physics: Conference Series 1973(1):012179, DOI: https://doi.org/10.1088/1742-6596/1973/1/012179Google Scholar
Lasdon LS, Waren AD, Jain A, Ratner M (1978) Design and testing of a generalized reduced gradient code for non-linear programming. ACM Transactions on Mathematical Software 4(1):34–50, DOI: https://doi.org/10.1145/355769.355773ArticleGoogle Scholar
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of ASABE 50(3): 885–900, DOI: https://doi.org/10.13031/2013.23153ArticleGoogle Scholar
Namaee MR, Li Y, Sui J, Whitcombe T (2018) Comparison of three commonly used equations for calculating local scour depth around bridge pier under ice covered flow condition. World Journal of Engineering and Technology 6(2):50–62ArticleGoogle Scholar
Oğuz K, Bor A (2022) Prediction of local scour around bridge piers using hierarchical clustering and adaptive genetic programming. Applied Artificial Intelligence 36(1), DOI: https://doi.org/10.1080/08839514.2021.2001734
Parola AC, Hagerty DJ, Mueller DS, Melville BW, Parker G, Usher JS (1997) The need for research on scour at bridge crossings, 1997. Proceedings of the 27th IAHR World Congress. San Fransisco, CA, USA
Pizarro A, Samela C, Fiorentino M, Link O, Manfreda S (2017) BRISENT: An entropy-based model for bridge-pier scour estimation under complex hydraulic scenarios. Water 9(11):889, DOI: https://doi.org/10.3390/w9110889ArticleGoogle Scholar
Pregnolato M, Winter AO, Mascarenas D, Sen AD, Bates P, Motley MR (2022) Assessing flooding impact to riverine bridges: An integrated analysis. Natural Hazards and Earth System Sciences 22(5):1559–1576, DOI: https://doi.org/10.5194/nhess-22-1559-2022ArticleGoogle Scholar
Sarshari E, Mullhaupt P (2015) Application of artificial neural networks in assessing the equilibrium depth of local scour around bridge piers. ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, St. John’s, NL, Canada
Sharafati A, Tafarojnoruz A, Yaseen ZM (2020) New stochastic modeling strategy on the prediction enhancement of pier scour depth in cohesive bed materials. Journal of Hydroinformatics 22(3):457–472, DOI: https://doi.org/10.2166/hydro.2020.047ArticleGoogle Scholar
Sreedhara BM, Patil AP, Pushparaj J, Kuntoji G, Naganna SR (2021) Application of gradient tree boosting regressor for the prediction of scour depth around bridge piers. Journal of Hydroinformatics 23(4): 849–863, DOI: https://doi.org/10.2166/hydro.2021.011ArticleGoogle Scholar
Wang C, Yu X, Liang F (2017) Comparison and estimation of the local scour depth around pile groups and wide piers. In Geotechnical Frontiers, American Scciety of Civil Engineers, Reston, VA, USA, 11–19Google Scholar
Youssef AM, Abu-Abdullah MM, AlFadail EA, Skilodimou HD, Bathrellos GD (2018) The devastating flood in the arid region a consequence of rainfall and dam failure: Case study. Al-Lith flood on 23th November 2018, Kingdom of Saudi Arabia, Zeitschrift für Geomorphol 63(1):115–136, DOI: https://doi.org/10.1127/zfg/2021/0672Google Scholar
Zhang B, Zhao H, Tan C, OBrien EJ, Fitzgerald PC, Kim CW (2022) Laboratory investigation on detecting bridge scour using the indirect measurement from a passing vehicle. Remote Sensing 14(13):3106, DOI: https://doi.org/10.3390/rs14133106ArticleGoogle Scholar
Authors also thank “The US Department of the Interior,” US Geol. Surv. Reston, VA, USA” for providing access to scour data. The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).
Author information
Authors and Affiliations
Dept. of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi ArabiaAbdul Razzaq Ghumman, Husnain Haider, Ibrahim Saleh Al Salamah, Md. Shafiquzzaman, Abdullah Alodah & Mohammad Alresheedi
Dept. of Civil Engineering, International Islamic University, Islamabad, 44000, PakistanRashid Farooq
Dept. of Civil Engineering, University of Engineering and Technology, Taxila, 47050, PakistanAfzal Ahmed & Ghufran Ahmed Pasha
Chuan Wang abc, Hao Yu b, Yang Yang b, Zhenjun Gao c, Bin Xi b, Hui Wang b, Yulong Yao b
aInternational Shipping Research Institute, GongQing Institute of Science and Technology, Jiujiang, 332020, ChinabCollege of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, ChinacCollege of Mechanical and Power Engineering, China Three Gorges University, Yichang, 443002, China
Numerical simulations and experiments were combined to investigate pulsed jet scour.
The effect mechanism of pulse amplitude on the variation of scour hole depth was analyzed.
Models for the prediction of relative low pulse width with the inlet pulse amplitude have been developed.
Abstract
This paper investigates the effects of the pulse width and amplitude on the scouring of sand beds by vertical submerged pulsed jets using a combination of experimental and numerical calculations. The reliability of the numerical calculations is verified through a comparison between the numerical simulations with the sedimentation scour model and the experimental data at a low pulse width T2 of 0, with the result that the various errors are within 5%. The results show that the scour hole depth |hmin| grows with the relative low pulse width T3 throughout three intervals: a slowly increasing zone I, a rapidly increasing zone II, and a decreasing zone III, producing a unique extreme value of |hmin|. The optimal scouring effect equation was obtained by analytically fitting the relationship curve between the pulse amplitude V and the relatively low pulse width T3. Including the optimal T3 and optimal duty cycle ƞ. The difference in the scour hole depth |hmin| under different pulse amplitudes is reflected in the initial period F of the jet. With an increasing pulse amplitude, |hmin| goes through three intervals: an increasing zone M, decreasing zone N, and rebound zone R. It is found that the scouring effect in the pulse jet is not necessarily always stronger with a larger amplitude. The results of the research in this paper can provide guidance for optimizing low-frequency pulsed jets for related engineering practices, such as dredging and rock-breaking projects.
Introduction
Submerged jet scouring technology is widely used in marine engineering and dredging projects due to its high efficiency and low cost, and a wide range of research exists on the topic (Zhang et al., 2017; Thaha et al., 2018; Lourenço et al., 2020). Numerous scholars studied the scouring caused by different forms of jets, such as propeller jets (Curulli et al., 2023; Wei et al., 2020), plane jets (Sharafati et al., 2020; Mostaani and Azimi, 2022), free-fall jets (Salmasi and Abraham, 2022; Salmasi et al., 2023), and moving jets (Wang et al., 2021). Among them, vertical jets were more popular than inclined jets due to theirs simple equipment and good silt-scouring performance (Chen et al., 2023; Wang et al., 2017). So, a large number of scholars have proposed relevant static and dynamic empirical equations for the scour depth of submerged jets. Among them, Chen et al. (2022) and Mao et al. (2023) investigated the influence of jet diameters, jet angles, exit velocities, and impinging distances on scouring effects. Finally, based on a large amount of experimental data and theoretical analysis, a semi-empirical equation for the dynamic scour depth in equilibrium was established. Amin et al. (2021) developed semi-empirical prediction equations for asymptotic lengths and empirical equations for the temporal development of lengths. Shakya et al. (2021, 2022) found that the ANN model in dimensionless form performs better than the ANN model in dimensioned form and proposed an equation for predicting the depth of static scour under submerged vertical jets using MNLR. Kartal and Emiroglu (2021) proposed an empirical equation for predicting the maximum dynamic scour depth for a submerged vertical jet with a plate at the nozzle. The effect of soil properties on jet scour has also been studied by numerous scholars. Among them, Nguyen et al. (2017) investigated the effects of compaction dry density and water content on the scour volume, critical shear stress, linear scour coefficient, and volumetric scour coefficient using a new jet-scour test device. Dong et al. (2020) investigated the effect of water content on scour hole size through experiments with a vertical submerged jet scouring a cohesive sediment bed. It was found that the depth and width of the scour holes increased with the increasing water content of the cohesive sediments, and equations for the scour depth and width in the initial stage of scouring and the calculation of the scouring rate were proposed. Kartal and Emiroglu (2023) studied the scouring characteristics of different nozzle types produced in non-cohesive sands. The results of the study found that the air entrainment rate of venturi nozzles was 2–6.5 times higher than that of circular nozzles. Cihan et al. (2022) investigated the effect of different proportions of clay and sand on propeller water jet scouring. And finally, he proposed an estimation equation for the maximum depth and length of the scour hole under equilibrium conditions. From the above summary, it is clear that a great deal of research has been carried out on submerged jet scouring under continuous jet flows.
Pulsed jets have advantages such as higher erosion rates and entrainment rates compared to continuous jets and have therefore received more attention in the development of engineering fields such as cleaning and rock breaking (Raj et al., 2019; Zhu et al., 2019; Kang et al., 2022; Y. Zhang et al., 2023). In the study of jet structure, Li et al. (2018, 2019a, 2019b, 2023) investigated the effects of the jet hole diameter, the number of jet holes, the jet distance, and the tank pressure on pulse jet cleaning. It was found that the transient pressure below the injection hole gradually increased along the airflow direction of the injection pipe, and the peak positive pressure at the inner surface of the injection pipe also increased. Liu and Shen (2019) investigated the effect of a new venturi structure on the performance of pulse jet dust removal. It was found that the longer the length of the venturi or the shorter the throat diameter of the venturi, the greater the energy loss. Zhang et al. (2023b) studied jet scouring at different angles based on FLOW-3D. It was found that counter flow scouring is better than down flow scouring. In the study of pulsed structure, Li et al. (2020) investigated the effects of different pulse amplitudes, pulse frequencies, and circumferential pressures on the rock-breaking performance. It was found that the rock-breaking performance of the jet increased with increasing pulse amplitude. However, due to the variation in pulse frequency, the rock-breaking performance does not show a clear pattern. The effect of Reynolds number on pulsating jets impinging on a plane was systematically investigated by H. H Medina et al. (2013) It was found that pulsation leads to a shorter core region of the jet, a faster decrease in the centerline axial velocity component, and a wider axial velocity distribution. Bi and Zhu (2021) investigated the effect of nozzle geometry on jet performance at low Reynolds numbers, while Luo et al. (2020) studied pulse jet propulsion at high Reynolds numbers and finally found that higher Reynolds numbers accelerate the formation of irregular vortices and symmetry-breaking instabilities. Cao et al. (2019) investigated the effect of four different pulse flushing methods on diamond core drilling efficiency. It was found that the use of intermittent rinsing methods not only increases penetration rates but also reduces rinse fluid flow and saves power.
Previous research on vertical submerged jet scouring has primarily focused on the effect of jet structure on scouring under continuous jet conditions. However, there have been fewer studies conducted on scouring under pulsed jet conditions. We found that the pulsed jet has a high erosion rate and entrainment rate, which can significantly enhance the scouring effect of the jet. Therefore, to address the research gap, this paper utilizes a combination of numerical calculations and experiments to investigate the effects of high pulse width, low pulse width, and amplitude on the scouring of vertically submerged jets. The study includes analyzing the structure of the pulsed jet flow field, studying the evolution of the scouring effect over time, and examining the relationship between the optimal pulse width, duty cycle, and amplitude. The study’s conclusions of the study can provide a reference for optimizing the performance of pulse jets in the fields of jet scouring applications, such as dredger dredging and pulse rock breaking, as well as a theoretical basis for the development of submerged pulse jets.
Section snippets
Model and calculation settings
Fig. 1 shows the geometric model of the submerged vertical jet impinging on the sand bed, which was built in Flow-3D on a 1:1 dimensional scale corresponding to the experiment. The jet scour simulation was set up between four baffles, where the top baffle was used to ensure that the jet entered only from the brass tube, and the remaining three tank baffles were used to fix the sediment and water body. The computational domain consisted of only solid and liquid components, with the specific
The effects of the pulse width on submerged jet scouring
The blocking pulsed jet, indicated as A and C in Fig. 8(a)–is discontinuous and divided into a water section and a pulse interval section. The water section in region A is not a regular shape, due to part of the water section near the side wall being affected by the wall friction and the falling speed being lower, but this also shows that the wall plays a certain buffer role. Region B of Fig. 8(a) shows the symmetrical vortex generation that occurs below the nozzle as the water section is
conclusions
In this paper, the effects of the pulse width and pulse amplitude on jet scour under submerged low-frequency pulse conditions are discussed and investigated, and the following conclusions have been reached.
(1)The errors of between the Flow-3D simulation and the experimental measurements were within 5%, which proves that the sedimentation scouring model of Flow-3D can reliably perform numerical calculation of the type considered in this paper.
(2)The change in the high pulse width T1 in the pulse cycle
CRediT authorship contribution statement
Chuan Wang: Data curation, Conceptualization. Hao Yu: Writing – original draft. Yang Yang: Writing – review & editing, Supervision. Zhenjun Gao: Supervision, Writing – review & editing. Bin Xi: Resources, Project administration. Hui Wang: Software, Data curation. Yulong Yao: Validation, Software.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
•Landslide travel distance is considered for the first time in a predictive equation.
•Predictive equation derived from databases using 3D physical and numerical modeling.
•The equation was successfully tested on the 2018 Anak Krakatau tsunami event.
•The developed equation using three-dimensional data exhibits a 91 % fitting quality.
Abstract
Landslide tsunamis, responsible for thousands of deaths and significant damage in recent years, necessitate the allocation of sufficient time and resources for studying these extreme natural hazards. This study offers a step change in the field by conducting a large number of three-dimensional numerical experiments, validated by physical tests, to develop a predictive equation for the maximum initial amplitude of tsunamis generated by subaerial landslides. We first conducted a few 3D physical experiments in a wave basin which were then applied for the validation of a 3D numerical model based on the Flow3D-HYDRO package. Consequently, we delivered 100 simulations using the validated model by varying parameters such as landslide volume, water depth, slope angle and travel distance. This large database was subsequently employed to develop a predictive equation for the maximum initial tsunami amplitude. For the first time, we considered travel distance as an independent parameter for developing the predictive equation, which can significantly improve the predication accuracy. The predictive equation was tested for the case of the 2018 Anak Krakatau subaerial landslide tsunami and produced satisfactory results.
The Anak Krakatau landslide tsunami on 22nd December 2018 was a stark reminder of the dangers posed by subaerial landslide tsunamis (Ren et al., 2020; Mulia et al. 2020a; Borrero et al., 2020; Heidarzadeh et al., 2020; Grilli et al., 2021). The collapse of the volcano’s southwest side into the ocean triggered a tsunami that struck the Sunda Strait, leading to approximately 450 fatalities (Syamsidik et al., 2020; Mulia et al., 2020b) (Fig. 1). As shown in Fig. 1, landslide tsunamis (both submarine and subaerial) have been responsible for thousands of deaths and significant damage to coastal communities worldwide. These incidents underscored the critical need for advanced research into landslide-generated waves to aid in hazard prediction and mitigation. This is further emphasized by recent events such as the 28th of November 2020 landslide tsunami in the southern coast mountains of British Columbia (Canada), where an 18 million m3 rockslide generated a massive tsunami, with over 100 m wave run-up, causing significant environmental and infrastructural damage (Geertsema et al., 2022).
Physical modelling and numerical simulation are crucial tools in the study of landslide-induced waves due to their ability to replicate and analyse the complex dynamics of landslide events (Kim et al., 2020). In two-dimensional (2D) modelling, the discrepancy between dimensions can lead to an artificial overestimation of wave amplification (e.g., Heller and Spinneken, 2015). This limitation is overcome with 3D modelling, which enables the scaled-down representation of landslide-generated waves while avoiding the simplifications inherent in 2D approaches (Erosi et al., 2019). Another advantage of 3D modelling in studying landslide-generated waves is its ability to accurately depict the complex dynamics of wave propagation, including lateral and radial spreading from the slide impact zone, a feature unattainable with 2D models (Heller and Spinneken, 2015).
Physical experiments in tsunami research, as presented by authors such as Romano et al. (2020), McFall and Fritz (2016), and Heller and Spinneken (2015), have supported 3D modelling works through validation and calibration of the numerical models to capture the complexities of wave generation and propagation. Numerical modelling has increasingly complemented experimental approach in tsunami research due to the latter’s time and resource-intensive nature, particularly for 3D models (Li et al., 2019; Kim et al., 2021). Various numerical approaches have been employed, from Eulerian and Lagrangian frameworks to depth-averaged and Navier–Stokes models, enhancing our understanding of tsunami dynamics (Si et al., 2018; Grilli et al., 2019; Heidarzadeh et al., 2017, 2020; Iorio et al., 2021; Zhang et al., 2021; Kirby et al., 2022; Wang et al., 2021, 2022; Hu et al., 2022). The sophisticated numerical techniques, including the Particle Finite Element Method and the Immersed Boundary Method, have also shown promising results in modelling highly dynamic landslide scenarios (Mulligan et al., 2020; Chen et al., 2020). Among these methods and techniques, FLOW-3D HYDRO stands out in simulating landslide-generated tsunami waves due to its sophisticated technical features such as offering Tru Volume of Fluid (VOF) method for precise free surface tracking (e.g., Sabeti and Heidarzadeh 2022a). TruVOF distinguishes itself through a split Lagrangian approach, adeptly reducing cumulative volume errors in wave simulations by dynamically updating cell volume fractions and areas with each time step. Its intelligent adaptation of time step size ensures precise capture of evolving free surfaces, offering unparalleled accuracy in modelling complex fluid interfaces and behaviour (Flow Science, 2023).
Predictive equations play a crucial role in assessing the potential hazards associated with landslide-generated tsunami waves due to their ability to provide risk assessment and warnings. These equations can offer swift and reasonable evaluations of potential tsunami impacts in the absence of detailed numerical simulations, which can be time-consuming and expensive to produce. Among multiple factors and parameters within a landslide tsunami generation, the initial maximum wave amplitude (Fig. 1) stands out due to its critical role. While it is most likely that the initial wave generated by a landslide will have the highest amplitude, it is crucial to clarify that the term “initial maximum wave amplitude” refers to the highest amplitude within the first set of impulse waves. This parameter is essential in determining the tsunami’s impact severity, with higher amplitudes signalling a greater destructive potential (Sabeti and Heidarzadeh 2022a). Additionally, it plays a significant role in tsunami modelling, aiding in the prediction of wave propagation and the assessment of potential impacts.
In this study, we initially validate the FLOW-3D HYDRO model through a series of physical experiments conducted in a 3D wave tank at University of Bath (UK). Upon confirmation of the model’s accuracy, we use it to systematically vary parameters namely landslide volume, water depth, slope angle, and travel distance, creating an extensive database. Alongside this, we perform a sensitivity analysis on these variables to discern their impacts on the initial maximum wave amplitude. The generated database was consequently applied to derive a non-dimensional predictive equation aimed at estimating the initial maximum wave amplitude in real-world landslide tsunami events.
Two innovations of this study are: (i) The predictive equation of this study is based on a large number of 3D experiments whereas most of the previous equations were based on 2D results, and (ii) For the first time, the travel distance is included in the predictive equation as an independent parameter. To evaluate the performance of our predictive equation, we applied it to a previous real-world subaerial landslide tsunami, i.e., the Anak Krakatau 2018 event. Furthermore, we compare the performance of our predictive equation with other existing equations.
2. Data and methods
The methodology applied in this research is a combination of physical and numerical modelling. Limited physical modelling was performed in a 3D wave basin at the University of Bath (UK) to provide data for calibration and validation of the numerical model. After calibration and validation, the numerical model was employed to model a large number of landslide tsunami scenarios which allowed us to develop a database for deriving a predictive equation.
2.1. Physical experiments
To validate our numerical model, we conducted a series of physical experiments including two sets in a 3D wave basin at University of Bath, measuring 2.50 m in length (WL), 2.60 m in width (WW), and 0.60 m in height (WH) (Fig. 2a). Conducting two distinct sets of experiments (Table 1), each with different setups (travel distance, location, and water depth), provided a robust framework for validation of the numerical model. For wave measurement, we employed a twin wire wave gauge from HR Wallingford (https://equipit.hrwallingford.com). In these experiments, we used a concrete prism solid block, the dimensions of which are outlined in Table 2. In our experiments, we employed a concrete prism solid block with a density of 2600 kg/m3, chosen for its similarity to the natural density of landslides, akin to those observed with the 2018 Anak Krakatau tsunami, where the landslide composition is predominantly solid rather than granular. The block’s form has also been endorsed in prior studies (Watts, 1998; Najafi-Jilani and Ataie-Ashtiani, 2008) as a suitable surrogate for modelling landslide-induced waves. A key aspect of our methodology was addressing scale effects, following the guidelines proposed by Heller et al. (2008) as it is described in Table 1. To enhance the reliability and accuracy of our experimental data, we conducted each physical experiment three times which revealed all three experimental waveforms were identical. This repetition was aimed at minimizing potential errors and inconsistencies in laboratory measurements.
Table 1. The locations and other information of the laboratory setups for making landslide-generated waves in the physical wave basin. This table details the specific parameters for each setup, including slope range (α), slide volume (V), kinematic viscosity (ν), water depth (h), travel distance (D), surface tension coefficient of water (σ), Reynolds number (R), Weber number (W), and the precise coordinates of the wave gauges (WG).
The acceptable ranges for avoiding scale effects are based on the study by Heller et al. (2008).⁎⁎
The Reynolds number (R) is given by g0.5h1.5/ν, with ν denoting the kinematic viscosity. The Weber number (W) is W = ρgh2/σ, where σ represents surface tension coefficient and ρ = 1000kg/m3 is the density of water. In our experiments, conducted at a water temperature of approximately 20 °C, the kinematic viscosity (ν) and the surface tension coefficient of water (σ) are 1.01 × 10−6 m²/s and 0.073 N/m, respectively (Kestin et al., 1978).
Table 2. Specifications of the solid block used in physical experiments for generating subaerial landslides in the laboratory.
Solid-block attributes
Property metrics
Geometric shape
Slide width (bs)
0.26 m
Slide length (ls)
0.20 m
Slide thickness (s)
0.10 m
Slide volume (V)
2.60 × 10−3 m3
Specific gravity, (γs)
2.60
Slide weight (ms)
6.86 kg
2.2. Numerical simulations applying FLOW-3D hydro
The detailed theoretical framework encompassing the governing equations, the computational methodologies employed, and the specific techniques used for tracking the water surface in these simulations are thoroughly detailed in the study by Sabeti et al. (2024). Here, we briefly explain some of the numerical details. We defined a uniform mesh for our flow domain, carefully crafted with a fine spatial resolution of 0.005 m (i.e., grid size). The dimensions of the numerical model directly matched those of our wave basin used in the physical experiment, being 2.60 m wide, 0.60 m deep, and 2.50 m long (Fig. 2). This design ensures comprehensive coverage of the study area. The output intervals of the numerical model are set at 0.02 s. This timing is consistent with the sampling rates of wave gauges used in laboratory settings. The friction coefficient in the FLOW-3D HYDRO is designated as 0.45. This value corresponds to the Coulombic friction measurements obtained in the laboratory, ensuring that the simulation accurately reflects real-world physical interactions.
In order to simulate the landslide motion, we applied coupled motion objects in FLOW-3D-HYDRO where the dynamics are predominantly driven by gravity and surface friction. This methodology stands in contrast to other models that necessitate explicit inputs of force and torque. This approach ensures that the simulation more accurately reflects the natural movement of landslides, which is heavily reliant on gravitational force and the interaction between sliding surfaces. The stability of the numerical simulations is governed by the Courant Number criterion (Courant et al., 1928), which dictates the maximum time step (Δt) for a given mesh size (Δx) and flow speed (U). According to Courant et al. (1928), this number is required to stay below one to ensure stability of numerical simulations. In our simulations, the Courant number is always maintained below one.
In alignment with the parameters of physical experiments, we set the fluid within the mesh to water, characterized by a density of 1000 kg/m³ at a temperature of 20 °C. Furthermore, we defined the top, front, and back surfaces of the mesh as symmetry planes. The remaining surfaces are designated as wall types, incorporating no-slip conditions to accurately simulate the interaction between the fluid and the boundaries. In terms of selection of an appropriate turbulence model, we selected the k–ω model that showed a better performance than other turbulence methods (e.g., Renormalization-Group) in a previous study (Sabeti et al., 2024). The simulations are conducted using a PC Intel® Core™ i7-10510U CPU with a frequency of 1.80 GHz, and a 16 GB RAM. On this PC, completion of a 3-s simulation required approximately 12.5 h.
2.3. Validation
The FLOW-3D HYDRO numerical model was validated using the two physical experiments (Fig. 3) outlined in Table 1. The level of agreement between observations (Oi) and simulations (Si) is examined using the following equation:(1)�=|��−����|×100where ε represents the mismatch error, Oi denotes the observed laboratory values, and Si represents the simulated values from the FLOW-3D HYDRO model. The results of this validation process revealed that our model could replicate the waves generated in the physical experiments with a reasonable degree of mismatch (ε): 14 % for Lab 1 and 8 % for Lab 2 experiments, respectively (Fig. 3). These values indicate that while the model is not perfect, it provides a sufficiently close approximation of the real-world phenomena.
In terms of mesh efficiency, we varied the mesh size to study sensitivity of the numerical results to mesh size. First, by halving the mesh size and then by doubling it, we repeated the modelling by keeping other parameters unchanged. This analysis guided that a mesh size of ∆x = 0.005 m is the most effective for the setup of this study. The total number of computational cells applying mesh size of 0.005 m is 9.269 × 106.
2.4. The dataset
The validated numerical model was employed to conduct 100 simulations, incorporating variations in four key landslide parameters namely water depth, slope angle, slide volume, and travel distance. This methodical approach was essential for a thorough sensitivity analysis of these variables, and for the creation of a detailed database to develop a predictive equation for maximum initial tsunami amplitude. Within the model, 15 distinct slide volumes were established, ranging from 0.10 × 10−3 m3 to 6.25 × 10−3 m3 (Table 3). The slope angle varied between 35° and 55°, and water depth ranged from 0.24 m to 0.27 m. The travel distance of the landslides was varied, spanning from 0.04 m to 0.07 m. Detailed configurations of each simulation, along with the maximum initial wave amplitudes and dominant wave periods are provided in Table 4.
Table 3. Geometrical information of the 15 solid blocks used in numerical modelling for generating landslide tsunamis. Parameters are: ls, slide length; bs, slide width; s, slide thickness; γs, specific gravity; and V, slide volume.
Solid block
ls (m)
bs (m)
s (m)
V (m3)
γs
Block-1
0.310
0.260
0.155
6.25 × 10−3
2.60
Block-2
0.300
0.260
0.150
5.85 × 10−3
2.60
Block-3
0.280
0.260
0.140
5.10 × 10−3
2.60
Block-4
0.260
0.260
0.130
4.39 × 10−3
2.60
Block-5
0.240
0.260
0.120
3.74 × 10−3
2.60
Block-6
0.220
0.260
0.110
3.15 × 10−3
2.60
Block-7
0.200
0.260
0.100
2.60 × 10−3
2.60
Block-8
0.180
0.260
0.090
2.11 × 10−3
2.60
Block-9
0.160
0.260
0.080
1.66 × 10−3
2.60
Block-10
0.140
0.260
0.070
1.27 × 10−3
2.60
Block-11
0.120
0.260
0.060
0.93 × 10−3
2.60
Block-12
0.100
0.260
0.050
0.65 × 10−3
2.60
Block-13
0.080
0.260
0.040
0.41 × 10−3
2.60
Block-14
0.060
0.260
0.030
0.23 × 10−3
2.60
Block-15
0.040
0.260
0.020
0.10 × 10−3
2.60
Table 4. The numerical simulation for the 100 tests performed in this study for subaerial solid-block landslide-generated waves. Parameters are aM, maximum wave amplitude; α, slope angle; h, water depth; D, travel distance; and T, dominant wave period. The location of the wave gauge is X=1.030 m, Y=1.210 m, and Z=0.050 m. The properties of various solid blocks are presented in Table 3.
Test-
Block No
α (°)
h (m)
D (m)
T(s)
aM (m)
1
Block-7
45
0.246
0.029
0.510
0.0153
2
Block-7
45
0.246
0.030
0.505
0.0154
3
Block-7
45
0.246
0.031
0.505
0.0156
4
Block-7
45
0.246
0.032
0.505
0.0158
5
Block-7
45
0.246
0.033
0.505
0.0159
6
Block-7
45
0.246
0.034
0.505
0.0160
7
Block-7
45
0.246
0.035
0.505
0.0162
8
Block-7
45
0.246
0.036
0.505
0.0166
9
Block-7
45
0.246
0.037
0.505
0.0167
10
Block-7
45
0.246
0.038
0.505
0.0172
11
Block-7
45
0.246
0.039
0.505
0.0178
12
Block-7
45
0.246
0.040
0.505
0.0179
13
Block-7
45
0.246
0.041
0.505
0.0181
14
Block-7
45
0.246
0.042
0.505
0.0183
15
Block-7
45
0.246
0.043
0.505
0.0190
16
Block-7
45
0.246
0.044
0.505
0.0197
17
Block-7
45
0.246
0.045
0.505
0.0199
18
Block-7
45
0.246
0.046
0.505
0.0201
19
Block-7
45
0.246
0.047
0.505
0.0191
20
Block-7
45
0.246
0.048
0.505
0.0217
21
Block-7
45
0.246
0.049
0.505
0.0220
22
Block-7
45
0.246
0.050
0.505
0.0226
23
Block-7
45
0.246
0.051
0.505
0.0236
24
Block-7
45
0.246
0.052
0.505
0.0239
25
Block-7
45
0.246
0.053
0.510
0.0240
26
Block-7
45
0.246
0.054
0.505
0.0241
27
Block-7
45
0.246
0.055
0.505
0.0246
28
Block-7
45
0.246
0.056
0.505
0.0247
29
Block-7
45
0.246
0.057
0.505
0.0248
30
Block-7
45
0.246
0.058
0.505
0.0249
31
Block-7
45
0.246
0.059
0.505
0.0251
32
Block-7
45
0.246
0.060
0.505
0.0257
33
Block-1
45
0.246
0.045
0.505
0.0319
34
Block-2
45
0.246
0.045
0.505
0.0294
35
Block-3
45
0.246
0.045
0.505
0.0282
36
Block-4
45
0.246
0.045
0.505
0.0262
37
Block-5
45
0.246
0.045
0.505
0.0243
38
Block-6
45
0.246
0.045
0.505
0.0223
39
Block-7
45
0.246
0.045
0.505
0.0196
40
Block-8
45
0.246
0.045
0.505
0.0197
41
Block-9
45
0.246
0.045
0.505
0.0198
42
Block-10
45
0.246
0.045
0.505
0.0184
43
Block-11
45
0.246
0.045
0.505
0.0173
44
Block-12
45
0.246
0.045
0.505
0.0165
45
Block-13
45
0.246
0.045
0.404
0.0153
46
Block-14
45
0.246
0.045
0.404
0.0124
47
Block-15
45
0.246
0.045
0.505
0.0066
48
Block-7
45
0.202
0.045
0.404
0.0220
49
Block-7
45
0.204
0.045
0.404
0.0219
50
Block-7
45
0.206
0.045
0.404
0.0218
51
Block-7
45
0.208
0.045
0.404
0.0217
52
Block-7
45
0.210
0.045
0.404
0.0216
53
Block-7
45
0.212
0.045
0.404
0.0215
54
Block-7
45
0.214
0.045
0.505
0.0214
55
Block-7
45
0.216
0.045
0.505
0.0214
56
Block-7
45
0.218
0.045
0.505
0.0213
57
Block-7
45
0.220
0.045
0.505
0.0212
58
Block-7
45
0.222
0.045
0.505
0.0211
59
Block-7
45
0.224
0.045
0.505
0.0208
60
Block-7
45
0.226
0.045
0.505
0.0203
61
Block-7
45
0.228
0.045
0.505
0.0202
62
Block-7
45
0.230
0.045
0.505
0.0201
63
Block-7
45
0.232
0.045
0.505
0.0201
64
Block-7
45
0.234
0.045
0.505
0.0200
65
Block-7
45
0.236
0.045
0.505
0.0199
66
Block-7
45
0.238
0.045
0.404
0.0196
67
Block-7
45
0.240
0.045
0.404
0.0194
68
Block-7
45
0.242
0.045
0.404
0.0193
69
Block-7
45
0.244
0.045
0.404
0.0192
70
Block-7
45
0.246
0.045
0.505
0.0190
71
Block-7
45
0.248
0.045
0.505
0.0189
72
Block-7
45
0.250
0.045
0.505
0.0187
73
Block-7
45
0.252
0.045
0.505
0.0187
74
Block-7
45
0.254
0.045
0.505
0.0186
75
Block-7
45
0.256
0.045
0.505
0.0184
76
Block-7
45
0.258
0.045
0.505
0.0182
77
Block-7
45
0.259
0.045
0.505
0.0183
78
Block-7
45
0.260
0.045
0.505
0.0191
79
Block-7
45
0.261
0.045
0.505
0.0192
80
Block-7
45
0.262
0.045
0.505
0.0194
81
Block-7
45
0.263
0.045
0.505
0.0195
82
Block-7
45
0.264
0.045
0.505
0.0195
83
Block-7
45
0.265
0.045
0.505
0.0197
84
Block-7
45
0.266
0.045
0.505
0.0197
85
Block-7
45
0.267
0.045
0.505
0.0198
86
Block-7
45
0.270
0.045
0.505
0.0199
87
Block-7
30
0.246
0.045
0.505
0.0101
88
Block-7
35
0.246
0.045
0.505
0.0107
89
Block-7
36
0.246
0.045
0.505
0.0111
90
Block-7
37
0.246
0.045
0.505
0.0116
91
Block-7
38
0.246
0.045
0.505
0.0117
92
Block-7
39
0.246
0.045
0.505
0.0119
93
Block-7
40
0.246
0.045
0.505
0.0121
94
Block-7
41
0.246
0.045
0.505
0.0127
95
Block-7
42
0.246
0.045
0.404
0.0154
96
Block-7
43
0.246
0.045
0.404
0.0157
97
Block-7
44
0.246
0.045
0.404
0.0162
98
Block-7
45
0.246
0.045
0.505
0.0197
99
Block-7
50
0.246
0.045
0.505
0.0221
100
Block-7
55
0.246
0.045
0.505
0.0233
In all these 100 simulations, the wave gauge was consistently positioned at coordinates X=1.09 m, Y=1.21 m, and Z=0.05 m. The dominant wave period for each simulation was determined using the Fast Fourier Transform (FFT) function in MATLAB (MathWorks, 2023). Furthermore, the classification of wave types was carried out using a wave categorization graph according to Sorensen (2010), as shown in Fig. 4a. The results indicate that the majority of the simulated waves are on the border between intermediate and deep-water waves, and they are categorized as Stokes waves (Fig. 4a). Four sample waveforms from our 100 numerical experiments are provided in Fig. 4b.
The dataset in Table 4 was used to derive a new predictive equation that incorporates travel distance for the first time to estimate the initial maximum tsunami amplitude. In developing this equation, a genetic algorithm optimization technique was implemented using MATLAB (MathWorks 2023). This advanced approach entailed the use of genetic algorithms (GAs), an evolutionary algorithm type inspired by natural selection processes (MathWorks, 2023). This technique is iterative, involving selection, crossover, and mutation processes to evolve solutions over several generations. The goal was to identify the optimal coefficients and powers for each landslide parameter in the predictive equation, ensuring a robust and reliable model for estimating maximum wave amplitudes. Genetic Algorithms excel at optimizing complex models by navigating through extensive combinations of coefficients and exponents. GAs effectively identify highly suitable solutions for the non-linear and complex relationships between inputs (e.g., slide volume, slope angle, travel distance, water depth) and the output (i.e., maximum initial wave amplitude, aM). MATLAB’s computational environment enhances this process, providing robust tools for GA to adapt and evolve solutions iteratively, ensuring the precision of the predictive model (Onnen et al., 1997). This approach leverages MATLAB’s capabilities to fine-tune parameters dynamically, achieving an optimal equation that accurately estimates aM. It is important to highlight that the nondimensionalized version of this dataset is employed to develop a predictive equation which enables the equation to reproduce the maximum initial wave amplitude (aM) for various subaerial landslide cases, independent of their dimensional differences (e.g., Heler and Hager 2014; Heller and Spinneken 2015; Sabeti and Heidarzadeh 2022b). For this nondimensionalization, we employed the water depth (h) to nondimensionalize the slide volume (V/h3) and travel distance (D/h). The slide thickness (s) was applied to nondimensionalize the water depth (h/s).
2.5. Landslide velocity
In discussing the critical role of landslide velocity for simulating landslide-generated waves, we focus on the mechanisms of landslide motion and the techniques used to record landslide velocity in our simulations (Fig. 5). Also, we examine how these methods were applied in two distinct scenarios: Lab 1 and Lab 2 (see Table 1 for their details). Regarding the process of landslide movement, a slide starts from a stationary state, gaining momentum under the influence of gravity and this acceleration continues until the landslide collides with water, leading to a significant reduction in its speed before eventually coming to a stop (Fig. 5) (e.g., Panizzo et al. 2005).
To measure the landslide’s velocity in our simulations, we attached a probe at the centre of the slide, which supplied a time series of the velocity data. The slide’s velocity (vs) peaks at the moment it enters the water (Fig. 5), a point referred to as the impact time (tImp). Following this initial impact, the slides continue their underwater movement, eventually coming to a complete halt (tStop). Given the results in Fig. 5, it can be seen that Lab 1, with its longer travel distance (0.070 m), exhibits a higher peak velocity of 1.89 m/s. This increase in velocity is attributed to the extended travel distance allowing more time for the slide to accelerate under gravity. Whereas Lab 2, featuring a shorter travel distance (0.045 m), records a lower peak velocity of 1.78 m/s. This difference underscores how travel distance significantly influences the dynamics of landslide motion. After reaching the peak, both profiles show a sharp decrease in velocity, marking the transition to submarine motion until the slides come to a complete stop (tStop). There are noticeable differences observable in Fig. 5 between the Lab-1 and Lab-2 simulations, including the peaks at 0.3 s . These variations might stem from the placement of the wave gauge, which differs slightly in each scenario, as well as the water depth’s minor discrepancies and, the travel distance.
2.6. Effect of air entrainment
In this section we examine whether it is required to consider air entrainment for our modelling or not as the FLOW-3D HYDRO package is capable of modelling air entrainment. The process of air entrainment in water during a landslide tsunami and its subsequent transport involve two key components: the quantification of air entrainment at the water surface, and the simulation of the air’s transport within the fluid (Hirt, 2003). FLOW-3D HYDRO employs the air entrainment model to compute the volume of air entrained at the water’s surface utilizing three approaches: a constant density model, a variable density model accounting for bulking, and a buoyancy model that adds the Drift-FLUX mechanism to variable density conditions (Flow Science, 2023). The calculation of the entrainment rate is based on the following equation:(2)�������=������[2(��−�����−2�/���)]1/2where parameters are: Vair, volume of air; Cair, entrainment rate coefficient; As, surface area of fluid; ρ, fluid density; k, turbulent kinetic energy; gn, gravity normal to surface; Lt, turbulent length scale; and σ, surface tension coefficient. The value of k is directly computed from the Reynolds-averaged Navier-Stokes (RANS) (k–w) calculations in our model.
