Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours correspond to the horizontal component of the flow velocity (u), expressed in m/s).

Numerical investigation of dam break flow over erodible beds with diverse substrate level variations

다양한 기질 수준 변화를 갖는 침식성 층 위의 댐 파손 흐름에 대한 수치 조사

Alireza Khoshkonesh1, Blaise Nsom2, Saeid Okhravi3*, Fariba Ahmadi Dehrashid4, Payam Heidarian5,
Silvia DiFrancesco6
1 Department of Geography, School of Social Sciences, History, and Philosophy, Birkbeck University of London, London, UK.
2 Université de Bretagne Occidentale. IRDL/UBO UMR CNRS 6027. Rue de Kergoat, 29285 Brest, France.
3 Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104, Bratislava, Slovak Republic.
4Department of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, 65178-38695, Hamedan, Iran.
5 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy.
6Niccol`o Cusano University, via Don C. Gnocchi 3, 00166 Rome, Italy. * Corresponding author. Tel.: +421-944624921. E-mail: saeid.okhravi@savba.sk

Abstract

This study aimed to comprehensively investigate the influence of substrate level difference and material composition on dam break wave evolution over two different erodible beds. Utilizing the Volume of Fluid (VOF) method, we tracked free surface advection and reproduced wave evolution using experimental data from the literature. For model validation, a comprehensive sensitivity analysis encompassed mesh resolution, turbulence simulation methods, and bed load transport equations. The implementation of Large Eddy Simulation (LES), non-equilibrium sediment flux, and van Rijn’s (1984) bed load formula yielded higher accuracy compared to alternative approaches. The findings emphasize the significant effect of substrate level difference and material composition on dam break morphodynamic characteristics. Decreasing substrate level disparity led to reduced flow velocity, wavefront progression, free surface height, substrate erosion, and other pertinent parameters. Initial air entrapment proved substantial at the wavefront, illustrating pronounced air-water interaction along the bottom interface. The Shields parameter experienced a one-third reduction as substrate level difference quadrupled, with the highest near-bed concentration observed at the wavefront. This research provides fresh insights into the complex interplay of factors governing dam break wave propagation and morphological changes, advancing our comprehension of this intricate phenomenon.

이 연구는 두 개의 서로 다른 침식층에 대한 댐 파괴파 진화에 대한 기질 수준 차이와 재료 구성의 영향을 종합적으로 조사하는 것을 목표로 했습니다. VOF(유체량) 방법을 활용하여 자유 표면 이류를 추적하고 문헌의 실험 데이터를 사용하여 파동 진화를 재현했습니다.

모델 검증을 위해 메쉬 해상도, 난류 시뮬레이션 방법 및 침대 하중 전달 방정식을 포함하는 포괄적인 민감도 분석을 수행했습니다. LES(Large Eddy Simulation), 비평형 퇴적물 플럭스 및 van Rijn(1984)의 하상 부하 공식의 구현은 대체 접근 방식에 비해 더 높은 정확도를 산출했습니다.

연구 결과는 댐 붕괴 형태역학적 특성에 대한 기질 수준 차이와 재료 구성의 중요한 영향을 강조합니다. 기판 수준 차이가 감소하면 유속, 파면 진행, 자유 표면 높이, 기판 침식 및 기타 관련 매개변수가 감소했습니다.

초기 공기 포집은 파면에서 상당한 것으로 입증되었으며, 이는 바닥 경계면을 따라 뚜렷한 공기-물 상호 작용을 보여줍니다. 기판 레벨 차이가 4배로 증가함에 따라 Shields 매개변수는 1/3로 감소했으며, 파면에서 가장 높은 베드 근처 농도가 관찰되었습니다.

이 연구는 댐 파괴파 전파와 형태학적 변화를 지배하는 요인들의 복잡한 상호 작용에 대한 새로운 통찰력을 제공하여 이 복잡한 현상에 대한 이해를 향상시킵니다.

Keywords

Dam break; Substrate level difference; Erodible bed; Sediment transport; Computational fluid dynamics CFD.

Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours
correspond to the horizontal component of the flow velocity (u), expressed in m/s).
Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours correspond to the horizontal component of the flow velocity (u), expressed in m/s).

REFERENCES

Aleixo, R., Soares-Frazão, S., Zech, Y., 2010. Velocity profiles in
dam-break flows: water and sediment layers. In: Proc. Int. Conf.
on Fluvial Hydraulics “River Flow 2010”, pp. 533–540.
An, S., Ku, H., Julien, P.Y., 2015. Numerical modelling of local
scour caused by submerged jets. Maejo Int. J. Sci. Technol., 9, 3,
328–343.
Bahmanpouri, F., Daliri, M., Khoshkonesh, A., Namin, M.M.,
Buccino, M., 2021. Bed compaction effect on dam break flow over
erodible bed; experimental and numerical modeling. J. Hydrol.,
594, 125645. https://doi.org/10.1016/j.jhydrol.2020.125645
Baklanov, A., 2007. Environmental risk and assessment modelling
– scientific needs and expected advancements. In: Ebel, A.,
Davitashvili, T. (Eds.): Air, Water and Soil Quality Modelling
for Risk and Impact Assessment Springer, Dordrecht, pp. 29–44.
Biscarini, C., Di Francesco, S., Nardi, F., Manciola, P., 2013.
Detailed simulation of complex hydraulic problems with
macroscopic and mesoscopic mathematical methods. Math.
Probl. Eng., 928309. https://doi.org/10.1155/2013/928309
Cao, Z., Pender, G., Wallis, S., Carling, P., 2004. Computational
dam-break hydraulics over erodible sediment bed. J. Hydraul.
Eng., 130, 7, 689–703.
Catucci, D., Briganti, R., Heller, V., 2021. Numerical validation of novel
scaling laws for air entrainment in water. Proc. R. Soc. A, 477, 2255,20210339. https://doi.org/10.1098/rspa.2021.0339
Dehrashid, F.A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan,
S., Tang, X., Lu, C., Wang, X., 2023. CFD modeling the flow
dynamics in an open channel with double-layered vegetation.
Model. Earth Syst. Environ., 9, 1, 543–555.
Desombre, J., Morichon, D., Mory, M., 2013. RANS v2-f simulation
of a swash event: Detailed flow structure. Coastal Eng., 71, 1–12.
Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment
particles in the presence of bed forms under decelerating and
accelerating flows. J. Hydrol. Hydromech., 70, 1, 89–102.
Dong, Z., Wang, J., Vetsch, D.F., Boes, R.M., Tan, G., 2019.
Numerical simulation of air entrainment on stepped
spillways. In: E-proceedings of the 38th IAHR World Congress
(pp. 1494). September 1–6, 2019, Panama City, Panama. DOI:
10.3850/38WC092019-0755
Flow3D [computer software]. 2023. Santa Fe, NM: Flow Science,
Inc.
Fraccarollo, L., Capart, H., 2002. Riemann wave description of
erosional dam-break flows. J. Fluid Mech., 461, 183–228.
Gu, Z., Wang, T., Meng, W., Yu, C.H., An, R., 2023. Numerical
investigation of silted-up dam-break flow with different silted-up
sediment heights. Water Supply, 23, 2, 599–614.
Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of
conventional flow resistance equations and a model for the
Nikuradse roughness in vegetated flows at high submergence. J.
Hydrol. Hydromech., 66, 1, 107–120.
Heller, V., 2011. Scale effects in physical hydraulic engineering
models. J. Hydraul. Res., 49, 3, 293–306.
Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free
surface. Flow Science, Inc.
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for
the dynamics of free boundaries. J. Comput. Phys., 39, 1, 201–
225.
Issakhov, A., Zhandaulet, Y., Nogaeva, A., 2018. Numerical
simulation of dam break flow for various forms of the obstacle
by VOF method. Int. J. Multiphase Flow, 109, 191–206.
Khayyer, A., Gotoh, H., 2010. On particle-based simulation of a dam
break over a wet bed. J. Hydraul. Res., 48, 2, 238–249.
Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F.A.,
Bahmanpouri, F., Di Francesco, S., 2022. Dam-break flow
dynamics over a stepped channel with vegetation. J. Hydrol., 613,128395. https://doi.org/10.1016/j.jhydrol.2022.128395
Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019.
A comprehensive study on dam-break flow over dry and wet
beds. Ocean Eng., 188, 106279.
https://doi.org/10.1016/j.oceaneng.2019.106279
Khoshkonesh, A., Sadeghi, S.H., Gohari, S., Karimpour, S., Oodi,
S., Di Francesco, S., 2023. Study of dam-break flow over a
vegetated channel with and without a drop. Water Resour.
Manage., 37, 5, 2107–2123.
Khosravi, K., Chegini, A.H.N., Cooper, J., Mao, L., Habibnejad, M.,
Shahedi, K., Binns, A., 2021. A laboratory investigation of bedload transport of gravel sediments under dam break flow. Int. J.
Sediment Res., 36, 2, 229–234.
Kim, Y., Zhou, Z., Hsu, T.J., Puleo, J.A., 2017. Large eddy
simulation of dam‐break‐driven swash on a rough‐planar beach.
J. Geophys. Res.: Oceans, 122, 2, 1274–1296.
Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral
channel contraction on dam break flows: Laboratory experiment.
J. Hydrol., 432, 145–153.
Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wavefront celerity. J. Hydraul. Eng., 132, 1, 69–76.
Leal, J.G.A.B., Ferreira, R.M., Cardoso, A.H., 2003. Dam-break
wave propagation over a cohesionless erodible bed. In: Proc.
30rd IAHR Congress, 100, 261–268.
Li, Y. L., Ma, Y., Deng, R., Jiang, D.P., Hu, Z., 2019. Research on
dam-break induced tsunami bore acting on the triangular
breakwater based on high order 3D CLSVOF-THINC/WLICIBM approaching. Ocean Eng., 182, 645–659.
Li, Y.L., Yu, C.H., 2019. Research on dam-break flow induced front
wave impacting a vertical wall based on the CLSVOF and level
set methods. Ocean Eng., 178, 442–462.
Mei, S., Chen, S., Zhong, Q., Shan, Y., 2022. Detailed numerical
modeling for breach hydrograph and morphology evolution
during landslide dam breaching. Landslides, 19, 12, 2925–2949.
Meng, W., Yu, C.H., Li, J., An, R., 2022. Three-dimensional simulation
of silted-up dam-break flow striking a rigid structure. Ocean Eng.,
261, 112042. https://doi.org/10.1016/j.oceaneng.2022.112042
Meyer-Peter, E., Müller, R., 1948. Formulas for bed-load transport.
In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.
Nielsen, P., 1984. Field measurements of time-averaged suspended
sediment concentrations under waves. Coastal Eng., 8, 1, 51–72.
Nielsen, P., 2018. Bed shear stress, surface shape and velocity field
near the tips of dam-breaks, tsunami and wave runup. Coastal
Eng., 138, 126–131.
Nsom, B., Latrache, N., Ramifidisoa, L., Khoshkonesh, A., 2019.
Analytical solution to the stability of gravity-driven stratified
flow of two liquids over an inclined plane. In: 24th French
Mechanics Congress in Brest. Brest, p. 244178.
Nsom, B., Ravelo, B., Ndong, W., 2008. Flow regimes in horizontal
viscous dam-break flow of Cayous mud. Appl. Rheol., 18, 4,
43577-1. https://doi.org/10.1515/arh-2008-0012
Oguzhan, S., Aksoy, A.O., 2020. Experimental investigation of the
effect of vegetation on dam break flood waves. J. Hydrol.
Hydromech., 68, 3, 231–241.
Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022. Effects of bedmaterial gradation on clear water scour at single and group of
piles. J. Hydrol. Hydromech., 70, 1, 114–127.
Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2023. Numerical
modeling of local scour of non-uniform graded sediment for two
arrangements of pile groups. Int. J. Sediment Res., 38, 4, 597–614.
Parambath, A., 2010. Impact of tsunamis on near shore wind power
units. Master’s Thesis. Texas A&M University. Available
electronically from https://hdl.handle.net/1969.1/ETD-TAMU2010-12-8919
Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., Torres-Freyermuth, A.,

  • Hydrodynamics and sediment transport under a dambreak-driven swash: An experimental study. Coastal Eng., 170,
  • https://doi.org/10.1016/j.coastaleng.2021.103986
    Riaz, K., Aslam, H.M.S., Yaseen, M.W., Ahmad, H.H.,
    Khoshkonesh, A., Noshin, S., 2022. Flood frequency analysis
    and hydraulic design of bridge at Mashan on river Kunhar. Arch.
    Hydroengineering Environ. Mech., 69, 1, 1–12.
    Ritter, A., 1892. Die Fortpflanzung der Wasserwellen. Zeitschrift
    des Vereines Deutscher Ingenieure, 36, 33, 947–954. (In
    German.)
    Smagorinsky, J., 1963. General circulation experiments with the
    primitive equations: I. The basic experiment. Mon. Weather
    Rev., 91, 3, 99–164.
    Soulsby, R.L., 1997. Dynamics of marine sands: a manual for
    practical applications. Oceanogr. Lit. Rev., 9, 44, 947.
    Spinewine, B., Capart, H., 2013. Intense bed-load due to a sudden
    dam-break. J. Fluid Mech., 731, 579–614.
    Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport.
    J. Hydraul. Eng., 110, 10, 1431–1456.
    Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., Sadegh, M.,
  • Experimental study and numerical verification of
    silted-up dam break. J. Hydrol., 590, 125267.
    https://doi.org/10.1016/j.jhydrol.2020.125267
    Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume
    model for sediment transport. J. Hydraul. Res., 46, 1, 87–98.
    Xu, T., Huai, W., Liu, H., 2023. MPS-based simulation of
    dam-break wave propagation over wet beds with a
    sediment layer. Ocean Eng., 281, 115035.
    https://doi.org/10.1016/j.oceaneng.2023.115035
    Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018. Numerical study
    on characteristics of dam-break wave. Ocean Eng., 159, 358–371.
    Yao, G.F., 2004. Development of new pressure-velocity solvers in
    FLOW-3D. Flow Science, Inc., USA.
Fig. 3. (a–c) Snapshots of the CtFD simulation of laser-beam irradiation: (a) Top, (b) longitudinal vertical cross-sectional, and (c) transversal vertical cross-sectional views. (d) z-position of the solid/liquid interface during melting and solidification.

Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field simulations and computational thermal-fluid dynamics

Masayuki Okugawa ab, Kenji Saito a, Haruki Yoshima a, Katsuhiko Sawaizumi a, Sukeharu Nomoto c, Makoto Watanabe c, Takayoshi Nakano ab, Yuichiro Koizumi abShow moreAdd to MendeleyShareCite

https://doi.org/10.1016/j.addma.2024.104079

Get rights and content Under a Creative Commons license open access

Abstract

Solute segregation significantly affects material properties and is a critical issue in the laser powder-bed fusion (LPBF) additive manufacturing (AM) of Ni-based superalloys. To the best of our knowledge, this is the first study to demonstrate a computational thermal-fluid dynamics (CtFD) simulation coupled multi-phase-field (MPF) simulation with a multicomponent-composition model of Ni-based superalloy to predict solute segregation under solidification conditions in LPBF. The MPF simulation of the Hastelloy-X superalloy reproduced the experimentally observed submicron-sized cell structure. Significant solute segregations were formed within interdendritic regions during solidification at high cooling rates of up to 10K s-1, a characteristic feature of LPBF. Solute segregation caused a decrease in the solidus temperature (TS), with a reduction of up to 30.4 K, which increases the risk of liquation cracks during LPBF. In addition, the segregation triggers the formation of carbide phases, which increases the susceptibility to ductility dip cracking. Conversely, we found that the decrease in TS is suppressed at the melt-pool boundary regions, where re-remelting occurs during the stacking of the layer above. Controlling the re-remelting behavior is deemed to be crucial for designing crack-free alloys. Thus, we demonstrated that solute segregation at the various interfacial regions of Ni-based multicomponent alloys can be predicted by the conventional MPF simulation. The design of crack-free Ni-based superalloys can be expedited by MPF simulations of a broad range of element combinations and their concentrations in multicomponent Ni-based superalloys.

Graphical abstract

Keywords

Laser powder-bed fusion, Hastelloy-X Nickel-based superalloy, solute element segregation, computational thermal-fluid dynamics simulation, phase-field method

1. Introduction

Additive manufacturing (AM) technologies have attracted considerable attention as they allow us to easily build three-dimensional (3D) parts with complex geometries. Among the wide range of available AM techniques, laser powder-bed fusion (LPBF) has emerged as a preferred technique for metal AM [1][2][3][4][5]. In LPBF, metal products are built layer-by-layer by scanning laser, which fuse metal powder particles into bulk solids.

Significant attempts have been made to integrate LPBF techniques within the aerospace industry, with a particular focus on weldable Ni-based superalloys, such as IN718 [6][7][8], IN625 [9][10], and Hastelloy-X (HX) [11][12][13][14]. Non-weldable alloys, such as IN738LC [15][16] and CMSX-4 [1][17] are also suitable for their sufficient creep resistance under higher temperature conditions. However, non-weldable alloys are difficult to build using LPBF because of their susceptibility to cracking during the process. In general, a macro solute-segregation during solidification is suppressed by the rapid cooling conditions (up to 108 K s-1) unique to the LPBF process [18]. However, the solute segregation still occurs in the interdendritic regions that are smaller than the micrometer scale [5][19][20][21]; these regions are suggested to be related to the hot cracks in LPBF-fabricated parts. Therefore, an understanding of solute segregation is essential for the fabrication of reliable LPBF-fabricated parts while avoiding cracks.

The multiphase-field (MPF) method has gained popularity for modeling the microstructure evolution and solute segregation under rapid cooling conditions [5][20][21][22][23][24][25][26][27][28]. Moreover, quantifiable predictions have been achieved by combining the MPF method with temperature distribution analysis methods such as the finite-element method (FEM) [20] and computational thermal-fluid dynamics (CtFD) simulations [28]. These aforementioned studies have used binary-approximated multicomponent systems, such as Ni–Nb binary alloys, to simulate IN718 alloys. While MPF simulations using binary alloy systems can effectively reproduce microstructure formations and segregation behaviors, the binary approximation might be affected by the chemical interactions between the removed solute elements in the target multicomponent alloy. The limit of absolute stability predicted by the Mullins-Sekerka theory [29] is also crucial because the limit velocity is close to the solidification rate in the LPBF process and is different in multicomponent and binary-approximated systems. The difference between the solidus and liquidus temperatures, ΔT0, directly determines the absolute stability according to the Mullins-Sekerka theory. For example, the ΔT0 values of IN718 and its binary-approximated Ni–5 wt.%Nb alloy are 134 K [28] and 71 K [30], respectively. The solidification rate compared to the limit of absolute stability, i.e., the relative non-equilibrium of solidification, changes by simplification of the system. It is therefore important to use the composition of the actual multicomponent system in such simulations. However, to the best of our knowledge, there is no MPF simulation using a multicomponent model coupled with a temperature analysis simulation to predict solute segregation in a Ni-based superalloy.

In this study, we demonstrate that the conventional MPF model can reproduce experimentally observed dendritic structures by performing a phase-field simulation using the temperature distribution obtained by a CtFD simulation of a multicomponent Ni-based alloy (conventional solid-solution hardening-type HX). The MPF simulation revealed that the segregation behavior of solute elements largely depends on the regions of the melt pool, such as the cell boundary, the interior of the melt-pool boundary, and heat-affected regions. The sensitivities of the various interfaces to liquation and solidification cracks are compared based on the predicted concentration distributions. Moreover, the feasibility of using the conventional MPF model for LPBF is discussed in terms of the absolute stability limit.

2. Methods

2.1. Laser-beam irradiation experiments

Rolled and recrystallized HX ingots with dimensions of 20 × 50 × 10 mm were used as the specimens for laser-irradiation experiments. The specimens were irradiated with a laser beam scanned along straight lines of 10 mm in length using a laser AM machine (EOS 290 M, EOS) equipped with a 400 W Yb-fiber laser. Irradiation was performed with a beam power of P = 300 W and a scanning speed of V = 600 mm s-1, which are the conditions generally used in the LPBF fabrication of Ni-based superalloy [8]. The corresponding line energy was 0.5 J mm-1. The samples were cut perpendicular to the beam-scanning direction for cross-sectional observation using a field-emission scanning electron microscope (FE-SEM, JEOL JSM 6500). Crystal orientation analysis was performed by electron backscatter diffraction (EBSD). The sizes of each crystal grain and their aspect ratios were evaluated by analyzing the EBSD data.

2.2. CtFD simulation

CtFD simulations of the laser-beam irradiation of HX were performed using a 3D thermo-fluid analysis software (Flow Science FLOW-3D® with Flow-3D Weld module). A Gaussian heat source model was used, in which the irradiation intensity distribution of the beam is regarded as a symmetrical Gaussian distribution over the entire beam. The distribution of the beam irradiation intensity is expressed by the following equation.(1)q̇=2ηPπR2exp−2r2R2.

Here, P is the power, R is the effective beam radius, r is the actual beam radius, and η is the beam absorption rate of the substrate. To improve the accuracy of the model, η was calculated by assuming multiple reflections using the Fresnel equation:(2)�=1−121+1−�cos�21+1+�cos�2+�2−2�cos�+2cos2��2+2�cos�+2cos2�.

ε is the Fresnel coefficient and θ is the incident angle of the laser. A local laser melt causes the vaporization of the material and results in a high vapor pressure. This vapor pressure acts as a recoil pressure on the surface, pushing the weld pool down. The recoil pressure is reproduced using the following equation.(3)precoil=Ap0exp∆HLVRTV1−TVT.

Here, p0 is the atmospheric pressure, ∆HLV is the latent heat of vaporization, R is the gas constant, and TV is the boiling point at the saturated vapor pressure. A is a ratio coefficient that is generally assumed to be 0.54, indicating that the recoil pressure due to evaporation is 54% of the vapor pressure at equilibrium on the liquid surface.

Table 1 shows the parameters used in the simulations. Most parameters were evaluated using an alloy physical property calculation software (Sente software JMatPro v11). The values in a previously published study [31] were used for the emissivity and the Stefan–Boltzmann constant, and the values for pure Ni [32] were used for the heat of vaporization and vaporization temperatures. The Fresnel coefficient, which determines the beam absorption efficiency, was used as a fitting parameter to reproduce the morphology of the experimentally observed melt region, and a Fresnel coefficient of 0.12 was used in this study.

Table 1. Parameters used in the CtFD simulations.

ParameterSymbolValueReference
Density at 298.15 Kρ8.24 g cm-3[]
Liquidus temperatureTL1628.15 K[]
Solidus temperatureTS1533.15 K[]
Viscosity at TLη6.8 g m-1 s-1[]
Specific heat at 298.15 KCP0.439 J g-1 K-1[]
Thermal conductivity at 298.15 Kλ10.3 W m-1 K-1[]
Surface tension at TLγL1.85 J m-2[]
Temperature coefficient of surface tensiondγL/dT–2.5 × 10−4 J m-2 K-1[]
EmissivityΕ0.27[31]
Stefan–Boltzmann constantσ5.67 × 10-8 W m-2 K-4[31]
Heat of fusionΔHSL2.76 × 102 J g-1[32]
Heat of vaporizationΔHLV4.29 × 10J g-1[32]
Vaporization temperatureTV3110 K[32]

Calculated using JMatPro v11.

The dimensions of the computational domain of the numerical model were 4.0 mm in the beam-scanning direction, 0.4 mm in width, and 0.3 mm in height. A uniform mesh size of 10 μm was applied throughout the computational domain. The boundary condition of continuity was applied to all boundaries except for the top surface. The temperature was initially set to 300 K. P and V were set to their experimental values, i.e., 300 W and 600 mm s-1, respectively. Solidification conditions based on the temperature gradient, G, the solidification rate, R, and the cooling rate were evaluated, and the obtained temperature distribution was used in the MPF simulations.

2.3. MPF simulation

Two-dimensional MPF simulations weakly coupled with the CtFD simulation were performed using the Microstructure Evolution Simulation Software (MICRESS) [33][34][35][36][37] with the TQ-Interface for Thermo-Calc [38]. A simplified HX alloy composition of Ni-21.4Cr-17.6Fe-0.46Mn-8.80Mo-0.39Si-0.50W-1.10Co-0.08 C (mass %) was used in this study. The Gibbs free energy and diffusion coefficient of the system were calculated using the TCNI9 thermodynamic database [39] and the MOBNi5 mobility database [40]. Τhe equilibrium phase diagram calculated using Thermo-Calc indicates that the face-centered cubic (FCC) and σ phases appear as the equilibrium solid phases [19]. However, according to the time-temperature-transformation (TTT) diagram [41], the phases are formed after the sample is maintained for tens of hours in a temperature range of 1073 to 1173 K. Therefore, only the liquid and FCC phases were assumed to appear in the MPF simulations. The simulation domain was 5 × 100 μm, and the grid size Δx and interface width were set to 0.025 and 0.1 µm, respectively. The interfacial mobility between the solid and liquid phases was set to 1.0 × 10-8 m4 J-1 s-1. Initially, one crystalline nucleus with a [100] crystal orientation was placed at the left bottom of the simulation domain, with the liquid phase occupying the remainder of the domain. The model was solidified under the temperature field distribution obtained by the CtFD simulation. The concentration distribution and crystal orientation of the solidified model were examined. The primary dendrite arm space (PDAS) was compared to the experimental PDAS measured by the cross-sectional SEM observation.

In an actual LPBF process, solidified layers are remelted and resolidified during the stacking of the one layer above, thereby greatly affecting solute element distributions in those regions. Therefore, remelting and resolidification simulations were performed to examine the effect of remelting on solute segregation. The solidified model was remelted and resolidified by applying a time-dependent temperature field shifted by 60 μm in the height direction, assuming reheating during the stacking of the upper layer (i.e., the upper 40 μm region of the simulation box was remelted and resolidified). The changes in the composition distribution and formed microstructure were investigated.

3. Results

3.1. Experimental observation of melt pool

Fig. 1 shows a cross-sectional optical microscopy image and corresponding inverse pole figure (IPF) orientation maps obtained from the laser-melted region of HX. The dashed line indicates the fusion line. A deep melted region was formed by keyhole-mode melting due to the vaporization of the metal and resultant recoil pressure. Epitaxial growth from the unmelted region was observed. Columnar crystal grains with an average diameter of 5.46 ± 0.32 μm and an aspect ratio of 3.61 ± 0.13 appeared at the melt regions (Figs. 1b–1d). In addition, crystal grains growing in the z direction could be observed in the lower center.

Fig. 1

Fig. 2a shows a cross-sectional backscattering electron image (BEI) obtained from the laser-melted region indicated by the black square in Fig. 1a. The bright particles with a diameter of approximately 2 μm observed outside the melt pool. It is well known that M6C, M23C6, σ, and μ precipitate phases are formed in Hastelloy-X [41]. These precipitates mainly consisted of Mo, Cr, Fe, and Ni; The μ and M6C phases are rich in Mo, while the σ and M23C6 phases are rich in Cr. The SEM energy dispersive X-ray spectroscopy analysis suggested that the bright particles are the stable precipitates as shown in Fig. S2 and Table S1. Conversely, there are no carbides in the melt pool. This suggests that the cooling rate is extremely high during LPBF, which prevents the formation of a stable carbide during solidification. Figs. 2b–2f show magnified BEI images at different height positions indicated in Fig. 2a. Bright regions are observed between the cells, which become fragmentary at the center of the melt pool, as indicated by the yellow arrow heads in Figs. 2e and 2f.

Fig. 2

3.2. CtFD simulation

Figs. 3a–3c show snapshots of the CtFD simulation of HX at 2.72 ms, with the temperature indicated in color. A melt pool with an elongated teardrop shape formed and keyhole-mode melting was observed at the front of the melt region. The cooling rate, temperature gradient (G), and solidification rate (R) were evaluated from the temporal change in the temperature distribution of the CtFD simulation results. The z-position of the solid/liquid interface during the melting and solidification processes is shown in Fig. 3d. The interface goes down rapidly during melting and then rises during solidification. The MPF simulation of the microstructure formation during solidification was performed using the temperature distribution. Moreover, the microstructure formation process during the fabrication of the upper layer was investigated by remelting and resolidifying the solidified layer using the same temperature distribution with a 60 μm upward shift, corresponding to the layer thickness commonly used in the LPBF of Ni-based superalloys.

Fig. 3

Figs. 4a–4c show the changes in the cooling rate, temperature gradient, and solidification rate in the center line of the melt pool parallel to the z direction. To output the solidification conditions at the solid/liquid interface in the melt pool, only the data of the mesh where the solid phase ratio was close to 0.5 were plotted. Solidification occurred where the cooling rate was in the range of 2.1 × 105–1.6 × 10K s-1G was in the range of 3.6 × 105–1.9 × 10K m-1, and R was in the range of 8.2 × 10−2–6.3 × 10−1 m s-1. The cooling rate was the highest near the fusion line and decreased as the interface approached the center of the melt region (Fig. 4a). G also exhibited the highest value in the regions near the fusion line and decreased throughout the solid/liquid interface toward the center of the melt pool (Fig. 4b). R had the lowest value near the fusion line and increased as the interface approached the center of the melt region (Fig. 4c).

Fig. 4

3.3. MPF simulations coupled with CtFD simulation

MPF simulations of solidification, remelting, and resolidification were performed using the temperature-time distribution obtained by the CtFD simulation. Fig. 5 shows the MPF solidified models colored by phase and Mo concentration. All the computational domains show the FCC phase after the solidification (Fig. 5a). Dendrites grew parallel to the heat flow direction, and solute segregations were observed in the interdendritic regions. At the bottom of the melt pool (Fig. 5d), planar interface growth occurred before the formation of primary dendrites. The bottom of the melt pool is the turning point of the solid/liquid interface from the downward motion in melting to the upward motion in solidification. Thus, the solidification rate at the boundary is zero, and is extremely low immediately above the molt-pool boundary. Here, the lower limit of the solidification rate (R) for dendritic growth can be represented by the constitutional supercooling criterion [29]Vcs = (G × DL) / ΔT, and planar interface growth occurs at R < VcsDL and ΔT denote the diffusion coefficient in the liquid and the equilibrium freezing range, respectively. The results suggest that planar interface growth occurs at the bottom of the melt pool, resulting in a dark region with a different solute element distribution. Some of the primary dendrites were diminished by competition with other dendrites. In addition, secondary dendrite arms could be seen in the upper regions (Fig. 5c), where solidification occurred at a lower cooling rate. The fragmentation of the solute segregation near the secondary dendrite arms is similar to that observed in the experimental melt pool shown in Figs. 2e and 2f, and the secondary dendrite arms are suggested to have appeared at the center of the melt region. Fig. 6 shows the PDASs measured from the MPF simulation models, compared to the experimental PDASs measured by the cross-sectional SEM observation of the laser-melted regions (Fig. 2). The PDAS obtained by the MPF simulation become larger as the solidification progress. Ghosh et al. [21] evident by the phase-field method that the PDAS decreases as the cooling rate increases under the rapid cooling conditions obtained by the finite element analysis. In this study, the cooling rate was decreased as the interface approached the center of the melt region (Fig. 4a), and the trends in PDAS changes with respect to cooling rate is same as the reported trend [21]. The simulated trends of the PDAS with the position in the melt pool agreed well with the experimental trends. However, all PDASs in the simulation were larger than those observed in the experiment at the same positions. Ode et al. [42] reported that PDAS differences between 2D and 3D MPF simulations can be represented by PDAS2D = 1.12 × PDAS3D owing to differences in the effects of the interfacial energy and diffusivity. We also performed 2D and 3D MPF simulations under the solidification conditions of G = 1.94 × 10K m-1 and R = 0.82 m s-1 (Fig. S1), and found that the PDAS from the 2D MPF simulation was 1.26 times larger than that from the 3D simulation. Therefore, the cell structure obtained by the CtFD simulation coupled with the 2D MPF simulation agreed well with the experimental results over the entire melt pool region considering the dimensional effects.

Fig. 5
Fig. 6

Fig. 7b1 and 7c1 show the concentration profiles of the solidified model along the growth direction indicated by dashed lines in Fig. 7a. The differences in concentrations from the alloy composition are also shown in Fig. 7b2 and 7c2. Cr, Mo, C, Mn, and W were segregated to the interdendritic regions, while Si, Fe, and Co were depressed. The solute segregation behavior agrees with the experimentally observation [43] and the prediction by the Scheil-Gulliver simulation [19]. Segregation occurred to the highest degree in Mo, while the ratio of segregation to the alloy composition was remarkable in C. The concentration fluctuations correlated with the position in the melt pool and decreased at the center of the melt pool, which was suggested to correspond to the lower cooling rate in this region. Conversely, droplets that appeared between secondary dendrite arms in the upper regions of the simulation domain exhibited a locally high segregation of solute elements, with the same amount of segregation as that at the bottom of the melt pool.

Fig. 7

3.4. Remelting and resolidification simulation

The solidified model was subjected to remelting and resolidification conditions by shifting the temperature profile upward by 60 µm to reveal the effect of reheating on the solute segregation behavior. Figs. 8a and 8b shows the simulation domains of the HX model after resolidification, colored by phase and Mo concentration. The magnified MPF models during the resolidification of the regions indicated by rectangles in Figs. 8a and 8b are also shown as Figs. 8c and 8d. Dendrites grew from the bottom of the remelted region, with the segregation of solute elements occurring in the interdendritic regions. The entire domain become the FCC phase after the resolidification, as shown in Fig. 8a. The bottom of the remelted regions exhibited a different microstructure, and Mo was depressed at the remelted regions, rather than the interdendritic regions. The different solute segregation behavior [44] and the microstructure formation [45] at the melt pool boundary is also observed in LPBF manufactured 316 L stainless steel. We found that this microstructure was formed by further remelting during the resolidification process, which is shown in Fig. 9. Here, the solidified HX model was heated, and the interdendritic regions were preferentially melted while concentration fluctuations were maintained (Fig. 9a1 and 9a2). Subsequently, planer interface growth occurs near the melt pool boundary where the solidification rate is almost zero, and the dendrites outside of the boundary are grown epitaxially (Fig. 9b1 and 9b2). However, these remelted again because of the temperature rise (Fig. 9c1 and 9c2, and the temperature-time profile shown in Fig. 9e). The remelted regions then cooled and solidified with the abnormal solute segregations (Fig. 9d1 and 9d2). Then, dendrite grows from amplified fluctuations under the solidification rate larger than the criterion of constitutional supercooling (Fig. 9d1, 9d2, and Fig. 8d). It has been reported [46][47] that temperature rising owning to latent heat affects microstructure formation: phase-field simulations of a Ni–Al binary alloy suggest that the release of latent heat during solidification increases the average temperature of the system [46] and strongly influences the solidification conditions [47]. In this study, the release of latent heat during solidification is considered in CtFD simulations for calculating the temperature distribution, and the temperature increase is suggested to have also occurred due to the release of latent heat.

Fig. 8
Fig. 9

Fig. 10b1 and 10c1 show the solute element concentration line profiles of the resolidified model along the growth direction indicated by dashed lines in Fig. 10a. Fig. 10b2 and 10c2 show the corresponding differences in concentration from the alloy composition. The segregation behavior of solute elements at the interdendritic regions (Fig. 10b1 and 10b2) was the same as that in the solidified model (Figs. 7b1 and 7b2). Here, Cr, Mo, C, Mn, and W were segregated to the interdendritic regions, while Si, Fe, and Co were depressed. However, the concentration fluctuations at the interdendritic regions were larger than those in the solidified model. Moreover, the segregation of the outside of the melt pool, i.e., the heat-affected zone, was remarkable throughout remelting and resolidification. Different segregation behaviors were observed in the re-remelted region: Mo, Si, Mn, and W were segregated, while Ni, Fe, and Co were depressed. These solute segregations caused by remelting are expected to heavily influence the crack behavior.

Fig. 10

4. Discussion

4.1. Effect of segregation of solute elements on liquation cracking susceptibility

Strong solute segregation was observed between the interdendritic regions of the solidified alloy (Fig. 7). In addition, the solute segregation behavior was significantly affected by remelting and resolidification and varied across the alloy. Solute segregation can be categorized by the regions shown in Fig. 11a1–11a4, namely the cell boundary (Fig. 11a1), interior of the melt-pool boundary (Fig. 11a2), re-remelted regions (Fig. 11a3), and heat-affected regions (Fig. 11a4). The concentration profiles of these regions are shown in Fig. 11b1–11b4. Solute segregation was the highest in the cell boundary region. The solute segregation in the heat-affected region was almost the same as that in the cell boundary region, but seemed to have been attenuated by reheating during remelting and resolidification. The interior of the melt-pool boundary region also had the same tendency for solute segregation. However, the amount of Cr segregation was smaller than that of Mo. A decrease in the Cr concentration was also mitigated, and the concentration remained the same as that in the alloy composition. Fig. 11c1–11c4 show the chemical potentials of the solute elements for the FCC phase at 1073 K calculated using the compositions of those interfacial regions. All the interfacial regions showed non-constant chemical potentials for each element along the perpendicular direction, but the fluctuations of the chemical potentials differed by the type of interfaces. In particular, the fluctuation of the chemical potential of C at the cell boundary region was the largest, suggesting it can be relaxed easily by heat treatment. On the other hand, the fluctuations of the other elements in all the regions were small. The solute segregations are most likely to remain after the heat treatment and are supposed to affect the cracking susceptibilities.

Fig. 11

The solidus temperatures TS, the difference between the liquidus and solidus temperatures (i.e., the brittle temperature range (BTR)), and the fractions of the equilibrium precipitate phases at 1073 K of the interfacial regions were calculated as the liquation, solidification, and ductility dip cracking susceptibilities, respectively. At the cell boundary (Fig. 12a1), interior of the melt-pool boundary (Fig. 12a1), and heat-affected regions (Fig. 12a1), the internal and interfacial regions exhibited higher and lower TS compared to that of the alloy composition, respectively. The lowest Ts was obtained with the composition at the cell boundary region, which is the largest solute-segregated region. It has been suggested that strong segregations of solute elements in LPBF lead to liquation cracks [16]. This study also supports this suggestion, and liquation cracks are more likely to occur at the interfacial regions indicated by predicting the solute segregation behavior using the MPF model. Additionally, the BTRs of the cell boundary, interior of the melt-pool boundary, and heat-affected regions were wider at the interdendritic regions, and solidification cracks were also likely to occur in these regions. Moreover, within the solute segregation regions, the fraction of the precipitate phases in these interfacial regions was larger than that calculated using the alloy composition (Fig. 12c1, 12c2, and 12c4). This indicates that ductility dip cracking is also likely to occur at the cell boundary, interior of the melt-pool boundary, and in heat-affected regions. Contrarily, we found that the re-remelted region exhibited a higher TS and smaller BTR even in the interfacial region (Fig. 12a3 and 12b3), where the solute segregation behavior was different from that of the other regions. In addition, the re-remelting region exhibited less precipitation compared with the other segregated regions (Fig. 12c3). The re-remelting caused by the latent heat can attenuate solute segregation, prevent Ts from decreasing, decrease the BTR, and decrease the amount of precipitate phases. Alloys with a large amount of latent heat are expected to increase the re-remelting region, thereby decreasing the susceptibility to liquation and ductility dip cracks due to solute element segregation. This can be a guide for designing alloys for the LPBF process. As mentioned in Section 3.4, the microstructure [45] and the solute segregation behavior [44] at the melt pool boundary of LPBF-manufactured 316 L stainless steel are observed, and they are different from that of the interdendritic regions. Experimental observations of the solute segregation behavior in the LPBF-fabricated Ni-based alloys are currently underway.

Fig. 12

4.2. Applicability of the conventional MPF simulation to microstructure formation under LPBF

As the solidification growth rate increases, segregation coefficients approach 1, and the fluctuation of the solid/liquid interface is suppressed by the interfacial tension. The interface growth occurs in a flat fashion instead of having a cellular morphology at a velocity above the absolute stability limit, Ras, predicted by the Mullins-Sekerka theory [29]Ras = (ΔT0 DL) / (k Γ) where ΔT0DLk, and Γ are the difference between the liquidus and solidus temperatures, equilibrium segregation coefficient, the diffusivity of liquid, and the Gibbs-Thomson coefficient, respectively.

The Ras of HX was calculated using the equation and the thermodynamic parameters obtained by the TCNI9 thermodynamic database [39]. The calculated Ras of HX was 3.9 m s-1 and is ten times larger than that of the Ni–Nb alloy (approximately 0.4 m s-1[20]. The HX alloy was solidified under R values in the range of 8.2 × 10−2–6.3 × 10−1 m s-1. The theoretically calculated criterion is larger than the evaluated R, and is in agreement with the experiment in which dendritic growth is observed in the melt pool (Fig. 5). In contrast, Karayagiz et al. [20] reported that the R of the Ni–Nb binary alloy under LPBF was as high as approximately 2 m s-1, and planar interface growth was observed to be predominant under the high-growth-rate conditions. These experimentally observed microstructures agree well with the prediction by the Mullins-Sekerka theory about the relationship between the morphology and solidification rates.

In this study, the solidification microstructure formed by the laser-beam irradiation of an HX multicomponent Ni-based superalloy was reproduced by a conventional MPF simulation, in which the system was assumed to be in a quasi-equilibrium condition. Boussinot et al. [24] also suggested that the conventional phase-field model can be applied to simulate the microstructure of an IN718 multicomponent Ni-based superalloy in LPBF. In contrast, Kagayaski et al. [20] suggested that the conventional MPF simulation cannot be applied to the solidification of the Ni-Nb binary alloy system and that the finite interface dissipation model proposed by Steinbach et al. [48][49] is necessary to simulate the high solidification rates observed in LPBF. The difference in the applicability of the conventional MPF method to HX and Ni–Nb binary alloys is presumed to arise from the differences in the non-equilibrium degree of these systems under the high solidification rates of LPBF. The results suggest that Ras can be used as a simple index to apply the conventional MPF model for solidification in LPBF. Solidification becomes a non-equilibrium process as the solidification rate approaches the limit of absolute stability, Ras. In this study, the solidification of the HX multicomponent system occurred under a relatively low solidification rate compared to Ras, and the microstructure of the conventional MPF model was successfully reproduced in the physical experiment. However, note that the limit of absolute stability predicted by the Mullins-Sekerka theory was originally proposed for solidification in a binary alloy system, and further investigation is required to consider its applicability to multicomponent alloy systems. Moreover, the fast solidification, such as in the LPBF process, causes segregation coefficient approaching a value of 1 [20][21][25] corresponds to a diffusion length that is on the order of the atomic interface thickness. When the segregation coefficient approaches 1, solute undercooling disappears; hence, there is no driving force to amplify fluctuations regardless of whether interfacial tension is present. This phenomenon should be further investigated in future studies.

