Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

레이저 금속 적층 제조 중 나노 입자로 에너지 효율 증가

Minglei Quo bQilin Guo a bLuis IzetEscano a bAli Nabaa a bKamel Fezzaa cLianyi Chen a b

레이저 금속 적층 제조(AM) 공정의 낮은 에너지 효율은 대규모 산업 생산에서 잠재적인 지속 가능성 문제입니다. 레이저 용융을 위한 에너지 효율의 명시적 조사는 용융 금속의 불투명한 특성으로 인해 매우 어려운 용융 풀 치수 및 증기 내림의 직접적인 특성화를 요구합니다. 

여기에서 우리는 현장 고속 고에너지 x-선 이미징에 의해 Al6061의 레이저 분말 베드 융합(LPBF) 동안 증기 강하 및 용융 풀 형성에 대한 TiC 나노 입자의 효과에 대한 직접적인 관찰 및 정량화를 보고합니다. 정량 결과를 바탕으로, 우리는 Al6061의 LPBF 동안 TiC 나노 입자가 있거나 없을 때 레이저 용융 에너지 효율(여기서 재료를 용융하는 데 필요한 에너지 대 레이저 빔에 의해 전달되는 에너지의 비율로 정의)을 계산했습니다. 

결과는 TiC 나노 입자를 Al6061에 추가하면 레이저 용융 에너지 효율이 크게 증가한다는 것을 보여줍니다(평균 114% 증가, 312에서 521% 증가). W 레이저 출력, 0.4m  /s 스캔 속도). 체계적인 특성 측정, 시뮬레이션 및 x-선 이미징 연구를 통해 우리는 처음으로 세 가지 메커니즘이 함께 작동하여 레이저 용융 에너지 효율을 향상시킨다는 것을 확인할 수 있었습니다.

(1) TiC 나노 입자를 추가하면 흡수율이 증가합니다. (2) TiC 나노입자를 추가하면 열전도율이 감소하고, (3) TiC 나노입자를 추가하면 더 낮은 레이저 출력에서 ​​증기 억제 및 다중 반사를 시작할 수 있습니다(즉, 키홀링에 대한 레이저 출력 임계값을 낮춤). 

여기서 보고한 Al6061의 LPBF 동안 레이저 용융 에너지 효율을 증가시키기 위해 TiC 나노입자를 사용하는 방법 및 메커니즘은 보다 에너지 효율적인 레이저 금속 AM을 위한 공급원료 재료의 개발을 안내할 수 있습니다.

The low energy efficiency of the laser metal additive manufacturing (AM) process is a potential sustainability concern for large-scale industrial production. Explicit investigation of the energy efficiency for laser melting requires the direct characterization of melt pool dimension and vapor depression, which is very difficult due to the opaque nature of the molten metal. Here we report the direct observation and quantification of effects of the TiC nanoparticles on the vapor depression and melt pool formation during laser powder bed fusion (LPBF) of Al6061 by in-situ high-speed high-energy x-ray imaging. Based on the quantification results, we calculated the laser melting energy efficiency (defined here as the ratio of the energy needed to melt the material to the energy delivered by the laser beam) with and without TiC nanoparticles during LPBF of Al6061. The results show that adding TiC nanoparticles into Al6061 leads to a significant increase of laser melting energy efficiency (114% increase on average, 521% increase under 312 W laser power, 0.4 m/s scan speed). Systematic property measurement, simulation, and x-ray imaging studies enable us, for the first time, to identify that three mechanisms work together to enhance the laser melting energy efficiency: (1) adding TiC nanoparticles increases the absorptivity; (2) adding TiC nanoparticles decreases the thermal conductivity, and (3) adding TiC nanoparticles enables the initiation of vapor depression and multiple reflection at lower laser power (i.e., lowers the laser power threshold for keyholing). The method and mechanisms of using TiC nanoparticles to increase the laser melting energy efficiency during LPBF of Al6061 we reported here may guide the development of feedstock materials for more energy efficient laser metal AM.

Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing
Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

Keywords

Additive manufacturing

laser powder bed fusion

energy efficiency

keyhole

melt pool

x-ray imaging

metal matrix nanocomposites

Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.

플라즈마 회전 전극 공정 중 분말 형성에 대한 공정 매개변수 및 냉각 가스의 영향

Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process

Yujie Cuia Yufan Zhaoa1 Haruko Numatab Kenta Yamanakaa Huakang Biana Kenta Aoyagia AkihikoChibaa
aInstitute for Materials Research, Tohoku University, Sendai 980-8577, JapanbDepartment of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan

Highlights

•The limitation of increasing the rotational speed in decreasing powder size was clarified.

•Cooling and disturbance effects varied with the gas flowing rate.

•Inclined angle of the residual electrode end face affected powder formation.

•Additional cooling gas flowing could be applied to control powder size.

Abstract

The plasma rotating electrode process (PREP) is rapidly becoming an important powder fabrication method in additive manufacturing. However, the low production rate of fine PREP powder limits the development of PREP. Herein, we investigated different factors affecting powder formation during PREP by combining experimental methods and numerical simulations. The limitation of increasing the rotation electrode speed in decreasing powder size is attributed to the increased probability of adjacent droplets recombining and the decreased tendency of granulation. The effects of additional Ar/He gas flowing on the rotational electrode on powder formation is determined through the cooling effect, the disturbance effect, and the inclined effect of the residual electrode end face simultaneously. A smaller-sized powder was obtained in the He atmosphere owing to the larger inclined angle of the residual electrode end face compared to the Ar atmosphere. Our research highlights the route for the fabrication of smaller-sized powders using PREP.

플라즈마 회전 전극 공정(PREP)은 적층 제조 에서 중요한 분말 제조 방법으로 빠르게 자리잡고 있습니다. 그러나 미세한 PREP 분말의 낮은 생산율은 PREP의 개발을 제한합니다. 여기에서 우리는 실험 방법과 수치 시뮬레이션을 결합하여 PREP 동안 분말 형성에 영향을 미치는 다양한 요인을 조사했습니다. 분말 크기 감소에서 회전 전극 속도 증가의 한계는 인접한 액적 재결합 확률 증가 및 과립화 경향 감소에 기인합니다.. 회전 전극에 흐르는 추가 Ar/He 가스가 분말 형성에 미치는 영향은 냉각 효과, 외란 효과 및 잔류 전극 단면의 경사 효과를 통해 동시에 결정됩니다. He 분위기에서는 Ar 분위기에 비해 잔류 전극 단면의 경사각이 크기 때문에 더 작은 크기의 분말이 얻어졌다. 우리의 연구는 PREP를 사용하여 더 작은 크기의 분말을 제조하는 경로를 강조합니다.

Keywords

Plasma rotating electrode process

Ti-6Al-4 V alloy, Rotating speed, Numerical simulation, Gas flowing, Powder size

Introduction

With the development of additive manufacturing, there has been a significant increase in high-quality powder production demand [1,2]. The initial powder characteristics are closely related to the uniform powder spreading [3,4], packing density [5], and layer thickness observed during additive manufacturing [6], thus determining the mechanical properties of the additive manufactured parts [7,8]. Gas atomization (GA) [9–11], centrifugal atomization (CA) [12–15], and the plasma rotating electrode process (PREP) are three important powder fabrication methods.

Currently, GA is the dominant powder fabrication method used in additive manufacturing [16] for the fabrication of a wide range of alloys [11]. GA produces powders by impinging a liquid metal stream to droplets through a high-speed gas flow of nitrogen, argon, or helium. With relatively low energy consumption and a high fraction of fine powders, GA has become the most popular powder manufacturing technology for AM.

The entrapped gas pores are generally formed in the powder after solidification during GA, in which the molten metal is impacted by a high-speed atomization gas jet. In addition, satellites are formed in GA powder when fine particles adhere to partially molten particles.