In this study, we selected the variable density + Drift-FLUX model, which effectively captures the dynamics of phase separation and automatically activates the constant density and variable density models. This method simplifies the air-water mixture, treating it as a single, homogeneous fluid within each computational cell. For the phase volume fractions f1and f2, the velocities are expressed in terms of the mixture and relative velocities, denoted as u and ur, respectively, as follows:(3)��1��+�.(�1�)=��1��+�.(�1�)−�.(�1�2��)=0(4)��2��+�.(�2�)=��2��+�.(�2�)−�.(�1�2��)=0
The outcomes from this simulation are displayed in Fig. 6, which indicates that the influence of air entrainment on the generated wave amplitude is approximately 2 %. A value of 0.02 for the entrained air volume fraction means that, in the simulated fluid, approximately 2 % of the volume is composed of entrained air. In other words, for every unit volume of the fluid-air mixture at that location, 2 % is air and the remaining 98 % is water. The configuration of Test-17 (Table 4) was employed for this simulation. While the effect of air entrainment is anticipated to be more significant in models of granular landslide-generated waves (Fritz, 2002), in our simulations we opted not to incorporate this module due to its negligible impact on the results.
3. Results
In this section, we begin by presenting a sequence of our 3D simulations capturing different time steps to illustrate the generation process of landslide-generated waves. Subsequently, we derive a new predictive equation to estimate the maximum initial wave amplitude of landslide-generated waves and assess its performance.
3.1. Wave generation and propagation
To demonstrate the wave generation process in our simulation, we reference Test-17 from Table 4, where we employed Block-7 (Tables 3, 4). In this configuration, the slope angle was set to 45°, with a water depth of 0.246 m and a travel distance at 0.045 m (Fig. 7). At 0.220 s, the initial impact of the moving slide on the water is depicted, marking the onset of the wave generation process (Fig. 7a). Disturbances are localized to the immediate area of impact, with the rest of the water surface remaining undisturbed. At this time, a maximum water particle velocity of 1.0 m/s – 1.2 m/s is seen around the impact zone (Fig. 7d). Moving to 0.320 s, the development of the wave becomes apparent as energy transfer from the landslide to the water creates outwardly radiating waves with maximum water particle velocity of up to around 1.6 m/s – 1.8 m/s (Fig. 7b, e). By the time 0.670 s, the wave has fully developed and is propagating away from the impact point exhibiting maximum water particle velocity of up to 2.0 m/s – 2.1 m/s. Concentric wave fronts are visible, moving outwards in all directions, with a colour gradient signifying the highest wave amplitude near the point of landslide entry, diminishing with distance (Fig. 7c, f).
3.2. Influence of landslide parameters on tsunami amplitude
In this section, we investigate the effects of various landslide parameters namely slide volume (V), water depth (h), slipe angle (α) and travel distance (D) on the maximum initial wave amplitude (aM). Fig. 8 presents the outcome of these analyses. According to Fig. 8, the slide volume, slope angle, and travel distance exhibit a direct relationship with the wave amplitude, meaning that as these parameters increase, so does the amplitude. Conversely, water depth is inversely related to the maximum initial wave amplitude, suggesting that the deeper the water depth, the smaller the maximum wave amplitude will be (Fig. 8b).
Fig. 8a highlights the pronounced impact of slide volume on the aM, demonstrating a direct correlation between the two variables. For instance, in the range of slide volumes we modelled (Fig. 8a), The smallest slide volume tested, measuring 0.10 × 10−3 m3, generated a low initial wave amplitude (aM= 0.0066 m) (Table 4). In contrast, the largest volume tested, 6.25 × 10−3 m3, resulted in a significantly higher initial wave amplitude (aM= 0.0319 m) (Table 4). The extremities of these results emphasize the slide volume’s paramount impact on wave amplitude, further elucidated by their positions as the smallest and largest aM values across all conducted tests (Table 4). This is corroborated by findings from the literature (e.g., Murty, 2003), which align with the observed trend in our simulations.
The slope angle’s influence on aM was smooth. A steady increase of wave amplitude was observed as the slope angle increased (Fig. 8c). In examining travel distance, an anomaly was identified. At a travel distance of 0.047 m, there was an unexpected dip in aM, which deviates from the general increasing trend associated with longer travel distances. This singular instance could potentially be attributed to a numerical error. Beyond this point, the expected pattern of increasing aM with longer travel distances resumes, suggesting that the anomaly at 0.047 m is an outlier in an otherwise consistent trend, and thus this single data point was overlooked while deriving the predictive equation. Regarding the inverse relationship between water depth and wave amplitude, our result (Fig. 8b) is consistent with previous reports by Fritz et al. (2003), (2004), and Watts et al. (2005).
The insights from Fig. 8 informed the architecture of the predictive equation in the next Section, with slide volume, travel distance, and slope angle being multiplicatively linked to wave amplitude underscoring their direct correlations with wave amplitude. Conversely, water depth is incorporated as a divisor, representing its inverse relationship with wave amplitude. This structure encapsulates the dynamics between the landslide parameters and their influence on the maximum initial wave amplitude as discussed in more detail in the next Section.
3.3. Predictive equation
Building on our sensitivity analysis of landslide parameters, as detailed in Section 3.2, and utilizing our nondimensional dataset, we have derived a new predictive equation as follows:(5)��/ℎ=0.015(tan�)0.10(�ℎ3)0.90(�ℎ)0.10(ℎ�)−0.11where, V is sliding volume, h is water depth, α is slope angle, and s is landslide thickness. It is important to note that this equation is valid only for subaerial solid-block landslide tsunamis as all our experiments were for this type of waves. The performance of this equation in predicting simulation data is demonstrated by the satisfactory alignment of data points around a 45° line, indicating its accuracy and reliability with regard to the experimental dataset (Fig. 9). The quality of fit between the dataset and Eq. (5) is 91 % indicating that Eq. (5) represents the dataset very well. Table 5 presents Eq. (5) alongside four other similar equations previously published. Two significant distinctions between our Eq. (5) and these others are: (i) Eq. (5) is derived from 3D experiments, whereas the other four equations are based on 2D experiments. (ii) Unlike the other equations, our Eq. (5) incorporates travel distance as an independent parameter.
Table 5. Performance comparison among our newly-developed equation and existing equations for estimating the maximum initial amplitude (aM) of the 2018 Anak Krakatau subaerial landslide tsunami. Parameters: aM, initial maximum wave amplitude; h, water depth; vs, landslide velocity; V, slide volume; bs, slide width; ls, slide length; s, slide thickness; α, slope angle; and ����, volume of the final immersed landslide. We considered ����= V as the slide volume.
Geometrical and kinematic parameters of the 2018 Anak Krakatau subaerial landslide based on Heidarzadeh et al. (2020), Grilli et al. (2019) and Grilli et al. (2021): V=2.11 × 107 m3, h= 50 m; s= 114 m; α= 45°; ls=1250 m; bs= 2700 m; vs=44.9 m/s; D= 2500 m; aM= 100 m −150 m.⁎⁎
aM= An average value of aM = 134 m is considered in this study.⁎⁎⁎
The equation of Bolin et al. (2014) is based on the reformatted one reported by Lindstrøm (2016).⁎⁎⁎⁎
Error is calculated using Eq. (1), where the calculated aM is assumed as the simulated value.
Additionally, we evaluated the performance of this equation using the real-world data from the 2018 Anak Krakatau subaerial landslide tsunami. Based on previous studies (Heidarzadeh et al., 2020; Grilli et al., 2019, 2021), we were able to provide a list of parameters for the subaerial landslide and associated tsunami for the 2018 Anak Krakatau event (see footnote of Table 5). We note that the data of the 2018 Anak Krakatau event was not used while deriving Eq. (5). The results indicate that Eq. (5) predicts the initial amplitude of the 2018 Anak Krakatau tsunami as being 130 m indicating an error of 2.9 % compared to the reported average amplitude of 134 m for this event. This performance indicates an improvement compared to the previous equation reported by Sabeti and Heidarzadeh (2022a) (Table 5). In contrast, the equations from Robbe-Saule et al. (2021) and Bolin et al. (2014) demonstrate higher discrepancies of 4200 % and 77 %, respectively (Table 5). Although Noda’s (1970) equation reproduces the tsunami amplitude of 134 m accurately (Table 5), it is crucial to consider its limitations, notably not accounting for parameters such as slope angle and travel distance.
It is essential to recognize that both travel distance and slope angle significantly affect wave amplitude. In our model, captured in Eq. (5), we integrate the slope angle (α) through the tangent function, i.e., tan α. This choice diverges from traditional physical interpretations that often employ the cosine or sine function (e.g., Heller and Hager, 2014; Watts et al., 2003). We opted for the tangent function because it more effectively reflects the direct impact of slope steepness on wave generation, yielding superior estimations compared to conventional methods.
The significance of this study lies in its application of both physical and numerical 3D experiments and the derivation of a predictive equation based on 3D results. Prior research, e.g. Heller et al. (2016), has reported notable discrepancies between 2D and 3D wave amplitudes, highlighting the important role of 3D experiments. It is worth noting that the suitability of applying an equation derived from either 2D or 3D data depends on the specific geometry and characteristics inherent in the problem being addressed. For instance, in the case of a long, narrow dam reservoir, an equation derived from 2D data would likely be more suitable. In such contexts, the primary dynamics of interest such as flow patterns and potential wave propagation are predominantly two-dimensional, occurring along the length and depth of the reservoir. This simplification to 2D for narrow dam reservoirs allows for more accurate modelling of these dynamics.
This study specifically investigates waves initiated by landslides, focusing on those characterized as solid blocks instead of granular flows, with slope angles confined to a range of 25° to 60°. We acknowledge the additional complexities encountered in real-world scenarios, such as dynamic density and velocity of landslides, which could affect the estimations. The developed equation in this study is specifically designed to predict the maximum initial amplitude of tsunamis for the aforementioned specified ranges and types of landslides.
4. Conclusions
Both physical and numerical experiments were undertaken in a 3D wave basin to study solid-block landslide-generated waves and to formulate a predictive equation for their maximum initial wave amplitude. At the beginning, two physical experiments were performed to validate and calibrate a 3D numerical model, which was subsequently utilized to generate 100 experiments by varying different landslide parameters. The generated database was then used to derive a predictive equation for the maximum initial wave amplitude of landslide tsunamis. The main features and outcomes are:
•The predictive equation of this study is exclusively derived from 3D data and exhibits a fitting quality of 91 % when applied to the database.
•For the first time, landslide travel distance was considered in the predictive equation. This inclusion provides more accuracy and flexibility for applying the equation.
•To further evaluate the performance of the predictive equation, it was applied to a real-world subaerial landslide tsunami (i.e., the 2018 Anak Krakatau event) and delivered satisfactory performance.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Funding
RS is supported by the Leverhulme Trust Grant No. RPG-2022-306. MH is funded by open funding of State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, grant number SKHL2101. We acknowledge University of Bath Institutional Open Access Fund. MH is also funded by the Great Britain Sasakawa Foundation grant no. 6217 (awarded in 2023).
Acknowledgements
Authors are sincerely grateful to the laboratory technician team, particularly Mr William Bazeley, at the Faculty of Engineering, University of Bath for their support during the laboratory physical modelling of this research. We appreciate the valuable insights provided by Mr. Brian Fox (Senior CFD Engineer at Flow Science, Inc.) regarding air entrainment modelling in FLOW-3D HYDRO. We acknowledge University of Bath Institutional Open Access Fund.
Data availability
All data used in this study are given in the body of the article.
References
Baptista et al., 2020M.A. Baptista, J.M. Miranda, R. Omira, I. El-HussainStudy of the 24 September 2013 Oman Sea tsunami using linear shallow water inversionArab. J. Geosci., 13 (14) (2020), p. 606View in ScopusGoogle Scholar
Bolin et al., 2014H. Bolin, Y. Yueping, C. Xiaoting, L. Guangning, W. Sichang, J. ZhibingExperimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, ChinaEnviron. Earth Sci., 71 (2014), pp. 3813-3825View at publisher CrossRefView in ScopusGoogle Scholar
Borrero et al., 2020J.C. Borrero, T. Solihuddin, H.M. Fritz, P.J. Lynett, G.S. Prasetya, V. Skanavis, S. Husrin, Kushendratno, W. Kongko, D.C. Istiyanto, A. DaulatField survey and numerical modelling of the December 22, 2018, Anak Krakatau TsunamiPure Appl. Geophys, 177 (2020), pp. 2457-2475View at publisher CrossRefView in ScopusGoogle Scholar
Ersoy et al., 2019H. Ersoy, M. Karahan, K. Gelişli, A. Akgün, T. Anılan, M.O. Sünnetci, B.K. YahşiModelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulationEng. Geol., 249 (2019), pp. 112-128View PDFView articleView in ScopusGoogle Scholar
Fritz et al., 2004H.M. Fritz, W.H. Hager, H.E. MinorNear field characteristics of landslide generated impulse wavesJ. Waterw. Port Coastal Ocean Eng., 130 (6) (2004), pp. 287-302View in ScopusGoogle Scholar
Geertsema et al., 2022M. Geertsema, B. Menounos, G. Bullard, J.L. Carrivick, J.J. Clague, C. Dai, D. Donati, G. Ekstrom, J.M. Jackson, P. Lynett, M. PichierriThe 28 Nov 2020 landslide, tsunami, and outburst flood – a hazard cascade associated with rapid deglaciation at Elliot Creek, BC, CanadaGeophys. Res. Lett., 49 (6) (2022)Google Scholar
Grilli et al., 2021S.T. Grilli, C. Zhang, J.T. Kirby, A.R. Grilli, D.R. Tappin, S.F.L. Watt, J.E. Hunt, A. Novellino, S. Engwell, M.E.M. Nurshal, M. AbdurrachmanModeling of the Dec. 22nd, 2018, Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: comparison with observed tsunami impactMar. Geol., 440 (2021), Article 106566View PDFView articleView in ScopusGoogle Scholar
Grilli et al., 2019S.T. Grilli, D.R. Tappin, S. Carey, S.F. Watt, S.N. Ward, A.R. Grilli, S.L. Engwell, C. Zhang, J.T. Kirby, L. Schambach, M. MuinModelling of the tsunami from the Dec. 22, 2018, lateral collapse of Anak Krakatau volcano in the Sunda Straits, IndonesiaSci. Rep., 9 (1) (2019), p. 11946 View at publisher This article is free to access.View in ScopusGoogle Scholar
Heidarzadeh et al., 2023M. Heidarzadeh, A.R. Gusman, I.E. MuliaThe landslide source of the eastern Mediterranean tsunami on 6 Feb 2023 following the Mw 7.8 Kahramanmaraş (Türkiye) inland earthquakeGeosci. Lett., 10 (1) (2023), p. 50 View at publisher This article is free to access.View in ScopusGoogle Scholar
Heidarzadeh et al., 2020M. Heidarzadeh, T. Ishibe, O. Sandanbata, A. Muhari, A.B. WijanartoNumerical modeling of the subaerial landslide source of the 22 Dec 2018 Anak Krakatoa volcanic tsunami, IndonesiaOcean. Eng., 195 (2020), Article 106733View PDFView articleView in ScopusGoogle Scholar
Heidarzadeh et al., 2017M. Heidarzadeh, T. Harada, K. Satake, T. Ishibe, T. TakagawaTsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 M w7. 8 event and its relationship with the April 2012 M w 8.6 eventGeophys. J. Int., 211 (3) (2017), pp. 1601-1612, 10.1093/gji/ggx395 View at publisher This article is free to access.View in ScopusGoogle Scholar
Heller et al., 2016V. Heller, M. Bruggemann, J. Spinneken, B.D. RogersComposite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematicsCoastal Eng., 109 (2016), pp. 20-41View PDFView articleView in ScopusGoogle Scholar
Hirt, 2003C.W. HirtModeling Turbulent Entrainment of Air at a Free SurfaceFlow Science, Inc (2003)Google Scholar
Hu et al., 2023G. Hu, K. Satake, L. Li, P. DuOrigins of the tsunami following the 2023 Turkey–Syria earthquakeGeophys. Res. Lett., 50 (18) (2023)Google Scholar
Hu et al., 2022G. Hu, W. Feng, Y. Wang, L. Li, X. He, Ç. Karakaş, Y. TianSource characteristics and exacerbated tsunami hazard of the 2020 Mw 6.9 Samos earthquake in Eastern Aegean SeaJ. Geophys. Res., 127 (5) (2022)e2022JB023961Google Scholar
Kim et al., 2020G.B. Kim, W. Cheng, R.C. Sunny, J.J. Horrillo, B.C. McFall, F. Mohammed, H.M. Fritz, J. Beget, Z. KowalikThree-dimensional landslide generated tsunamis: numerical and physical model comparisonsLandslides, 17 (2020), pp. 1145-1161View at publisher CrossRefView in ScopusGoogle Scholar
Kirby et al., 2022J.T. Kirby, S.T. Grilli, J. Horrillo, P.L.F. Liu, D. Nicolsky, S. Abadie, B. Ataie-Ashtiani, M.J. Castro, L. Clous, C. Escalante, I. Fine, J.M. González-Vida, F. Løvholt, P. Lynett, G. Ma, J. Macías, S. Ortega, F. Shi, S. Yavari-Ramshe, C. ZhangValidation and inter-comparison of models for landslide tsunami generationOcean Model., 170 (2022), Article 101943View PDFView articleView in ScopusGoogle Scholar
McFall and Fritz, 2016B.C. McFall, H.M. FritzPhysical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopesProc. R. Soc. A. Math. Phys. Eng. Sci., 472 (2188) (2016), Article 20160052View at publisher CrossRefGoogle Scholar
Mulia et al., 2020aI.E. Mulia, S. Watada, T.C. Ho, K. Satake, Y. Wang, A. AditiyaSimulation of the 2018 tsunami due to the flank failure of Anak Krakatau volcano and implication for future observing systemsGeophys. Res. Lett., 47 (14) (2020), Article e2020GL087334 View at publisher This article is free to access.View in ScopusGoogle Scholar
Mulia et al., 2020bI.E. Mulia, S. Watada, T.C. Ho, K. Satake, Y. Wang, A. AditiyaSimulation of the 2018 tsunami due to the flank failure of Anak Krakatau volcano and implication for future observing systemsGeophys. Res. Lett., 47 (14) (2020)Google Scholar
Mulligan et al., 2020R.P. Mulligan, A. Franci, M.A. Celigueta, W.A. TakeSimulations of landslide wave generation and propagation using the particle finite element methodJ. Geophys. Res. Oceans, 125 (6) (2020)Google Scholar
Ren et al., 2020Z. Ren, Y. Wang, P. Wang, J. Hou, Y. Gao, L. ZhaoNumerical study of the triggering mechanism of the 2018 Anak Krakatau tsunami: eruption or collapsed landslide?Nat. Hazards, 102 (2020), pp. 1-13View in ScopusGoogle Scholar
Robbe-Saule et al., 2021M. Robbe-Saule, C. Morize, Y. Bertho, A. Sauret, A. Hildenbrand, P. GondretFrom laboratory experiments to geophysical tsunamis generated by subaerial landslidesSci. Rep., 11 (1) (2021), pp. 1-9Google Scholar
Sabeti et al. 2024R. Sabeti, M. Heidarzadeh, A. Romano, G. Barajas Ojeda, J.L. LaraThree-Dimensional Simulations of Subaerial Landslide-Generated Waves: Comparing OpenFOAM and FLOW-3D HYDRO ModelsPure Appl. Geophys. (2024), 10.1007/s00024-024-03443-x View at publisher This article is free to access.Google Scholar
Sorensen, 2010R.M. SorensenBasic Coastal Engineering(3rd edition), Springer Science & Business Media (2010), p. 324Google Scholar
Syamsidik et al., 2020Benazir Syamsidik, M. Luthfi, A. Suppasri, L.K. ComfortThe 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: tsunami and damage characteristicsNat. Hazards Earth Syst. Sci., 20 (2) (2020), pp. 549-565View in ScopusGoogle Scholar
Synolakis et al., 2002C.E. Synolakis, J.P. Bardet, J.C. Borrero, H.L. Davies, E.A. Okal, E.A. Silver, D.R. TappinThe slump origin of the 1998 Papua New Guinea tsunamiProc. R. Soc. Lond. A Math. Phys. Eng. Sci., 45 (2002), pp. 763-789View in ScopusGoogle Scholar
Wang et al., 2022Y. Wang, H.Y. Su, Z. Ren, Y. MaSource properties and resonance characteristics of the tsunami generated by the 2021 M 8.2 Alaska earthquakeJ. Geophys. Res. Oceans, 127 (3) (2022), Article e2021JC018308 View at publisher This article is free to access.View in ScopusGoogle Scholar
Watts et al., 2005P. Watts, S.T. Grilli, D.R. Tappin, G.J. FryerTsunami generation by submarine mass failure. II: predictive equations and case studiesJ. Waterw. Port Coast. Ocean Eng., 131 (6) (2005), pp. 298-310View in ScopusGoogle Scholar
Watts, 1998P. WattsWavemaker curves for tsunamis generated by underwater landslidesJ. Waterw. Port. Coast. Ocean. Eng., 124 (3) (1998), pp. 127-137Google Scholar
Zhang et al., 2021C. Zhang, J.T. Kirby, F. Shi, G. Ma, S.T. GrilliA two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 2. Numerical discretization and model validationOcean Model., 160 (2021), Article 101769View PDFView articleView in ScopusGoogle Scholar
웨어의 두 가지 서로 다른 배열(즉, 직선형 웨어와 직사각형 미로 웨어)을 사용하여 웨어 모양, 웨어 간격, 웨어의 오리피스 존재, 흐름 영역에 대한 바닥 경사와 같은 기하학적 매개변수의 영향을 평가했습니다.
유량과 수심의 관계, 수심 평균 속도의 변화와 분포, 난류 특성, 어도에서의 에너지 소산. 흐름 조건에 미치는 영향을 조사하기 위해 FLOW-3D® 소프트웨어를 사용하여 전산 유체 역학 시뮬레이션을 수행했습니다.
수치 모델은 계산된 표면 프로파일과 속도를 문헌의 실험적으로 측정된 값과 비교하여 검증되었습니다. 수치 모델과 실험 데이터의 결과, 급락유동의 표면 프로파일과 표준화된 속도 프로파일에 대한 평균 제곱근 오차와 평균 절대 백분율 오차가 각각 0.014m와 3.11%로 나타나 수치 모델의 능력을 확인했습니다.
수영장과 둑의 흐름 특성을 예측합니다. 각 모델에 대해 L/B = 1.83(L: 웨어 거리, B: 수로 폭) 값에서 급락 흐름이 발생할 수 있고 L/B = 0.61에서 스트리밍 흐름이 발생할 수 있습니다. 직사각형 미로보 모델은 기존 모델보다 무차원 방류량(Q+)이 더 큽니다.
수중 흐름의 기존 보와 직사각형 미로 보의 경우 Q는 각각 1.56과 1.47h에 비례합니다(h: 보 위 수심). 기존 웨어의 풀 내 평균 깊이 속도는 직사각형 미로 웨어의 평균 깊이 속도보다 높습니다.
그러나 주어진 방류량, 바닥 경사 및 웨어 간격에 대해 난류 운동 에너지(TKE) 및 난류 강도(TI) 값은 기존 웨어에 비해 직사각형 미로 웨어에서 더 높습니다. 기존의 웨어는 직사각형 미로 웨어보다 에너지 소산이 더 낮습니다.
더 낮은 TKE 및 TI 값은 미로 웨어 상단, 웨어 하류 벽 모서리, 웨어 측벽과 채널 벽 사이에서 관찰되었습니다. 보와 바닥 경사면 사이의 거리가 증가함에 따라 평균 깊이 속도, 난류 운동 에너지의 평균값 및 난류 강도가 증가하고 수영장의 체적 에너지 소산이 감소했습니다.
둑에 개구부가 있으면 평균 깊이 속도와 TI 값이 증가하고 풀 내에서 가장 높은 TKE 범위가 감소하여 두 모델 모두에서 물고기를 위한 휴식 공간이 더 넓어지고(TKE가 낮아짐) 에너지 소산율이 감소했습니다.
Two different arrangements of the weir (i.e., straight weir and rectangular labyrinth weir) were used to evaluate the effects of geometric parameters such as weir shape, weir spacing, presence of an orifice at the weir, and bed slope on the flow regime and the relationship between discharge and depth, variation and distribution of depth-averaged velocity, turbulence characteristics, and energy dissipation at the fishway. Computational fluid dynamics simulations were performed using FLOW-3D® software to examine the effects on flow conditions. The numerical model was validated by comparing the calculated surface profiles and velocities with experimentally measured values from the literature. The results of the numerical model and experimental data showed that the root-mean-square error and mean absolute percentage error for the surface profiles and normalized velocity profiles of plunging flows were 0.014 m and 3.11%, respectively, confirming the ability of the numerical model to predict the flow characteristics of the pool and weir. A plunging flow can occur at values of L/B = 1.83 (L: distance of the weir, B: width of the channel) and streaming flow at L/B = 0.61 for each model. The rectangular labyrinth weir model has larger dimensionless discharge values (Q+) than the conventional model. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q is proportional to 1.56 and 1.47h, respectively (h: the water depth above the weir). The average depth velocity in the pool of a conventional weir is higher than that of a rectangular labyrinth weir. However, for a given discharge, bed slope, and weir spacing, the turbulent kinetic energy (TKE) and turbulence intensity (TI) values are higher for a rectangular labyrinth weir compared to conventional weir. The conventional weir has lower energy dissipation than the rectangular labyrinth weir. Lower TKE and TI values were observed at the top of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall. As the distance between the weirs and the bottom slope increased, the average depth velocity, the average value of turbulent kinetic energy and the turbulence intensity increased, and the volumetric energy dissipation in the pool decreased. The presence of an opening in the weir increased the average depth velocity and TI values and decreased the range of highest TKE within the pool, resulted in larger resting areas for fish (lower TKE), and decreased the energy dissipation rates in both models.
1 Introduction
Artificial barriers such as detour dams, weirs, and culverts in lakes and rivers prevent fish from migrating and completing the upstream and downstream movement cycle. This chain is related to the life stage of the fish, its location, and the type of migration. Several riverine fish species instinctively migrate upstream for spawning and other needs. Conversely, downstream migration is a characteristic of early life stages [1]. A fish ladder is a waterway that allows one or more fish species to cross a specific obstacle. These structures are constructed near detour dams and other transverse structures that have prevented such migration by allowing fish to overcome obstacles [2]. The flow pattern in fish ladders influences safe and comfortable passage for ascending fish. The flow’s strong turbulence can reduce the fish’s speed, injure them, and delay or prevent them from exiting the fish ladder. In adult fish, spawning migrations are usually complex, and delays are critical to reproductive success [3].
Various fish ladders/fishways include vertical slots, denil, rock ramps, and pool weirs [1]. The choice of fish ladder usually depends on many factors, including water elevation, space available for construction, and fish species. Pool and weir structures are among the most important fish ladders that help fish overcome obstacles in streams or rivers and swim upstream [1]. Because they are easy to construct and maintain, this type of fish ladder has received considerable attention from researchers and practitioners. Such a fish ladder consists of a sloping-floor channel with series of pools directly separated by a series of weirs [4]. These fish ladders, with or without underwater openings, are generally well-suited for slopes of 10% or less [1, 2]. Within these pools, flow velocities are low and provide resting areas for fish after they enter the fish ladder. After resting in the pools, fish overcome these weirs by blasting or jumping over them [2]. There may also be an opening in the flooded portion of the weir through which the fish can swim instead of jumping over the weir. Design parameters such as the length of the pool, the height of the weir, the slope of the bottom, and the water discharge are the most important factors in determining the hydraulic structure of this type of fish ladder [3]. The flow over the weir depends on the flow depth at a given slope S0 and the pool length, either “plunging” or “streaming.” In plunging flow, the water column h over each weir creates a water jet that releases energy through turbulent mixing and diffusion mechanisms [5]. The dimensionless discharges for plunging (Q+) and streaming (Q*) flows are shown in Fig. 1, where Q is the total discharge, B is the width of the channel, w is the weir height, S0 is the slope of the bottom, h is the water depth above the weir, d is the flow depth, and g is the acceleration due to gravity. The maximum velocity occurs near the top of the weir for plunging flow. At the water’s surface, it drops to about half [6].
Fig. 1
Extensive experimental studies have been conducted to investigate flow patterns for various physical geometries (i.e., bed slope, pool length, and weir height) [2]. Guiny et al. [7] modified the standard design by adding vertical slots, orifices, and weirs in fishways. The efficiency of the orifices and vertical slots was related to the velocities at their entrances. In the laboratory experiments of Yagci [8], the three-dimensional (3D) mean flow and turbulence structure of a pool weir fishway combined with an orifice and a slot is investigated. It is shown that the energy dissipation per unit volume and the discharge have a linear relationship.
Considering the beneficial characteristics reported in the limited studies of researchers on the labyrinth weir in the pool-weir-type fishway, and knowing that the characteristics of flow in pool-weir-type fishways are highly dependent on the geometry of the weir, an alternative design of the rectangular labyrinth weir instead of the straight weirs in the pool-weir-type fishway is investigated in this study [7, 9]. Kim [10] conducted experiments to compare the hydraulic characteristics of three different weir types in a pool-weir-type fishway. The results show that a straight, rectangular weir with a notch is preferable to a zigzag or trapezoidal weir. Studies on natural fish passes show that pass ability can be improved by lengthening the weir’s crest [7]. Zhong et al. [11] investigated the semi-rigid weir’s hydraulic performance in the fishway’s flow field with a pool weir. The results showed that this type of fishway performed better with a lower invert slope and a smaller radius ratio but with a larger pool spacing.
Considering that an alternative method to study the flow characteristics in a fishway with a pool weir is based on numerical methods and modeling from computational fluid dynamics (CFD), which can easily change the geometry of the fishway for different flow fields, this study uses the powerful package CFD and the software FLOW-3D to evaluate the proposed weir design and compare it with the conventional one to extend the application of the fishway. The main objective of this study was to evaluate the hydraulic performance of the rectangular labyrinth pool and the weir with submerged openings in different hydraulic configurations. The primary objective of creating a new weir configuration for suitable flow patterns is evaluated based on the swimming capabilities of different fish species. Specifically, the following questions will be answered: (a) How do the various hydraulic and geometric parameters relate to the effects of water velocity and turbulence, expressed as turbulent kinetic energy (TKE) and turbulence intensity (TI) within the fishway, i.e., are conventional weirs more affected by hydraulics than rectangular labyrinth weirs? (b) Which weir configurations have the greatest effect on fish performance in the fishway? (c) In the presence of an orifice plate, does the performance of each weir configuration differ with different weir spacing, bed gradients, and flow regimes from that without an orifice plate?
2 Materials and Methods
2.1 Physical Model Configuration
This paper focuses on Ead et al. [6]’s laboratory experiments as a reference, testing ten pool weirs (Fig. 2). The experimental flume was 6 m long, 0.56 m wide, and 0.6 m high, with a bottom slope of 10%. Field measurements were made at steady flow with a maximum flow rate of 0.165 m3/s. Discharge was measured with magnetic flow meters in the inlets and water level with point meters (see Ead et al. [6]. for more details). Table 1 summarizes the experimental conditions considered for model calibration in this study.
Fig. 2
Table 1 Experimental conditions considered for calibration
Computational fluid dynamics (CFD) simulations were performed using FLOW-3D® v11.2 to validate a series of experimental liner pool weirs by Ead et al. [6] and to investigate the effects of the rectangular labyrinth pool weir with an orifice. The dimensions of the channel and data collection areas in the numerical models are the same as those of the laboratory model. Two types of pool weirs were considered: conventional and labyrinth. The proposed rectangular labyrinth pool weirs have a symmetrical cross section and are sized to fit within the experimental channel. The conventional pool weir model had a pool length of l = 0.685 and 0.342 m, a weir height of w = 0.141 m, a weir width of B = 0.56 m, and a channel slope of S0 = 5 and 10%. The rectangular labyrinth weirs have the same front width as the offset, i.e., a = b = c = 0.186 m. A square underwater opening with a width of 0.05 m and a depth of 0.05 m was created in the middle of the weir. The weir configuration considered in the present study is shown in Fig. 3.
Fig. 3
2.3 Governing Equations
FLOW-3D® software solves the Navier–Stokes–Reynolds equations for three-dimensional analysis of incompressible flows using the fluid-volume method on a gridded domain. FLOW -3D® uses an advanced free surface flow tracking algorithm (TruVOF) developed by Hirt and Nichols [12], where fluid configurations are defined in terms of a VOF function F (x, y, z, t). In this case, F (fluid fraction) represents the volume fraction occupied by the fluid: F = 1 in cells filled with fluid and F = 0 in cells without fluid (empty areas) [4, 13]. The free surface area is at an intermediate value of F. (Typically, F = 0.5, but the user can specify a different intermediate value.) The equations in Cartesian coordinates (x, y, z) applicable to the model are as follows:
�f∂�∂�+∂(���x)∂�+∂(���y)∂�+∂(���z)∂�=�SOR
(1)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�x+�x
(2)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�y+�y
(3)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�z+�z
(4)
where (u, v, w) are the velocity components, (Ax, Ay, Az) are the flow area components, (Gx, Gy, Gz) are the mass accelerations, and (fx, fy, fz) are the viscous accelerations in the directions (x, y, z), ρ is the fluid density, RSOR is the spring term, Vf is the volume fraction associated with the flow, and P is the pressure. The k–ε turbulence model (RNG) was used in this study to solve the turbulence of the flow field. This model is a modified version of the standard k–ε model that improves performance. The model is a two-equation model; the first equation (Eq. 5) expresses the turbulence’s energy, called turbulent kinetic energy (k) [14]. The second equation (Eq. 6) is the turbulent dissipation rate (ε), which determines the rate of dissipation of kinetic energy [15]. These equations are expressed as follows Dasineh et al. [4]:
In these equations, k is the turbulent kinetic energy, ε is the turbulent energy consumption rate, Gk is the generation of turbulent kinetic energy by the average velocity gradient, with empirical constants αε = αk = 1.39, C1ε = 1.42, and C2ε = 1.68, eff is the effective viscosity, μeff = μ + μt [15]. Here, μ is the hydrodynamic density coefficient, and μt is the turbulent density of the fluid.
2.4 Meshing and the Boundary Conditions in the Model Setup
The numerical area is divided into three mesh blocks in the X-direction. The meshes are divided into different sizes, a containing mesh block for the entire spatial domain and a nested block with refined cells for the domain of interest. Three different sizes were selected for each of the grid blocks. By comparing the accuracy of their results based on the experimental data, the reasonable mesh for the solution domain was finally selected. The convergence index method (GCI) evaluated the mesh sensitivity analysis. Based on this method, many researchers, such as Ahmadi et al. [16] and Ahmadi et al. [15], have studied the independence of numerical results from mesh size. Three different mesh sizes with a refinement ratio (r) of 1.33 were used to perform the convergence index method. The refinement ratio is the ratio between the larger and smaller mesh sizes (r = Gcoarse/Gfine). According to the recommendation of Celik et al. [17], the recommended number for the refinement ratio is 1.3, which gives acceptable results. Table 2 shows the characteristics of the three mesh sizes selected for mesh sensitivity analysis.Table 2 Characteristics of the meshes tested in the convergence analysis
The results of u1 = umax (u1 = velocity component along the x1 axis and umax = maximum velocity of u1 in a section perpendicular to the invert of the fishway) at Q = 0.035 m3/s, × 1/l = 0.66, and Y1/b = 0 in the pool of conventional weir No. 4, obtained from the output results of the software, were used to evaluate the accuracy of the calculation range. As shown in Fig. 4, x1 = the distance from a given weir in the x-direction, Y1 = the water depth measured in the y-direction, Y0 = the vertical distance in the Cartesian coordinate system, h = the water column at the crest, b = the distance between the two points of maximum velocity umax and zero velocity, and l = the pool length.
Fig. 4
The apparent index of convergence (p) in the GCI method is calculated as follows:
�=ln(�3−�2)(�2−�1)/ln(�)
(7)
f1, f2, and f3 are the hydraulic parameters obtained from the numerical simulation (f1 corresponds to the small mesh), and r is the refinement ratio. The following equation defines the convergence index of the fine mesh:
GCIfine=1.25|ε|��−1
(8)
Here, ε = (f2 − f1)/f1 is the relative error, and f2 and f3 are the values of hydraulic parameters considered for medium and small grids, respectively. GCI12 and GCI23 dimensionless indices can be calculated as:
GCI12=1.25|�2−�1�1|��−1
(9)
Then, the independence of the network is preserved. The convergence index of the network parameters obtained by Eqs. (7)–(9) for all three network variables is shown in Table 3. Since the GCI values for the smaller grid (GCI12) are lower compared to coarse grid (GCI23), it can be concluded that the independence of the grid is almost achieved. No further change in the grid size of the solution domain is required. The calculated values (GCI23/rpGCI12) are close to 1, which shows that the numerical results obtained are within the convergence range. As a result, the meshing of the solution domain consisting of a block mesh with a mesh size of 0.012 m and a block mesh within a larger block mesh with a mesh size of 0.009 m was selected as the optimal mesh (Fig. 5).Table 3 GCI calculation
The boundary conditions applied to the area are shown in Fig. 6. The boundary condition of specific flow rate (volume flow rate-Q) was used for the inlet of the flow. For the downstream boundary, the flow output (outflow-O) condition did not affect the flow in the solution area. For the Zmax boundary, the specified pressure boundary condition was used along with the fluid fraction = 0 (P). This type of boundary condition considers free surface or atmospheric pressure conditions (Ghaderi et al. [19]). The wall boundary condition is defined for the bottom of the channel, which acts like a virtual wall without friction (W). The boundary between mesh blocks and walls were considered a symmetrical condition (S).
Fig. 6
The convergence of the steady-state solutions was controlled during the simulations by monitoring the changes in discharge at the inlet boundary conditions. Figure 7 shows the time series plots of the discharge obtained from the Model A for the three main discharges from the numerical results. The 8 s to reach the flow equilibrium is suitable for the case of the fish ladder with pool and weir. Almost all discharge fluctuations in the models are insignificant in time, and the flow has reached relative stability. The computation time for the simulations was between 6 and 8 h using a personal computer with eight cores of a CPU (Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).
Fig. 7
3 Results
3.1 Verification of Numerical Results
Quantitative outcomes, including free surface and normalized velocity profiles obtained using FLOW-3D software, were reviewed and compared with the results of Ead et al. [6]. The fourth pool was selected to present the results and compare the experiment and simulation. For each quantity, the percentage of mean absolute error (MAPE (%)) and root-mean-square error (RMSE) are calculated. Equations (10) and (11) show the method used to calculate the errors.