5. Conclusions

We simulated solute segregation in a multicomponent HX alloy under the LPBF process by an MPF simulation using the temperature distributions obtained by a CtFD simulation. We set the parameters of the CtFD simulation to match the melt pool shape formed in the laser-irradiation experiment and found that solidification occurred under high cooling rates of up to 1.6 × 10K s-1.

MPF simulations using the temperature distributions from CtFD simulation could reproduce the experimentally observed PDAS and revealed that significant solute segregation occurred at the interdendritic regions. Equilibrium thermodynamic calculations using the alloy compositions of the segregated regions when considering crack sensitivities suggested a decrease in the solidus temperature and an increase in the amount of carbide precipitation, thereby increasing the susceptibility to liquation and ductility dip cracks in these regions. Notably, these changes were suppressed at the melt-pool boundary region, where re-remelting occurred during the stacking of the layer above. This effect can be used to achieve a novel in-process segregation attenuation.

Our study revealed that a conventional MPF simulation weakly coupled with a CtFD simulation can be used to study the solidification of multicomponent alloys in LPBF, contrary to the cases of binary alloys investigated in previous studies. We discussed the applicability of the conventional MPF model to the LPBF process in terms of the limit of absolute stability, Ras, and suggested that alloys with a high limit velocity, i.e., multicomponent alloys, can be simulated using the conventional MPF model even under the high solidification velocity conditions of LPBF.

CRediT authorship contribution statement

Masayuki Okugawa: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Takayoshi Nakano: Writing – review & editing, Validation, Supervision, Funding acquisition. Yuichiro Koizumi: Writing – review & editing, Visualization, Validation, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Sukeharu Nomoto: Writing – review & editing, Validation, Investigation. Makoto Watanabe: Writing – review & editing, Validation, Supervision, Funding acquisition. Katsuhiko Sawaizumi: Validation, Software, Investigation, Formal analysis, Data curation. Kenji Saito: Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation. Haruki Yoshima: Visualization, Validation, Software, Investigation, Formal analysis, Data curation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Acknowledgments

This work was partly supported by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Materials Integration for Revolutionary Design System of Structural Materials,” (funding agency: The Japan Science and Technology Agency), by JSPS KAKENHI Grant Numbers 21H05018 and 21H05193, and by CREST Nanomechanics: Elucidation of macroscale mechanical properties based on understanding nanoscale dynamics for innovative mechanical materials (Grant Number: JPMJCR2194) from the Japan Science and Technology Agency (JST). The authors would like to thank Mr. H. Kawabata and Mr. K. Kimura for their technical support with the sample preparations and laser beam irradiation experiments.

Appendix A. Supplementary material

Download : Download Word document (654KB)

Supplementary material.

Data availability

Data will be made available on request.

References

Schematic diagram of HP-LPBF melting process.

Modeling and numerical studies of high-precision laser powder bed fusion

Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhou
https://doi.org/10.1063/5.0191504

In order to comprehensively reveal the evolutionary dynamics of the molten pool and the state of motion of the fluid during the high-precision laser powder bed fusion (HP-LPBF) process, this study aims to deeply investigate the specific manifestations of the multiphase flow, solidification phenomena, and heat transfer during the process by means of numerical simulation methods. Numerical simulation models of SS316L single-layer HP-LPBF formation with single and double tracks were constructed using the discrete element method and the computational fluid dynamics method. The effects of various factors such as Marangoni convection, surface tension, vapor recoil, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool have been paid attention to during the model construction process. The results show that the molten pool exhibits a “comet” shape, in which the temperature gradient at the front end of the pool is significantly larger than that at the tail end, with the highest temperature gradient up to 1.69 × 108 K/s. It is also found that the depth of the second track is larger than that of the first one, and the process parameter window has been determined preliminarily. In addition, the application of HP-LPBF technology helps to reduce the surface roughness and minimize the forming size.

Topics

Heat transferNonequilibrium thermodynamicsSolidification processComputer simulationDiscrete element methodLasersMass transferFluid mechanicsComputational fluid dynamicsMultiphase flows

I. INTRODUCTION

Laser powder bed fusion (LPBF) has become a research hotspot in the field of additive manufacturing of metals due to its advantages of high-dimensional accuracy, good surface quality, high density, and high material utilization.1,2 With the rapid development of electronics, medical, automotive, biotechnology, energy, communication, and optics, the demand for microfabrication technology is increasing day by day.3 High-precision laser powder bed fusion (HP-LPBF) is one of the key manufacturing technologies for tiny parts in the fields of electronics, medical, automotive, biotechnology, energy, communication, and optics because of its process characteristics such as small focal spot diameter, small powder particle size, and thin powder layup layer thickness.4–13 Compared with LPBF, HP-LPBF has the significant advantages of smaller focal spot diameter, smaller powder particle size, and thinner layer thickness. These advantages make HP-LPBF perform better in producing micro-fine parts, high surface quality, and parts with excellent mechanical properties.

HP-LPBF is in the exploratory stage, and researchers have already done some exploratory studies on the focal spot diameter, the amount of defocusing, and the powder particle size. In order to explore the influence of changing the laser focal spot diameter on the LPBF process characteristics of the law, Wildman et al.14 studied five groups of different focal spot diameter LPBF forming 316L stainless steel (SS316L) processing effect, the smallest focal spot diameter of 26 μm, and the results confirm that changing the focal spot diameter can be achieved to achieve the energy control, so as to control the quality of forming. Subsequently, Mclouth et al.15 proposed the laser out-of-focus amount (focal spot diameter) parameter, which characterizes the distance between the forming plane and the laser focal plane. The laser energy density was controlled by varying the defocusing amount while keeping the laser parameters constant. Sample preparation at different focal positions was investigated, and their microstructures were characterized. The results show that the samples at the focal plane have finer microstructure than those away from the focal plane, which is the effect of higher power density and smaller focal spot diameter. In order to explore the influence of changing the powder particle size on the characteristics of the LPBF process, Qian et al.16 carried out single-track scanning simulations on powder beds with average powder particle sizes of 70 and 40 μm, respectively, and the results showed that the melt tracks sizes were close to each other under the same process parameters for the two particle-size distributions and that the molten pool of powder beds with small particles was more elongated and the edges of the melt tracks were relatively flat. In order to explore the superiority of HP-LPBF technology, Xu et al.17 conducted a comparative analysis of HP-LPBF and conventional LPBF of SS316L. The results showed that the average surface roughness of the top surface after forming by HP-LPBF could reach 3.40 μm. Once again, it was verified that HP-LPBF had higher forming quality than conventional LPBF. On this basis, Wei et al.6 comparatively analyzed the effects of different laser focal spot diameters on different powder particle sizes formed by LPBF. The results showed that the smaller the laser focal spot diameter, the fewer the defects on the top and side surfaces. The above research results confirm that reducing the laser focal spot diameter can obtain higher energy density and thus better forming quality.

LPBF involves a variety of complex systems and mechanisms, and the final quality of the part is influenced by a large number of process parameters.18–24 Some research results have shown that there are more than 50 factors affecting the quality of the specimen. The influencing factors are mainly categorized into three main groups: (1) laser parameters, (2) powder parameters, and (3) equipment parameters, which interact with each other to determine the final specimen quality. With the continuous development of technologies such as computational materials science and computational fluid dynamics (CFD), the method of studying the influence of different factors on the forming quality of LPBF forming process has been shifted from time-consuming and laborious experimental characterization to the use of numerical simulation methods. As a result, more and more researchers are adopting this approach for their studies. Currently, numerical simulation studies on LPBF are mainly focused on the exploration of molten pool, temperature distribution, and residual stresses.

  1. Finite element simulation based on continuum mechanics and free surface fluid flow modeling based on fluid dynamics are two common approaches to study the behavior of LPBF molten pool.25–28 Finite element simulation focuses on the temperature and thermal stress fields, treats the powder bed as a continuum, and determines the molten pool size by plotting the elemental temperature above the melting point. In contrast, fluid dynamics modeling can simulate the 2D or 3D morphology of the metal powder pile and obtain the powder size and distribution by certain algorithms.29 The flow in the molten pool is mainly affected by recoil pressure and the Marangoni effect. By simulating the molten pool formation, it is possible to predict defects, molten pool shape, and flow characteristics, as well as the effect of process parameters on the molten pool geometry.30–34 In addition, other researchers have been conducted to optimize the laser processing parameters through different simulation methods and experimental data.35–46 Crystal growth during solidification is studied to further understand the effect of laser parameters on dendritic morphology and solute segregation.47–54 A multi-scale system has been developed to describe the fused deposition process during 3D printing, which is combined with the conductive heat transfer model and the dendritic solidification model.55,56
  2. Relevant scholars have adopted various different methods for simulation, such as sequential coupling theory,57 Lagrangian and Eulerian thermal models,58 birth–death element method,25 and finite element method,59 in order to reveal the physical phenomena of the laser melting process and optimize the process parameters. Luo et al.60 compared the LPBF temperature field and molten pool under double ellipsoidal and Gaussian heat sources by ANSYS APDL and found that the diffusion of the laser energy in the powder significantly affects the molten pool size and the temperature field.
  3. The thermal stresses obtained from the simulation correlate with the actual cracks,61 and local preheating can effectively reduce the residual stresses.62 A three-dimensional thermodynamic finite element model investigated the temperature and stress variations during laser-assisted fabrication and found that powder-to-solid conversion increases the temperature gradient, stresses, and warpage.63 Other scholars have predicted residual stresses and part deflection for LPBF specimens and investigated the effects of deposition pattern, heat, laser power, and scanning strategy on residual stresses, noting that high-temperature gradients lead to higher residual stresses.64–67 

In short, the process of LPBF forming SS316L is extremely complex and usually involves drastic multi-scale physicochemical changes that will only take place on a very small scale. Existing literature employs DEM-based mesoscopic-scale numerical simulations to investigate the effects of process parameters on the molten pool dynamics of LPBF-formed SS316L. However, a few studies have been reported on the key mechanisms of heating and solidification, spatter, and convective behavior of the molten pool of HP-LPBF-formed SS316L with small laser focal spot diameters. In this paper, the geometrical properties of coarse and fine powder particles under three-dimensional conditions were first calculated using DEM. Then, numerical simulation models for single-track and double-track cases in the single-layer HP-LPBF forming SS316L process were developed at mesoscopic scale using the CFD method. The flow genesis of the melt in the single-track and double-track molten pools is discussed, and their 3D morphology and dimensional characteristics are discussed. In addition, the effects of laser process parameters, powder particle size, and laser focal spot diameter on the temperature field, characterization information, and defects in the molten pool are discussed.

II. MODELING

A. 3D powder bed modeling

HP-LPBF is an advanced processing technique for preparing target parts layer by layer stacking, the process of which involves repetitive spreading and melting of powders. In this process, both the powder spreading and the morphology of the powder bed are closely related to the results of the subsequent melting process, while the melted surface also affects the uniform distribution of the next layer of powder. For this reason, this chapter focuses on the modeling of the physical action during the powder spreading process and the theory of DEM to establish the numerical model of the powder bed, so as to lay a solid foundation for the accuracy of volume of fluid (VOF) and CFD.

1. DEM

DEM is a numerical technique for calculating the interaction of a large number of particles, which calculates the forces and motions of the spheres by considering each powder sphere as an independent unit. The motion of the powder particles follows the laws of classical Newtonian mechanics, including translational and rotational,38,68–70 which are expressed as follows:����¨=���+∑��ij,

(1)����¨=∑�(�ij×�ij),

(2)

where �� is the mass of unit particle i in kg, ��¨ is the advective acceleration in m/s2, And g is the gravitational acceleration in m/s2. �ij is the force in contact with the neighboring particle � in N. �� is the rotational inertia of the unit particle � in kg · m2. ��¨ is the unit particle � angular acceleration in rad/s2. �ij is the vector pointing from unit particle � to the contact point of neighboring particle �⁠.

Equations (1) and (2) can be used to calculate the velocity and angular velocity variations of powder particles to determine their positions and velocities. A three-dimensional powder bed model of SS316L was developed using DEM. The powder particles are assumed to be perfect spheres, and the substrate and walls are assumed to be rigid. To describe the contact between the powder particles and between the particles and the substrate, a non-slip Hertz–Mindlin nonlinear spring-damping model71 was used with the following expression:�hz=��������+��[(�����ij−�eff����)−(�����+�eff����)],

(3)

where �hz is the force calculated using the Hertzian in M. �� and �� are the radius of unit particles � and � in m, respectively. �� is the overlap size of the two powder particles in m. ��⁠, �� are the elastic constants in the normal and tangential directions, respectively. �ij is the unit vector connecting the centerlines of the two powder particles. �eff is the effective mass of the two powder particles in kg. �� and �� are the viscoelastic damping constants in the normal and tangential directions, respectively. �� and �� are the components of the relative velocities of the two powder particles. ��� is the displacement vector between two spherical particles. The schematic diagram of overlapping powder particles is shown in Fig. 1.

FIG. 1.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of overlapping powder particles.

Because the particle size of the powder used for HP-LPBF is much smaller than 100 μm, the effect of van der Waals forces must be considered. Therefore, the cohesive force �jkr of the Hertz–Mindlin model was used instead of van der Waals forces,72 with the following expression:�jkr=−4��0�*�1.5+4�*3�*�3,

(4)1�*=(1−��2)��+(1−��2)��,

(5)1�*=1��+1��,

(6)

where �* is the equivalent Young’s modulus in GPa; �* is the equivalent particle radius in m; �0 is the surface energy of the powder particles in J/m2; α is the contact radius in m; �� and �� are the Young’s modulus of the unit particles � and �⁠, respectively, in GPa; and �� and �� are the Poisson’s ratio of the unit particles � and �⁠, respectively.

2. Model building

Figure 2 shows a 3D powder bed model generated using DEM with a coarse powder geometry of 1000 × 400 × 30 μm3. The powder layer thickness is 30 μm, and the powder bed porosity is 40%. The average particle size of this spherical powder is 31.7 μm and is normally distributed in the range of 15–53 μm. The geometry of the fine powder was 1000 × 400 × 20 μm3, with a layer thickness of 20 μm, and the powder bed porosity of 40%. The average particle size of this spherical powder is 11.5 μm and is normally distributed in the range of 5–25 μm. After the 3D powder bed model is generated, it needs to be imported into the CFD simulation software for calculation, and the imported geometric model is shown in Fig. 3. This geometric model is mainly composed of three parts: protective gas, powder bed, and substrate. Under the premise of ensuring the accuracy of the calculation, the mesh size is set to 3 μm, and the total number of coarse powder meshes is 1 704 940. The total number of fine powder meshes is 3 982 250.

FIG. 2.

VIEW LARGEDOWNLOAD SLIDE

Three-dimensional powder bed model: (a) coarse powder, (b) fine powder.

FIG. 3.

VIEW LARGEDOWNLOAD SLIDE

Geometric modeling of the powder bed computational domain: (a) coarse powder, (b) fine powder.

B. Modeling of fluid mechanics simulation

In order to solve the flow, melting, and solidification problems involved in HP-LPBF molten pool, the study must follow the three governing equations of conservation of mass, conservation of energy, and conservation of momentum.73 The VOF method, which is the most widely used in fluid dynamics, is used to solve the molten pool dynamics model.

1. VOF

VOF is a method for tracking the free interface between the gas and liquid phases on the molten pool surface. The core idea of the method is to define a volume fraction function F within each grid, indicating the proportion of the grid space occupied by the material, 0 ≤ F ≤ 1 in Fig. 4. Specifically, when F = 0, the grid is empty and belongs to the gas-phase region; when F = 1, the grid is completely filled with material and belongs to the liquid-phase region; and when 0 < F < 1, the grid contains free surfaces and belongs to the mixed region. The direction normal to the free surface is the direction of the fastest change in the volume fraction F (the direction of the gradient of the volume fraction), and the direction of the gradient of the volume fraction can be calculated from the values of the volume fractions in the neighboring grids.74 The equations controlling the VOF are expressed as follows:𝛻����+�⋅(��→)=0,

(7)

where t is the time in s and �→ is the liquid velocity in m/s.

FIG. 4.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of VOF.

The material parameters of the mixing zone are altered due to the inclusion of both the gas and liquid phases. Therefore, in order to represent the density of the mixing zone, the average density �¯ is used, which is expressed as follows:72�¯=(1−�1)�gas+�1�metal,

(8)

where �1 is the proportion of liquid phase, �gas is the density of protective gas in kg/m3, and �metal is the density of metal in kg/m3.

2. Control equations and boundary conditions

Figure 5 is a schematic diagram of the HP-LPBF melting process. First, the laser light strikes a localized area of the material and rapidly heats up the area. Next, the energy absorbed in the region is diffused through a variety of pathways (heat conduction, heat convection, and surface radiation), and this process triggers complex phase transition phenomena (melting, evaporation, and solidification). In metals undergoing melting, the driving forces include surface tension and the Marangoni effect, recoil due to evaporation, and buoyancy due to gravity and uneven density. The above physical phenomena interact with each other and do not occur independently.

FIG. 5.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of HP-LPBF melting process.

  1. Laser heat sourceThe Gaussian surface heat source model is used as the laser heat source model with the following expression:�=2�0����2exp(−2�12��2),(9)where � is the heat flow density in W/m2, �0 is the absorption rate of SS316L, �� is the radius of the laser focal spot in m, and �1 is the radial distance from the center of the laser focal spot in m. The laser focal spot can be used for a wide range of applications.
  2. Energy absorptionThe formula for calculating the laser absorption �0 of SS316L is as follows:�0=0.365(�0[1+�0(�−20)]/�)0.5,(10)where �0 is the direct current resistivity of SS316L at 20 °C in Ω m, �0 is the resistance temperature coefficient in ppm/°C, � is the temperature in °C, and � is the laser wavelength in m.
  3. Heat transferThe basic principle of heat transfer is conservation of energy, which is expressed as follows:𝛻𝛻𝛻�(��)��+�·(��→�)=�·(�0����)+��,(11)where � is the density of liquid phase SS316L in kg/m3, �� is the specific heat capacity of SS316L in J/(kg K), 𝛻� is the gradient operator, t is the time in s, T is the temperature in K, 𝛻�� is the temperature gradient, �→ is the velocity vector, �0 is the coefficient of thermal conduction of SS316L in W/(m K), and  �� is the thermal energy dissipation term in the molten pool.
  4. Molten pool flowThe following three conditions need to be satisfied for the molten pool to flow:
    • Conservation of mass with the following expression:𝛻�·(��→)=0.(12)
    • Conservation of momentum (Navier–Stokes equation) with the following expression:𝛻𝛻𝛻𝛻���→��+�(�→·�)�→=�·[−pI+�(��→+(��→)�)]+�,(13)where � is the pressure in Pa exerted on the liquid phase SS316L microelement, � is the unit matrix, � is the fluid viscosity in N s/m2, and � is the volumetric force (gravity, atmospheric pressure, surface tension, vapor recoil, and the Marangoni effect).
    • Conservation of energy, see Eq. (11)
  5. Surface tension and the Marangoni effectThe effect of temperature on the surface tension coefficient is considered and set as a linear relationship with the following expression:�=�0−��dT(�−��),(14)where � is the surface tension of the molten pool at temperature T in N/m, �� is the melting temperature of SS316L in K, �0 is the surface tension of the molten pool at temperature �� in Pa, and σdσ/ dT is the surface tension temperature coefficient in N/(m K).In general, surface tension decreases with increasing temperature. A temperature gradient causes a gradient in surface tension that drives the liquid to flow, known as the Marangoni effect.
  6. Metal vapor recoilAt higher input energy densities, the maximum temperature of the molten pool surface reaches the evaporation temperature of the material, and a gasification recoil pressure occurs vertically downward toward the molten pool surface, which will be the dominant driving force for the molten pool flow.75 The expression is as follows:��=0.54�� exp ���−���0���,(15)where �� is the gasification recoil pressure in Pa, �� is the ambient pressure in kPa, �� is the latent heat of evaporation in J/kg, �0 is the gas constant in J/(mol K), T is the surface temperature of the molten pool in K, and Te is the evaporation temperature in K.
  7. Solid–liquid–gas phase transitionWhen the laser hits the powder layer, the powder goes through three stages: heating, melting, and solidification. During the solidification phase, mutual transformations between solid, liquid, and gaseous states occur. At this point, the latent heat of phase transition absorbed or released during the phase transition needs to be considered.68 The phase transition is represented based on the relationship between energy and temperature with the following expression:�=�����,(�<��),�(��)+�−����−����,(��<�<��)�(��)+(�−��)����,(��<�),,(16)where �� and �� are solid and liquid phase density, respectively, of SS316L in kg/m3. �� and �� unit volume of solid and liquid phase-specific heat capacity, respectively, of SS316L in J/(kg K). �� and ��⁠, respectively, are the solidification temperature and melting temperature of SS316L in K. �� is the latent heat of the phase transition of SS316L melting in J/kg.

3. Assumptions

The CFD model was computed using the commercial software package FLOW-3D.76 In order to simplify the calculation and solution process while ensuring the accuracy of the results, the model makes the following assumptions:

  1. It is assumed that the effects of thermal stress and material solid-phase thermal expansion on the calculation results are negligible.
  2. The molten pool flow is assumed to be a Newtonian incompressible laminar flow, while the effects of liquid thermal expansion and density on the results are neglected.
  3. It is assumed that the surface tension can be simplified to an equivalent pressure acting on the free surface of the molten pool, and the effect of chemical composition on the results is negligible.
  4. Neglecting the effect of the gas flow field on the molten pool.
  5. The mass loss due to evaporation of the liquid metal is not considered.
  6. The influence of the plasma effect of the molten metal on the calculation results is neglected.

It is worth noting that the formulation of assumptions requires a trade-off between accuracy and computational efficiency. In the above models, some physical phenomena that have a small effect or high difficulty on the calculation results are simplified or ignored. Such simplifications make numerical simulations more efficient and computationally tractable, while still yielding accurate results.

4. Initial conditions

The preheating temperature of the substrate was set to 393 K, at which time all materials were in the solid state and the flow rate was zero.

5. Material parameters

The material used is SS316L and the relevant parameters required for numerical simulations are shown in Table I.46,77,78

TABLE I.

SS316L-related parameters.

PropertySymbolValue
Density of solid metal (kg/m3�metal 7980 
Solid phase line temperature (K) �� 1658 
Liquid phase line temperature (K) �� 1723 
Vaporization temperature (K) �� 3090 
Latent heat of melting (⁠ J/kg⁠) �� 2.60×105 
Latent heat of evaporation (⁠ J/kg⁠) �� 7.45×106 
Surface tension of liquid phase (N /m⁠) � 1.60 
Liquid metal viscosity (kg/m s) �� 6×10−3 
Gaseous metal viscosity (kg/m s) �gas 1.85×10−5 
Temperature coefficient of surface tension (N/m K) ��/�T 0.80×10−3 
Molar mass (⁠ kg/mol⁠) 0.05 593 
Emissivity � 0.26 
Laser absorption �0 0.35 
Ambient pressure (kPa) �� 101 325 
Ambient temperature (K) �0 300 
Stefan–Boltzmann constant (W/m2 K4� 5.67×10−8 
Thermal conductivity of metals (⁠ W/m K⁠) � 24.55 
Density of protective gas (kg/m3�gas 1.25 
Coefficient of thermal expansion (/K) �� 16×10−6 
Generalized gas constant (⁠ J/mol K⁠) 8.314 

III. RESULTS AND DISCUSSION

With the objective of studying in depth the evolutionary patterns of single-track and double-track molten pool development, detailed observations were made for certain specific locations in the model, as shown in Fig. 6. In this figure, P1 and P2 represent the longitudinal tangents to the centers of the two melt tracks in the XZ plane, while L1 is the transverse profile in the YZ plane. The scanning direction is positive and negative along the X axis. Points A and B are the locations of the centers of the molten pool of the first and second melt tracks, respectively (x = 1.995 × 10−4, y = 5 × 10−7, and z = −4.85 × 10−5).

FIG. 6.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of observation position.

A. Single-track simulation

A series of single-track molten pool simulation experiments were carried out in order to investigate the influence law of laser power as well as scanning speed on the HP-LPBF process. Figure 7 demonstrates the evolution of the 3D morphology and temperature field of the single-track molten pool in the time period of 50–500 μs under a laser power of 100 W and a scanning speed of 800 mm/s. The powder bed is in the natural cooling state. When t = 50 μs, the powder is heated by the laser heat and rapidly melts and settles to form the initial molten pool. This process is accompanied by partial melting of the substrate and solidification together with the melted powder. The molten pool rapidly expands with increasing width, depth, length, and temperature, as shown in Fig. 7(a). When t = 150 μs, the molten pool expands more obviously, and the temperature starts to transfer to the surrounding area, forming a heat-affected zone. At this point, the width of the molten pool tends to stabilize, and the temperature in the center of the molten pool has reached its peak and remains largely stable. However, the phenomenon of molten pool spatter was also observed in this process, as shown in Fig. 7(b). As time advances, when t = 300 μs, solidification begins to occur at the tail of the molten pool, and tiny ripples are produced on the solidified surface. This is due to the fact that the melt flows toward the region with large temperature gradient under the influence of Marangoni convection and solidifies together with the melt at the end of the bath. At this point, the temperature gradient at the front of the bath is significantly larger than at the end. While the width of the molten pool was gradually reduced, the shape of the molten pool was gradually changed to a “comet” shape. In addition, a slight depression was observed at the top of the bath because the peak temperature at the surface of the bath reached the evaporation temperature, which resulted in a recoil pressure perpendicular to the surface of the bath downward, creating a depressed region. As the laser focal spot moves and is paired with the Marangoni convection of the melt, these recessed areas will be filled in as shown in Fig. 7(c). It has been shown that the depressed regions are the result of the coupled effect of Marangoni convection, recoil pressure, and surface tension.79 By t = 500 μs, the width and height of the molten pool stabilize and show a “comet” shape in Fig. 7(d).

FIG. 7.

VIEW LARGEDOWNLOAD SLIDE

Single-track molten pool process: (a) t = 50  ��⁠, (b) t = 150  ��⁠, (c) t = 300  ��⁠, (d) t = 500  ��⁠.

Figure 8 depicts the velocity vector diagram of the P1 profile in a single-track molten pool, the length of the arrows represents the magnitude of the velocity, and the maximum velocity is about 2.36 m/s. When t = 50 μs, the molten pool takes shape, and the velocities at the two ends of the pool are the largest. The variation of the velocities at the front end is especially more significant in Fig. 8(a). As the time advances to t = 150 μs, the molten pool expands rapidly, in which the velocity at the tail increases and changes more significantly, while the velocity at the front is relatively small. At this stage, the melt moves backward from the center of the molten pool, which in turn expands the molten pool area. The melt at the back end of the molten pool center flows backward along the edge of the molten pool surface and then converges along the edge of the molten pool to the bottom center, rising to form a closed loop. Similarly, a similar closed loop is formed at the front end of the center of the bath, but with a shorter path. However, a large portion of the melt in the center of the closed loop formed at the front end of the bath is in a nearly stationary state. The main cause of this melt flow phenomenon is the effect of temperature gradient and surface tension (the Marangoni effect), as shown in Figs. 8(b) and 8(e). This dynamic behavior of the melt tends to form an “elliptical” pool. At t = 300 μs, the tendency of the above two melt flows to close the loop is more prominent and faster in Fig. 8(c). When t = 500 μs, the velocity vector of the molten pool shows a stable trend, and the closed loop of melt flow also remains stable. With the gradual laser focal spot movement, the melt is gradually solidified at its tail, and finally, a continuous and stable single track is formed in Fig. 8(d).

FIG. 8.

VIEW LARGEDOWNLOAD SLIDE

Vector plot of single-track molten pool velocity in XZ longitudinal section: (a) t = 50  ��⁠, (b) t = 150  ��⁠, (c) t = 300  ��⁠, (d) t = 500  ��⁠, (e) molten pool flow.

In order to explore in depth the transient evolution of the molten pool, the evolution of the single-track temperature field and the melt flow was monitored in the YZ cross section. Figure 9(a) shows the state of the powder bed at the initial moment. When t = 250 μs, the laser focal spot acts on the powder bed and the powder starts to melt and gradually collects in the molten pool. At this time, the substrate will also start to melt, and the melt flow mainly moves in the downward and outward directions and the velocity is maximum at the edges in Fig. 9(b). When t = 300 μs, the width and depth of the molten pool increase due to the recoil pressure. At this time, the melt flows more slowly at the center, but the direction of motion is still downward in Fig. 9(c). When t = 350 μs, the width and depth of the molten pool further increase, at which time the intensity of the melt flow reaches its peak and the direction of motion remains the same in Fig. 9(d). When t = 400 μs, the melt starts to move upward, and the surrounding powder or molten material gradually fills up, causing the surface of the molten pool to begin to flatten. At this time, the maximum velocity of the melt is at the center of the bath, while the velocity at the edge is close to zero, and the edge of the melt starts to solidify in Fig. 9(e). When t = 450 μs, the melt continues to move upward, forming a convex surface of the melt track. However, the melt movement slows down, as shown in Fig. 9(f). When t = 500 μs, the melt further moves upward and its speed gradually becomes smaller. At the same time, the melt solidifies further, as shown in Fig. 9(g). When t = 550 μs, the melt track is basically formed into a single track with a similar “mountain” shape. At this stage, the velocity is close to zero only at the center of the molten pool, and the flow behavior of the melt is poor in Fig. 9(h). At t = 600 μs, the melt stops moving and solidification is rapidly completed. Up to this point, a single track is formed in Fig. 9(i). During the laser action on the powder bed, the substrate melts and combines with the molten state powder. The powder-to-powder fusion is like the convergence of water droplets, which are rapidly fused by surface tension. However, the fusion between the molten state powder and the substrate occurs driven by surface tension, and the molten powder around the molten pool is pulled toward the substrate (a wetting effect occurs), which ultimately results in the formation of a monolithic whole.38,80,81

FIG. 9.

VIEW LARGEDOWNLOAD SLIDE

Evolution of single-track molten pool temperature and melt flow in the YZ cross section: (a) t = 0  ��⁠, (b) t = 250  ��⁠, (c) t = 300  ��⁠, (d) t = 350  ��⁠, (e) t = 400  ��⁠, (f) t = 450  ��⁠, (g) t = 500  ��⁠, (h) t = 550  ��⁠, (i) t = 600  ��⁠.

The wetting ability between the liquid metal and the solid substrate in the molten pool directly affects the degree of balling of the melt,82,83 and the wetting ability can be measured by the contact angle of a single track in Fig. 10. A smaller value of contact angle represents better wettability. The contact angle α can be calculated by�=�1−�22,

(17)

where �1 and �2 are the contact angles of the left and right regions, respectively.

FIG. 10.

VIEW LARGEDOWNLOAD SLIDE

Schematic of contact angle.

Relevant studies have confirmed that the wettability is better at a contact angle α around or below 40°.84 After measurement, a single-track contact angle α of about 33° was obtained under this process parameter, which further confirms the good wettability.

B. Double-track simulation

In order to deeply investigate the influence of hatch spacing on the characteristics of the HP-LPBF process, a series of double-track molten pool simulation experiments were systematically carried out. Figure 11 shows in detail the dynamic changes of the 3D morphology and temperature field of the double-track molten pool in the time period of 2050–2500 μs under the conditions of laser power of 100 W, scanning speed of 800 mm/s, and hatch spacing of 0.06 mm. By comparing the study with Fig. 7, it is observed that the basic characteristics of the 3D morphology and temperature field of the second track are similar to those of the first track. However, there are subtle differences between them. The first track exhibits a basically symmetric shape, but the second track morphology shows a slight deviation influenced by the difference in thermal diffusion rate between the solidified metal and the powder. Otherwise, the other characteristic information is almost the same as that of the first track. Figure 12 shows the velocity vector plot of the P2 profile in the double-track molten pool, with a maximum velocity of about 2.63 m/s. The melt dynamics at both ends of the pool are more stable at t = 2050 μs, where the maximum rate of the second track is only 1/3 of that of the first one. Other than that, the rest of the information is almost no significant difference from the characteristic information of the first track. Figure 13 demonstrates a detailed observation of the double-track temperature field and melts flow in the YZ cross section, and a comparative study with Fig. 9 reveals that the width of the second track is slightly wider. In addition, after the melt direction shifts from bottom to top, the first track undergoes four time periods (50 μs) to reach full solidification, while the second track takes five time periods. This is due to the presence of significant heat buildup in the powder bed after the forming of the first track, resulting in a longer dynamic time of the melt and an increased molten pool lifetime. In conclusion, the level of specimen forming can be significantly optimized by adjusting the laser power and hatch spacing.

FIG. 11.

VIEW LARGEDOWNLOAD SLIDE

Double-track molten pool process: (a) t = 2050  ��⁠, (b) t = 2150  ��⁠, (c) t = 2300  ��⁠, (d) t = 2500  ��⁠.

FIG. 12.

VIEW LARGEDOWNLOAD SLIDE

Vector plot of double-track molten pool velocity in XZ longitudinal section: (a) t = 2050  ��⁠, (b) t = 2150  ��⁠, (c) t = 2300  ��⁠, (d) t = 2500  ��⁠.

FIG. 13.

VIEW LARGEDOWNLOAD SLIDE

Evolution of double-track molten pool temperature and melt flow in the YZ cross section: (a) t = 2250  ��⁠, (b) t = 2300  ��⁠, (c) t = 2350  ��⁠, (d) t = 2400  ��⁠, (e) t = 2450  ��⁠, (f) t = 2500  ��⁠, (g) t = 2550  ��⁠, (h) t = 2600  ��⁠, (i) t = 2650  ��⁠.

In order to quantitatively detect the molten pool dimensions as well as the remolten region dimensions, the molten pool characterization information in Fig. 14 is constructed by drawing the boundary on the YZ cross section based on the isothermal surface of the liquid phase line. It can be observed that the heights of the first track and second track are basically the same, but the depth of the second track increases relative to the first track. The molten pool width is mainly positively correlated with the laser power as well as the scanning speed (the laser line energy density �⁠). However, the remelted zone width is negatively correlated with the hatch spacing (the overlapping ratio). Overall, the forming quality of the specimens can be directly influenced by adjusting the laser power, scanning speed, and hatch spacing.

FIG. 14.

VIEW LARGEDOWNLOAD SLIDE

Double-track molten pool characterization information on YZ cross section.

In order to study the variation rule of the temperature in the center of the molten pool with time, Fig. 15 demonstrates the temperature variation curves with time for two reference points, A and B. Among them, the red dotted line indicates the liquid phase line temperature of SS316L. From the figure, it can be seen that the maximum temperature at the center of the molten pool in the first track is lower than that in the second track, which is mainly due to the heat accumulation generated after passing through the first track. The maximum temperature gradient was calculated to be 1.69 × 108 K/s. When the laser scanned the first track, the temperature in the center of the molten pool of the second track increased slightly. Similarly, when the laser scanned the second track, a similar situation existed in the first track. Since the temperature gradient in the second track is larger than that in the first track, the residence time of the liquid phase in the molten pool of the first track is longer than that of the second track.

FIG. 15.

VIEW LARGEDOWNLOAD SLIDE

Temperature profiles as a function of time for two reference points A and B.

C. Simulation analysis of molten pool under different process parameters

In order to deeply investigate the effects of various process parameters on the mesoscopic-scale temperature field, molten pool characteristic information and defects of HP-LPBF, numerical simulation experiments on mesoscopic-scale laser power, scanning speed, and hatch spacing of double-track molten pools were carried out.

1. Laser power

Figure 16 shows the effects of different laser power on the morphology and temperature field of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. When P = 50 W, a smaller molten pool is formed due to the lower heat generated by the Gaussian light source per unit time. This leads to a smaller track width, which results in adjacent track not lapping properly and the presence of a large number of unmelted powder particles, resulting in an increase in the number of defects, such as pores in the specimen. The surface of the track is relatively flat, and the depth is small. In addition, the temperature gradient before and after the molten pool was large, and the depression location appeared at the biased front end in Fig. 16(a). When P = 100 W, the surface of the track is flat and smooth with excellent lap. Due to the Marangoni effect, the velocity field of the molten pool is in the form of “vortex,” and the melt has good fluidity, and the maximum velocity reaches 2.15 m/s in Fig. 16(b). When P = 200 W, the heat generated by the Gaussian light source per unit time is too large, resulting in the melt rapidly reaching the evaporation temperature, generating a huge recoil pressure, forming a large molten pool, and the surface of the track is obviously raised. The melt movement is intense, especially the closed loop at the center end of the molten pool. At this time, the depth and width of the molten pool are large, leading to the expansion of the remolten region and the increased chance of the appearance of porosity defects in Fig. 16(c). The results show that at low laser power, the surface tension in the molten pool is dominant. At high laser power, recoil pressure is its main role.

FIG. 16.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different laser powers: (a) P = 50 W, (b) P = 100 W, (c) P = 200 W.

Table II shows the effect of different laser powers on the characteristic information of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. The negative overlapping ratio in the table indicates that the melt tracks are not lapped, and 26/29 indicates the melt depth of the first track/second track. It can be seen that with the increase in laser power, the melt depth, melt width, melt height, and remelted zone show a gradual increase. At the same time, the overlapping ratio also increases. Especially in the process of laser power from 50 to 200 W, the melting depth and melting width increased the most, which increased nearly 2 and 1.5 times, respectively. Meanwhile, the overlapping ratio also increases with the increase in laser power, which indicates that the melting and fusion of materials are better at high laser power. On the other hand, the dimensions of the molten pool did not change uniformly with the change of laser power. Specifically, the depth-to-width ratio of the molten pool increased from about 0.30 to 0.39 during the increase from 50 to 120 W, which further indicates that the effective heat transfer in the vertical direction is greater than that in the horizontal direction with the increase in laser power. This dimensional response to laser power is mainly affected by the recoil pressure and also by the difference in the densification degree between the powder layer and the metal substrate. In addition, according to the experimental results, the contact angle shows a tendency to increase and then decrease during the process of laser power increase, and always stays within the range of less than 33°. Therefore, in practical applications, it is necessary to select the appropriate laser power according to the specific needs in order to achieve the best processing results.

TABLE II.

Double-track molten pool characterization information at different laser powers.

Laser power (W)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
50 16 54 11 −10 23 
100 26/29 74 14 18 23.33 33 
200 37/45 116 21 52 93.33 28 

2. Scanning speed

Figure 17 demonstrates the effect of different scanning speeds on the morphology and temperature field of the double-track molten pool at a laser power of 100 W and a hatch spacing of 0.06 mm. With the gradual increase in scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. When � = 200 mm/s, the slow scanning speed causes the material to absorb too much heat, which is very easy to trigger the overburning phenomenon. At this point, the molten pool is larger and the surface morphology is uneven. This situation is consistent with the previously discussed scenario with high laser power in Fig. 17(a). However, when � = 1600 mm/s, the scanning speed is too fast, resulting in the material not being able to absorb sufficient heat, which triggers the powder particles that fail to melt completely to have a direct effect on the bonding of the melt to the substrate. At this time, the molten pool volume is relatively small and the neighboring melt track cannot lap properly. This result is consistent with the previously discussed case of low laser power in Fig. 17(b). Overall, the ratio of the laser power to the scanning speed (the line energy density �⁠) has a direct effect on the temperature field and surface morphology of the molten pool.

FIG. 17.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different scanning speed: (a)  � = 200 mm/s, (b)  � = 1600 mm/s.

Table III shows the effects of different scanning speed on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and hatch spacing of 0.06 mm. It can be seen that the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. With the increase in scanning speed, the melt depth, melt width, melt height, remelted zone, and overlapping ratio show a gradual decreasing trend. Among them, the melt depth and melt width decreased faster, while the melt height and remolten region decreased relatively slowly. In addition, when the scanning speed was increased from 200 to 800 mm/s, the decreasing speeds of melt depth and melt width were significantly accelerated, while the decreasing speeds of overlapping ratio were relatively slow. When the scanning speed was further increased to 1600 mm/s, the decreasing speeds of melt depth and melt width were further accelerated, and the un-lapped condition of the melt channel also appeared. In addition, the contact angle increases and then decreases with the scanning speed, and both are lower than 33°. Therefore, when selecting the scanning speed, it is necessary to make reasonable trade-offs according to the specific situation, and take into account the factors of melt depth, melt width, melt height, remolten region, and overlapping ratio, in order to achieve the best processing results.

TABLE III.

Double-track molten pool characterization information at different scanning speeds.

Scanning speed (mm/s)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
200 55/68 182 19/32 124 203.33 22 
1600 13 50 11 −16.67 31 

3. Hatch spacing

Figure 18 shows the effect of different hatch spacing on the morphology and temperature field of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. The surface morphology and temperature field of the first track and second track are basically the same, but slightly different. The first track shows a basically symmetric morphology along the scanning direction, while the second track shows a slight offset due to the difference in the heat transfer rate between the solidified material and the powder particles. When the hatch spacing is too small, the overlapping ratio increases and the probability of defects caused by remelting phenomenon grows. When the hatch spacing is too large, the neighboring melt track cannot overlap properly, and the powder particles are not completely melted, leading to an increase in the number of holes. In conclusion, the ratio of the line energy density � to the hatch spacing (the volume energy density E) has a significant effect on the temperature field and surface morphology of the molten pool.