The gas pores of GA powder result in porosity generation in the additive manufactured parts, which in turn deteriorates its mechanical properties because pores can become crack initiation sites [17]. In CA, a molten metal stream is poured directly onto an atomizer disc spinning at a high rotational speed. A thin film is formed on the surface of the disc, which breaks into small droplets due to the centrifugal force. Metal powder is obtained when these droplets solidify.

Compared with GA powder, CA powder exhibits higher sphericity, lower impurity content, fewer satellites, and narrower particle size distribution [12]. However, very high speed is required to obtain fine powder by CA. In PREP, the molten metal, melted using the plasma arc, is ejected from the rotating rod through centrifugal force. Compared with GA powder, PREP-produced powders also have higher sphericity and fewer pores and satellites [18].

For instance, PREP-fabricated Ti6Al-4 V alloy powder with a powder size below 150 μm exhibits lower porosity than gas-atomized powder [19], which decreases the porosity of additive manufactured parts. Furthermore, the process window during electron beam melting was broadened using PREP powder compared to GA powder in Inconel 718 alloy [20] owing to the higher sphericity of the PREP powder.

In summary, PREP powder exhibits many advantages and is highly recommended for powder-based additive manufacturing and direct energy deposition-type additive manufacturing. However, the low production rate of fine PREP powder limits the widespread application of PREP powder in additive manufacturing.

Although increasing the rotating speed is an effective method to decrease the powder size [21,22], the reduction in powder size becomes smaller with the increased rotating speed [23]. The occurrence of limiting effects has not been fully clarified yet.

Moreover, the powder size can be decreased by increasing the rotating electrode diameter [24]. However, these methods are quite demanding for the PREP equipment. For instance, it is costly to revise the PREP equipment to meet the demand of further increasing the rotating speed or electrode diameter.

Accordingly, more feasible methods should be developed to further decrease the PREP powder size. Another factor that influences powder formation is the melting rate [25]. It has been reported that increasing the melting rate decreases the powder size of Inconel 718 alloy [26].

In contrast, the powder size of SUS316 alloy was decreased by decreasing the plasma current within certain ranges. This was ascribed to the formation of larger-sized droplets from fluid strips with increased thickness and spatial density at higher plasma currents [27]. The powder size of NiTi alloy also decreases at lower melting rates [28]. Consequently, altering the melting rate, varied with the plasma current, is expected to regulate the PREP powder size.

Furthermore, gas flowing has a significant influence on powder formation [27,29–31]. On one hand, the disturbance effect of gas flowing promotes fluid granulation, which in turn contributes to the formation of smaller-sized powder [27]. On the other hand, the cooling effect of gas flowing facilitates the formation of large-sized powder due to increased viscosity and surface tension. However, there is a lack of systematic research on the effect of different gas flowing on powder formation during PREP.

Herein, the authors systematically studied the effects of rotating speed, electrode diameter, plasma current, and gas flowing on the formation of Ti-6Al-4 V alloy powder during PREP as additive manufactured Ti-6Al-4 V alloy exhibits great application potential [32]. Numerical simulations were conducted to explain why increasing the rotating speed is not effective in decreasing powder size when the rotation speed reaches a certain level. In addition, the different factors incited by the Ar/He gas flowing on powder formation were clarified.

Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.
Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.

References

[1] W. Ding, G. Chen, M. Qin, Y. He, X. Qu, Low-cost Ti powders for additive manufacturing treated by fluidized bed, Powder Technol. 350 (2019) 117–122, https://doi.org/
10.1016/j.powtec.2019.03.042.
[2] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed,
A review of powder additive manufacturing processes for metallic biomaterials,
Powder Technol. 327 (2018) 128–151, https://doi.org/10.1016/j.powtec.2017.12.
058.
[3] M. Ahmed, M. Pasha, W. Nan, M. Ghadiri, A simple method for assessing powder
spreadability for additive manufacturing, Powder Technol. 367 (2020) 671–679,
https://doi.org/10.1016/j.powtec.2020.04.033.
[4] W. Nan, M. Pasha, M. Ghadiri, Numerical simulation of particle flow and segregation
during roller spreading process in additive manufacturing, Powder Technol. 364
(2020) 811–821, https://doi.org/10.1016/j.powtec.2019.12.023.
[5] A. Averardi, C. Cola, S.E. Zeltmann, N. Gupta, Effect of particle size distribution on the
packing of powder beds : a critical discussion relevant to additive manufacturing,
Mater. Today Commun. 24 (2020) 100964, https://doi.org/10.1016/j.mtcomm.
2020.100964.
[6] K. Riener, N. Albrecht, S. Ziegelmeier, R. Ramakrishnan, L. Haferkamp, A.B. Spierings,
G.J. Leichtfried, Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF), Addit. Manuf. 34 (2020) 101286, https://doi.org/10.1016/j.
addma.2020.101286.
[7] W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H.
Miura, A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications, Powder Technol. 331 (2018) 74–97, https://doi.org/10.1016/j.
powtec.2018.03.010.
[8] A.T. Sutton, C.S. Kriewall, M.C. Leu, J.W. Newkirk, Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes, Virtual Phys. Prototyp. 12 (2017) (2017) 3–29, https://doi.org/10.
1080/17452759.2016.1250605.
[9] G. Chen, Q. Zhou, S.Y. Zhao, J.O. Yin, P. Tan, Z.F. Li, Y. Ge, J. Wang, H.P. Tang, A pore
morphological study of gas-atomized Ti-6Al-4V powders by scanning electron microscopy and synchrotron X-ray computed tomography, Powder Technol. 330
(2018) 425–430, https://doi.org/10.1016/j.powtec.2018.02.053.
[10] Y. Feng, T. Qiu, Preparation, characterization and microwave absorbing properties of
FeNi alloy prepared by gas atomization method, J. Alloys Compd. 513 (2012)
455–459, https://doi.org/10.1016/j.jallcom.2011.10.079.

[11] I.E. Anderson, R.L. Terpstra, Progress toward gas atomization processing with increased uniformity and control, Mater. Sci. Eng. A 326 (2002) 101–109, https://
doi.org/10.1016/S0921-5093(01)01427-7.
[12] P. Phairote, T. Plookphol, S. Wisutmethangoon, Design and development of a centrifugal atomizer for producing zinc metal powder, Int. J. Appl. Phys. Math. 2 (2012)
77–82, https://doi.org/10.7763/IJAPM.2012.V2.58.
[13] L. Tian, I. Anderson, T. Riedemann, A. Russell, Production of fine calcium powders by
centrifugal atomization with rotating quench bath, Powder Technol. 308 (2017)
84–93, https://doi.org/10.1016/j.powtec.2016.12.011.
[14] M. Eslamian, J. Rak, N. Ashgriz, Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization, Powder Technol. 184 (2008) 11–20,
https://doi.org/10.1016/j.powtec.2007.07.045.
[15] T. Plookphol, S. Wisutmethangoon, S. Gonsrang, Influence of process parameters on
SAC305 lead-free solder powder produced by centrifugal atomization, Powder
Technol. 214 (2011) 506–512, https://doi.org/10.1016/j.powtec.2011.09.015.
[16] M.Z. Gao, B. Ludwig, T.A. Palmer, Impact of atomization gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing, Powder
Technol. 383 (2021) 30–42, https://doi.org/10.1016/j.powtec.2020.12.005.
[17] X. Shui, K. Yamanaka, M. Mori, Y. Nagata, A. Chiba, Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam
melting, Mater. Sci. Eng. A 680 (2017) 239–248, https://doi.org/10.1016/j.msea.
2016.10.059.
[18] C. Wang, X.H. Zhao, Y.C. Ma, Q.X. Wang, Y.J. Lai, S.J. Liang, Study of the spherical
HoCu powders prepared by supreme-speed plasma rotating electrode process,
Powder Metallurgy Technology 38 (3) (2020) 227–233, https://doi.org/10.19591/
j.cnki.cn11-1974/tf.2020.03.011 (in Chinese).
[19] G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, H.P. Tang, A comparative study of Ti6Al-4V powders for additive manufacturing by gas atomization, plasma rotating
electrode process and plasma atomization, Powder Technol. 333 (2018) 38–46,
https://doi.org/10.1016/j.powtec.2018.04.013.
[20] Y. Zhao, K. Aoyagi, Y. Daino, K. Yamanaka, A. Chiba, Significance of powder feedstock
characteristics in defect suppression of additively manufactured Inconel 718, Addit.
Manuf. 34 (2020) 101277, https://doi.org/10.1016/j.addma.2020.101277.
[21] Y. Nie, J. Tang, B. Yang, Q. Lei, S. Yu, Y. Li, Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process,
Adv. Powder Technol. 31 (2020) 2152–2160, https://doi.org/10.1016/j.apt.2020.03.
006.
[22] Y. Cui, Y. Zhao, H. Numata, H. Bian, K. Wako, K. Yamanaka, K. Aoyagi, C. Zhang, A.
Chiba, Effects of plasma rotating electrode process parameters on the particle size
distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technol 376
(2020) 363–372, https://doi.org/10.1016/j.powtec.2020.08.027.
[23] J. Tang, Y. Nie, Q. Lei, Y. Li, Characteristics and atomization behavior of Ti-6Al-4V
powder produced by plasma rotating electrode process Adv, Powder Technol. 10
(2019) 2330–2337, https://doi.org/10.1016/j.apt.2019.07.015.
[24] M. Zdujić, D. Uskoković, Production of atomized metal and alloy powders by the rotating electrode process, Sov. Powder Metall. Met. Ceram. 29 (1990) 673–683,
https://doi.org/10.1007/BF00795571.
[25] L. Zhang, Y. Zhao, Particle size distribution of tin powder produced by centrifugal
atomisation using rotating cups, Powder Technol. 318 (2017) 62–67, https://doi.
org/10.1016/j.powtec.2017.05.038.
[26] Y. Liu, S. Liang, Z. Han, J. Song, Q. Wang, A novel model of calculating particle sizes in
plasma rotating electrode process for superalloys, Powder Technol. 336 (2018)
406–414, https://doi.org/10.1016/j.powtec.2018.06.002.
[27] Y. Zhao, Y. Cui, H. Numata, H. Bian, K. Wako, K. Yamanaka, Centrifugal granulation
behavior in metallic powder fabrication by plasma rotating electrode process, Sci.
Rep. (2020) 1–15, https://doi.org/10.1038/s41598-020-75503-w.
[28] T. Hsu, C. Wei, L. Wu, Y. Li, A. Chiba, M. Tsai, Nitinol powders generate from plasma
rotation electrode process provide clean powder for biomedical devices used with
suitable size, spheroid surface and pure composition, Sci. Rep. 8 (2018) 1–8,
https://doi.org/10.1038/s41598-018-32101-1.
[29] M. Wei, S. Chen, M. Sun, J. Liang, C. Liu, M. Wang, Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure, Powder Technol. 367 (2020) 724–739, https://doi.org/10.1016/j.powtec.
2020.04.030.
[30] Y. Tan, X. Zhu, X.Y. He, B. Ding, H. Wang, Q. Liao, H. Li, Granulation characteristics of
molten blast furnace slag by hybrid centrifugal-air blast technique, Powder Technol.
323 (2018) 176–185, https://doi.org/10.1016/j.powtec.2017.09.040.
[31] P. Xu, D.H. Liu, J. Hu, G.Y. Lin, Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process, Nonferrous Metals Science and Engineering
39 (1) (2020) 67–71 , (in Chinese) 10.13264/j.cnki.ysjskx.2020.01.011.
[32] H. Mehboob, F. Tarlochan, A. Mehboob, S.H. Chang, S. Ramesh, W.S.W. Harun, K.
Kadirgama, A novel design, analysis and 3D printing of Ti-6Al-4V alloy bioinspired porous femoral stem, J. Mater. Sci. Mater. Med. 31 (2020) 78, https://doi.
org/10.1007/s10856-020-06420-7.
[33] FLOW-3D® Version 11.2 [Computer software]. , Flow Science, Inc., Santa Fe, NM,
2017https://www.flow3d.com.
[34] M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.H. Nadal, B. Wilthan, G. Pottlacher,
Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J.
Thermophys. 27 (2006) 507–529, https://doi.org/10.1007/PL00021868.
[35] J. Liu, Q. Qin, Q. Yu, The effect of size distribution of slag particles obtained in dry
granulation on blast furnace slag cement strength, Powder Technol. 362 (2020)
32–36, https://doi.org/10.1016/j.powtec.2019.11.115.
[36] M. Tanaka, S. Tashiro, A study of thermal pinch effect of welding arcs, J. Japan Weld.
Soc. 25 (2007) 336–342, https://doi.org/10.2207/qjjws.25.336 (in Japanese).
[37] T. Kamiya, A. Kayano, Disintegration of viscous fluid in the ligament state purged
from a rotating disk, J. Chem. Eng. JAPAN. 4 (1971) 364–369, https://doi.org/10.
1252/jcej.4.364.
[38] T. Kamiya, An analysis of the ligament-type disintegration of thin liquid film at the
edge of a rotating disk, J. Chem. Eng. Japan. 5 (1972) 391–396, https://doi.org/10.
1252/jcej.5.391.
[39] J. Burns, C. Ramshaw, R. Jachuck, Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique, Chem. Eng. Sci. 58 (2003) 2245–2253, https://doi.org/10.1016/S0009-2509
(03)00091-5.
[40] J. Rauscher, R. Kelly, J. Cole, An asymptotic solution for the laminar flow of a thin film
on a rotating disk, J. Appl. Mech. Trans. ASME 40 (1973) 43–47, https://doi.org/10.
1115/1.3422970

Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]
참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

FLOW-3D AM 미세 구조 예측 | 열 응력 해석

미세 구조 예측

냉각 속도 및 온도 구배와 같은 FLOW-3D AM 데이터를 미세 구조 모델에 입력하여 결정 성장 및 수상 돌기 암 간격을 예측할 수 있습니다. 

레이저 파우더 베드 융합으로 제작 된 니켈 기반 초합금의 열전달, 유체 흐름 및 응고 미세 구조 모델링

오하이오 주립 대학의 연구원들은 니켈 기반 초합금의 미세 구조 진화를 예측하기 위해 용융 풀과 고체 / 액체 인터페이스의 적절한 위치에서 열 구배 및 냉각 속도 데이터를 추출했습니다.

참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.
참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

열 응력 | Thermal Stresses

FLOW-3D AM 시뮬레이션의 결과를 ABAQUS 또는 MSC NASTRAN과 같은 FEA 소프트웨어에 입력하여 추가 열 응력 분석을 실행할 수 있습니다. 여기에서 T- 조인트의 레이저 용접 시뮬레이션 결과를 추가 응력 분석을 위해 ABAQUS로 가져 오는 방법을 볼 수 있습니다. 마찬가지로 LPBF 시뮬레이션에서 응고 된 용융 풀 데이터의 결과를 사용하여 다른 FEA 소프트웨어에서 열 응력 및 왜곡 분석을 연구 할 수 있습니다.

Thermal Stresses Analysis Fig1
Thermal Stresses Analysis Fig1
Thermal Stresses Analysis Fig2
Thermal Stresses Analysis Fig2

Thermal Stresses Case Study

Directed Energy Deposition

DED (Directed Energy Deposition)는 레이저 또는 전자 빔과 같은 에너지 소스를 사용하여 가열 및 융합되는 와이어 또는 분말을 증착하여 부품을 만드는 적층 제조 공정입니다. FLOW-3D AM 은 분말 또는 와이어 이송 속도 및 크기 특성, 레이저 출력 및 스캔 속도와 같은 공정 매개 변수를 고려하여 DED 공정을 시뮬레이션 할 수 있습니다. 또한, 기판과 분말 재료의 서로 다른 합금에 대해 독립적 인 열 물리적 재료 특성을 정의하여 다중 재료 DED 프로세스를 시뮬레이션 할 수 있습니다. 

레이저 물리학의 구현과 열 전달, 응고, 표면 장력, 차폐 가스 효과 및 반동 압력을 포함한 압력 효과를 통해 연구원은 결과 용접 비드의 강도 및 균일성에 대한 공정 매개 변수의 영향을 정확하게 분석 할 수 있습니다. 또한 이러한 시뮬레이션을 여러 레이어로 확장하여 후속 레이어 간의 융합을 분석 할 수 있습니다. 

FLOW-3D AM

flow3d AM-product
FLOW-3D AM-product

와이어 파우더 기반 DED | Wire Powder Based DED

일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.

와이어 기반 DED | Wire Based DED

와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.

FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

Melting | 파우더 베드 용해

DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

Multilayer | 다층 적층 제조

용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.

해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

LPBF의 키홀 링 | Keyholing in LPBF

키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

Scan Strategy | 스캔 전략

스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.

Beam Shaping | 빔 형성

레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.

이 영역에서 수행 된 일부 작업에 대해 자세히 알아 보려면 “The Next Frontier of Metal AM”웨비나를 시청하십시오.

Multi-material Powder Bed Fusion | 다중 재료 분말 베드 융합

이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.

다중 재료 용접 사례 연구

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사

GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

Additive manufacturing

LPBF 시뮬레이션 순서

  • Powder settling
  • Powder spreading
  • Laser scan tracks on a powder bed

선택적 레이저 용해(Melting) : 단일 트랙 모델링

  • Power Bed spreading : 파우더 베드(Bed)압축의 파라메트릭 분석
    – 블레이드(Blade) 모션
    – 롤러(Roller) 속도와 방향

용융 풀(Melt pool) 모델링

  • 용융 풀의 진화(Evolution of the melt pool)
  • 시뮬레이션 및 실험적 단면(Cross-section) 검증

다층 SLM프로세스 : TU덴마크

추가 특성 – 고객 요청

  • 두 재료의 온도 의존성 재료 특성
  • 유체 영역과 고체 영역 사이의 접촉각 설정

Keyhole-induced porosity in LPBF (다공성을 포함하는 LPBF의 키홀)

키홀의 실험 및 수치 모델 설정

  • 왼쪽 그림 설명 : KU Leuven 자체 제작 L-PBF 기계로 생성 된 실험 분석용 샘플. 벌크 크기는 10.4mm x 10.4mm x 4.5mm이며 다공성을 갖는 키홀 모드를 초래하는 6개의 스캔 트랙은 각각 길이가 8mm임
  • 오른쪽 그림 설명 : 전체 계산 영역의 3D 화면. 청록색으로 표시된 조절량에는 고체상과 기체상이 모두 포함됨. 오른쪽에는 도메인의 재구성 된 자유 표면의 확대도가 표시됨.

키홀링으로 전환

  • 용융지는 처음에 얕음
  • 하향 운동은 강한 반동 압력에 의해 좌우됨
  • 키홀의 성장으로 이어지는 강한 하향 흐름과 핫스팟의 공존
  • 열쇠 구멍 림에 가까운 온도가 상승하고 반동 압력이 높아짐

다공성 형성 메커니즘

  • 키홀의 바닥에서 반동 압력이 상승하고 상단 영역의 표면 장력이 증가함
  • 냉각 영역이 닫히며 불규칙한 기공이 나타남
  • 하향 흐름이 강해서 기공이 용융지 뒤쪽으로 밀려남
  • 응고된 앞부분이 진보하면서 기공들이 갖힘

FLOW-3D를 이용한 키홀 모델 실험 및 검증

  • 오른쪽 : 실험에서 얻은 깊이 및 다공성 직경의 플롯과 Power 170 W 케이스 모델
  • 왼쪽 : 기공의 크기와 모양 및 용융지에 대한 평균 실험 및 수치 데이터