MAPE(%)100×1�∑1�|�exp−�num�exp|
(10)
RMSE(−)1�∑1�(�exp−�num)2
(11)
Here, Xexp is the value of the laboratory data, Xnum is the numerical data value, and n is the amount of data. As shown in Fig. 8, let x1 = distance from a given weir in the x-direction and Y1 = water depth in the y-direction from the bottom. The trend of the surface profiles for each of the numerical results is the same as that of the laboratory results. The surface profiles of the plunging flows drop after the flow enters and then rises to approach the next weir. The RMSE and MAPE error values for Model A are 0.014 m and 3.11%, respectively, indicating acceptable agreement between numerical and laboratory results. Figure 9 shows the velocity vectors and plunging flow from the numerical results, where x and y are horizontal and vertical to the flow direction, respectively. It can be seen that the jet in the fish ladder pool has a relatively high velocity. The two vortices, i.e., the enclosed vortex rotating clockwise behind the weir and the surface vortex rotating counterclockwise above the jet, are observed for the regime of incident flow. The point where the jet meets the fish passage bed is shown in the figure. The normalized velocity profiles upstream and downstream of the impact points are shown in Fig. 10. The figure shows that the numerical results agree well with the experimental data of Ead et al. [6].
Fig. 8Fig. 9Fig. 10
3.2 Flow Regime and Discharge-Depth Relationship
Depending on the geometric shape of the fishway, including the distance of the weir, the slope of the bottom, the height of the weir, and the flow conditions, the flow regime in the fishway is divided into three categories: dipping, transitional, and flow regimes [4]. In the plunging flow regime, the flow enters the pool through the weir, impacts the bottom of the fishway, and forms a hydraulic jump causing two eddies [2, 20]. In the streamwise flow regime, the surface of the flow passing over the weir is almost parallel to the bottom of the channel. The transitional regime has intermediate flow characteristics between the submerged and flow regimes. To predict the flow regime created in the fishway, Ead et al. [6] proposed two dimensionless parameters, Qt* and L/w, where Qt* is the dimensionless discharge, L is the distance between weirs, and w is the height of the weir:
��∗=���0���
(12)
Q is the total discharge, B is the width of the channel, S0 is the slope of the bed, and g is the gravity acceleration. Figure 11 shows different ranges for each flow regime based on the slope of the bed and the distance between the pools in this study. The results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22] were used for this comparison. The distance between the pools affects the changes in the regime of the fish ladder. So, if you decrease the distance between weirs, the flow regime more likely becomes. This study determined all three flow regimes in a fish ladder. When the corresponding range of Qt* is less than 0.6, the flow regime can dip at values of L/B = 1.83. If the corresponding range of Qt* is greater than 0.5, transitional flow may occur at L/B = 1.22. On the other hand, when Qt* is greater than 1, streamwise flow can occur at values of L/B = 0.61. These observations agree well with the results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22].
Fig. 11
For plunging flows, another dimensionless discharge (Q+) versus h/w given by Ead et al. [6] was used for further evaluation:
�+=��ℎ�ℎ=23�d�
(13)
where h is the water depth above the weir, and Cd is the discharge coefficient. Figure 12a compares the numerical and experimental results of Ead et al. [6]. In this figure, Rehbock’s empirical equation is used to estimate the discharge coefficient of Ead et al. [6].
�d=0.57+0.075ℎ�
(14)
Fig. 12
The numerical results for the conventional weir (Model A) and the rectangular labyrinth weir (Model B) of this study agree well with the laboratory results of Ead et al. [6]. When comparing models A and B, it is also found that a rectangular labyrinth weir has larger Q + values than the conventional weir as the length of the weir crest increases for a given channel width and fixed headwater elevation. In Fig. 12b, Models A and B’s flow depth plot shows the plunging flow regime. The power trend lines drawn through the data are the best-fit lines. The data shown in Fig. 12b are for different bed slopes and weir geometries. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q can be assumed to be proportional to 1.56 and 1.47h, respectively. In the results of Ead et al. [6], Q is proportional to 1.5h. If we assume that the flow through the orifice is Qo and the total outflow is Q, the change in the ratio of Qo/Q to total outflow for models A and B can be shown in Fig. 13. For both models, the flow through the orifice decreases as the total flow increases. A logarithmic trend line was also found between the total outflow and the dimensionless ratio Qo/Q.
Fig. 13
3.3 Depth-Averaged Velocity Distributions
To ensure that the target fish species can pass the fish ladder with maximum efficiency, the average velocity in the fish ladder should be low enough [4]. Therefore, the average velocity in depth should be as much as possible below the critical swimming velocities of the target fishes at a constant flow depth in the pool [20]. The contour plot of depth-averaged velocity was used instead of another direction, such as longitudinal velocity because fish are more sensitive to depth-averaged flow velocity than to its direction under different hydraulic conditions. Figure 14 shows the distribution of depth-averaged velocity in the pool for Models A and B in two cases with and without orifice plates. Model A’s velocity within the pool differs slightly in the spanwise direction. However, no significant variation in velocity was observed. The flow is gradually directed to the sides as it passes through the rectangular labyrinth weir. This increases the velocity at the sides of the channel. Therefore, the high-velocity zone is located at the sides. The low velocity is in the downstream apex of the weir. This area may be suitable for swimming target fish. The presence of an opening in the weir increases the flow velocity at the opening and in the pool’s center, especially in Model A. The flow velocity increase caused by the models’ opening varied from 7.7 to 12.48%. Figure 15 illustrates the effect of the inverted slope on the averaged depth velocity distribution in the pool at low and high discharge. At constant discharge, flow velocity increases with increasing bed slope. In general, high flow velocity was found in the weir toe sidewall and the weir and channel sidewalls.
Fig. 14Fig. 15
On the other hand, for a constant bed slope, the high-velocity area of the pool increases due to the increase in runoff. For both bed slopes and different discharges, the most appropriate path for fish to travel from upstream to downstream is through the middle of the cross section and along the top of the rectangular labyrinth weirs. The maximum dominant velocities for Model B at S0 = 5% were 0.83 and 1.01 m/s; at S0 = 10%, they were 1.12 and 1.61 m/s at low and high flows, respectively. The low mean velocities for the same distance and S0 = 5 and 10% were 0.17 and 0.26 m/s, respectively.
Figure 16 shows the contour of the averaged depth velocity for various distances from the weir at low and high discharge. The contour plot shows a large variation in velocity within short distances from the weir. At L/B = 0.61, velocities are low upstream and downstream of the top of the weir. The high velocities occur in the side walls of the weir and the channel. At L/B = 1.22, the low-velocity zone displaces the higher velocity in most of the pool. Higher velocities were found only on the sides of the channel. As the discharge increases, the velocity zone in the pool becomes wider. At L/B = 1.83, there is an area of higher velocities only upstream of the crest and on the sides of the weir. At high discharge, the prevailing maximum velocities for L/B = 0.61, 1.22, and 1.83 were 1.46, 1.65, and 1.84 m/s, respectively. As the distance between weirs increases, the range of maximum velocity increases.
Fig. 16
On the other hand, the low mean velocity for these distances was 0.27, 0.44, and 0.72 m/s, respectively. Thus, the low-velocity zone decreases with increasing distance between weirs. Figure 17 shows the pattern distribution of streamlines along with the velocity contour at various distances from the weir for Q = 0.05 m3/s. A stream-like flow is generally formed in the pool at a small distance between weirs (L/B = 0.61). The rotation cell under the jet forms clockwise between the two weirs. At the distances between the spillways (L/B = 1.22), the transition regime of the flow is formed. The transition regime occurs when or shortly after the weir is flooded. The rotation cell under the jet is clockwise smaller than the flow regime and larger than the submergence regime. At a distance L/B = 1.83, a plunging flow is formed so that the plunging jet dips into the pool and extends downstream to the center of the pool. The clockwise rotation of the cell is bounded by the dipping jet of the weir and is located between the bottom and the side walls of the weir and the channel.
Fig. 17
Figure 18 shows the average depth velocity bar graph for each weir at different bed slopes and with and without orifice plates. As the distance between weirs increases, all models’ average depth velocity increases. As the slope of the bottom increases and an orifice plate is present, the average depth velocity in the pool increases. In addition, the average pool depth velocity increases as the discharge increases. Among the models, Model A’s average depth velocity is higher than Model B’s. The variation in velocity ranged from 8.11 to 12.24% for the models without an orifice plate and from 10.26 to 16.87% for the models with an orifice plate.
Fig. 18
3.4 Turbulence Characteristics
The turbulent kinetic energy is one of the important parameters reflecting the turbulent properties of the flow field [23]. When the k value is high, more energy and a longer transit time are required to migrate the target species. The turbulent kinetic energy is defined as follows:
�=12(�x′2+�y′2+�z′2)
(15)
where ux, uy, and uz are fluctuating velocities in the x, y, and z directions, respectively. An illustration of the TKE and the effects of the geometric arrangement of the weir and the presence of an opening in the weir is shown in Fig. 19. For a given bed slope, in Model A, the highest TKE values are uniformly distributed in the weir’s upstream portion in the channel’s cross section. In contrast, for the rectangular labyrinth weir (Model B), the highest TKE values are concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value in Models A and B is 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%). In the downstream portion of the conventional weir and within the crest of the weir and the walls of the rectangular labyrinth, there was a much lower TKE value that provided the best conditions for fish to recover in the pool between the weirs. The average of the lowest TKE for bottom slopes of 5 and 10% in Model A is 0.041 and 0.056 J/kg, and for Model B, is 0.047 and 0.064 J/kg. The presence of an opening in the weirs reduces the area of the highest TKE within the pool. It also increases the resting areas for fish (lower TKE). The highest TKE at the highest bottom slope in Models A and B with an orifice is 0.208 and 0.191 J/kg, respectively.
Fig. 19
Figure 20 shows the effect of slope on the longitudinal distribution of TKE in the pools. TKE values significantly increase for a given discharge with an increasing bottom slope. Thus, for a low bed slope (S0 = 5%), a large pool area has expanded with average values of 0.131 and 0.168 J/kg for low and high discharge, respectively. For a bed slope of S0 = 10%, the average TKE values are 0.176 and 0.234 J/kg. Furthermore, as the discharge increases, the area with high TKE values within the pool increases. Lower TKE values are observed at the apex of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall for both bottom slopes. The effect of distance between weirs on TKE is shown in Fig. 21. Low TKE values were observed at low discharge and short distances between weirs. Low TKE values are located at the top of the rectangular labyrinth weir and the downstream corner of the weir wall. There is a maximum value of TKE at the large distances between weirs, L/B = 1.83, along the center line of the pool, where the dip jet meets the bottom of the bed. At high discharge, the maximum TKE value for the distance L/B = 0.61, 1.22, and 1.83 was 0.246, 0.322, and 0.417 J/kg, respectively. In addition, the maximum TKE range increases with the distance between weirs.
Fig. 20Fig. 21
For TKE size, the average value (TKEave) is plotted against q in Fig. 22. For all models, the TKE values increase with increasing q. For example, in models A and B with L/B = 0.61 and a slope of 10%, the TKE value increases by 41.66 and 86.95%, respectively, as q increases from 0.1 to 0.27 m2/s. The TKE values in Model B are higher than Model A for a given discharge, bed slope, and weir distance. The TKEave in Model B is higher compared to Model A, ranging from 31.46 to 57.94%. The presence of an orifice in the weir reduces the TKE values in both weirs. The intensity of the reduction is greater in Model B. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, an orifice reduces TKEave values by 60.35 and 19.04%, respectively. For each model, increasing the bed slope increases the TKEave values in the pool. For example, for Model B with q = 0.18 m2/s, increasing the bed slope from 5 to 10% increases the TKEave value by 14.34%. Increasing the distance between weirs increases the TKEave values in the pool. For example, in Model B with S0 = 10% and q = 0.3 m2/s, the TKEave in the pool increases by 34.22% if you increase the distance between weirs from L/B = 0.61 to L/B = 0.183.
Fig. 22
Cotel et al. [24] suggested that turbulence intensity (TI) is a suitable parameter for studying fish swimming performance. Figure 23 shows the plot of TI and the effects of the geometric arrangement of the weir and the presence of an orifice. In Model A, the highest TI values are found upstream of the weirs and are evenly distributed across the cross section of the channel. The TI values increase as you move upstream to downstream in the pool. For the rectangular labyrinth weir, the highest TI values were concentrated on the sides of the pool, between the top of the weir and the side wall of the channel, and along the top of the weir. Downstream of the conventional weir, within the apex of the weir, and at the corners of the walls of the rectangular labyrinth weir, the percentage of TI was low. At the highest discharge, the average range of TI in Models A and B was 24–45% and 15–62%, respectively. The diversity of TI is greater in the rectangular labyrinth weir than the conventional weir. Fish swimming performance is reduced due to higher turbulence intensity. However, fish species may prefer different disturbance intensities depending on their swimming abilities; for example, Salmo trutta prefers a disturbance intensity of 18–53% [25]. Kupferschmidt and Zhu [26] found a higher range of TI for fishways, such as natural rock weirs, of 40–60%. The presence of an orifice in the weir increases TI values within the pool, especially along the middle portion of the cross section of the fishway. With an orifice in the weir, the average range of TI in Models A and B was 28–59% and 22–73%, respectively.
Fig. 23
The effect of bed slope on TI variation is shown in Fig. 24. TI increases in different pool areas as the bed slope increases for a given discharge. For a low bed slope (S0 = 5%), a large pool area has increased from 38 to 63% and from 56 to 71% for low and high discharge, respectively. For a bed slope of S0 = 10%, the average values of TI are 45–67% and 61–73% for low and high discharge, respectively. Therefore, as runoff increases, the area with high TI values within the pool increases. A lower TI is observed for both bottom slopes in the corner of the wall, downstream of the crest walls, and between the side walls in the weir and channel. Figure 25 compares weir spacing with the distribution of TI values within the pool. The TI values are low at low flows and short distances between weirs. A maximum value of TI occurs at long spacing and where the plunging stream impinges on the bed and the area around the bed. TI ranges from 36 to 57%, 58–72%, and 47–76% for the highest flow in a wide pool area for L/B = 0.61, 1.22, and 1.83, respectively.
Fig. 24Fig. 25
The average value of turbulence intensity (TIave) is plotted against q in Fig. 26. The increase in TI values with the increase in q values is seen in all models. For example, the average values of TI for Models A and B at L/B = 0.61 and slope of 10% increased from 23.9 to 33.5% and from 42 to 51.8%, respectively, with the increase in q from 0.1 to 0.27 m2/s. For a given discharge, a given gradient, and a given spacing of weirs, the TIave is higher in Model B than Model A. The presence of an orifice in the weirs increases the TI values in both types. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, the presence of an orifice increases TIave from 23.9 to 37.1% and from 42 to 48.8%, respectively. For each model, TIave in the pool increases with increasing bed slope. For Model B with q = 0.18 m2/s, TIave increases from 37.5 to 45.8% when you increase the invert slope from 5 to 10%. Increasing the distance between weirs increases the TIave in the pool. In Model B with S0 = 10% and q = 0.3 m2/s, the TIave in the pool increases from 51.8 to 63.7% as the distance between weirs increases from L/B = 0.61 to L/B = 0.183.
Fig. 26
3.5 Energy Dissipation
To facilitate the passage of various target species through the pool of fishways, it is necessary to pay attention to the energy dissipation of the flow and to keep the flow velocity in the pool slow. The average volumetric energy dissipation (k) in the pool is calculated using the following basic formula:
�=����0��
(16)
where ρ is the water density, and H is the average water depth of the pool. The change in k versus Q for all models at two bottom slopes, S0 = 5%, and S0 = 10%, is shown in Fig. 27. Like the results of Yagci [8] and Kupferschmidt and Zhu [26], at a constant bottom slope, the energy dissipation in the pool increases with increasing discharge. The trend of change in k as a function of Q from the present study at a bottom gradient of S0 = 5% is also consistent with the results of Kupferschmidt and Zhu [26] for the fishway with rock weir. The only difference between the results is the geometry of the fishway and the combination of boulders instead of a solid wall. Comparison of the models shows that the conventional model has lower energy dissipation than the rectangular labyrinth for a given discharge. Also, increasing the distance between weirs decreases the volumetric energy dissipation for each model with the same bed slope. Increasing the slope of the bottom leads to an increase in volumetric energy dissipation, and an opening in the weir leads to a decrease in volumetric energy dissipation for both models. Therefore, as a guideline for volumetric energy dissipation, if the value within the pool is too high, the increased distance of the weir, the decreased slope of the bed, or the creation of an opening in the weir would decrease the volumetric dissipation rate.
Fig. 27
To evaluate the energy dissipation inside the pool, the general method of energy difference in two sections can use:
ε=�1−�2�1
(17)
where ε is the energy dissipation rate, and E1 and E2 are the specific energies in Sects. 1 and 2, respectively. The distance between Sects. 1 and 2 is the same. (L is the distance between two upstream and downstream weirs.) Figure 28 shows the changes in ε relative to q (flow per unit width). The rectangular labyrinth weir (Model B) has a higher energy dissipation rate than the conventional weir (Model A) at a constant bottom gradient. For example, at S0 = 5%, L/B = 0.61, and q = 0.08 m3/s.m, the energy dissipation rate in Model A (conventional weir) was 0.261. In Model B (rectangular labyrinth weir), however, it was 0.338 (22.75% increase). For each model, the energy dissipation rate within the pool increases as the slope of the bottom increases. For Model B with L/B = 1.83 and q = 0.178 m3/s.m, the energy dissipation rate at S0 = 5% and 10% is 0.305 and 0.358, respectively (14.8% increase). Figure 29 shows an orifice’s effect on the pools’ energy dissipation rate. With an orifice in the weir, both models’ energy dissipation rates decreased. Thus, the reduction in energy dissipation rate varied from 7.32 to 9.48% for Model A and from 8.46 to 10.57 for Model B.
Fig. 28Fig. 29
4 Discussion
This study consisted of entirely of numerical analysis. Although this study was limited to two weirs, the hydraulic performance and flow characteristics in a pooled fishway are highlighted by the rectangular labyrinth weir and its comparison with the conventional straight weir. The study compared the numerical simulations with laboratory experiments in terms of surface profiles, velocity vectors, and flow characteristics in a fish ladder pool. The results indicate agreement between the numerical and laboratory data, supporting the reliability of the numerical model in capturing the observed phenomena.
When the configuration of the weir changes to a rectangular labyrinth weir, the flow characteristics, the maximum and minimum area, and even the location of each hydraulic parameter change compared to a conventional weir. In the rectangular labyrinth weir, the flow is gradually directed to the sides as it passes the weir. This increases the velocity at the sides of the channel [21]. Therefore, the high-velocity area is located on the sides. In the downstream apex of the weir, the flow velocity is low, and this area may be suitable for swimming target fish. However, no significant change in velocity was observed at the conventional weir within the fish ladder. This resulted in an average increase in TKE of 32% and an average increase in TI of about 17% compared to conventional weirs.
In addition, there is a slight difference in the flow regime for both weir configurations. In addition, the rectangular labyrinth weir has a higher energy dissipation rate for a given discharge and constant bottom slope than the conventional weir. By reducing the distance between the weirs, this becomes even more intense. Finally, the presence of an orifice in both configurations of the weir increased the flow velocity at the orifice and in the middle of the pool, reducing the highest TKE value and increasing the values of TI within the pool of the fish ladder. This resulted in a reduction in volumetric energy dissipation for both weir configurations.
The results of this study will help the reader understand the direct effects of the governing geometric parameters on the hydraulic characteristics of a fishway with a pool and weir. However, due to the limited configurations of the study, further investigation is needed to evaluate the position of the weir’s crest on the flow direction and the difference in flow characteristics when combining boulders instead of a solid wall for this type of labyrinth weir [26]. In addition, hydraulic engineers and biologists must work together to design an effective fishway with rectangular labyrinth configurations. The migration habits of the target species should be considered when designing the most appropriate design [27]. Parametric studies and field observations are recommended to determine the perfect design criteria.
The current study focused on comparing a rectangular labyrinth weir with a conventional straight weir. Further research can explore other weir configurations, such as variations in crest position, different shapes of labyrinth weirs, or the use of boulders instead of solid walls. This would help understand the influence of different geometric parameters on hydraulic characteristics.
5 Conclusions
A new layout of the weir was evaluated, namely a rectangular labyrinth weir compared to a straight weir in a pool and weir system. The differences between the weirs were highlighted, particularly how variations in the geometry of the structures, such as the shape of the weir, the spacing of the weir, the presence of an opening at the weir, and the slope of the bottom, affect the hydraulics within the structures. The main findings of this study are as follows:
The calculated dimensionless discharge (Qt*) confirmed three different flow regimes: when the corresponding range of Qt* is smaller than 0.6, the regime of plunging flow occurs for values of L/B = 1.83. (L: distance of the weir; B: channel width). When the corresponding range of Qt* is greater than 0.5, transitional flow occurs at L/B = 1.22. On the other hand, if Qt* is greater than 1, the streaming flow is at values of L/B = 0.61.
For the conventional weir and the rectangular labyrinth weir with the plunging flow, it can be assumed that the discharge (Q) is proportional to 1.56 and 1.47h, respectively (h: water depth above the weir). This information is useful for estimating the discharge based on water depth in practical applications.
In the rectangular labyrinth weir, the high-velocity zone is located on the side walls between the top of the weir and the channel wall. A high-velocity variation within short distances of the weir. Low velocity occurs within the downstream apex of the weir. This area may be suitable for swimming target fish.
As the distance between weirs increased, the zone of maximum velocity increased. However, the zone of low speed decreased. The prevailing maximum velocity for a rectangular labyrinth weir at L/B = 0.61, 1.22, and 1.83 was 1.46, 1.65, and 1.84 m/s, respectively. The low mean velocities for these distances were 0.27, 0.44, and 0.72 m/s, respectively. This finding highlights the importance of weir spacing in determining the flow characteristics within the fishway.
The presence of an orifice in the weir increased the flow velocity at the orifice and in the middle of the pool, especially in a conventional weir. The increase ranged from 7.7 to 12.48%.
For a given bottom slope, in a conventional weir, the highest values of turbulent kinetic energy (TKE) are uniformly distributed in the upstream part of the weir in the cross section of the channel. In contrast, for the rectangular labyrinth weir, the highest TKE values were concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value for the conventional and the rectangular labyrinth weir was 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%).
For a given discharge, bottom slope, and weir spacing, the average values of TI are higher for the rectangular labyrinth weir than for the conventional weir. At the highest discharge, the average range of turbulence intensity (TI) for the conventional and rectangular labyrinth weirs was between 24 and 45% and 15% and 62%, respectively. This reveals that the rectangular labyrinth weir may generate more turbulent flow conditions within the fishway.
For a given discharge and constant bottom slope, the rectangular labyrinth weir has a higher energy dissipation rate than the conventional weir (22.75 and 34.86%).
Increasing the distance between weirs decreased volumetric energy dissipation. However, increasing the gradient increased volumetric energy dissipation. The presence of an opening in the weir resulted in a decrease in volumetric energy dissipation for both model types.
Availability of data and materials
Data is contained within the article.
References
Katopodis C (1992) Introduction to fishway design, working document. Freshwater Institute, Central Arctic Region
Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C.: Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 63, 88–101 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.010ArticleGoogle Scholar
Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A.: Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 9, 3135 (2021)ArticleGoogle Scholar
Silva, A.T.; Bermúdez, M.; Santos, J.M.; Rabuñal, J.R.; Puertas, J.: Pool-type fishway design for a potamodromous cyprinid in the Iberian Peninsula: the Iberian barbel—synthesis and future directions. Sustainability 12, 3387 (2020). https://doi.org/10.3390/su12083387ArticleGoogle Scholar
Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A.: Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: effect of boulder density and fishway discharge. Ecol. Eng. 73, 335–344 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.065ArticleGoogle Scholar
Ead, S.; Katopodis, C.; Sikora, G.; Rajaratnam, N.J.J.: Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 3, 379–390 (2004)ArticleGoogle Scholar
Guiny, E.; Ervine, D.A.; Armstrong, J.D.: Hydraulic and biological aspects of fish passes for Atlantic salmon. J. Hydraul. Eng. 131, 542–553 (2005)ArticleGoogle Scholar
Zhong, Z.; Ruan, T.; Hu, Y.; Liu, J.; Liu, B.; Xu, W.: Experimental and numerical assessment of hydraulic characteristic of a new semi-frustum weir in the pool-weir fishway. Ecol. Eng. 170, 106362 (2021). https://doi.org/10.1016/j.ecoleng.2021.106362ArticleGoogle Scholar
Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994(116), 405–413 (1994)ArticleGoogle Scholar
Guo, S.; Chen, S.; Huang, X.; Zhang, Y.; Jin, S.: CFD and experimental investigations of drag force on spherical leak detector in pipe flows at high Reynolds number. Comput. Model. Eng. Sci. 101(1), 59–80 (2014)Google Scholar
Ahmadi, M.; Kuriqi, A.; Nezhad, H.M.; Ghaderi, A.; Mohammadi, M.: Innovative configuration of vertical slot fishway to enhance fish swimming conditions. J. Hydrodyn. 34, 917–933 (2022). https://doi.org/10.1007/s42241-022-0071-yArticleGoogle Scholar
Ahmadi, M.; Ghaderi, A.; MohammadNezhad, H.; Kuriqi, A.; Di Francesco, S.J.W.: Numerical investigation of hydraulics in a vertical slot fishway with upgraded configurations. Water 13, 2711 (2021)ArticleGoogle Scholar
Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME (2008). https://doi.org/10.1115/1.2960953ArticleGoogle Scholar
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)ArticleGoogle Scholar
Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T.: Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8, e65089 (2013). https://doi.org/10.1371/journal.pone.0065089ArticleGoogle Scholar
A series of numerical simulation were conducted to study the local scour around umbrella suction anchor foundation (USAF) under random waves. In this study, the validation was carried out firstly to verify the accuracy of the present model. Furthermore, the scour evolution and scour mechanism were analyzed respectively. In addition, two revised models were proposed to predict the equilibrium scour depth Seq around USAF. At last, a parametric study was carried out to study the effects of the Froude number Fr and Euler number Eu for the Seq. The results indicate that the present numerical model is accurate and reasonable for depicting the scour morphology under random waves. The revised Raaijmakers’s model shows good agreement with the simulating results of the present study when KCs,p < 8. The predicting results of the revised stochastic model are the most favorable for n = 10 when KCrms,a < 4. The higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.
The rapid expansion of cities tends to cause social and economic problems, such as environmental pollution and traffic jam. As a kind of clean energy, offshore wind power has developed rapidly in recent years. The foundation of offshore wind turbine (OWT) supports the upper tower, and suffers the cyclic loading induced by waves, tides and winds, which exerts a vital influence on the OWT system. The types of OWT foundation include the fixed and floating foundation, and the fixed foundation was used usually for nearshore wind turbine. After the construction of fixed foundation, the hydrodynamic field changes in the vicinity of the foundation, leading to the horseshoe vortex formation and streamline compression at the upside and sides of foundation respectively [1,2,3,4]. As a result, the neighboring soil would be carried away by the shear stress induced by vortex, and the scour hole would emerge in the vicinity of foundation. The scour holes increase the cantilever length, and weaken the lateral bearing capacity of foundation [5,6,7,8,9]. Moreover, the natural frequency of OWT system increases with the increase of cantilever length, causing the resonance occurs when the system natural frequency equals the wave or wind frequency [10,11,12]. Given that, an innovative foundation called umbrella suction anchor foundation (USAF) has been designed for nearshore wind power. The previous studies indicated the USAF was characterized by the favorable lateral bearing capacity with the low cost [6,13,14]. The close-up of USAF is shown in Figure 1, and it includes six parts: 1-interal buckets, 2-external skirt, 3-anchor ring, 4-anchor branch, 5-supporting rod, 6-telescopic hook. The detailed description and application method of USAF can be found in reference [13].
Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Numerical and experimental investigations of scour around OWT foundation under steady currents and waves have been extensively studied by many researchers [1,2,15,16,17,18,19,20,21,22,23,24]. The seabed scour can be classified as two types according to Shields parameter θ, i.e., clear bed scour (θ < θcr) or live bed scour (θ > θcr). Due to the set of foundation, the adverse hydraulic pressure gradient exists at upstream foundation edges, resulting in the streamline separation between boundary layer flow and seabed. The separating boundary layer ascended at upstream anchor edges and developed into the horseshoe vortex. Then, the horseshoe vortex moved downstream gradually along the periphery of the anchor, and the vortex shed off continually at the lee-side of the anchor, i.e., wake vortex. The core of wake vortex is a negative pressure center, liking a vacuum cleaner. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortexes. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow when the turbulence energy could not support the survival of wake vortex. According to Tavouktsoglou et al. [25], the scale of pile wall boundary layer is proportional to 1/ln(Rd) (Rd is pile Reynolds), which means the turbulence intensity induced by the flow-structure interaction would decrease with Rd increases, but the effects of Rd can be neglected only if the flow around the foundation is fully turbulent [26]. According to previous studies [1,15,27,28,29,30,31,32], the scour development around pile foundation under waves was significantly influenced by Shields parameter θ and KC number simultaneously (calculated by Equation (1)). Sand ripples widely existed around pile under waves in the case of live bed scour, and the scour morphology is related with θ and KC. Compared with θ, KC has a greater influence on the scour morphology [21,27,28]. The influence mechanism of KC on the scour around the pile is reflected in two aspects: the horseshoe vortex at upstream and wake vortex shedding at downstream.
KC=UwmTD��=�wm��(1)
where, Uwm is the maximum velocity of the undisturbed wave-induced oscillatory flow at the sea bottom above the wave boundary layer, T is wave period, and D is pile diameter.
There are two prerequisites to satisfy the formation of horseshoe vortex at upstream pile edges: (1) the incoming flow boundary layer with sufficient thickness and (2) the magnitude of upstream adverse pressure gradient making the boundary layer separating [1,15,16,18,20]. The smaller KC results the lower adverse pressure gradient, and the boundary layer cannot separate, herein, there is almost no horseshoe vortex emerging at upside of pile. Sumer et al. [1,15] carried out several sets of wave flume experiments under regular and irregular waves respectively, and the experiment results show that there is no horseshoe vortex when KC is less than 6. While the scale and lifespan of horseshoe vortex increase evidently with the increase of KC when KC is larger than 6. Moreover, the wake vortex contributes to the scour at lee-side of pile. Similar with the case of horseshoe vortex, there is no wake vortex when KC is less than 6. The wake vortex is mainly responsible for scour around pile when KC is greater than 6 and less than O(100), while horseshoe vortex controls scour nearly when KC is greater than O(100).
Sumer et al. [1] found that the equilibrium scour depth was nil around pile when KC was less than 6 under regular waves for live bed scour, while the equilibrium scour depth increased with the increase of KC. Based on that, Sumer proposed an equilibrium scour depth predicting equation (Equation (2)). Carreiras et al. [33] revised Sumer’s equation with m = 0.06 for nonlinear waves. Different with the findings of Sumer et al. [1] and Carreiras et al. [33], Corvaro et al. [21] found the scour still occurred for KC ≈ 4, and proposed the revised equilibrium scour depth predicting equation (Equation (3)) for KC > 4.
Rudolph and Bos [2] conducted a series of wave flume experiments to investigate the scour depth around monopile under waves only, waves and currents combined respectively, indicting KC was one of key parameters in influencing equilibrium scour depth, and proposed the equilibrium scour depth predicting equation (Equation (4)) for low KC (1 < KC < 10). Through analyzing the extensive data from published literatures, Raaijmakers and Rudolph [34] developed the equilibrium scour depth predicting equation (Equation (5)) for low KC, which was suitable for waves only, waves and currents combined. Khalfin [35] carried out several sets of wave flume experiments to study scour development around monopile, and proposed the equilibrium scour depth predicting equation (Equation (6)) for low KC (0.1 < KC < 3.5). Different with above equations, the Khalfin’s equation considers the Shields parameter θ and KC number simultaneously in predicting equilibrium scour depth. The flow reversal occurred under through in one wave period, so sand particles would be carried away from lee-side of pile to upside, resulting in sand particles backfilled into the upstream scour hole [20,29]. Considering the backfilling effects, Zanke et al. [36] proposed the equilibrium scour depth predicting equation (Equation (7)) around pile by theoretical analysis, and the equation is suitable for the whole range of KC number under regular waves and currents combined.
where, γ is safety factor, depending on design process, typically γ = 1.5, Kwave is correction factor considering wave action, Khw is correction factor considering water depth.
where, n is the 1/n’th highest wave for random waves
For predicting equilibrium scour depth under irregular waves, i.e., random waves, Sumer and Fredsøe [16] found it’s suitable to take Equation (2) to predict equilibrium scour depth around pile under random waves with the root-mean-square (RMS) value of near-bed orbital velocity amplitude Um and peak wave period TP to calculate KC. Khalfin [35] recommended the RMS wave height Hrms and peak wave period TP were used to calculate KC for Equation (6). References [37,38,39,40] developed a series of stochastic theoretical models to predict equilibrium scour depth around pile under random waves, nonlinear random waves plus currents respectively. The stochastic approach thought the 1/n’th highest wave were responsible for scour in vicinity of pile under random waves, and the KC was calculated in Equation (8) with Um and mean zero-crossing wave period Tz. The results calculated by Equation (8) agree well with experimental values of Sumer and Fredsøe [16] if the 1/10′th highest wave was used. To author’s knowledge, the stochastic approach proposed by Myrhaug and Rue [37] is the only theoretical model to predict equilibrium scour depth around pile under random waves for the whole range of KC number in published documents. Other methods of predicting scour depth under random waves are mainly originated from the equation for regular waves-only, waves and currents combined, which are limited to the large KC number, such as KC > 6 for Equation (2) and KC > 4 for Equation (3) respectively. However, situations with relatively low KC number (KC < 4) often occur in reality, for example, monopile or suction anchor for OWT foundations in ocean environment. Moreover, local scour around OWT foundations under random waves has not yet been investigated fully. Therefore, further study are still needed in the aspect of scour around OWT foundations with low KC number under random waves. Given that, this study presents the scour sediment model around umbrella suction anchor foundation (USAF) under random waves. In this study, a comparison of equilibrium scour depth around USAF between this present numerical models and the previous theoretical models and experimental results was presented firstly. Then, this study gave a comprehensive analysis for the scour mechanisms around USAF. After that, two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] respectively to predict the equilibrium scour depth. Finally, a parametric study was conducted to study the effects of the Froude number (Fr) and Euler number (Eu) to equilibrium scour depth respectively.
2. Numerical Method
2.1. Governing Equations of Flow
The following equations adopted in present model are already available in Flow 3D software. The authors used these theoretical equations to simulate scour in random waves without modification. The incompressible viscous fluid motion satisfies the Reynolds-averaged Navier-Stokes (RANS) equation, so the present numerical model solves RANS equations:
where, VF is the volume fraction; u, v, and w are the velocity components in x, y, z direction respectively with Cartesian coordinates; Ai is the area fraction; ρf is the fluid density, fi is the viscous fluid acceleration, Gi is the fluid body acceleration (i = x, y, z).
2.2. Turbulent Model
The turbulence closure is available by the turbulent model, such as one-equation, the one-equation k-ε model, the standard k-ε model, RNG k-ε turbulent model and large eddy simulation (LES) model. The LES model requires very fine mesh grid, so the computational time is large, which hinders the LES model application in engineering. The RNG k-ε model can reduce computational time greatly with high accuracy in the near-wall region. Furthermore, the RNG k-ε model computes the maximum turbulent mixing length dynamically in simulating sediment scour model. Therefore, the RNG k-ε model was adopted to study the scour around anchor under random waves [41,42].
where, kT is specific kinetic energy involved with turbulent velocity, GT is the turbulent energy generated by buoyancy; εT is the turbulent energy dissipating rate, PT is the turbulent energy, Diffε and DiffkT are diffusion terms associated with VF, Ai; CDIS1, CDIS2 and CDIS3 are dimensionless parameters, and CDIS1, CDIS3 have default values of 1.42, 0.2 respectively. CDIS2 can be obtained from PT and kT.
2.3. Sediment Scour Model
The sand particles may suffer four processes under waves, i.e., entrainment, bed load transport, suspended load transport, and deposition, so the sediment scour model should depict the above processes efficiently. In present numerical simulation, the sediment scour model includes the following aspects:
2.3.1. Entrainment and Deposition
The combination of entrainment and deposition determines the net scour rate of seabed in present sediment scour model. The entrainment lift velocity of sand particles was calculated as [43]:
where, αi is the entrainment parameter, ns is the outward point perpendicular to the seabed, d* is the dimensionless diameter of sand particles, which was calculated by Equation (15), θcr is the critical Shields parameter, g is the gravity acceleration, di is the diameter of sand particles, ρi is the density of seabed species.
In Equation (14), the entrainment parameter αi confirms the rate at which sediment erodes when the given shear stress is larger than the critical shear stress, and the recommended value 0.018 was adopted according to the experimental data of Mastbergen and Von den Berg [43]. ns is the outward pointing normal to the seabed interface, and ns = (0,0,1) according to the Cartesian coordinates used in present numerical model.
The shields parameter was obtained from the following equation:
θ=U2f,m(ρi/ρf−1)gd50�=�f,m2(��/�f−1)��50(16)
where, Uf,m is the maximum value of the near-bed friction velocity; d50 is the median diameter of sand particles. The detailed calculation procedure of θ was available in Soulsby [44].
The critical shields parameter θcr was obtained from the Equation (17) [44]
The sand particles begin to deposit on seabed when the turbulence energy weaken and cann’t support the particles suspending. The setting velocity of the particles was calculated from the following equation [44]:
This is called bed load transport when the sand particles roll or bounce over the seabed and always have contact with seabed. The bed load transport velocity was computed by [45]:
where, qb,i is the bed load transport rate, which was obtained from Equation (20), δi is the bed load thickness, which was calculated by Equation (21), cb,i is the volume fraction of sand i in the multiple species, fb is the critical packing fraction of the seabed.
where, Cs,i is the suspended sand particles mass concentration of sand i in the multiple species, us,i is the sand particles velocity of sand i, Df is the diffusivity.
The velocity of sand i in the multiple species could be obtained from the following equation:
where, u¯�¯ is the velocity of mixed fluid-particles, which can be calculated by the RANS equation with turbulence model, cs,i is the suspended sand particles volume concentration, which was computed from Equation (24).
cs,i=Cs,iρi�s,�=�s,���(24)
3. Model Setup
The seabed-USAF-wave three-dimensional scour numerical model was built using Flow-3D software. As shown in Figure 2, the model includes sandy seabed, USAF model, sea water, two baffles and porous media. The dimensions of USAF are shown in Table 1. The sandy bed (210 m in length, 30 m in width and 11 m in height) is made up of uniform fine sand with median diameter d50 = 0.041 cm. The USAF model includes upper steel tube with the length of 20 m, which was installed in the middle of seabed. The location of USAF is positioned at 140 m from the upstream inflow boundary and 70 m from the downstream outflow boundary. Two baffles were installed at two ends of seabed. In order to eliminate the wave reflection basically, the porous media was set at the outflow side on the seabed.
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wv-wave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.
Table 1. Numerical simulating cases.
3.1. Mesh Geometric Dimensions
In the simulation of the scour under the random waves, the model includes the umbrella suction anchor foundation, seabed and fluid. As shown in Figure 3, the model mesh includes global mesh grid and nested mesh grid, and the total number of grids is 1,812,000. The basic procedure for building mesh grid consists of two steps. Step 1: Divide the global mesh using regular hexahedron with size of 0.6 × 0.6. The global mesh area is cubic box, embracing the seabed and whole fluid volume, and the dimensions are 210 m in length, 30 m in width and 32 m in height. The details of determining the grid size can see the following mesh sensitivity section. Step 2: Set nested fine mesh grid in vicinity of the USAF with size of 0.3 × 0.3 so as to shorten the computation cost and improve the calculation accuracy. The encryption range is −15 m to 15 m in x direction, −15 m to 15 m in y direction and 0 m to 32 m in z direction, respectively. In order to accurately capture the free-surface dynamics, such as the fluid-air interface, the volume of fluid (VOF) method was adopted for tracking the free water surface. One specific algorithm called FAVORTM (Fractional Area/Volume Obstacle Representation) was used to define the fractional face areas and fractional volumes of the cells which are open to fluid flow.
Figure 3. The sketch of mesh grid.
3.2. Boundary Conditions
As shown in Figure 2, the initial fluid length is 210 m as long as seabed. A wave boundary was specified at the upstream offshore end. The details of determining the random wave spectrum can see the following wave parameters section. The outflow boundary was set at the downstream onshore end. The symmetry boundary was used at the top and two sides of the model. The symmetric boundaries were the better strategy to improve the computation efficiency and save the calculation cost [46]. At the seabed bottom, the wall boundary was adopted, which means the u = v = w= 0. Besides, the upper steel tube of USAF was set as no-slip condition.
3.3. Wave Parameters
The random waves with JONSWAP wave spectrum were used for all simulations as realistic representation of offshore conditions. The unidirectional JONSWAP frequency spectrum was described as [47]:
where, α is wave energy scale parameter, which is calculated by Equation (26), ω is frequency, ωp is wave spectrum peak frequency, which can be obtained from Equation (27). γ is wave spectrum peak enhancement factor, in this study γ = 3.3. σ is spectral width factor, σ equals 0.07 for ω ≤ ωp and 0.09 for ω > ωp respectively.
α=0.0076(gXU2)−0.22�=0.0076(���2)−0.22(26)
ωp=22(gU)(gXU2)−0.33�p=22(��)(���2)−0.33(27)
where, X is fetch length, U is average wind velocity at 10 m height from mean sea level.
In present numerical model, the input key parameters include X and U for wave boundary with JONSWAP wave spectrum. The objective wave height and period are available by different combinations of X and U. In this study, we designed 9 cases with different wave heights, periods and water depths for simulating scour around USAF under random waves (see Table 2). For random waves, the wave steepness ε and Ursell number Ur were acquired form Equations (28) and (29) respectively
ε=2πgHsT2a�=2���s�a2(28)
Ur=Hsk2h3w�r=�s�2ℎw3(29)
where, Hs is significant wave height, Ta is average wave period, k is wave number, hw is water depth. The Shield parameter θ satisfies θ>θcr for all simulations in current study, indicating the live bed scour prevails.
Table 2. Numerical simulating cases.
3.4. Mesh Sensitivity
In this section, a mesh sensitivity analysis was conducted to investigate the influence of mesh grid size to results and make sure the calculation is mesh size independent and converged. Three mesh grid size were chosen: Mesh 1—global mesh grid size of 0.75 × 0.75, nested fine mesh grid size of 0.4 × 0.4, and total number of grids 1,724,000, Mesh 2—global mesh grid size of 0.6 × 0.6, nested fine mesh grid size of 0.3 × 0.3, and total number of grids 1,812,000, Mesh 3—global mesh grid size of 0.4 × 0.4, nested fine mesh grid size of 0.2 × 0.2, and total number of grids 1,932,000. The near-bed shear velocity U* is an important factor for influencing scour process [1,15], so U* at the position of (4,0,11.12) was evaluated under three mesh sizes. As the Figure 4 shown, the maximum error of shear velocity ∆U*1,2 is about 39.8% between the mesh 1 and mesh 2, and 4.8% between the mesh 2 and mesh 3. According to the mesh sensitivity criterion adopted by Pang et al. [48], it’s reasonable to think the results are mesh size independent and converged with mesh 2. Additionally, the present model was built according to prototype size, and the mesh size used in present model is larger than the mesh size adopted by Higueira et al. [49] and Corvaro et al. [50]. If we choose the smallest cell size, it will take too much time. For example, the simulation with Mesh3 required about 260 h by using a computer with Intel Xeon Scalable Gold 4214 CPU @24 Cores, 2.2 GHz and 64.00 GB RAM. Therefore, in this case, considering calculation accuracy and computation efficiency, the mesh 2 was chosen for all the simulation in this study.
Figure 4. Comparison of near-bed shear velocity U* with different mesh grid size.
The nested mesh block was adopted for seabed in vicinity of the USAF, which was overlapped with the global mesh block. When two mesh blocks overlap each other, the governing equations are by default solved on the mesh block with smaller average cell size (i.e., higher grid resolution). It is should be noted that the Flow 3D software used the moving mesh captures the scour evolution and automatically adjusts the time step size to be as large as possible without exceeding any of the stability limits, affecting accuracy, or unduly increasing the effort required to enforce the continuity condition [51].
3.5. Model Validation
In order to verify the reliability of the present model, the results of present study were compared with the experimental data of Khosronejad et al. [52]. The experiment was conducted in an open channel with a slender vertical pile under unidirectional currents. The comparison of scour development between the present results and the experimental results is shown in Figure 5. The Figure 5 reveals that the present results agree well with the experimental data of Khosronejad et al. [52]. In the first stage, the scour depth increases rapidly. After that, the scour depth achieves a maximum value gradually. The equilibrium scour depth calculated by the present model is basically corresponding with the experimental results of Khosronejad et al. [52], although scour depth in the present model is slightly larger than the experimental results at initial stage.
Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].
Secondly, another comparison was further conducted between the results of present study and the experimental data of Petersen et al. [17]. The experiment was carried out in a flume with a circular vertical pile in combined waves and current. Figure 4 shows a comparison of time evolution of scour depth between the simulating and the experimental results. As Figure 5 indicates, the scour depth in this study has good overall agreement with the experimental results proposed in Petersen et al. [17]. The equilibrium scour depth calculated by the present model is 0.399 m, which equals to the experimental value basically. Overall, the above verifications prove the present model is accurate and capable in dealing with sediment scour under waves.
In addition, in order to calibrate and validate the present model for hydrodynamic parameters, the comparison of water surface elevation was carried out with laboratory experiments conducted by Stahlmann [53] for wave gauge No. 3. The Figure 6 depicts the surface wave profiles between experiments and numerical model results. The comparison indicates that there is a good agreement between the model results and experimental values, especially the locations of wave crest and trough. Comparison of the surface elevation instructs the present model has an acceptable relative error, and the model is a calibrated in terms of the hydrodynamic parameters.
Figure 6. Comparison of surface elevation between the present study and Stahlmann [53].
Finally, another comparison was conducted for equilibrium scour depth or maximum scour depth under random waves with the experimental data of Sumer and Fredsøe [16] and Schendel et al. [22]. The Figure 7 shows the comparison between the numerical results and experimental data of Run01, Run05, Run21 and Run22 in Sumer and Fredsøe [16] and test A05 and A09 in Schendel et al. [22]. As shown in Figure 7, the equilibrium scour depth or maximum scour depth distributed within the ±30 error lines basically, meaning the reliability and accuracy of present model for predicting equilibrium scour depth around foundation in random waves. However, compared with the experimental values, the present model overestimated the equilibrium scour depth generally. Given that, a calibration for scour depth was carried out by multiplying the mean reduced coefficient 0.85 in following section.
Figure 7. Comparison of equilibrium (or maximum) scour depth between the present study and Sumer and Fredsøe [16], Schendel et al. [22].
Through the various examination for hydrodynamic and morphology parameters, it can be concluded that the present model is a validated and calibrated model for scour under random waves. Thus, the present numerical model would be utilized for scour simulation around foundation under random waves.
4. Numerical Results and Discussions
4.1. Scour Evolution
Figure 8 displays the scour evolution for case 1–9. As shown in Figure 8a, the scour depth increased rapidly at the initial stage, and then slowed down at the transition stage, which attributes to the backfilling occurred in scour holes under live bed scour condition, resulting in the net scour decreasing. Finally, the scour reached the equilibrium state when the amount of sediment backfilling equaled to that of scouring in the scour holes, i.e., the net scour transport rate was nil. Sumer and Fredsøe [16] proposed the following formula for the scour development under waves
St=Seq(1−exp(−t/Tc))�t=�eq(1−exp(−�/�c))(30)
where Tc is time scale of scour process.
Figure 8. Time evolution of scour for case 1–9: (a) Case 1–5; (b) Case 6–9.
The computing time is 3600 s and the scour development curves in Figure 8 kept fluctuating, meaning it’s still not in equilibrium scour stage in these cases. According to Sumer and Fredsøe [16], the equilibrium scour depth can be acquired by fitting the data with Equation (30). From Figure 8, it can be seen that the scour evolution obtained from Equation (30) is consistent with the present study basically at initial stage, but the scour depth predicted by Equation (30) developed slightly faster than the simulating results and the Equation (30) overestimated the scour depth to some extent. Overall, the whole tendency of the results calculated by Equation (30) agrees well with the simulating results of the present study, which means the Equation (30) is applicable to depict the scour evolution around USAF under random waves.
4.2. Scour Mechanism under Random Waves
The scour morphology and scour evolution around USAF are similar under random waves in case 1~9. Taking case 7 as an example, the scour morphology is shown in Figure 9.
Figure 9. Scour morphology under different times for case 7.
From Figure 9, at the initial stage (t < 1200 s), the scour occurred at upstream foundation edges between neighboring anchor branches. The maximum scour depth appeared at the lee-side of the USAF. Correspondingly, the sediments deposited at the periphery of the USAF, and the location of the maximum accretion depth was positioned at an angle of about 45° symmetrically with respect to the wave propagating direction in the lee-side of the USAF. After that, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.
According to previous studies [1,15,16,19,30,31], the horseshoe vortex, streamline compression and wake vortex shedding were responsible for scour around foundation. The Figure 10 displays the distribution of flow velocity in vicinity of foundation, which reflects the evolving processes of horseshoe vertex.
Figure 10. Velocity profile around USAF: (a) Flow runup and down stream at upstream anchor edges; (b) Horseshoe vortex at upstream anchor edges; (c) Flow reversal during wave through stage at lee side.
As shown in Figure 10, the inflow tripped to the upstream edges of the USAF and it was blocked by the upper tube of USAF. Then, the downflow formed the horizontal axis clockwise vortex and rolled on the seabed bypassing the tube, that is, the horseshoe vortex (Figure 11). The Figure 12 displays the turbulence intensity around the tube on the seabed. From Figure 12, it can be seen that the turbulence intensity was high-intensity with respect to the region of horseshoe vortex. This phenomenon occurred because of drastic water flow momentum exchanging in the horseshoe vortex. As a result, it created the prominent shear stress on the seabed, causing the local scour at the upstream edges of USAF. Besides, the horseshoe vortex moved downstream gradually along the periphery of the tube and the wake vortex shed off continually at the lee-side of the USAF, i.e., wake vortex.
Figure 11. Sketch of scour mechanism around USAF under random waves.
Figure 12. Turbulence intensity: (a) Turbulence intensity of horseshoe vortex; (b) Turbulence intensity of wake vortex; (c) Turbulence intensity of accretion area.
The core of wake vortex is a negative pressure center, liking a vacuum cleaner [11,42]. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortex. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow at the downside of USAF. As is shown in Figure 12, the turbulence intensity was low where the downflow occurred at lee-side, which means the turbulence energy may not be able to support the survival of wake vortex, leading to accretion happening. As mentioned in previous section, the formation of horseshoe vortex was dependent with adverse pressure gradient at upside of foundation. As shown in Figure 13, the evaluated range of pressure distribution is −15 m to 15 m in x direction. The t = 450 s and t = 1800 s indicate that the wave crest and trough arrived at the upside and lee-side of the foundation respectively, and the t = 350 s was neither the wave crest nor trough. The adverse gradient pressure reached the maximum value at t = 450 s corresponding to the wave crest phase. In this case, it’s helpful for the wave boundary separating fully from seabed, which leads to the formation of horseshoe vortex with high turbulence intensity. Therefore, the horseshoe vortex is responsible for the local scour between neighboring anchor branches at upside of USAF. What’s more, due to the combination of the horseshoe vortex and streamline compression, the maximum scour depth occurred at the upside of the USAF with an angle of about 45° corresponding to the wave propagating direction. This is consistent with the findings of Pang et al. [48] and Sumer et al. [1,15] in case of regular waves. At the wave trough phase (t = 1800 s), the pressure gradient became positive at upstream USAF edges, which hindered the separating of wave boundary from seabed. In the meantime, the flow reversal occurred (Figure 10) and the adverse gradient pressure appeared at downstream USAF edges, but the magnitude of adverse gradient pressure at lee-side was lower than the upstream gradient pressure under wave crest. In this way, the intensity of horseshoe vortex behind the USAF under wave trough was low, which explains the difference of scour depth at upstream and downstream, i.e., the scour asymmetry. In other words, the scour asymmetry at upside and downside of USAF was attributed to wave asymmetry for random waves, and the phenomenon became more evident for nonlinear waves [21]. Briefly speaking, the vortex system at wave crest phase was mainly related to the scour process around USAF under random waves.
Figure 13. Pressure distribution around USAF.
4.3. Equilibrium Scour Depth
The KC number is a key parameter for horseshoe vortex emerging and evolving under waves. According to Equation (1), when pile diameter D is fixed, the KC depends on the maximum near-bed velocity Uwm and wave period T. For random waves, the Uwm can be denoted by the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms or the significant value of near-bed velocity amplitude Uwm,s. The Uwm,rms and Uwm,s for all simulating cases of the present study are listed in Table 3 and Table 4. The T can be denoted by the mean up zero-crossing wave period Ta, peak wave period Tp, significant wave period Ts, the maximum wave period Tm, 1/10′th highest wave period Tn = 1/10 and 1/5′th highest wave period Tn = 1/5 for random waves, so the different combinations of Uwm and T will acquire different KC. The Table 3 and Table 4 list 12 types of KC, for example, the KCrms,s was calculated by Uwm,rms and Ts. Sumer and Fredsøe [16] conducted a series of wave flume experiments to investigate the scour depth around monopile under random waves, and found the equilibrium scour depth predicting equation (Equation (2)) for regular waves was applicable for random waves with KCrms,p. It should be noted that the Equation (2) is only suitable for KC > 6 under regular waves or KCrms,p > 6 under random waves.
Table 3.Uwm,rms and KC for case 1~9.
Table 4.Uwm,s and KC for case 1~9.
Raaijmakers and Rudolph [34] proposed the equilibrium scour depth predicting model (Equation (5)) around pile under waves, which is suitable for low KC. The format of Equation (5) is similar with the formula proposed by Breusers [54], which can predict the equilibrium scour depth around pile at different scour stages. In order to verify the applicability of Raaijmakers’s model for predicting the equilibrium scour depth around USAF under random waves, a validation of the equilibrium scour depth Seq between the present study and Raaijmakers’s equation was conducted. The position where the scour depth Seq was evaluated is the location of the maximum scour depth, and it was depicted in Figure 14. The Figure 15 displays the comparison of Seq with different KC between the present study and Raaijmakers’s model.
Figure 14. Sketch of the position where the Seq was evaluated.
Figure 15. Comparison of the equilibrium scour depth between the present model and the model of Raaijmakers and Rudolph [34]: (a) KCrms,s, KCrms,a; (b) KCrms,p, KCrms,m; (c) KCrms,n = 1/10, KCrms,n = 1/5; (d) KCs,s, KCs,a; (e) KCs,p, KCs,m; (f) KCs,n = 1/10, KCs,n = 1/5.
As shown in Figure 15, there is an error in predicting Seq between the present study and Raaijmakers’s model, and Raaijmakers’s model underestimates the results generally. Although the error exists, the varying trend of Seq with KC obtained from Raaijmakers’s model is consistent with the present study basically. What’s more, the error is minimum and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves by using KCs,p. Based on this, a further revision was made to eliminate the error as much as possible, i.e., add the deviation value ∆S/D in the Raaijmakers’s model. The revised equilibrium scour depth predicting equation based on Raaijmakers’s model can be written as
As the Figure 16 shown, through trial-calculation, when ∆S/D = 0.05, the results calculated by Equation (31) show good agreement with the simulating results of the present study. The maximum error is about 18.2% and the engineering requirements have been met basically. In order to further verify the accuracy of the revised model for large KC (KCs,p > 4) under random waves, a validation between the revised model and the previous experimental results [21]. The experiment was conducted in a flume (50 m in length, 1.0 m in width and 1.3 m in height) with a slender vertical pile (D = 0.1 m) under random waves. The seabed is composed of 0.13 m deep layer of sand with d50 = 0.6 mm and the water depth is 0.5 m for all tests. The significant wave height is 0.12~0.21 m and the KCs,p is 5.52~11.38. The comparison between the predicting results by Equation (31) and the experimental results of Corvaro et al. [21] is shown in Figure 17. From Figure 17, the experimental data evenly distributes around the predicted results and the prediction accuracy is favorable when KCs,p < 8. However, the gap between the predicting results and experimental data becomes large and the Equation (31) overestimates the equilibrium scour depth to some extent when KCs,p > 8.
Figure 16. Comparison of Seq between the simulating results and the predicting values by Equation (31).
Figure 17. Comparison of Seq/D between the Experimental results of Corvaro et al. [21] and the predicting values by Equation (31).
In ocean environment, the waves are composed of a train of sinusoidal waves with different frequencies and amplitudes. The energy of constituent waves with very large and very small frequencies is relatively low, and the energy of waves is mainly concentrated in a certain range of moderate frequencies. Myrhaug and Rue [37] thought the 1/n’th highest wave was responsible for scour and proposed the stochastic model to predict the equilibrium scour depth around pile under random waves for full range of KC. Noteworthy is that the KC was denoted by KCrms,a in the stochastic model. To verify the application of the stochastic model for predicting scour depth around USAF, a validation between the simulating results of present study and predicting results by the stochastic model with n = 2,3,5,10,20,500 was carried out respectively.
As shown in Figure 18, compared with the simulating results, the stochastic model underestimates the equilibrium scour depth around USAF generally. Although the error exists, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. What’s more, the gap between the predicting values by stochastic model and the simulating results decreases with the increase of n, but for large n, for example n = 500, the varying trend diverges between the predicting values and simulating results, meaning it’s not feasible only by increasing n in stochastic model to predict the equilibrium scour depth around USAF.
Figure 18. Comparison of Seq between the simulating results and the predicting values by Equation (8).
The Figure 19 lists the deviation value ∆Seq/D′ between the predicting values and simulating results with different KCrms,a and n. Then, fitted the relationship between the ∆S′and n under different KCrms,a, and the fitting curve can be written by Equation (32). The revised stochastic model (Equation (33)) can be acquired by adding ∆Seq/D′ to Equation (8).
The comparison between the predicting results by Equation (33) and the simulating results of present study is shown in Figure 20. According to the Figure 20, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. Compared with predicting results by the stochastic model, the results calculated by Equation (33) is favorable. Moreover, comparison with simulating results indicates that the predicting results are the most favorable for n = 10, which is consistent with the findings of Myrhaug and Rue [37] for equilibrium scour depth predicting around slender pile in case of random waves.
Figure 20. Comparison of Seq between the simulating results and the predicting values by Equation (33).
In order to further verify the accuracy of the Equation (33) for large KC (KCrms,a > 4) under random waves, a validation was conducted between the Equation (33) and the previous experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. The details of experiments conducted by Corvaro et al. [21] were described in above section. Sumer and Fredsøe [16] investigated the local scour around pile under random waves. The experiments were conducted in a wave basin with a slender vertical pile (D = 0.032, 0.055 m). The seabed is composed of 0.14 m deep layer of sand with d50 = 0.2 mm and the water depth was maintained at 0.5 m. The JONSWAP wave spectrum was used and the KCrms,a was 5.29~16.95. The comparison between the predicting results by Equation (33) and the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] are shown in Figure 21. From Figure 21, contrary to the case of low KCrms,a (KCrms,a < 4), the error between the predicting values and experimental results increases with decreasing of n for KCrms,a > 4. Therefore, the predicting results are the most favorable for n = 2 when KCrms,a > 4.
Figure 21. Comparison of Seq between the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] and the predicting values by Equation (33).
Noteworthy is that the present model was built according to prototype size, so the errors between the numerical results and experimental data of References [16,21] may be attribute to the scale effects. In laboratory experiments on scouring process, it is typically impossible to ensure a rigorous similarity of all physical parameters between the model and prototype structure, leading to the scale effects in the laboratory experiments. To avoid a cohesive behaviour, the bed material was not scaled geometrically according to model scale. As a consequence, the relatively large-scaled sediments sizes may result in the overestimation of bed load transport and underestimation of suspended load transport compared with field conditions. What’s more, the disproportional scaled sediment presumably lead to the difference of bed roughness between the model and prototype, and thus large influences for wave boundary layer on the seabed and scour process. Besides, according to Corvaro et al. [21] and Schendel et al. [55], the pile Reynolds numbers and Froude numbers both affect the scour depth for the condition of non fully developed turbulent flow in laboratory experiments.
4.4. Parametric Study
4.4.1. Influence of Froude Number
As described above, the set of foundation leads to the adverse pressure gradient appearing at upstream, leading to the wave boundary layer separating from seabed, then horseshoe vortex formatting and the horseshoe vortex are mainly responsible for scour around foundation (see Figure 22). The Froude number Fr is the key parameter to influence the scale and intensity of horseshoe vortex. The Fr under waves can be calculated by the following formula [42]
Fr=UwgD−−−√�r=�w��(34)
where Uw is the mean water particle velocity during 1/4 cycle of wave oscillation, obtained from the following formula. Noteworthy is that the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms is used for calculating Uwm.
Figure 22. Sketch of flow field at upstream USAF edges.
Tavouktsoglou et al. [25] proposed the following formula between Fr and the vertical location of the stagnation y
yh∝Fer�ℎ∝�r�(36)
where e is constant.
The Figure 23 displays the relationship between Seq/D and Fr of the present study. In order to compare with the simulating results, the experimental data of Corvaro et al. [21] was also depicted in Figure 23. As shown in Figure 23, the equilibrium scour depth appears a logarithmic increase as Fr increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increase of Fr, which is benefit for the wave boundary layer separating from seabed, resulting in the high-intensity horseshoe vortex, hence, causing intensive scour around USAF. Based on the previous study of Tavouktsoglou et al. [25] for scour around pile under currents, the high Fr leads to the stagnation point is closer to the mean sea level for shallow water, causing the stronger downflow kinetic energy. As mentioned in previous section, the energy of downflow at upstream makes up the energy of the subsequent horseshoe vortex, so the stronger downflow kinetic energy results in the more intensive horseshoe vortex. Therefore, the higher Fr leads to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably. Qi and Gao [19] carried out a series of flume tests to investigate the scour around pile under regular waves, and proposed the fitting formula between Seq/D and Fr as following
lg(Seq/D)=Aexp(B/Fr)+Clg(�eq/�)=�exp(�/�r)+�(37)
where A, B and C are constant.
Figure 23. The fitting curve between Seq/D and Fr.
Figure 24. Sketch of adverse pressure gradient at upstream USAF edges.
Took the Equation (37) to fit the simulating results with A = −0.002, B = 0.686 and C = −0.808, and the results are shown in Figure 23. From Figure 23, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Fr in present study is consistent with Equation (37) basically, meaning the Equation (37) is applicable to express the relationship of Seq/D with Fr around USAF under random waves.
4.4.2. Influence of Euler Number
The Euler number Eu is the influencing factor for the hydrodynamic field around foundation. The Eu under waves can be calculated by the following formula. The Eu can be represented by the Equation (38) for uniform cylinders [25]. The root-mean-square (RMS) value of near-bed velocity amplitude Um,rms is used for calculating Um.
Eu=U2mgD�u=�m2��(38)
where Um is depth-averaged flow velocity.
The Figure 25 displays the relationship between Seq/D and Eu of the present study. In order to compare with the simulating results, the experimental data of Sumer and Fredsøe [16] and Corvaro et al. [21] were also plotted in Figure 25. As shown in Figure 25, similar with the varying trend of Seq/D and Fr, the equilibrium scour depth appears a logarithmic increase as Eu increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increasing of Eu, which is benefit for the wave boundary layer separating from seabed, inducing the high-intensity horseshoe vortex, hence, causing intensive scour around USAF.
Figure 25. The fitting curve between Seq/D and Eu.
Therefore, the variation of Fr and Eu reflect the magnitude of adverse pressure gradient pressure at upstream. Given that, the Equation (37) also was used to fit the simulating results with A = 8.875, B = 0.078 and C = −9.601, and the results are shown in Figure 25. From Figure 25, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Eu in present study is consistent with Equation (37) basically, meaning the Equation (37) is also applicable to express the relationship of Seq/D with Eu around USAF under random waves. Additionally, according to the above description of Fr, it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably.
5. Conclusions
A series of numerical models were established to investigate the local scour around umbrella suction anchor foundation (USAF) under random waves. The numerical model was validated for hydrodynamic and morphology parameters by comparing with the experimental data of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22]. Based on the simulating results, the scour evolution and scour mechanisms around USAF under random waves were analyzed respectively. Two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves. Finally, a parametric study was carried out with the present model to study the effects of the Froude number Fr and Euler number Eu to the equilibrium scour depth around USAF under random waves. The main conclusions can be described as follows.(1)
The packed sediment scour model and the RNG k−ε turbulence model were used to simulate the sand particles transport processes and the flow field around UASF respectively. The scour evolution obtained by the present model agrees well with the experimental results of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22], which indicates that the present model is accurate and reasonable for depicting the scour morphology around UASF under random waves.(2)
The vortex system at wave crest phase is mainly related to the scour process around USAF under random waves. The maximum scour depth appeared at the lee-side of the USAF at the initial stage (t < 1200 s). Subsequently, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.(3)
The error is negligible and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves when KC is calculated by KCs,p. Given that, a further revision model (Equation (31)) was proposed according to Raaijmakers’s model to predict the equilibrium scour depth around USAF under random waves and it shows good agreement with the simulating results of the present study when KCs,p < 8.(4)
Another further revision model (Equation (33)) was proposed according to the stochastic model established by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves, and the predicting results are the most favorable for n = 10 when KCrms,a < 4. However, contrary to the case of low KCrms,a, the predicting results are the most favorable for n = 2 when KCrms,a > 4 by the comparison with experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21].(5)
The same formula (Equation (37)) is applicable to express the relationship of Seq/D with Eu or Fr, and it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.
Author Contributions
Conceptualization, H.L. (Hongjun Liu); Data curation, R.H. and P.Y.; Formal analysis, X.W. and H.L. (Hao Leng); Funding acquisition, X.W.; Writing—original draft, R.H. and P.Y.; Writing—review & editing, X.W. and H.L. (Hao Leng); The final manuscript has been approved by all the authors. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the Fundamental Research Funds for the Central Universities (grant number 202061027) and the National Natural Science Foundation of China (grant number 41572247).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data presented in this study are available on request from the corresponding author.
Conflicts of Interest
The authors declare no conflict of interest.
References
Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng.1992, 118, 15–31. [Google Scholar] [CrossRef]
Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588. [Google Scholar]
Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast. Eng.2013, 72, 20–38. [Google Scholar] [CrossRef]
Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement. Coast. Eng.2018, 138, 132–151. [Google Scholar] [CrossRef]
Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore Monopile Wind Turbine. J. Offshore Mech. Arct. Eng.2018, 140, 042001. [Google Scholar] [CrossRef]
Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Géoméch. Energy Environ.2017, 10, 12–20. [Google Scholar] [CrossRef]
Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng.2019, 172, 118–123. [Google Scholar] [CrossRef]
Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies2019, 12, 1709. [Google Scholar] [CrossRef][Green Version]
Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng.2020, 8, 417. [Google Scholar] [CrossRef]
Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng.2013, 63, 17–25. [Google Scholar] [CrossRef]
Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng.2015, 101, 1–11. [Google Scholar] [CrossRef][Green Version]
Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng.2021, 9, 297. [Google Scholar] [CrossRef]
Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng.2020, 202, 106701. [Google Scholar] [CrossRef]
Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng.2020, 213, 107696. [Google Scholar] [CrossRef]
Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J. Fluid Mech.1997, 332, 41–70. [Google Scholar] [CrossRef]
Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng.2001, 127, 403–411. [Google Scholar] [CrossRef]
Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012. [Google Scholar]
Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng.2015, 106, 42–72. [Google Scholar] [CrossRef]
Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol. Sci.2014, 57, 1030–1039. [Google Scholar] [CrossRef][Green Version]
Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng.2018, 144, 04018018. [Google Scholar] [CrossRef]
Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast. Eng.2020, 161, 103751. [Google Scholar] [CrossRef]
Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour protections using copulas. Wind. Eng.2018, 43, 506–538. [Google Scholar] [CrossRef]
Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng.2020, 158, 103671. [Google Scholar] [CrossRef]
Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng.1998, 124, 639–642. [Google Scholar] [CrossRef]
Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue2011, 64, 845–849. [Google Scholar]
Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res.2013, 165, 1599–1604. [Google Scholar] [CrossRef]
Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng.2017, 122, 87–107. [Google Scholar] [CrossRef][Green Version]
Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng.2017, 121, 167–178. [Google Scholar] [CrossRef][Green Version]
Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender vertical cylinder. Adv. Water Resour.2019, 129, 263–280. [Google Scholar] [CrossRef]
Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation due to waves and current. Ocean Eng.2019, 189, 106302. [Google Scholar] [CrossRef]
Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000, American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870. [Google Scholar]
Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 152–161. [Google Scholar]
Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour.2007, 34, 357. [Google Scholar] [CrossRef][Green Version]
Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng.2011, 58, 986–991. [Google Scholar] [CrossRef]
Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng.2003, 48, 227–242. [Google Scholar] [CrossRef]
Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng.2009, 36, 605–616. [Google Scholar] [CrossRef]
Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic method. Ocean Eng.2010, 37, 1233–1238. [Google Scholar] [CrossRef]
Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves plus a current. Coast. Eng.2013, 73, 106–114. [Google Scholar] [CrossRef]
Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput.1986, 1, 3–51. [Google Scholar] [CrossRef]
Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput.1992, 7, 35–61. [Google Scholar] [CrossRef]
Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology2003, 50, 625–637. [Google Scholar] [CrossRef]
Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [Google Scholar] [CrossRef]
Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng.1984, 110, 1431–1456. [Google Scholar] [CrossRef][Green Version]
Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng.2017, 142, 625–638. [Google Scholar] [CrossRef]
Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian, China, 2011. [Google Scholar]
Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res.2016, 57, 114–124. [Google Scholar] [CrossRef]
Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®. Part I: Formulation and validation. Coast. Eng.2014, 83, 243–258. [Google Scholar] [CrossRef]
Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng.2019, 7, 453. [Google Scholar] [CrossRef][Green Version]
Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour.2012, 37, 73–85. [Google Scholar] [CrossRef]
Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis, Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013. [Google Scholar]
Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res.1977, 15, 211–252. [Google Scholar] [CrossRef]
Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng.2018, 139, 65–84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Hu, R.; Liu, H.; Leng, H.; Yu, P.; Wang, X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. J. Mar. Sci. Eng.2021, 9, 886. https://doi.org/10.3390/jmse9080886
AMA Style
Hu R, Liu H, Leng H, Yu P, Wang X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. Journal of Marine Science and Engineering. 2021; 9(8):886. https://doi.org/10.3390/jmse9080886Chicago/Turabian Style
Hu, Ruigeng, Hongjun Liu, Hao Leng, Peng Yu, and Xiuhai Wang. 2021. “Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves” Journal of Marine Science and Engineering 9, no. 8: 886. https://doi.org/10.3390/jmse9080886
Find Other Styles
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.
Mahdi Feizbahr,1Navid Tonekaboni,2Guang-Jun Jiang,3,4and Hong-Xia Chen3,4 Academic Editor: Mohammad Yazdi
Abstract
강을 따라 식생은 조도를 증가시키고 평균 유속을 감소시키며, 유동 에너지를 감소시키고 강 횡단면의 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받기 때문에 홍수시 유동저항에 큰 영향을 미친다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건과 식물에 따라 달라지므로 모델은 유속, 유속 깊이 및 수로를 따라 식생 유형의 영향을 고려하여 유속을 시뮬레이션해야 합니다. 총 48개의 모델을 시뮬레이션하여 근관의 거칠기 효과를 조사했습니다. 결과는 속도를 높임으로써 베드 속도를 감소시키는 식생의 영향이 무시할만하다는 것을 나타냅니다.
Abstract
Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.
1. Introduction
Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [1–14]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [15–27]. Consequently, it is necessary to study the effects of the passive factors on the active domain [28–36]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [38–41].
One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [43–45]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [47, 48].
Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity is another form of current resistance. The reason for using the ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].
To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].
The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where n, f, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed, = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:
Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.
On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:
By using equation (6), equation (5) is converted as follows:
Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].
Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [45, 55].
One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [47, 57, 58] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [45, 59–61]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [49, 63–66] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.
FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where are mass accelerations in the directions x, y, z and are viscosity accelerations in the directions x, y, z and are obtained from the following equations:
Shear stresses in equation (11) are obtained from the following equations:
The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.
Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.
Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.
In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).
Table 1
The studied models.
The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After seconds, this model reached a convergence accuracy of .
Figure 1
The simulated model and its boundary conditions.
Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.
48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.
Any control and simulation system has some inputs that we should determine to test any technology [70–77]. Determination and true implementation of such parameters is one of the key steps of any simulation [23, 78–81] and computing procedure [82–86]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.
Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [87, 88]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).
Figure 2
Modeling the plant with cylindrical tubes at the bottom of the canal.
Figure 3
Velocity profiles in positions 2 and 5.
The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.
The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.
The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.
2. Modeling Results
After analyzing the models, the results were shown in graphs (Figures 4–14 ). The total number of experiments in this study was 48 due to the limitations of modeling.
Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.
Figure 5
Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.
Figure 6
Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.
Figure 7
Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.
Figure 8
Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.
Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
Figure 10
Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.
Figure 11
Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.
Figure 12
Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.
Figure 13
Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.
Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.
According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.
According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.
According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.
According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5–10, which can be justified by increasing the speed and, of course, increasing the Froude number.
With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 5–8 and 10, 11), which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.
Figure 15
Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.
According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 16
Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.
According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 17
Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.
According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 18
Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.
According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.
Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.
According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.
Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.
According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [2, 7, 8, 15, 18, 89–94]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [95–99].
Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.
3. Conclusion
The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.
Nomenclature
n:
Manning’s roughness coefficient
C:
Chézy roughness coefficient
f:
Darcy–Weisbach coefficient
V:
Flow velocity
R:
Hydraulic radius
g:
Gravitational acceleration
y:
Flow depth
Ks:
Bed roughness
A:
Constant coefficient
:
Reynolds number
∂y/∂x:
Depth of water change
S0:
Slope of the canal floor
Sf:
Slope of energy line
Fr:
Froude number
D:
Characteristic length of the canal
G:
Mass acceleration
:
Shear stresses.
Data Availability
All data are included within the paper.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.
References
H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Fatemehsadat Mirshafiee1, Emad Shahbazi 2, Mohadeseh Safi 3, Rituraj Rituraj 4,* 1Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran 1999143344 , Iran 2Department of Mechatronic, Amirkabir University of Technology, Tehran 158754413, Iran 3Department of Mechatronic, Electrical and Computer Engineering, University of Tehran, Tehran 1416634793, Iran 4 Faculty of Informatics, Obuda University, 1023, Budapest, Hungary
Correspondence: rituraj88@stud.uni-obuda.hu
ABSTRACT
본 연구는 지속가능한 에너지 변환기의 전력 및 수소 발생 모델링을 위한 데이터 기반 방법론을 제안합니다. 파고와 풍속을 달리하여 파고와 수소생산을 예측합니다.
또한 이 연구는 파도에서 수소를 추출할 수 있는 가능성을 강조하고 장려합니다. FLOW-3D 소프트웨어 시뮬레이션에서 추출한 데이터와 해양 특수 테스트의 실험 데이터를 사용하여 두 가지 데이터 기반 학습 방법의 비교 분석을 수행합니다.
결과는 수소 생산의 양은 생성된 전력의 양에 비례한다는 것을 보여줍니다. 제안된 재생 에너지 변환기의 신뢰성은 지속 가능한 스마트 그리드 애플리케이션으로 추가로 논의됩니다.
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
Key words
Cavity, Combustion efficiency, hydrogen fuel, Computational Fluent and Gambit.
Figure 1. The process of power and hydrogen production with Searaser.Figure 2. The cross-section A-A of the two essential parts of a SearaserFigure 3. Different parts of a Searaser; 1) Buoy 2) Chamber 3) Valves 4) Generator 5) Anchor systemFigure 4. The boundary conditions of the control volumeFigure 5. The wind velocity during the period of the experimental test
REFERENCES
Kalbasi, R., Jahangiri, M., Dehshiri, S.J.H., Dehshiri, S.S.H., Ebrahimi, S., Etezadi, Z.A.S. and Karimipour, A., 2021. Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable Energy Technologies and Assessments, 45, p.101097.
Megura M, Gunderson R. Better poison is the cure? Critically examining fossil fuel companies, climate change framing, and corporate sustainability reports. Energy Research & Social Science. 2022 Mar 1;85:102388.
Holechek JL, Geli HM, Sawalhah MN, Valdez R. A global assessment: can renewable energy replace fossil fuels by 2050?. Sustainability. 2022 Jan;14(8):4792.
Ahmad M, Kumar A, Ranjan R. Recent Developments of Tidal Energy as Renewable Energy: An Overview. River and Coastal Engineering. 2022:329-43.
Amini E, Mehdipour H, Faraggiana E, Golbaz D, Mozaffari S, Bracco G, Neshat M. Optimization of hydraulic power take-off system settings for point absorber wave energy converter. Renewable Energy. 2022 Jun 4.
Claywell, R., Nadai, L., Felde, I., Ardabili, S. 2020. Adaptive neuro-fuzzy inference system and a multilayer perceptron model trained with grey wolf optimizer for predicting solar diffuse fraction. Entropy, 22(11), p.1192.
McLeod I, Ringwood JV. Powering data buoys using wave energy: a review of possibilities. Journal of Ocean Engineering and Marine Energy. 2022 Jun 20:1-6.
Olsson G. Water interactions: A systemic view: Why we need to comprehend the water-climate-energy-food-economics-lifestyle connections.
Malkowska A, Malkowski A. Green Energy in the Political Debate. InGreen Energy 2023 (pp. 17-39). Springer, Cham.
Mayon R, Ning D, Ding B, Sergiienko NY. Wave energy converter systems–status and perspectives. InModelling and Optimisation of Wave Energy Converters (pp. 3-58). CRC Press.
Available online at: https://www.offshore-energy.biz/uk-ecotricity-introduces-wave-power-device-searaser/ (9/27/2022)
Mousavi SM, et al.,. Deep learning for wave energy converter modeling using long short-term memory. Mathematics. 2021 Apr 15;9(8):871.