FIG. 18.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different hatch spacings: (a) H = 0.03 mm, (b) H = 0.12 mm.

Table IV shows the effects of different hatch spacing on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. It can be seen that the hatch spacing has little effect on the melt depth, melt width, and melt height, but has some effect on the remolten region. With the gradual expansion of hatch spacing, the remolten region shows a gradual decrease. At the same time, the overlapping ratio also decreased with the increase in hatch spacing. In addition, it is observed that the contact angle shows a tendency to increase and then remain stable when the hatch spacing increases, which has a more limited effect on it. Therefore, trade-offs and decisions need to be made on a case-by-case basis when selecting the hatch spacing.

TABLE IV.

Double-track molten pool characterization information at different hatch spacings.

Hatch spacing (mm)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
0.03 25/27 82 14 59 173.33 30 
0.12 26 78 14 −35 33 

In summary, the laser power, scanning speed, and hatch spacing have a significant effect on the formation of the molten pool, and the correct selection of these three process parameters is crucial to ensure the forming quality. In addition, the melt depth of the second track is slightly larger than that of the first track at higher line energy density � and volume energy density E. This is mainly due to the fact that a large amount of heat accumulation is generated after the first track, forming a larger molten pool volume, which leads to an increase in the melt depth.

D. Simulation analysis of molten pool with powder particle size and laser focal spot diameter

Figure 19 demonstrates the effect of different powder particle sizes and laser focal spot diameters on the morphology and temperature field of the double-track molten pool under a laser power of 100 W, a scanning speed of 800 mm/s, and a hatch spacing of 0.06 mm. In the process of melting coarse powder with small laser focal spot diameter, the laser energy cannot completely melt the larger powder particles, resulting in their partial melting and further generating excessive pore defects. The larger powder particles tend to generate zigzag molten pool edges, which cause an increase in the roughness of the melt track surface. In addition, the molten pool is also prone to generate the present spatter phenomenon, which can directly affect the quality of forming. The volume of the formed molten pool is relatively small, while the melt depth, melt width, and melt height are all smaller relative to the fine powder in Fig. 19(a). In the process of melting fine powders with a large laser focal spot diameter, the laser energy is able to melt the fine powder particles sufficiently, even to the point of overmelting. This results in a large number of fine spatters being generated at the edge of the molten pool, which causes porosity defects in the melt track in Fig. 19(b). In addition, the maximum velocity of the molten pool is larger for large powder particle sizes compared to small powder particle sizes, which indicates that the temperature gradient in the molten pool is larger for large powder particle sizes and the melt motion is more intense. However, the size of the laser focal spot diameter has a relatively small effect on the melt motion. However, a larger focal spot diameter induces a larger melt volume with greater depth, width, and height. In conclusion, a small powder size helps to reduce the surface roughness of the specimen, and a small laser spot diameter reduces the minimum forming size of a single track.

FIG. 19.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool with different powder particle size and laser focal spot diameter: (a) focal spot = 25 μm, coarse powder, (b) focal spot = 80 μm, fine powder.

Table V shows the maximum temperature gradient at the reference point for different powder sizes and laser focal spot diameters. As can be seen from the table, the maximum temperature gradient is lower than that of HP-LPBF for both coarse powders with a small laser spot diameter and fine powders with a large spot diameter, a phenomenon that leads to an increase in the heat transfer rate of HP-LPBF, which in turn leads to a corresponding increase in the cooling rate and, ultimately, to the formation of finer microstructures.

TABLE V.

Maximum temperature gradient at the reference point for different powder particle sizes and laser focal spot diameters.

Laser power (W)Scanning speed (mm/s)Hatch spacing (mm)Average powder size (μm)Laser focal spot diameter (μm)Maximum temperature gradient (×107 K/s)
100 800 0.06 31.7 25 7.89 
11.5 80 7.11 

IV. CONCLUSIONS

In this study, the geometrical characteristics of 3D coarse and fine powder particles were first calculated using DEM and then numerical simulations of single track and double track in the process of forming SS316L from monolayer HP-LPBF at mesoscopic scale were developed using CFD method. The effects of Marangoni convection, surface tension, recoil pressure, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool were considered in this model. The effects of laser power, scanning speed, and hatch spacing on the dynamics of the single-track and double-track molten pools, as well as on other characteristic information, were investigated. The effects of the powder particle size on the molten pool were investigated comparatively with the laser focal spot diameter. The main conclusions are as follows:

  1. The results show that the temperature gradient at the front of the molten pool is significantly larger than that at the tail, and the molten pool exhibits a “comet” morphology. At the top of the molten pool, there is a slightly concave region, which is the result of the coupling of Marangoni convection, recoil pressure, and surface tension. The melt flow forms two closed loops, which are mainly influenced by temperature gradients and surface tension. This special dynamic behavior of the melt tends to form an “elliptical” molten pool and an almost “mountain” shape in single-track forming.
  2. The basic characteristics of the three-dimensional morphology and temperature field of the second track are similar to those of the first track, but there are subtle differences. The first track exhibits a basically symmetrical shape; however, due to the difference in thermal diffusion rates between the solidified metal and the powder, a slight asymmetry in the molten pool morphology of the second track occurs. After forming through the first track, there is a significant heat buildup in the powder bed, resulting in a longer dynamic time of the melt, which increases the life of the molten pool. The heights of the first track and second track remained essentially the same, but the depth of the second track was greater relative to the first track. In addition, the maximum temperature gradient was 1.69 × 108 K/s during HP-LPBF forming.
  3. At low laser power, the surface tension in the molten pool plays a dominant role. At high laser power, recoil pressure becomes the main influencing factor. With the increase of laser power, the effective heat transfer in the vertical direction is superior to that in the horizontal direction. With the gradual increase of scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. In addition, the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. Too large or too small hatch spacing will lead to remelting or non-lap phenomenon, which in turn causes the formation of defects.
  4. When using a small laser focal spot diameter, it is difficult to completely melt large powder particle sizes, resulting in partial melting and excessive porosity generation. At the same time, large powder particles produce curved edges of the molten pool, resulting in increased surface roughness of the melt track. In addition, spatter occurs, which directly affects the forming quality. At small focal spot diameters, the molten pool volume is relatively small, and the melt depth, the melt width, and the melt height are correspondingly small. Taken together, the small powder particle size helps to reduce surface roughness, while the small spot diameter reduces the forming size.

REFERENCES

  1. S. L. Sing and W. Y. Yeong , “ Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments,” Virtual Phys. Prototyping. 15, 359–370 (2020).https://doi.org/10.1080/17452759.2020.1779999
    Google ScholarCrossref
  2. A. M. Khorasani , I. G. Jithin , J. K. Veetil , and A. H. Ghasemi , “ A review of technological improvements in laser-based powder bed fusion of metal printers,” Int. J. Adv. Manuf. Technol. 108, 191–209 (2020).https://doi.org/10.1007/s00170-020-05361-3
    Google ScholarCrossref
  3. Y. Qin , A. Brockett , Y. Ma , A. Razali , J. Zhao , C. Harrison , W. Pan , X. Dai , and D. Loziak , “ Micro-manufacturing: Research, technology outcomes and development issues,” Int. J. Adv. Manuf. Technol. 47, 821–837 (2010).https://doi.org/10.1007/s00170-009-2411-2
    Google ScholarCrossref
  4. B. Nagarajan , Z. Hu , X. Song , W. Zhai , and J. Wei , “ Development of micro selective laser melting: The state of the art and future perspectives,” Engineering. 5, 702–720 (2019).https://doi.org/10.1016/j.eng.2019.07.002
    Google ScholarCrossref
  5. Y. Wei , G. Chen , W. Li , Y. Zhou , Z. Nie , J. Xu , and W. Zhou , “ Micro selective laser melting of SS316L: Single tracks, defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 145, 107469 (2022).https://doi.org/10.1016/j.optlastec.2021.107469
    Google ScholarCrossref
  6. Y. Wei , G. Chen , W. Li , M. Li , Y. Zhou , Z. Nie , and J. Xu , “ Process optimization of micro selective laser melting and comparison of different laser diameter for forming different powder,” Opt. Laser Technol. 150, 107953 (2022).https://doi.org/10.1016/j.optlastec.2022.107953
    Google ScholarCrossref
  7. H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Formation of SS316L single tracks in micro selective laser melting: Surface, geometry, and defects,” Adv. Mater. Sci. Eng. 2019, 9451406.https://doi.org/10.1155/2019/9451406
    Crossref
  8. B. Nagarajan , Z. Hu , S. Gao , X. Song , R. Huang , M. Seita , and J. Wei , “ Effect of in-situ laser remelting on the microstructure of SS316L fabricated by micro selective laser melting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 330–336.
    Google ScholarCrossref
  9. H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Tailoring surface roughness of micro selective laser melted SS316L by in-situ laser remelting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 337–343.
    Google Scholar
  10. J. Fu , Z. Hu , X. Song , W. Zhai , Y. Long , H. Li , and M. Fu , “ Micro selective laser melting of NiTi shape memory alloy: Defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 131, 106374 (2020).https://doi.org/10.1016/j.optlastec.2020.106374
    Google ScholarCrossref
  11. E. Abele and M. Kniepkamp , “ Analysis and optimisation of vertical surface roughness in micro selective laser melting,” Surf. Topogr.: Metrol. Prop. 3, 034007 (2015).https://doi.org/10.1088/2051-672X/3/3/034007
    Google ScholarCrossref
  12. S. Qu , J. Ding , J. Fu , M. Fu , B. Zhang , and X. Song , “ High-precision laser powder bed fusion processing of pure copper,” Addit. Manuf. 48, 102417 (2021).https://doi.org/10.1016/j.addma.2021.102417
    Google ScholarCrossref
  13. Y. Wei , G. Chen , M. Li , W. Li , Y. Zhou , J. Xu , and Z. wei , “ High-precision laser powder bed fusion of 18Ni300 maraging steel and its SiC reinforcement composite materials,” J. Manuf. Process. 84, 750–763 (2022).https://doi.org/10.1016/j.jmapro.2022.10.049
    Google ScholarCrossref
  14. B. Liu , R. Wildman , T. Christopher , I. Ashcroft , and H. Richard , “ Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process,” in 2011 International Solid Freeform Fabrication Symposium ( University of Texas at Austin, 2011).
    Google Scholar
  15. T. D. McLouth , G. E. Bean , D. B. Witkin , S. D. Sitzman , P. M. Adams , D. N. Patel , W. Park , J.-M. Yang , and R. J. Zaldivar , “ The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting,” Mater. Des. 149, 205–213 (2018).https://doi.org/10.1016/j.matdes.2018.04.019
    Google ScholarCrossref
  16. Y. Qian , Y. Wentao , and L. Feng , “ Mesoscopic simulations of powder bed fusion: Research progresses and conditions,” Electromachining Mould 06, 46–52 (2017).https://doi.org/10.3969/j.issn.1009-279X.2017.06.012
    Google Scholar
  17. J. Fu , S. Qu , J. Ding , X. Song , and M. W. Fu , “ Comparison of the microstructure, mechanical properties and distortion of stainless Steel 316L fabricated by micro and conventional laser powder bed fusion,” Addit. Manuf. 44, 102067 (2021).https://doi.org/10.1016/j.addma.2021.102067
    Google ScholarCrossref
  18. N. T. Aboulkhair , I. Maskery , C. Tuck , I. Ashcroft , and N. M. Everitt , “ The microstructure and mechanical properties of selectively laser Melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng. A 667, 139–146 (2016).https://doi.org/10.1016/j.msea.2016.04.092
    Google ScholarCrossref
  19. S. Y. Chen , J. C. Huang , C. T. Pan , C. H. Lin , T. L. Yang , Y. S. Huang , C. H. Ou , L. Y. Chen , D. Y. Lin , H. K. Lin , T. H. Li , J. S. C. Jang , and C. C. Yang , “ Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting,” J. Alloys Compd. 713, 248–254 (2017).https://doi.org/10.1016/j.jallcom.2017.04.190
    Google ScholarCrossref
  20. Y. Bai , Y. Yang , D. Wang , and M. Zhang , “ Influence mechanism of parameters process and mechanical properties evolution mechanism of Maraging steel 300 by selective laser melting,” Mater. Sci. Eng. A 703, 116–123 (2017).https://doi.org/10.1016/j.msea.2017.06.033
    Google ScholarCrossref
  21. Y. Bai , Y. Yang , Z. Xiao , M. Zhang , and D. Wang , “ Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting,” Mater. Des. 140, 257–266 (2018).https://doi.org/10.1016/j.matdes.2017.11.045
    Google ScholarCrossref
  22. Y. Liu , M. Zhang , W. Shi , Y. Ma , and J. Yang , “ Study on performance optimization of 316L stainless steel parts by high-efficiency selective laser melting,” Opt. Laser Technol. 138, 106872 (2021).https://doi.org/10.1016/j.optlastec.2020.106872
    Google ScholarCrossref
  23. D. Gu , Y.-C. Hagedorn , W. Meiners , G. Meng , R. J. S. Batista , K. Wissenbach , and R. Poprawe , “ Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium,” Acta Mater. 60, 3849–3860 (2012).https://doi.org/10.1016/j.actamat.2012.04.006
    Google ScholarCrossref
  24. N. Read , W. Wang , K. Essa , and M. M. Attallah , “ Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des. 65, 417–424 (2015).https://doi.org/10.1016/j.matdes.2014.09.044
    Google ScholarCrossref
  25. I. A. Roberts , C. J. Wang , R. Esterlein , M. Stanford , and D. J. Mynors , “ A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing,” Int. J. Mach. Tools Manuf. 49(12–13), 916–923 (2009).https://doi.org/10.1016/j.ijmachtools.2009.07.004
    Google ScholarCrossref
  26. K. Dai and L. Shaw , “ Finite element analysis of the effect of volume shrinkage during laser densification,” Acta Mater. 53(18), 4743–4754 (2005).https://doi.org/10.1016/j.actamat.2005.06.014
    Google ScholarCrossref
  27. K. Carolin , E. Attar , and P. Heinl , “ Mesoscopic simulation of selective beam melting processes,” J. Mater. Process. Technol. 211(6), 978–987 (2011).https://doi.org/10.1016/j.jmatprotec.2010.12.016
    Google ScholarCrossref
  28. F.-J. Gürtler , M. Karg , K.-H. Leitz , and M. Schmidt , “ Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method,” Phys. Procedia 41, 881–886 (2013).https://doi.org/10.1016/j.phpro.2013.03.162
    Google ScholarCrossref
  29. P. Meakin and R. Jullien , “ Restructuring effects in the rain model for random deposition,” J. Phys. France 48(10), 1651–1662 (1987).https://doi.org/10.1051/jphys:0198700480100165100
    Google ScholarCrossref
  30. J-m Wang , G-h Liu , Y-l Fang , and W-k Li , “ Marangoni effect in nonequilibrium multiphase system of material processing,” Rev. Chem. Eng. 32(5), 551–585 (2016).https://doi.org/10.1515/revce-2015-0067
    Google ScholarCrossref
  31. W. Ye , S. Zhang , L. L. Mendez , M. Farias , J. Li , B. Xu , P. Li , and Y. Zhang , “ Numerical simulation of the melting and alloying processes of elemental titanium and boron powders using selective laser alloying,” J. Manuf. Process. 64, 1235–1247 (2021).https://doi.org/10.1016/j.jmapro.2021.02.044
    Google ScholarCrossref
  32. U. S. Bertoli , A. J. Wolfer , M. J. Matthews , J.-P. R. Delplanque , and J. M. Schoenung , “ On the limitations of volumetric energy density as a design parameter for selective laser melting,” Mater. Des. 113, 331–340 (2017).https://doi.org/10.1016/j.matdes.2016.10.037
    Google ScholarCrossref
  33. W. E. King , H. D. Barth , V. M. Castillo , G. F. Gallegos , J. W. Gibbs , D. E. Hahn , C. Kamath , and A. M. Rubenchik , “ Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” J. Mater. Process. Technol. 214(12), 2915–2925 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.005
    Google ScholarCrossref
  34. L. Cao , “ Numerical simulation of the impact of laying powder on selective laser melting single-pass formation,” Int. J. Heat Mass Transfer 141, 1036–1048 (2019).https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.053
    Google ScholarCrossref
  35. L. Huang , X. Hua , D. Wu , and F. Li , “ Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel,” J. Mater. Process. Technol. 252, 421–431 (2018).https://doi.org/10.1016/j.jmatprotec.2017.10.011
    Google ScholarCrossref
  36. K. Q. Le , C. Tang , and C. H. Wong , “ On the study of keyhole-mode melting in selective laser melting process,” Int. J. Therm. Sci. 145, 105992 (2019).https://doi.org/10.1016/j.ijthermalsci.2019.105992
    Google ScholarCrossref
  37. J.-H. Cho and S.-J. Na , “ Theoretical analysis of keyhole dynamics in polarized laser drilling,” J. Phys. D: Appl. Phys. 40(24), 7638 (2007).https://doi.org/10.1088/0022-3727/40/24/007
    Google ScholarCrossref
  38. W. Ye , “ Mechanism analysis of selective laser melting and metallurgy process based on base element powder of titanium and boron,” Ph.D. dissertation ( Nanchang University, 2021).
    Google Scholar
  39. R. Ammer , M. Markl , U. Ljungblad , C. Körner , and U. Rüde , “ Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method,” Comput. Math. Appl. 67(2), 318–330 (2014).https://doi.org/10.1016/j.camwa.2013.10.001
    Google ScholarCrossref
  40. H. Chen , Q. Wei , S. Wen , Z. Li , and Y. Shi , “ Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method,” Int. J. Mach. Tools Manuf. 123, 146–159 (2017).https://doi.org/10.1016/j.ijmachtools.2017.08.004
    Google ScholarCrossref
  41. F. Verhaeghe , T. Craeghs , J. Heulens , and L. Pandelaers , “ A pragmatic model for selective laser melting with evaporation,” Acta Mater. 57(20), 6006–6012 (2009).https://doi.org/10.1016/j.actamat.2009.08.027
    Google ScholarCrossref
  42. C. H. Fu and Y. B. Guo , “ Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V,” J. Manuf. Sci. Eng. 136(6), 061004 (2014).https://doi.org/10.1115/1.4028539
    Google ScholarCrossref
  43. Y. Xiang , Z. Shuzhe , L. Junfeng , W. Zhengying , Y. Lixiang , and J. Lihao , “ Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V,” J. Zhejiang Univ. (Eng. Sci.) 53(11), 2102–2109 + 2117 (2019).https://doi.org/10.3785/j.issn.1008-973X.2019.11.007
    Google Scholar
  44. Q. He , H. Xia , J. Liu , X. Ao , and S. Lin , “ Modeling and numerical studies of selective laser melting: Multiphase flow, solidification and heat transfer,” Mater. Des. 196, 109115 (2020).https://doi.org/10.1016/j.matdes.2020.109115
    Google ScholarCrossref
  45. L. Cao , “ Mesoscopic-scale numerical simulation including the influence of process parameters on SLM single-layer multi-pass formation,” Metall. Mater. Trans. A 51, 4130–4145 (2020).https://doi.org/10.1007/s11661-020-05831-z
    Google ScholarCrossref
  46. L. Cao , “ Mesoscopic-scale numerical investigation including the influence of process parameters on LPBF multi-layer multi-path formation,” Comput. Model. Eng. Sci. 126(1), 5–23 (2021).https://doi.org/10.32604/cmes.2021.014693
    Google ScholarCrossref
  47. H. Yin and S. D. Felicelli , “ Dendrite growth simulation during solidification in the LENS process,” Acta Mater. 58(4), 1455–1465 (2010).https://doi.org/10.1016/j.actamat.2009.10.053
    Google ScholarCrossref
  48. P. Nie , O. A. Ojo , and Z. Li , “ Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy,” Acta Mater. 77, 85–95 (2014).https://doi.org/10.1016/j.actamat.2014.05.039
    Google ScholarCrossref
  49. Z. Liu and H. Qi , “ Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy,” Acta Mater. 87, 248–258 (2015).https://doi.org/10.1016/j.actamat.2014.12.046
    Google ScholarCrossref
  50. L. Wei , L. Xin , W. Meng , and H. Weidong , “ Cellular automaton simulation of the molten pool of laser solid forming process,” Acta Phys. Sin. 64(01), 018103–018363 (2015).https://doi.org/10.7498/aps.64.018103
    Google ScholarCrossref
  51. R. Acharya , J. A. Sharon , and A. Staroselsky , “ Prediction of microstructure in laser powder bed fusion process,” Acta Mater. 124, 360–371 (2017).https://doi.org/10.1016/j.actamat.2016.11.018
    Google ScholarCrossref
  52. M. R. Rolchigo and R. LeSar , “ Modeling of binary alloy solidification under conditions representative of additive manufacturing,” Comput. Mater. Sci. 150, 535–545 (2018).https://doi.org/10.1016/j.commatsci.2018.04.004
    Google ScholarCrossref
  53. S. Geng , P. Jiang , L. Guo , X. Gao , and G. Mi , “ Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys,” Int. J. Heat Mass Transfer 149, 119252 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119252
    Google ScholarCrossref
  54. W. L. Wang , W. Q. Liu , X. Yang , R. R. Xu , and Q. Y. Dai , “ Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy,” J. Mater. Sci. Technol. 119, 11–24 (2022).https://doi.org/10.1016/j.jmst.2021.12.029
    Google ScholarCrossref
  55. Q. Xia , J. Yang , and Y. Li , “ On the conservative phase-field method with the N-component incompressible flows,” Phys. Fluids 35, 012120 (2023).https://doi.org/10.1063/5.0135490
    Google ScholarCrossref
  56. Q. Xia , G. Sun , J. Kim , and Y. Li , “ Multi-scale modeling and simulation of additive manufacturing based on fused deposition technique,” Phys. Fluids 35, 034116 (2023).https://doi.org/10.1063/5.0141316
    Google ScholarCrossref
  57. A. Hussein , L. Hao , C. Yan , and R. Everson , “ Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Mater. Des. 52, 638–647 (2013).https://doi.org/10.1016/j.matdes.2013.05.070
    Google ScholarCrossref
  58. J. Ding , P. Colegrove , J. Mehnen , S. Ganguly , P. M. Sequeira Almeida , F. Wang , and S. Williams , “ Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts,” Comput. Mater. Sci. 50(12), 3315–3322 (2011).https://doi.org/10.1016/j.commatsci.2011.06.023
    Google ScholarCrossref
  59. Y. Du , X. You , F. Qiao , L. Guo , and Z. Liu , “ A model for predicting the temperature field during selective laser melting,” Results Phys. 12, 52–60 (2019).https://doi.org/10.1016/j.rinp.2018.11.031
    Google ScholarCrossref
  60. X. Luo , M. Liu , L. Zhenhua , H. Li , and J. Shen , “ Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300,” Chin. J. Lasers 48(14), 1402005–1402062 (2021).https://doi.org/10.3788/CJL202148.1402005
    Google ScholarCrossref
  61. J. F. Li , L. Li , and F. H. Stott , “ Thermal stresses and their implication on cracking during laser melting of ceramic materials,” Acta Mater. 52(14), 4385–4398 (2004).https://doi.org/10.1016/j.actamat.2004.06.005
    Google ScholarCrossref
  62. P. Aggarangsi and J. L. Beuth , “ Localized preheating approaches for reducing residual stress in additive manufacturing,” paper presented at the 2006 International Solid Freeform Fabrication Symposium, The University of Texas in Austin on August 14–16, 2006.
  63. K. Dai and L. Shaw , “ Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders,” Acta Mater. 52(1), 69–80 (2004).https://doi.org/10.1016/j.actamat.2003.08.028
    Google ScholarCrossref
  64. A. H. Nickel , D. M. Barnett , and F. B. Prinz , “ Thermal stresses and deposition patterns in layered manufacturing,” Mater. Sci. Eng. A 317(1–2), 59–64 (2001).https://doi.org/10.1016/S0921-5093(01)01179-0
    Google ScholarCrossref
  65. M. F. Zaeh and G. Branner , “ Investigations on residual stresses and deformations in selective laser melting,” Prod. Eng. 4(1), 35–45 (2010).https://doi.org/10.1007/s11740-009-0192-y
    Google ScholarCrossref
  66. P. Bian , J. Shi , Y. Liu , and Y. Xie , “ Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel,” Opt. Laser Technol. 132, 106477 (2020).https://doi.org/10.1016/j.optlastec.2020.106477
    Google ScholarCrossref
  67. B. M. Marques , C. M. Andrade , D. M. Neto , M. C. Oliveira , J. L. Alves , and L. F. Menezes , “ Numerical analysis of residual stresses in parts produced by selective laser melting process,” Procedia Manuf. 47, 1170–1177 (2020).https://doi.org/10.1016/j.promfg.2020.04.167
    Google ScholarCrossref
  68. W. Mu , “ Numerical simulation of SLM forming process and research and prediction of forming properties,” MA thesis ( Anhui Jianzhu University, 2022).
    Google Scholar
  69. Y. Zhang , “ Multi-scale multi-physics modeling of laser powder bed fusion process of metallic materials with experiment validation,” Ph.D. dissertation ( Purdue University, 2018).
    Google Scholar
  70. Y. Qian , “ Mesoscopic simulation studies of key processing issues for powder bed fusion technology,” Ph.D. dissertation ( Tsinghua University, 2019).
    Google Scholar
  71. N. V. Brilliantov , S. Frank , J.-M. Hertzsch , and T. Pöschel , “ Model for collisions in granular gases,” Phys. Rev. E 53(5), 5382–5392 (1996).https://doi.org/10.1103/PhysRevE.53.5382
    Google ScholarCrossref
  72. Z. Xiao , “ Research on microscale selective laser melting process of high strength pure copper specimens,” MA thesis ( Hunan University, 2022).
    Google Scholar
  73. Z. Li , K. Mukai , M. Zeze , and K. C. Mills , “ Determination of the surface tension of liquid stainless steel,” J. Mater. Sci. 40(9–10), 2191–2195 (2005).https://doi.org/10.1007/s10853-005-1931-x
    Google ScholarCrossref
  74. R. Scardovelli and S. Zaleski , “ Analytical relations connecting linear interfaces and volume fractions in rectangular grids,” J. Comput. Phys. 164(1), 228–237 (2000).https://doi.org/10.1006/jcph.2000.6567
    Google ScholarCrossref
  75. D.-W. Cho , W.-I. Cho , and S.-J. Na , “ Modeling and simulation of arc: Laser and hybrid welding process,” J. Manuf. Process. 16(1), 26–55 (2014).https://doi.org/10.1016/j.jmapro.2013.06.012
    Google ScholarCrossref
    76.Flow3D. Version 11.1.0: User Manual ( FlowScience, Santa Fe, NM, USA, 2015).
  76. Y. Tian , L. Yang , D. Zhao , Y. Huang , and J. Pan , “ Numerical analysis of powder bed generation and single track forming for selective laser melting of ss316l stainless steel,” J. Manuf. Process. 58, 964–974 (2020).https://doi.org/10.1016/j.jmapro.2020.09.002
    Google ScholarCrossref
  77. C. Tang , K. Q. Le , and C. H. Wong , “ Physics of humping formation in laser powder bed fusion,” Int. J. Heat Mass Transfer 149, 119172 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119172
    Google ScholarCrossref
  78. L. Cao , “ Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process,” Comput. Mater. Sci. 179, 109686 (2020).https://doi.org/10.1016/j.commatsci.2020.109686
    Google ScholarCrossref
  79. R. Li , J. Liu , Y. Shi , W. Li , and W. Jiang , “ Balling behavior of stainless steel and nickel powder during selective laser melting process,” Int. J. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012).https://doi.org/10.1007/s00170-011-3566-1
    Google ScholarCrossref
  80. S. A. Khairallah and A. Anderson , “ Mesoscopic simulation model of selective laser melting of stainless steel powder,” J. Mater. Process. Technol. 214(11), 2627–2636 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.001
    Google ScholarCrossref
  81. J. Liu , D. Gu , H. Chen , D. Dai , and H. Zhang , “ Influence of substrate surface morphology on wetting behavior of tracks during selective laser melting of aluminum-based alloys,” J. Zhejiang Univ. Sci. A 19(2), 111–121 (2018).https://doi.org/10.1631/jzus.A1700599
    Google ScholarCrossref
  82. L. Li , J. Li , and T. Fan , “ Phase-field modeling of wetting and balling dynamics in powder bed fusion process,” Phys. Fluids 33, 042116 (2021).https://doi.org/10.1063/5.0046771
    Google ScholarCrossref
  83. X. Nie , Z. Hu , H. Zhu , Z. Hu , L. Ke , and X. Zeng , “ Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples,” J. Mater. Process. Technol. 256, 69–77 (2018).https://doi.org/10.1016/j.jmatprotec.2018.01.030
    Google ScholarCrossref

Lab-on-a-Chip 시스템의 혈류 역학에 대한 검토: 엔지니어링 관점

Review on Blood Flow Dynamics in Lab-on-a-Chip Systems: An Engineering Perspective

  • Bin-Jie Lai
  • Li-Tao Zhu
  • Zhe Chen*
  • Bo Ouyang*
  • , and 
  • Zheng-Hong Luo*

Abstract

다양한 수송 메커니즘 하에서, “LOC(lab-on-a-chip)” 시스템에서 유동 전단 속도 조건과 밀접한 관련이 있는 혈류 역학은 다양한 수송 현상을 초래하는 것으로 밝혀졌습니다.

본 연구는 적혈구의 동적 혈액 점도 및 탄성 거동과 같은 점탄성 특성의 역할을 통해 LOC 시스템의 혈류 패턴을 조사합니다. 모세관 및 전기삼투압의 주요 매개변수를 통해 LOC 시스템의 혈액 수송 현상에 대한 연구는 실험적, 이론적 및 수많은 수치적 접근 방식을 통해 제공됩니다.

전기 삼투압 점탄성 흐름에 의해 유발되는 교란은 특히 향후 연구 기회를 위해 혈액 및 기타 점탄성 유체를 취급하는 LOC 장치의 혼합 및 분리 기능 향상에 논의되고 적용됩니다. 또한, 본 연구는 보다 정확하고 단순화된 혈류 모델에 대한 요구와 전기역학 효과 하에서 점탄성 유체 흐름에 대한 수치 연구에 대한 강조와 같은 LOC 시스템 하에서 혈류 역학의 수치 모델링의 문제를 식별합니다.

전기역학 현상을 연구하는 동안 제타 전위 조건에 대한 보다 실용적인 가정도 강조됩니다. 본 연구는 모세관 및 전기삼투압에 의해 구동되는 미세유체 시스템의 혈류 역학에 대한 포괄적이고 학제적인 관점을 제공하는 것을 목표로 한다.

KEYWORDS: 

1. Introduction

1.1. Microfluidic Flow in Lab-on-a-Chip (LOC) Systems

Over the past several decades, the ability to control and utilize fluid flow patterns at microscales has gained considerable interest across a myriad of scientific and engineering disciplines, leading to growing interest in scientific research of microfluidics. 

(1) Microfluidics, an interdisciplinary field that straddles physics, engineering, and biotechnology, is dedicated to the behavior, precise control, and manipulation of fluids geometrically constrained to a small, typically submillimeter, scale. 

(2) The engineering community has increasingly focused on microfluidics, exploring different driving forces to enhance working fluid transport, with the aim of accurately and efficiently describing, controlling, designing, and applying microfluidic flow principles and transport phenomena, particularly for miniaturized applications. 

(3) This attention has chiefly been fueled by the potential to revolutionize diagnostic and therapeutic techniques in the biomedical and pharmaceutical sectorsUnder various driving forces in microfluidic flows, intriguing transport phenomena have bolstered confidence in sustainable and efficient applications in fields such as pharmaceutical, biochemical, and environmental science. The “lab-on-a-chip” (LOC) system harnesses microfluidic flow to enable fluid processing and the execution of laboratory tasks on a chip-sized scale. LOC systems have played a vital role in the miniaturization of laboratory operations such as mixing, chemical reaction, separation, flow control, and detection on small devices, where a wide variety of fluids is adapted. Biological fluid flow like blood and other viscoelastic fluids are notably studied among the many working fluids commonly utilized by LOC systems, owing to the optimization in small fluid sample volumed, rapid response times, precise control, and easy manipulation of flow patterns offered by the system under various driving forces. 

(4)The driving forces in blood flow can be categorized as passive or active transport mechanisms and, in some cases, both. Under various transport mechanisms, the unique design of microchannels enables different functionalities in driving, mixing, separating, and diagnosing blood and drug delivery in the blood. 

(5) Understanding and manipulating these driving forces are crucial for optimizing the performance of a LOC system. Such knowledge presents the opportunity to achieve higher efficiency and reliability in addressing cellular level challenges in medical diagnostics, forensic studies, cancer detection, and other fundamental research areas, for applications of point-of-care (POC) devices. 

(6)

1.2. Engineering Approach of Microfluidic Transport Phenomena in LOC Systems

Different transport mechanisms exhibit unique properties at submillimeter length scales in microfluidic devices, leading to significant transport phenomena that differ from those of macroscale flows. An in-depth understanding of these unique transport phenomena under microfluidic systems is often required in fluidic mechanics to fully harness the potential functionality of a LOC system to obtain systematically designed and precisely controlled transport of microfluids under their respective driving force. Fluid mechanics is considered a vital component in chemical engineering, enabling the analysis of fluid behaviors in various unit designs, ranging from large-scale reactors to separation units. Transport phenomena in fluid mechanics provide a conceptual framework for analytically and descriptively explaining why and how experimental results and physiological phenomena occur. The Navier–Stokes (N–S) equation, along with other governing equations, is often adapted to accurately describe fluid dynamics by accounting for pressure, surface properties, velocity, and temperature variations over space and time. In addition, limiting factors and nonidealities for these governing equations should be considered to impose corrections for empirical consistency before physical models are assembled for more accurate controls and efficiency. Microfluidic flow systems often deviate from ideal conditions, requiring adjustments to the standard governing equations. These deviations could arise from factors such as viscous effects, surface interactions, and non-Newtonian fluid properties from different microfluid types and geometrical layouts of microchannels. Addressing these nonidealities supports the refining of theoretical models and prediction accuracy for microfluidic flow behaviors.

The analytical calculation of coupled nonlinear governing equations, which describes the material and energy balances of systems under ideal conditions, often requires considerable computational efforts. However, advancements in computation capabilities, cost reduction, and improved accuracy have made numerical simulations using different numerical and modeling methods a powerful tool for effectively solving these complex coupled equations and modeling various transport phenomena. Computational fluid dynamics (CFD) is a numerical technique used to investigate the spatial and temporal distribution of various flow parameters. It serves as a critical approach to provide insights and reasoning for decision-making regarding the optimal designs involving fluid dynamics, even prior to complex physical model prototyping and experimental procedures. The integration of experimental data, theoretical analysis, and reliable numerical simulations from CFD enables systematic variation of analytical parameters through quantitative analysis, where adjustment to delivery of blood flow and other working fluids in LOC systems can be achieved.

Numerical methods such as the Finite-Difference Method (FDM), Finite-Element-Method (FEM), and Finite-Volume Method (FVM) are heavily employed in CFD and offer diverse approaches to achieve discretization of Eulerian flow equations through filling a mesh of the flow domain. A more in-depth review of numerical methods in CFD and its application for blood flow simulation is provided in Section 2.2.2.

1.3. Scope of the Review

In this Review, we explore and characterize the blood flow phenomena within the LOC systems, utilizing both physiological and engineering modeling approaches. Similar approaches will be taken to discuss capillary-driven flow and electric-osmotic flow (EOF) under electrokinetic phenomena as a passive and active transport scheme, respectively, for blood transport in LOC systems. Such an analysis aims to bridge the gap between physical (experimental) and engineering (analytical) perspectives in studying and manipulating blood flow delivery by different driving forces in LOC systems. Moreover, the Review hopes to benefit the interests of not only blood flow control in LOC devices but also the transport of viscoelastic fluids, which are less studied in the literature compared to that of Newtonian fluids, in LOC systems.

Section 2 examines the complex interplay between viscoelastic properties of blood and blood flow patterns under shear flow in LOC systems, while engineering numerical modeling approaches for blood flow are presented for assistance. Sections 3 and 4 look into the theoretical principles, numerical governing equations, and modeling methodologies for capillary driven flow and EOF in LOC systems as well as their impact on blood flow dynamics through the quantification of key parameters of the two driving forces. Section 5 concludes the characterized blood flow transport processes in LOC systems under these two forces. Additionally, prospective areas of research in improving the functionality of LOC devices employing blood and other viscoelastic fluids and potentially justifying mechanisms underlying microfluidic flow patterns outside of LOC systems are presented. Finally, the challenges encountered in the numerical studies of blood flow under LOC systems are acknowledged, paving the way for further research.

2. Blood Flow Phenomena

ARTICLE SECTIONS

Jump To


2.1. Physiological Blood Flow Behavior

Blood, an essential physiological fluid in the human body, serves the vital role of transporting oxygen and nutrients throughout the body. Additionally, blood is responsible for suspending various blood cells including erythrocytes (red blood cells or RBCs), leukocytes (white blood cells), and thrombocytes (blood platelets) in a plasma medium.Among the cells mentioned above, red blood cells (RBCs) comprise approximately 40–45% of the volume of healthy blood. 

(7) An RBC possesses an inherent elastic property with a biconcave shape of an average diameter of 8 μm and a thickness of 2 μm. This biconcave shape maximizes the surface-to-volume ratio, allowing RBCs to endure significant distortion while maintaining their functionality. 

(8,9) Additionally, the biconcave shape optimizes gas exchange, facilitating efficient uptake of oxygen due to the increased surface area. The inherent elasticity of RBCs allows them to undergo substantial distortion from their original biconcave shape and exhibits high flexibility, particularly in narrow channels.RBC deformability enables the cell to deform from a biconcave shape to a parachute-like configuration, despite minor differences in RBC shape dynamics under shear flow between initial cell locations. As shown in Figure 1(a), RBCs initiating with different resting shapes and orientations displaying display a similar deformation pattern 

(10) in terms of its shape. Shear flow induces an inward bending of the cell at the rear position of the rim to the final bending position, 

(11) resulting in an alignment toward the same position of the flow direction.

Figure 1. Images of varying deformation of RBCs and different dynamic blood flow behaviors. (a) The deforming shape behavior of RBCs at four different initiating positions under the same experimental conditions of a flow from left to right, (10) (b) RBC aggregation, (13) (c) CFL region. (18) Reproduced with permission from ref (10). Copyright 2011 Elsevier. Reproduced with permission from ref (13). Copyright 2022 The Authors, under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/. Reproduced with permission from ref (18). Copyright 2019 Elsevier.

The flexible property of RBCs enables them to navigate through narrow capillaries and traverse a complex network of blood vessels. The deformability of RBCs depends on various factors, including the channel geometry, RBC concentration, and the elastic properties of the RBC membrane. 

(12) Both flexibility and deformability are vital in the process of oxygen exchange among blood and tissues throughout the body, allowing cells to flow in vessels even smaller than the original cell size prior to deforming.As RBCs serve as major components in blood, their collective dynamics also hugely affect blood rheology. RBCs exhibit an aggregation phenomenon due to cell to cell interactions, such as adhesion forces, among populated cells, inducing unique blood flow patterns and rheological behaviors in microfluidic systems. For blood flow in large vessels between a diameter of 1 and 3 cm, where shear rates are not high, a constant viscosity and Newtonian behavior for blood can be assumed. However, under low shear rate conditions (0.1 s

–1) in smaller vessels such as the arteries and venules, which are within a diameter of 0.2 mm to 1 cm, blood exhibits non-Newtonian properties, such as shear-thinning viscosity and viscoelasticity due to RBC aggregation and deformability. The nonlinear viscoelastic property of blood gives rise to a complex relationship between viscosity and shear rate, primarily influenced by the highly elastic behavior of RBCs. A wide range of research on the transient behavior of the RBC shape and aggregation characteristics under varied flow circumstances has been conducted, aiming to obtain a better understanding of the interaction between blood flow shear forces from confined flows.

For a better understanding of the unique blood flow structures and rheological behaviors in microfluidic systems, some blood flow patterns are introduced in the following section.

2.1.1. RBC Aggregation

RBC aggregation is a vital phenomenon to be considered when designing LOC devices due to its impact on the viscosity of the bulk flow. Under conditions of low shear rate, such as in stagnant or low flow rate regions, RBCs tend to aggregate, forming structures known as rouleaux, resembling stacks of coins as shown in Figure 1(b). 

(13) The aggregation of RBCs increases the viscosity at the aggregated region, 

(14) hence slowing down the overall blood flow. However, when exposed to high shear rates, RBC aggregates disaggregate. As shear rates continue to increase, RBCs tend to deform, elongating and aligning themselves with the direction of the flow. 

(15) Such a dynamic shift in behavior from the cells in response to the shear rate forms the basis of the viscoelastic properties observed in whole blood. In essence, the viscosity of the blood varies according to the shear rate conditions, which are related to the velocity gradient of the system. It is significant to take the intricate relationship between shear rate conditions and the change of blood viscosity due to RBC aggregation into account since various flow driving conditions may induce varied effects on the degree of aggregation.

2.1.2. Fåhræus-Lindqvist Effect

The Fåhræus–Lindqvist (FL) effect describes the gradual decrease in the apparent viscosity of blood as the channel diameter decreases. 

(16) This effect is attributed to the migration of RBCs toward the central region in the microchannel, where the flow rate is higher, due to the presence of higher pressure and asymmetric distribution of shear forces. This migration of RBCs, typically observed at blood vessels less than 0.3 mm, toward the higher flow rate region contributes to the change in blood viscosity, which becomes dependent on the channel size. Simultaneously, the increase of the RBC concentration in the central region of the microchannel results in the formation of a less viscous region close to the microchannel wall. This region called the Cell-Free Layer (CFL), is primarily composed of plasma. 

(17) The combination of the FL effect and the following CFL formation provides a unique phenomenon that is often utilized in passive and active plasma separation mechanisms, involving branched and constriction channels for various applications in plasma separation using microfluidic systems.

2.1.3. Cell-Free Layer Formation

In microfluidic blood flow, RBCs form aggregates at the microchannel core and result in a region that is mostly devoid of RBCs near the microchannel walls, as shown in Figure 1(c). 

(18) The region is known as the cell-free layer (CFL). The CFL region is often known to possess a lower viscosity compared to other regions within the blood flow due to the lower viscosity value of plasma when compared to that of the aggregated RBCs. Therefore, a thicker CFL region composed of plasma correlates to a reduced apparent whole blood viscosity. 

(19) A thicker CFL region is often established following the RBC aggregation at the microchannel core under conditions of decreasing the tube diameter. Apart from the dependence on the RBC concentration in the microchannel core, the CFL thickness is also affected by the volume concentration of RBCs, or hematocrit, in whole blood, as well as the deformability of RBCs. Given the influence CFL thickness has on blood flow rheological parameters such as blood flow rate, which is strongly dependent on whole blood viscosity, investigating CFL thickness under shear flow is crucial for LOC systems accounting for blood flow.

2.1.4. Plasma Skimming in Bifurcation Networks

The uneven arrangement of RBCs in bifurcating microchannels, commonly termed skimming bifurcation, arises from the axial migration of RBCs within flowing streams. This uneven distribution contributes to variations in viscosity across differing sizes of bifurcating channels but offers a stabilizing effect. Notably, higher flow rates in microchannels are associated with increased hematocrit levels, resulting in higher viscosity compared with those with lower flow rates. Parametric investigations on bifurcation angle, 

(20) thickness of the CFL, 

(21) and RBC dynamics, including aggregation and deformation, 

(22) may alter the varying viscosity of blood and its flow behavior within microchannels.

2.2. Modeling on Blood Flow Dynamics

2.2.1. Blood Properties and Mathematical Models of Blood Rheology

Under different shear rate conditions in blood flow, the elastic characteristics and dynamic changes of the RBC induce a complex velocity and stress relationship, resulting in the incompatibility of blood flow characterization through standard presumptions of constant viscosity used for Newtonian fluid flow. Blood flow is categorized as a viscoelastic non-Newtonian fluid flow where constitutive equations governing this type of flow take into consideration the nonlinear viscometric properties of blood. To mathematically characterize the evolving blood viscosity and the relationship between the elasticity of RBC and the shear blood flow, respectively, across space and time of the system, a stress tensor (τ) defined by constitutive models is often coupled in the Navier–Stokes equation to account for the collective impact of the constant dynamic viscosity (η) and the elasticity from RBCs on blood flow.The dynamic viscosity of blood is heavily dependent on the shear stress applied to the cell and various parameters from the blood such as hematocrit value, plasma viscosity, mechanical properties of the RBC membrane, and red blood cell aggregation rate. The apparent blood viscosity is considered convenient for the characterization of the relationship between the evolving blood viscosity and shear rate, which can be defined by Casson’s law, as shown in eq 1.

𝜇=𝜏0𝛾˙+2𝜂𝜏0𝛾˙⎯⎯⎯⎯⎯⎯⎯√+𝜂�=�0�˙+2��0�˙+�

(1)where τ

0 is the yield stress–stress required to initiate blood flow motion, η is the Casson rheological constant, and γ̇ is the shear rate. The value of Casson’s law parameters under blood with normal hematocrit level can be defined as τ

0 = 0.0056 Pa and η = 0.0035 Pa·s. 

(23) With the known property of blood and Casson’s law parameters, an approximation can be made to the dynamic viscosity under various flow condition domains. The Power Law model is often employed to characterize the dynamic viscosity in relation to the shear rate, since precise solutions exist for specific geometries and flow circumstances, acting as a fundamental standard for definition. The Carreau and Carreau–Yasuda models can be advantageous over the Power Law model due to their ability to evaluate the dynamic viscosity at low to zero shear rate conditions. However, none of the above-mentioned models consider the memory or other elastic behavior of blood and its RBCs. Some other commonly used mathematical models and their constants for the non-Newtonian viscosity property characterization of blood are listed in Table 1 below. 

(24−26)Table 1. Comparison of Various Non-Newtonian Models for Blood Viscosity 

(24−26)

ModelNon-Newtonian ViscosityParameters
Power Law(2)n = 0.61, k = 0.42
Carreau(3)μ0 = 0.056 Pa·s, μ = 0.00345 Pa·s, λ = 3.1736 s, m = 2.406, a = 0.254
Walburn–Schneck(4)C1 = 0.000797 Pa·s, C2 = 0.0608 Pa·s, C3 = 0.00499, C4 = 14.585 g–1, TPMA = 25 g/L
Carreau–Yasuda(5)μ0 = 0.056 Pa·s, μ = 0.00345 Pa·s, λ = 1.902 s, n = 0.22, a = 1.25
Quemada(6)μp = 0.0012 Pa·s, k = 2.07, k0 = 4.33, γ̇c = 1.88 s–1

The blood rheology is commonly known to be influenced by two key physiological factors, namely, the hematocrit value (H

t) and the fibrinogen concentration (c

f), with an average value of 42% and 0.252 gd·L

–1, respectively. Particularly in low shear conditions, the presence of varying fibrinogen concentrations affects the tendency for aggregation and rouleaux formation, while the occurrence of aggregation is contingent upon specific levels of hematocrit. 

(27) The study from Apostolidis et al. 

(28) modifies the Casson model through emphasizing its reliance on hematocrit and fibrinogen concentration parameter values, owing to the extensive knowledge of the two physiological blood parameters.The viscoelastic response of blood is heavily dependent on the elasticity of the RBC, which is defined by the relationship between the deformation and stress relaxation from RBCs under a specific location of shear flow as a function of the velocity field. The stress tensor is usually characterized by constitutive equations such as the Upper-Convected Maxwell Model 

(29) and the Oldroyd-B model 

(30) to track the molecule effects under shear from different driving forces. The prominent non-Newtonian features, such as shear thinning and yield stress, have played a vital role in the characterization of blood rheology, particularly with respect to the evaluation of yield stress under low shear conditions. The nature of stress measurement in blood, typically on the order of 1 mPa, is challenging due to its low magnitude. The occurrence of the CFL complicates the measurement further due to the significant decrease in apparent viscosity near the wall over time and a consequential disparity in viscosity compared to the bulk region.In addition to shear thinning viscosity and yield stress, the formation of aggregation (rouleaux) from RBCs under low shear rates also contributes to the viscoelasticity under transient flow 

(31) and thixotropy 

(32) of whole blood. Given the difficulty in evaluating viscoelastic behavior of blood under low strain magnitudes and limitations in generalized Newtonian models, the utilization of viscoelastic models is advocated to encompass elasticity and delineate non-shear components within the stress tensor. Extending from the Oldroyd-B model, Anand et al. 

(33) developed a viscoelastic model framework for adapting elasticity within blood samples and predicting non-shear stress components. However, to also address the thixotropic effects, the model developed by Horner et al. 

(34) serves as a more comprehensive approach than the viscoelastic model from Anand et al. Thixotropy 

(32) typically occurs from the structural change of the rouleaux, where low shear rate conditions induce rouleaux formation. Correspondingly, elasticity increases, while elasticity is more representative of the isolated RBCs, under high shear rate conditions. The model of Horner et al. 

(34) considers the contribution of rouleaux to shear stress, taking into account factors such as the characteristic time for Brownian aggregation, shear-induced aggregation, and shear-induced breakage. Subsequent advancements in the model from Horner et al. often revolve around refining the three aforementioned key terms for a more substantial characterization of rouleaux dynamics. Notably, this has led to the recently developed mHAWB model 

(35) and other model iterations to enhance the accuracy of elastic and viscoelastic contributions to blood rheology, including the recently improved model suggested by Armstrong et al. 

(36)

2.2.2. Numerical Methods (FDM, FEM, FVM)

Numerical simulation has become increasingly more significant in analyzing the geometry, boundary layers of flow, and nonlinearity of hyperbolic viscoelastic flow constitutive equations. CFD is a powerful and efficient tool utilizing numerical methods to solve the governing hydrodynamic equations, such as the Navier–Stokes (N–S) equation, continuity equation, and energy conservation equation, for qualitative evaluation of fluid motion dynamics under different parameters. CFD overcomes the challenge of analytically solving nonlinear forms of differential equations by employing numerical methods such as the Finite-Difference Method (FDM), Finite-Element Method (FEM), and Finite-Volume Method (FVM) to discretize and solve the partial differential equations (PDEs), allowing for qualitative reproduction of transport phenomena and experimental observations. Different numerical methods are chosen to cope with various transport systems for optimization of the accuracy of the result and control of error during the discretization process.FDM is a straightforward approach to discretizing PDEs, replacing the continuum representation of equations with a set of finite-difference equations, which is typically applied to structured grids for efficient implementation in CFD programs. 

(37) However, FDM is often limited to simple geometries such as rectangular or block-shaped geometries and struggles with curved boundaries. In contrast, FEM divides the fluid domain into small finite grids or elements, approximating PDEs through a local description of physics. 

(38) All elements contribute to a large, sparse matrix solver. However, FEM may not always provide accurate results for systems involving significant deformation and aggregation of particles like RBCs due to large distortion of grids. 

(39) FVM evaluates PDEs following the conservation laws and discretizes the selected flow domain into small but finite size control volumes, with each grid at the center of a finite volume. 

(40) The divergence theorem allows the conversion of volume integrals of PDEs with divergence terms into surface integrals of surface fluxes across cell boundaries. Due to its conservation property, FVM offers efficient outcomes when dealing with PDEs that embody mass, momentum, and energy conservation principles. Furthermore, widely accessible software packages like the OpenFOAM toolbox 

(41) include a viscoelastic solver, making it an attractive option for viscoelastic fluid flow modeling. 

(42)

2.2.3. Modeling Methods of Blood Flow Dynamics

The complexity in the blood flow simulation arises from deformability and aggregation that RBCs exhibit during their interaction with neighboring cells under different shear rate conditions induced by blood flow. Numerical models coupled with simulation programs have been applied as a groundbreaking method to predict such unique rheological behavior exhibited by RBCs and whole blood. The conventional approach of a single-phase flow simulation is often applied to blood flow simulations within large vessels possessing a moderate shear rate. However, such a method assumes the properties of plasma, RBCs and other cellular components to be evenly distributed as average density and viscosity in blood, resulting in the inability to simulate the mechanical dynamics, such as RBC aggregation under high-shear flow field, inherent in RBCs. To accurately describe the asymmetric distribution of RBC and blood flow, multiphase flow simulation, where numerical simulations of blood flows are often modeled as two immiscible phases, RBCs and blood plasma, is proposed. A common assumption is that RBCs exhibit non-Newtonian behavior while the plasma is treated as a continuous Newtonian phase.Numerous multiphase numerical models have been proposed to simulate the influence of RBCs on blood flow dynamics by different assumptions. In large-scale simulations (above the millimeter range), continuum-based methods are wildly used due to their lower computational demands. 

(43) Eulerian multiphase flow simulations offer the solution of a set of conservation equations for each separate phase and couple the phases through common pressure and interphase exchange coefficients. Xu et al. 

(44) utilized the combined finite-discrete element method (FDEM) to replicate the dynamic behavior and distortion of RBCs subjected to fluidic forces, utilizing the Johnson–Kendall–Roberts model 

(45) to define the adhesive forces of cell-to-cell interactions. The iterative direct-forcing immersed boundary method (IBM) is commonly employed in simulations of the fluid–cell interface of blood. This method effectively captures the intricacies of the thin and flexible RBC membranes within various external flow fields. 

(46) The study by Xu et al. 

(44) also adopts this approach to bridge the fluid dynamics and RBC deformation through IBM. Yoon and You utilized the Maxwell model to define the viscosity of the RBC membrane. 

(47) It was discovered that the Maxwell model could represent the stress relaxation and unloading processes of the cell. Furthermore, the reduced flexibility of an RBC under particular situations such as infection is specified, which was unattainable by the Kelvin–Voigt model 

(48) when compared to the Maxwell model in the literature. The Yeoh hyperplastic material model was also adapted to predict the nonlinear elasticity property of RBCs with FEM employed to discretize the RBC membrane using shell-type elements. Gracka et al. 

(49) developed a numerical CFD model with a finite-volume parallel solver for multiphase blood flow simulation, where an updated Maxwell viscoelasticity model and a Discrete Phase Model are adopted. In the study, the adapted IBM, based on unstructured grids, simulates the flow behavior and shape change of the RBCs through fluid-structure coupling. It was found that the hybrid Euler–Lagrange (E–L) approach 

(50) for the development of the multiphase model offered better results in the simulated CFL region in the microchannels.To study the dynamics of individual behaviors of RBCs and the consequent non-Newtonian blood flow, cell-shape-resolved computational models are often adapted. The use of the boundary integral method has become prevalent in minimizing computational expenses, particularly in the exclusive determination of fluid velocity on the surfaces of RBCs, incorporating the option of employing IBM or particle-based techniques. The cell-shaped-resolved method has enabled an examination of cell to cell interactions within complex ambient or pulsatile flow conditions 

(51) surrounding RBC membranes. Recently, Rydquist et al. 

(52) have looked to integrate statistical information from macroscale simulations to obtain a comprehensive overview of RBC behavior within the immediate proximity of the flow through introduction of respective models characterizing membrane shape definition, tension, bending stresses of RBC membranes.At a macroscopic scale, continuum models have conventionally been adapted for assessing blood flow dynamics through the application of elasticity theory and fluid dynamics. However, particle-based methods are known for their simplicity and adaptability in modeling complex multiscale fluid structures. Meshless methods, such as the boundary element method (BEM), smoothed particle hydrodynamics (SPH), and dissipative particle dynamics (DPD), are often used in particle-based characterization of RBCs and the surrounding fluid. By representing the fluid as discrete particles, meshless methods provide insights into the status and movement of the multiphase fluid. These methods allow for the investigation of cellular structures and microscopic interactions that affect blood rheology. Non-confronting mesh methods like IBM can also be used to couple a fluid solver such as FEM, FVM, or the Lattice Boltzmann Method (LBM) through membrane representation of RBCs. In comparison to conventional CFD methods, LBM has been viewed as a favorable numerical approach for solving the N–S equations and the simulation of multiphase flows. LBM exhibits the notable advantage of being amenable to high-performance parallel computing environments due to its inherently local dynamics. In contrast to DPD and SPH where RBC membranes are modeled as physically interconnected particles, LBM employs the IBM to account for the deformation dynamics of RBCs 

(53,54) under shear flows in complex channel geometries. 

(54,55) However, it is essential to acknowledge that the utilization of LBM in simulating RBC flows often entails a significant computational overhead, being a primary challenge in this context. Krüger et al. 

(56) proposed utilizing LBM as a fluid solver, IBM to couple the fluid and FEM to compute the response of membranes to deformation under immersed fluids. This approach decouples the fluid and membranes but necessitates significant computational effort due to the requirements of both meshes and particles.Despite the accuracy of current blood flow models, simulating complex conditions remains challenging because of the high computational load and cost. Balachandran Nair et al. 

(57) suggested a reduced order model of RBC under the framework of DEM, where the RBC is represented by overlapping constituent rigid spheres. The Morse potential force is adapted to account for the RBC aggregation exhibited by cell to cell interactions among RBCs at different distances. Based upon the IBM, the reduced-order RBC model is adapted to simulate blood flow transport for validation under both single and multiple RBCs with a resolved CFD-DEM solver. 

(58) In the resolved CFD-DEM model, particle sizes are larger than the grid size for a more accurate computation of the surrounding flow field. A continuous forcing approach is taken to describe the momentum source of the governing equation prior to discretization, which is different from a Direct Forcing Method (DFM). 

(59) As no body-conforming moving mesh is required, the continuous forcing approach offers lower complexity and reduced cost when compared to the DFM. Piquet et al. 

(60) highlighted the high complexity of the DFM due to its reliance on calculating an additional immersed boundary flux for the velocity field to ensure its divergence-free condition.The fluid–structure interaction (FSI) method has been advocated to connect the dynamic interplay of RBC membranes and fluid plasma within blood flow such as the coupling of continuum–particle interactions. However, such methodology is generally adapted for anatomical configurations such as arteries 

(61,62) and capillaries, 

(63) where both the structural components and the fluid domain undergo substantial deformation due to the moving boundaries. Due to the scope of the Review being blood flow simulation within microchannels of LOC devices without deformable boundaries, the Review of the FSI method will not be further carried out.In general, three numerical methods are broadly used: mesh-based, particle-based, and hybrid mesh–particle techniques, based on the spatial scale and the fundamental numerical approach, mesh-based methods tend to neglect the effects of individual particles, assuming a continuum and being efficient in terms of time and cost. However, the particle-based approach highlights more of the microscopic and mesoscopic level, where the influence of individual RBCs is considered. A review from Freund et al. 

(64) addressed the three numerical methodologies and their respective modeling approaches of RBC dynamics. Given the complex mechanics and the diverse levels of study concerning numerical simulations of blood and cellular flow, a broad spectrum of numerical methods for blood has been subjected to extensive review. 

(64−70) Ye at al. 

(65) offered an extensive review of the application of the DPD, SPH, and LBM for numerical simulations of RBC, while Rathnayaka et al. 

(67) conducted a review of the particle-based numerical modeling for liquid marbles through drawing parallels to the transport of RBCs in microchannels. A comparative analysis between conventional CFD methods and particle-based approaches for cellular and blood flow dynamic simulation can be found under the review by Arabghahestani et al. 

(66) Literature by Li et al. 

(68) and Beris et al. 

(69) offer an overview of both continuum-based models at micro/macroscales and multiscale particle-based models encompassing various length and temporal dimensions. Furthermore, these reviews deliberate upon the potential of coupling continuum-particle methods for blood plasma and RBC modeling. Arciero et al. 

(70) investigated various modeling approaches encompassing cellular interactions, such as cell to cell or plasma interactions and the individual cellular phases. A concise overview of the reviews is provided in Table 2 for reference.

Table 2. List of Reviews for Numerical Approaches Employed in Blood Flow Simulation

ReferenceNumerical methods
Li et al. (2013) (68)Continuum-based modeling (BIM), particle-based modeling (LBM, LB-FE, SPH, DPD)
Freund (2014) (64)RBC dynamic modeling (continuum-based modeling, complementary discrete microstructure modeling), blood flow dynamic modeling (FDM, IBM, LBM, particle-mesh methods, coupled boundary integral and mesh-based methods, DPD)
Ye et al. (2016) (65)DPD, SPH, LBM, coupled IBM-Smoothed DPD
Arciero et al. (2017) (70)LBM, IBM, DPD, conventional CFD Methods (FDM, FVM, FEM)
Arabghahestani et al. (2019) (66)Particle-based methods (LBM, DPD, direct simulation Monte Carlo, molecular dynamics), SPH, conventional CFD methods (FDM, FVM, FEM)
Beris et al. (2021) (69)DPD, smoothed DPD, IBM, LBM, BIM
Rathnayaka (2022) (67)SPH, CG, LBM

3. Capillary Driven Blood Flow in LOC Systems

ARTICLE SECTIONS

Jump To


3.1. Capillary Driven Flow Phenomena

Capillary driven (CD) flow is a pivotal mechanism in passive microfluidic flow systems 

(9) such as the blood circulation system and LOC systems. 

(71) CD flow is essentially the movement of a liquid to flow against drag forces, where the capillary effect exerts a force on the liquid at the borders, causing a liquid–air meniscus to flow despite gravity or other drag forces. A capillary pressure drops across the liquid–air interface with surface tension in the capillary radius and contact angle. The capillary effect depends heavily on the interaction between the different properties of surface materials. Different values of contact angles can be manipulated and obtained under varying levels of surface wettability treatments to manipulate the surface properties, resulting in different CD blood delivery rates for medical diagnostic device microchannels. CD flow techniques are appealing for many LOC devices, because they require no external energy. However, due to the passive property of liquid propulsion by capillary forces and the long-term instability of surface treatments on channel walls, the adaptability of CD flow in geometrically complex LOC devices may be limited.

3.2. Theoretical and Numerical Modeling of Capillary Driven Blood Flow

3.2.1. Theoretical Basis and Assumptions of Microfluidic Flow

The study of transport phenomena regarding either blood flow driven by capillary forces or externally applied forces under microfluid systems all demands a comprehensive recognition of the significant differences in flow dynamics between microscale and macroscale. The fundamental assumptions and principles behind fluid transport at the microscale are discussed in this section. Such a comprehension will lay the groundwork for the following analysis of the theoretical basis of capillary forces and their role in blood transport in LOC systems.

At the macroscale, fluid dynamics are often strongly influenced by gravity due to considerable fluid mass. However, the high surface to volume ratio at the microscale shifts the balance toward surface forces (e.g., surface tension and viscous forces), much larger than the inertial force. This difference gives rise to transport phenomena unique to microscale fluid transport, such as the prevalence of laminar flow due to a very low Reynolds number (generally lower than 1). Moreover, the fluid in a microfluidic system is often assumed to be incompressible due to the small flow velocity, indicating constant fluid density in both space and time.Microfluidic flow behaviors are governed by the fundamental principles of mass and momentum conservation, which are encapsulated in the continuity equation and the Navier–Stokes (N–S) equation. The continuity equation describes the conservation of mass, while the N–S equation captures the spatial and temporal variations in velocity, pressure, and other physical parameters. Under the assumption of the negligible influence of gravity in microfluidic systems, the continuity equation and the Eulerian representation of the incompressible N–S equation can be expressed as follows:

∇·𝐮⇀=0∇·�⇀=0

(7)

−∇𝑝+𝜇∇2𝐮⇀+∇·𝝉⇀−𝐅⇀=0−∇�+�∇2�⇀+∇·�⇀−�⇀=0

(8)Here, p is the pressure, u is the fluid viscosity, 

𝝉⇀�⇀ represents the stress tensor, and F is the body force exerted by external forces if present.

3.2.2. Theoretical Basis and Modeling of Capillary Force in LOC Systems

The capillary force is often the major driving force to manipulate and transport blood without an externally applied force in LOC systems. Forces induced by the capillary effect impact the free surface of fluids and are represented not directly in the Navier–Stokes equations but through the pressure boundary conditions of the pressure term p. For hydrophilic surfaces, the liquid generally induces a contact angle between 0° and 30°, encouraging the spread and attraction of fluid under a positive cos θ condition. For this condition, the pressure drop becomes positive and generates a spontaneous flow forward. A hydrophobic solid surface repels the fluid, inducing minimal contact. Generally, hydrophobic solids exhibit a contact angle larger than 90°, inducing a negative value of cos θ. Such a value will result in a negative pressure drop and a flow in the opposite direction. The induced contact angle is often utilized to measure the wall exposure of various surface treatments on channel walls where different wettability gradients and surface tension effects for CD flows are established. Contact angles between different interfaces are obtainable through standard values or experimental methods for reference. 

(72)For the characterization of the induced force by the capillary effect, the Young–Laplace (Y–L) equation 

(73) is widely employed. In the equation, the capillary is considered a pressure boundary condition between the two interphases. Through the Y–L equation, the capillary pressure force can be determined, and subsequently, the continuity and momentum balance equations can be solved to obtain the blood filling rate. Kim et al. 

(74) studied the effects of concentration and exposure time of a nonionic surfactant, Silwet L-77, on the performance of a polydimethylsiloxane (PDMS) microchannel in terms of plasma and blood self-separation. The study characterized the capillary pressure force by incorporating the Y–L equation and further evaluated the effects of the changing contact angle due to different levels of applied channel wall surface treatments. The expression of the Y–L equation utilized by Kim et al. 

(74) is as follows:

𝑃=−𝜎(cos𝜃b+cos𝜃tℎ+cos𝜃l+cos𝜃r𝑤)�=−�(cos⁡�b+cos⁡�tℎ+cos⁡�l+cos⁡�r�)

(9)where σ is the surface tension of the liquid and θ

bθ

tθ

l, and θ

r are the contact angle values between the liquid and the bottom, top, left, and right walls, respectively. A numerical simulation through Coventor software is performed to evaluate the dynamic changes in the filling rate within the microchannel. The simulation results for the blood filling rate in the microchannel are expressed at a specific time stamp, shown in Figure 2. The results portray an increasing instantaneous filling rate of blood in the microchannel following the decrease in contact angle induced by a higher concentration of the nonionic surfactant treated to the microchannel wall.

Figure 2. Numerical simulation of filling rate of capillary driven blood flow under various contact angle conditions at a specific timestamp. (74) Reproduced with permission from ref (74). Copyright 2010 Elsevier.

When in contact with hydrophilic or hydrophobic surfaces, blood forms a meniscus with a contact angle due to surface tension. The Lucas–Washburn (L–W) equation 

(75) is one of the pioneering theoretical definitions for the position of the meniscus over time. In addition, the L–W equation provides the possibility for research to obtain the velocity of the blood formed meniscus through the derivation of the meniscus position. The L–W equation 

(75) can be shown below:

𝐿(𝑡)=𝑅𝜎cos(𝜃)𝑡2𝜇⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√�(�)=��⁡cos(�)�2�

(10)Here L(t) represents the distance of the liquid driven by the capillary forces. However, the generalized L–W equation solely assumes the constant physical properties from a Newtonian fluid rather than considering the non-Newtonian fluid behavior of blood. Cito et al. 

(76) constructed an enhanced version of the L–W equation incorporating the power law to consider the RBC aggregation and the FL effect. The non-Newtonian fluid apparent viscosity under the Power Law model is defined as

𝜇=𝑘·(𝛾˙)𝑛−1�=�·(�˙)�−1

(11)where γ̇ is the strain rate tensor defined as 

𝛾˙=12𝛾˙𝑖𝑗𝛾˙𝑗𝑖⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√�˙=12�˙���˙��. The stress tensor term τ is computed as τ = μγ̇

ij. The updated L–W equation by Cito 

(76) is expressed as

𝐿(𝑡)=𝑅[(𝑛+13𝑛+1)(𝜎cos(𝜃)𝑅𝑘)1/𝑛𝑡]𝑛/𝑛+1�(�)=�[(�+13�+1)(�⁡cos(�)��)1/��]�/�+1

(12)where k is the flow consistency index and n is the power law index, respectively. The power law index, from the Power Law model, characterizes the extent of the non-Newtonian behavior of blood. Both the consistency and power law index rely on blood properties such as hematocrit, the appearance of the FL effect, the formation of RBC aggregates, etc. The updated L–W equation computes the location and velocity of blood flow caused by capillary forces at specified time points within the LOC devices, taking into account the effects of blood flow characteristics such as RBC aggregation and the FL effect on dynamic blood viscosity.Apart from the blood flow behaviors triggered by inherent blood properties, unique flow conditions driven by capillary forces that are portrayed under different microchannel geometries also hold crucial implications for CD blood delivery. Berthier et al. 

(77) studied the spontaneous Concus–Finn condition, the condition to initiate the spontaneous capillary flow within a V-groove microchannel, as shown in Figure 3(a) both experimentally and numerically. Through experimental studies, the spontaneous Concus–Finn filament development of capillary driven blood flow is observed, as shown in Figure 3(b), while the dynamic development of blood flow is numerically simulated through CFD simulation.

Figure 3. (a) Sketch of the cross-section of Berthier’s V-groove microchannel, (b) experimental view of blood in the V-groove microchannel, (78) (c) illustration of the dynamic change of the extension of filament from FLOW 3D under capillary flow at three increasing time intervals. (78) Reproduced with permission from ref (78). Copyright 2014 Elsevier.

Berthier et al. 

(77) characterized the contact angle needed for the initiation of the capillary driving force at a zero-inlet pressure, through the half-angle (α) of the V-groove geometry layout, and its relation to the Concus–Finn filament as shown below:

𝜃<𝜋2−𝛼sin𝛼1+2(ℎ2/𝑤)sin𝛼<cos𝜃{�<�2−�sin⁡�1+2(ℎ2/�)⁡sin⁡�<cos⁡�

(13)Three possible regimes were concluded based on the contact angle value for the initiation of flow and development of Concus–Finn filament:

𝜃>𝜃1𝜃1>𝜃>𝜃0𝜃0no SCFSCF without a Concus−Finn filamentSCF without a Concus−Finn filament{�>�1no SCF�1>�>�0SCF without a Concus−Finn filament�0SCF without a Concus−Finn filament

(14)Under Newton’s Law, the force balance with low Reynolds and Capillary numbers results in the neglect of inertial terms. The force balance between the capillary forces and the viscous force induced by the channel wall is proposed to derive the analytical fluid velocity. This relation between the two forces offers insights into the average flow velocity and the penetration distance function dependent on time. The apparent blood viscosity is defined by Berthier et al. 

(78) through Casson’s law, 

(23) given in eq 1. The research used the FLOW-3D program from Flow Science Inc. software, which solves transient, free-surface problems using the FDM in multiple dimensions. The Volume of Fluid (VOF) method 

(79) is utilized to locate and track the dynamic extension of filament throughout the advancing interface within the channel ahead of the main flow at three progressing time stamps, as depicted in Figure 3(c).

4. Electro-osmotic Flow (EOF) in LOC Systems

ARTICLE SECTIONS

Jump To


The utilization of external forces, such as electric fields, has significantly broadened the possibility of manipulating microfluidic flow in LOC systems. 

(80) Externally applied electric field forces induce a fluid flow from the movement of ions in fluid terms as the “electro-osmotic flow” (EOF).Unique transport phenomena, such as enhanced flow velocity and flow instability, induced by non-Newtonian fluids, particularly viscoelastic fluids, under EOF, have sparked considerable interest in microfluidic devices with simple or complicated geometries within channels. 

(81) However, compared to the study of Newtonian fluids and even other electro-osmotic viscoelastic fluid flows, the literature focusing on the theoretical and numerical modeling of electro-osmotic blood flow is limited due to the complexity of blood properties. Consequently, to obtain a more comprehensive understanding of the complex blood flow behavior under EOF, theoretical and numerical studies of the transport phenomena in the EOF section will be based on the studies of different viscoelastic fluids under EOF rather than that of blood specifically. Despite this limitation, we believe these studies offer valuable insights that can help understand the complex behavior of blood flow under EOF.

4.1. EOF Phenomena

Electro-osmotic flow occurs at the interface between the microchannel wall and bulk phase solution. When in contact with the bulk phase, solution ions are absorbed or dissociated at the solid–liquid interface, resulting in the formation of a charge layer, as shown in Figure 4. This charged channel surface wall interacts with both negative and positive ions in the bulk sample, causing repulsion and attraction forces to create a thin layer of immobilized counterions, known as the Stern layer. The induced electric potential from the wall gradually decreases with an increase in the distance from the wall. The Stern layer potential, commonly termed the zeta potential, controls the intensity of the electrostatic interactions between mobile counterions and, consequently, the drag force from the applied electric field. Next to the Stern layer is the diffuse mobile layer, mainly composed of a mobile counterion. These two layers constitute the “electrical double layer” (EDL), the thickness of which is directly proportional to the ionic strength (concentration) of the bulk fluid. The relationship between the two parameters is characterized by a Debye length (λ

D), expressed as

𝜆𝐷=𝜖𝑘B𝑇2(𝑍𝑒)2𝑐0⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√��=��B�2(��)2�0

(15)where ϵ is the permittivity of the electrolyte solution, k

B is the Boltzmann constant, T is the electron temperature, Z is the integer valence number, e is the elementary charge, and c

0 is the ionic density.

Figure 4. Schematic diagram of an electro-osmotic flow in a microchannel with negative surface charge. (82) Reproduced with permission from ref (82). Copyright 2012 Woodhead Publishing.

When an electric field is applied perpendicular to the EDL, viscous drag is generated due to the movement of excess ions in the EDL. Electro-osmotic forces can be attributed to the externally applied electric potential (ϕ) and the zeta potential, the system wall induced potential by charged walls (ψ). As illustrated in Figure 4, the majority of ions in the bulk phase have a uniform velocity profile, except for a shear rate condition confined within an extremely thin Stern layer. Therefore, EOF displays a unique characteristic of a “near flat” or plug flow velocity profile, different from the parabolic flow typically induced by pressure-driven microfluidic flow (Hagen–Poiseuille flow). The plug-shaped velocity profile of the EOF possesses a high shear rate above the Stern layer.Overall, the EOF velocity magnitude is typically proportional to the Debye Length (λ

D), zeta potential, and magnitude of the externally applied electric field, while a more viscous liquid reduces the EOF velocity.

4.2. Modeling on Electro-osmotic Viscoelastic Fluid Flow

4.2.1. Theoretical Basis of EOF Mechanisms

The EOF of an incompressible viscoelastic fluid is commonly governed by the continuity and incompressible N–S equations, as shown in eqs 7 and 8, where the stress tensor and the electrostatic force term are coupled. The electro-osmotic body force term F, representing the body force exerted by the externally applied electric force, is defined as 

𝐹⇀=𝑝𝐸𝐸⇀�⇀=���⇀, where ρ

E and 

𝐸⇀�⇀ are the net electric charge density and the applied external electric field, respectively.Numerous models are established to theoretically study the externally applied electric potential and the system wall induced potential by charged walls. The following Laplace equation, expressed as eq 16, is generally adapted and solved to calculate the externally applied potential (ϕ).

∇2𝜙=0∇2�=0

(16)Ion diffusion under applied electric fields, together with mass transport resulting from convection and diffusion, transports ionic solutions in bulk flow under electrokinetic processes. The Nernst–Planck equation can describe these transport methods, including convection, diffusion, and electro-diffusion. Therefore, the Nernst–Planck equation is used to determine the distribution of the ions within the electrolyte. The electric potential induced by the charged channel walls follows the Poisson–Nernst–Plank (PNP) equation, which can be written as eq 17.

∇·[𝐷𝑖∇𝑛𝑖−𝑢⇀𝑛𝑖+𝑛𝑖𝐷𝑖𝑧𝑖𝑒𝑘𝑏𝑇∇(𝜙+𝜓)]=0∇·[��∇��−�⇀��+����������∇(�+�)]=0

(17)where D

in

i, and z

i are the diffusion coefficient, ionic concentration, and ionic valence of the ionic species I, respectively. However, due to the high nonlinearity and numerical stiffness introduced by different lengths and time scales from the PNP equations, the Poisson–Boltzmann (PB) model is often considered the major simplified method of the PNP equation to characterize the potential distribution of the EDL region in microchannels. In the PB model, it is assumed that the ionic species in the fluid follow the Boltzmann distribution. This model is typically valid for steady-state problems where charge transport can be considered negligible, the EDLs do not overlap with each other, and the intrinsic potentials are low. It provides a simplified representation of the potential distribution in the EDL region. The PB equation governing the EDL electric potential distribution is described as

∇2𝜓=(2𝑒𝑧𝑛0𝜀𝜀0)sinh(𝑧𝑒𝜓𝑘b𝑇)∇2�=(2���0��0)⁡sinh(����b�)

(18)where n

0 is the ion bulk concentration, z is the ionic valence, and ε

0 is the electric permittivity in the vacuum. Under low electric potential conditions, an even further simplified model to illustrate the EOF phenomena is the Debye–Hückel (DH) model. The DH model is derived by obtaining a charge density term by expanding the exponential term of the Boltzmann equation in a Taylor series.

4.2.2. EOF Modeling for Viscoelastic Fluids

Many studies through numerical modeling were performed to obtain a deeper understanding of the effect exhibited by externally applied electric fields on viscoelastic flow in microchannels under various geometrical designs. Bello et al. 

(83) found that methylcellulose solution, a non-Newtonian polymer solution, resulted in stronger electro-osmotic mobility in experiments when compared to the predictions by the Helmholtz–Smoluchowski equation, which is commonly used to define the velocity of EOF of a Newtonian fluid. Being one of the pioneers to identify the discrepancies between the EOF of Newtonian and non-Newtonian fluids, Bello et al. attributed such discrepancies to the presence of a very high shear rate in the EDL, resulting in a change in the orientation of the polymer molecules. Park and Lee 

(84) utilized the FVM to solve the PB equation for the characterization of the electric field induced force. In the study, the concept of fractional calculus for the Oldroyd-B model was adapted to illustrate the elastic and memory effects of viscoelastic fluids in a straight microchannel They observed that fluid elasticity and increased ratio of viscoelastic fluid contribution to overall fluid viscosity had a significant impact on the volumetric flow rate and sensitivity of velocity to electric field strength compared to Newtonian fluids. Afonso et al. 

(85) derived an analytical expression for EOF of viscoelastic fluid between parallel plates using the DH model to account for a zeta potential condition below 25 mV. The study established the understanding of the electro-osmotic viscoelastic fluid flow under low zeta potential conditions. Apart from the electrokinetic forces, pressure forces can also be coupled with EOF to generate a unique fluid flow behavior within the microchannel. Sousa et al. 

(86) analytically studied the flow of a standard viscoelastic solution by combining the pressure gradient force with an externally applied electric force. It was found that, at a near wall skimming layer and the outer layer away from the wall, macromolecules migrating away from surface walls in viscoelastic fluids are observed. In the study, the Phan-Thien Tanner (PTT) constitutive model is utilized to characterize the viscoelastic properties of the solution. The approach is found to be valid when the EDL is much thinner than the skimming layer under an enhanced flow rate. Zhao and Yang 

(87) solved the PB equation and Carreau model for the characterization of the EOF mechanism and non-Newtonian fluid respectively through the FEM. The numerical results depict that, different from the EOF of Newtonian fluids, non-Newtonian fluids led to an increase of electro-osmotic mobility for shear thinning fluids but the opposite for shear thickening fluids.Like other fluid transport driving forces, EOF within unique geometrical layouts also portrays unique transport phenomena. Pimenta and Alves 

(88) utilized the FVM to perform numerical simulations of the EOF of viscoelastic fluids considering the PB equation and the Oldroyd-B model, in a cross-slot and flow-focusing microdevices. It was found that electroelastic instabilities are formed due to the development of large stresses inside the EDL with streamlined curvature at geometry corners. Bezerra et al. 

(89) used the FDM to numerically analyze the vortex formation and flow instability from an electro-osmotic non-Newtonian fluid flow in a microchannel with a nozzle geometry and parallel wall geometry setting. The PNP equation is utilized to characterize the charge motion in the EOF and the PTT model for non-Newtonian flow characterization. A constriction geometry is commonly utilized in blood flow adapted in LOC systems due to the change in blood flow behavior under narrow dimensions in a microchannel. Ji et al. 

(90) recently studied the EOF of viscoelastic fluid in a constriction microchannel connected by two relatively big reservoirs on both ends (as seen in Figure 5) filled with the polyacrylamide polymer solution, a viscoelastic fluid, and an incompressible monovalent binary electrolyte solution KCl.

Figure 5. Schematic diagram of a negatively charged constriction microchannel connected to two reservoirs at both ends. An electro-osmotic flow is induced in the system by the induced potential difference between the anode and cathode. (90) Reproduced with permission from ref (90). Copyright 2021 The Authors, under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

In studying the EOF of viscoelastic fluids, the Oldroyd-B model is often utilized to characterize the polymeric stress tensor and the deformation rate of the fluid. The Oldroyd-B model is expressed as follows:

𝜏=𝜂p𝜆(𝐜−𝐈)�=�p�(�−�)

(19)where η

p, λ, c, and I represent the polymer dynamic viscosity, polymer relaxation time, symmetric conformation tensor of the polymer molecules, and the identity matrix, respectively.A log-conformation tensor approach is taken to prevent convergence difficulty induced by the viscoelastic properties. The conformation tensor (c) in the polymeric stress tensor term is redefined by a new tensor (Θ) based on the natural logarithm of the c. The new tensor is defined as

Θ=ln(𝐜)=𝐑ln(𝚲)𝐑Θ=ln(�)=�⁡ln(�)�

(20)in which Λ is the diagonal matrix and R is the orthogonal matrix.Under the new conformation tensor, the induced EOF of a viscoelastic fluid is governed by the continuity and N–S equations adapting the Oldroyd-B model, which is expressed as

∂𝚯∂𝑡+𝐮·∇𝚯=𝛀Θ−ΘΩ+2𝐁+1𝜆(eΘ−𝐈)∂�∂�+�·∇�=�Θ−ΘΩ+2�+1�(eΘ−�)

(21)where Ω and B represent the anti-symmetric matrix and the symmetric traceless matrix of the decomposition of the velocity gradient tensor ∇u, respectively. The conformation tensor can be recovered by c = exp(Θ). The PB model and Laplace equation are utilized to characterize the charged channel wall induced potential and the externally applied potential.The governing equations are numerically solved through the FVM by RheoTool, 

(42) an open-source viscoelastic EOF solver on the OpenFOAM platform. A SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm was applied to solve the velocity-pressure coupling. The pressure field and velocity field were computed by the PCG (Preconditioned Conjugate Gradient) solver and the PBiCG (Preconditioned Biconjugate Gradient) solver, respectively.Ranging magnitudes of an applied electric field or fluid concentration induce both different streamlines and velocity magnitudes at various locations and times of the microchannel. In the study performed by Ji et al., 

(90) notable fluctuation of streamlines and vortex formation is formed at the upper stream entrance of the constriction as shown in Figure 6(a) and (b), respectively, due to the increase of electrokinetic effect, which is seen as a result of the increase in polymeric stress (τ

xx). 

(90) The contraction geometry enhances the EOF velocity within the constriction channel under high E

app condition (600 V/cm). Such phenomena can be attributed to the dependence of electro-osmotic viscoelastic fluid flow on the system wall surface and bulk fluid properties. 

(91)

Figure 6. Schematic diagram of vortex formation and streamlines of EOF depicting flow instability at (a) 1.71 s and (b) 1.75 s. Spatial distribution of the elastic normal stress at (c) high Eapp condition. Streamline of an electro-osmotic flow under Eapp of 600 V/cm (90) for (d) non-Newtonian and (e) Newtonian fluid through a constriction geometry. Reproduced with permission from ref (90). Copyright 2021 The Authors, under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

As elastic normal stress exceeds the local shear stress, flow instability and vortex formation occur. The induced elastic stress under EOF not only enhances the instability of the flow but often generates an irregular secondary flow leading to strong disturbance. 

(92) It is also vital to consider the effect of the constriction layout of microchannels on the alteration of the field strength within the system. The contraction geometry enhances a larger electric field strength compared with other locations of the channel outside the constriction region, resulting in a higher velocity gradient and stronger extension on the polymer within the viscoelastic solution. Following the high shear flow condition, a higher magnitude of stretch for polymer molecules in viscoelastic fluids exhibits larger elastic stresses and enhancement of vortex formation at the region. 

(93)As shown in Figure 6(c), significant elastic normal stress occurs at the inlet of the constriction microchannel. Such occurrence of a polymeric flow can be attributed to the dominating elongational flow, giving rise to high deformation of the polymers within the viscoelastic fluid flow, resulting in higher elastic stress from the polymers. Such phenomena at the entrance result in the difference in velocity streamline as circled in Figure 6(d) compared to that of the Newtonian fluid at the constriction entrance in Figure 6(e). 

(90) The difference between the Newtonian and polymer solution at the exit, as circled in Figure 6(d) and (e), can be attributed to the extrudate swell effect of polymers 

(94) within the viscoelastic fluid flow. The extrudate swell effect illustrates that, as polymers emerge from the constriction exit, they tend to contract in the flow direction and grow in the normal direction, resulting in an extrudate diameter greater than the channel size. The deformation of polymers within the polymeric flow at both the entrance and exit of the contraction channel facilitates the change in shear stress conditions of the flow, leading to the alteration in streamlines of flows for each region.

4.3. EOF Applications in LOC Systems

4.3.1. Mixing in LOC Systems

Rather than relying on the micromixing controlled by molecular diffusion under low Reynolds number conditions, active mixers actively leverage convective instability and vortex formation induced by electro-osmotic flows from alternating current (AC) or direct current (DC) electric fields. Such adaptation is recognized as significant breakthroughs for promotion of fluid mixing in chemical and biological applications such as drug delivery, medical diagnostics, chemical synthesis, and so on. 

(95)Many researchers proposed novel designs of electro-osmosis micromixers coupled with numerical simulations in conjunction with experimental findings to increase their understanding of the role of flow instability and vortex formation in the mixing process under electrokinetic phenomena. Matsubara and Narumi 

(96) numerically modeled the mixing process in a microchannel with four electrodes on each side of the microchannel wall, which generated a disruption through unstable electro-osmotic vortices. It was found that particle mixing was sensitive to both the convection effect induced by the main and secondary vortex within the micromixer and the change in oscillation frequency caused by the supplied AC voltage when the Reynolds number was varied. Qaderi et al. 

(97) adapted the PNP equation to numerically study the effect of the geometry and zeta potential configuration of the microchannel on the mixing process with a combined electro-osmotic pressure driven flow. It was reported that the application of heterogeneous zeta potential configuration enhances the mixing efficiency by around 23% while the height of the hurdles increases the mixing efficiency at most 48.1%. Cho et al. 

(98) utilized the PB model and Laplace equation to numerically simulate the electro-osmotic non-Newtonian fluid mixing process within a wavy and block layout of microchannel walls. The Power Law model is adapted to describe the fluid rheological characteristic. It was found that shear-thinning fluids possess a higher volumetric flow rate, which could result in poorer mixing efficiency compared to that of Newtonian fluids. Numerous studies have revealed that flow instability and vortex generation, in particular secondary vortices produced by barriers or greater magnitudes of heterogeneous zeta potential distribution, enhance mixing by increasing bulk flow velocity and reducing flow distance.To better understand the mechanism of disturbance formed in the system due to externally applied forces, known as electrokinetic instability, literature often utilize the Rayleigh (Ra) number, 

(1) as described below:

𝑅𝑎𝑣=𝑢ev𝑢eo=(𝛾−1𝛾+1)2𝑊𝛿2𝐸el2𝐻2𝜁𝛿Ra�=�ev�eo=(�−1�+1)2��2�el2�2��

(22)where γ is the conductivity ratio of the two streams and can be written as 

𝛾=𝜎el,H𝜎el,L�=�el,H�el,L. The Ra number characterizes the ratio between electroviscous and electro-osmotic flow. A high Ra

v value often results in good mixing. It is evident that fluid properties such as the conductivity (σ) of the two streams play a key role in the formation of disturbances to enhance mixing in microsystems. At the same time, electrokinetic parameters like the zeta potential (ζ) in the Ra number is critical in the characterization of electro-osmotic velocity and a slip boundary condition at the microchannel wall.To understand the mixing result along the channel, the concentration field can be defined and simulated under the assumption of steady state conditions and constant diffusion coefficient for each of the working fluid within the system through the convection–diffusion equation as below:

∂𝑐𝒊∂𝑡+∇⇀(𝑐𝑖𝑢⇀−𝐷𝑖∇⇀𝑐𝒊)=0∂��∂�+∇⇀(���⇀−��∇⇀��)=0

(23)where c

i is the species concentration of species i and D

i is the diffusion coefficient of the corresponding species.The standard deviation of concentration (σ

sd) can be adapted to evaluate the mixing quality of the system. 

(97) The standard deviation for concentration at a specific portion of the channel may be calculated using the equation below:

𝜎sd=∫10(𝐶∗(𝑦∗)−𝐶m)2d𝑦∗∫10d𝑦∗⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�sd=∫01(�*(�*)−�m)2d�*∫01d�*

(24)where C*(y*) and C

m are the non-dimensional concentration profile and the mean concentration at the portion, respectively. C* is the non-dimensional concentration and can be calculated as 

𝐶∗=𝐶𝐶ref�*=��ref, where C

ref is the reference concentration defined as the bulk solution concentration. The mean concentration profile can be calculated as 

𝐶m=∫10(𝐶∗(𝑦∗)d𝑦∗∫10d𝑦∗�m=∫01(�*(�*)d�*∫01d�*. With the standard deviation of concentration, the mixing efficiency 

(97) can then be calculated as below:

𝜀𝑥=1−𝜎sd𝜎sd,0��=1−�sd�sd,0

(25)where σ

sd,0 is the standard derivation of the case of no mixing. The value of the mixing efficiency is typically utilized in conjunction with the simulated flow field and concentration field to explore the effect of geometrical and electrokinetic parameters on the optimization of the mixing results.

5. Summary

ARTICLE SECTIONS

Jump To


5.1. Conclusion

Viscoelastic fluids such as blood flow in LOC systems are an essential topic to proceed with diagnostic analysis and research through microdevices in the biomedical and pharmaceutical industries. The complex blood flow behavior is tightly controlled by the viscoelastic characteristics of blood such as the dynamic viscosity and the elastic property of RBCs under various shear rate conditions. Furthermore, the flow behaviors under varied driving forces promote an array of microfluidic transport phenomena that are critical to the management of blood flow and other adapted viscoelastic fluids in LOC systems. This review addressed the blood flow phenomena, the complicated interplay between shear rate and blood flow behaviors, and their numerical modeling under LOC systems through the lens of the viscoelasticity characteristic. Furthermore, a theoretical understanding of capillary forces and externally applied electric forces leads to an in-depth investigation of the relationship between blood flow patterns and the key parameters of the two driving forces, the latter of which is introduced through the lens of viscoelastic fluids, coupling numerical modeling to improve the knowledge of blood flow manipulation in LOC systems. The flow disturbances triggered by the EOF of viscoelastic fluids and their impact on blood flow patterns have been deeply investigated due to their important role and applications in LOC devices. Continuous advancements of various numerical modeling methods with experimental findings through more efficient and less computationally heavy methods have served as an encouraging sign of establishing more accurate illustrations of the mechanisms for multiphase blood and other viscoelastic fluid flow transport phenomena driven by various forces. Such progress is fundamental for the manipulation of unique transport phenomena, such as the generated disturbances, to optimize functionalities offered by microdevices in LOC systems.

The following section will provide further insights into the employment of studied blood transport phenomena to improve the functionality of micro devices adapting LOC technology. A discussion of the novel roles that external driving forces play in microfluidic flow behaviors is also provided. Limitations in the computational modeling of blood flow and electrokinetic phenomena in LOC systems will also be emphasized, which may provide valuable insights for future research endeavors. These discussions aim to provide guidance and opportunities for new paths in the ongoing development of LOC devices that adapt blood flow.

5.2. Future Directions

5.2.1. Electro-osmosis Mixing in LOC Systems

Despite substantial research, mixing results through flow instability and vortex formation phenomena induced by electro-osmotic mixing still deviate from the effective mixing results offered by chaotic mixing results such as those seen in turbulent flows. However, recent discoveries of a mixing phenomenon that is generally observed under turbulent flows are found within electro-osmosis micromixers under low Reynolds number conditions. Zhao 

(99) experimentally discovered a rapid mixing process in an AC applied micromixer, where the power spectrum of concentration under an applied voltage of 20 V

p-p induces a −5/3 slope within a frequency range. This value of the slope is considered as the O–C spectrum in macroflows, which is often visible under relatively high Re conditions, such as the Taylor microscale Reynolds number Re > 500 in turbulent flows. 

(100) However, the Re value in the studied system is less than 1 at the specific location and applied voltage. A secondary flow is also suggested to occur close to microchannel walls, being attributed to the increase of convective instability within the system.Despite the experimental phenomenon proposed by Zhao et al., 

(99) the range of effects induced by vital parameters of an EOF mixing system on the enhanced mixing results and mechanisms of disturbance generated by the turbulent-like flow instability is not further characterized. Such a gap in knowledge may hinder the adaptability and commercialization of the discovery of micromixers. One of the parameters for further evaluation is the conductivity gradient of the fluid flow. A relatively strong conductivity gradient (5000:1) was adopted in the system due to the conductive properties of the two fluids. The high conductivity gradients may contribute to the relatively large Rayleigh number and differences in EDL layer thickness, resulting in an unusual disturbance in laminar flow conditions and enhanced mixing results. However, high conductivity gradients are not always achievable by the working fluids due to diverse fluid properties. The reliance on turbulent-like phenomena and rapid mixing results in a large conductivity gradient should be established to prevent the limited application of fluids for the mixing system. In addition, the proposed system utilizes distinct zeta potential distributions at the top and bottom walls due to their difference in material choices, which may be attributed to the flow instability phenomena. Further studies should be made on varying zeta potential magnitude and distribution to evaluate their effect on the slip boundary conditions of the flow and the large shear rate condition close to the channel wall of EOF. Such a study can potentially offer an optimized condition in zeta potential magnitude through material choices and geometrical layout of the zeta potential for better mixing results and manipulation of mixing fluid dynamics. The two vital parameters mentioned above can be varied with the aid of numerical simulation to understand the effect of parameters on the interaction between electro-osmotic forces and electroviscous forces. At the same time, the relationship of developed streamlines of the simulated velocity and concentration field, following their relationship with the mixing results, under the impact of these key parameters can foster more insight into the range of impact that the two parameters have on the proposed phenomena and the microfluidic dynamic principles of disturbances.

In addition, many of the current investigations of electrokinetic mixers commonly emphasize the fluid dynamics of mixing for Newtonian fluids, while the utilization of biofluids, primarily viscoelastic fluids such as blood, and their distinctive response under shear forces in these novel mixing processes of LOC systems are significantly less studied. To develop more compatible microdevice designs and efficient mixing outcomes for the biomedical industry, it is necessary to fill the knowledge gaps in the literature on electro-osmotic mixing for biofluids, where properties of elasticity, dynamic viscosity, and intricate relationship with shear flow from the fluid are further considered.

5.2.2. Electro-osmosis Separation in LOC Systems

Particle separation in LOC devices, particularly in biological research and diagnostics, is another area where disturbances may play a significant role in optimization. 

(101) Plasma analysis in LOC systems under precise control of blood flow phenomena and blood/plasma separation procedures can detect vital information about infectious diseases from particular antibodies and foreign nucleic acids for medical treatments, diagnostics, and research, 

(102) offering more efficient results and simple operating procedures compared to that of the traditional centrifugation method for blood and plasma separation. However, the adaptability of LOC devices for blood and plasma separation is often hindered by microchannel clogging, where flow velocity and plasma yield from LOC devices is reduced due to occasional RBC migration and aggregation at the filtration entrance of microdevices. 

(103)It is important to note that the EOF induces flow instability close to microchannel walls, which may provide further solutions to clogging for the separation process of the LOC systems. Mohammadi et al. 

(104) offered an anti-clogging effect of RBCs at the blood and plasma separating device filtration entry, adjacent to the surface wall, through RBC disaggregation under high shear rate conditions generated by a forward and reverse EOF direction.

Further theoretical and numerical research can be conducted to characterize the effect of high shear rate conditions near microchannel walls toward the detachment of binding blood cells on surfaces and the reversibility of aggregation. Through numerical modeling with varying electrokinetic parameters to induce different degrees of disturbances or shear conditions at channel walls, it may be possible to optimize and better understand the process of disrupting the forces that bind cells to surface walls and aggregated cells at filtration pores. RBCs that migrate close to microchannel walls are often attracted by the adhesion force between the RBC and the solid surface originating from the van der Waals forces. Following RBC migration and attachment by adhesive forces adjacent to the microchannel walls as shown in Figure 7, the increase in viscosity at the region causes a lower shear condition and encourages RBC aggregation (cell–cell interaction), which clogs filtering pores or microchannels and reduces flow velocity at filtration region. Both the impact that shear forces and disturbances may induce on cell binding forces with surface walls and other cells leading to aggregation may suggest further characterization. Kinetic parameters such as activation energy and the rate-determining step for cell binding composition attachment and detachment should be considered for modeling the dynamics of RBCs and blood flows under external forces in LOC separation devices.

Figure 7. Schematic representations of clogging at a microchannel pore following the sequence of RBC migration, cell attachment to channel walls, and aggregation. (105) Reproduced with permission from ref (105). Copyright 2018 The Authors under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

5.2.3. Relationship between External Forces and Microfluidic Systems

In blood flow, a thicker CFL suggests a lower blood viscosity, suggesting a complex relationship between shear stress and shear rate, affecting the blood viscosity and blood flow. Despite some experimental and numerical studies on electro-osmotic non-Newtonian fluid flow, limited literature has performed an in-depth investigation of the role that applied electric forces and other external forces could play in the process of CFL formation. Additional studies on how shear rates from external forces affect CFL formation and microfluidic flow dynamics can shed light on the mechanism of the contribution induced by external driving forces to the development of a separate phase of layer, similar to CFL, close to the microchannel walls and distinct from the surrounding fluid within the system, then influencing microfluidic flow dynamics.One of the mechanisms of phenomena to be explored is the formation of the Exclusion Zone (EZ) region following a “Self-Induced Flow” (SIF) phenomenon discovered by Li and Pollack, 

(106) as shown in Figure 8(a) and (b), respectively. A spontaneous sustained axial flow is observed when hydrophilic materials are immersed in water, resulting in the buildup of a negative layer of charges, defined as the EZ, after water molecules absorb infrared radiation (IR) energy and break down into H and OH

+.

Figure 8. Schematic representations of (a) the Exclusion Zone region and (b) the Self Induced Flow through visualization of microsphere movement within a microchannel. (106) Reproduced with permission from ref (106). Copyright 2020 The Authors under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

Despite the finding of such a phenomenon, the specific mechanism and role of IR energy have yet to be defined for the process of EZ development. To further develop an understanding of the role of IR energy in such phenomena, a feasible study may be seen through the lens of the relationships between external forces and microfluidic flow. In the phenomena, the increase of SIF velocity under a rise of IR radiation resonant characteristics is shown in the participation of the external electric field near the microchannel walls under electro-osmotic viscoelastic fluid flow systems. The buildup of negative charges at the hydrophilic surfaces in EZ is analogous to the mechanism of electrical double layer formation. Indeed, research has initiated the exploration of the core mechanisms for EZ formation through the lens of the electrokinetic phenomena. 

(107) Such a similarity of the role of IR energy and the transport phenomena of SIF with electrokinetic phenomena paves the way for the definition of the unknown SIF phenomena and EZ formation. Furthermore, Li and Pollack 

(106) suggest whether CFL formation might contribute to a SIF of blood using solely IR radiation, a commonly available source of energy in nature, as an external driving force. The proposition may be proven feasible with the presence of the CFL region next to the negatively charged hydrophilic endothelial glycocalyx layer, coating the luminal side of blood vessels. 

(108) Further research can dive into the resonating characteristics between the formation of the CFL region next to the hydrophilic endothelial glycocalyx layer and that of the EZ formation close to hydrophilic microchannel walls. Indeed, an increase in IR energy is known to rapidly accelerate EZ formation and SIF velocity, depicting similarity to the increase in the magnitude of electric field forces and greater shear rates at microchannel walls affecting CFL formation and EOF velocity. Such correlation depicts a future direction in whether SIF blood flow can be observed and characterized theoretically further through the lens of the relationship between blood flow and shear forces exhibited by external energy.

The intricate link between the CFL and external forces, more specifically the externally applied electric field, can receive further attention to provide a more complete framework for the mechanisms between IR radiation and EZ formation. Such characterization may also contribute to a greater comprehension of the role IR can play in CFL formation next to the endothelial glycocalyx layer as well as its role as a driving force to propel blood flow, similar to the SIF, but without the commonly assumed pressure force from heart contraction as a source of driving force.

5.3. Challenges

Although there have been significant improvements in blood flow modeling under LOC systems over the past decade, there are still notable constraints that may require special attention for numerical simulation applications to benefit the adaptability of the designs and functionalities of LOC devices. Several points that require special attention are mentioned below:

1.The majority of CFD models operate under the relationship between the viscoelasticity of blood and the shear rate conditions of flow. The relative effect exhibited by the presence of highly populated RBCs in whole blood and their forces amongst the cells themselves under complex flows often remains unclearly defined. Furthermore, the full range of cell populations in whole blood requires a much more computational load for numerical modeling. Therefore, a vital goal for future research is to evaluate a reduced modeling method where the impact of cell–cell interaction on the viscoelastic property of blood is considered.
2.Current computational methods on hemodynamics rely on continuum models based upon non-Newtonian rheology at the macroscale rather than at molecular and cellular levels. Careful considerations should be made for the development of a constructive framework for the physical and temporal scales of micro/nanoscale systems to evaluate the intricate relationship between fluid driving forces, dynamic viscosity, and elasticity.
3.Viscoelastic fluids under the impact of externally applied electric forces often deviate from the assumptions of no-slip boundary conditions due to the unique flow conditions induced by externally applied forces. Furthermore, the mechanism of vortex formation and viscoelastic flow instability at laminar flow conditions should be better defined through the lens of the microfluidic flow phenomenon to optimize the prediction of viscoelastic flow across different geometrical layouts. Mathematical models and numerical methods are needed to better predict such disturbance caused by external forces and the viscoelasticity of fluids at such a small scale.
4.Under practical situations, zeta potential distribution at channel walls frequently deviates from the common assumption of a constant distribution because of manufacturing faults or inherent surface charges prior to the introduction of electrokinetic influence. These discrepancies frequently lead to inconsistent surface potential distribution, such as excess positive ions at relatively more negatively charged walls. Accordingly, unpredicted vortex formation and flow instability may occur. Therefore, careful consideration should be given to these discrepancies and how they could trigger the transport process and unexpected results of a microdevice.

Author Information

ARTICLE SECTIONS

Jump To


  • Corresponding Authors
    • Zhe Chen – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Email: zaccooky@sjtu.edu.cn
    • Bo Ouyang – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Email: bouy93@sjtu.edu.cn
    • Zheng-Hong Luo – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Orcidhttps://orcid.org/0000-0001-9011-6020; Email: luozh@sjtu.edu.cn
  • Authors
    • Bin-Jie Lai – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Orcidhttps://orcid.org/0009-0002-8133-5381
    • Li-Tao Zhu – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Orcidhttps://orcid.org/0000-0001-6514-8864
  • NotesThe authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS

Jump To


This work was supported by the National Natural Science Foundation of China (No. 22238005) and the Postdoctoral Research Foundation of China (No. GZC20231576).

Vocabulary

ARTICLE SECTIONS

Jump To


Microfluidicsthe field of technological and scientific study that investigates fluid flow in channels with dimensions between 1 and 1000 μm
Lab-on-a-Chip Technologythe field of research and technological development aimed at integrating the micro/nanofluidic characteristics to conduct laboratory processes on handheld devices
Computational Fluid Dynamics (CFD)the method utilizing computational abilities to predict physical fluid flow behaviors mathematically through solving the governing equations of corresponding fluid flows
Shear Ratethe rate of change in velocity where one layer of fluid moves past the adjacent layer
Viscoelasticitythe property holding both elasticity and viscosity characteristics relying on the magnitude of applied shear stress and time-dependent strain
Electro-osmosisthe flow of fluid under an applied electric field when charged solid surface is in contact with the bulk fluid
Vortexthe rotating motion of a fluid revolving an axis line

References

ARTICLE SECTIONS

Jump To


This article references 108 other publications.

  1. 1Neethirajan, S.; Kobayashi, I.; Nakajima, M.; Wu, D.; Nandagopal, S.; Lin, F. Microfluidics for food, agriculture and biosystems industries. Lab Chip 201111 (9), 1574– 1586,  DOI: 10.1039/c0lc00230eViewGoogle Scholar
  2. 2Whitesides, G. M. The origins and the future of microfluidics. Nature 2006442 (7101), 368– 373,  DOI: 10.1038/nature05058ViewGoogle Scholar
  3. 3Burklund, A.; Tadimety, A.; Nie, Y.; Hao, N.; Zhang, J. X. J. Chapter One – Advances in diagnostic microfluidics; Elsevier, 2020; DOI:  DOI: 10.1016/bs.acc.2019.08.001 .ViewGoogle Scholar
  4. 4Abdulbari, H. A. Chapter 12 – Lab-on-a-chip for analysis of blood. In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Denizli, A., Nguyen, T. A., Rajan, M., Alam, M. F., Rahman, K., Eds.; Elsevier, 2022; pp 265– 283.ViewGoogle Scholar
  5. 5Vladisavljević, G. T.; Khalid, N.; Neves, M. A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews 201365 (11), 1626– 1663,  DOI: 10.1016/j.addr.2013.07.017ViewGoogle Scholar
  6. 6Kersaudy-Kerhoas, M.; Dhariwal, R.; Desmulliez, M. P. Y.; Jouvet, L. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid. Nanofluid. 20108 (1), 105– 114,  DOI: 10.1007/s10404-009-0450-5ViewGoogle Scholar
  7. 7Popel, A. S.; Johnson, P. C. Microcirculation and Hemorheology. Annu. Rev. Fluid Mech. 200537 (1), 43– 69,  DOI: 10.1146/annurev.fluid.37.042604.133933ViewGoogle Scholar
  8. 8Fedosov, D. A.; Peltomäki, M.; Gompper, G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 201410 (24), 4258– 4267,  DOI: 10.1039/C4SM00248BViewGoogle Scholar
  9. 9Chakraborty, S. Dynamics of capillary flow of blood into a microfluidic channel. Lab Chip 20055 (4), 421– 430,  DOI: 10.1039/b414566fViewGoogle Scholar
  10. 10Tomaiuolo, G.; Guido, S. Start-up shape dynamics of red blood cells in microcapillary flow. Microvascular Research 201182 (1), 35– 41,  DOI: 10.1016/j.mvr.2011.03.004ViewGoogle Scholar
  11. 11Sherwood, J. M.; Dusting, J.; Kaliviotis, E.; Balabani, S. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. Biomicrofluidics 20126 (2), 24119,  DOI: 10.1063/1.4717755ViewGoogle Scholar
  12. 12Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Frontiers in Physiology 201910, 01329,  DOI: 10.3389/fphys.2019.01329ViewGoogle Scholar
  13. 13Trejo-Soto, C.; Lázaro, G. R.; Pagonabarraga, I.; Hernández-Machado, A. Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. Membranes 202212 (2), 217,  DOI: 10.3390/membranes12020217ViewGoogle Scholar
  14. 14Wagner, C.; Steffen, P.; Svetina, S. Aggregation of red blood cells: From rouleaux to clot formation. Comptes Rendus Physique 201314 (6), 459– 469,  DOI: 10.1016/j.crhy.2013.04.004ViewGoogle Scholar
  15. 15Kim, H.; Zhbanov, A.; Yang, S. Microfluidic Systems for Blood and Blood Cell Characterization. Biosensors 202313 (1), 13,  DOI: 10.3390/bios13010013ViewGoogle Scholar
  16. 16Fåhræus, R.; Lindqvist, T. THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES. American Journal of Physiology-Legacy Content 193196 (3), 562– 568,  DOI: 10.1152/ajplegacy.1931.96.3.562ViewGoogle Scholar
  17. 17Ascolese, M.; Farina, A.; Fasano, A. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?. J. Biol. Phys. 201945 (4), 379– 394,  DOI: 10.1007/s10867-019-09534-4ViewGoogle Scholar
  18. 18Bento, D.; Fernandes, C. S.; Miranda, J. M.; Lima, R. In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Experimental Thermal and Fluid Science 2019109, 109847,  DOI: 10.1016/j.expthermflusci.2019.109847ViewGoogle Scholar
  19. 19Namgung, B.; Ong, P. K.; Wong, Y. H.; Lim, D.; Chun, K. J.; Kim, S. A comparative study of histogram-based thresholding methods for the determination of cell-free layer width in small blood vessels. Physiological Measurement 201031 (9), N61,  DOI: 10.1088/0967-3334/31/9/N01ViewGoogle Scholar
  20. 20Hymel, S. J.; Lan, H.; Fujioka, H.; Khismatullin, D. B. Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics. Phys. Fluids (1994) 201931 (8), 082003,  DOI: 10.1063/1.5113516ViewGoogle Scholar
  21. 21Li, X.; Popel, A. S.; Karniadakis, G. E. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys. Biol. 20129 (2), 026010,  DOI: 10.1088/1478-3975/9/2/026010ViewGoogle Scholar
  22. 22Yin, X.; Thomas, T.; Zhang, J. Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation. Microvascular Research 201389, 47– 56,  DOI: 10.1016/j.mvr.2013.05.002ViewGoogle Scholar
  23. 23Shibeshi, S. S.; Collins, W. E. The Rheology of Blood Flow in a Branched Arterial System. Appl. Rheol 200515 (6), 398– 405,  DOI: 10.1515/arh-2005-0020ViewGoogle Scholar
  24. 24Sequeira, A.; Janela, J. An Overview of Some Mathematical Models of Blood Rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon; Pereira, M. S., Ed.; Springer Netherlands: Dordrecht, 2007; pp 65– 87.ViewGoogle Scholar
  25. 25Walburn, F. J.; Schneck, D. J. A constitutive equation for whole human blood. Biorheology 197613, 201– 210,  DOI: 10.3233/BIR-1976-13307ViewGoogle Scholar
  26. 26Quemada, D. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood. Biorheology 198118, 501– 516,  DOI: 10.3233/BIR-1981-183-615ViewGoogle Scholar
  27. 27Varchanis, S.; Dimakopoulos, Y.; Wagner, C.; Tsamopoulos, J. How viscoelastic is human blood plasma?. Soft Matter 201814 (21), 4238– 4251,  DOI: 10.1039/C8SM00061AViewGoogle Scholar
  28. 28Apostolidis, A. J.; Moyer, A. P.; Beris, A. N. Non-Newtonian effects in simulations of coronary arterial blood flow. J. Non-Newtonian Fluid Mech. 2016233, 155– 165,  DOI: 10.1016/j.jnnfm.2016.03.008ViewGoogle Scholar
  29. 29Luo, X. Y.; Kuang, Z. B. A study on the constitutive equation of blood. J. Biomech. 199225 (8), 929– 934,  DOI: 10.1016/0021-9290(92)90233-QViewGoogle Scholar
  30. 30Oldroyd, J. G.; Wilson, A. H. On the formulation of rheological equations of state. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1950200 (1063), 523– 541,  DOI: 10.1098/rspa.1950.0035ViewGoogle Scholar
  31. 31Prado, G.; Farutin, A.; Misbah, C.; Bureau, L. Viscoelastic transient of confined red blood cells. Biophys J. 2015108 (9), 2126– 2136,  DOI: 10.1016/j.bpj.2015.03.046ViewGoogle Scholar
  32. 32Huang, C. R.; Pan, W. D.; Chen, H. Q.; Copley, A. L. Thixotropic properties of whole blood from healthy human subjects. Biorheology 198724 (6), 795– 801,  DOI: 10.3233/BIR-1987-24630ViewGoogle Scholar
  33. 33Anand, M.; Kwack, J.; Masud, A. A new generalized Oldroyd-B model for blood flow in complex geometries. International Journal of Engineering Science 201372, 78– 88,  DOI: 10.1016/j.ijengsci.2013.06.009ViewGoogle Scholar
  34. 34Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J. Rheol. 201862 (2), 577– 591,  DOI: 10.1122/1.5017623ViewGoogle Scholar
  35. 35Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof. J. Rheol. 201963 (5), 799– 813,  DOI: 10.1122/1.5108737ViewGoogle Scholar
  36. 36Armstrong, M.; Tussing, J. A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood. Phys. Fluids 202032 (9), 094111,  DOI: 10.1063/5.0022501ViewGoogle Scholar
  37. 37Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society 194743 (1), 50– 67,  DOI: 10.1017/S0305004100023197ViewGoogle Scholar
  38. 38Clough, R. W. Original formulation of the finite element method. Finite Elements in Analysis and Design 19907 (2), 89– 101,  DOI: 10.1016/0168-874X(90)90001-UViewGoogle Scholar
  39. 39Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering 2006195 (13), 1722– 1749,  DOI: 10.1016/j.cma.2005.05.049ViewGoogle Scholar
  40. 40Lopes, D.; Agujetas, R.; Puga, H.; Teixeira, J.; Lima, R.; Alejo, J. P.; Ferrera, C. Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. International Journal of Mechanical Sciences 2021207, 106650,  DOI: 10.1016/j.ijmecsci.2021.106650ViewGoogle Scholar
  41. 41Favero, J. L.; Secchi, A. R.; Cardozo, N. S. M.; Jasak, H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newtonian Fluid Mech. 2010165 (23), 1625– 1636,  DOI: 10.1016/j.jnnfm.2010.08.010ViewGoogle Scholar
  42. 42Pimenta, F.; Alves, M. A. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 2017239, 85– 104,  DOI: 10.1016/j.jnnfm.2016.12.002ViewGoogle Scholar
  43. 43Chee, C. Y.; Lee, H. P.; Lu, C. Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte. Phys. Lett. A 2008372 (9), 1357– 1362,  DOI: 10.1016/j.physleta.2007.09.067ViewGoogle Scholar
  44. 44Xu, D.; Kaliviotis, E.; Munjiza, A.; Avital, E.; Ji, C.; Williams, J. Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 201346 (11), 1810– 1817,  DOI: 10.1016/j.jbiomech.2013.05.010ViewGoogle Scholar
  45. 45Johnson, K. L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences 1971324 (1558), 301– 313,  DOI: 10.1098/rspa.1971.0141ViewGoogle Scholar
  46. 46Shi, L.; Pan, T.-W.; Glowinski, R. Deformation of a single red blood cell in bounded Poiseuille flows. Phys. Rev. E 201285 (1), 016307,  DOI: 10.1103/PhysRevE.85.016307ViewGoogle Scholar
  47. 47Yoon, D.; You, D. Continuum modeling of deformation and aggregation of red blood cells. J. Biomech. 201649 (11), 2267– 2279,  DOI: 10.1016/j.jbiomech.2015.11.027ViewGoogle Scholar
  48. 48Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. European Physical Journal Special Topics 2011193 (1), 133– 160,  DOI: 10.1140/epjst/e2011-01387-1ViewGoogle Scholar
  49. 49Gracka, M.; Lima, R.; Miranda, J. M.; Student, S.; Melka, B.; Ostrowski, Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Computer Methods and Programs in Biomedicine 2022226, 107117,  DOI: 10.1016/j.cmpb.2022.107117ViewGoogle Scholar
  50. 50Aryan, H.; Beigzadeh, B.; Siavashi, M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. Computer Methods and Programs in Biomedicine 2022219, 106778,  DOI: 10.1016/j.cmpb.2022.106778ViewGoogle Scholar
  51. 51Czaja, B.; Závodszky, G.; Azizi Tarksalooyeh, V.; Hoekstra, A. G. Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. J. R Soc. Interface 201815 (146), 20180485,  DOI: 10.1098/rsif.2018.0485ViewGoogle Scholar
  52. 52Rydquist, G.; Esmaily, M. A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows. J. Comput. Phys. 2022461, 111204,  DOI: 10.1016/j.jcp.2022.111204ViewGoogle Scholar
  53. 53Dadvand, A.; Baghalnezhad, M.; Mirzaee, I.; Khoo, B. C.; Ghoreishi, S. An immersed boundary-lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows. Journal of Computational Science 20145 (5), 709– 718,  DOI: 10.1016/j.jocs.2014.06.006ViewGoogle Scholar
  54. 54Krüger, T.; Holmes, D.; Coveney, P. V. Deformability-based red blood cell separation in deterministic lateral displacement devices─A simulation study. Biomicrofluidics 20148 (5), 054114,  DOI: 10.1063/1.4897913ViewGoogle Scholar
  55. 55Takeishi, N.; Ito, H.; Kaneko, M.; Wada, S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. Micromachines 201910 (3), 199,  DOI: 10.3390/mi10030199ViewGoogle Scholar
  56. 56Krüger, T.; Varnik, F.; Raabe, D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications 201161 (12), 3485– 3505,  DOI: 10.1016/j.camwa.2010.03.057ViewGoogle Scholar
  57. 57Balachandran Nair, A. N.; Pirker, S.; Umundum, T.; Saeedipour, M. A reduced-order model for deformable particles with application in bio-microfluidics. Computational Particle Mechanics 20207 (3), 593– 601,  DOI: 10.1007/s40571-019-00283-8ViewGoogle Scholar
  58. 58Balachandran Nair, A. N.; Pirker, S.; Saeedipour, M. Resolved CFD-DEM simulation of blood flow with a reduced-order RBC model. Computational Particle Mechanics 20229 (4), 759– 774,  DOI: 10.1007/s40571-021-00441-xViewGoogle Scholar
  59. 59Mittal, R.; Iaccarino, G. IMMERSED BOUNDARY METHODS. Annu. Rev. Fluid Mech. 200537 (1), 239– 261,  DOI: 10.1146/annurev.fluid.37.061903.175743ViewGoogle Scholar
  60. 60Piquet, A.; Roussel, O.; Hadjadj, A. A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows. Computers & Fluids 2016136, 272– 284,  DOI: 10.1016/j.compfluid.2016.06.001ViewGoogle Scholar
  61. 61Akerkouch, L.; Le, T. B. A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid Flows. Fluids 20216 (4), 139,  DOI: 10.3390/fluids6040139ViewGoogle Scholar
  62. 62Barker, A. T.; Cai, X.-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. J. Comput. Phys. 2010229 (3), 642– 659,  DOI: 10.1016/j.jcp.2009.10.001ViewGoogle Scholar
  63. 63Cetin, A.; Sahin, M. A monolithic fluid-structure interaction framework applied to red blood cells. International Journal for Numerical Methods in Biomedical Engineering 201935 (2), e3171  DOI: 10.1002/cnm.3171ViewGoogle Scholar
  64. 64Freund, J. B. Numerical Simulation of Flowing Blood Cells. Annu. Rev. Fluid Mech. 201446 (1), 67– 95,  DOI: 10.1146/annurev-fluid-010313-141349ViewGoogle Scholar
  65. 65Ye, T.; Phan-Thien, N.; Lim, C. T. Particle-based simulations of red blood cells─A review. J. Biomech. 201649 (11), 2255– 2266,  DOI: 10.1016/j.jbiomech.2015.11.050ViewGoogle Scholar
  66. 66Arabghahestani, M.; Poozesh, S.; Akafuah, N. K. Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. Applied Sciences 20199 (19), 4041,  DOI: 10.3390/app9194041ViewGoogle Scholar
  67. 67Rathnayaka, C. M.; From, C. S.; Geekiyanage, N. M.; Gu, Y. T.; Nguyen, N. T.; Sauret, E. Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Archives of Computational Methods in Engineering 202229 (5), 3021– 3039,  DOI: 10.1007/s11831-021-09683-7ViewGoogle Scholar
  68. 68Li, X.; Vlahovska, P. M.; Karniadakis, G. E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 20139 (1), 28– 37,  DOI: 10.1039/C2SM26891DViewGoogle Scholar
  69. 69Beris, A. N.; Horner, J. S.; Jariwala, S.; Armstrong, M. J.; Wagner, N. J. Recent advances in blood rheology: a review. Soft Matter 202117 (47), 10591– 10613,  DOI: 10.1039/D1SM01212FViewGoogle Scholar
  70. 70Arciero, J.; Causin, P.; Malgaroli, F. Mathematical methods for modeling the microcirculation. AIMS Biophysics 20174 (3), 362– 399,  DOI: 10.3934/biophy.2017.3.362ViewGoogle Scholar
  71. 71Maria, M. S.; Chandra, T. S.; Sen, A. K. Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid. Nanofluid. 201721 (4), 72,  DOI: 10.1007/s10404-017-1907-6ViewGoogle Scholar
  72. 72Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 201813 (7), 1521– 1538,  DOI: 10.1038/s41596-018-0003-zViewGoogle Scholar
  73. 73Young, T., III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 180595, 65– 87,  DOI: 10.1098/rstl.1805.0005ViewGoogle Scholar
  74. 74Kim, Y. C.; Kim, S.-H.; Kim, D.; Park, S.-J.; Park, J.-K. Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens. Actuators, B 2010145 (2), 861– 868,  DOI: 10.1016/j.snb.2010.01.017ViewGoogle Scholar
  75. 75Washburn, E. W. The Dynamics of Capillary Flow. Physical Review 192117 (3), 273– 283,  DOI: 10.1103/PhysRev.17.273ViewGoogle Scholar
  76. 76Cito, S.; Ahn, Y. C.; Pallares, J.; Duarte, R. M.; Chen, Z.; Madou, M.; Katakis, I. Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography. Microfluid Nanofluidics 201213 (2), 227– 237,  DOI: 10.1007/s10404-012-0950-6ViewGoogle Scholar
  77. 77Berthier, E.; Dostie, A. M.; Lee, U. N.; Berthier, J.; Theberge, A. B. Open Microfluidic Capillary Systems. Anal Chem. 201991 (14), 8739– 8750,  DOI: 10.1021/acs.analchem.9b01429ViewGoogle Scholar
  78. 78Berthier, J.; Brakke, K. A.; Furlani, E. P.; Karampelas, I. H.; Poher, V.; Gosselin, D.; Cubizolles, M.; Pouteau, P. Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens. Actuators, B 2015206, 258– 267,  DOI: 10.1016/j.snb.2014.09.040ViewGoogle Scholar
  79. 79Hirt, C. W.; Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139 (1), 201– 225,  DOI: 10.1016/0021-9991(81)90145-5ViewGoogle Scholar
  80. 80Chen, J.-L.; Shih, W.-H.; Hsieh, W.-H. AC electro-osmotic micromixer using a face-to-face, asymmetric pair of planar electrodes. Sens. Actuators, B 2013188, 11– 21,  DOI: 10.1016/j.snb.2013.07.012ViewGoogle Scholar
  81. 81Zhao, C.; Yang, C. Electrokinetics of non-Newtonian fluids: A review. Advances in Colloid and Interface Science 2013201-202, 94– 108,  DOI: 10.1016/j.cis.2013.09.001ViewGoogle Scholar
  82. 82Oh, K. W. 6 – Lab-on-chip (LOC) devices and microfluidics for biomedical applications. In MEMS for Biomedical Applications; Bhansali, S., Vasudev, A., Eds.; Woodhead Publishing, 2012; pp 150– 171.ViewGoogle Scholar
  83. 83Bello, M. S.; De Besi, P.; Rezzonico, R.; Righetti, P. G.; Casiraghi, E. Electroosmosis of polymer solutions in fused silica capillaries. ELECTROPHORESIS 199415 (1), 623– 626,  DOI: 10.1002/elps.1150150186ViewGoogle Scholar
  84. 84Park, H. M.; Lee, W. M. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip 20088 (7), 1163– 1170,  DOI: 10.1039/b800185eViewGoogle Scholar
  85. 85Afonso, A. M.; Alves, M. A.; Pinho, F. T. Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech. 2009159 (1), 50– 63,  DOI: 10.1016/j.jnnfm.2009.01.006ViewGoogle Scholar
  86. 86Sousa, J. J.; Afonso, A. M.; Pinho, F. T.; Alves, M. A. Effect of the skimming layer on electro-osmotic─Poiseuille flows of viscoelastic fluids. Microfluid. Nanofluid. 201110 (1), 107– 122,  DOI: 10.1007/s10404-010-0651-yViewGoogle Scholar
  87. 87Zhao, C.; Yang, C. Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics 20115 (1), 014110,  DOI: 10.1063/1.3571278ViewGoogle Scholar
  88. 88Pimenta, F.; Alves, M. A. Electro-elastic instabilities in cross-shaped microchannels. J. Non-Newtonian Fluid Mech. 2018259, 61– 77,  DOI: 10.1016/j.jnnfm.2018.04.004ViewGoogle Scholar
  89. 89Bezerra, W. S.; Castelo, A.; Afonso, A. M. Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation. Micromachines (Basel) 201910 (12), 796,  DOI: 10.3390/mi10120796ViewGoogle Scholar
  90. 90Ji, J.; Qian, S.; Liu, Z. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines (Basel) 202112 (4), 417,  DOI: 10.3390/mi12040417ViewGoogle Scholar
  91. 91Zhao, C.; Yang, C. Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Applied Mathematics and Computation 2009211 (2), 502– 509,  DOI: 10.1016/j.amc.2009.01.068ViewGoogle Scholar
  92. 92Gerum, R.; Mirzahossein, E.; Eroles, M.; Elsterer, J.; Mainka, A.; Bauer, A.; Sonntag, S.; Winterl, A.; Bartl, J.; Fischer, L. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. Elife 202211, e78823,  DOI: 10.7554/eLife.78823ViewGoogle Scholar
  93. 93Sadek, S. H.; Pinho, F. T.; Alves, M. A. Electro-elastic flow instabilities of viscoelastic fluids in contraction/expansion micro-geometries. J. Non-Newtonian Fluid Mech. 2020283, 104293,  DOI: 10.1016/j.jnnfm.2020.104293ViewGoogle Scholar
  94. 94Spanjaards, M.; Peters, G.; Hulsen, M.; Anderson, P. Numerical Study of the Effect of Thixotropy on Extrudate Swell. Polymers 202113 (24), 4383,  DOI: 10.3390/polym13244383ViewGoogle Scholar
  95. 95Rashidi, S.; Bafekr, H.; Valipour, M. S.; Esfahani, J. A. A review on the application, simulation, and experiment of the electrokinetic mixers. Chemical Engineering and Processing – Process Intensification 2018126, 108– 122,  DOI: 10.1016/j.cep.2018.02.021ViewGoogle Scholar
  96. 96Matsubara, K.; Narumi, T. Microfluidic mixing using unsteady electroosmotic vortices produced by a staggered array of electrodes. Chemical Engineering Journal 2016288, 638– 647,  DOI: 10.1016/j.cej.2015.12.013ViewGoogle Scholar
  97. 97Qaderi, A.; Jamaati, J.; Bahiraei, M. CFD simulation of combined electroosmotic-pressure driven micro-mixing in a microchannel equipped with triangular hurdle and zeta-potential heterogeneity. Chemical Engineering Science 2019199, 463– 477,  DOI: 10.1016/j.ces.2019.01.034ViewGoogle Scholar
  98. 98Cho, C.-C.; Chen, C.-L.; Chen, C. o.-K. Mixing enhancement in crisscross micromixer using aperiodic electrokinetic perturbing flows. International Journal of Heat and Mass Transfer 201255 (11), 2926– 2933,  DOI: 10.1016/j.ijheatmasstransfer.2012.02.006ViewGoogle Scholar
  99. 99Zhao, W.; Yang, F.; Wang, K.; Bai, J.; Wang, G. Rapid mixing by turbulent-like electrokinetic microflow. Chemical Engineering Science 2017165, 113– 121,  DOI: 10.1016/j.ces.2017.02.027ViewGoogle Scholar
  100. 100Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G. Macroscopic effects of the spectral structure in turbulent flows. Nat. Phys. 20106 (6), 438– 441,  DOI: 10.1038/nphys1674ViewGoogle Scholar
  101. 101Toner, M.; Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed Eng. 20057, 77– 103,  DOI: 10.1146/annurev.bioeng.7.011205.135108ViewGoogle Scholar
  102. 102Maria, M. S.; Rakesh, P. E.; Chandra, T. S.; Sen, A. K. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics 201610 (5), 054108,  DOI: 10.1063/1.4962874ViewGoogle Scholar
  103. 103Tripathi, S.; Varun Kumar, Y. V. B.; Prabhakar, A.; Joshi, S. S.; Agrawal, A. Passive blood plasma separation at the microscale: a review of design principles and microdevices. Journal of Micromechanics and Microengineering 201525 (8), 083001,  DOI: 10.1088/0960-1317/25/8/083001ViewGoogle Scholar
  104. 104Mohammadi, M.; Madadi, H.; Casals-Terré, J. Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow. Biomicrofluidics 20159 (5), 054106,  DOI: 10.1063/1.4930865ViewGoogle Scholar
  105. 105Kang, D. H.; Kim, K.; Kim, Y. J. An anti-clogging method for improving the performance and lifespan of blood plasma separation devices in real-time and continuous microfluidic systems. Sci. Rep 20188 (1), 17015,  DOI: 10.1038/s41598-018-35235-4ViewGoogle Scholar
  106. 106Li, Z.; Pollack, G. H. Surface-induced flow: A natural microscopic engine using infrared energy as fuel. Science Advances 20206 (19), eaba0941  DOI: 10.1126/sciadv.aba0941ViewGoogle Scholar
  107. 107Mercado-Uribe, H.; Guevara-Pantoja, F. J.; García-Muñoz, W.; García-Maldonado, J. S.; Méndez-Alcaraz, J. M.; Ruiz-Suárez, J. C. On the evolution of the exclusion zone produced by hydrophilic surfaces: A contracted description. J. Chem. Phys. 2021154 (19), 194902,  DOI: 10.1063/5.0043084ViewGoogle Scholar
  108. 108Yalcin, O.; Jani, V. P.; Johnson, P. C.; Cabrales, P. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Front Physiol 20189, 168,  DOI: 10.3389/fphys.2018.00168ViewGoogle Scholar
Figure 5 A schematic of the water model of reactor URO 200.

Physical and Numerical Modeling of the Impeller Construction Impact on the Aluminum Degassing Process

알루미늄 탈기 공정에 미치는 임펠러 구성의 물리적 및 수치적 모델링

Kamil Kuglin,1 Michał Szucki,2 Jacek Pieprzyca,3 Simon Genthe,2 Tomasz Merder,3 and Dorota Kalisz1,*

Mikael Ersson, Academic Editor

Author information Article notes Copyright and License information Disclaimer

Associated Data

Data Availability Statement

Go to:

Abstract

This paper presents the results of tests on the suitability of designed heads (impellers) for aluminum refining. The research was carried out on a physical model of the URO-200, followed by numerical simulations in the FLOW 3D program. Four design variants of impellers were used in the study. The degree of dispersion of the gas phase in the model liquid was used as a criterion for evaluating the performance of each solution using different process parameters, i.e., gas flow rate and impeller speed. Afterward, numerical simulations in Flow 3D software were conducted for the best solution. These simulations confirmed the results obtained with the water model and verified them.

Keywords: aluminum, impeller construction, degassing process, numerical modeling, physical modeling

Go to:

1. Introduction

Constantly increasing requirements concerning metallurgical purity in terms of hydrogen content and nonmetallic inclusions make casting manufacturers use effective refining techniques. The answer to this demand is the implementation of the aluminum refining technique making use of a rotor with an original design guaranteeing efficient refining [1,2,3,4]. The main task of the impeller (rotor) is to reduce the contamination of liquid metal (primary and recycled aluminum) with hydrogen and nonmetallic inclusions. An inert gas, mainly argon or a mixture of gases, is introduced through the rotor into the liquid metal to bring both hydrogen and nonmetallic inclusions to the metal surface through the flotation process. Appropriately and uniformly distributed gas bubbles in the liquid metal guarantee achieving the assumed level of contaminant removal economically. A very important factor in deciding about the obtained degassing effect is the optimal rotor design [5,6,7,8]. Thanks to the appropriate geometry of the rotor, gas bubbles introduced into the liquid metal are split into smaller ones, and the spinning movement of the rotor distributes them throughout the volume of the liquid metal bath. In this solution impurities in the liquid metal are removed both in the volume and from the upper surface of the metal. With a well-designed impeller, the costs of refining aluminum and its alloys can be lowered thanks to the reduced inert gas and energy consumption (optimal selection of rotor rotational speed). Shorter processing time and a high degree of dehydrogenation decrease the formation of dross on the metal surface (waste). A bigger produced dross leads to bigger process losses. Consequently, this means that the choice of rotor geometry has an indirect impact on the degree to which the generated waste is reduced [9,10].

Another equally important factor is the selection of process parameters such as gas flow rate and rotor speed [11,12]. A well-designed gas injection system for liquid metal meets two key requirements; it causes rapid mixing of the liquid metal to maintain a uniform temperature throughout the volume and during the entire process, to produce a chemically homogeneous metal composition. This solution ensures effective degassing of the metal bath. Therefore, the shape of the rotor, the arrangement of the nozzles, and their number are significant design parameters that guarantee the optimum course of the refining process. It is equally important to complete the mixing of the metal bath in a relatively short time, as this considerably shortens the refining process and, consequently, reduces the process costs. Another important criterion conditioning the implementation of the developed rotor is the generation of fine diffused gas bubbles which are distributed throughout the metal volume, and whose residence time will be sufficient for the bubbles to collide and adsorb the contaminants. The process of bubble formation by the spinning rotors differs from that in the nozzles or porous molders. In the case of a spinning rotor, the shear force generated by the rotor motion splits the bubbles into smaller ones. Here, the rotational speed, mixing force, surface tension, and fluid density have a key effect on the bubble size. The velocity of the bubbles, which depends mainly on their size and shape, determines their residence time in the reactor and is, therefore, very important for the refining process, especially since gas bubbles in liquid aluminum may remain steady only below a certain size [13,14,15].

The impeller designs presented in the article were developed to improve the efficiency of the process and reduce its costs. The impellers used so far have a complicated structure and are very pricey. The success of the conducted research will allow small companies to become independent of external supplies through the possibility of making simple and effective impellers on their own. The developed structures were tested on the water model. The results of this study can be considered as pilot.

Go to:

2. Materials and Methods

Rotors were realized with the SolidWorks computer design technique and a 3D printer. The developed designs were tested on a water model. Afterward, the solution with the most advantageous refining parameters was selected and subjected to calculations with the Flow3D package. As a result, an impeller was designed for aluminum refining. Its principal lies in an even distribution of gas bubbles in the entire volume of liquid metal, with the largest possible participation of the bubble surface, without disturbing the metal surface. This procedure guarantees the removal of gaseous, as well as metallic and nonmetallic, impurities.

2.1. Rotor Designs

The developed impeller constructions, shown in Figure 1Figure 2Figure 3 and Figure 4, were printed on a 3D printer using the PLA (polylactide) material. The impeller design models differ in their shape and the number of holes through which the inert gas flows. Figure 1Figure 2 and Figure 3 show the same impeller model but with a different number of gas outlets. The arrangement of four, eight, and 12 outlet holes was adopted in the developed design. A triangle-shaped structure equipped with three gas outlet holes is presented in Figure 4.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g001.jpg

Figure 1

A 3D model—impeller with four holes—variant B4.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g002.jpg

Figure 2

A 3D model—impeller with eight holes—variant B8.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g003.jpg

Figure 3

A 3D model—impeller with twelve holes—variant B12.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g004.jpg

Figure 4

A 3D model—‘red triangle’ impeller with three holes—variant RT3.

2.2. Physical Models

Investigations were carried out on a water model of the URO 200 reactor of the barbotage refining process (see Figure 5).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g005.jpg

Figure 5

A schematic of the water model of reactor URO 200.

The URO 200 reactor can be classified as a cyclic reactor. The main element of the device is a rotor, which ends the impeller. The whole system is attached to a shaft via which the refining gas is supplied. Then, the shaft with the rotor is immersed in the liquid metal in the melting pot or the furnace chamber. In URO 200 reactors, the refining process lasts 600 s (10 min), the gas flow rate that can be obtained ranges from 5 to 20 dm3·min−1, and the speed at which the rotor can move is 0 to 400 rpm. The permissible quantity of liquid metal for barbotage refining is 300 kg or 700 kg [8,16,17]. The URO 200 has several design solutions which improve operation and can be adapted to the existing equipment in the foundry. These solutions include the following [8,16]:

  • URO-200XR—used for small crucible furnaces, the capacity of which does not exceed 250 kg, with no control system and no control of the refining process.
  • URO-200SA—used to service several crucible furnaces of capacity from 250 kg to 700 kg, fully automated and equipped with a mechanical rotor lift.
  • URO-200KA—used for refining processes in crucible furnaces and allows refining in a ladle. The process is fully automated, with a hydraulic rotor lift.
  • URO-200KX—a combination of the XR and KA models, designed for the ladle refining process. Additionally, refining in heated crucibles is possible. The unit is equipped with a manual hydraulic rotor lift.
  • URO-200PA—designed to cooperate with induction or crucible furnaces or intermediate chambers, the capacity of which does not exceed one ton. This unit is an integral part of the furnace. The rotor lift is equipped with a screw drive.

Studies making use of a physical model can be associated with the observation of the flow and circulation of gas bubbles. They require meeting several criteria regarding the similarity of the process and the object characteristics. The similarity conditions mainly include geometric, mechanical, chemical, thermal, and kinetic parameters. During simulation of aluminum refining with inert gas, it is necessary to maintain the geometric similarity between the model and the real object, as well as the similarity related to the flow of liquid metal and gas (hydrodynamic similarity). These quantities are characterized by the Reynolds, Weber, and Froude numbers. The Froude number is the most important parameter characterizing the process, its magnitude is the same for the physical model and the real object. Water was used as the medium in the physical modeling. The factors influencing the choice of water are its availability, relatively low cost, and kinematic viscosity at room temperature, which is very close to that of liquid aluminum.

The physical model studies focused on the flow of inert gas in the form of gas bubbles with varying degrees of dispersion, particularly with respect to some flow patterns such as flow in columns and geysers, as well as disturbance of the metal surface. The most important refining parameters are gas flow rate and rotor speed. The barbotage refining studies for the developed impeller (variants B4, B8, B12, and RT3) designs were conducted for the following process parameters:

  • Rotor speed: 200, 300, 400, and 500 rpm,
  • Ideal gas flow: 10, 20, and 30 dm3·min−1,
  • Temperature: 293 K (20 °C).

These studies were aimed at determining the most favorable variants of impellers, which were then verified using the numerical modeling methods in the Flow-3D program.

2.3. Numerical Simulations with Flow-3D Program

Testing different rotor impellers using a physical model allows for observing the phenomena taking place while refining. This is a very important step when testing new design solutions without using expensive industrial trials. Another solution is modeling by means of commercial simulation programs such as ANSYS Fluent or Flow-3D [18,19]. Unlike studies on a physical model, in a computer program, the parameters of the refining process and the object itself, including the impeller design, can be easily modified. The simulations were performed with the Flow-3D program version 12.03.02. A three-dimensional system with the same dimensions as in the physical modeling was used in the calculations. The isothermal flow of liquid–gas bubbles was analyzed. As in the physical model, three speeds were adopted in the numerical tests: 200, 300, and 500 rpm. During the initial phase of the simulations, the velocity field around the rotor generated an appropriate direction of motion for the newly produced bubbles. When the required speed was reached, the generation of randomly distributed bubbles around the rotor was started at a rate of 2000 per second. Table 1 lists the most important simulation parameters.

Table 1

Values of parameters used in the calculations.

ParameterValueUnit
Maximum number of gas particles1,000,000
Rate of particle generation20001·s−1
Specific gas constant287.058J·kg−1·K−1
Atmospheric pressure1.013 × 105Pa
Water density1000kg·m−3
Water viscosity0.001kg·m−1·s−1
Boundary condition on the wallsNo-slip
Size of computational cell0.0034m

Open in a separate window

In the case of the CFD analysis, the numerical solutions require great care when generating the computational mesh. Therefore, computational mesh tests were performed prior to the CFD calculations. The effect of mesh density was evaluated by taking into account the velocity of water in the tested object on the measurement line A (height of 0.065 m from the bottom) in a characteristic cross-section passing through the object axis (see Figure 6). The mesh contained 3,207,600, 6,311,981, 7,889,512, 11,569,230, and 14,115,049 cells.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g006.jpg

Figure 6

The velocity of the water depending on the size of the computational grid.

The quality of the generated computational meshes was checked using the criterion skewness angle QEAS [18]. This criterion is described by the following relationship:

QEAS=max{βmax−βeq180−βeq,βeq−βminβeq},

(1)

where βmaxβmin are the maximal and minimal angles (in degrees) between the edges of the cell, and βeq is the angle corresponding to an ideal cell, which for cubic cells is 90°.

Normalized in the interval [0;1], the value of QEAS should not exceed 0.75, which identifies the permissible skewness angle of the generated mesh. For the computed meshes, this value was equal to 0.55–0.65.

Moreover, when generating the computational grids in the studied facility, they were compacted in the areas of the highest gradients of the calculated values, where higher turbulence is to be expected (near the impeller). The obtained results of water velocity in the studied object at constant gas flow rate are shown in Figure 6.

The analysis of the obtained water velocity distributions (see Figure 6) along the line inside the object revealed that, with the density of the grid of nodal points, the velocity changed and its changes for the test cases of 7,889,512, 11,569,230, and 14,115,049 were insignificant. Therefore, it was assumed that a grid containing not less than 7,900,000 (7,889,512) cells would not affect the result of CFD calculations.

A single-block mesh of regular cells with a size of 0.0034 m was used in the numerical calculations. The total number of cells was approximately 7,900,000 (7,889,512). This grid resolution (see Figure 7) allowed the geometry of the system to be properly represented, maintaining acceptable computation time (about 3 days on a workstation with 2× CPU and 12 computing cores).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g007.jpg

Figure 7

Structured equidistant mesh used in numerical calculations: (a) mesh with smoothed, surface cells (the so-called FAVOR method) used in Flow-3D; (b) visualization of the applied mesh resolution.

The calculations were conducted with an explicit scheme. The timestep was selected by the program automatically and controlled by stability and convergence. From the moment of the initial velocity field generation (start of particle generation), it was 0.0001 s.

When modeling the degassing process, three fluids are present in the system: water, gas supplied through the rotor head (impeller), and the surrounding air. Modeling such a multiphase flow is a numerically very complex issue. The necessity to overcome the liquid backpressure by the gas flowing out from the impeller leads to the formation of numerical instabilities in the volume of fluid (VOF)-based approach used by Flow-3D software. Therefore, a mixed description of the analyzed flow was used here. In this case, water was treated as a continuous medium, while, in the case of gas bubbles, the discrete phase model (DPM) model was applied. The way in which the air surrounding the system was taken into account is later described in detail.

The following additional assumptions were made in the modeling:

  • —The liquid phase was considered as an incompressible Newtonian fluid.
  • —The effect of chemical reactions during the refining process was neglected.
  • —The composition of each phase (gas and liquid) was considered homogeneous; therefore, the viscosity and surface tension were set as constants.
  • —Only full turbulence existed in the liquid, and the effect of molecular viscosity was neglected.
  • —The gas bubbles were shaped as perfect spheres.
  • —The mutual interaction between gas bubbles (particles) was neglected.

2.3.1. Modeling of Liquid Flow 

The motion of the real fluid (continuous medium) is described by the Navier–Stokes Equation [20].

dudt=−1ρ∇p+ν∇2u+13ν∇(∇⋅ u)+F,

(2)

where du/dt is the time derivative, u is the velocity vector, t is the time, and F is the term accounting for external forces including gravity (unit components denoted by XYZ).

In the simulations, the fluid flow was assumed to be incompressible, in which case the following equation is applicable:

∂u∂t+(u⋅∇)u=−1ρ∇p+ν∇2u+F.

(3)

Due to the large range of liquid velocities during flows, the turbulence formation process was included in the modeling. For this purpose, the k–ε model turbulence kinetic energy k and turbulence dissipation ε were the target parameters, as expressed by the following equations [21]:

∂(ρk)∂t+∂(ρkvi)∂xi=∂∂xj[(μ+μtσk)⋅∂k∂xi]+Gk+Gb−ρε−Ym+Sk,

(4)

∂(ρε)∂t+∂(ρεui)∂xi=∂∂xj[(μ+μtσε)⋅∂k∂xi]+C1εεk(Gk+G3εGb)+C2ερε2k+Sε,

(5)

where ρ is the gas density, σκ and σε are the Prandtl turbulence numbers, k and ε are constants of 1.0 and 1.3, and Gk and Gb are the kinetic energy of turbulence generated by the average velocity and buoyancy, respectively.

As mentioned earlier, there are two gas phases in the considered problem. In addition to the gas bubbles, which are treated here as particles, there is also air, which surrounds the system. The boundary of phase separation is in this case the free surface of the water. The shape of the free surface can change as a result of the forming velocity field in the liquid. Therefore, it is necessary to use an appropriate approach to free surface tracking. The most commonly used concept in liquid–gas flow modeling is the volume of fluid (VOF) method [22,23], and Flow-3D uses a modified version of this method called TrueVOF. It introduces the concept of the volume fraction of the liquid phase fl. This parameter can be used for classifying the cells of a discrete grid into areas filled with liquid phase (fl = 1), gaseous phase, or empty cells (fl = 0) and those through which the phase separation boundary (fl ∈ (0, 1)) passes (free surface). To determine the local variations of the liquid phase fraction, it is necessary to solve the following continuity equation:

dfldt=0.

(6)

Then, the fluid parameters in the region of coexistence of the two phases (the so-called interface) depend on the volume fraction of each phase.

ρ=flρl+(1−fl)ρg,

(7)

ν=flνl+(1−fl)νg,

(8)

where indices l and g refer to the liquid and gaseous phases, respectively.

The parameter of fluid velocity in cells containing both phases is also determined in the same way.

u=flul+(1−fl)ug.

(9)

Since the processes taking place in the surrounding air can be omitted, to speed up the calculations, a single-phase, free-surface model was used. This means that no calculations were performed in the gas cells (they were treated as empty cells). The liquid could fill them freely, and the air surrounding the system was considered by the atmospheric pressure exerted on the free surface. This approach is often used in modeling foundry and metallurgical processes [24].

2.3.2. Modeling of Gas Bubble Flow 

As stated, a particle model was used to model bubble flow. Spherical particles (gas bubbles) of a given size were randomly generated in the area marked with green in Figure 7b. In the simulations, the gas bubbles were assumed to have diameters of 0.016 and 0.02 m corresponding to the gas flow rates of 10 and 30 dm3·min−1, respectively.

Experimental studies have shown that, as a result of turbulent fluid motion, some of the bubbles may burst, leading to the formation of smaller bubbles, although merging of bubbles into larger groupings may also occur. Therefore, to be able to observe the behavior of bubbles of different sizes (diameter), the calculations generated two additional particle types with diameters twice smaller and twice larger, respectively. The proportion of each species in the system was set to 33.33% (Table 2).

Table 2

Data assumed for calculations.

NoRotor Speed (Rotational Speed)
rpm
Bubbles Diameter
m
Corresponding Gas Flow Rate
dm3·min−1
NoRotor Speed (Rotational Speed)
rpm
Bubbles Diameter
m
Corresponding Gas Flow Rate
dm3·min−1
A2000.01610D2000.0230
0.0080.01
0.0320.04
B3000.01610E3000.0230
0.0080.01
0.0320.04
C5000.01610F5000.0230
0.0080.01
0.0320.04

Open in a separate window

The velocity of the particle results from the generated velocity field (calculated from Equation (3) in the liquid ul around it and its velocity resulting from the buoyancy force ub. The effect of particle radius r on the terminal velocity associated with buoyancy force can be determined according to Stokes’ law.

ub=29 (ρg−ρl)μlgr2,

(10)

where g is the acceleration (9.81).

The DPM model was used for modeling the two-phase (water–air) flow. In this model, the fluid (water) is treated as a continuous phase and described by the Navier–Stokes equation, while gas bubbles are particles flowing in the model fluid (discrete phase). The trajectories of each bubble in the DPM system are calculated at each timestep taking into account the mass forces acting on it. Table 3 characterizes the DPM model used in our own research [18].

Table 3

Characteristic of the DPM model.

MethodEquations
Euler–LagrangeBalance equation:
dugdt=FD(u−ug)+g(ϱg−ϱ)ϱg+F.
FD (u − up) denotes the drag forces per mass unit of a bubble, and the expression for the drag coefficient FD is of the form
FD=18μCDReϱ⋅gd2g24.
The relative Reynolds number has the form
Re≡ρdg|ug−u|μ.
On the other hand, the force resulting from the additional acceleration of the model fluid has the form
F=12dρdtρg(u−ug),
where ug is the gas bubble velocity, u is the liquid velocity, dg is the bubble diameter, and CD is the drag coefficient.

Open in a separate window

Go to:

3. Results and Discussion

3.1. Calculations of Power and Mixing Time by the Flowing Gas Bubbles

One of the most important parameters of refining with a rotor is the mixing power induced by the spinning rotor and the outflowing gas bubbles (via impeller). The mixing power of liquid metal in a ladle of height (h) by gas injection can be determined from the following relation [15]:

pgVm=ρ⋅g⋅uB,

(11)

where pg is the mixing power, Vm is the volume of liquid metal in the reactor, ρ is the density of liquid aluminum, and uB is the average speed of bubbles, given below.

uB=n⋅R⋅TAc⋅Pm⋅t,

(12)

where n is the number of gas moles, R is the gas constant (8.314), Ac is the cross-sectional area of the reactor vessel, T is the temperature of liquid aluminum in the reactor, and Pm is the pressure at the middle tank level. The pressure at the middle level of the tank is calculated by a function of the mean logarithmic difference.

Pm=(Pa+ρ⋅g⋅h)−Paln(Pa+ρ⋅g⋅h)Pa,

(13)

where Pa is the atmospheric pressure, and h is the the height of metal in the reactor.

Themelis and Goyal [25] developed a model for calculating mixing power delivered by gas injection.

pg=2Q⋅R⋅T⋅ln(1+m⋅ρ⋅g⋅hP),

(14)

where Q is the gas flow, and m is the mass of liquid metal.

Zhang [26] proposed a model taking into account the temperature difference between gas and alloy (metal).

pg=QRTgVm[ln(1+ρ⋅g⋅hPa)+(1−TTg)],

(15)

where Tg is the gas temperature at the entry point.

Data for calculating the mixing power resulting from inert gas injection into liquid aluminum are given below in Table 4. The design parameters were adopted for the model, the parameters of which are shown in Figure 5.

Table 4

Data for calculating mixing power introduced by an inert gas.

ParameterValueUnit
Height of metal column0.7m
Density of aluminum2375kg·m−3
Process duration20s
Gas temperature at the injection site940K
Cross-sectional area of ladle0.448m2
Mass of liquid aluminum546.25kg
Volume of ladle0.23M3
Temperature of liquid aluminum941.15K

Open in a separate window

Table 5 presents the results of mixing power calculations according to the models of Themelis and Goyal and of Zhang for inert gas flows of 10, 20, and 30 dm3·min−1. The obtained calculation results significantly differed from each other. The difference was an order of magnitude, which indicates that the model is highly inaccurate without considering the temperature of the injected gas. Moreover, the calculations apply to the case when the mixing was performed only by the flowing gas bubbles, without using a rotor, which is a great simplification of the phenomenon.

Table 5

Mixing power calculated from mathematical models.

Mathematical ModelMixing Power (W·t−1)
for a Given Inert Gas Flow (dm3·min−1)
102030
Themelis and Goyal11.4923.3335.03
Zhang0.821.662.49

Open in a separate window

The mixing time is defined as the time required to achieve 95% complete mixing of liquid metal in the ladle [27,28,29,30]. Table 6 groups together equations for the mixing time according to the models.

Table 6

Models for calculating mixing time.

AuthorsModelRemarks
Szekely [31]τ=800ε−0.4ε—W·t−1
Chiti and Paglianti [27]τ=CVQlV—volume of reactor, m3
Ql—flow intensity, m3·s−1
Iguchi and Nakamura [32]τ=1200⋅Q−0.4D1.97h−1.0υ0.47υ—kinematic viscosity, m2·s−1
D—diameter of ladle, m
h—height of metal column, m
Q—liquid flow intensity, m3·s−1

Open in a separate window

Figure 8 and Figure 9 show the mixing time as a function of gas flow rate for various heights of the liquid column in the ladle and mixing power values.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g008.jpg

Figure 8

Mixing time as a function of gas flow rate for various heights of the metal column (Iguchi and Nakamura model).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g009.jpg

Figure 9

Mixing time as a function of mixing power (Szekly model).

3.2. Determining the Bubble Size

The mechanisms controlling bubble size and mass transfer in an alloy undergoing refining are complex. Strong mixing conditions in the reactor promote impurity mass transfer. In the case of a spinning rotor, the shear force generated by the rotor motion separates the bubbles into smaller bubbles. Rotational speed, mixing force, surface tension, and liquid density have a strong influence on the bubble size. To characterize the kinetic state of the refining process, parameters k and A were introduced. Parameters kA, and uB can be calculated using the below equations [33].

k=2D⋅uBdB⋅π−−−−−−√,

(16)

A=6Q⋅hdB⋅uB,

(17)

uB=1.02g⋅dB,−−−−−√

(18)

where D is the diffusion coefficient, and dB is the bubble diameter.

After substituting appropriate values, we get

dB=3.03×104(πD)−2/5g−1/5h4/5Q0.344N−1.48.

(19)

According to the last equation, the size of the gas bubble decreases with the increasing rotational speed (see Figure 10).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g010.jpg

Figure 10

Effect of rotational speed on the bubble diameter.

In a flow of given turbulence intensity, the diameter of the bubble does not exceed the maximum size dmax, which is inversely proportional to the rate of kinetic energy dissipation in a viscous flow ε. The size of the gas bubble diameter as a function of the mixing energy, also considering the Weber number and the mixing energy in the negative power, can be determined from the following equations [31,34]:

  • —Sevik and Park:

dBmax=We0.6kr⋅(σ⋅103ρ⋅10−3)0.6⋅(10⋅ε)−0.4⋅10−2.

(20)

  • —Evans:

dBmax=⎡⎣Wekr⋅σ⋅1032⋅(ρ⋅10−3)13⎤⎦35 ⋅(10⋅ε)−25⋅10−2.

(21)

The results of calculating the maximum diameter of the bubble dBmax determined from Equation (21) are given in Table 7.

Table 7

The results of calculating the maximum diameter of the bubble using Equation (21).

ModelMixing Energy
ĺ (m2·s−3)
Weber Number (Wekr)
0.591.01.2
Zhang and Taniguchi
dmax
0.10.01670.02300.026
0.50.00880.01210.013
1.00.00670.00910.010
1.50.00570.00780.009
Sevik and Park
dBmax
0.10.2650.360.41
0.50.1390.190.21
1.00.1060.140.16
1.50.0900.120.14
Evans
dBmax
0.10.2470.3400.38
0.50.1300.1780.20
1.00.0980.1350.15
1.50.0840.1150.13

Open in a separate window

3.3. Physical Modeling

The first stage of experiments (using the URO-200 water model) included conducting experiments with impellers equipped with four, eight, and 12 gas outlets (variants B4, B8, B12). The tests were carried out for different process parameters. Selected results for these experiments are presented in Figure 11Figure 12Figure 13 and Figure 14.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g011.jpg

Figure 11

Impeller variant B4—gas bubbles dispersion registered for a gas flow rate of 10 dm3·min−1 and rotor speed of (a) 200, (b) 300, (c) 400, and (d) 500 rpm.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g012.jpg

Figure 12

Impeller variant B8—gas bubbles dispersion registered for a gas flow rate of 10 dm3·min−1 and rotor speed of (a) 200, (b) 300, (c) 400, and (d) 500 rpm.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g013.jpg

Figure 13

Gas bubble dispersion registered for different processing parameters (impeller variant B12).

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g014.jpg

Figure 14

Gas bubble dispersion registered for different processing parameters (impeller variant RT3).

The analysis of the refining variants presented in Figure 11Figure 12Figure 13 and Figure 14 reveals that the proposed impellers design model is not useful for the aluminum refining process. The number of gas outlet orifices, rotational speed, and flow did not affect the refining efficiency. In all the variants shown in the figures, very poor dispersion of gas bubbles was observed in the object. The gas bubble flow had a columnar character, and so-called dead zones, i.e., areas where no inert gas bubbles are present, were visible in the analyzed object. Such dead zones were located in the bottom and side zones of the ladle, while the flow of bubbles occurred near the turning rotor. Another negative phenomenon observed was a significant agitation of the water surface due to excessive (rotational) rotor speed and gas flow (see Figure 13, cases 20; 400, 30; 300, 30; 400, and 30; 500).

Research results for a ‘red triangle’ impeller equipped with three gas supply orifices (variant RT3) are presented in Figure 14.

In this impeller design, a uniform degree of bubble dispersion in the entire volume of the modeling fluid was achieved for most cases presented (see Figure 14). In all tested variants, single bubbles were observed in the area of the water surface in the vessel. For variants 20; 200, 30; 200, and 20; 300 shown in Figure 14, the bubble dispersion results were the worst as the so-called dead zones were identified in the area near the bottom and sidewalls of the vessel, which disqualifies these work parameters for further applications. Interestingly, areas where swirls and gas bubble chains formed were identified only for the inert gas flows of 20 and 30 dm3·min−1 and 200 rpm in the analyzed model. This means that the presented model had the best performance in terms of dispersion of gas bubbles in the model liquid. Its design with sharp edges also differed from previously analyzed models, which is beneficial for gas bubble dispersion, but may interfere with its suitability in industrial conditions due to possible premature wear.

3.4. Qualitative Comparison of Research Results (CFD and Physical Model)

The analysis (physical modeling) revealed that the best mixing efficiency results were obtained with the RT3 impeller variant. Therefore, numerical calculations were carried out for the impeller model with three outlet orifices (variant RT3). The CFD results are presented in Figure 15 and Figure 16.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g015.jpg

Figure 15

Simulation results of the impeller RT3, for given flows and rotational speeds after a time of 1 s: simulation variants (a) A, (b) B, (c) C, (d) D, (e) E, and (f) F.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g016.jpg

Figure 16

Simulation results of the impeller RT3, for given flows and rotational speeds after a time of 5.4 s.: simulation variants (a) A, (b) B, (c) C, (d) D, (e) E, and (f) F.

CFD results are presented for all analyzed variants (impeller RT3) at two selected calculation timesteps of 1 and 5.40 s. They show the velocity field of the medium (water) and the dispersion of gas bubbles.

Figure 15 shows the initial refining phase after 1 s of the process. In this case, the gas bubble formation and flow were observed in an area close to contact with the rotor. Figure 16 shows the phase when the dispersion and flow of gas bubbles were advanced in the reactor area of the URO-200 model.

The quantitative evaluation of the obtained results of physical and numerical model tests was based on the comparison of the degree of gas dispersion in the model liquid. The degree of gas bubble dispersion in the volume of the model liquid and the areas of strong turbulent zones formation were evaluated during the analysis of the results of visualization and numerical simulations. These two effects sufficiently characterize the required course of the process from the physical point of view. The known scheme of the below description was adopted as a basic criterion for the evaluation of the degree of dispersion of gas bubbles in the model liquid.

  • Minimal dispersion—single bubbles ascending in the region of their formation along the ladle axis; lack of mixing in the whole bath volume.
  • Accurate dispersion—single and well-mixed bubbles ascending toward the bath mirror in the region of the ladle axis; no dispersion near the walls and in the lower part of the ladle.
  • Uniform dispersion—most desirable; very good mixing of fine bubbles with model liquid.
  • Excessive dispersion—bubbles join together to form chains; large turbulence zones; uneven flow of gas.

The numerical simulation results give a good agreement with the experiments performed with the physical model. For all studied variants (used process parameters), the single bubbles were observed in the area of water surface in the vessel. For variants presented in Figure 13 (200 rpm, gas flow 20 and dm3·min−1) and relevant examples in numerical simulation Figure 16, the worst bubble dispersion results were obtained because the dead zones were identified in the area near the bottom and sidewalls of the vessel, which disqualifies these work parameters for further use. The areas where swirls and gas bubble chains formed were identified only for the inert gas flows of 20 and 30 dm3·min−1 and 200 rpm in the analyzed model (physical model). This means that the presented impeller model had the best performance in terms of dispersion of gas bubbles in the model liquid. The worst bubble dispersion results were obtained because the dead zones were identified in the area near the bottom and side walls of the vessel, which disqualifies these work parameters for further use.

Figure 17 presents exemplary results of model tests (CFD and physical model) with marked gas bubble dispersion zones. All variants of tests were analogously compared, and this comparison allowed validating the numerical model.

An external file that holds a picture, illustration, etc.
Object name is materials-15-05273-g017.jpg

Figure 17

Compilations of model research results (CFD and physical): A—single gas bubbles formed on the surface of the modeling liquid, B—excessive formation of gas chains and swirls, C—uniform distribution of gas bubbles in the entire volume of the tank, and D—dead zones without gas bubbles, no dispersion. (a) Variant B; (b) variant F.

It should be mentioned here that, in numerical simulations, it is necessary to make certain assumptions and simplifications. The calculations assumed three particle size classes (Table 2), which represent the different gas bubbles that form due to different gas flow rates. The maximum number of particles/bubbles (Table 1) generated was assumed in advance and related to the computational capabilities of the computer. Too many particles can also make it difficult to visualize and analyze the results. The size of the particles, of course, affects their behavior during simulation, while, in the figures provided in the article, the bubbles are represented by spheres (visualization of the results) of the same size. Please note that, due to the adopted Lagrangian–Eulerian approach, the simulation did not take into account phenomena such as bubble collapse or fusion. However, the obtained results allow a comprehensive analysis of the behavior of gas bubbles in the system under consideration.

The comparative analysis of the visualization (quantitative) results obtained with the water model and CFD simulations (see Figure 17) generated a sufficient agreement from the point of view of the trends. A precise quantitative evaluation is difficult to perform because of the lack of a refraction compensating system in the water model. Furthermore, in numerical simulations, it is not possible to determine the geometry of the forming gas bubbles and their interaction with each other as opposed to the visualization in the water model. The use of both research methods is complementary. Thus, a direct comparison of images obtained by the two methods requires appropriate interpretation. However, such an assessment gives the possibility to qualitatively determine the types of the present gas bubble dispersion, thus ultimately validating the CFD results with the water model.

A summary of the visualization results for impellers RT3, i.e., analysis of the occurring gas bubble dispersion types, is presented in Table 8.

Table 8

Summary of visualization results (impeller RT3)—different types of gas bubble dispersion.

No Exp.ABCDEF
Gas flow rate, dm3·min−11030
Impeller speed, rpm200300500200300500
Type of dispersionAccurateUniformUniform/excessiveMinimalExcessiveExcessive

Open in a separate window

Tests carried out for impeller RT3 confirmed the high efficiency of gas bubble distribution in the volume of the tested object at a low inert gas flow rate of 10 dm3·min−1. The most optimal variant was variant B (300 rpm, 10 dm3·min−1). However, the other variants A and C (gas flow rate 10 dm3·min−1) seemed to be favorable for this type of impeller and are recommended for further testing. The above process parameters will be analyzed in detail in a quantitative analysis to be performed on the basis of the obtained efficiency curves of the degassing process (oxygen removal). This analysis will give an unambiguous answer as to which process parameters are the most optimal for this type of impeller; the results are planned for publication in the next article.

It should also be noted here that the high agreement between the results of numerical calculations and physical modelling prompts a conclusion that the proposed approach to the simulation of a degassing process which consists of a single-phase flow model with a free surface and a particle flow model is appropriate. The simulation results enable us to understand how the velocity field in the fluid is formed and to analyze the distribution of gas bubbles in the system. The simulations in Flow-3D software can, therefore, be useful for both the design of the impeller geometry and the selection of process parameters.

Go to:

4. Conclusions

The results of experiments carried out on the physical model of the device for the simulation of barbotage refining of aluminum revealed that the worst results in terms of distribution and dispersion of gas bubbles in the studied object were obtained for the black impellers variants B4, B8, and B12 (multi-orifice impellers—four, eight, and 12 outlet holes, respectively).

In this case, the control of flow, speed, and number of gas exit orifices did not improve the process efficiency, and the developed design did not meet the criteria for industrial tests. In the case of the ‘red triangle’ impeller (variant RT3), uniform gas bubble dispersion was achieved throughout the volume of the modeling fluid for most of the tested variants. The worst bubble dispersion results due to the occurrence of the so-called dead zones in the area near the bottom and sidewalls of the vessel were obtained for the flow variants of 20 dm3·min−1 and 200 rpm and 30 dm3·min−1 and 200 rpm. For the analyzed model, areas where swirls and gas bubble chains were formed were found only for the inert gas flow of 20 and 30 dm3·min−1 and 200 rpm. The model impeller (variant RT3) had the best performance compared to the previously presented impellers in terms of dispersion of gas bubbles in the model liquid. Moreover, its design differed from previously presented models because of its sharp edges. This can be advantageous for gas bubble dispersion, but may negatively affect its suitability in industrial conditions due to premature wearing.

The CFD simulation results confirmed the results obtained from the experiments performed on the physical model. The numerical simulation of the operation of the ‘red triangle’ impeller model (using Flow-3D software) gave good agreement with the experiments performed on the physical model. This means that the presented model impeller, as compared to other (analyzed) designs, had the best performance in terms of gas bubble dispersion in the model liquid.

In further work, the developed numerical model is planned to be used for CFD simulations of the gas bubble distribution process taking into account physicochemical parameters of liquid aluminum based on industrial tests. Consequently, the obtained results may be implemented in production practice.

Go to:

Funding Statement

This paper was created with the financial support grants from the AGH-UST, Faculty of Foundry Engineering, Poland (16.16.170.654 and 11/990/BK_22/0083) for the Faculty of Materials Engineering, Silesian University of Technology, Poland.

Go to:

Author Contributions

Conceptualization, K.K. and D.K.; methodology, J.P. and T.M.; validation, M.S. and S.G.; formal analysis, D.K. and T.M.; investigation, J.P., K.K. and S.G.; resources, M.S., J.P. and K.K.; writing—original draft preparation, D.K. and T.M.; writing—review and editing, D.K. and T.M.; visualization, J.P., K.K. and S.G.; supervision, D.K.; funding acquisition, D.K. and T.M. All authors have read and agreed to the published version of the manuscript.

Go to:

Institutional Review Board Statement

Not applicable.

Go to:

Informed Consent Statement

Not applicable.

Go to:

Data Availability Statement

Data are contained within the article.

Go to:

Conflicts of Interest

The authors declare no conflict of interest.

Go to:

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Go to:

References

1. Zhang L., Xuewei L., Torgerson A.T., Long M. Removal of Impurity Elements from Molten Aluminium: A Review. Miner. Process. Extr. Metall. Rev. 2011;32:150–228. doi: 10.1080/08827508.2010.483396. [CrossRef] [Google Scholar]

2. Saternus M. Impurities of liquid aluminium-methods on their estimation and removal. Met. Form. 2015;23:115–132. [Google Scholar]

3. Żak P.L., Kalisz D., Lelito J., Gracz B., Szucki M., Suchy J.S. Modelling of non-metallic particle motion process in foundry alloys. Metalurgija. 2015;54:357–360. [Google Scholar]

4. Kalisz D., Kuglin K. Efficiency of aluminum oxide inclusions rmoval from liquid steel as a result of collisions and agglomeration on ceramic filters. Arch. Foundry Eng. 2020;20:43–48. [Google Scholar]

5. Kuglin K., Kalisz D. Evaluation of the usefulness of rotors for aluminium refining. IOP Conf. Ser. Mater. Sci. Eng. 2021;1178:012036. doi: 10.1088/1757-899X/1178/1/012036. [CrossRef] [Google Scholar]

6. Saternus M., Merder T. Physical modeling of the impeller construction impact o the aluminium refining process. Materials. 2022;15:575. doi: 10.3390/ma15020575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Saternus M., Merder T. Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals. 2018;8:726. doi: 10.3390/met8090726. [CrossRef] [Google Scholar]

8. Saternus M., Merder T., Pieprzyca J. The influence of impeller geometry on the gas bubbles dispersion in uro-200 reactor—RTD curves. Arch. Metall. Mater. 2015;60:2887–2893. doi: 10.1515/amm-2015-0461. [CrossRef] [Google Scholar]

9. Hernández-Hernández M., Camacho-Martínez J., González-Rivera C., Ramírez-Argáez M.A. Impeller design assisted by physical modeling and pilot plant trials. J. Mater. Process. Technol. 2016;236:1–8. doi: 10.1016/j.jmatprotec.2016.04.031. [CrossRef] [Google Scholar]

10. Mancilla E., Cruz-Méndez W., Garduño I.E., González-Rivera C., Ramírez-Argáez M.A., Ascanio G. Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chem. Eng. Res. Des. 2017;118:158–169. doi: 10.1016/j.cherd.2016.11.031. [CrossRef] [Google Scholar]

11. Michalek K., Socha L., Gryc K., Tkadleckova M., Saternus M., Pieprzyca J., Merder T. Modelling of technological parameters of aluminium melt refining in the ladle by blowing of inert gas through the rotating impeller. Arch. Metall. Mater. 2018;63:987–992. [Google Scholar]

12. Walek J., Michalek K., Tkadlecková M., Saternus M. Modelling of Technological Parameters of Aluminium Melt Refining in the Ladle by Blowing of Inert Gas through the Rotating Impeller. Metals. 2021;11:284. doi: 10.3390/met11020284. [CrossRef] [Google Scholar]

13. Michalek K., Gryc K., Moravka J. Physical modelling of bath homogenization in argon stirred ladle. Metalurgija. 2009;48:215–218. [Google Scholar]

14. Michalek K. The Use of Physical Modeling and Numerical Optimization for Metallurgical Processes. VSB; Ostrawa, Czech Republic: 2001. [Google Scholar]

15. Chen J., Zhao J. Light Metals. TMS; Warrendale, PA, USA: 1995. Bubble distribution in a melt treatment water model; pp. 1227–1231. [Google Scholar]

16. Saternus M. Model Matematyczny do Sterowania Procesem Rafinacji Ciekłych Stopów Aluminium Przy Zastosowaniu URO-200. Katowice, Poland: 2004. Research Project Nr 7 T08B 019 21. [Google Scholar]

17. Pietrewicz L., Wężyk W. Urządzenia do rafinacji gazowej typu URO-200 sześć lat produkcji i doświadczeń; Proceedings of the Aluminum Conference; Zakopane, Poland. 12–16 October 1998. [Google Scholar]

18. Flow3d User’s Guide. Flow Science, Inc.; Santa Fe, NM, USA: 2020. [Google Scholar]

19. Sinelnikov V., Szucki M., Merder T., Pieprzyca J., Kalisz D. Physical and numerical modeling of the slag splashing process. Materials. 2021;14:2289. doi: 10.3390/ma14092289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. White F. Fluid Mechanics. McGraw-Hill; New York, NY, USA: 2010. (McGraw-Hill Series in Mechanical Engineering). [Google Scholar]

21. Yang Z., Yang L., Cheng T., Chen F., Zheng F., Wang S., Guo Y. Fluid Flow Characteristic of EAF Molten Steel with Different Bottom-Blowing Gas Flow Rate Distributions. ISIJ. 2020;60:1957–1967. doi: 10.2355/isijinternational.ISIJINT-2019-794. [CrossRef] [Google Scholar]

22. Nichols B.D., Hirt C.W. Methods for calculating multi-dimensional, transient free surface flows past bodies; Proceedings of the First International Conference on Numerical Ship Hydrodynamics; Gaithersburg, MD, USA. 20–22 October 1975. [Google Scholar]

23. Hirt C.W., Nichols B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981;39:201–255. doi: 10.1016/0021-9991(81)90145-5. [CrossRef] [Google Scholar]

24. Szucki M., Suchy J.S., Lelito J., Malinowski P., Sobczyk J. Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry. Heat Mass Transf. 2017;53:3421–3431. doi: 10.1007/s00231-017-2069-5. [CrossRef] [Google Scholar]

25. Themelis N.J., Goyal P. Gas injection in steelmaking. Candian Metall. Trans. 1983;22:313–320. [Google Scholar]

26. Zhang L., Jing X., Li Y., Xu Z., Cai K. Mathematical model of decarburization of ultralow carbon steel during RH treatment. J. Univ. Sci. Technol. Beijing. 1997;4:19–23. [Google Scholar]

27. Chiti F., Paglianti A., Bujalshi W. A mechanistic model to estimate powder consumption and mixing time in aluminium industries. Chem. Eng. Res. Des. 2004;82:1105–1111. doi: 10.1205/cerd.82.9.1105.44156. [CrossRef] [Google Scholar]

28. Bouaifi M., Roustan M. Power consumption, mixing time and homogenization energy in dual-impeller agitated gas-liquid reactors. Chem. Eng. Process. 2011;40:87–95. doi: 10.1016/S0255-2701(00)00128-8. [CrossRef] [Google Scholar]

29. Kang J., Lee C.H., Haam S., Koo K.K., Kim W.S. Studies on the overall oxygen transfer rate and mixing time in pilot-scale surface aeration vessel. Environ. Technol. 2001;22:1055–1068. doi: 10.1080/09593332208618215. [PubMed] [CrossRef] [Google Scholar]

30. Moucha T., Linek V., Prokopov E. Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci. 2003;58:1839–1846. doi: 10.1016/S0009-2509(02)00682-6. [CrossRef] [Google Scholar]

31. Szekely J. Flow phenomena, mixing and mass transfer in argon-stirred ladles. Ironmak. Steelmak. 1979;6:285–293. [Google Scholar]

32. Iguchi M., Nakamura K., Tsujino R. Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection. Metall. Mat. Trans. 1998;29:569–575. doi: 10.1007/s11663-998-0091-1. [CrossRef] [Google Scholar]

33. Hjelle O., Engh T.A., Rasch B. Removal of Sodium from Aluminiummagnesium Alloys by Purging with Cl2. Aluminium-Verlag GmbH; Dusseldorf, Germany: 1985. pp. 343–360. [Google Scholar]

34. Zhang L., Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int. Mat. Rev. 2000;45:59–82. doi: 10.1179/095066000101528313. [CrossRef] [Google Scholar]

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.

Numerical modelling of air-water flows in sewer drops

하수구 방울의 공기-물 흐름 수치 모델링

Paula Beceiro (corresponding author)
Maria do Céu Almeida
Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal
E-mail: pbeceiro@lnec.pt
Jorge Matos
Department of Civil Engineering, Arquitecture and Geosources,
Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal

ABSTRACT

물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.

하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.

본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.

이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.

유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.

The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.

Key words | air entrainment, computational fluid dynamics (CFD), sewer drops

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.

REFERENCES

Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal.
Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia.
Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal.
Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal.
Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288.
Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA.
Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada.
Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA.
Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203.
Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243.
Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049.
Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150.
Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263.
Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA.
Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British
Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA.
Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225.
Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA.
Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA.
Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527.
Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476.
Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430.
Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands.
Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532.
Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil.
Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552.
Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724.
Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal.
Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal.
Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK.
Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA.
Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582.
Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England.
Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452.
Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870.
Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.

Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

BC Hydro Assesses Spillway Hydraulics with FLOW-3D

by Faizal Yusuf, M.A.Sc., P.Eng.
Specialist Engineer in the Hydrotechnical Department at BC Hydro

BC Hydro, a public electric utility in British Columbia, uses FLOW-3D to investigate complex hydraulics issues at several existing dams and to assist in the design and optimization of proposed facilities.

Faizal Yusuf, M.A.Sc., P.Eng., Specialist Engineer in the Hydrotechnical department at BC Hydro, presents three case studies that highlight the application of FLOW-3D to different types of spillways and the importance of reliable prototype or physical hydraulic model data for numerical model calibration.

W.A.C. Bennett Dam
At W.A.C. Bennett Dam, differences in the spillway geometry between the physical hydraulic model from the 1960s and the prototype make it difficult to draw reliable conclusions on shock wave formation and chute capacity from physical model test results. The magnitude of shock waves in the concrete-lined spillway chute are strongly influenced by a 44% reduction in the chute width downstream of the three radial gates at the headworks, as well as the relative openings of the radial gates. The shock waves lead to locally higher water levels that have caused overtopping of the chute walls under certain historical operations.Prototype spill tests for discharges up to 2,865 m3/s were performed in 2012 to provide surveyed water surface profiles along chute walls, 3D laser scans of the water surface in the chute and video of flow patterns for FLOW-3D model calibration. Excellent agreement was obtained between the numerical model and field observations, particularly for the location and height of the first shock wave at the chute walls (Figure 1).

W.A.C에서 Bennett Dam, 1960년대의 물리적 수력학 모델과 프로토타입 사이의 여수로 형상의 차이로 인해 물리적 모델 테스트 결과에서 충격파 형성 및 슈트 용량에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 콘크리트 라이닝 방수로 낙하산의 충격파 크기는 방사형 게이트의 상대적인 개구부뿐만 아니라 헤드워크에 있는 3개의 방사형 게이트 하류의 슈트 폭이 44% 감소함에 따라 크게 영향을 받습니다. 충격파는 특정 역사적 작업에서 슈트 벽의 범람을 야기한 국부적으로 더 높은 수위로 이어집니다. 최대 2,865m3/s의 배출에 대한 프로토타입 유출 테스트가 2012년에 수행되어 슈트 벽을 따라 조사된 수면 프로필, 3D 레이저 스캔을 제공했습니다. FLOW-3D 모델 보정을 위한 슈트의 수면 및 흐름 패턴 비디오. 특히 슈트 벽에서 첫 번째 충격파의 위치와 높이에 대해 수치 모델과 현장 관찰 간에 탁월한 일치가 이루어졌습니다(그림 1).
Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.
Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.

The calibrated FLOW-3D model confirmed that the design flood could be safely passed without overtopping the spillway chute walls as long as all three radial gates are opened as prescribed in existing operating orders with the outer gates open more than the inner gate.

The CFD model also provided insight into the concrete damage in the spillway chute. Cavitation indices computed from FLOW-3D simulation results were compared with empirical data from the USBR and found to be consistent with the historical performance of the spillway. The numerical analysis supported field inspections, which concluded that deterioration of the concrete conditions in the chute is likely not due to cavitation.

Strathcona Dam
FLOW-3D was used to investigate poor approach conditions and uncertainties with the rating curves for Strathcona Dam spillway, which includes three vertical lift gates on the right abutment of the dam. The rating curves for Strathcona spillway were developed from a combination of empirical adjustments and limited physical hydraulic model testing in a flume that did not include geometry of the piers and abutments.

Numerical model testing and calibration was based on comparisons with prototype spill observations from 1982 when all three gates were fully open, resulting in a large depression in the water surface upstream of the leftmost bay (Figure 2). The approach flow to the leftmost bay is distorted by water flowing parallel to the dam axis and plunging over the concrete retaining wall adjacent to the upstream slope of the earthfill dam. The flow enters the other two bays much more smoothly. In addition to very similar flow patterns produced in the numerical model compared to the prototype, simulated water levels at the gate section matched 1982 field measurements to within 0.1 m.

보정된 FLOW-3D 모델은 외부 게이트가 내부 게이트보다 더 많이 열려 있는 기존 운영 명령에 규정된 대로 3개의 방사형 게이트가 모두 열리는 한 여수로 낙하산 벽을 넘지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다.

CFD 모델은 방수로 낙하산의 콘크리트 손상에 대한 통찰력도 제공했습니다. FLOW-3D 시뮬레이션 결과에서 계산된 캐비테이션 지수는 USBR의 경험적 데이터와 비교되었으며 여수로의 역사적 성능과 일치하는 것으로 나타났습니다. 수치 분석은 현장 검사를 지원했으며, 슈트의 콘크리트 상태 악화는 캐비테이션 때문이 아닐 가능성이 높다고 결론지었습니다.

Strathcona 댐
FLOW-3D는 Strathcona Dam 여수로에 대한 등급 곡선을 사용하여 열악한 접근 조건과 불확실성을 조사하는 데 사용되었습니다. 여기에는 댐의 오른쪽 접합부에 3개의 수직 리프트 게이트가 포함되어 있습니다. Strathcona 여수로에 대한 등급 곡선은 경험적 조정과 교각 및 교대의 형상을 포함하지 않는 수로에서 제한된 물리적 수리 모델 테스트의 조합으로 개발되었습니다.

수치 모델 테스트 및 보정은 세 개의 수문이 모두 완전히 개방된 1982년의 프로토타입 유출 관측과의 비교를 기반으로 했으며, 그 결과 가장 왼쪽 만의 상류 수면에 큰 함몰이 발생했습니다(그림 2). 최좌단 만으로의 접근 흐름은 댐 축과 평행하게 흐르는 물과 흙채움댐의 상류 경사면에 인접한 콘크리트 옹벽 위로 떨어지는 물에 의해 왜곡됩니다. 흐름은 훨씬 더 원활하게 다른 두 베이로 들어갑니다. 프로토타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도 게이트 섹션에서 시뮬레이션된 수위는 1982년 현장 측정과 0.1m 이내로 일치했습니다.

Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.

The calibrated CFD model produces discharges within 5% of the spillway rating curve for the reservoir’s normal operating range with all gates fully open. However, at higher reservoir levels, which may occur during passage of large floods (as shown in Figure 3), the difference between simulated discharges and the rating curves are greater than 10% as the physical model testing with simplified geometry and empirical corrections did not adequately represent the complex approach flow patterns. The FLOW-3D model provided further insight into the accuracy of rating curves for individual bays, gated conditions and the transition between orifice and free surface flow.

보정된 CFD 모델은 모든 게이트가 완전히 열린 상태에서 저수지의 정상 작동 범위에 대한 여수로 등급 곡선의 5% 이내에서 배출을 생성합니다. 그러나 대규모 홍수가 통과하는 동안 발생할 수 있는 더 높은 저수지 수위에서는(그림 3 참조) 단순화된 기하학과 경험적 수정을 사용한 물리적 모델 테스트가 그렇지 않았기 때문에 모의 배출과 등급 곡선 간의 차이는 10% 이상입니다. 복잡한 접근 흐름 패턴을 적절하게 표현합니다. FLOW-3D 모델은 개별 베이, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 등급 곡선의 정확도에 대한 추가 통찰력을 제공했습니다.

Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.
Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

John Hart Dam
The John Hart concrete dam will be modified to include a new free crest spillway to be situated between an existing gated spillway and a low level outlet structure that is currently under construction. Significant improvements in the design of the proposed spillway were made through a systematic optimization process using FLOW-3D.

The preliminary design of the free crest spillway was based on engineering hydraulic design guides. Concrete apron blocks are intended to protect the rock at the toe of the dam. A new right training wall will guide the flow from the new spillway towards the tailrace pool and protect the low level outlet structure from spillway discharges.

FLOW-3D model results for the initial and optimized design of the new spillway are shown in Figure 4. CFD analysis led to a 10% increase in discharge capacity, significant decrease in roadway impingement above the spillway crest and improved flow patterns including up to a 5 m reduction in water levels along the proposed right wall. Physical hydraulic model testing will be used to confirm the proposed design.

존 하트 댐
John Hart 콘크리트 댐은 현재 건설 중인 기존 배수로와 저층 배수로 사이에 위치할 새로운 자유 마루 배수로를 포함하도록 수정될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 여수로 설계의 상당한 개선이 이루어졌습니다.

자유 마루 여수로의 예비 설계는 엔지니어링 수력학 설계 가이드를 기반으로 했습니다. 콘크리트 앞치마 블록은 댐 선단부의 암석을 보호하기 위한 것입니다. 새로운 오른쪽 훈련 벽은 새 여수로에서 테일레이스 풀로 흐름을 안내하고 여수로 배출로부터 낮은 수준의 배출구 구조를 보호합니다.

새 여수로의 초기 및 최적화된 설계에 대한 FLOW-3D 모델 결과는 그림 4에 나와 있습니다. CFD 분석을 통해 방류 용량이 10% 증가하고 여수로 마루 위의 도로 충돌이 크게 감소했으며 최대 제안된 오른쪽 벽을 따라 수위가 5m 감소합니다. 제안된 설계를 확인하기 위해 물리적 수압 모델 테스트가 사용됩니다.

Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

Conclusion

BC Hydro has been using FLOW-3D to investigate a wide range of challenging hydraulics problems for different types of spillways and water conveyance structures leading to a greatly improved understanding of flow patterns and performance. Prototype data and reliable physical hydraulic model testing are used whenever possible to improve confidence in the numerical model results.

다양한 유형의 여수로 및 물 수송 구조로 인해 흐름 패턴 및 성능에 대한 이해가 크게 향상되었습니다. 프로토타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과의 신뢰도를 향상시키기 위해 가능할 때마다 사용됩니다.

About Flow Science, Inc.
Based in Santa Fe, New Mexico USA, Flow Science was founded in 1980 by Dr. C. W. (Tony) Hirt, who was one of the principals in pioneering the “Volume-of-Fluid” or VOF method while working at the Los Alamos National Lab. FLOW-3D is a direct descendant of this work, and in the subsequent years, we have increased its sophistication with TruVOF, boasting pioneering improvements in the speed and accuracy of tracking distinct liquid/gas interfaces. Today, Flow Science products offer complete multiphysics simulation with diverse modeling capabilities including fluid-structure interaction, 6-DoF moving objects, and multiphase flows. From inception, our vision has been to provide our customers with excellence in flow modeling software and services.

Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators

2상 유동 해석을 통한 슈트 폭기 시스템 효율에 대한 램프 각도의 영향 조사

Investigation of the Effect of Ramp Angle on Chute Aeration System Efficiency by Two-Phase Flow Analysis

Authors

1 Associate Professor, Civil Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran

2 Instructor in Civil Engineering Department Jundi-Shapur University of Technology, Dezful,Iran.

 10.22055/JISE.2021.37743.1980

Abstract

Flow aeration in chute spillway is one of the most effective and economic ways to prevent cavitation damage. Surface damage is significantly reduced when very small values of air are scattered in a water prism. A structure known as an aerator may be used for this purpose. Besides, ramp angle is one of the factors influencing aerator efficiency. In this research, the value of air entraining the flow through the Jarreh Dam’s spillway at the ramp angles of 6, 8 and 10 degrees, as three different scenarios, was simulated using the Flow-3D software. In order to validate the results of the inlet air into the flowing fluid at a ramp angle of 6 degrees, the observational results of the dam spillway physical model from the laboratory of TAMAB Company in Iran were used. According to the results, raising the ramp angle increases the inlet air to the water jet nappe, and a ten-degree ramp angle provides the best aeration efficiency. The Flow-3D model can also simulate the two-phase water-air flow on spillways, according to the results.

슈트 여수로의 흐름 폭기는 캐비테이션 손상을 방지하는 가장 효과적이고 경제적인 방법 중 하나입니다. 수중 프리즘에 아주 작은 양의 공기가 흩어지면 표면 손상이 크게 줄어듭니다. 이를 위해 폭기 장치로 알려진 구조를 사용할 수 있습니다. 또한, 램프 각도는 폭기 효율에 영향을 미치는 요인 중 하나입니다. 이 연구에서는 FLOW-3D 소프트웨어를 사용하여 3가지 다른 시나리오인 6, 8 및 10도의 램프 각도에서 Jarreh 댐의 방수로를 통해 흐름을 동반하는 공기의 값을 시뮬레이션했습니다. 6도의 경사각에서 유동 유체로 유입되는 공기의 결과를 검증하기 위해이란 TAMAB Company의 실험실에서 댐 방수로 물리적 모델의 관찰 결과를 사용했습니다. 결과에 따르면 램프 각도를 높이면 워터제트 기저귀로 유입되는 공기가 증가하고 10도 램프 각도는 최고의 폭기 효율을 제공합니다. Flow-3D 모델은 결과에 따라 여수로의 2단계 물-공기 흐름을 시뮬레이션할 수도 있습니다.

Keywords

Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
(a) The full-scale map of the Jarreh spillway’s plan and profile.
(a) The full-scale map of the Jarreh spillway’s plan and profile.
Fig. 2- Experimental setup (Shamloo et al., 2012)
Fig. 2- Experimental setup (Shamloo et al., 2012)

References

1- Baharvand, S., & Lashkar-Ara, B. (2021). Hydraulic design criteria of the modified meander C-type
fishway using the combined experimental and CFD models. Ecological Engineering, 164.
https://doi.org/10.1016/j.ecoleng.2021.106207
2- Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF
technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated,
skimming flow in stepped spillways. Journal of Hydro-Environment Research, 19, 137–149.
https://doi.org/10.1016/j.jher.2017.10.002
3- Brethour, J. M., & Hirt, C. W. (2009). Drift Model for Two-Component Flows. Flow Science, Inc., FSI09-TN83Rev, 1–7.
4- Chanson, H. (1989). Study of air entrainment and aeration devices. Journal of Hydraulic Research, 27(3),
301–319. https://doi.org/10.1080/00221688909499166
5- Dong, Z., Wang, J., Vetsch, D. F., Boes, R. M., & Tan, G. (2019). Numerical simulation of air-water twophase flow on stepped spillways behind X-shaped flaring gate piers under very high unit discharge. Water
(Switzerland), 11(10). https://doi.org/10.3390/w11101956
6- Flow-3D, V. 11. 2. (2017). User Manual. Flow Science Inc.: Santa Fe, NM, USA;
7- Hirt, C. W. (2003). Modeling Turbulent Entrainment of Air at a Free Surface. Flow Science, Inc., FSI-03-
TN6, 1–9.
8- Hirt, C. W. (2016). Dynamic Droplet Sizes for Drift Fluxes. Flow Science, Inc., 1–10.
9- Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries.
Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
10- Kherbache, K., Chesneau, X., Zeghmati, B., Abide, S., & Benmamar, S. (2017). The effects of step
inclination and air injection on the water flow in a stepped spillway: A numerical study. Journal of
Hydrodynamics, 29(2), 322–331. https://doi.org/10.1016/S1001-6058(16)60742-4
11- Kramer, M., & Chanson, H. (2019). Optical flow estimations in aerated spillway flows: Filtering and
discussion on sampling parameters. Experimental Thermal and Fluid Science, 103, 318–328.
https://doi.org/10.1016/j.expthermflusci.2018.12.002
12- Mahmoudian, Z., Baharvand, S., & Lashkarara, B. (2019). Investigating the Flow Pattern in Baffle
Fishway Denil Type. Irrigation Sciences and Engineering (JISE), 42(3), 179–196.
13- Meireles, I. C., Bombardelli, F. A., & Matos, J. (2014). Air entrainment onset in skimming flows on
steep stepped spillways: An analysis. Journal of Hydraulic Research, 52(3).
https://doi.org/10.1080/00221686.2013.878401
14- Parsaie, A., & Haghiabi, A. H. (2019). Inception point of flow aeration on quarter-circular crested stepped
spillway. Flow Measurement and Instrumentation, 69.
https://doi.org/10.1016/j.flowmeasinst.2019.101618
15- Richardson, J. F., & Zaki W N. (1979). Sedimentation and Fluidisation. Part 1. Trans. Inst. Chem. Eng,
32, 35–53.
16- Shamloo, H., Hoseini Ghafari, S., & Kavianpour, M. (2012). Experimental study on the effects of inlet
flows on aeration in chute spillway (Case study: Jare Dam, Iran). 10th International Congress on
Advances in Civil Engineering, Middle East Technical University, Ankara, Turkey.
17- Wang, S. Y., Hou, D. M., & Wang, C. H. (2012). Aerator of stepped chute in Murum Hydropower
Station. Procedia Engineering, 28, 803–807. https://doi.org/10.1016/j.proeng.2012.01.813.
18- Wei, W., Deng, J., & Zhang, F. (2016). Development of self-aeration process for supercritical chute
flows. International Journal of Multiphase Flow, 79, 172–180.
https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.003
19- Wu, J., QIAN, S., & MA, F. (2016). A new design of ski-jump-step spillway. Journal of Hydrodynamics,
05, 914–917.
20- Xu, Y., Wang, W., Yong, H., & Zhao, W. (2012). Investigation on the cavity backwater of the jet flow from the chute aerators. Procedia Engineering, 31, 51–56. https://doi.org/10.1016/j.proeng.2012.01.989
21- Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory.
Journal of Scientific Computing, 1(1), 3–51. https://doi.org/10.1007/BF01061452
22- Yang, J., Teng, P., & Lin, C. (2019). Air-vent layouts and water-air flow behaviors of a wide spillway
aerator. Theoretical and Applied Mechanics Letters, 9(2), 130–143.
https://doi.org/10.1016/j.taml.2019.02.009
23- Zhang, G., & Chanson, H. (2016). Interaction between free-surface aeration and total pressure on a
stepped chute. Experimental Thermal and Fluid Science, 74, 368–381.
https://doi.org/10.1016/j.expthermflusci.2015.12.011

Fig. 2- Experimental setup (Shamloo et al., 2012)

2상 유동 해석을 통한 슈트 폭기 시스템 효율에 대한 램프 각도의 영향 조사

1 Associate Professor, Civil Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran

2 Instructor in Civil Engineering Department Jundi-Shapur University of Technology, Dezful,Iran.

 10.22055/JISE.2021.37743.1980

Abstract

슈트 여수로의 흐름 폭기는 캐비테이션 손상을 방지하는 가장 효과적이고 경제적인 방법 중 하나입니다. 수중 프리즘에 아주 작은 양의 공기가 흩어지면 표면 손상이 크게 줄어듭니다. 이를 위해 폭기 장치로 알려진 구조를 사용할 수 있습니다. 또한, 램프 각도는 폭기 효율에 영향을 미치는 요인 중 하나입니다. 이 연구에서는 Flow-3D 소프트웨어를 사용하여 3가지 다른 시나리오인 6, 8 및 10도의 램프 각도에서 Jarreh 댐의 방수로를 통해 흐름을 동반하는 공기의 값을 시뮬레이션했습니다. 6도의 경사각에서 유동 유체로 유입되는 공기의 결과를 검증하기 위해이란 TAMAB Company의 실험실에서 댐 방수로 물리적 모델의 관찰 결과를 사용했습니다. 결과에 따르면 램프 각도를 높이면 워터제트 기저귀로 유입되는 공기가 증가하고 10도 램프 각도는 최고의 폭기 효율을 제공합니다. Flow-3D 모델은 결과에 따라 여수로의 2단계 물-공기 흐름을 시뮬레이션할 수도 있습니다.

Flow aeration in chute spillway is one of the most effective and economic ways to prevent cavitation damage. Surface damage is significantly reduced when very small values of air are scattered in a water prism. A structure known as an aerator may be used for this purpose. Besides, ramp angle is one of the factors influencing aerator efficiency. In this research, the value of air entraining the flow through the Jarreh Dam’s spillway at the ramp angles of 6, 8 and 10 degrees, as three different scenarios, was simulated using the Flow-3D software. In order to validate the results of the inlet air into the flowing fluid at a ramp angle of 6 degrees, the observational results of the dam spillway physical model from the laboratory of TAMAB Company in Iran were used. According to the results, raising the ramp angle increases the inlet air to the water jet nappe, and a ten-degree ramp angle provides the best aeration efficiency. The Flow-3D model can also simulate the two-phase water-air flow on spillways, according to the results.

Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
Fig. 2- Experimental setup (Shamloo et al., 2012)
Fig. 2- Experimental setup (Shamloo et al., 2012)
Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity, and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp angle
Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity, and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp angle
Fig. 4- Location of data extraction stations after aeration on a scale model of 1:50
Fig. 4- Location of data extraction stations after aeration on a scale model of 1:50
Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees, b) 8 degrees and c) 10 degrees
Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees, b) 8 degrees and c) 10 degrees

Keywords

Aeration system Ramp angle Aeration coefficient Two-phase flow Flow-3D model

참고문헌

  • Baharvand, S., & Lashkar-Ara, B. (2021). 실험 모델과 CFD 모델을 결합한 수정 사행 C형 어로의 수력학적 설계기준. 생태 공학 , 164 . https://doi.org/10.1016/j.ecoleng.2021.106207

2- Bayon, A., Toro, JP, Bombardelli, FA, Matos, J., & López-Jiménez, PA(2018). VOF 기술, 난류 모델 및 이산화 방식이 계단식 배수로에서 폭기되지 않은 스키밍 흐름의 수치 시뮬레이션에 미치는 영향. 수력 환경 연구 저널 , 19 , 137–149. https://doi.org/10.1016/j.jher.2017.10.002

3- Brethour, JM, & Hirt, CW (2009). 2성분 흐름에 대한 드리프트 모델. Flow Science, Inc. , FSI – 09 – TN83Rev , 1–7.

4- Chanson, H. (1989). 공기 유입 및 폭기 장치 연구. 수력학 연구 저널 , 27 (3), 301–319. https://doi.org/10.1080/00221688909499166

5- Dong, Z., Wang, J., Vetsch, DF, Boes, RM, & Tan, G. (2019). 매우 높은 단위 배출에서 X자형 플레어링 게이트 교각 뒤의 계단식 배수로에서 공기-물 2상 흐름의 수치 시뮬레이션. 물(스위스) , 11 (10). https://doi.org/10.3390/w11101956

6- Flow-3D, V. 11. 2. (2017). 사용자 매뉴얼. Flow Science Inc.: Santa Fe, NM, USA;

7- Hirt, CW (2003). 자유 표면에서 공기의 난류 동반 모델링. Flow Science, Inc. , FSI – 03 – TN6 , 1–9.

8- Hirt, CW (2016). 드리프트 플럭스에 대한 동적 액적 크기. Flow Science, Inc. , 1–10.

9- Hirt, CW, & Nichols, BD (1981). 자유 경계의 역학에 대한 VOF(유체 체적) 방법. 전산 물리학 저널 , 39 (1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5

10- Kherbache, K., Chesneau, X., Zeghmati, B., Abide, S., & Benmamar, S. (2017). 계단식 배수로의 물 흐름에 대한 계단식 경사 및 공기 주입의 영향: 수치 연구. 유체 역학 저널 , 29 (2), 322–331. https://doi.org/10.1016/S1001-6058(16)60742-4

11- Kramer, M., & Chanson, H. (2019). 폭기된 여수로 흐름에서 광학 흐름 추정: 샘플링 매개변수에 대한 필터링 및 논의. 실험적 열 및 유체 과학 , 103 , 318–328. https://doi.org/10.1016/j.expthermflusci.2018.12.002

12- Mahmoudian, Z., Baharvand, S., & Lashkarara, B. (2019). Baffle Fishway Denil Type의 흐름 패턴 조사. 관개 과학 및 공학(JISE) , 42 (3), 179–196.

13- Meireles, IC, Bombardelli, FA 및 Matos, J. (2014). 가파른 계단식 배수로의 스키밍 흐름에서 공기 유입 시작: 분석. 수력학 연구 저널 , 52 (3). https://doi.org/10.1080/00221686.2013.878401

14- Parsaie, A., & Haghiabi, AH (2019). 1/4 원형 볏이 있는 계단식 배수로에서 흐름 폭기의 시작 지점. 유량 측정 및 계측 , 69 . https://doi.org/10.1016/j.flowmeasinst.2019.101618

15- Richardson, JF, & Zaki W N. (1979). 침전 및 유동화. 파트 1. 트랜스. Inst. 화학 영어 , 32 , 35–53.

16- Shamloo, H., Hoseini Ghafari, S., & Kavianpour, M. (2012). 슈트 여수로의 폭기에 대한 유입구 흐름의 영향에 대한 실험적 연구(사례 연구: 이란 Jare Dam). 제10차 토목 공학 발전에 관한 국제 회의, 중동 기술 대학, 앙카라, 터키 .

17- Wang, SY, Hou, DM, & Wang, CH (2012). Murum 수력 발전소의 계단식 슈트의 폭기 장치. 프로시디아 엔지니어링 , 28 , 803–807. https://doi.org/10.1016/j.proeng.2012.01.813.

18- Wei, W., Deng, J., & Zhang, F. (2016). 초임계 슈트 흐름에 대한 자체 폭기 공정 개발. 다상 흐름의 국제 저널 , 79 , 172–180. https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.003

19- Wu, J., QIAN, S., & MA, F. (2016). 스키점프 스텝 배수로의 새로운 디자인. 유체 역학 저널 , 05 , 914–917.

20- Xu, Y., Wang, W., Yong, H., & Zhao, W. (2012). 슈트 폭기 장치에서 제트 흐름의 공동 역류에 대한 조사. 프로시디아 엔지니어링 , 31 , 51–56. https://doi.org/10.1016/j.proeng.2012.01.989

21- Yakhot, V., & Orszag, SA (1986). 난류의 재정규화 그룹 분석. I. 기본 이론. 과학 컴퓨팅 저널 , 1 (1), 3–51. https://doi.org/10.1007/BF01061452

22- Yang, J., Teng, P., & Lin, C. (2019). 넓은 여수로 폭기장치의 통풍구 배치 및 물-기류 거동. Theoretical and Applied Mechanics Letters , 9 (2), 130–143. https://doi.org/10.1016/j.taml.2019.02.009

23- Zhang, G., & Chanson, H. (2016). 자유 표면 폭기와 계단식 슈트의 총 압력 사이의 상호 작용. 실험적 열 및 유체 과학 , 74 , 368–381. https://doi.org/10.1016/j.expthermflusci.2015.12.011

Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation

Understanding dry-out mechanism in rod bundles of boiling water reactor

끓는 물 원자로 봉 다발의 건조 메커니즘 이해

Liril D.SilviaDinesh K.ChandrakercSumanaGhoshaArup KDasb
aDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee, India
bDepartment of Mechanical Engineering, Indian Institute of Technology, Roorkee, India
cReactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract

Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod’s dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.

현재 작업은 원형 배열에 있는 7개의 핀으로 구성된 핵연료봉 다발 어셈블리로 구성된 일반적인 끓는 물 원자로(BWR) 내부의 물의 증기 및 액체상의 동시 흐름 동안 계면 역학에 대한 수치적 이해를 보고합니다.

원형 배열의 막대 사이에 두 개의 대표적인 간격이 시뮬레이션을 수행하는 데 사용됩니다. 문헌에서 원자로의 유동 비등은 기계론적 모델 또는 평균 방정식으로 처리됩니다.

따라서 VOF(Volume of Fluid) 기반 다상 모델을 사용하는 본 연구에서는 BWR에서 유동 비등 동안 계면의 파괴 및 생성에 대한 자세한 수치적 이해를 목표로 합니다.

우리의 작업은 막대 번들 시나리오에서 거의 사실적인 증기 기포 및 액체 흐름 역학을 묘사합니다. 연료봉에 대한 일정한 벽 열유속과 입구 패치에서 액체의 균일한 속도가 경계 조건으로 적용됩니다. 물의 포화 특성은 30bar 압력에서 취합니다.

기포 핵 생성, 성장, 병합, 국소 건조, 액체 패치로 재습윤 및 완전한 건조를 포함하는 유동 비등 단계가 설명됩니다. 액체가 존재하지 않는 건조 현상은 다양한 축 단면에서 위상 분율 윤곽으로 수치적으로 관찰됩니다.

다른 축 평면에서 액상 분율의 정량화는 점진적인 건조 메커니즘을 강조하면서 시간이 지남에 따라 표시됩니다. 내부 막대와 외부 막대의 액-증기 분포를 비교하면 내부 막대의 건조가 외부 막대보다 더 빨리 발생함을 알 수 있습니다. 각 경우의 방열 용량을 식별하기 위한 열 전달 계수도 보고됩니다.

Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.
Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.

References

[1] J. Würtz, An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 Bar, Risø National Laboratory,
Roskilde, 1978.
[2] W. Tian, A. Myint, Z. Li, S. Qiu, G.H. Su, D. Jia, Experimental study on dryout point in vertical narrow annulus under low flow conditions, in: International Conference on Nuclear Engineering, 4689, 2004, pp. 643–648. Jan
1Vol.
[3] K.M. Becker, C.H. Ling, S. Hedberg, G. Strand, An experimental investigation of
post dryout heat transfer, R. Inst. Technol. (1983).
[4] K.M. Becker, A Burnout Correlation for Flow of Boiling Water in Vertical Rod
Bundles, AB Atomenergi, 1967.
[5] Jr J.R. Barbosa, G.F. Hewitt, S.M. Richardson, High-speed visualisation of nucleate boiling in vertical annular flow, Int. J. Heat Mass Transf. 46 (26) (2003)
5153–5160 1, doi:10.1016/S0017-9310(03)00255-2.
[6] Y. Mizutani, A. Tomiyama, S. Hosokawa, A. Sou, Y. Kudo, K. Mishima, Twophase flow patterns in a four by four rod bundle, J. Nucl. Sci. Technol. 44 (6)
(2007) 894–901 1, doi:10.1080/18811248.2007.9711327.
[7] S.S. Paranjape, Two-Phase Flow Interfacial Structures in a Rod Bundle Geometry, Purdue University, 2009.
[8] D. Lavicka, J. Polansky, Model of the cooling of a nuclear reactor fuel rod, Multiph. Sci. Technol. 25 (2-4) (2013), doi:10.1615/MultScienTechn.v25.i2-4.90.
[9] M. Thurgood, J. Kelly, T. Guidotti, R. Kohrt, K. Crowell, Tech. rep., Pacific Northwest National Laboratory, 1983.
[10] S. Sugawara, Droplet deposition and entrainment modeling based on the
three-fluid model, Nucl. Eng. Des. 122 (1-3) (1990) 67–84, doi:10.1016/
0029-5493(90)90197-6.
[11] C. Adamsson, J.M. Le Corre, Modeling and validation of a mechanistic tool
(MEFISTO) for the prediction of critical power in BWR fuel assemblies, Nucl.
Eng. Des. 241 (8) (2011) 2843–2858, doi:10.1016/j.nucengdes.2011.01.033.
[12] S. Talebi, H. Kazeminejad, A mathematical approach to predict dryout in a rod
bundle, Nucl. Eng. Des. 249 (2012) 348–356, doi:10.1016/j.nucengdes.2012.04.
016.
[13] H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, CFD prediction of flow and
phase distribution in fuel assemblies with spacers, Nucl. Eng. Des. 177 (1-3)
(1997) 215–228, doi:10.1016/S0029-5493(97)00195-7.
[14] H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the
Eulerian–Lagrangian approach, Ann. Nucl. Energy 77 (2015) 415–424, doi:10.
1016/j.anucene.2014.12.002.
[15] G. Sorokin, A. Sorokin, Experimental and numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions, Prog. Nucl. Energy 47 (1-4) (2005) 656–663, doi:10.1016/j.pnucene.2005.
05.069.
[16] W.D. Pointer, A. Tentner, T. Sofu, D. Weber, S. Lo, A. Splawski, Eulerian
two-phase computational fluid dynamics for boiling water reactor core analysis, Joint International Topical Meeting on Mathematics and Computation and
Supercomputing in Nuclear Applications (M and C± SNA), 2007.
[17] K. Podila, Y. Rao, CFD modelling of supercritical water flow and heat transfer
in a 2 × 2 fuel rod bundle, Nucl. Eng. Des. 301 (2016) 279–289, doi:10.1016/j.
nucengdes.2016.03.019.
[18] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, Numerical investigation of subcooled flow boiling in an annulus under the influence of eccentricity, Appl. Therm. Eng. 129 (2018) 1604–1617, doi:10.1016/j.applthermaleng.
2017.10.105.
[19] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, CFD modeling of
critical heat flux in flow boiling: validation and assessment of closure models,
Appl. Therm. Eng. 150 (2019) 651–665, doi:10.1016/j.applthermaleng.2019.01.
030.
[20] W. Fan, H. Li, H. Anglart, A study of rewetting and conjugate heat transfer
influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach, Int. J. Heat Mass Transf. 163 (2020) 120503, doi:10.1016/j.
ijheatmasstransfer.2020.120503.
[21] R. Zhang, T. Cong, G. Su, J. Wang, S. Qiu, Investigation on the critical heat
flux in typical 5 by 5 rod bundle at conditions prototypical of PWR based
on CFD methodology, Appl. Therm. Eng. 179 (2020) 115582, doi:10.1016/j.
applthermaleng.2020.115582.

[22] L.D. Silvi, A. Saha, D.K. Chandraker, S. Ghosh, A.K. Das, Numerical analysis of
pre-dryout sequences through the route of interfacial evolution in annular gasliquid two-phase flow with phase change, Chem. Eng. Sci. 212 (2020) 115356,
doi:10.1016/j.ces.2019.115356.
[23] L.D. Silvi, D.K. Chandraker, S. Ghosh, A.K. Das, On-route to dryout through sequential interfacial dynamics in annular flow boiling around temperature and
heat flux controlled heater rod, Chem. Eng. Sci. 229 (2021) 116014, doi:10.1016/
j.ces.2020.116014.
[24] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface
tension, J. Comput. Phys. 100 (2) (1992) 335–354, doi:10.1016/0021-9991(92)
90240-Y.
[25] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging
and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1)
(1994) 134–147, doi:10.1006/jcph.1994.1123.
[26] I. Tanasawa, Advances in condensation heat transfer, Ad. Heat Transf. 21 (1991)
55–139 Vol, doi:10.1016/S0065-2717(08)70334-4.
[27] V.H. Del Valle, D.B. Kenning, Subcooled flow boiling at high heat flux, Int.
J. Heat Mass Transf. 28 (10) (1985) 1907–1920, doi:10.1016/0017-9310(85)
90213-3.
[28] B. Matzner, G.M. Latter, Reduced pressure drop space for boiling water reactor
fuel bundles, US Patent US5375154A, (1993)
[29] C. Unal, O. Badr, K. Tuzla, J.C. Chen, S. Neti, Pressure drop at rod-bundle spacers
in the post-CHF dispersed flow regime, Int. J. Multiphase Flow 20 (3) (1994)
515–522, doi:10.1016/0301-9322(94)90025-6.
[30] D.K. Chandraker, A.K. Nayak, V.P. Krishnan, Effect of spacer on the dryout of
BWR fuel rod assemblies, Nucl. Eng. Des. 294 (2015), doi:10.1016/j.nucengdes.
2015.09.004.
[31] S.K Verma, S.L. Sinha, D.K. Chandraker, A comprehensive review of the spacer
effect on performance of nuclear fuel bundle using computational fluid dynamics methodology, Mater. Today: Proc. 4 (2017) 100030–110034, doi:10.
1016/j.matpr.2017.06.315.
[32] S.K Verma, S.L. Sinha, D.K. Chandraker, Experimental investigation on the effect
of space on the turbulent mixing in vertical pressure tube-type boiling water
reactor, Nucl. Sci. Eng. 190 (2) (2018), doi:10.1080/00295639.2017.1413874.
[33] T. Zhang, Y. Liu, Numerical investigation of flow and heat transfer characteristics of subcooled boiling in a single rod channel with/without spacer grid,
Case Stud. Therm. Eng. 20 (2020) 100644, doi:10.1016/j.csite.2020.100644.
[34] K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, AB Atomenergi
(1965).
[35] A. Saha, A.K. Das, Numerical study of boiling around wires and influence of
active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Transf.
130 (2019) 440–454, doi:10.1016/j.ijheatmasstransfer.2018.10.117.
[36] M. Reimann, U. Grigull, Heat transfer with free convection and film boiling in
the critical area of water and carbon dioxide, Heat Mass Transf. 8 (1975) 229–
239, doi:10.1007/BF01002151.
[37] M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J.
Appl. Phys. 25 (4) (1954) 493–500, doi:10.1063/1.1721668.
[38] N. Samkhaniani, M.R. Ansari, Numerical simulation of superheated vapor bubble rising in stagnant liquid, Heat Mass Transf. 53 (9) (2017) 2885–2899,
doi:10.1007/S00231-017-2031-6.
[39] N. Samkhaniani, M.R. Ansari, The evaluation of the diffuse interface method
for phase change simulations using OpenFOAM, Heat Transf. Asian Res. 46 (8)
(2017) 1173–1203, doi:10.1002/htj.21268.
[40] P. Goel, A.K. Nayak, M.K. Das, J.B. Joshi, Bubble departure characteristics in a
horizontal tube bundle under cross flow conditions, Int. J. Multiph. Flow 100
(2018) 143–154, doi:10.1016/j.ijmultiphaseflow.2017.12.013.
[41] K.M. Becker, J. Engstorm, B.Scholin Nylund, B. Sodequist, Analysis of the dryout
incident in the Oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6)
(1990) 959–974, doi:10.1016/0301-9322(90)90101-N.
[42] H.G. Weller, A New Approach to VOF-Based Interface Capturing Methods
for Incompressible and Compressible Flow, A New Approach to VOF-Based
Interface Capturing Methods for Incompressible and Compressible Flow, 4,
OpenCFD Ltd., 2008 Report TR/HGW.
[43] G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, selfsimilarity and the limits of prediction, Systems 4 (4) (2016) 37, doi:10.3390/
systems4040037.

그림 1 하천횡단구조물 하류부 횡단구조물 파괴

유입조건에 따른압력변이로 인한하천횡단구조물 하류물받이공 및 바닥보호공설계인자 도출최종보고서

주관연구기관 / 홍익대학교 산학협력단
공동연구기관 / 한국건설기술연구원
공동연구기관 / 주식회사 지티이

연구의 목적 및 내용

하천횡단구조물이 하천설계기준(2009)대로 설계되었음에도 불구하고, 하류부에서 물받이공 및 바닥보호공의 피해가 발생하여, 구조물 본체에 대한 안전성이 현저하 게 낮아지고 있는 실정이다. 하천설계기준이 상류부의 수리특성을 반영하였다고 하나 하류부의 수리특성인 유속의 변동 성분 또는 압력의 변동성분까지 고려하고 있지는 않다. 현재 많은 선행연구에서 이러한 난류적 특성이 구조물에 미치는 영 향에 대해 제시하고 있는 실정이며, 국내 하천에서의 피해 또한 이와 관련이 있다 고 판단된다. 이에 본 연구에서는 난류성분 특히 압력의 변동성분이 물받이공과 바닥보호공에 미치는 영향을 정량적으로 분석하여, 하천 횡단구조물의 치수 안전 성 증대에 기여하고자 한다. 물받이공과 바닥보호공에 미치는 압력의 변동성분 (pressure fluctuation) 영향을 분석하기 위해 크게 3가지로 연구내용을 분류하였 다. 첫 번째는 압력의 변동으로 순간적인 음압구배(adversed pressure gradient) 가 발생할 경우 바닥보호공의 사석 및 블록이 이탈하는 것이다. 이를 확인하기 위 해 정밀한 압력 측정장치를 통해 압력변이를 측정하여, 사석의 이탈 가능성을 검 토할 것이며, 최종적으로 이탈에 대한 한계조건을 도출할 것이다. 두 번째는 압력 의 변동이 물받이공의 진동을 유발시켜 이를 지지하고 있는 지반에 다짐효과를 가 져와 물받이공과 지반사이에 공극이 발생하는 경우이다. 이러한 공극으로 물받이 공은 자중 및 물의 압력을 받게 되어, 결국 휨에 의한 파괴가 발생할 가능성이 있 게 된다. 본 연구에서는 실험을 통하여 압력의 변동과 물받이공의 진동을 동시에 측정하여, 진동이 발생하지 않을 최소 두께를 제시할 것이다. 세 번째는 압력변이 로 인한 물받이공의 진동이 피로파괴로 연결되는 경우이다. 이 현상 또한 수리실 험을 통해 압력변이-피로파괴의 관계를 정량적으로 분석하여, 한계 조건을 제시할 것이다. 본 연구는 국내 보 및 낙차공에서 발생하는 다양한 Jet의 특성을 수리실 험으로 재현해야 하며, 이를 위해 평면 Jet 분사기(plane Jet injector)를 고안/ 제작하여, 효율적인 수리실험을 수행할 것이다. 또한 3차원 수치해석을 통해 실제 스케일에 적용함으로써 연구결과의 활용도 및 적용성을 높이고자 한다.

Keywords

압력변이, 물받이공, 바닥보호공, 난류, 진동

 그림 1 하천횡단구조물 하류부 횡단구조물 파괴
그림 1 하천횡단구조물 하류부 횡단구조물 파괴
그림 2. 시간에 따른 압력의 변동 양상 및 정의
그림 2. 시간에 따른 압력의 변동 양상 및 정의
 그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0 상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto & Rinaldo, 2010)
그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0 상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto & Rinaldo, 2010)
 그림 4. 파괴 개념
그림 4. 파괴 개념
그림 6. PIV 측정 원리(www.photonics.com)
그림 6. PIV 측정 원리(www.photonics.com)
그림 7. LED회로판 및 BIV기법 기본개념
그림 7. LED회로판 및 BIV기법 기본개념
그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)
그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)
그림 9. 감세공의 분류
그림 9. 감세공의 분류
그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건 실험전경
그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건 실험전경
그림 18 수리실험 개요도
그림 18 수리실험 개요도
그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)
그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)
그림 128 RNG 모형을 이용한 수치모의 결과
그림 128 RNG 모형을 이용한 수치모의 결과
그림 129 LES 모형을 이용한 수치모의 결과
그림 129 LES 모형을 이용한 수치모의 결과
그림 130 압력 Data의 필터링
그림 130 압력 Data의 필터링
그림 134 Case 1의 흐름특성 분포도 및 그래프
그림 134 Case 1의 흐름특성 분포도 및 그래프

참고문헌

국토기술연구센터 (1998) 하상유지공의 구조설계 지침.

감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태.

국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서. 국토해양부 (2010). 낙동강 살리기 사업 24공구(성주칠곡지구) 실시설계보고서.

국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인.

국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.

국토교통성 (2008) 하천사방기술기준.

농림부 (1996). 농업생산기반정비사업계획 설계기준. 류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999).

류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108.

배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418.

우효섭 (2001). 하천수리학. 청문각.

한국수자원학회 (2009). 하천설계기준해설.

한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발

한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가
기법에 대한 원천기술개발

국토기술연구센터 (1998) 하상유지공의 구조설계 지침.

감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태. 국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서.

국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인. 국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.

국토교통성 (2008) 하천사방기술기준.

농림부 (1996). 농업생산기반정비사업계획 설계기

류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999).
류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108.
배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418.
우효섭 (2001). 하천수리학. 청문각. 한국수자원학회 (2009). 하천설계기준해설. 한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발
한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가
기법에 대한 원천기술개발

Adrian, R. J., Meinhart, C. D., & Tomkins, C. D. (2000). Vortex organization in the outer
region of the turbulent boundary layer. Journal of Fluid Mechanics, 422, 1-54.
Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American
statistical association, 49(268), 765-769.
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy. The journal of finance, 23(4), 589-609.
Barjastehmaleki, S., Fiorotto, V., & Caroni, E. (2016). Spillway stilling basins lining design
via Taylor hypothesis. Journal of Hydraulic Engineering, 142(6), 04016010.
Beheshti, M. R., Khosrojerdi, A., & Borghei, S. M. (2013). Experimental study of air-water
turbulent flow structures on stepped spillways. International Journal of Physical Sciences,
8(25), 1362-1370.
Bligh, W. G. (1910). Dams, barrages and weirs on porous foundations. Engineering News, 64(26),
708-710.
Bowers, C. E., &Tsai, F. Y. (1969). Fluctuating pressure in spillway stilling basins. Journal
of the Hydraulics Division, 95(6), 2071-2080.
Brater, E. F., King, H. W., Lindell, J. E., & Wei, C. Y. (1976). Handbook of hydraulics for
the solution of hydraulic engineering problems (Vol. 7). New York: McGraw-Hill.
Castillo, L. G., Carrillo, J. M., & Sordo-Ward, Á. (2014). Simulation of overflow nappe
impingement jets. Journal of Hydroinformatics, 16(4), 922-940

Lin, C., Hsieh, S. C., Lin, I. J., Chang, K. A., & Raikar, R. V. (2012). Flow property and
self-similarity in steady hydraulic jumps. Experiments in Fluids, 53(5), 1591-1616

Chanson, H. (1999). The Hydraulics of Open Channel Flow: An Introduction. Physical Modelling
of Hydraulics.
Chow, V. T. (1959). Open-Channel Hydraulics, McGraw Hill Book Company, Inc., New York.
Christensen, B. A. (1984). “Analysis of Partially Filled Circular Storm Sewers.” J. of
Hydraulic Engineering, ASCE, Vol. 110, No. 8.
El-Ragaby, A., El-Salakawy, E., and Benmokrane, B., “Fatigue Life Evaluation of Concrete
Bridge Deck Slabs Reinforced with Glass FRP Composite Bars,” Journal of Composites for
Construction, ASCE, Vol. 11, No. 3, 2007, pp. 258-268. (doi: http://dx.doi.org/10.1061/(ASCE)
1090-0268(2007)11:3(258),
Fiorotto, V., & Rinaldo, A. (1992). Turbulent pressure fluctuations under hydraulic jumps.
Journal of Hydraulic Research, 30(4), 499-520.
Flow Science (2015). FLOW-3D User Manual(Release 11.1.0), Los Alamos, New Mexico.
González-Betancourt, M. (2016). Uplift force and momenta on a slab subjected to hydraulic
jump. Dyna, 83(199), 124-133.
Grinstein, L., & Lipsey, S. I. (2001). Encyclopedia of mathematics education. Routledge.
Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for
significance tests of outlying observations. Technometrics, 14(4), 847-854.
Gylltoft K. (1983): Fracture mechanics models for fatigue in concrete structures. Doctoral
thesis / Tekniska högskolan i Luleå, 25D, Luleå, 210 pp.
Herlina, H. and Jirka, G. H. (2008). “Experiments on gas transfer near the air-water
interface in a grid-stirred tank.” Journal of Fluid Mechanics, 594, pp.183-208.
IACWD (Interagency Advisory Committee on Water Data). (1982). Guidelines for determining flood
flow frequency. Bulletin 17B.
JIRKA, G. H. (2008). Experiments on gas transfer at the air–water interface induced by
oscillating grid turbulence. Journal of Fluid Mechanics, 594, 183-208.
Kadota, A., Suzuki, K., Rummel, A. C., Weitbrecht, V., & Jirka, G. H. (2007). Shallow flow
visualization around a single groyne. In Proc. of 7th International Symposium of Particle
Image Velocimetry (CD-ROM).
Kazemi, F., Khodashenas, S. R., & Sarkardeh, H. (2016). Experimental study of pressure
fluctuation in stilling basins. International Journal of Civil Engineering, 14(1), 13-21.
Klowak, C., Memon, A., and Mufti, A., “Static and fatigue investigation of second generation
steel-free bridge decks,” Cement & Concrete Composites, ScienceDirect, Elsevier, Vol. 28, No.

10, 2006, pp. 890-897. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.07.019),
Koca, K., Noss, C., Anlanger, C., Brand, A., & Lorke, A. (2017). Performance of the Vectrino
Profiler at the sediment–water interface. Journal of Hydraulic Research, 55(4), 573-581.
Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital.
Attuari, Giorn., 4, 83-91.
Leon, A., & Alnahit, A. (2016). A Remotely Controlled Siphon System for Dynamic Water Storage
Management.
Lin, C., Hsieh, S., Chang, K. and Raikar, R. (2012). “Flow property and self-similarity in
steady hydraulic jumps.” Experiments in Fluid, 53, pp. 1591-1616.
Lopardo, R., Fattor, C. A., Casado, J. M. and Lopardo, M. C. (2004). “Aspects of vibration
and fatigue of materials related to coherent structures of macroturbulent flows”
International Conference on Hydraulic of Dams and River Structures.
Lopardo, R. A., & Romagnoli, M. (2009). Pressure and velocity fluctuations in stilling basins.
In Advances in Water Resources and Hydraulic Engineering (pp. 2093-2098). Springer, Berlin,
Heidelberg.
Sanchez, P. A., Ramirez, G. E., Vergara, R., & Minguillo, F. (1973). Performance of
Sulfur-Coated Urea Under Intermittently Flooded Rice Culture in Peru 1. Soil Science Society
of America Journal, 37(5), 789-792.
Matsui, S., Tokai, D., Higashiyama, H., and Mizukoshi, M., “Fatigue Durability of Fiber
Reinforced Concrete Decks Under Running Wheel Load,” Proceedings 3rd International Conference
on Concrete Under Severe Conditions, Ed. N. Banthia, Vancouver, Canada, 2001, pp. 982-991.,
Mohammadi, S. F., Galgoul, N. S., Starossek, U., & Videiro, P. M. (2016). An efficient time
domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore
jacket structure. Marine Structures, 49, 97-115.
Pothof, I. (2011). Co-current air-water flow in downward sloping pipes. Stichting Deltares
Pothof, I. W. M., & Clemens, F. H. L. R. (2011). Experimental study of air–water flow in
downward sloping pipes. International journal of multiphase flow, 37(3), 278-292.
Ryu, Y., Chang, K. A., & Lim, H. J. (2005). Use of bubble image velocimetry for measurement of
plunging wave impinging on structure and associated greenwater. Measurement Science and
Technology, 16(10), 1945.
Sanjou, M., & Nezu, I. (2009). Turbulence structure and coherent motion in meandering compound
open-channel flows. Journal of Hydraulic Research, 47(5), 598-610.
Sargison, J. E., & Percy, A. (2009). Hydraulics of broad-crested weirs with varying side
slopes. Journal of irrigation and drainage engineering, 135(1), 115-118.

Sobani, A. (2014). Pressure fluctuations on the slabs of stilling basins under hydraulic jump.
Song, Y., Chang, K, Ryu, Y. and Kwon, S. (2013). “ Experimental study on flow kinematics and
impact pressure in liquid sloshing.”, Experiments in Fluid, 54, pp. 1592.
Stagonas, D., Lara, J. L., Losada, I. J., Higuera, P., Jaime, F. F., & Muller, G. (2014).
Large scale measurements of wave loads and mapping of impact pressure distribution at the
underside of wave recurves. In Proceedings of the HYDRALAB IV Joint User Meeting.
Toso, J. W., & Bowers, C. E. (1988). Extreme pressures in hydraulic-jump stilling basins.
Journal of Hydraulic Engineering, 114(8), 829-843.
Youn, S. G. and Chang, S. P., “Behavior of Composite Bridge Decks Subjected to Static and
Fatigue Loading,” Structural Journal, ACI Technical paper, Title No. 95-S23, 1998, pp.
249-258. (doi: http://dx.doi.org/10.14359/543),

원본 보기
Mesh conditions: a) mesh block; b) computational cells c) boundary conditions applied in simulation

FLOW-3D를 이용한 Λ자 단차가 있는 계단식 배수로의 에너지 소산 조건 연구

A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ-shaped step Using FLOW-3D

Authors:

Abbas Mansoori at Islamic Azad University

Abbas Mansoori

Shadi Erfanian

Abstract and Figures

본 연구에서는 특정 유형의 계단식 배수로에서 에너지 소산을 조사했습니다. 목적은 여수로 하류에서 최고 수준의 에너지 소산을 달성하는 것이었습니다.

큰 러프니스로 계단에 대한 특정 유형의 기하학을 제공하여 수행되었습니다. 여기에서 계단은 흐름에 대한 큰 거칠기로 인식되었습니다.

이 단계에서 최대 흐름 에너지가 최소화될 수 있도록 모양과 수를 설계했습니다. 따라서 하류의 구조에서 가장 높은 에너지 소산률을 얻을 수 있다고 말할 수 있습니다. 또한, 이에 따라 프로젝트에서 저유조를 설계하고 건설함으로써 부과되는 막대한 비용을 최소화할 수 있었습니다.

이 연구에서는 FLOW-3D를 사용하여 에너지 소산율을 분석하고 구했습니다. 최대 에너지 소산을 달성할 수 있는 계단의 최상의 기하학은 관련 문헌을 검토하고 FLOW-3D에서 제안된 모델을 발명하여 결정되었습니다.

제안된 방법을 평가하기 위해 앞서 언급한 방법들과 함께 시행착오를 통해 메쉬망 크기를 분석하고 그 결과를 다른 연구들과 비교하였습니다. 즉, 스무드 스텝에 비해 에너지 소산율이 25도 각도에서 Λ자 스텝으로 가장 최적의 상태를 얻었습니다.

In the present study, energy dissipation was investigated in a specific type of stepped spillways. The purpose was to achieve the highest level of energy dissipation in downstream of the spillway. It was performed by providing a specific type of geometry for step as a great roughness. Here, steps were recognized as great roughness against flow. Their shape and number were designed in such a way that the maximum flow energy can be minimized in this stage, i.e. over steps before reaching to downstream. Accordingly, it can be stated that the highest energy dissipation rate will be obtained in the structure at downstream. Moreover, thereby, heavy costs imposed by designing and constructing stilling basin on project can be minimized. In this study, FLOW-3D was employed to analyse and obtain energy dissipation rate. The best geometry of the steps, through which the maximum energy dissipation can be achieved, was determined by reviewing related literature and inventing the proposed model in FLOW-3D. To evaluate the proposed method, analyses were performed using trial and error in mesh networks sizes as well as the mentioned methods and the results were compared to other studies. In other words, the most optimal state was obtained with Λ-shaped step at angel of 25 degree with respect to energy dissipation rate compare to smooth step.

Figure 2. Three-dimensional design of the spillway using SolidWorks 2012
Figure 2. Three-dimensional design of the spillway using SolidWorks 2012
The results obtained from energy dissipation computation
Geometrical characteristics of the í µíº²-shaped stepped spillway To investigate flow filed and hydraulic conditions, boundary and initial conditions should be applied to each of the models in FLOW-3D. 
Mesh conditions: a) mesh block; b) computational cells; c) boundary conditions applied in simulation 
Figure 6. a) 3D Numerical modelling of flow over Spillway; b) 3D experimental modelling of flow over Spillway (with the discharge of  )
Figure 6. a) 3D Numerical modelling of flow over Spillway; b) 3D experimental modelling of flow over Spillway (with the discharge of  )
Figure 7. 2D model of flow depth for each angle of the-shaped steps
Figure 7. 2D model of flow depth for each angle of the-shaped steps

References

[1] Chanson, Hubert. Hydraulics of stepped chutes and spillways. CRC Press, 2002.
[2] Cassidy, John J. “Irrotational flow over spillways of finite height.” Journal of the Engineering Mechanics Division 91, no. 6 (1965): 155-176.
[3] Sorensen, Robert M. “Stepped spillway hydraulic model investigation.” Journal of Hydraulic Engineering 111, no. 12 (1985): 1461-1472.
[4] Pegram, Geoffrey GS, Andrew K. Officer, and Samuel R. Mottram. “Hydraulics of skimming flow on modeled stepped spillways.” Journal of hydraulic engineering 125, no. 5 (1999): 500-510.
[5] Tabbara, Mazen, Jean Chatila, and Rita Awwad. “Computational simulation of flow over stepped spillways.” Computers & structures 83, no. 27 (2005): 2215-2224.
[6] Pedram, A and Mansoori, A. “Study on the end sill stepped spillway energy dissipation”, Seventh Iranian Hydraulic Conference, Power and Water University of Technology, Tehran, Iran, (2008) (In Persian).
[7] Naderi Rad, A et al. “Energy dissipation in various types of stepped spillways including simple, sills, and sloped ones using FLUENT numerical model”, journal of civil and environmental engineering 39, no 1 (2009) (In Persian).
[8] Stephenson, D. “Energy dissipation down stepped spillways.” International water power & dam construction 43, no. 9 (1991): 27-30.
[9] Soori, S and Mansoori, A. “compared energy dissipation in Nappe flow and Skimming flow regime using FLOW-3D”, International Conference on Civil, Architecture and Urban Development, Islamic Azad University, Tabriz, Iran, (2013) (In Persian).
[10] Pfister, Michael, Willi H. Hager, and Hans-Erwin Minor. “Bottom aeration of stepped spillways.” Journal of Hydraulic Engineering 132, no. 8 (2006): 850-853.
[11] Pfister, Michael, and Willi H. Hager. “Self-entrainment of air on stepped spillways.” International Journal of Multiphase Flow 37, no. 2 (2011): 99-107.
[12] Hamedi, Amirmasoud, Mohammad Hajigholizadeh, and Abbas Mansoori. “Flow Simulation and Energy Loss Estimation in the Nappe Flow Regime of Stepped Spillways with Inclined Steps and End Sill: A Numerical Approach.” Civil Engineering Journal 2, no. 9 (2016): 426-437.
[13] Sedaghatnejad, S. “Investigation of energy dissipation in the end sill stepped spillways”, Master thesis, Sharif University of Technology, (2009).

Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

능동 가압의 경우 극저온 탱크의 열 및 물질 전달

Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

하이라이트

헤닝 슈플러 옌스 게르스트만DLR 독일 항공 우주 센터, 우주 시스템 연구소, 28359 Bremen, Germany

상변화 및 공액 열전달을 포함하는 압축성 2상 솔버 개발.

분석 솔루션으로 솔버를 성공적으로 검증.

극저온 탱크의 압력 및 온도 변화에 대한 정확한 시뮬레이션.

자유 표면에서의 물질 전달 분석.

Abstract

압력 요구 사항을 예측하는 것은 극저온 추진 시스템의 주요 과제 중 하나입니다. 이러한 맥락에서 증발 및 응축 현상을 고려한 탱크 여압을 시뮬레이션하기 위한 수치 모델을 개발하여 적용하였습니다. 

새로운 솔버는 PISO(splitting of operator) 알고리즘이 있는 압력 암시적 방법을 기반으로 하는 OpenFOAM의 약한 압축성 다상 솔버와 기울기 기반 위상 변화 모델을 결합합니다. 날카로운 인터페이스를 유지하기 위해 인터페이스에 인접한 셀에 질량 소스 용어가 적용됩니다. 

첫째, 모델은 1차원 상 변화 문제와 중력이 없는 상태에서 과열된 액체에서 증기 기포의 성장이라는 두 가지 분석 솔루션에 대해 검증되었습니다. 

두 번째 단계에서는 검증된 모델을 극저온 가압 실험에 적용했습니다. 측정된 압력 거동은 수치 모델이 양호한 근사값으로 확인될 수 있습니다. 

수치 모델을 사용하면 물리적 거동에 대한 추가 통찰력을 얻을 수 있습니다. 응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다.

Predicting the pressurant requirements is one of the key challenges for cryogenic propulsion systems. In this context, a numerical model to simulate the tank pressurization that considers evaporation and condensation phenomena was developed and applied. The novel solver combines the a gradient-based phase change model with a weakly compressible multiphase solver of OpenFOAM based on the pressure implicit method with splitting of operator (PISO) algorithm. To maintain a sharp interface the mass source terms are applied to the cells adjacent to the interface. First, the model is validated against two analytical solutions: the one-dimensional phase change problem and secondly, the growth of a vapor bubble in a superheated liquid in the absence of gravity. In a second step, the validated model was applied to a cryogenic pressurization experiment. The measured pressure behavior could be confirmed with the numerical model being in a good approximation. With the numerical model further insights into the physical behavior could be achieved. The condensation and evaporation effects have a significant impact on the pressure development during and after the pressurization. The mass flows due to phase change occurring at the vapor-liquid interface depend on interface location and time. Directly at the wall, evaporation becomes dominant while condensation occurs at the center area of the liquid surface.

  1. Fig. 1. Calculation of the gradient at the interface: On the left side the interface…
  2. Fig. 2. Mass source term distribution: First the sharp mass source term ρ0, which is…
  3. Fig. 3. a) Layout of the Stefan-Problem: a vapor is located between a liquid and a…
  4. Fig. 4. Bubble in a superheated liquid: The left side depicts the calculated and…
  5. Fig. 5. Modified drawing of the dewar (as documented in [5] [6]; dimensions in mm) and…
  6. Fig. 6. Schematic presentation of the pressure evoluation in the dewar: Initial…
  7. Fig. 7. Simulation of the pressurization phase: The diagram shows the pressure…
  8. Fig. 8. Turbulent thermal diffusivity in pressurization and relaxation phase
  9. Fig. 9. Comparison of the pressure evolution in the relaxation phase of the solver with…
  10. Fig. 10. On the left side the temperature evolution in the bulk of the gas phase is shown
  11. Fig. 11. Heat Flux profile over the interface caused by evaporation with details of the…
  12. Fig. 12. Temperatures field with velocity vectors at 420 seconds after the start of the…
  13. Fig. 13. Heat transfer to the liquid from the wall and the freesurface with and without…

Hide figures

키워드

Pressurization, Phase Change, CFD, Propellant Management, 가압, 상 변화, 추진제 관리

Hydraulic Analysis of Submerged Spillway Flows and Performance Evaluation of Chute Aerator Using CFD Modeling: A Case Study of Mangla Dam Spillway

CFD 모델링을 이용한 침수 배수로 흐름의 수리학적 해석 및 슈트 폭기장치 성능 평가: Mangla Dam 배수로 사례 연구

Hydraulic Analysis of Submerged Spillway Flows and Performance Evaluation of Chute Aerator Using CFD Modeling: A Case Study of Mangla Dam Spillway

Muhammad Kaleem SarwarZohaib NisarGhulam NabiFaraz ul HaqIjaz AhmadMuhammad Masood & Noor Muhammad Khan 

Abstract

대용량 배출구가 있는 수중 여수로는 일반적으로 홍수 처리 및 침전물 세척의 이중 기능을 수행하기 위해 댐 정상 아래에 제공됩니다. 이 방수로를 통과하는 홍수 물은 난류 거동을 나타냅니다. 

게다가 이러한 난류의 수력학적 분석은 어려운 작업입니다. 

따라서 본 연구는 파키스탄 Mangla Dam에 건설된 수중 여수로의 수리학적 거동을 수치해석을 통해 조사하는 것을 목적으로 한다. 또한 다양한 작동 조건에서 화기의 유압 성능을 평가했습니다. 

Mangla Spillway의 흐름을 수치적으로 모델링하는 데 전산 유체 역학 코드 FLOW 3D가 사용되었습니다. 레이놀즈 평균 Navier-Stokes 방정식은 난류 흐름을 수치적으로 모델링하기 위해 FLOW 3D에서 사용됩니다. 

연구 결과에 따르면 개발된 모델은 최대 6%의 허용 오차로 흐름 매개변수를 계산하므로 수중 여수로 흐름을 시뮬레이션할 수 있습니다. 

또한, 여수로 슈트 베드 주변 모델에 의해 계산된 공기 농도는 폭기 장치에 램프를 설치한 후 6% 이상으로 상승한 3%로 개발된 모델도 침수형 폭기 장치의 성능을 평가할 수 있음을 보여주었습니다.

Submerged spillways with large capacity outlets are generally provided below the dam crest to perform the dual functions of flood disposal and sediment flushing. Flood water passing through these spillways exhibits turbulent behavior. Moreover; hydraulic analysis of such turbulent flows is a challenging task. Therefore, the present study aims to use numerical simulations to examine the hydraulic behavior of submerged spillways constructed at Mangla Dam, Pakistan. Besides, the hydraulic performance of aerator was also evaluated at different operating conditions. Computational fluid dynamics code FLOW 3D was used to numerically model the flows of Mangla Spillway. Reynolds-averaged Navier–Stokes equations are used in FLOW 3D to numerically model the turbulent flows. The study results indicated that the developed model can simulate the submerged spillway flows as it computed the flow parameters with an acceptable error of up to 6%. Moreover, air concentration computed by model near spillway chute bed was 3% which raised to more than 6% after the installation of ramp on aerator which showed that developed model is also capable of evaluating the performance of submerged spillway aerator.

Keywords

  • Aerator
  • CFD
  • FLOW 3D
  • Froude number
  • Submerged spillway
  • Fig. 1extended data figure 1Fig. 2extended data figure 2Fig. 3extended data figure 3Fig. 4extended data figure 4Fig. 5extended data figure 5Fig. 6extended data figure 6Fig. 7extended data figure 7Fig. 8

References

  1. Aydin MC (2018) Aeration efficiency of bottom-inlet aerators for spillways. ISH J Hydraul Eng 24(3):330–336. https://doi.org/10.1080/09715010.2017.1381576Article Google Scholar 
  2. Bennett P, Chesterton J, Neeve D, Ucuncu M, Wearing M, Jones SEL (2018) Use of CFD for modelling spillway performance. Dams Reserv 28(2):62–72. https://doi.org/10.1680/jdare.18.00001Article Google Scholar 
  3. Bhosekar VV, Jothiprakash V, Deolalikar PB (2012) Orifice Spillway Aerator: Hydraulic Design. J Hydraul Eng 138(6):563–572. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000548Article Google Scholar 
  4. Chanel PG, Doering JC (2008) Assessment of spillway modeling using computational fluid dynamics. Can J Civ Eng 35(12):1481–1485. https://doi.org/10.1139/L08-094Article Google Scholar 
  5. Flow Sciences, Inc. (2013) FLOW 3D user manual version 10.1.
  6. Gadge PP, Jothiprakash V, Bhosekar VV (2018) Hydraulic investigation and design of roof profile of an orifice spillway using experimental and numerical models. J Appl Water Eng Res 6(2):85–94. https://doi.org/10.1080/23249676.2016.1214627Article Google Scholar 
  7. Gadge PP, Jothiprakash V, Bhosekar VV (2019) Hydraulic design considerations for orifice spillways. ISH J Hydraul Eng 25(1):12–18. https://doi.org/10.1080/09715010.2018.1423579Article Google Scholar 
  8. Gu S, Ren L, Wang X, Xie H, Huang Y, Wei J, Shao S (2017) SPHysics simulation of experimental spillway hydraulics. Water 9(12):973. https://doi.org/10.3390/w9120973Article Google Scholar 
  9. Gurav NV (2015) Physical and Numerical Modeling of an Orifice Spillway. Int J Mech Prod Eng 3(10):71–75Google Scholar 
  10. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5Article MATH Google Scholar 
  11. Ho DKH, Riddette KM (2010) Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia. Aust J Civ Eng 6(1):81–104. https://doi.org/10.1080/14488353.2010.11463946Article Google Scholar 
  12. Jothiprakash V, Bhosekar VV, Deolalikar PB (2015) Flow characteristics of orifice spillway aerator: numerical model studies. ISH J Hydraul Eng 21(2):216–230. https://doi.org/10.1080/09715010.2015.1007093Article Google Scholar 
  13. Kumcu SY (2017) Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE J Civ Eng 21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-zArticle Google Scholar 
  14. Lian J, Qi C, Liu F, Gou W, Pan S, Ouyang Q (2017) Air entrainment and air demand in the spillway tunnel at the Jinping-I Dam. Appl Sci 7(9):930. https://doi.org/10.3390/app7090930Article Google Scholar 
  15. Luo M, Khayyer A, Lin P (2021) Particle methods in ocean and coastal engineering. Appl Ocean Res 114:102734Article Google Scholar 
  16. Moreira A, Leroy A, Violeau D, Taveira-Pinto F (2019) Dam spillways and the SPH method: two case studies in Portugal. J Appl Water Eng Res 7(3):228–245. https://doi.org/10.1080/23249676.2019.1611496Article Google Scholar 
  17. Moreira AB, Leroy A, Violeau D, Taveira-Pinto FA (2020) Overview of large-scale smoothed particle hydrodynamics modeling of dam hydraulics. J Hydraul Eng 146(2):03119001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001658Article Google Scholar 
  18. O’Connor J, Rogers BD (2021) A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2021.103312Article Google Scholar 
  19. Sarwar MK, Bhatti MT, Khan NM (2016) Evaluation of air vents and ramp angles on the performance of orifice spillway aerators. J Eng Appl Sci 35(1):85–93Google Scholar 
  20. Sarwar MK, Ahmad I, Chaudary ZA, Mughal H-U-R (2020) Experimental and numerical studies on orifice spillway aerator of Bunji Dam. J Chin Inst Eng 43(1):27–36. https://doi.org/10.1080/02533839.2019.1676652Article Google Scholar 
  21. Saunders K, Prakash M, Cleary PW, Cordell M (2014) Application of smoothed particle hydrodynamics for modelling gated spillway flows. Appl Math Model 38(17–18):4308–4322. https://doi.org/10.1016/j.apm.2014.05.008Article MATH Google Scholar 
  22. Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  23. Shadloo MS, Oger G, le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput Fluids. https://doi.org/10.1016/j.compfluid.2016.05.029MathSciNet Article MATH Google Scholar 
  24. Shao Z, Jahangir Z, MuhammadYasir Q, Atta-ur-Rahman, Mahmood S (2020) Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 12(11):3249. https://doi.org/10.3390/w12113249Article Google Scholar 
  25. Shimizu Y, Khayyer A, Gotoh H, Nagashima K (2020) An enhanced multiphase ISPH-based method for accurate modeling of oil spill. Coast Eng J 62(4):625–646. https://doi.org/10.1080/21664250.2020.1815362Article Google Scholar 
  26. Teng P, Yang J (2016) CFD modeling of two-phase flow of a spillway chute aerator of large width. J Appl Water Eng Res 4(2):163–177. https://doi.org/10.1080/23249676.2015.1124030Article Google Scholar 
  27. Teng P, Yang J, Pfister M (2016) Studies of two-phase flow at a chute aerator with experiments and CFD modelling. Model Simul Eng 2016:1–11. https://doi.org/10.1155/2016/4729128Article Google Scholar 
  28. Wapda (2004) Mangla dam raising project-sectional physical model study report of main spillway: Wapda model study cell, Gujrawala, Pakistan
  29. Yang J, Andreasson P, Teng P, Xie Q (2019) The past and present of discharge capacity modeling for spillways—a Swedish perspective. Fluids 4(1):10. https://doi.org/10.3390/fluids4010010Article Google Scholar 
  30. Yang J, Teng P, Xie Q, Li S (2020) Understanding water flows and air venting features of spillway—a case study. Water 12(8):2106. https://doi.org/10.3390/w12082106Article Google Scholar 
  31. Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301Article Google Scholar 
  32. Zhan X, Qin H, Liu Y, Yao L, Xie W, Liu G, Zhou J (2020) Variational Bayesian neural network for ensemble flood forecasting. Water 12(10):2740. https://doi.org/10.3390/w12102740Article Google Scholar 

Download references

Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d' is the water depth above the crest; y' is the distance normal to the crest invert

Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D

Khosro Morovati , Afshin Eghbalzadeh 
International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 3 April 2018

Abstract

많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.

이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.

얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.

여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.

모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.

Study of inception point, void fraction and pressure over pooled
stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.

Design/methodology/approach

압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.

Findings

마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.

Keywords

Citation

Morovati, K. and Eghbalzadeh, A. (2018), “Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 28 No. 4, pp. 982-998. https://doi.org/10.1108/HFF-03-2017-0112

Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h  step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):  d' is the water depth above the crest; y' is the distance normal to the crest invert
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d’ is the water depth above the crest; y’ is the distance normal to the crest invert
Figure 2- meshing domain and distribution of blocks
Figure 2- meshing domain and distribution of blocks
Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A); mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  Flat stepped spillway (slope: 0 26 6. )
Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A); Flat stepped spillway (slope: 0 26 6. )
Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled  and flat stepped spillways (slope: 0 9.8 )
Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled and flat stepped spillways (slope: 0 9.8 )
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),  288941 (model 2), 323578 (model 3) and 343154 (model 4)
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1), 288941 (model 2), 323578 (model 3) and 343154 (model 4)
Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with  experimental work conducted by Felder et al. (2012A); (slope 26.60 )
Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with experimental work conducted by Felder et al. (2012A); (slope 26.60 )
Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with  empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
Figure 10- Comparison of pressure distribution between numerical simulation and experimental work  conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
Figure 10- Comparison of pressure distribution between numerical simulation and experimental work conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the  free surface profile along the crest of the spillway.  Note: x' indicates the longitudinal distance from the starting point of the crest.
Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the free surface profile along the crest of the spillway. Note: x’ indicates the longitudinal distance from the starting point of the crest.
Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x'' indicatesthe  longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y" is the distance from the intersection of the horizontal and vertical faces in the vertical direction
Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the distance from the intersection of the horizontal and vertical faces in the vertical direction
Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
Table1- Used discharges for assessments of mesh convergence analysis and hydraulic  characteristics
Table1- Used discharges for assessments of mesh convergence analysis and hydraulic characteristics

Conclusion

본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.

낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.

In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.

The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.

References

  1. André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis,
    Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
  2. Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy
    Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and
    Engineering, 39(4), 2587-2594.
  3. Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical
    simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped
    spillways”. Environmental fluid mechanics, 11(3) 263-288.
  4. Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”.
    International Journal of Hydraulic Engineering; 2(3): 47-52.
  5. Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway.
    Journal of computational multiphase flows”, Volume 7. Number 1.
  6. Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure
    observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
  7. Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation
    of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
  8. Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”.
    Science in China Series E: Technological Sciences, 49(6), 674-684.
  9. Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings
    of the world water congress.
  10. Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid
    dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
  11. Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy
    Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources
    Congress ASCE.
  12. Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air
    entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
  13. Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a
    Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a
    Broad-Crested Weir: a Physical study
  14. Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped
    spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,.
    Brisbane, Australia.
  15. Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary
    flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
  16. Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on
    pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
  17. Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”.
    Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
  18. Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of
    embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
  19. Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped
    spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The
    University of Queensland,. Brisbane, Australia.
  20. Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
  21. Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of
    Hydraulic Engineering, 139(6), 630-636.
  22. Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”,
    department of civil engineering, Brisbane, Australia, Phd thesis.
  23. Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An
    experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
  24. Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and
    pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
  25. Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped
    Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources
    Congress, ASCE.
  26. Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
  27. Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng.,
    139(1), 60–64.
  28. Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped
    Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
  29. Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over
    RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E.
    Minor and W.H. Hager. Balkema. 69–76.
  30. Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment
    dams”. J. Hydraul. Eng., 135(8), 685–689.
  31. Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D
    RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
  32. Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on
    the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI
    10.1007/s00707-015-1444-x
  33. Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped
    spillway”. Civil Engineering Journal. Vol. 2, No. 5.
  34. Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
  35. Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE
    Convention.
  36. Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of
    a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
  37. Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with
    wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
  38. Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop
    on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema,
    137–146.
  39. Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply
    Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan
    University of Technology (IUT), Isfahan, Iran.
  40. Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case
    study.” Journal of Hydraulic Engineering 127.8:640-649.
  41. Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy
    dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI
    10.1007/s12205-013-0749-3.
  42. Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”.
    Computers & structures, 83(27) 2215-2224.
  43. Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte
    Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced
    unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
  44. WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration
    characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015-
    5783-6.
  45. Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped
    spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
  46. Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall
    Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY
    .1943-7900.0000630.
  47. Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped
    spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
  48. Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and
    velocity fields. Journal of Hydraulic Engineering, 142(7).
  49. Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF
    Method”. