Cell Behavior

Cell Behavior

정밀하고 신중하게 제어되는 화학 반응성 구배를 생성 할 수있는 능력은 미세 유체학을 운동성, 화학성 및 소수의 미생물 집단에서 항생제에 대한 내성을 단기간에 진화시키고 개발하는 능력을 연구하는 이상적인 도구가 됩니다. FLOW-3D는 연구자들이 아래 예제에 표시된 것처럼 새롭고 더 나은 gradient generators를 고안하는 데 도움이 될 수 있습니다.

1-D Gradient generator with de-coupled convection and diffusion

FLOW-3D를 사용한 이 1-D 미세유체 팔레트 시뮬레이션에서는 표시된 흐름선을 통해 주 중앙 마이크로 채널에서 대류 셀의 깨끗한 디커플링을 확인할 수 있습니다. 이 흐름은 모두 대류 단위로만 제한되며 마이크로 채널로 유출되는 단 한 개의 흐름도 없어 대류 및 확산의 디커플링이 우수합니다. 소스 농도의 진화는 그림에서 볼 수 있으며, 애니메이션이 끝날 때쯤이면 눈에 띄게 일정해집니다.

This FLOW-3D simulation of a 2-D microfluidic palette demonstrates a spatio-temporal control on the generated gradients. The source and sink are rotated at an angular velocity. Also, after every t seconds, the active access port is deactivated and the next port is turned on. To see the live status of the diffusion inside the chamber, three line probes are placed in the simulation (marked in red, blue and black, respectively, in the bottom right window of the simulation).2-D 마이크로 유체 팔레트의 이  FLOW-3D 시뮬레이션은 생성된 그라데이션에 대한 spatio-temporal 제어를 보여줍니다. 소스 및 sink는 각 속도로 회전합니다. 또한 t초마다 활성 액세스 포트가 비활성화되고 다음 포트가 켜집니다. 챔버 내부의 확산 상태를 확인하기 위해 시뮬레이션에 세 개의 라인 프로브가 배치됩니다(시뮬레이션의 오른쪽 하단 창에 각각 빨간색, 파란색 및 검은색 표시).

Read the Microfluidic Palette – A Gradient Generator blog.

The microfluidic palette: A gradient generator (미세 유체 팔레트 : 구배 생성기)

  • 멤브레인이나 젤을 사용하지 않고 확산에서 대류유동을 분리함
    – 전단 응력이 없는 재료(셀 또는 가용성 재료)의 전달
    – 다른 공간 위치로겹치는 구배 생성
    – 구배에 대한 동적 제어

  • 대류 셀은 메인 중앙 마이크로 채널에서 깨끗하게 분리됨

  • 생성 된 구배에서 시공간을 제어
  • t초마다 활성 포트가 비활성화되고 다음 포트가 켜짐

  • FLOW-3D 결과는 농도의 진행 측면에서 실험 결과와 매우 일치함

실험 (위) 및 FLOW-3D 결과 (아래)의 비교. x 축은 거리입니다 (실험 사례에 대해 정규화 됨). y 축은 소스 농도 (실험 사례의 경우 형광 강도)입니다.

Microfluidic palette – A gradient generator / 미소유동 팔레트 – 그라디언트 생성기

Microfluidic 팔레트 – 그라디언트 생성기

Microfluidics 모델링 , 그래디언트 생성 장치 시뮬레이션 및 검증 작업을 계속하는 것은 Flow Science의 최신 연구분야입니다. 확산 기반 그라디언트는 많은 복잡한 생물학적 과정에서 없어서는 안될 부분입니다. 한 예로 세포가 화학적 구배를 따라 이동하는 화학 주성 (chemotaxis )으로 인한 상처의 치료 방법입니다. 지난 몇 년 동안 확산 구배를 설정하고 연구하기 위한 다양한 접근법이 등장했지만 모두 문제 해결에 어려움을 겪고 있습니다.

Atencia 등은 이전 접근법의 알려진 문제점을 극복하기 위해 혁신적인 미세 유체 구배 생성기 (마이크로 유체 팔레트)를 제안했습니다.

이전 접근법 및 관련 문제

확산 그라디언트를 설정하는 세 가지 주요 접근법으로 층류, 멤브레인 및 하이드로 겔 및 자유 확산 방법이 있으며 각각의 특징이 았습니다. 그러나, 언급한 것처럼 문제를 해결하는데 동반되는 어려움이 있습니다.
microfluidic 장치에서 그라디언트를 연구하고 확립하기 위한 표준 접근법은 층류의 사용을 포함합니다. 이 접근법은 매우 간단하지만 대류로 인해 전단 응력이 발생합니다. 전단 응력은 세포 반응을 변화시킬 수 있습니다. 예를 들어, 바이어스 된 세포 이동 및 비대칭 대량 수송이 발생할 수있습니다.

보다 최근의 개발은 강성 멤브레인 및 하이드로 겔을 사용하는 것을 포함하여 확산 구배를 설정하여 대류 흐름을 피하는 것입니다. 그러나 막과 겔은 확산 속도를 감소시켜 그라데이션의 일시적인 현상에 영향을줍니다.

마지막으로, 2 개의 유체 플러그를 접촉시켜 자유로운 확산을 가능하게 하는 접근법이 개발되었습니다. 그러나 이 접근 방식은 1-D 흐름에만 국한됩니다. 또한, 일단 그래디언트가 설정되면, 확산류 구배를 수정하기 위해 대류 흐름을 사용해야 하며, 이는 층류 유동에서 전단 응력 발생의 초기 문제로 되돌아갑니다.

여기에서는 Atencia 등이 제안한 확산성 구배 생성에 대한 새로운 접근법의 원리에 대해 논의하고 FLOW-3D 시뮬레이션 결과를 제시합니다.

Microfluidic 팔레트
미세 유체 팔레트 뒤에있는 원리는 멤브레인이나 젤을 사용하지 않고 확산으로부터 대류 흐름을 분리하여 다음과 같은 이점을 제공합니다.
  • 전단 응력없이 재료 (셀 또는 용해성 물질)의 전달
  • 서로 다른 공간 위치를 갖는 중첩 그라데이션 생성
  • 그라데이션에 대한 동적 제어

Atencia 등이 제안한 미세 유체 팔레트의 디자인은 위에 나와 있습니다. 1-D의 경우, 대류 장치 1의 질량 균형은 입구 1과 출구 1의 유속을 일치 시키면 확산을 통해 전달을 허용하면서 주 마이크로 채널을 통한 흐름을 방지합니다. 대류 장치 1은 완벽한 소스 역할을 합니다. 2 차원의 경우는 2 차원 이상의 대류 단위가있는 1 차원의 경우를 단순히 확장한 것입니다.

FLOW-3D 시뮬레이션

아래의 1 차원 마이크로 유체 팔레트 애니메이션에서 주 중앙 마이크로 채널로부터의 대류 세포의 깨끗한 분리는 플롯 된 유선을 통해 볼 수 있습니다. 유선형은 모두 대류 단위에만 제한되며 단일 채널도 마이크로 채널로 누출되지 않아 대류와 확산의 탁월한 분리를 나타냅니다. 소스 농도의 진화는 플롯에서 볼 수 있습니다. 플롯은 애니메이션이 끝날 때까지 일정하게 보입니다.

1 차원 마이크로 유체 팔레트의 FLOW-3D 시뮬레이션 결과

2D 마이크로 유체 팔레트는 생성 된 그라데이션에 대한 시공간 제어를 보여줍니다. 소스와 싱크는 각속도로 회전합니다. 또한 매 초마다 활성 액세스 포트가 비활성화되고 다음 포트가 켜집니다. 챔버 내부의 확산 상태를 확인하기 위해 3 개의 라인 프로브가 시뮬레이션에 배치됩니다 (아래 시뮬레이션의 오른쪽 하단 창에서 각각 빨간색, 파란색 및 검은 색으로 표시됨).

2D 3D 마이크로 유체 팔레트의 FLOW-3D 시뮬레이션 결과.

실험 결과와의 비교

FLOW-3D 결과는 챔버 내부의 농도 변화 측면에서 실험 결과와 잘 일치합니다. 아래 이미지는 실험 결과와 시뮬레이션 결과 모두에 대한 시간 스냅 샷을 보여줍니다. 실험 결과가 정규화되었습니다. 또한 실험은 형광 강도를 사용하여 소스의 농도를 나타냅니다. 시뮬레이션에서 FlowSight 의 라인 프로브는 3 개의 액세스 포트 사이의 농도를 연구하는 데 사용됩니다.

실험 (위) 및 FLOW-3D 결과 (아래)의 비교. x 축은 거리입니다 (실험 사례에 대해 정규화 됨). y 축은 소스 농도 (실험 사례의 경우 형광 강도)입니다.
실험 (위) 및 FLOW-3D 결과 (아래)의 비교. x 축은 거리입니다 (실험 사례에 대해 정규화 됨). y 축은 소스 농도 (실험 사례의 경우 형광 강도)입니다.

References

Atencia J, Morrow J, Locascio L.E., The microfluidic palette: A diffusive gradient generator with spatio-temporal control, The Royal Society of Chemistry 2009

Roll Coating

Roll Coating

롤 코팅 공정은 직물, 접착제 및 실란트를 다루는 산업을 포함한 다양한 산업에서 일반적으로 많이 사용하는 공정입니다. FLOW-3D는 공정 엔지니어와 과학자에게 다양한 재료 특성과 코팅 방식을 평가하여 결함의 원인을 식별하고 롤 코팅 공정 매개 변수를 최적화 할 수있는 기능을 제공합니다.

1-D Gradient generator with de-coupled convection and diffusion

이러한 예에서 속도 유선은 롤 코팅 공정에서 흔히 볼 수있는 전방 (상단), 후방 (중간) 및 고갈 (하단) 작동 방식에 대해 플롯됩니다. FLOW-3D는 연구자들에게 롤 속도 및 재료 특성과 같은 요소와 동적 접촉 라인의 안정성에 미치는 영향뿐만 아니라 공기 혼입, 리브 및 비 균일 에지 프로파일과 같은 결함에 대한 기여도를 분석 할 수있는 기능을 제공합니다.

인쇄 공정 중 산업에서는 종종 인쇄면에 잉크를 전달하고 적용하는 롤 코팅(roll coating) 이라고 불리는 기술을 사용합니다. 이 공정에서 통상적으로 잉크 유액은 두 개의 회전하는 실린더 사이의 좁은 갭(gap)으로 흘러 들어갑니다.

FLOW-3D를 사용하는 이 1D microfluidic palette 시뮬레이션에서 주 중앙 마이크로 채널에서 대류 Cells의 clean decoupling을 플롯된 유선을 통해 확인할 수 있습니다. 이 흐름은 모두 대류 장치에만 제한되며 단일 장치조차도 마이크로 채널로 누출되지 않아 대류 및 확산의 탁월한 분리를 나타냅니다. 소스 농도의 변화는 플롯에서 볼 수 있으며 애니메이션이 끝날 때까지 시각적으로 일정해집니다.

Ribbing Instabilities

아래에 표시된 전 방향 롤 코팅 시뮬레이션에서 FLOW-3D는 Lee, et al [1]에 설명 된대로 증가 된 롤 속도와 관련된 리브 불안정성의 시작을 정확하게 포착합니다. 이 모델은 단일 유체 VOF, 표면 장력 및 점도를 구현하여 생산에서 볼 수있는 이러한 불안정성의 복잡한 특성을 포착합니다.

Cascade Defects

아래 시뮬레이션에서 FLOW-3D는 포워드 롤 코팅 공정에서 cascade defect을 포착합니다. 상단 웹 롤러의 증가된 롤 속도로 인해, 동적 접촉 라인이 불안정해져 공기가 코팅액에 유입 될 수 있습니다.

Reference

[1] Lee, J. H., Han, S. K., Lee, J. S., Jung, H. W., & Hyun, J. C. (2010). Ribbing instability in rigid and deformable forward roll coating flows. Korea Australia Rheology Journal, 22(1), 75-80.