Mega V. The Energy Race to Decarbonisation. InHuman Sustainable Cities 2022 (pp. 105-141). Springer, Cham.
Li R, Tang BJ, Yu B, Liao H, Zhang C, Wei YM. Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective. Applied Energy. 2022 Nov 1;325:119780.
Ardabili S., Abdolalizadeh L., Mako C., Torok B., Systematic Review of Deep Learning and Machine Learning for Building Energy, Frontiers in Energy Research, 10, 2022.
Penalba M, Aizpurua JI, Martinez-Perurena A, Iglesias G. A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems. Renewable and Sustainable Energy Reviews. 2022 Oct 1;167:112751.
Torabi, M., Hashemi, S., Saybani, M.R., 2019. A Hybrid clustering and classification technique for forecasting short‐term energy consumption. Environmental progress & sustainable energy, 38(1), pp.66-76.
Rivera FP, Zalamea J, Espinoza JL, Gonzalez LG. Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renewable and Sustainable Energy Reviews. 2022 Mar 1;156:112005.
Raza SA, Jiang J. Mathematical foundations for balancing single-phase residential microgrids connected to a three-phase distribution system. IEEE Access. 2022 Jan 6;10:5292-303.
Takach M, Sarajlić M, Peters D, Kroener M, Schuldt F, von Maydell K. Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns. Energies. 2022 Feb 15;15(4):1415.
Lv Z, Li W, Wei J, Ho F, Cao J, Chen X. Autonomous Chemistry Enabling Environment-Adaptive Electrochemical Energy Storage Devices. CCS Chemistry. 2022 Jul 7:1-9.
Dehghan Manshadi, Mahsa, Milad Mousavi, M. Soltani, Amir Mosavi, and Levente Kovacs. 2022. “Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System” Energies 15, no. 24: 9484. https://doi.org/10.3390/en15249484
Ishaq H, Dincer I, Crawford C. A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy. 2022 Jul 22;47(62):26238-64.
Maguire JF, Woodcock LV. On the Thermodynamics of Aluminum Cladding Oxidation: Water as the Catalyst for Spontaneous Combustion. Journal of Failure Analysis and Prevention. 2022 Sep 10:1-5.
Mohammadi, M. R., Hadavimoghaddam, F., Pourmahdi, M., Atashrouz, S., Munir, M. T., Hemmati-Sarapardeh, A., … & Mohaddespour, A. (2021). Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Scientific reports, 11(1).
Ma S, Qin J, Xiu X, Wang S. Design and performance evaluation of an underwater hybrid system of fuel cell and battery. Energy Conversion and Management. 2022 Jun 15;262:115672.
Ahamed R, McKee K, Howard I. A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems. Sustainability. 2022 Jan;14(16):9936.
Nejad, H.D., Nazari, M., Nazari, M., Mardan, M.M.S., 2022. Fuzzy State-Dependent Riccati Equation (FSDRE) Control of the Reverse Osmosis Desalination System With Photovoltaic Power Supply. IEEE Access, 10, pp.95585-95603.
Zou S, Zhou X, Khan I, Weaver WW, Rahman S. Optimization of the electricity generation of a wave energy converter using deep reinforcement learning. Ocean Engineering. 2022 Jan 15;244:110363.
Wu J, Qin L, Chen N, Qian C, Zheng S. Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose. Energy. 2022 Apr 15;245:123318.
Papini G, Dores Piuma FJ, Faedo N, Ringwood JV, Mattiazzo G. Nonlinear Model Reduction by Moment-Matching for a Point Absorber Wave Energy Conversion System. Journal of Marine Science and Engineering. 2022 May;10(5):656.
Forbush DD, Bacelli G, Spencer SJ, Coe RG, Bosma B, Lomonaco P. Design and testing of a free floating dual flap wave energy converter. Energy. 2022 Feb 1;240:122485.
Rezaei, M.A., 2022. A New Hybrid Cascaded Switched-Capacitor Reduced Switch Multilevel Inverter for Renewable Sources and Domestic Loads. IEEE Access, 10, pp.14157-14183.
Lin Z, Cheng L, Huang G. Electricity consumption prediction based on LSTM with attention mechanism. IEEJ Transactions on Electrical and Electronic Engineering. 2020;15(4):556-562.
Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., 2022. A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 13(2), p.101564.
Ghalandari, M., 2019. Flutter speed estimation using presented differential quadrature method formulation. Engineering Applications of Computational Fluid Mechanics, 13(1), pp.804-810.
Li Z, Bouscasse B, Ducrozet G, Gentaz L, Le Touzé D, Ferrant P. Spectral wave explicit navier-stokes equations for wavestructure interactions using two-phase computational fluid dynamics solvers. Ocean Engineering. 2021 Feb 1;221:108513.
Zhou Y. Ocean energy applications for coastal communities with artificial intelligencea state-of-the-art review. Energy and AI. 2022 Jul 29:100189.
Miskati S, Farin FM. Performance evaluation of wave-carpet in wave energy extraction at different coastal regions: an analytical approach (Doctoral dissertation, Department of Mechanical and Production Engineering).
Gu C, Li H. Review on Deep Learning Research and Applications in Wind and Wave Energy. Energies. 2022 Feb 17;15(4):1510.
Aazami, R., 2022. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability, 14(10), p.6183.
Kabir M, Chowdhury MS, Sultana N, Jamal MS, Techato K. Ocean renewable energy and its prospect for developing economies. InRenewable Energy and Sustainability 2022 Jan 1 (pp. 263-298). Elsevier.
Babajani A, Jafari M, Hafezisefat P, Mirhosseini M, Rezania A, Rosendahl L. Parametric study of a wave energy converter (Searaser) for Caspian Sea. Energy Procedia. 2018 Aug 1;147:334-42.
He J. Coherence and cross-spectral density matrix analysis of random wind and wave in deep water. Ocean Engineering. 2020;197:106930
Ijadi Maghsoodi, A., 2018. Renewable energy technology selection problem using integrated h-swara-multimoora approach. Sustainability, 10(12), p.4481.
Band, S.S., Ardabili, S., Sookhak, M., Theodore, A., Elnaffar, S., Moslehpour, M., Csaba, M., Torok, B., Pai, H.T., 2022. When Smart Cities Get Smarter via Machine Learning: An In-depth Literature Review. IEEE Access.
Shamshirband, S., Rabczuk, T., Nabipour, N. and Chau, K.W., 2020. Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. Engineering Applications of Computational Fluid Mechanics, 14(1), pp.805-817.
Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., 2021. A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access, 9, pp.10498-10508.
Bavili, R.E., Mohammadzadeh, A., Tavoosi, J., Mobayen, S., Assawinchaichote, W., Asad, J.H. 2021. A New Active Fault Tolerant Control System: Predictive Online Fault Estimation. IEEE Access, 9, pp.118461-118471.
Akbari, E., Teimouri, A.R., Saki, M., Rezaei, M.A., Hu, J., Band, S.S., Pai, H.T., 2022. A Fault-Tolerant Cascaded SwitchedCapacitor Multilevel Inverter for Domestic Applications in Smart Grids. IEEE Access.
Band, S.S., Ardabili, S., 2022. Feasibility of soft computing techniques for estimating the long-term mean monthly wind speed. Energy Reports, 8, pp.638-648.
Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., 2022. A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 13(2), p.101564.
Ponnusamy, V. K., Kasinathan, P., Madurai Elavarasan, R., Ramanathan, V., Anandan, R. K., Subramaniam, U., … & Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability, 2021; 13(23), 13322.
Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 2021; 289, 125834.
Wang, G., Chao, Y., Cao, Y., Jiang, T., Han, W., & Chen, Z. A comprehensive review of research works based on evolutionary game theory for sustainable energy development. Energy Reports, 2022; 8, 114-136.
Iranmehr H., Modeling the Price of Emergency Power Transmission Lines in the Reserve Market Due to the Influence of Renewable Energies, Frontiers in Energy Research, 9, 2022
Farmanbar, M., Parham, K., Arild, Ø., & Rong, C. A widespread review of smart grids towards smart cities. Energies, 2019; 12(23), 4484.
Quartier, N., Crespo, A. J., Domínguez, J. M., Stratigaki, V., & Troch, P. Efficient response of an onshore Oscillating Water Column Wave Energy Converter using a one-phase SPH model coupled with a multiphysics library. Applied Ocean Research, 2021; 115, 102856.
Mahmoodi, K., Nepomuceno, E., & Razminia, A. Wave excitation force forecasting using neural networks. Energy, 2022; 247, 123322.
Wang, H., Alattas, K.A., 2022. Comprehensive review of load forecasting with emphasis on intelligent computing approaches. Energy Reports, 8, pp.13189-13198.
Clemente, D., Rosa-Santos, P., & Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 2021; 135, 110162.
Felix, A., V. Hernández-Fontes, J., Lithgow, D., Mendoza, E., Posada, G., Ring, M., & Silva, R. Wave energy in tropical regions: deployment challenges, environmental and social perspectives. Journal of Marine Science and Engineering, 2019; 7(7), 219.
Farrok, O., Ahmed, K., Tahlil, A. D., Farah, M. M., Kiran, M. R., & Islam, M. R. Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies. Sustainability, 2020; 12(6), 2178.
Guo, B., & Ringwood, J. V. A review of wave energy technology from a research and commercial perspective. IET Renewable Power Generation, 2021; 15(14), 3065-3090.
López-Ruiz, A., Bergillos, R. J., Lira-Loarca, A., & Ortega-Sánchez, M. A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays. Energy, 2018; 153, 126-135.
Safarian, S., Saryazdi, S. M. E., Unnthorsson, R., & Richter, C. Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy, 2020; 213, 118800.
Kushwah, S. An oscillating water column (OWC): the wave energy converter. Journal of The Institution of Engineers (India): Series C, 2021; 102(5), 1311-1317.
Pap, J., Mako, C., Illessy, M., Kis, N., 2022. Modeling Organizational Performance with Machine Learning. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), p.177.
Pap, J., Mako, C., Illessy, M., Dedaj, Z., Ardabili, S., Torok, B., 2022. Correlation Analysis of Factors Affecting Firm Performance and Employees Wellbeing: Application of Advanced Machine Learning Analysis. Algorithms, 15(9), p.300.
Alanazi, A., 2022. Determining Optimal Power Flow Solutions Using New Adaptive Gaussian TLBO Method. Applied Sciences, 12(16), p.7959.
Shakibjoo, A.D., Moradzadeh, M., Din, S.U., 2021. Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems. IEEE access, 10, pp.6989-7002.
Zhang, G., 2021. Solar radiation estimation in different climates with meteorological variables using Bayesian model averaging and new soft computing models. Energy Reports, 7, pp.8973-8996.
Cao, Y., Raise, A., Mohammadzadeh, A., Rathinasamy, S., 2021. Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction. Energy Reports, 7, pp.8115-8127.
Tavoosi, J., Suratgar, A.A., Menhaj, M.B., 2021. Modeling renewable energy systems by a self-evolving nonlinear consequent part recurrent type-2 fuzzy system for power prediction. Sustainability, 13(6), p.3301.
Bourouis, S., Band, S.S., 2022. Meta-Heuristic Algorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images. Frontiers in Oncology, 12, p.834028.
Mosavi, A.H., Mohammadzadeh, A., Rathinasamy, S., Zhang, C., Reuter, U., Levente, K. and Adeli, H., 2022. Deep learning fuzzy immersion and invariance control for type-I diabetes. Computers in Biology and Medicine, 149, p.105975.
Almutairi, K., Algarni, S., Alqahtani, T., Moayedi, H., 2022. A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. Sustainability, 14(10), p.5924.
Ahmad, Z., Zhong, H., 2020. Machine learning modeling of aerobic biodegradation for azo dyes and hexavalent chromium. Mathematics, 8(6), p.913.
Mosavi, A., Shokri, M., Mansor, Z., Qasem, S.N., Band, S.S. and Mohammadzadeh, A., 2020. Machine learning for modeling the singular multi-pantograph equations. Entropy, 22(9), p.1041.
Ardabili, S., 2019, September. Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. In International conference on global research and education (pp. 52-62). Springer, Cham.
Moayedi, H., (2021). Suggesting a stochastic fractal search paradigm in combination with artificial neural network for early prediction of cooling load in residential buildings. Energies, 14(6), 1649.
Rezakazemi, M., et al., 2019. ANFIS pattern for molecular membranes separation optimization. Journal of Molecular Liquids, 274, pp.470-476.
Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S.F., Salwana, E. and Band, S.S., 2020. Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics, 8(10), p.1640.
Samadianfard, S., Jarhan, S., Salwana, E., 2019. Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), p.1934.
Moayedi, H., (2021). Double-target based neural networks in predicting energy consumption in residential buildings. Energies, 14(5), 1331.
Mohammadzadeh S, D., Kazemi, S.F., 2019. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures, 4(2), p.26.
Karballaeezadeh, N., Mohammadzadeh S, D., Shamshirband, S., Hajikhodaverdikhan, P., 2019. Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan–Firuzkuh road). Engineering Applications of Computational Fluid Mechanics, 13(1), pp.188-198.
Rezaei, M. Et al., (2022). Adaptation of A Real-Time Deep Learning Approach with An Analog Fault Detection Technique for Reliability Forecasting of Capacitor Banks Used in Mobile Vehicles. IEEE Access v. 21 pp. 89-99.
Khakian, R., et al., (2020). Modeling nearly zero energy buildings for sustainable development in rural areas. Energies, 13(10), 2593.
결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화
Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i
Abstract
In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.
Keywords
Wave Energy Converter
OSWEC
Hydrodynamic Effects
Geometric Design
Metaheuristic Optimization
Multi-Verse Optimizer
1. Introduction
The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1], [2], [3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4], [5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6], [7], [8], [9], [10], [11], [12], [13], [14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].
In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19], [20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10], [13], [12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21], [22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15], [23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].
Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26], [27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28], [29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].
Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.
This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.
2. Numerical Methods
In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.
2.1. Model Setup
FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.
In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.
2.2. Verification
In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).
Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.
Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32], [39]:(1)
where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:
(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.
�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1[40].Table 2.
Table 1. Constant coefficients in RNGK-∊ model
Factors
�
�0
�1
�2
��
��
��
Quantity
0.012
4.38
1.42
1.68
1.39
1.39
0.084
Table 2. Flap properties
Joint height (m)
0.476
Height of the center of mass (m)
0.53
Weight (Kg)
10.77
It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42], [34], [43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.
According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.
Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.
According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.
To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.
As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.
3. Sensitivity Analysis
Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.
In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.
According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.
As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.
Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.
Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.
Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.
4. Design Optimization
We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.
4.1. Metaheuristic Approaches
As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:
•It takes different values to converge moth in any point around the flame.
•Distance to the flame is lowered to be eventually minimized.
•When the position gets closer to the flame, the updated positions around the flame become more frequent.
As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:
•The possibility of having white hole increases with the inflation rate.
•The possibility of having black hole decreases with the inflation rate.
•Objects tend to pass through black holes more frequently in universes with lower inflation rates.
•Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]
Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:
Assume that
(16)���=����1<��(��)����1≥��(��)
Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1], [54].
Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56], [55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)
Where:(19)�′→=|�∗→(�)-�→(�)|
X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1,1], and dot (.) is an element-by-element multiplication [55].
Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.
4.2. HCMVO Bi-level Approach
Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.
Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).
5. Conclusion
The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.
To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods
Empty Cell
Algorithm 1:Hill Climb Multiverse Optimization
01:
procedure HCMVO
02:
�=30,�=5▹���������������������������������
03:
�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:
Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:
��=����(��)
06:
��=Normalize the inflation rate��
07:
for iter in[1,⋯,���iter]do
08:
for�in[1,⋯,�]do
09:
Update�EP,�DR,Black����Index=�
10:
for���[1,⋯,�]��
11:
�1=����()
12:
if�1≤��(��)then
13:
White HoleIndex=Roulette�heelSelection(-��)
14:
�(Black HoleIndex,�)=��(White HoleIndex,�)
15:
end if
16:
�2=����([0,�])
17:
if�2≤�EPthen
18:
�3=����(),�4=����()
19:
if�3<0.5then
20:
�1=((��(�)-��(�))�4+��(�))
21:
�(�,�)=Best�(�)+�DR�
22:
else
23:
�(�,�)=Best�(�)-�DR�
24:
end if
25:
end if
26:
end for
27:
end for
28:
�HD=����([�1,�2,⋯,�Np])
29:
Bes�TH�itr=����HD
30:
ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:
ifΔBestTHD<��then▹Perform hill climbing local search
32:
BestTHD=����-�lim��������THD
33:
end if
34:
end for
35:
return�,BestTHD▹Final configuration
36:
end procedure
The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.
Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.
Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.
Empty Cell
Algorithm 1:Hill Climb Multiverse Optimization
01:
procedure HCMVO
02:
Initialization
03:
Initialize the constraints��1�,��1�
04:
�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.
The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.
In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.
CRediT authorship contribution statement
Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgement
This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.
[2]A. Morteza, M. SadipourReza Saadati Fard, Saman Taheri, and Amirhossein AhmadiA dagging-based deep learning framework for transmission line flexibility assessment, IET Renewable Power Generation (2022)Google Scholar
[3]A. Morteza, M. Ilbeigi, J. SchwedA blockchain information management framework for construction safety. Comput-ingCivil Engineering (2021, 2022.)Google Scholar
[4]Jochem Weber, Ronan Costello, and John Ringwood. Wec technology performance levels (tpls)-metric for successful development of economic wec technology. Proceedings EWTEC 2013, 2013.Google Scholar
[5]K. Rahgooy, A. Bahmanpour, M. Derakhshandi, A.a. Bagherzadeh-KhalkhaliDistribution of elastoplastic modulus of subgrade reaction for analysis of raft foundationsGeomechanics and Engineering, 28 (1) (2022), pp. 89-105View in ScopusGoogle Scholar
[7]M. Penalba, G. Giorgi, J.V. RingwoodMathematical modelling of wave energy converters: A review of nonlinear approachesRenewable and Sustainable Energy Reviews, 78 (2017), pp. 1188-1207View PDFView articleView in ScopusGoogle Scholar
[8]C. Windt, J. Davidson, J.V. RingwoodHigh-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanksRenewable and Sustainable Energy Reviews, 93 (2018), pp. 610-630View PDFView articleView in ScopusGoogle Scholar
[10]J.V. Ringwood, G. Bacelli, F. FuscoEnergymaximizing control of wave-energy converters: The development of control system technology to optimize their operationIEEE control systems magazine, 34 (5) (2014), pp. 30-55View article CrossRefView in ScopusGoogle Scholar
[11]N. Faedo, S. Olaya, J.V. RingwoodOptimal control, mpc and mpc-like algorithms for wave energy systems: An overviewIFAC Journal of Systems and Control, 1 (2017), pp. 37-56View PDFView articleView in ScopusGoogle Scholar
[12]L. Wang, J. Isberg, E. TedeschiReview of control strategies for wave energy conversion systems and their validation: the wave-to-wire approachRenewable and Sustainable Energy Reviews, 81 (2018), pp. 366-379View PDFView articleView in ScopusGoogle Scholar
[15]E. Amini, D. Golbaz, R. Asadi, M. Nasiri, O. Ceylan, M.M. Nezhad, et al.A comparative study of metaheuristic algorithms for wave energy converter power take-off optimisation: A case study for eastern australiaJournal of Marine Science and Engineering, 9(5):490 (2021)Google Scholar
[16]Arthur Pecher and Jens Peter KofoedHandbook of ocean wave energySpringer Nature (2017)Google Scholar
[17]G. Chang, C.A. Jones, J.D. Roberts, V.S. NearyA comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projectsRenewable Energy, 127 (2018), pp. 344-354View PDFView articleView in ScopusGoogle Scholar
[18]E. Amini, H. Mehdipour, E. Faraggiana, D. Golbaz, S. Mozaffari, G. Bracco, et al.Optimization of hydraulic power take-off system settings for point absorber wave energy converterRenewable Energy, 194 (2022), pp. 938-954View PDFView articleView in ScopusGoogle Scholar
[19]A. Garcia-Teruel, D.I.M. ForehandA review of geometry optimisa-tion of wave energy convertersRenewable and Sustainable Energy Reviews, 139 (2021), Article 110593View PDFView articleView in ScopusGoogle Scholar
[20]M.M. Nezhad, A. Heydari, M. Neshat, F. Keynia, G. Piras, D.A. GarciaA mediterranean sea offshore wind classification using merra-2 and machine learning modelsRenewable Energy, 190 (2022), pp. 156-166Google Scholar
[21]I. López, J. Andreu, S. Ceballos, I.M.D. Alegría, I. KortabarriaReview of wave energy technologies and the necessary power-equipmentRenewable and sustainable energy reviews, 27 (2013), pp. 413-434View PDFView articleView in ScopusGoogle Scholar
[22]R. Ekström, B. Ekergård, M. LeijonElectrical damping of linear generators for wave energy converters—a reviewRenewable and Sustainable Energy Reviews, 42 (2015), pp. 116-128View PDFView articleGoogle Scholar
[23]Danial Golbaz, Rojin Asadi, Erfan Amini, Hossein Mehdipour, Mahdieh Nasiri, Meysam Majidi Nezhad, Seyed Taghi Omid Naeeni, and Mehdi Neshat. Ocean wave energy converters optimization: A comprehensive review on research directions. arXiv preprint arXiv:2105.07180, 2021.Google Scholar
[24]Michael Choiniere, Jacob Davis, Nhu Nguyen, Nathan Tom, Matthew Fowler, and Krish Thiagarajan Sharman. Hydrodynamics and load shedding behavior of a variable geometry oscillating surge wave energy converter (oswec). Available at SSRN 3900951, 2022.Google Scholar
[25]Alan Henry, Olivier Kimmoun, Jonathan Nicholson, Guillaume Dupont, Yanji Wei, andFrederic Dias. A two dimensional experimental investigation of slamming of an oscillating wave surge converter. In The Twenty-fourth International Ocean and Polar Engineering Conference. OnePetro, 2014.Google Scholar
[26]S. Doyle, G.A. AggidisDevelopment of multioscillating water columns as wave energy convertersRenewable and Sustainable Energy Reviews, 107 (2019), pp. 75-86View PDFView articleView in ScopusGoogle Scholar
[28]Matthew Folley, TJT Whittaker, and Alan Henry. The effect of water depth on the performance of a small surging wave energy converter. Ocean Engineering, 34(8-9):1265–1274, 2007.Google Scholar
[30]D. Sarkar, E. Renzi, F. DiasEffect of a straight coast on the hydrodynamics and performance of the oscillating wave surge converterOcean Engineering, 105 (2015), pp. 25-32View PDFView articleView in ScopusGoogle Scholar
[31]Adrian de Andres, Jéromine Maillet, Jørgen Hals Todalshaug, Patrik Möller, and Henry Jeffrey. On the optimum sizing of a real wec from a techno-economic perspective. In International Conference on Offshore Mechanics and Arctic Engineering, volume 49972, page V006T09A013. American Society of Mechanical Engineers, 2016.Google Scholar
[34]T. Whittaker, M. FolleyNearshore oscillating wave surge converters and the development of oysterPhilosophical Transactions Sciences of the Royal Society A: Mathematical, Physical and Engineering, 370 (1959) (2012), pp. 345-364View article CrossRefView in ScopusGoogle Scholar
[35]Louise O’Boyle, Kenneth Doherty, Jos van’t Hoff, and Jessica Skelton. The value of full scale prototype data-testing oyster 800 at emec, orkney. In Proceedings of the 11th European wave and tidal energy conference (EWTEC), Nantes, France, pages 6–11, 2015.Google Scholar
[37]Ishmail B Celik, Urmila Ghia, Patrick J Roache, and Christopher J Freitas. Procedure for estimation and reporting of uncertainty due to discretization in cfd applications. Journal of fluids EngineeringTransactions of the ASME, 130(7), 2008.Google Scholar
[38]Pal Schmitt, K Doherty, Darragh Clabby, and T Whittaker. The opportunities and limitations of using cfd in the development of wave energyconverters. Marine&OffshoreRenewableEnergy, pages 89–97, 2012.Google Scholar
[39]M. Choiniere, J. Davis, N.u. Nguyen, N. Tom, M. Fowler, K. ThiagarajanHydrodynamics and load shedding behavior of a variable-geometry oscillating surge wave energy converter (oswec)Renewable Energy (2022)Google Scholar
[40]Yong Li and Mian Lin. Regular and irregular wave impacts on floating body. Ocean Engineering, 42:93–101, 2012. Pal Manuel Schmitt. Investigation of the near flow field of bottom hinged flap type wave energy converters. PhD thesis, Queen’s University Belfast, 2014.Google Scholar
[41]Alan John Henry. The hydrodynamics of small seabed mounted bottom hinged wave energy conerverters in shallow water. PhD thesis, Queen’s University Belfast, 2009.Google Scholar
[42]N. Ghorbani, A. Korzeniowski, et al.Adaptive risk hedging for call options under cox-ingersoll-ross interest ratesJournal of Mathematical Finance, 10 (04) (2020), p. 697 View PDF CrossRefView in ScopusGoogle Scholar
[44]M. Abdel-Basset, L. Abdel-Fatah, A.K. SangaiahChapter 10metaheuristic algorithms: a comprehensive reviewcomputational intelligence for multimedia big data on the cloud with engineering applications (2018)Google Scholar
[47]Mohammad Shehab, Laith Abualigah, Husam Al Hamad, Hamzeh Alabool, Mohammad Alshinwan, and Ahmad M Khasawneh. Moth– flame optimization algorithm: variants and applications. Neural Computing and Applications, 32(14):9859–9884, 2020.Google Scholar
[48]Betül Sultan Yıldız and Ali Rıza YıldızMoth-flame optimization algorithm to determine optimal machining parameters in manufacturing processesMaterials Testing, 59 (5) (2017), pp. 425-429Google Scholar
[49]M Tegmark. Barrow, jd davies, pc harper, cl, jr eds. Science and Ultimate Reality Cambridge University Press Cambridge, 2004.Google Scholar
[52]M.S. Morris, K.S. ThorneWormholes in spacetime and their use for interstellar travel: A tool for teaching general relativityAmerican Journal of Physics, 56 (5) (1988), pp. 395-412View article CrossRefView in ScopusGoogle Scholar
[53]S. Mirjalili, S.M. Mirjalili, A. HatamlouMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Computing and Applications, 27 (2) (2016), pp. 495-513View article CrossRefView in ScopusGoogle Scholar
[55]Farhad Soleimanian Gharehchopogh and Hojjat GholizadehA comprehensive survey: Whale optimization algorithm and its applicationsSwarm and Evolutionary Computation, 48 (2019), pp. 1-24Google Scholar
[56]L. AbualigahMulti-verse optimizer algorithm: a comprehensive survey of its results, variants, and applicationsNeural Computing and Applications, 32 (16) (2020), pp. 12381-12401View article CrossRefView in ScopusGoogle Scholar
Pan Lu1 , Zhang Cheng-Lin2,6,Wang Liang3, Liu Tong4 and Liu Jiang-lin5 1 Aviation and Materials College, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu Anhui 241000, People’s Republic of China 2 School of Engineering Science, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of China 3 Anhui Top Additive Manufacturing Technology Co., Ltd., Wuhu Anhui 241300, People’s Republic of China 4 Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Anhui 241300, People’s Republic of China 5 School of Mechanical and Transportation Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, People’s Republic of China 6 Author to whom any correspondence should be addressed. E-mail: ahjdpanlu@126.com, jiao__zg@126.com, ahjdjxx001@126.com,tongliu1988@126.com and liujianglin@tyut.edu.cn
선택적 레이저 용융(SLM)은 열 전달, 용융, 상전이, 기화 및 물질 전달을 포함하는 복잡한 동적 비평형 프로세스인 금속 적층 제조(MAM)에서 가장 유망한 기술 중 하나가 되었습니다. 용융 풀의 특성(구조, 온도 흐름 및 속도 흐름)은 SLM의 최종 성형 품질에 결정적인 영향을 미칩니다. 이 연구에서는 선택적 레이저 용융 AlCu5MnCdVA 합금의 용융 풀 구조, 온도 흐름 및 속도장을 연구하기 위해 수치 시뮬레이션과 실험을 모두 사용했습니다.
그 결과 용융풀의 구조는 다양한 형태(깊은 오목 구조, 이중 오목 구조, 평면 구조, 돌출 구조 및 이상적인 평면 구조)를 나타냈으며, 용융 풀의 크기는 약 132 μm × 107 μm × 50 μm였습니다. : 용융풀은 초기에는 여러 구동력에 의해 깊이 15μm의 깊은 오목형상이었으나, 성형 후기에는 장력구배에 의해 높이 10μm의 돌출형상이 되었다. 용융 풀 내부의 금속 흐름은 주로 레이저 충격력, 금속 액체 중력, 표면 장력 및 반동 압력에 의해 구동되었습니다.
AlCu5MnCdVA 합금의 경우, 금속 액체 응고 속도가 매우 빠르며(3.5 × 10-4 S), 가열 속도 및 냉각 속도는 각각 6.5 × 107 K S-1 및 1.6 × 106 K S-1 에 도달했습니다. 시각적 표준으로 표면 거칠기를 선택하고, 낮은 레이저 에너지 AlCu5MnCdVA 합금 최적 공정 매개변수 창을 수치 시뮬레이션으로 얻었습니다: 레이저 출력 250W, 부화 공간 0.11mm, 층 두께 0.03mm, 레이저 스캔 속도 1.5m s-1 .
또한, 실험 프린팅과 수치 시뮬레이션과 비교할 때, 용융 풀의 폭은 각각 약 205um 및 약 210um이었고, 인접한 두 용융 트랙 사이의 중첩은 모두 약 65um이었다. 결과는 수치 시뮬레이션 결과가 실험 인쇄 결과와 기본적으로 일치함을 보여 수치 시뮬레이션 모델의 정확성을 입증했습니다.
Selective Laser Melting (SLM) has become one of the most promising technologies in Metal Additive Manufacturing (MAM), which is a complex dynamic non-equilibrium process involving heat transfer, melting, phase transition, vaporization and mass transfer. The characteristics of the molten pool (structure, temperature flow and velocity flow) have a decisive influence on the final forming quality of SLM. In this study, both numerical simulation and experiments were employed to study molten pool structure, temperature flow and velocity field in Selective Laser Melting AlCu5MnCdVA alloy. The results showed the structure of molten pool showed different forms(deep-concave structure, double-concave structure, plane structure, protruding structure and ideal planar structure), and the size of the molten pool was approximately 132 μm × 107 μm × 50 μm: in the early stage, molten pool was in a state of deep-concave shape with a depth of 15 μm due to multiple driving forces, while a protruding shape with a height of 10 μm duo to tension gradient in the later stages of forming. The metal flow inside the molten pool was mainly driven by laser impact force, metal liquid gravity, surface tension and recoil pressure. For AlCu5MnCdVA alloy, metal liquid solidification speed was extremely fast(3.5 × 10−4 S), the heating rate and cooling rate reached 6.5 × 107 K S−1 and 1.6 × 106 K S−1 , respectively. Choosing surface roughness as a visual standard, low-laser energy AlCu5MnCdVA alloy optimum process parameters window was obtained by numerical simulation: laser power 250 W, hatching space 0.11 mm, layer thickness 0.03 mm, laser scanning velocity 1.5 m s−1 . In addition, compared with experimental printing and numerical simulation, the width of the molten pool was about 205 um and about 210 um, respectively, and overlapping between two adjacent molten tracks was all about 65 um. The results showed that the numerical simulation results were basically consistent with the experimental print results, which proved the correctness of the numerical simulation model.
Figure 1. AlCu5MnCdVA powder particle size distribution.Figure 2. AlCu5MnCdVA powderFigure 3. Finite element model and calculation domains of SLM.Figure 4. SLM heat transfer process.Figure 17. Two-pass molten tracks overlapping for Scheme NO.2.
References
[1] Cuiyun H 2008 Phase diagram determination and thermodynamic study of Al–Cu–Mn, Al–Cu–Si, Al–Mg–Ni and Ni–Ti–Si systems Central South University [2] Zhanfei Z 2017 Study on theta phase segregation and room temperature properties of high strength cast Al–Cu–Mn alloy Lanzhou University of Technology [3] Nie X et al 2018 Analysis of processing parameters and characteristics of selective laser melted high strength Al–Cu–Mg alloys: from single tracks to cubic samplesJ. Mater. Process. Technol. 256 69–77 [4] Shenping Y et al 2017 Laser absorptance measurement of commonly used metal materials in laser additive manufacturing technology Aviation Manufacturing Technology 12 23–9 [5] Wenqing W 2007 Relationship between cooling rate and grain size of AlCu5MnCdVA alloy Harbin University of Technology [6] Majeed M, Vural M, Raja S and Bilal Naim Shaikh M 2019 Finite element analysis of thermal behavior in maraging steel during SLM process Optik 208 113–24 [7] Khairallah S A, Anderson A T, Rubenchik A and King W E 2016 Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones Acta Mater. 108 36–45 [8] Bo C, Zhiyu X, Quanquan Z, Yuanbiao W, Liping W and Jin C 2020 Process optimization and microstructure and properties of SLM forming Cu6AlNiSnInCe imitation gold alloy Chin. J. Nonferr. Met. 30 372–82 [9] Li W 2012 Research on performance of metal parts formed by selective laser melting Huazhong University of Science and Technology [10] Yu Q 2013 The influence of different laser heat sources on the surface shape of the molten pool in laser cladding Surf. Technol. 42 40–3
[11] Xianfeng J, Xiangchen M, Rongwei S, Xigen Y and Ming Y 2015 Research on the influence of material state change on temperature field in SLM processing Applied Laser 35 155–9 [12] Körner C, Attar E and Heinl P 2011 Mesoscopic simulation of selective beam melting processesJ. Mater. Process. Technol. 211 978–87 [13] Yadroitsev I, Gusarov A, Yadroitsava I and Smurov I 2010 Single track formation in selective laser melting of metal powdersJ. Mater. Process. Technol. 210 1624–31 [14] King W, Anderson A T, Ferencz R M, Hodge N E, Kamath C and Khairallah S A 2014 Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory Mater. Sci. Technol. 31 957–68 [15] Hussein A, Hao L, Yan C and Everson R 2013 Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting Materials & Design (1980–2015) 52 638–47 [16] Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W and Attallah M M 2015 On the role of melt flow into the surface structure and porosity development during selective laser melting Acta Mater. 96 72–9 [17] Weihao Y, Hui C and Qingsong W 2020 Thermodynamic behavior of laser selective melting molten pool under the action of recoil pressure Journal of Mechanical Engineering 56 213–9 [18] Weijuan Y 2019 Numerical simulation of melt pool temperature field and morphology evolution during laser selective melting process Xi’an University of Technology [19] Genwang W 2017 Research on the establishment of laser heat source model based on energy distribution and its simulation application Harbin Institute of Technology [20] FLOW-3D 2017 User Manual (USA: FLOW SCIENCE) [21] Hirt C and Nichols B 1981 Volume of fluid (VOF) method for the dynamics of free boundariesJ. Comput. Phys. 39 201–25 [22] Hu Z, Zhang H, Zhu H, Xiao Z, Nie X and Zeng X 2019 Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting Materials Science and Engineering: A 759 154–66 [23] Ketai H, Liu Z and Lechang Y 2020 Simulation of temperature field, microstructure and mechanical properties of 316L stainless steel in selected laser melting Progress in Laser and Optoelectronics 9 1–18 [24] Cao L 2020 Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel Comput. Math. Appl. 4 22–34 [25] Dening Z, Yongping L, Tinglu H and Junyi S 2000 Numerical study of fluid flow and heat transfer in molten pool under the condition of moving heat source J. Met. 4 387–90 [26] Chengyun C, Cui F and Wenlong Z 2018 The effect of Marangoni flow on the thermal behavior and melt flow behavior of laser cladding Applied Laser 38 409–16 [27] Peiying B and Enhuai Y 2020 The effect of laser power on the morphology and residual stress of the molten pool of metal laser selective melting Progress in Laser and Optoelectronics 7 1–12 http://kns.cnki.net/kcms/detail/31.1690.TN.20190717.0933.032.html [28] Zhen L, Dongyun Z, Zhe F and Chengjie W 2017 Numerical simulation of the influence of overlap rate on the forming quality of Inconel 718 alloy by selective laser melting processing Applied Laser 37 187–93 [29] Wei W, Qi L, Guang Y, Lanyun Q and Xiong X 2015 Numerical simulation of electromagnetic field, temperature field and flowfield of laser melting pool under the action of electromagnetic stirring China Laser 42 48–55 [30] Hu Y, He X, Yu G and Zhao S 2016 Capillary convection in pulsed—butt welding of miscible dissimilar couple Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231 2429–40 [31] Li R 2010 Research on the key basic problems of selective laser melting forming of metal powder Huazhong University of Science and Technology [32] Zijue T, Weiwei L, Zhaorui Y, Hao W and Hongchao Z 2019 Study on the shape evolution behavior of metal laser melting deposition based on molten pool dynamic characteristicsJournal of Mechanical Engineering 55 39–47 [33] Pan L, Cheng-Lin Z, Hai-Yi L, Liang W and Tong L 2020 A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure Mater. Res. Express 7 056503 [34] Pan L, Cheng-Lin Z, Hai-Yi L, Jiang H, Tong L and Liang W 2019 The influence and optimization of forming process parameters of 316L stainless steel prepared by laser melting on the density Forging Technology 44 103–9
Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*
Abstract
염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.
Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.
Keywords
computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination
Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study.
(b) Batch experiment set-up for kinetic tests.Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real
picture of the system (b).Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration.
Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial
seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c)
artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot
represents experimental data, and each point on the black line is the expected chlorine concentration
obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay
model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow
rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow
rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view
of electrode side in image (a); (c) velocity magnitude; (d) pressure.Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination
with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure
shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the
pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm
of distance from the pipe wall.Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale
applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine
demands.
References
Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.; Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid
Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4
Abstract
태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.
다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.
본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.
나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.
본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.
The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.
1. Introduction
Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].
Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].
Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.
There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.
Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.
Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [2, 12–15].
Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [18, 19].
Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.
Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.
The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.
2. Cycle Description
CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].
For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.
According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.
2.1. System Analysis Equations
An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic
Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.
Figure 1Schematic shape of the cogeneration cycle.Table 2Temperature and humidity of different points of system.
Based on the first law of thermodynamic, energy analysis is based on the following steps.
First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.
Collector efficiency is going to be calculated by the following equation [9]:
Total energy received by the collector is given by [9]
In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:
3. Porous Media
The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.
Figure 2Copper foam with a porosity of 95%.Table 3Thermophysical parameters and dimensions of copper foam.
In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.
Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.
Figure 3Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.
3.1. Nano Fluid
In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4Properties of the nanoparticles [9].
System constant parameters for input in the software are shown in Table 5.Table 5System constant parameters.
The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).
The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.
The specific heat capacity is calculated from the following equation [29]:
The thermal conductivity of the nanofluid is calculated from the following equation [29]:
The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.
The mixture viscosity is calculated as follows [30]:
In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.
4. Results and Discussion
In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.
Figure 4Verification charts of energy analysis results.
Figure 5Verification charts of exergy analysis results.
We may also investigate the application of machine learning paradigms [31–41] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [42–55], and intelligent model studies [56–61] as well, for example, methods such as particle swarm optimizer (PSO) [60, 62], differential search (DS) [63], ant colony optimizer (ACO) [61, 64, 65], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [53, 67], differential evolution (DE) [68, 69], and other fusion and boosted systems [41, 46, 48, 50, 54, 55, 70, 71].
At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [9, 22–26, 30, 72]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6Collectors with different percentages of nanofluids and porous media.
In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.
Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.
Figure 6Energy and exergy efficiencies of the PTC with porous media and nanofluid.
Figure 7Energy and exergy efficiency of the SCCHP.
Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.
In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.
5. Conclusion and Future Directions
In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.
In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.
In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.
Nomenclature
:
Solar radiation
a:
Heat transfer augmentation coefficient
A:
Solar collector area
Bf:
Basic fluid
:
Specific heat capacity of the nanofluid
F:
Constant of air dilution
:
Thermal conductivity of the nanofluid
:
Thermal conductivity of the basic fluid
:
Viscosity of the nanofluid
:
Viscosity of the basic fluid
:
Collector efficiency
:
Collector energy receives
:
Auxiliary boiler heat
:
Expander energy
:
Gas energy
:
Screw expander work
:
Cooling load, in kilowatts
:
Heating load, in kilowatts
:
Solar radiation energy on collector, in Joule
:
Sanitary hot water load
Np:
Nanoparticle
:
Energy efficiency
:
Heat exchanger efficiency
:
Sun exergy
:
Collector exergy
:
Natural gas exergy
:
Expander exergy
:
Cooling exergy
:
Heating exergy
:
Exergy efficiency
:
Steam mass flow rate
:
Hot water mass flow rate
:
Specific heat capacity of water
:
Power output form by the screw expander
Tam:
Average ambient temperature
:
Density of the mixture.
Greek symbols
ρ:
Density
ϕ:
Nanoparticles volume fraction
β:
Ratio of the nanolayer thickness.
Abbreviations
CCHP:
Combined cooling, heating, and power
EES:
Engineering equation solver.
Data Availability
For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.
References
A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
곡면에서 GMAW 기반 적층 가공의 용접 성형 특성은 중력의 영향을 크게 받습니다. 성형면의 경사각이 크면 혹 비드(hump bead)와 같은 심각한 결함이 발생합니다.
본 논문에서는 양생면에서 용접 비드 형성의 형성 특성과 제어 방법을 연구하기 위해 용접 용융 풀 유동 역학의 전산 모델을 수립하고 제안된 모델을 검증하기 위해 증착 실험을 수행하였습니다.
결과는 용접 비드 경사각(α)이 증가함에 따라 역류의 속도가 증가하고 상향 용접의 경우 α > 60°일 때 불규칙한 험프 결함이 나타나는 것으로 나타났습니다.
상부 과잉 액체의 하향 압착력과 하부 상향 유동의 반동력과 표면장력 사이의 상호작용은 용접 혹 형성의 주요 요인이었다. 하향 용접의 경우 양호한 형태를 얻을 수 있었으며, 용접 비드 경사각이 증가함에 따라 용접 높이는 감소하고 용접 폭은 증가하였습니다.
하향 및 상향 용접을 위한 곡면의 용융 거동 및 성형 특성을 기반으로 험프 결함을 제어하기 위해 위브 용접을 통한 증착 방법을 제안하였습니다.
성형 궤적의 변화로 인해 용접 방향의 중력 성분이 크게 감소하여 용융 풀 흐름의 안정성이 향상되었으며 복잡한 표면에서 안정적이고 일관된 용접 비드를 얻는 데 유리했습니다.
하향 용접과 상향 용접 사이의 단일 비드의 치수 편차는 7% 이내였으며 하향 및 상향 혼합 혼합 비드 중첩 증착에서 비드의 변동 편차는 0.45로 GMAW 기반 적층 제조 공정에서 허용될 수 있었습니다.
이러한 발견은 GMAW를 기반으로 하는 곡선 적층 적층 제조의 용접 비드 형성 제어에 기여했습니다.
The weld forming characteristics of GMAW-based additive manufacturing on curved surface are dramatically influenced by gravity. Large inclined angle of the forming surface would lead to severe defects such as hump bead. In this paper, a computational model of welding molten pool flow dynamics was established to research the forming characteristic and control method of weld bead forming on cured surface, and deposition experiments were conducted to verify the proposed model. Results indicated that the velocity of backward flows increased with the increase of weld bead tilt angle (α) and irregular hump defects appeared when α > 60° for upward welding. The interaction between the downward squeezing force of the excess liquid at the top and the recoil force of the upward flow at the bottom and the surface tension were primary factors for welding hump formation. For downward welding, a good morphology shape could be obtained, and the weld height decreased and the weld width increased with the increase of weld bead tilt angle. Based on the molten behaviors and forming characteristics on curved surface for downward and upward welding, the method of deposition with weave welding was proposed to control hump defects. Gravity component in the welding direction was significantly reduced due to the change of forming trajectory, which improved the stability of the molten pool flow and was beneficial to obtain stable and consistent weld bead on complex surface. The dimensional deviations of the single bead between downward and upward welding were within 7% and the fluctuation deviation of the bead in multi-bead overlapping deposition with mixing downward and upward welding was 0.45, which could be acceptable in GMAW-based additive manufacturing process. These findings contributed to the weld bead forming control of curve layered additive manufacturing based on GMAW.
7.Xie FB, Chen LF, Li ZY, Tang K (2020) Path smoothing and feed rate planning for robotic curved layer additive manufacturing. Robot Comput Integr Manuf 65. https://doi.org/10.1016/j.rcim.2020.101967
8.Ding YY, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44:67–76. https://doi.org/10.1016/j.rcim.2016.08.008ArticleGoogle Scholar
12.Yuan L, Pan ZX, Ding DH, He FY, Duin SV, Li HJ, Li WH (2020) Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf 63. https://doi.org/10.1016/j.rcim.2019.101916
13.Nguyen MC, Medale M, Asserin O, Gounand S, Gilles P (2017) Sensitivity to welding positions and parameters in GTA welding with a 3D multiphysics numerical model. Numer Heat Transf Part A Appl 71:233–249. https://doi.org/10.1080/10407782.2016.1264747ArticleGoogle Scholar
17.Philip Y, Xu ZY, Wang Y, Wang R, Ye X (2019) Investigation of humping defect formation in a lap joint at a high-speed hybrid laser-GMA welding. Results Phys 13. https://doi.org/10.1016/j.rinp.2019.102341
18.Hu ZQ, Qin XP, Shao T, Liu HM (2018) Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW. Int J Adv Manuf Technol 95:2357–2368. https://doi.org/10.1007/s00170-017-1392-9ArticleGoogle Scholar
19.Tang SY, Wang GL, Huang C, Li RS, Zhou SY, Zhang HO (2020) Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyp J 26:1183–1195. https://doi.org/10.1108/RPJ-08-2019-0229ArticleGoogle Scholar
20.Bai X, Colegrove P, Ding J, Zhou XM, Diao CL, Bridgeman P, Honnige JR, Zhang HO, Williams S (2018) Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 124:504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085ArticleGoogle Scholar
21.Siewert E, Schein J, Forster G (2013) Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon-iron. J Phys D Appl Phys 46. https://doi.org/10.1088/0022-3727/46/22/224008
23.Fachinotti VD, Cardona A (2008) Semi-analytical solution of the thermal field induced by a moving double-ellipsoidal welding heat source in a semi-infinite body. Mec Comput XXVII:1519–1530
24.Nguyen NT, Mai YW, Simpson S, Ohta A (2004) Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Weld J 83:82–93Google Scholar
25.Goldak J, Chakravarti A, Bibby M (1985) A double ellipsoid finite element model for welding heat sources. IIW Doc. No. 212-603-85
29.Zhan XH, Zhang D, Liu XB, Chen J, Wei YH, Liu RP (2017) Comparison between weave bead welding and multi-layer multi-pass welding for thick plate Invar steel. Int J Adv Manuf Technol 88:2211–2225. https://doi.org/10.1007/s00170-016-8926-4ArticleGoogle Scholar
30.Xu GX, Li L, Wang JY, Zhu J, Li PF (2018) Study of weld formation in swing arc narrow gap vertical GMA welding by numerical modeling and experiment. Int J Adv Manuf Technol 96:1905–1917. https://doi.org/10.1007/s00170-018-1729-zArticleGoogle Scholar
Flood Inundation Evolution of Barrier Lake and Evaluation of Regional Ecological Spatiotemporal Response — A Case Study of Sichuan-Tibet Region
Abstract
중국 쓰촨-티베트 지역은 댐 호수의 발생과 붕괴를 동반한 지진 재해가 빈번한 지역이었습니다. 댐 호수의 붕괴는 하류 직원의 생명과 재산 안전을 심각하게 위협합니다.
동시에 국내외 학자들은 주변의 댐 호수에 대해 우려하고 있으며 호수에 대한 생태 연구는 거의 없으며 댐 호수가 생태에 미치는 영향은 우리 호수 건설 프로젝트에서 매우 중요한 계몽 의의를 가지고 있습니다.
이 기사의 목적은 방벽호의 댐 붕괴 위험을 과학적으로 예측하고 생태 환경에 대한 영향을 조사하며 통제 조치를 제시하는 것입니다. 본 논문은 쓰촨-티베트 지역의 Diexihaizi, Tangjiashan 댐호, Hongshihe 댐의 4대 댐 호수 사건을 기반으로 원격 감지 이미지에서 수역을 추출하고 HEC-RAS 모델을 사용하여 위험이 있는지 여부를 결정합니다.
댐 파손 여부 및 댐의 경로 예측; InVEST 모델을 이용하여 1990년부터 2020년까지 가장 작은 행정 구역(군/구)이 위치한 서식지를 평가 및 분석하고, 홍수 침수 결과를 기반으로 평가합니다. 결과는 공학적 처리 후 안정적인 댐 호수(Diexi Haizi)가 서식지 품질 지수에 안정화 효과가 있음을 보여줍니다.
댐 호수의 형성은 인근 토지 이용 유형과 지역 경관 생태 패턴을 변화 시켰습니다. 서식지 품질 지수는 사이 호수 주변 1km 지역에서 약간 감소하지만 3km 지역과 5km 지역에서 서식지 품질이 향상됩니다. 인공 홍수 방류 및 장벽 호수의 공학적 보강이 필요합니다.
이 논문에서 인간의 통제가 강한 지역은 다른 지역의 서식지 질 지수보다 더 잘 회복될 것입니다.
The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel.
At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures.
Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation.
The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern.
The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions’ habitat quality index.
Fengshan Jiang ( florachaing@mail.ynu.edu.cn ) Yunnan University https://orcid.org/0000-0001-6231-6180 Xiaoai Dai Chengdu University of Technology https://orcid.org/0000-0003-1342-6417 Zhiqiang Xie Yunnan University Tong Xu Yunnan University Siqiao Yin Yunnan University Ge Qu Chengdu University of Technology Shouquan Yang Yunnan University Yangbin Zhang Yunnan University Zhibing Yang Yunnan University Jiarui Xu Yunnan University Zhiqun Hou Kunming institute of surveying and mapping
Keywords
dammed lake, regional ecology, flood simulation, habitat quality
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, ChinaFigure 8
Habitat quality changes in Maoxian CountyFigure 9
Habitat quality changes in Beichuan CountyFigure 10
Habitat quality change map of Qingchuan County
References
Chaoying Hu H S, Tianming Zhang. 2017. Environmental impact assessment of barrier lake treatment project based on ecological footprint[J]. People’s Yangtze River, 48: 30-32
Dai F C, Lee C F, Deng J H, et al. 2004. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China[J]. Geomorphology, 65.
Dongjing Chen Z X 2002. Research on Ecological Security Evaluation of Inland River Basin in Northwest China——A Case Study of Zhangye Region in the Middle Reaches of Heihe River Basin[J]. Arid zone geography: 219-224
Dongsheng Chang L Z, Yao Xu, Runqiu Huang. 2009. Risk Assessment of Overtopping Dam Burst in Hongshi River Barrier Lake[J]. Journal of Engineering Geology, 17: 50-55
Fan X, Yunus Ali P, Jansen John D, et al. 2019. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27–42[J]. Geomorphology.
Feng Yu X L, Hong Wang, Hongjing Yu. 2006. Land Use Change and Ecological Security Evaluation in Huangfuchuan Watershed[J]. Acta Geographica Sinica: 645-653.
Hafiyyan Q, Adityawan M B, Harlan D, et al. 2021. Comparison of Taylor Galerkin and FTCS models for dam-break simulation[J]. IOP Conference Series: Earth and Environmental Science, 737.
Haiwen Li X B 2020. Comprehensive Evaluation of the Restoration Status of Damaged Ecological Space along the Plateau Fragile Area of the Sichuan-Tibet Railway[J]. Journal of Railway Science and Engineering, 17: 2412-2422.
Haohao Li X R, Huabin Yang. 2008. Rescue construction and thinking of Hongshihe dammed lake in Qingchuan County[J]. Water Conservancy and Hydropower Technology (Chinese and English): 50-51+62
Hejun Chai, Runqiu Huang, Hanchao Liu I O E G, Chengdu University of Technology 1997. Analysis and Evaluation of the Dangerous Degree of Landslide Blocking the River[J]. Chinese Journal of Geological Hazard and Control: 2-8+16
Hong Wang Y L, Lili Song, Yun Chen. 2020. Comparison of characteristics of thunderstorm and gale activity and environmental factors in Sichuan-Tibet area[J]. Journal of Applied Meteorology, 31: 435-446.
Hongyan X, Xu H, Jiang H, et al. 2020. Potential pollen evidence for the 1933 M 7.5 Diexi earthquake and implications for post-seismic landscape recovery[J]. Environmental Research Letters, 15.
Hui Xu J C, Zhijiu Cui, Pei Guo. 2019. Analysis of Grain Size Characteristics of Sediment in Dammed Lake——Taking Diexi Ancient Dammed Lake in the Upper Minjiang River as an Example[J]. Acta Sedimentologica Sinica, 37: 51-61
Jian Yang B P, Min Zhao. 2014. Research on Ecological Restoration Technology in Wenchuan Earthquake-Stricken Area ——Taking Tangjiashan Barrier Lake Area as an Example[J]. Sichuan Building Science Research, 40: 164-167.
Jian Yang B P 2017. Evaluation of Ecological Quality of Tangjiashan Dammed Lake Region in Beichuan County[J]. People’s Yangtze River, 48: 27-32
Jianfeng Chen Y W, Yang Li. 2006. Application of HEC-RAS model in flood simulation[J]. Northeast Water Resources and Hydropower: 12-13+42+71.
Jiankang Liu Z C, Tao Yu. 2016. Dam failure risk and its impact of Hongshiyan dammed lake in Ludian, Yunnan[J]. Journal of Mountain Science, 34: 208-215
Jianrong Fan B T, Genwei Cheng, Heping Tao, Jianqiang Zhang,Dong Yan, Fenghuan Su. 2008. Information extraction of dammed bodies induced by the May 12 Wenchuan earthquake based on multi-source remote sensing data[J]. Journal of Mountain Science: 257-262.
Jinghuan Tian K Z, Meng Chen, Fuxin Chai. 2012. Research on the application of HEC-RAS model in flood risk analysis and assessment[J]. Hydropower Energy Science, 30: 23-25
Juan He X W 2015. Dam-break flood analysis based on HEC-RAS and HEC-GeoRAS[J]. Journal of Water Resources and Water Transport Engineering: 112-116
Junwei Gan L Y, Jinjun Li. 2017. Research on the Influencing Factors of Sichuan-Tibet Tourism Industry Competitiveness Based on DEMATEL[J]. Arid Land Resources and Environment, 31: 197-202
Lansheng Wang L Y, Xiaoqun Wang, Liping Duan 2005. Discovery of the ancient dammed lake in Diexi, Minjiang River[J]. Journal of Chengdu University of Technology (Natural Science Edition): 1-11
Ma S, Zhu J, Ya. H. Year. Construction of Risk Assessment System of Dam-break in Barrier Lake Based on Collaborative Workflow: 9.
Ming Zeng Y C, Bingyu Zou. 2019. Discussion on the Method of Forecasting the Flood Evolution of Barrier Lake Burst—— Taking “11·3” Jinsha River Baige Barrier Lake as an Example[J]. Water Resources and Hydropower Express, 40: 11-14
Ouyang C, An H, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China Landslides[J]. 16.
Peng M, Zhang L M 2012. Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks[J]. Natural Hazards, 64.
Qianfeng Li Y L, Gang Liu, Zhiyun Ouyang, Hua Zheng. 2013. The Impact of Land Use Change on Ecosystem Service Function——Taking Miyun Reservoir Watershed as an Example[J]. Acta Ecologica Sinica, 33: 726-736.
Qiang Xu G Z, Weile Li, Zhaoyang He, Xiujun Dong, Chen Guo, Wenkai Feng. 2018. Analysis and study of two landslides and dams blocking the river in Baige on the Jinsha River in October and November 2018[J]. Journal of Engineering Geology, 26: 1534-1551
Qin Ji J Y, Hongju Chen, Man Li. 2019. Analysis of Economic Differences Along the Sichuan-Tibet Railway from the Perspective of Spatial and Industrial Decomposition[J]. Glacier permafrost: 1-14
Qingchun Li Y H, Yubing Shi. 2020. Study on the stability of the residual dam in Tangjiashan dammed lake[J]. Journal of Underground Space and Engineering, 16: 993-998
Qiwen Xiang J P, Guangze Zhang, Zhengxuan Xu, Dingkai Zhang, Wenli Tu. 2020. Monitoring and Analysis of Surface Deformation in Zheduo Mountain Area of Sichuan-Tibet Railway Based on SBAS Technology[J]. Surveying Engineering, 29: 48-54+59
Shangfu Kuang X W, Jinchi Huang, Yinqi Wei 2008. Analysis and Evaluation of Dam-Break Risk of Barred Lake and Its Influence[J]. China Water Resources: 17-21.
Sheng-Hsueh Y, Yii-Wen P, Jia-Jyun D, et al. 2013. A systematic approach for the assessment of flooding hazard and risk associated with a landslide dam[J]. Natural Hazards, 65.
Sun L 2021. Research on Fast Perception and Simulation Calculation Method of Landslide Dam in Alpine and Gorge Area: Taking Baige Dammed Lake as an Example[J]. Water Conservancy and Hydropower Technology (Chinese and English), 52: 44-52
Tamiru H, O. D M 2021. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 36.
Tao Pan S W, Erfu Dai, Yujie Liu. 2013. Spatio-temporal changes of water supply services in the ecosystem of the Three Rivers Source Region based on InVEST model[J]. Journal of Applied Ecology, 24: 183-189
Vera K, Sergey C, Inna K, et al. 2017. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley[J]. Frontiers of Earth Science, 11.
Wang Z 1985. Preliminary Discussion on the Evaluation of Ecological Environment Quality in Minjiang River Basin[J]. Journal of ecology: 29-32
Wei Chen Z S, Hui Guo,Hao Wang, Ting Wei, Nan Li, Kaiyi Zhang Shuxiang Yang, Kaijia Dai. 2007. Analysis of Bird Resources and Habitats in Wuhan Urban Lakes and Urban Wetlands in Winter[J]. Forestry Investigation and Planning: 46- 50
Wei G, Gaohong X, Jun S, et al. 2020. Simulation of Flood Process Based on the Model of Improved Barrier Lake’s Gradual Dam Break Model %J Journal of Coastal Research[J]. 104.
Wei X, Jiang H, Xu H, et al. 2021. Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau[J]. Ecological Indicators, 129.
Wei Xu M L, Jie Yang, Chunzhi Li, Xiaojuan Shang. 2011. Risk Analysis of Flood Overflow in Huainan Section of Huaihe River Based on HEC-RAS[J]. Journal of Yangtze River Scientific Research Institute, 28: 13-18
Weiwei Zhan R H, Xiangjun Pei, Weile Li. 2017. Research on empirical prediction model of channel type landslide-debris flow movement distance[J]. Journal of Engineering Geology, 25: 154-163
Xianju Zheng H L, Wenhai Huang. 2015. Numerical Simulation of Reconstruction of Natural Dams Induced by Heavy Rain ——An Example of Tangjiashan Dammed Lake[J]. Business story: 62-63
Xiao-Qun W, Xin H, Man S, et al. 2020. Possible relatedness between the outburst of the Diexi ancient dammed lake and ancient Chengdu’s cultural change[J]. Journal of Mountain Science, 17: 2497-2511.
Xingbo Zhou X D, Yu Yao. 2019. Analysis of the dam-break flood of the Baige dammed lake on the Jinsha River[J]. Hydroelectric Power, 45: 8-12+32
Xinhua Zhang R X, Ming Wang, Zhiqiu Yu, Bingdong Li, Bo Wang. 2020. Investigation and analysis of flood disaster caused by dam break of Baige landslide on Jinsha River[J]. Engineering Science and Technology, 52: 89-100
Xinxiao Yu B Z, Xizhi Lv, Zhige Yang. 2012. Evaluation of Forest Water Conservation Function of Beijing Mountainous Area Based on InVEST Model[J]. Forestry Science, 48: 1-5
Xu J, Guo J, Zhang J, et al. 2021. Route choice model based on cellular automata and cumulative prospect theory: Case analysis of transportation network in Sichuan-Tibet region[J]. Journal of Intelligent & Fuzzy Systems, 40.
Xuan Liang Z Z 2021. Research on the Influence of Numerical Simulation of Tailings Pond Based on FLOW-3D on Downstream[J]. Jiangxi Water Conservancy Science and Technology, 47: 11-20
Yu Zheng P Z, Feng Tang, Li Zhao, Xu Zhao. 2018. Research on the Impact of Land Use Change on Habitat Quality in Changli County Based on InVEST Model[J]. China’s Agricultural Resources and Regionalization, 39: 121-128
Yuanyuan Yang E D, Hua Fu. 2012. Research Framework of Value Evaluation of Ecosystem Service Function Based on InVEST Model[J]. Journal of Capital Normal University (Natural Science Edition), 33: 41-47
Yunfei Ma T L, Jinbiao Xiong. 2021. Numerical simulation of dam-break flow based on VOF method and DFBI model[J]. Applied Technology, 48: 23-28
Zhe Wu X C, Beibei Liu, Jinfeng Chu, Lixu Peng. 2013. Research progress of InVEST model and its application[J]. Tropical Agriculture Science, 33: 58-62
Zhengpeng Li Y H, Yilun Li, Yuehong Ying, Zehua Huangfu. 2021. Numerical simulation of dam-break flood in Qianping Reservoir based on BIM+GIS technology[J]. People’s Yellow River, 43: 160-164
Zhenming Shi X X, Ming Peng, Minglang Lin. 2015. Analysis of Seepage Stability of Barrier Dam with High Permeability Area——Taking Hongshihe Barrier Dam as an Example[J]. Journal of Hydraulic Engineering, 46: 1162-1171.
Zhu J, Qi H, Hu Y, et al. 2012. A DVGE service system for risk assessment of dam-break in barrier lake[J]. International Conference on Automatic Control and Artificial Intelligence (ACAI 2012).
Zhu Y, Peng M, Cai S, et al. 2021. Risk-Based Warning Decision Making of Cascade Breaching of the Tangjiashan Landslide Dam and Two Smaller Downstream Landslide Dams[J]. Frontiers in Earth Science.
Zuyu Chen G H, Qiang Zhang, Shuaifeng Wu. 2020. Disaster Mitigation Analysis of Cascade Hydropower Stations on the Jinsha River in “11.03” Baige Barrier Lake Emergency Treatment[J]. Hydropower, 46: 59-63
Zuyu Chen S C, Lin Wang, Qiming Zhong, Qiang Zhang, Songli Jin. 2020. Inversion analysis of the “11.03” Baige barrier lake burst flood in the upper reaches of the Jinsha River[J]. Science in China: Technological Science, 50: 763-774.
많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.
이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.
얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.
여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.
모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.
Study of inception point, void fraction and pressure over pooled stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.
Design/methodology/approach
압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.
Findings
마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h
step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):
d’ is the water depth above the crest; y’ is the distance normal to the crest invertFigure 2- meshing domain and distribution of blocksFigure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
mesh convergence analysis; pooled stepped spillway (slope: 26.6 0
)Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
Flat stepped spillway (slope: 0
26 6. )Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled
and flat stepped spillways (slope: 0
9.8 )Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),
288941 (model 2), 323578 (model 3) and 343154 (model 4)Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with
experimental work conducted by Felder et al. (2012A); (slope 26.60
)Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with
empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical dataFigure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0Figure 10- Comparison of pressure distribution between numerical simulation and experimental work
conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0
45 )Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the
free surface profile along the crest of the spillway.
Note: x’ indicates the longitudinal distance from the starting point of the crest.Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe
longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the
distance from the intersection of the horizontal and vertical faces in the vertical directionFigure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopesTable1- Used discharges for assessments of mesh convergence analysis and hydraulic
characteristics
Conclusion
본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.
낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.
In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.
The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.
References
André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis, Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and Engineering, 39(4), 2587-2594.
Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways”. Environmental fluid mechanics, 11(3) 263-288.
Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”. International Journal of Hydraulic Engineering; 2(3): 47-52.
Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway. Journal of computational multiphase flows”, Volume 7. Number 1.
Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings of the world water congress.
Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources Congress ASCE.
Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study
Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”. Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of Hydraulic Engineering, 139(6), 630-636.
Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”, department of civil engineering, Brisbane, Australia, Phd thesis.
Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources Congress, ASCE.
Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng., 139(1), 60–64.
Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema. 69–76.
Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment dams”. J. Hydraul. Eng., 135(8), 685–689.
Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI 10.1007/s00707-015-1444-x
Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped spillway”. Civil Engineering Journal. Vol. 2, No. 5.
Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE Convention.
Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema, 137–146.
Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan University of Technology (IUT), Isfahan, Iran.
Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering 127.8:640-649.
Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI 10.1007/s12205-013-0749-3.
Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”. Computers & structures, 83(27) 2215-2224.
Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015- 5783-6.
Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY .1943-7900.0000630.
Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and velocity fields. Journal of Hydraulic Engineering, 142(7).
Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF Method”. Procedia Engineering, 28, 808-812.
Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”. Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021
Abstract
Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.
강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.
1. Introduction
Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [1–14]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [15–27]. Consequently, it is necessary to study the effects of the passive factors on the active domain [28–36]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [38–41].
One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [43–45]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [47, 48].
Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity is another form of current resistance. The reason for using the ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].
To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].
The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where n, f, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed, = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:
Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.
On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:
By using equation (6), equation (5) is converted as follows:
Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].
Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [45, 55].
One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [47, 57, 58] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [45, 59–61]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [49, 63–66] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.
FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where are mass accelerations in the directions x, y, z and are viscosity accelerations in the directions x, y, z and are obtained from the following equations:
Shear stresses in equation (11) are obtained from the following equations:
The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.
Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.
Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.
In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1The studied models.
The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After seconds, this model reached a convergence accuracy of .
Figure 1The simulated model and its boundary conditions.
Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.
48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.
Any control and simulation system has some inputs that we should determine to test any technology [70–77]. Determination and true implementation of such parameters is one of the key steps of any simulation [23, 78–81] and computing procedure [82–86]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.
Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [87, 88]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).
Figure 2Modeling the plant with cylindrical tubes at the bottom of the canal.
Figure 3Velocity profiles in positions 2 and 5.
The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.
The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.
The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.
2. Modeling Results
After analyzing the models, the results were shown in graphs (Figures 4–14 ). The total number of experiments in this study was 48 due to the limitations of modeling. (a) (b) (c) (d) (a) (b) (c) (d)Figure 4Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.
Figure 5Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.
Figure 6Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.
Figure 7Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.
Figure 8Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second. (a) (b) (c) (d) (a) (b) (c) (d)Figure 9Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
Figure 10Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.
Figure 11Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.
Figure 12Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.
Figure 13Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second. (a) (b) (c) (d) (a) (b) (c) (d)Figure 14Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.
According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.
According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.
According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.
According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5–10, which can be justified by increasing the speed and, of course, increasing the Froude number.
With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 5–8 and 10, 11), which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.
Figure 15Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.
According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 16Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.
According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 17Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.
According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 18Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.
According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds. (a) (b) (c) (a) (b) (c)Figure 19Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.
According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed. (a) (b) (c) (a) (b) (c)Figure 20Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.
According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [2, 7, 8, 15, 18, 89–94]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [95–99]. (a) (b) (c) (a) (b) (c)Figure 21Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.
3. Conclusion
The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.
Nomenclature
n:
Manning’s roughness coefficient
C:
Chézy roughness coefficient
f:
Darcy–Weisbach coefficient
V:
Flow velocity
R:
Hydraulic radius
g:
Gravitational acceleration
y:
Flow depth
Ks:
Bed roughness
A:
Constant coefficient
:
Reynolds number
∂y/∂x:
Depth of water change
S0:
Slope of the canal floor
Sf:
Slope of energy line
Fr:
Froude number
D:
Characteristic length of the canal
G:
Mass acceleration
:
Shear stresses.
Data Availability
All data are included within the paper.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.
References
H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Electromagnetic metal casting (EMC) is a casting technique that uses electromagnetic energy to heat metal powders. It is a faster, cleaner, and less time-consuming operation. Solid metals create issues in electromagnetics since they reflect the electromagnetic radiation rather than consume it—electromagnetic energy processing results in sounded pieces with higher-ranking material properties and a more excellent microstructure solution. For the physical production of the electromagnetic casting process, knowledge of electromagnetic material interaction is critical. Even where the heated material is an excellent electromagnetic absorber, the total heating quality is sometimes insufficient. Numerical modelling works on finding the proper coupled effects between properties to bring out the most effective operation. The main parameters influencing the quality of output of the EMC process are: power dissipated per unit volume into the material, penetration depth of electromagnetics, complex magnetic permeability and complex dielectric permittivity. The contact mechanism and interference pattern also, in turn, determines the quality of the process. Only a few parameters, such as the environment’s temperature, the interference pattern, and the rate of metal solidification, can be controlled by AI models. Neural networks are used to achieve exact outcomes by stimulating the neurons in the human brain. Additive manufacturing (AM) is used to design mold and cores for metal casting. The models outperformed the traditional DFA optimization approach, which is susceptible to local minima. The system works only offline, so real-time analysis and corrections are not yet possible.
Korea Abstract
전자기 금속 주조 (EMC)는 전자기 에너지를 사용하여 금속 분말을 가열하는 주조 기술입니다. 더 빠르고 깨끗하며 시간이 덜 소요되는 작업입니다.
고체 금속은 전자기 복사를 소비하는 대신 반사하기 때문에 전자기학에서 문제를 일으킵니다. 전자기 에너지 처리는 더 높은 등급의 재료 특성과 더 우수한 미세 구조 솔루션을 가진 사운드 조각을 만듭니다.
전자기 주조 공정의 물리적 생산을 위해서는 전자기 물질 상호 작용에 대한 지식이 중요합니다. 가열된 물질이 우수한 전자기 흡수재인 경우에도 전체 가열 품질이 때때로 불충분합니다. 수치 모델링은 가장 효과적인 작업을 이끌어 내기 위해 속성 간의 적절한 결합 효과를 찾는데 사용됩니다.
EMC 공정의 출력 품질에 영향을 미치는 주요 매개 변수는 단위 부피당 재료로 분산되는 전력, 전자기의 침투 깊이, 복합 자기 투과성 및 복합 유전율입니다. 접촉 메커니즘과 간섭 패턴 또한 공정의 품질을 결정합니다. 환경 온도, 간섭 패턴 및 금속 응고 속도와 같은 몇 가지 매개 변수 만 AI 모델로 제어 할 수 있습니다.
신경망은 인간 뇌의 뉴런을 자극하여 정확한 결과를 얻기 위해 사용됩니다. 적층 제조 (AM)는 금속 주조용 몰드 및 코어를 설계하는 데 사용됩니다. 모델은 로컬 최소값에 영향을 받기 쉬운 기존 DFA 최적화 접근 방식을 능가했습니다. 이 시스템은 오프라인에서만 작동하므로 실시간 분석 및 수정은 아직 불가능합니다.
electromagnetic metal casting computation designs Fig1electromagnetic metal casting computation designs Fig2electromagnetic metal casting computation designs Fig3electromagnetic metal casting computation designs Fig4electromagnetic metal casting computation designs Fig5electromagnetic metal casting computation designs Fig6electromagnetic metal casting computation designs Fig7electromagnetic metal casting computation designs Fig8electromagnetic metal casting computation designs Fig9
References
1.J. Sun, W. Wang, Q. Yue, Review on electromagnetic-matter interaction fundamentals and efficient electromagnetic-associated heating strategies. Materials 9(4), 231 (2016). https://doi.org/10.3390/ma9040231ADSArticleGoogle Scholar
2.E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, electromagnetic and spark plasma sintering methods. Materials 10(11), 1255 (2017). https://doi.org/10.3390/ma10111255ADSArticleGoogle Scholar
10.R. Singh, S. Singh, V. Mahajan, Investigations for dimensional accuracy of investment casting process after cycle time reduction by advancements in shell moulding. Procedia Mater. Sci. 6, 859–865 (2014). https://doi.org/10.1016/j.mspro.2014.07.103ArticleGoogle Scholar
19.V. Gangwar, S. Kumar, V. Singh, H. Singh, Effect of process parameters on hardness of AA-6063 in-situ electromagnetic casting by using taguchi method, in IOP Conference Series: Materials Science and Engineering, vol. 804(1) (IOP Publishing, 2020), p. 012019
20.X. Ye, S. Guo, L. Yang, J. Gao, J. Peng, T. Hu, L. Wang, M. Hou, Q. Luo, New utilization approach of electromagnetic thermal energy: preparation of metallic matrix diamond tool bit by electromagnetic hot-press sintering. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.183ArticleGoogle Scholar
22.K.L. Glass, D.M. Ashby, U.S. Patent No. 9050656. (U.S. Patent and Trademark Office, Washington, DC, 2015)
23.S. Verma, P. Gupta, S. Srivastava, S. Kumar, A. Anand, An overview: casting/melting of non ferrous metallic materials using domestic electromagnetic oven. J. Mater. Sci. Mech. Eng. 4(4), (2017). p-ISSN: 2393-9095; e-ISSN: 2393-9109
24.S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and electromagnetic furnaces. Scripta Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034ArticleGoogle Scholar
25.Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.006ArticleGoogle Scholar
27.M.H. Awida, N. Shah, B. Warren, E. Ripley, A.E. Fathy, Modeling of an industrial Electromagnetic furnace for metal casting applications. 2008 IEEE MTT-S Int. Electromagn. Symp. Digest. (2008). https://doi.org/10.1109/mwsym.2008.4633143ArticleGoogle Scholar
29.E.B. Ripley, J.A. Oberhaus, WWWeb search power page-melting and heat treating metals using electromagnetic heating-the potential of electromagnetic metal processing techniques for a wide variety of metals and alloys is. Ind. Heat. 72(5), 65–70 (2005)Google Scholar
30.J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2015)Google Scholar
31.B. Ravi, Metal Casting: Computer-Aided Design and Analysis, 1st edn. (PHI Learning Ltd, 2005)Google Scholar
34.J. Ha, P. Cleary, V. Alguine, T. Nguyen, Simulation of die filling in gravity die casting using SPH and MAGMAsoft, in Proceedings of 2nd International Conference on CFD in Minerals & Process Industries (1999) pp. 423–428
35.M. Sirviö, M. Woś, Casting directly from a computer model by using advanced simulation software FLOW-3D Cast Ž. Arch. Foundry Eng. 9(1), 79–82 (2009)Google Scholar
38.EKK, Inc. Metal Casting Simulation Software and Consulting Services, CAPCAST Brochure
39.P. Muenprasertdee, Solidification modeling of iron castings using SOLIDCast (2007)
40.CasCAE, CT-CasTest Inc. Oy, Kerava
41.E. Dominguez-Tortajada, J. Monzo-Cabrera, A. Diaz-Morcillo, Uniform electric field distribution in electromagnetic heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans. Electromagn. Theory Tech. 55(1), 85–91 (2007). https://doi.org/10.1109/tmtt.2006.886913ADSArticleGoogle Scholar
42.B. Warren, M.H. Awida, A.E. Fathy, Electromagnetic heating of metals. IET Electromagn. Antennas Propag. 6(2), 196–205 (2012)ArticleGoogle Scholar
43.S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J. Alloy. Compd. 466(1–2), 67–72 (2008). https://doi.org/10.1016/j.jallcom.2007.11.010ArticleGoogle Scholar
45.R.R. Mishra, A.K. Sharma, A review of research trends in electromagnetic processing of metal-based materials and opportunities in electromagnetic metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421ADSArticleGoogle Scholar
46.D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, Free-space measurement of complex permittivity and complex permeability of magnetic materials at Electromagnetic frequencies. IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). https://doi.org/10.1109/19.52520ArticleGoogle Scholar
47.J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 38, 1096–1103 (1990)ADSArticleGoogle Scholar
48.M. Bologna, A. Petri, B. Tellini, C. Zappacosta, Effective magnetic permeability measurementin composite resonator structures. Instrum. Meas. IEEE Trans. 59, 1200–1206 (2010)ArticleGoogle Scholar
49.B. Ravi, G.L. Datta, Metal casting–back to future, in 52nd Indian Foundry Congress, (2004)
51.H. Sekiguchi, Y. Mori, Steam plasma reforming using Electromagnetic discharge. Thin Solid Films 435, 44–48 (2003)ADSArticleGoogle Scholar
52.J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Study on the coupled effect of wave absorption and metal discharge generation under electromagnetic irradiation. Ind. Eng. Chem. Res. 53, 2042–2051 (2014)ArticleGoogle Scholar
56.B. Ravi, Metal Casting: Computer-Aided Design and Analysis. (PHI Learning Pvt. Ltd., 2005)
57.J.H. Lee, S.D. Noh, H.-J. Kim, Y.-S. Kang, Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018). https://doi.org/10.3390/s18051428ADSArticleGoogle Scholar
58.B. Aksoy, M. Koru, Estimation of casting mold interfacial heat transfer coefficient in pressure die casting process by artificial intelligence methods. Arab. J. Sci. Eng. 45, 8969–8980 (2020). https://doi.org/10.1007/s13369-020-04648-7ArticleGoogle Scholar
61.W. Chen, B. Gutmann, C.O. Kappe, Characterization of electromagnetic-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 1, 39–48 (2012)ArticleGoogle Scholar
62.J. Walker, A. Prokop, C. Lynagh, B. Vuksanovich, B. Conner, K. Rogers, J. Thiel, E. MacDonald, Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.02.018ArticleGoogle Scholar
63.G.C. Manjunath Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004ArticleGoogle Scholar
64.G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86, 3051–3065 (2016). https://doi.org/10.1007/s00170-016-8416-8ArticleGoogle Scholar
65.M. Ferguson, R. Ak, Y.T. Lee, K.H. Law, Automatic localization of casting defects with convolutional neural networks, in 2017 IEEE International Conference on Big Data (Big Data) (Boston, MA, USA, 2017), pp. 1726–1735. https://doi.org/10.1109/BigData.2017.8258115.
67.G.C. ManjunathPatel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018ArticleGoogle Scholar
69.E. Mares, J. Sokolowski, Artificial intelligence-based control system for the analysis of metal casting properties. J. Achiev. Mater. Manuf. Eng. 40, 149–154 (2010)Google Scholar
70.K.S. Senthil, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters—a study. Exp. Tech. 37(6), 8–14 (2013)ArticleGoogle Scholar
72.K.S. Senthil, D.A. Daniel, An investigation of boiler grade tube and tube plate without block by using friction welding process. Mater. Today Proc. 5(2), 8567–8576 (2018)ArticleGoogle Scholar
73.E. Hetmaniok, D. Słota, A. Zielonka, Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms. Appl. Math. Modell. 39(16), 4797–4807 (2015). https://doi.org/10.1016/j.apm.2015.03.056ArticleMATHGoogle Scholar
74.C.V. Kumar, S. Muthukumaran, A. Pradeep, S.S. Kumaran, Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int. J. Mech. Mater. Eng. 6(2), 300–306 (2011)Google Scholar
75.T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 150, 1598 (2020). https://doi.org/10.1016/j.matpr.2019.10.051ArticleGoogle Scholar
76.B.P. Pehrson, A.F. Moore (2014). U.S. Patent No. 8708031 (U.S. Patent and Trademark Office, Washington, DC, 2014)
77.Liu, J., & Rynerson, M. L. (2008). U.S. Patent No. 7,461,684. Washington, DC: U.S. Patent and Trademark Office.
79.R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using electromagnetic heating. Int. J. Metal Cast. 10, 1–13 (2017). https://doi.org/10.1007/s40962-017-0176-1ArticleGoogle Scholar
84.M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through electromagnetic sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27(5), 606–614 (2017). https://doi.org/10.1016/j.pnsc.2017.08.015ArticleGoogle Scholar
86.V. Bist, A.K. Sharma, P. Kumar, Development and microstructural characterisations of the lead casting using electromagnetic technology. Manager’s J. Mech. Eng. 4(4), 6 (2014). https://doi.org/10.26634/jme.4.4.2840ArticleGoogle Scholar
87.A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater Today: Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.02.374ArticleGoogle Scholar
Won-Ik Cho, Peer Woizeschke Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany
Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.
Abstract
Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.
Korea Abstract
빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.
본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.
1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.
빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.
1 . 소개
융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.
융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.
반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.
이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.
2 . 방법론
그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).
CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 특성이었습니다.
시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .
그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.
3 . 결과
이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.
그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.
무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2 차 주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.
Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.
4 . 토론
시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1 차 및 2 차버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.
첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2 차 주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.
두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1 차 주파수 성분이 더 우세 해졌고, 2 차 주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.
빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .
Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.
5 . 결론
CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 이어집니다.1.
1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.
1 차 주파수와 2 차 주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.
낮은 발진 주파수에서는 1 차 주파수와 2 차 주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.
용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.
CRediT 저자 기여 성명
조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.
경쟁 관심의 선언
저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.
감사의 말
이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.
-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.
-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.
-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 . (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.
또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.
-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.
-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 . (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.
흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.
자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.
참고 문헌
D.J. Kotecki, D.L. Cheever, D.G. Howden Mechanism of ripple formation during weld solidification Weld. J., 51 (8) (1972), pp. 386s-391s Google Scholar [2] M. Zacksenhouse, D.E. Hardt Weld pool impedance identification for size measurement and control J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184 CrossRefView Record in ScopusGoogle Scholar [3] V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay Melt pool dynamics during laser welding J. Phys. D, 28 (1995), pp. 2443-2450 CrossRefView Record in ScopusGoogle Scholar [4] A.J.R. Aendenroomer, G. den Ouden Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding Weld. J., 77 (5) (1998), pp. 181s-187s Google Scholar [5] M.J.M. Hermans, G. den Ouden Process behavior and stability in short circuit gas metal arc welding Weld. J., 78 (4) (1999), pp. 137-141 View Record in ScopusGoogle Scholar [6] B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168 View Record in ScopusGoogle Scholar [7] M. Geiger, K.-H. Leitz, H. Koch, A. Otto A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets Prod. Eng. Res. Dev., 3 (2009), pp. 127-136 CrossRefView Record in ScopusGoogle Scholar [8] C. Kägeler, M. Schmidt Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets Phys. Procedia, 5 (2010), pp. 447-453 ArticleDownload PDFView Record in ScopusGoogle Scholar [9] Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P Weld. J., 94 (2015), pp. 176s-187s Google Scholar [10] J. Volpp, F. Vollertsen Keyhole stability during laser welding—part I: modelling and evaluation Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457 CrossRefView Record in ScopusGoogle Scholar [11] N. Postacioglu, P. Kapadia, J. Dowden Capillary waves on the weld pool in penetration welding with a laser J. Phys. D, 22 (1989), pp. 1050-1061 CrossRefView Record in ScopusGoogle Scholar [12] N. Postacioglu, P. Kapadia, J. Dowden Theory of the oscillations of an ellipsoidal weld pool in laser welding J. Phys. D, 24 (1991), pp. 1288-1292 CrossRefView Record in ScopusGoogle Scholar [13] J. Kroos, U. Gratzke, M. Vicanek, G. Simon Dynamic behaviour of the keyhole in laser welding J. Phys. D, 26 (1993), pp. 481-486 View Record in ScopusGoogle Scholar [14] H. Maruo, Y. Hirata Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate Weld. Int., 7 (8) (1993), pp. 614-619 CrossRefView Record in ScopusGoogle Scholar [15] T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon Oscillations of the keyhole in penetration laser beam welding J. Phys. D, 27 (1994), pp. 2023-2030 CrossRefView Record in ScopusGoogle Scholar [16] T. Klein, M. Vicanek, G. Simon Forced oscillations of the keyhole in penetration laser beam welding J. Phys. D, 29 (1996), pp. 322-332 View Record in ScopusGoogle Scholar [17] K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss Synchronous weld pool oscillation for monitoring and control IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471 View Record in ScopusGoogle Scholar [18] W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding Comput. Mater. Sci., 49 (2010), pp. 792-800 ArticleDownload PDFView Record in ScopusGoogle Scholar [19] W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen Numerical simulation of molten pool dynamics in high power disk laser welding J. Mater. Process. Technol., 212 (2012), pp. 262-275 ArticleDownload PDFView Record in ScopusGoogle Scholar [20] A. Otto, A. Patschger, M. Seiler Numerical and experimental investigations of humping phenomena in laser micro welding Phys. Procedia, 83 (2016), pp. 1415-1423 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys Int. J. Heat Mass Trans., 108 (2017), pp. 244-256 ArticleDownload PDFView Record in ScopusGoogle Scholar [22] S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473 CrossRefView Record in ScopusGoogle Scholar [23] R. Hu, X. Chen, G. Yang, S. Gong, S. Pang Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion Int. J. Heat Mass Transf., 126 (2018), pp. 877-887 ArticleDownload PDFView Record in ScopusGoogle Scholar [24] X. Meng, A. Artinov, M. Bachmann, M. Rethmeier Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding J. Laser Appl., 32 (2020), Article 022026 CrossRefGoogle Scholar [25] W.-I. Cho, V. Schultz, F. Vollertsen Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017) Google Scholar [26] W.-I. Cho, V. Schultz, P. Woizeschke Numerical study of the effect of the oscillation frequency in buttonhole welding J. Mater. Process. Technol., 261 (2018), pp. 202-212 ArticleDownload PDFView Record in ScopusGoogle Scholar [27] V. Schultz, T. Seefeld, F. Vollertsen Bridging Large Air Gaps by Laser Welding with Beam Oscillation International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32 CrossRefGoogle Scholar [28] W.-I. Cho, S.-J. Na Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel J. Weld. Join., 38 (3) (2020), pp. 235-240 CrossRefView Record in ScopusGoogle Scholar [29] FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc. Google Scholar [30] W.-I. Cho, P. Woizeschke Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal Int. J. Heat Mass Transf., 152 (2020), Article 119528 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] F. Vollertsen Loopless production: definition and examples from joining 69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016) Google Scholar [32] V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke Deep penetration laser welding with high seam surface quality due to buttonhole welding Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018) IIW-Doc. IV-1390-18
Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.
광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.
PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.
흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.
조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.
PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006).
이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다.
DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.
많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.
몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.
카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.
이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.
위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).
객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.
본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다.
우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다.
논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.
행동 양식
제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조 ) 음영 영역의 마스킹을 수행합니다.
형광 코팅
코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이 실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.
우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림 3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).
대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.
마스킹 소프트웨어
DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.
각 단계에 대한 자세한 내용은 다음과 같습니다.
(ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
(비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
(씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.
레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.
그림 1
DM 검증
이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.
그림 2그림 3
실험 설정
진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조 ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.
VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는 Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.
시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .
PIV 체인 분석 평가
사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.
첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그(지δ)+8.5];(1)
여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림 4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.
두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조 하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.
그림 4그림 5
결과
그림 6을 참조하여 순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.
제안 된 DM (그림 6 의 패널 a )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.
NM 접근법 (그림 6 의 패널 b1 )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.
그림 6 의 패널 b2는 SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.
그림 6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를 살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.
그림 6그림 7
결론
이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은
메모
1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.
참고 문헌
Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6조Google 학술 검색
Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271조Google 학술 검색
Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137조Google 학술 검색
Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21조Google 학술 검색
Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
Driscoll K, Sick V, Gray C (2003) 고밀도 연료 스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115조Google 학술 검색
Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478조Google 학술 검색
Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.
작가 정보
제휴
이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi
교신 저자
Valentina Lombardi에 대한 서신 .
추가 정보
발행인의 메모
Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.
권리와 허가
오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .
이 알림은 향후 버전에서 컴파일 빌드 도구를 업데이트하고 있음을 알려 드리기 위한 것입니다.
솔버를 사용자 정의 (즉, 소스 코드 수정 및 재 컴파일)하지 않는 경웨는 별도의 조치가 필요하지 않습니다. 솔버를 사용자 정의(사용자가 프로그램 모듈에 사용자의 수식을 추가한 경우)하는 사용자는 새 버전이 출시 될 때 원활한 전환을 보장하기 위해 이 업데이트에 대한 알림에 대해 준비를 해야 합니다.
변경 사항은 다음과 같습니다.
FLOW-3D의 다음 주요 릴리스인 FLOW-3D v12.1 및 FLOW-3D CAST v5.1은 인텔 ® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206 (Windows) 및 버전 19.0.3.199 빌드 20190206 (Linux)로 빌드됩니다.
Intel Fortran Compiler 2019
솔버를 사용자 지정하는 Windows 사용자는 Microsoft Visual Studio 2017 Professional도 필요합니다. 현재 버전인 FLOW-3D v12.0 및 FLOW-3D CAST v5.0 및 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 사용하여 계속 빌드됩니다. 다시 알려드리지만,이 알림은 FLOW-3D 솔버용으로 제공된 소스 코드를 수정하여 재 컴파일(즉, 사용자 정의)하는 사용자에게만 적용됩니다.
솔버를 사용자 정의(커스텀 코드 추가한 경우)하지 않은 경우에는 조치가 필요하지 않습니다. 이 컴파일러 업데이트에 대한 질문이 있는 경우 support@flow3d.com으로 지원 팀에 문의하십시오.
본 자료는 ITWORLD 기사에서 2021년 3월과 05일 자료와 2021년 12월 14일 자료에서 발췌 인용된 자료입니다. (출처 : www.itworld.co.kr)
수치해석을 하는 경우 계산과정에서 생성되는 결과 파일 사이즈는 매우 크기 때문에, 빠른 디스크 속도는 사용자의 총 해석시간을 줄이는데 큰 도움이 됩니다.
수치해석에서 SSD가 필요한가?
수치해석 업무를 담당하는 사용자에게 SSD가 필요한가? 한마디로 말하면 수치해석을 하는 모든 사람은 보유하고 있는 수치해석 장비의 디스크를 SSD로 업그레이드하는 것이 좋다. 가장 빠른 기계식 하드 드라이브도 SSD 속도에는 미치지 못한다.
기존 노트북, 또는 데스크톱의 하드 드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. 수치해석을 하는 사용자는 SSD를 구입하는 것은 컴퓨터를 업그레이드하는데 가장 적합한 옵션이다.
SSD는 기계식 하드 드라이브보다 기가바이트 당 비용이 더 많이 들기 때문에 초 고용량으로 제공되지 않는 경우가 많다. 속도와 저장 공간이 필요한 경우, 128GB 나 256GB의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드 드라이브를 PC의 보조 저장 장치로 사용하면 최선의 선택이 된다.
하드 드라이브는 가격 대비 용량 측면에서 여전히 큰 이점을 제공하며, 자주 사용되지 않는 데이터를 저장하는 용도로 적합하다. 그러나 운영체제, 프로그램, 자주 사용하는 데이터에는 보유하고 있는 시스템이 지원한다면 NVMe SSD, 지원하지 않는다면 SATA SSD를 사용하는 것이 좋다.
아래 그래프를 보면 SSD를 왜 사용해야 하는지 명확해진다.
SSD Speed compare
NVMe/M.2/SATA SSD 비교 정리
NVMe SSD
M.2 SSD
SATA SSD
속도
PCIe 3.0 최대 3,500MBps
PCIe 4.0 최대 7,500MBps
SATA 최대 550MBps
NVMe PCIe 3.0 최대 3,500MBps
NVMe PCIe 4.0 최대 7,500MBps
최대 550MBps
폼팩터 종류
M.2 U.2* PCIe 카드* *일반적이지 않은 종류
N/A
2.5인치 드라이브 M.2
인터페이스 종류
N/A
SATA NVMe
N/A
장점
속도가 빠름
공간을 덜 차지함
속도와 가격의 균형
단점
가격이 비쌈
SATA M.2가 2.5인치 SATA보다 비싼 경우가 있음
속도가 느리고 공간을 많이 차지함
SATA SSD vs. NVMe SSD
시장에 SATA SSD와 NVMe SSD가 아직 공존하는 데는 이유가 있다. 메모리 기반 SSD의 잠재력을 감안할 때 결국 새로운 버스와 프로토콜이 필요할 수밖에 없으리란 점은 초기부터 명확했다. 그러나 초창기 SSD는 비교적 속도가 느렸으므로 기존 SATA 스토리지 인프라를 사용하는 편이 훨씬 더 편리했다.
SATA 버스는 버전 3.3에 이르러 16Gbps까지 발전했지만 거의 모든 상용 제품은 여전히 6Gbps에 머물러 있다(오버헤드를 더해 대략 550MBps). 버전 3.3이라 해도 현재 SSD 기술, 특히 RAID 구성으로 낼 수 있는 속도에 비하면 한참 느리다.
그 다음으로 등장한 방법은 역시 기존 기술이지만 대역폭이 훨씬 더 높은 버스 기술인 PCI 익스프레스, 즉 PCIe 활용이다. PCIe는 그래픽 및 기타 애드온 카드를 위한 기본 데이터 전송 계층이다. 3.x 세대 PCIe는 복수의 레인(대부분의 PC에서 최대 16개)을 제공하며, 각 레인은 1GBps(985MBps)에 가까운 속도로 작동한다.
PCIe는 썬더볼트 인터페이스의 기반이기도 하다. 썬더볼트는 게임용 외장 그래픽 카드, 그리고 내장 NVMe와 거의 대등한 속도를 내는 외장형 NVMe 스토리지에서 진가를 발휘하기 시작했다. 많은 사용자들이 이제 느끼고 있지만, 인텔이 썬더볼트를 버리지 않은 것은 현명한 판단이었다.
물론 PCIe 스토리지는 NVMe보다 몇 년 전에 나왔다. 그러나 이전 솔루션은 SATA, SCSI, AHCI와 같은 하드 드라이브가 스토리지 기술의 정점이었던 시절에 개발된 오래된 데이터 전송 프로토콜에 발목을 잡혔다. NVMe는 저지연 명령과 다수의 큐(최대 6만 4,000개)를 제공함으로써 스토리지의 발목을 잡았던 제약을 없앤다. 지속적인 원을 그리며 데이터가 기록되는 하드 드라이브와 달리 SSD에서는 마치 산탄처럼 데이터가 흩어져 저장되므로 특히 후자, 즉 다수의 큐가 큰 효과를 발휘한다.
가격 : NVMe > SATA
예상했겠지만, SSD는 속도가 빠를수록 가격이 비싸다. 시중에 판매되는 1TB SATA SSD의 가격은 10만 원 초반대이며, 1TB NVMe PCIe 3.0 드라이브의 가격은 10만 원 중후반대다. 1TB PCIe 4.0 드라이브 가격은 10만 원 초반대부터 20만 원대까지 다양하다. 조금 저렴한 1TB PCIe 4.0 드라이브는 최대 속도가 5,000MBps 정도다.
폼팩터 종류에 따라 가격 차이가 나지는 않는다. 2.5인치 SATA SSD와 M.2 모델의 가격이 동일한 경우가 대부분이다. 가끔 2.5인치 모델이 M.2 모델보다 저렴한 경우가 있는데, 일반적이지는 않다.
SSD 선택 시 유의해서 봐야할 것
물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.
SSD는 NVMe 혹은 SATA를 사용해 PC의 나머지 부분과 통신한다. 일반적으로 SATA는 NVMe보다 속도가 느리다. 반면 M.2는 사실상 폼팩터에 가까우므로 시중에는 NVMe M.2 SSD와 SATA M.2 SSD가 모두 출시되어 있다.
다만 제품 광고나 설명서에서 가끔 NVMe 드라이브임을 나타내기 위해 ‘M.2 SSD’라는 표현을 사용하고, 2.5인치 폼팩터 SSD임을 나타내기 위해 ‘SATA SSD’라는 표현을 사용한다. 따라서 ‘M.2 SSD’나 ‘SATA SSD’라는 표현을 액면 그대로 받아들이면 안 된다. 반드시 기술 사양을 확인하고 노트북 또는 데스크톱 PC의 스토리지 드라이브의 대략적인 속도를 확인해야 한다.
유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.
SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, “검정” M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브를 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.
물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA III 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.
구입전 사용자가 알아야 할 NVMe SSD
NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브가 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.
NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만이 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려하라. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다.
NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하기 때문에 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년 전에 구입한 PC는 NVMe 드라이브에서 부팅하는데 아무런 문제가 없지만, 좀 더 오래된 메인보드는 지원하지 않을 수 있다. 구글에서 자신의 메인보드를 검색하고 NVMe 부팅을 지원하는지 확인하라. 보드의 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 보조 드라이브로 사용할 수 있어야 한다.
2021 최고의 SSD 선택 가이드
Brad Chacos | PCWorldSSD(Solid-State Drive)로 전환하는 것은 PC를 위한 최상의 업그레이드다. SSD는 긴 부팅 시간을 없애고, 프로그램과 게임 로드 속도를 높이는 등 일반적으로 컴퓨터를 빠르게 한다. 그러나 모든 SSD가 동일한 것은 아니다. 최고의 SSD는 합리적인 가격으로 훌륭한 성능을 제공한다. 가격에 고민하지 않을 경우, 놀라울 정도의 빠른 읽기 및 쓰기 속도를 제공하는 제품도 있다.
많은 SSD가 2.5인치 폼 팩터로 제공되며 기존 하드 드라이브에서 사용하는 것과 동일한 SATA 포트를 통해 PC와 통신한다. 그러나 최첨단 NVMe(Non-Volatile Memory Express) 드라이브는 메인보드의 M.2에 직접 연결하는 작은 스틱 형태의 SSD다. PCIe 어댑터에 장착되는 이 드라이브는 구입하기 전에 메인보드에 슬롯이 있는지 확인해야 한다. 그래픽 카드나 사운드 카드처럼 메인보드에 꽂을 수 있는 SSD와 미래형 3D 크로스포인트(3D XPoint) 드라이브 등이 등장함에 따라 완벽한 SSD를 선택하는 것은 예전처럼 간단하지 않다.
그래서 이 가이드가 필요하다. 본지는 사용자 상황에 적합한 SSD를 찾기 위해 수많은 SSD를 테스트했다. 본지가 선정한 최고 인기 제품과 SSD 선택 시 무엇을 고려해야 하는지 알아보자. 참고로, 이번 가이드는 내장형 SSD만 적용한 것이다.
최신 SSD 뉴스
구입해야 하는 SSD에 대한 가이드를 확인하고, 각 시스템에서 가장 적합한 SSD의 종류에 대해 알아보자.
인텔은 모든 데스크톱 소비자 버전의 옵테인(Optane) 드라이브를 단종시켰지만, 이 기술은 노트북과 서버에 그대로 남아있다. 옵테인 SSD는 엄청난 랜덤 액세스 성능과 놀라운 내구성을 제공했지만, 용량이 제한적이면서도 가격은 매우 높았다. 향후 노트북에서 느린 NAND SSD 속도를 높이기 위한 캐싱 형태의 기능으로 사용될 것이다.
스토리지 제조업체는 공급망 문제로 인해 출시 후 구성 요소를 조정하는 경우가 많지만, 한 PC하드웨어 전문매체는 최근 에이데이타(Adata)가 훨씬 느린 버전으로 XPG 8200 프로의 컨트롤러를 교체한 것을 포착했다.
대부분 사용자를 위한 최고의 SSD, SK 하이닉스 골드 S31 SATA SSD
ⓒ SK Hynix
삼성의 주력인 EVO SSD 제품군은 2014년 이래로 줄곧 본지의 권장 목록에서 1위를 차지했으며, 현재 삼성 860 EVO는 여전히 속도, 가격, 호환성 및 5년 보증 및 뛰어난 마법사 관리 소프트웨어의 안정성 등 조화를 원하는 사람들에게 좋은 선택지다. 그러나 대부분의 사람들은 SK 하이닉스 골드 S31을 사는 것이 낫다.
골드 S31은 지금까지 본지가 테스트 한 가장 빠른 SATA SSD 가운데 하나일뿐만 아니라 동급 최강의 870 EVO와 견줄 수 있을만한 거리에 있다. 하지만 이 드라이브의 가격은 놀랍다. 250GB 드라이브의 경우 44달러, 500GB 드라이브의 경우 57달러, 1TB의 경우 105달러인 골드 S31은 500GB 모델에 70달러를 청구하는 삼성 제품보다 훨씬 저렴하다(국내에서는 1T 13만 5,000원, 500G 7만 5,000원, 250G 4만 8,000원에 판매하고 있다. 편집자 주). .
리뷰 당시 본지는 “실제 48GB 사본 테스트 수행시 골드 S31은 지속적인 읽기 및 쓰기 작업에서 테스트한 제품 가운데 가장 빠른 드라이브임을 입증했다”라고 평가했다. 이 제품은 이 평가로 충분하다.
SK 하이닉스는 정확히 제품 이름이 아니기 때문에 브랜드 자체에 대해 조금 딴지를 걸 수도 있다. 그럼에도 불구하고 SK 하이닉스는 지구상에서 가장 큰 반도체 제조업체 가운데 하나다. SK 하이닉스는 시작부터 NAND 및 컨트롤러 기술을 개발해왔으며, 수많은 컴퓨터 업체의 SSD 제조업체였지만 판매선상에는 자리하지 못했다. 이제 그 선상에 섰고, 결과는 훌륭했다.
더 큰 용량이 필요하거나 단순히 검증된 브랜드를 고수하고 싶다면, 250GB, 500GB, 1TB 및 2TB 모델로 제공하는 삼성 870 EVO를 선택하면 된다. 이 제품은 SK 하이닉스보다 조금 더 빠르지만, 그 대가로 비용이 더 많이 든다. 삼성 870 EVO는 대부분의 SSD에 비해 매우 매력적이고 저렴한 패키지를 제공하고 있기 때문에 골드 S31이 얼마나 더 좋은 것인지 알 수 있다. 삼성 870 QVO는 1TB에서 무려 8TB에 이르는 용량을 가진 또 다른 강력한 경쟁 제품이지만 다음 세션에서 논의할 것이다.
가성비 최고의 SSD: 애드링크(AddLink) S22 QLC SATA 2.5인치 SSD
ⓒ Addlink
매우 저렴한 가격에 훌륭한 성능을 제공하는 SK하이닉스 골드 S31은 최고의 가성비 SSD로, 대부분의 사용자에게 최고의 SSD다. 하지만 어떤 이유로든 골드 S31에 관심이 없는 이들에겐 더 많은 선택지가 있다.
이제 기존의 MLC(Multi-Level Cell)와 TLC(Triple-Level Cell) SSD 가격이 급락함에 따라 제조업체는 SSD 가격을 더욱 낮출 수 있는 새로운 QLC(Quad-Level Cell) 드라이브를 출시했다.
이 새로운 기술을 통해 제조업체는 매우 빠른 SSD에 버금가는 속도와 함께 하드 드라이브와 같은 수준의 용량을 가진 SSD를 출시할 수 있었다. 다만 삼성 860 QVO를 포함한 1차 QLC 드라이브는 수십 기가바이트의 데이터를 한번에 전송할 때 쓰기 속도가 하드 드라이브 수준으로 떨어졌다.
애드링크(Addlink) S22 QLC SSD는 이 같은 어려움을 겪지 않는다. 기존 TLC SSD는 여전히 QLC 드라이브에 비해 속도 우위를 유지하고 있지만, 애드링크 S22는 512GB에 59달러, 1TB에 99달러의 저렴한 가격에 판매하고 있다. 하지만 SK 하이닉스 골드 S31이 거의 같은 금액으로 판매되고 있다는 사실에 주목할 필요가 있다.
대량의 데이터를 한번에 이동할 계획이 없고, 더 많은 저장공간이 필요하다면 삼성의 2세대 QLC 제품인 삼성 870 QVO가 좋은 선택이다. 실제로 애드링크의 SSD보다 조금 더 빠르다. 그러나 아마존에서 1TB가 110달러, 2TB의 경우 205달러, 4TB 450달러, 8TB 900달러로 더 비싸다. 1TB보다 적은 용량은 판매하지 않는다. 구형 삼성 860 QVO도 여전히 좋은 선택이긴 하지만 최신 870 QVO는 모든 면에서 최고다.
하지만 메인보드가 더 빠르고 새로운 NVMe M.2 드라이브를 지원한다면 선택지는 달라진다.
최고의 NVMe SSD: SK 하이닉스 골드 P31 M.2 NVMe SSD(1TB)
ⓒ SK Hynix
성능이 가장 중요하다면 삼성 970 프로 또는 씨게이트 파이어쿠다(Seagate FireCuda) 510이 가장 빠른 NVMe SSD이지만, 대부분의 사람은 SK 하이닉스 골드 P31을 구입하는 것이 좋다. SK 하이닉스는 가성비 범주에서 전체 SSD를 장악하고 있다.
SK 하이닉스 골드 P31은 128비트 TLC NAND를 탑재한 최초의 NVMe SSD이며, 96 NAND 레이어를 사용하는 다른 제품들을 뛰어넘었다. 본지가 테스트한 모델은 크리스탈디스크마크(CrystalDiskMark) 6와 AS SSD의 종합 벤치마크에서도 완전히 인정받았으며, 보도자료에서 주장했던 3.5Gbps 읽기 및 쓰기 속도에 거의 도달했다.
또한 실제 48GB 및 450GB 파일 전송 테스트에서 더 비싼 SSD에 비교했을 때도 뒤지지 않았다. SK 하이닉스 골드 P31은 최상급 드라이브처럼 작동하지만, 저렴한 드라이브보다 조금 더 비쌀 뿐이다. 500G 제품은 75달러에, 1TB 제품은 125달러에 구입할 수 있다(국내에서는 1T 19만 8,000원, 500G 9만 8,000원에 판매하고 있다. 편집자 주).
마이크론 크루셜(Crucial) P5는 비용 효율적인 NVMe SSD로, 만약 SK 하이닉스 골드 P31이 없었다면, 최고의 선택지가 될 수 있었다. 하지만 골드 P31가 조금 더 빠르고, 조금 더 저렴하다. 그래도 크루셜 P5는 대안 제품이 될 수 있다.
하지만 예산이 빠듯하다면, 약간 더 적은 비용으로 매력적인 선택지를 찾을 수 있다. 웨스턴 디지털 블루(Western Digital Blue) SN550 NVMe SSD는 앞서 언급한 제품처럼 빠르거나 화려한 성능을 갖고 있진 않다. 하지만 가격이 훨씬 저렴하다. 250GB의 경우 45달러, 500GB의 경우 65달러, 1TB의 경우 130달러와 같은 보급형 가격에도 불구하고 WD 블루 SN550은 고가의 제품 성능을 충분히 발휘할 수 있다. 신뢰성에 대한 좋은 이력을 가진 기존 브랜드를 이은 제품이며, 평균보다 긴 5년 보증을 제공한다.
또 다른 훌륭한 NVMe SSD
– 애드링크 S70 NVMe SSD: 좀 더 높은 성능을 원한다면 애드링크(Addlink) S70 NVMe SSD 또한 탁월한 선택지가 될 수 있다. 이 제품은 WD 드라이브보다 성능이 약간 우수하다. 하지만 본지는 이 제품의 가격이 인상된 후부터는 일상적인 컴퓨터 사용자에게 WD 블루 SN550을 추천한다. 애드링크는 WD만큼 잘 알려져 있지 않지만, S70 NVMe SSD에 대해 5년 보증을 제공한다.
– PNY XLR8 CS 3030: 이 제품은 좋은 가격에 빠른 성능을 제공하는 또 다른 선택지다. 하지만 일상적인 사용에는 탁월하지만, 긴 쓰기 작업에서는 수렁에 빠질 수 있다.
– 에이데이타의 XPG SX8200 프로와 킹스톤(Kingston) KC2500: 더 빠른 속도를 위해 좀더 많은 비용을 써도 괜찮다면 삼성 970 프로 수준의 성능을 지닌 에이데이타의 XPG SX8200 프로와 킹스톤 KC2500도 있다. 킹스톤 KC2500은 한번의 테스트에서 최고 등급에 도달하지 못했지만, 항상 선두권을 유지하고 있었다. 경쟁 제품과 거의 동일한 가격으로 구입할 수 있으며, 고성능 NVMe SSD를 구입하는 경우 고려해볼 만한 제품이다.
새로운 유형의 대용량 SSD 덕분에 충분한 저장용량과 함께 엄청난 NVMe 속도를 얻을 수 있게 됐지만, 이에 대한 비용은 감수해야 한다. OWC 아우라 P12는 NVMe 평균 이상의 쓰기 성능과 4TB 제품을 929달러에 제공한다. 최고의 세이브런트 로켓(Sabrent Rocket) Q는 최고의 성능과 놀라운 8TB 용량으로 모든 것을 만족시키지만, 1,500달러라는 놀라운 가격이 기다리고 있다. 최첨단은 저렴하지 않다.
최고의 PCIe 4.0 SSD: 삼성 980 프로 PCIe 4.0 NVMe SSD(1TB)
ⓒ samsung
대부분의 NVMe SSD는 표준 PCIe 3.0 인터페이스를 사용하지만, 최첨단 기술을 지원하는 일부 제품에는 훨씬 더 빠른 PCIe 4.0 드라이브가 있다. 현재 AMD의 라이젠 3000 프로세서만 PCIe 4.0을 지원하며 X570 또는 B550 메인보드에 장착하는 경우에만 지원한다. 하지만 이 기준을 충족하면 PCIe 4.0 SSD는 가장 빠른 PCIe 3.0 NVMe SSD가 따라오지 못할 성능을 보여준다.
커세어(Corsair), 기가바이트(Gigabyte), 세이브런트는 최초의 PCIe 4.0 SSD를 출시했으며, 모두 약 200달러에 1TB 용량과 유사한 성능을 제공했다. 하지만 본지가 선정한 최고의 PCIe 4.0 SSD는 조금 더 비싸다.
본지는 최근에서야 PCIe 4.0 SSD 테스트를 추가했지만, 지금까지 테스트한 제품 가운데 최고는 삼성 980 프로였다. 이 제품은 테스트에서 삼성이 주장한 7Gbps 읽기 속도와 5Gbps 쓰기 속도를 초과했다. 이 제품은 실제 파일 전송 테스트를 통과했지만, 450GB 전송 테스트에서 발견한 것처럼 막대한 양의 데이터를 전송하는 경우 속도가 약간 느려질 수 있다. 하지만 대부분의 사용자가 SSD를 이렇게 힘들게 다루진 않는다.
하지만 모든 성능은 프리미엄급이다. 그럼에도 불구하고 250GB 90달러, 500GB 150달러, 1TB 용량은 230달러이다.
WD 블랙 SN850은 삼성 980 프로의 성능에 뒤처져 있지만, 거의 같은 가격으로 판매한다. 본지는 리뷰에서 “최강의 단일 SSD PCIe4 스토리지 성능을 찾는다면 어느 쪽도 문제가 되지 않을 것”이라고 평가했다.
PCIe 4.0 속도가 빠른 SSD를 원하지만 삼성의 동급 최고의 성능을 위해 많은 비용을 소비하고 싶지 않다면 XPG 겜믹스 S50 라이트를 고려한다. 본지는 “XPG 겜믹스 S50 라이트는 우리가 테스트한 최초의 PCIe 4 SSD로, 차세대라는 추가 비용이 들지 않는다. 실제로 시스템을 실행하는 시스템에서는 삼성 980 프로와 차이를 구분하기 어려울 것이다”라고 설명했다.
겜믹스 S50 라이트는 1TB의 경우 140달러, 2TB의 경우 260달러다.
NVMe SSD 설정시 알아야 할 사항
NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브를 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.
NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려한다. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다.
NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하므로 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년동안 구입한 PC라면 NVMe 드라이브를 부팅하는 데 문제가 없어야하지만, 이전 메인보드에서는 지원이 어려울 수 있다. 구글에서 메인보드를 검색하고 NVMe에서 부팅을 지원하는지 확인한다. 보드에서 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 시스템은 이를 보조 드라이브로 사용할 수 있어야 한다.
SSD 선택에서 고려해야 할 것
물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.
가장 유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다. – SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
– PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
– NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브와는 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
– M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
– U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.
물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA 3 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.
SSD vs. 하드 드라이브
SSD가 필요한가? “필요하다.” 본지는 모든 사람이 SSD로 업그레이드할 것으로 진심으로 권장한다. 가장 빠른 기계식 하드드라이브도 SSD 속도에는 미치지 못한다. 기존 노트북, 데스크톱의 하드드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. SSD를 구입하는 것은 컴퓨터를 업그레이드하는 데 가장 적합한 선택이다.
SSD는 기계식 하드드라이브보다 기가바이트 당 저장 비용이 많이 들기 때문에 대용량으로 제공하지 않는 경우가 많다. 속도와 저장 공간이 동시에 필요한 경우, 128GB 크루셜 BX300과 같은 제한된 용량의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드드라이브를 PC의 보조 저장장치로 설정한다. 프로그램을 부팅 드라이브에 넣고 미디어 및 기타 파일을 하드드라이브에 저장하면 준비가 다 된 것이다. editor@itworld.co.kr
<주의 사항> Flow Science, Inc.는 사용자가 추가한 사용자 정의 Code에 대해 어떠한 책임도 지지 않습니다. FLOW-3D 유지보수 지원에는 사용자 커스터마이징 문제 해결이 포함되지 않습니다.
이 내용은 Solver에 대해 제공된 소스 코드를 수정하고 다시 컴파일(즉, 사용자 정의)하는 커스텀 코드 개발 사용자에게만 적용됩니다. 솔버를 사용자 정의하여 개발하지 않을 경우 어떠한 조치도 필요하지 않습니다. 이 컴파일러 업데이트에 대해 궁금한 점이 있으면 언제든지 flow3d@stikorea.co.kr 로 문의하십시오.
Custom Developer Tools 에 대한 정보
Flow Science가 표준 설치의 일부로 배포하는 서브 루틴을 사용자가 커스터마이즈하여 사용자가 원하는 수식을 반영 개발하고자 할 경우 버전에 따라 아래와 같은 버전의 컴파일러가 필요합니다.
FLOW-3D 제품군의 다가오는 2023R2 release는 현재 빌드 도구를 업데이트하고 있습니다. 이는 FLOW-3D, FLOW-3D HYDRO 및 FLOW-3D CAST에 영향을 미칩니다.
2023R2 제품의 소스 코드를 사용자 정의하고 재컴파일하려는 사용자에게는 다음이 포함된 Intel oneAPI 버전 2022.3.1이 필요합니다.
Windows: Intel® MPI 라이브러리 및 Fortran 컴파일러 버전 2021.7.1 빌드 20221019 및 Microsoft Visual Studio 2019 Professional
Linux: Intel® MPI 라이브러리 및 Fortran 컴파일러 버전 2021.7.1 빌드 20221019 이전 버전의 빌드 도구는 변경되지 않았습니다.
이전 버전에 대한 안내
다음 주요 릴리스 인 FLOW-3D v12.1 및 FLOW-3D CAST v5.1은 인텔 ® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206 (Windows) 및 버전 19.0.3.199 빌드 20190206 (Linux)으로 빌드됩니다. 솔버를 사용자 지정하는 Windows 사용자는 Microsoft Visual Studio 2017 Professional도 필요합니다.
FLOW-3D v12.0 및 FLOW-3D CAST v5.0 및 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 사용하여 계속 빌드됩니다.
Custom Code Sample
일반 사용자 정의 정보
FLOW-3D는 사용자가 솔버의 기능을 사용자 정의할 수 있도록 FORTRAN 소스 서브 루틴 파일을 제공하여 사용자에게 필요한 요구 사항을 충족합니다. 제공된 FORTRAN 서브 루틴을 통해 사용자는 경계 조건을 사용자 정의할 수 있고, 고유한 재료 특성의 상관 관계를 포함할 수도 있으며, 사용자가 정의한 유체 힘(예: 전자기력)을 지정하고, 물리적 모델을 추가하는 등의 작업을 수행할 수 있습니다.
사용자가 사용자 정의에 사용할 수 있는 여러 “더미”변수가 제공되었습니다. 사용자 정의를 위해 사용자 정의가 가능한 목록도 제공합니다.
Linux 및 Windows 배포용 Makefile이 제공되고 Windows 배포용 Visual Studio 솔루션 파일이 제공되어 자신의 사용자 정의 코드를 포함시켜 사용자가 FLOW-3D를 다시 컴파일 할 수 있습니다.
FLOW-3D그래픽 인터페이스를 통해 Custom Double Precision 버전을 실행하려면 Model Setup‣General dock widget의 Version Options 영역에서 Queued When Prompt 옵션을 선택하십시오. 그런 다음 버전을 묻는 메시지가 나타나면 Custom double precision을 선택하십시오. 또는 로컬 및 원격 시스템의 기본 설정 ‣ 기본 버전 옵션에서 기본값으로 설정할 수 있습니다.
배치 모드 또는 명령 프롬프트를 통해 사용자 정의 버전을 실행하려면사용자 정의 배정도를 위한 환경 변수 F3D_VERSION을 prehyd로 설정해야 합니다.
Windows에서FLOW-3D 사용자 정의
Windows에서 FLOW-3D 솔버 사용자 정의에 대해 안내합니다.
이전 버전을 기준으로 설명을 드립니다.
명령행 빌드 환경을 선호하는 경우 Intel FORTRAN 16.0.1 및 Windows Platform SDK 설치를 고려하십시오. 인텔 FORTRAN 16.0.1의 시스템 요구 사항에 대한 자세한 내용은 컴파일러와 함께 제공된 설명서를 참조하십시오.
Visual Studio 2010/2013 Professional Edition 용 Visual Studio 솔루션 파일custom_double_vs2010/2013.sln은 prehyd디렉토리에 있습니다. 솔루션 파일 이름은 *.sln 으로 지정됩니다.
솔루션 파일은 Visual Studio 내에서 솔버 실행 파일을 빌드하는 데 사용됩니다. FORTRAN 소스 파일의 확장자 .F90는 C:\flow3d\v12.0\prehyd디렉토리에 있습니다. 오브젝트 파일은 편집할 수 없는 파일로 확장자가 .OBJ인 파일로 있으며 소스 파일의 컴파일 된 버전입니다.
Visual Studio솔루션 파일은 Visual Studio에서 실행 파일을 빌드하는데 필요한 파일을 추적하는 데 사용됩니다. 여기에는 프로젝트의 모든 파일 목록과 종속성 목록이 포함됩니다. 종속성은 특정 파일의 변경으로 인해 영향을 받는 파일을 추적하는데 사용됩니다.
솔루션 탐색기에는 Visual Studio에서 소스 파일, 오브젝트 파일, 모듈 및 라이브러리, 실행 파일을 빌드하는 데 필요한 모든 파일의 목록이 포함되어 있습니다. 파일은 알파벳 순서로 정렬됩니다. 소스 파일을 편집하려면 솔루션 탐색기*.F90에서 해당 파일을 두 번 클릭하면 상황에 맞는 편집 창에서 열립니다.
소스 파일을 변경한 후에는 파일을 저장하고 빌드 메뉴에서 솔루션 빌드를 선택하여 실행 파일을 다시 빌드하십시오. Visual Studio 구성 관리자를 사용하여 프로젝트를 릴리스 모드 및 x64 모드로 설정하십시오.
수정한 파일을 컴파일하고 새 실행 파일을 만듭니다. 새로운 hydr3d.exe실행 파일이 생성되어 C:\flow3d\v12.0\prehyd하위 디렉토리에 배치됩니다.
Build 방법
컴파일 및 링크하려면 /prehyd 에서 솔루션 파일 custom_double_vs2010.sln을 여십시오. Visual Studio 구성 관리자를 사용하여 프로젝트를 릴리스 모드 및 x64 모드 로 설정하십시오. 소스 코드를 필요한대로 변경하고 저장한 다음 빌드 메뉴에서 솔루션 빌드를 선택하십시오.
사용자에게 제공되는 소스 디렉토리 구조
FLOW-3D customization이 가능한 서브 루틴 및 표준 배포 실행 파일의 디렉토리 구조는 다음과 같습니다.– double — hydr3d — prehyd — comdeck prep3d hydr3d utility — source– comdeck prep3d hydr3d utility
디렉토리 /opt/flow3d/v12.0/double에는 (customization 할 수 없는) 솔버의 공식 릴리스가 hydr3d 포함되어 있습니다. customization 가능한 소스 코드는 /opt/flow3d/v12.0/prehyd 디렉토리에 있습니다.
customizable디렉토리 아래 source에는 4 개의 하위 디렉토리가 있습니다. 전처리기와 솔버가 공유하는 서브 루틴은 utility 라는 디렉토리에 있습니다. 전처리기만 사용하는 서브 루틴은 제목이 지정된 디렉토리 prep3d에 있으며 솔버만 사용하는 서브 루틴은 hydr3d에 있습니다.
FORTRAN 포함 문
FLOW-3D의 서브 루틴, 글로벌 변수에 대한 일반적인 블록 선언문은 디렉토리 comdeck에 있는 파일에 있습니다. 이러한 comdeck파일은 “Header File”이며 “include”문을 사용하여 서브 루틴에 통합됩니다. 일반적인 “include”문은 다음과 같습니다.
include ‘../comdeck/params.f90’
컴파일시 comdeck파일의 FORTRAN 소스는 “include”문을 포함하는 서브 루틴에 인라인 됩니다. 공통 블록 및 설명을 일관되게 정의할 수 있습니다. 예를 들어 특정 셀의 인접 항목에 대한 색인 계산과 같이 자주 사용되는 FORTRAN 소스 코드가 포함된 comdeck 파일도 있습니다. 이 경우 comdeck 파일은 일반적으로 사용되는 소스 코드를 인라인 하는 간단한 방법입니다.
comdeck파일의 공통 블록, 모듈 또는 매개 변수는 제공된 루틴으로 오브젝트 파일로 이미 컴파일 되었으므로 변경하지 마십시오. 이러한 정의를 변경하면 불일치가 발생하여 FLOW-3D 가 예측할 수 없는 방식으로 작동합니다.
Customization 가능 이름 목록 USRDAT 그리고 공통 블록 cbusr이 파일을 참조하는 모든 서브 루틴이 다시 컴파일 되면 변경될 수 있습니다 (이를 참조하는 모든 루틴이 소스 파일로 제공됨). 추가 공통 블록은 새 comdeck파일에 정의될 수 있으며, 필요에 따라 소스 파일에 포함될 수 있습니다.
<주의>
comdeck파일의 공통 블록, 모듈 또는 매개 변수는 제공된 루틴으로 오브젝트 파일로 이미 컴파일 되었으므로 변경하지 마십시오. 이러한 정의를 변경하면 불일치가 발생하여 FLOW-3D 가 예측할 수 없는 방식으로 작동합니다.
FLOW-3D 솔버의 서브 루틴 및 기능에서 일반적으로 사용되는 일부 include 파일에 대한 자세한 설명은 FLOW-3D 설치 파일에 포함되어 있는 Help 파일을 참고하시기 바랍니다.
고성능 컴퓨팅(HPC)은 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해, 우리가 흔히 사용하는 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하여 고성능을 발휘하도록 하는 것을 의미합니다. 시뮬레이션이나 분석과 같은 HPC 워크로드는 계산 속도, 메모리 사용 및 데이터 관리가 매우 중요합니다. 클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해, 여러 애플리케이션들을 병렬 실행하도록 설계됩니다. HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.
고성능 컴퓨팅은 일반적으로
100Gbps의 초고속 네트워킹
확장 가능한 고성능 스토리지
고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
에너지 효율성
GPU 가속지원
등이 핵심 성능지표로 고려되어 개발됩니다. 이러한 컴퓨터는 매우 고가이고 특별한 관리환경과 전문가들이 필요하여, 일반인들은 쉽게 접하기가 어렵습니다. 그러나 최근에는 시스템 구성은 전문가들이 하고, 시스템 사용은 일반 엔지니어들이 사용할 수 있도록 UI나 시스템 사용환경이 많이 편리해져서 대기업이나 국책 연구기관의 연구원들이 쉽게 사용할 수 있는 기반이 많이 갖추어져 있습니다.
이러한 HPC와는 스케일 규모면에서는 차이가 많지만, 최근에는 단일 컴퓨터에서도 많은 core로 구성된, 수퍼컴에 가까운 단일 컴퓨팅 고성능 PC가 판매되고 있습니다. 따라서 본 기사에서는 고성능 PC 하드웨어를 통해 수치해석을 수행할 수 있는 전세계의 최신 컴퓨터 기술을 소개하는 PC 기반 하드웨어 기사를 소개합니다. 본 기사는 itworld 에서 작성된 자료입니다.
업데이트 기사에서는 성능 테스트 결과 중 3D 뷰포트와 시너지 시네스코어(Cinescore) 성능 결과를 더했다. 또한, 게임 외적인 이유로 데이터에 나타나지 않았던 파 크라이(Far Cry) 5와 데우스 엑스: 맨카인드 유나이티드(Deus Ex: Mankind United)에서의 구형 라이젠 칩 게이밍 벤치마크 차트도 추가했다.
AMD의 12코어 라이젠 9 3900X CPU 리뷰를 한마디로 요약한 문장은 이렇지 않을까?“와, 이 CPU 진짜 빠르다.”
그러나 결론만 보기는 아쉽다. 라이젠 9 3900X는 1GHz를 처음으로 넘어섰던 AMD의 오리지널 K7 애슬론 시리즈 CPU, 데스크톱 PC의 64비트 시대를 열었던 애슬론 64 CPU만큼이나 중요한, 시장을 바꾸는 CPU가 될 물건이기 때문이다.
라이젠 9 3900X가 앞으로 저런 제품이 세운 위대함을 달성하기 어려울 것이라고 생각할지 모른다. 이전 세대의 무시무시한 게이밍 성능 지표를 모두 넘어서는 정도는 아니다. 그러나 발매 직후의 혼란이 가라앉으면 AMD 라이젠 3000 시리즈는 단숨에 가장 인기 있는 CPU가 될 것이다.
라이젠 3000 시리즈는 어찌됐든 7나노 공정으로 생산된 최초의 사용자 x86 칩이다. 인텔의 현재 데스크톱 칩은 모두 아직도 14나노 공정으로 제작된다. 올해 말쯤 되어야 10나노 공정으로의 이전이 시작될 것이다. AMD가 7나노 공정에 먼저 도달한 것을 부러워하면서 말이다.
기술적인 우위를 바탕으로 AMD는 라이젠 3000을 위해 재설계된 2세대 젠 코어를 발표했다. 이전 라이젠 2000 시리즈에 비해 부동 소수점 성능이 2배 증가했고, 클럭당 명령어 처리 횟수가 15% 향상되었다.
AMD는 명령 프리-패치를 개선했고, 명령 캐시를 한층 강화했고, 마이크로-op 캐시를 2배로 늘렸다고 말했다. AMD는 부동 소수점 성능을 2배로 늘린 것에 더해 이제 AVX-256까지 도입했다(256비트 고급 벡터 확장). 인텔 코어는 AVX-512이다. 오늘날 AVX는 주로 동영상 인코딩 분야에 영향을 주지만, 다른 분야에서도 진가를 발휘한다.
AMD는 기본적으로 라이젠 3000 칩에서 L3 캐시를 2배 늘리고, 이것을 게임 캐시라고 부르면서 애플과 비슷한 마케팅을 펼치고 있다. 라이젠 9 3900X에서 70MB를 차지하는 이 캐시는 라이젠 3000 시리즈의 메모리 지연성을 크게 줄인다. 또 CPU의 게이밍 성능을 극적으로 향상한다. 그래서 게임 캐시라고 부르면서 일반 사용자의 이해를 돕고 있다. 게임 캐시는 애플리케이션 성능 개선에도 유용하지만, 앱 캐시라고 불렀을 때 기뻐할 사람은 아무도 없을 테니까.
라이젠 3000 시리즈에는 7나노 CCD가 2개 들어간다. ⓒAMD
코어와 함께 칩셋 설계도 크게 손을 보았다. 처음의 젠 기반 라이젠은 메모리 및 PCIe 컨트롤러가 인피니티 패브릭으로 결합된 2개의 14 나노 CCD를 특징으로 했다. 젠 2에 기반한 라이젠 3000은 메모리 컨트롤러와 PCIe 4.0 컨트롤러를 별개의 IO 다이로 분리한다. 7나노 연산 코어와 달리 IO 다이는 12나노 공정으로 제작된다. 이는 CPU의 전체 원가 절감에 기여한다. 7나노 공정 웨이퍼가 훨씬 가치 있는데, AMD의 팹 협력사인 TSMC가 IO 다를 제작에 사용하지 않아도 되기 때문이다.
여기서 중요한 질문은 GPU가 제한 요소가 아닌 상황에서, 오랫동안 라이젠 성능의 발목을 잡았던 게이밍 문제가 마침내 해소되었느냐는 것이다. 차이는 이제 매우 근소해졌다. 심지어 엔비디아의 무자비하게 빠른 RTX 2080 Ti를 구동하더라도 거의 99% 문제가 없을 것이다.
PCIe4.0?!
그렇다. PCIe4.0이다. PCIe의 차세대 버전 PCIe4.0은 기본적으로 클럭 속도와 스루풋을 PCIe3.0보다 2배로 늘린다. AMD가 PCIe4.0으로 이동한 것도 또 한가지 유리한 점이다. 인텔은 CPU에서 PCIe3.0 속도로 정체되어 있고, 마찬가지로 엔비디아도 PCIe3.0 기반 GPU만을 보유한 상황이다.
현재 PCIe 4.0 실제 성능은 SSD를 제외하고 손쉽게 구현하기 어려울 것이다. 그러나 새 표준은 PC에서 더 많은 경로와 더 많은 포트를 지원한다. PCIe4.0 SSD의 혜택을 원한다면 AMD의 라이젠 3000과 새 X570 칩셋이 유일한 수단이다.
PCIe의 설명 자료는 여기서 소개한다(all about PCIe 4.0). 개발 초기 단계인 PCIe5.0과 PCIe6.0이 동시에 존재해 혼란을 준다면, 초기 사양이 실제 하드웨어로 구현되기까지는 시간이 걸린다는 점을 기억하기 바란다. 기본적으로 PCIe 4.0가 현재의 유일한 해법이고, AMD는 이 성과를 자랑할만하다.
가격
아직 가격이 남았다. 인텔의 플래그십 제품인 8코어의 코어 i9-9900K는 488달러인 반면, 더 빠르지는 않더라도 최소한 같다고 주장하는 AMD의 12코어는 499달러에 RGB 쿨러를 더했다.
AMD 라이젠 3000 제품군은 가격으로 인텔 제품을 압박한다. ⓒAMD
쓰레드당 가격은 AMD가 인텔보다 우세하다. 각종 CPU의 쓰레드당 가격 차트를 보면 라이젠 9 3900X는 쓰레드당 21달러이고, 코어 i9-9900K는 31달러로 게임이 되지 않는 지경이다.
ⓒAMD
그러나 쓰레드당 가격, 환상적인 7나노 공정도 성능이 뒷받침되지 않는다면 가치가 없다. 그럼 이제부터 라이젠 9 3900X가 얼마나 빠른지 살펴보자.
테스트 방법
이번 리뷰에는 대표적 CPU 3개를 선택했다. AMD의 2세대 라이젠 7 2700X가 테스트의 기준으로 활용된다. 두 번째는 최고의 경쟁자인 488달러의 인텔의 코어 i9-9900K이다. 마지막은 AMD의 499달러짜리 라이젠 9 3900K이다.
CPU는 나란히 테스트되었다. 라이젠 7 2700X는 MSI X470 게이밍 M7 AC에, 코어 i9-9900K는 아수스 막스무스 XI 히어로에, 라이젠 9 3900X는 MSI X5700 가드라이크에 각각 탑재했다.
그래픽의 경우 초반 CPU와 게임 테스트는 파운더스 에디션 지포스 GTX 1080를 사용하였다. 추가적 게임 테스트에서는 파운더스 에디션 지포스 RTX2080 Ti 카드를 이용하였다.
세 PC 모두 최신 UEFI/BIOS와 드라이버를 이용하고, 윈도우 10 프로페셔널 1903을 새로 설치하였다. 윈도우 버전은 특히 중요하다. AMD가 이제 버전 1903에 스케줄 최적화가 포함되어 라이젠 3000에서 더 효율적으로 쓰레드를 전송할 수 있다고 말했기 때문이다.
기억할 점은 AMD의 CPU는 CPU 코어의 작은 집단과 빠른 속도를 갖도록 구축되지만 CPU 코어 집단 사이의 액세스 속도는 더 느리다는 것이다. 구 버전 윈도우에서 스케줄러는 클러스터 내의 한 집단으로 한 쓰레드를 전송한다. 윈도우는 멀티 다이 설계를 감안하여 설계되지 않았기 때문에 두 번째 쓰레드를 다른 CPU 코어 클러스터로 전송할 것이고 이는 성능을 낮추는 원인이 된다.
단순히 두 쓰레드를 같은 CPU 코어 클러스터로 전송하는 경우가 아니면, 두 코어 클러스터 사이의 교차를 처리해야 하기 때문에 속도가 느려지는 것이다. 이제 이 문제가 해소되었다. 윈도우 1903은 가능한 경우 동일한 CPU 코어 클러스터로 쓰레드를 전송할 것이다. AMD의 주장에 따르면 윈도우의 변화를 통해 최대 15%의 성능 향상을 가져올 수 있다. 다만, 모든 애플리케이션에서 적용되는 것은 아니므로 애플리케이션마다 차이가 있을 것이라고 전했다.
ⓒAMD
세 빌드에서 모두 듀얼 채널 모드의 DDR4를 동일하게 이용했지만, 한 가지 차이를 두었다. 코어i9-9900K와 라이젠 7 2700X는 16GB DDR4/3200 CL 14를 이용했고, 라이젠 9 3900K는 16GB DDR4/3600 CL 15를 이용했다. 라이젠 9를 최적의 메모리 클럭인 3,600MHz로 테스트하고 싶었기 때문이다. 3,200 MHz에서도 역시 테스트할 예정이다. 시간적 제약으로 인해 먼저 DDR4/3600 성능만 제시하고, 시간이 허락하면 DDR4/3200 테스트 결과를 추가로 업데이트할 예정이다. 그러나 AMD가 PCWorld에 밝힌 바에 따르면 DDR4/3200CL14는 DDR4/3600CL15에 비해 성능에서 큰 차이가 없다고 한다.
여기서 다른 변수는 저장 공간이다. 라이젠 7과 코어 i9은 초고속 MLC 기반의 삼성 960 프로 512GB SSD을 사용해 PCIe3의 3세대 속도로 테스트되었다. 라이젠 9 3900X는 PCIe4.0을 지원하는 최초의 CPU이자 플랫폼이다. PCIe4.0은 새 플랫폼의 핵심 기능이므로 CPU의 PCI 레인으로 직접 연결된 2TB의 커세어 MP600 PCIe 4.0 SSD를 이용하였다. 이번에 PCWorld가 실행한 테스트에서 스토리지는 CPU 성능에 영향을 주지 않을 것이다.
커세어 MP600 ⓒAMD
MCE인가, 아닌가?
코어 i9-9900K 리뷰와 마찬가지로 이번에도 ‘다중 코어 강화(Multi-Core Enhancement, MCE)’ 기능을 이용할 것인지를 놓고 의견이 엇갈렸다. MCE는 메인보드 지원 기능으로, 인텔 ‘K’ CPU를 더 높은 클럭 속도로 실행한다. 하지만, 전력 소비도 더 크고 열도 더 많이 발생한다. MCE는 기술적으로 인텔의 표준 규격을 넘긴 ‘오버클럭’으로 간주된다.
그렇다면 이 기능을 끄면 되지 않느냐고 생각할 수 있을 것이다. 그런데 문제는 거의 모든 중급 이상의 인텔 메인보드는 즉시 사용할 수 있도록 MCE가 자동으로 설정되어 있다는 점이다. 이 기능을 끈 상태로 새 CPU를 테스트한 결과는 대부분의 사용자가 경험하게 될 코어 i9-9900K의 진정한 속도와는 거리가 멀 것이다.
켠 상태로 두는 것은 더 난감하다. 왜냐하면 메인보드 업체마다 이 설정을 조금씩 다르게 구현하기 때문이다. MCE가 켜진 상태에서 성능을 정확히 측정할 수 있는 쉬운 방법은 없다.
결국 인텔 CPU에 대해 MCE를 끈 채로 테스트를 했고, AMD의 유사한 정밀 부스트 오버드라이브(Precision Boost Overdrive) 역시 끈 상태로 테스트했다. 다른 기사에서 이 부분을 한층 깊이 있게 다룰 것이다. 그러나 현재까지는 MCE를 끈 채 인텔 CPU를 실행하는 것은 PBO를 끈 채 AMD CPU를 실행하는 것보다 인텔 CPU에 훨씬 불리하다는 점은 유의해야 한다.
그렇다면 이제부터 차트의 세계로 나가도록 하자.
라이젠 9 3900x 3D 모델링 성능
12코어 CPU가 8코어를 쉽게 압도할 것이라는 점은 그다지 놀랍지 않다. ⓒIDG라이젠 9 3900X의 싱글 쓰레드 성능이 인상적이다. ⓒIDG시네벤치 R20으로 옮겨가면 라이젠 9 3900X의 싱글 쓰레드 성능이 더 돋보인다. ⓒIDG라이젠 9 3900X가 인텔 코어 i9를 멀티 쓰레드 성능에서 압도하는 것은 어쩌면 당연하다. ⓒIDG코로나 모델러 테스트 결과도 8코어보다 12코어 성능이 더 높게 나왔다. ⓒIDG비슷한 결과다. V레이 넥스트 테스트에서도 다른 모델링 앱과 별반 다르지 않은 결과를 냈다. ⓒIDGⓒIDG놀랍지도 않다. 라이젠 9가 코어 i9을 가지고 노는 수준이다. ⓒIDG5GHz 클럭이라는 강점을 지닌 코어 i9가 라이젠 9를 싱글 쓰레드로 설정된 POV레이 테스트에서 근소하게 앞섰다. ⓒIDGH.265 코덱을 활용한 4K 인코딩 작업에서도 라이젠 9 3900X가 월등했다. ⓒ
라이젠 9 3900X 인코딩 성능
라이젠 9 3900X는 H.265 코덱을 사용한 4K 인코딩에서 코어i9를 간단히 앞질렀다. ⓒIDG시너지 시네스코어 10.4 테스트에서도 라이젠 9의 성능이 코어 i9 칩을 상당히 앞섰다. ⓒIDG프리미어 CC 2019 작업에서는 코어 i9가 더 우세하다. ⓒIDG프리미어 HEVC 인코더 프로젝트에서도 코어 i9가 우세했지만 차이는 조금 줄어들었다. ⓒIDG
포토샵 성능 테스트
포토샵 성능에서는 라이젠 9 2900X가 근소하게 앞섰다. ⓒIDG
압축 테스트
압축 테스트 결과. 라이젠 9 3900X와 라이젠 7 2700X의 성능 차가 크다. ⓒIDGWinRAR결과는 좋게도 나쁘게도 해석할 수 있다. 라이젠 7 2700X 결과에서 보듯, WinRAR는 전통적으로 인텔 CPU와 상성이 좋았는데, 라이젠 9 3900X가 코어 i9와 크게 차이나지 않는 수준의 결과를 냈다. ⓒIDG7ZIP 압축 테스트에서의 싱글 쓰레드 성능은 코어 i9가 조금 더 앞섰다. ⓒIDG멀티쓰레드 성능은 라이젠 9가 압도적이었다. ⓒIDG압축 풀기 테스트는 전통적으로 성능 확인의 정수이자 CPU가 브랜치 오예측을 얼마나 잘 감당하는지와 관련이 있었다. ⓒIDG7Zip 압축 풀기 테스트에서는 3개 제품이 모두 엇비슷한 성능을 나타냈다. 가장 우수한 것은 코어 i9였다. ⓒIDG
라이젠 9 3900X의 게이밍 성능 테스트
섀도우 오브 툼 레이더는 1,920×1,080 해상도에서 플레이했는데도 GPU에 의한 병목 현상이 나타났다. ⓒIDG최신 게임을 플레이할 때는 두 제품 모두 빠른 GPU가 필요하다. ⓒIDG조금 더 오래된 라이즈 오브 더 툼레이더로 옮겨 가면 역시 구형인 지포스 GTX 1080 FE가 병목 현상임을 알 수 있다. ⓒIDG라이젠 9 3900X가 코어 i9를 앞서지는 못했지만, 차이는 아주 근소하다. ⓒIDGⓒIDG파 크라이 5는 코어 i9가 라이젠 시리즈를 앞선 성능을 보인 게임 중 하나다. ⓒIDG데우스 엑스 맨카인드 디바이디드 결과. 라이젠 7과 라이젠 9의 차이에서 게임 성능 개선 폭을 짐작할 수 있다. ⓒIDG레인보우 식스 시지 결과 ⓒIDGCPU 포커스드 테스트 결과는 전적으로 CPU 테스트나 다름 없다. 지포스 GTX 1080과 RTX 2080Ti에서의 프레임 차이가 거의 없었기 때문이다. ⓒIDG
결론
1쓰레드에서 24 쓰레드까지의 시네벤치 테스트로 리뷰를 마치고 싶다. 시네벤치 R20은 3D 모델링 벤치마크로서 게이밍 성능이나 여타 애플리케이션 성능을 예측하지 않는다. 그러나 수많은 게임과 애플리케이션이 현대 CPU의 쓰레드를 모두 활용하는 혜택을 누릴 수는 없다. 그런 면에서 시네벤치 R20이 가치가 있다. CPU를 1개 쓰레드에서 시작해 끝까지 로딩 했을 때의 성능을 살펴볼 수 있기 때문이다.
아래의 차트에서 AMD는 통상적으로 차트 우측에서 두드러진다. 거의 언제나 인텔 칩에 비해 코어 수에서 우세하기 때문이다.
반면 인텔은 통상적으로 우측에서는 패배하지만, 좌측에서는 승리한다. 인텔 칩은 AMD 칩에 비해 클럭 속도와 IPC가 우세하기 때문이다. 인텔의 코어 칩이 강점을 지닌 부분은 기본적으로 여기뿐이다. 대다수 애플리케이션과 게임은 차트의 좌측에 있는 성능에 의존한다. 라이젠 9 3900K와 코어 i9-9900K 사이의 차트를 보면 그 강점은 이제 사라졌다.
시네벤치 r20을 1쓰레드에서 24쓰레드까지 돌리자, 전 구간에서 라이젠 9 3900x의 진정한 강점이 드러났다. ⓒIDG
동일 데이터를 다른 관점으로 보기 위해 성능 우세 정도를 비율로 보여주는 차트를 만들었다. 차트에서 알 수 있듯이 12코어는 8코어를 간단히 압도한다.
이번에도 인텔의 코어 i9에 있어 가장 나쁜 소식은 차트의 좌측에 있다. 여기서도 인텔의 우위가 사라졌다. 두 CPU는 6쓰레드까지 거의 대등하고 이후부터 라이젠 9가 앞서기 시작한다.
라이젠 9는 8쓰레드 이후부터 코어 수로 인텔 코어 i9를 제압했다. ⓒIDG
쓰레드 수가 적은 경우를 봐도 라이젠 9 3900K는 언제나 코어 i9 9900K만큼이나 빠르다. 이는 기본적으로 이제 코어 i9을 사야 할 이유가 거의 없음을 의미한다. 남은 이유도 분명 존재하지만, 고급 CPU를 구입하려는 사용자 10명 중 9명은 라이젠 9 3900X를 선택할 것이 틀림없다. editor@itworld.co.kr
컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개
본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.
컴퓨텍스 2018에서는 게이밍이 뜨겁다. PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.
스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.
AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.
MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.
독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.
2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식
수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다. 좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.
한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다. 여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.
인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)
인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.
이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.
인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.
대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.
신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.
다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.
인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.
또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.
코어 i9의 속도와 피드 클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.
이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.
제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.
인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.
Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러 Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러 Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러 케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.
새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다. 또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.
다음은 속도와 피드를 요약 설명한 표다.
오버클럭이 포인트 인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.
TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.
인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다. 또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.
데이터 전송 성능을 향상한 새 X299 칩셋 테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.
브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.
X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.
이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr
2018년 인텔 6코어 코어 i9 CPU 발표
본 기사는 itworld.co.kr 기사를 인용하였습니다.
아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.
인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.
인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.
인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.
새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.
인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.
인텔 코어 H 시리즈 CPU
인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.
인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.
새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다. 인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.
Intel
인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.
다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.
인텔 코어 U 시리즈 CPU
성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.
Intel
모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.
게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다. editor@itworld.co.kr
“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.
22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.
인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.
이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.
인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.
Mark Hachman
라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.
라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.
라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.
Mark Hachman
AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.
라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.
2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.
쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.
IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.
32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.
– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러. – 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러. – 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러. – 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.
32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.
2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.
신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.
모델명에 추가된 W 사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.
24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.
주요 이정표 일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.
IDG
날로 치열해지는 코어 전쟁
조만간 나올 인텔의 대응 기대 물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.
인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.
이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.
기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다. editor@itworld.co.kr
수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.
따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.
또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.
현재 고성능컴퓨터는 장기적인 전망으로 보는 Quantum Computing, DNA-based Computing, Optical Computing 등의 미래의 컴퓨팅 기술과 단기적인 고성능 컴퓨터 기술인 Symmetric -Multi Processing 기술과 MPP(Massively Pallel Processing)기술이 일반화되고 있습니다. (아래 그림 참조)
일반적으로 슈퍼컴퓨터로 불리는 고성능 HPC는 규모가 큰 운영관리시설과 전문인력이 필요하고 매우 고가이기 때문에, 실제 업무를 수행하는 대부분의 기업이나 기관에서는 단일 SMP 컴퓨터를 많이 사용하고 있습니다.
FLOW-3D에 적합한 일반적인 최소 권장사양은 아래 사양을 참고하시면 됩니다.
다만, 가능하면 최신 CPU의 고성능, 저전력 등 최신기술이 반영된 제품을 선택하는 것은 언제나 투자비와 연관되어 있기 때문에 항상 고민의 대상인 것은 틀림없는것 같습니다.
1) Processors
– FLOW-3D는 x86-64 (Intel/AMD) 프로세스를 지원합니다.
CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가되면 인텔과 AMD의 모델 번호와 사양이 어려워 보일 것입니다. 그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.
부동소숫점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.
64-bit Windows 7, Windows 8, Windows 8.1, Windows 10, Windows Server 2008, and Windows Server 2012
64-bit Red Hat Enterprise Linux 6, Red Hat Enterprise Linux 7 and SUSE 11*
Windows 및 Linux에 대한 시뮬레이션 시간은 대등합니다. 사용자가 사용하기 편리한 운영 체제를 선택하면 됩니다.
3) Graphics Support
FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다. 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.
4) Memory and Processor Speed
프로세서 코어 당 최소 2GB의 RAM을 권장합니다. 예를 들어, 두 개의 6 코어 CPU가 있을 경우 워크스테이션의 메모리는 최소 24 GB가 있어야합니다. 필요한 RAM의 양은 해석 대상 문제에 매우 의존적입니다. 큰 도메인 또는 복잡한 형상에서 좋은 해상도를 원하는 시뮬레이션은 필요한 최소한 RAM보다 훨씬 더 많은 RAM이 필요합니다. 메모리 속도는 시뮬레이션 시간에 영향을 적게 받지만 통상적으로 1333MHz 또는 1600 MHz이면 충분합니다.
5) HDD
수치해석은 해석결과 데이터 양이 매우 크기 때문에 읽고 쓰는데 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다. 그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르지만 가격 또한 매우 고가이므로 예산 범위내에서 선택을 고민해야 합니다.
기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기 까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.
하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다. 결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.
고성능 컴퓨팅(HPC)는 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하는 것을 의미합니다. 시뮬레이션이나 분석과 같은 HPC 워크로드는 계산, 메모리 사용 및 데이터 관리가 매우 중요합니다. 클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해 여러 애플리케이션들을 병렬 실행하도록 설계됩니다. HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.
고성능 컴퓨팅은 일반적으로
– 100Gbps의 초고속 네트워킹 – 확장 가능한 고성능 스토리지 – 고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음) – 에너지 효율성 – GPU 가속지원
등이 핵심 성능지표로 개발됩니다.
HPC와는 스케일 규모면에서는 차이가 많지만 단일 컴퓨팅 기반에서 뛰어난 성능을 발휘하는 고성능 PC 하드웨어를 중심으로 전세계의 최신 컴퓨터 기술을 소개하는 컴퓨덱스에서 발표된 2018년 PC 기반 하드웨어 소개의 일부 기사를 소개합니다.
컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개
본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.
컴퓨텍스 2018에서는 게이밍이 뜨겁다. PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.
스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.
AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.
MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.
독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.
2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식
수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다. 좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.
한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다. 여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.
인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)
인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.
이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.
인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.
대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.
신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.
다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.
인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.
또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.
코어 i9의 속도와 피드 클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.
이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.
제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.
인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.
Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러 Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러 Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러 케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.
새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다. 또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.
다음은 속도와 피드를 요약 설명한 표다.
오버클럭이 포인트 인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.
TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.
인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다. 또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.
데이터 전송 성능을 향상한 새 X299 칩셋 테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.
브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.
X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.
이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr
AMD 마이크로아키텍처 (기사 출처 : itworld)
AMD 라이젠 3월 2일 출시…코어 i7보다 가격도 성능도 “우세”
Mark Hachman | PCWorld
“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.
22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.
인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.
이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.
인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.
Mark Hachman
라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.
라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.
라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.
Mark Hachman
AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.
라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr
아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.
인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.
인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.
인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.
새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.
인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.
인텔 코어 H 시리즈 CPU
인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.
인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.
새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다. 인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.
Intel
인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.
다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.
인텔 코어 U 시리즈 CPU
성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.
Intel
모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.
게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다. editor@itworld.co.kr
FLOW-3D CLOUD 는 사용 가능한 소프트웨어 및 하드웨어 리소스를 수천 개의 컴퓨팅 코어로 확장할 수 있는 클라우드 컴퓨팅 서비스입니다. FLOW-3D CLOUD는 Penguin 주문형 컴퓨팅(POD)에 편리하게 설치되며 POD에서 자체 라이선스를 호스팅하거나 설계 및 분석 주기의 피크 시간에 사용량에 따라 비용을 지불할 수 있습니다. 대규모 시뮬레이션, 파라메트릭 연구 또는 실험 계획(DOE)을 실행하도록 설계된 FLOW-3D CLOUD를 사용하면 클러스터 획득 및 유지 관리에 대한 걱정 없이 시뮬레이션 기능을 확장할 수 있습니다. 또한 Flow Science는 기존 고객에게 할인된 가격으로 시뮬레이션 피크 시간에 대한 HPC 서비스를 제공합니다.
FLOW-3D CLOUD를 사용하면 최첨단 컴퓨팅 노드에서 수백 개의 코어에 액세스할 수 있으며 모든 웹 브라우저를 통해 충실도가 높은 CFD 시뮬레이션에 액세스할 수 있는 유연성을 얻을 수 있습니다. 이 플랫폼을 사용함으로써 우리는 문제와 관련된 복잡한 물리학을 지속적으로 더 잘 해결할 수 있었고 프로젝트에서 상당한 시간을 절약할 수 있었습니다. 클라우드 컴퓨팅은 현대 CFD 방식의 판도를 바꾸는 기술이며 Golder는 이 기술을 채택한 선구자 중 하나임을 자랑스럽게 생각합니다.
아래에는 물 및 환경, 금속 주조, 미세 유체 역학, 항공 우주 등 소프트웨어의 일반적인 응용 분야에 대한 HPC지원 FLOW-3D v12.0의 성능 분석 및 최대 2560개 코어까지 확장되는 것으로 나타난 lid-drived캐비티 시뮬레이션에 대한 전형적인 CFD벤치 마크 검증이 나와 있다.
이 시뮬레이션에서 유압 점프와 레일 위의 전체 흐름이 연구되었습니다. 메쉬:146만개 셀 실제 모델: 동적으로 계산된 최대 난류 혼합 길이의 자유 표면 추적, 중력, 공기 침투 및 RNG난류 모델 수치 모델:GMRERE
고압 분사–엔진 블록
이 시뮬레이션에서는 엔진 블록의 중력 주조를 연구했습니다. 메쉬:360만개 셀 물리적 모델: 자유 표면 추적, 중력, 열 전달, 응고 및 점성 층류 수치 모델:GMRERE
마이크로 데이터–PrinterNOZ내의 INKDROP LE
이 시뮬레이션에서 프린터 노즐의 잉크 방울의 형성과 배출을 연구했습니다. 메쉬:200만개 셀 물리적 모델: 자유 표면 추적, 층류 점성 및 표면 장력 수치 모델:GMRERE
AEROspace–항공기 연료 탱크 부싱
이 시뮬레이션에서는 다양한 비행 조건에서 F-16항공기 연료 탱크에서 연료 슬로싱을 연구했다. 메쉬:0.7만개 셀 물리적 모델: 동적으로 계산된 최대 난류 혼합 길이를 가진 자유 표면 추적, 비이상적 기준 프레임, 중력, 전기 전위 및 RNG난류 모델 수치 모델: ImplicitAdvection, GMrrs 및 분할 LagrangianVOF
BestCaseSCENARIO–LiDDrivenCavity
표준 뚜껑 구동 공동 문제는 FLow-3D의 스케일링 잠재력을 보여 주기 위해 시뮬레이션되었다. 이 시뮬레이션은 표준 CFD코드 검증에 자주 사용되는 완전하게 채워진 완벽한 부하 분산 시뮬레이션입니다. 메쉬:10.0만 셀 물리적 모델: 점성과 RNG난류. 수치 모델:GMRERE
자세한 내용은 STI C&D 솔루션팀에 문의하시기 바랍니다. flow3d@stikorea.co.kr or 02-2026-0455, 02-2026-0450.
FLOW-3D/MP v6.1 는 최신 버전인 FLOW-3D version 11.1과 동일합니다. Active simulation control, batch post processing, report generation 기능을 포함합니다. FLOW-3D/MP 사용자들은 FLOW-3D 의 복잡한 물리적인 수치 뿐아니라, 솔버 옵션들의 정확성을 이용할 수 있지만, 성능 면에서는 엄청나게 향상시킬 수 있습니다. 소프트웨어의 일반적인 응용 프로그램에 대한 벤치 마크 성능 결과를 보려면 여기로 이동하시기 바랍니다.
A large scale modeling study: New York Power Authority used FLOW-3D/MP for their Niagara Hydro Power Project – Modeling and Flow Simulation in order to cut their runtime by a factor of 3.5. Image courtesy NYPA.
Models
FLOW-3D/MP v6.1 의 사용자 인터페이스와 물리 모델들은 FLOW-3D v11.1.을 바탕으로 제작되었습니다. Learn what’s new >
Results Analysis
포스트 프로세서인 FlowSight로 해석 결과를 편리하고 자세히 보실 수 있습니다. 세계적으로 유명한 포스트 프로세서인 EnSight® 를 기반으로 FLOW-3D 에 최적화되어 고급스러운 시각화 분석이 가능합니다. FlowSight 는 사용자들에게 새롭고 강력한 분석 방법, 시각화, 시뮬레이션 데이터와 소통할 수 있는 방법을 제공합니다. Learn more about the power of FlowSight >
User Interface Changes
사용자는 인터페이스의 MPI 탭에서 별도의 decomposition 단계 없이 사용하실 수 있도록 재설계되었습니다. GUI의 작업 스케줄러를 통한 시뮬레이션 실행은 스케줄러가 독립적으로 만들어졌습니다.
What’s Inside
Parallelization is based on the hybrid MPI-OpenMP technology.
Automatic Decomposition Tool (ADT) is used for domain decomposition. ADT has directional decomposition and works with nested and partially overlapping mesh blocks.
Dynamic thread balancing enables load distribution across MPI processes during simulation.
Memory management has been optimized in the pre-processor and the benefits can be seen especially in large simulations.
Remote Solving
FLOW-3D/MP 고객들은 클라이언트-서버 기술을 사용하여 원격 클러스터에 원격 해석을 실행할 수 있습니다. 이 추가 기능은 고객이 하드웨어 리소스들을 쉽게 모두 사용 가능하게 하고, 간단하고 생산적인 방법으로 시뮬레이션이 가능하도록 합니다.
Customization
사용자가 커스터마이징 하기 위해서는 Intel® Fortran 13.1 compiler 와 Intel® MPI 5.0 library가 필요합니다.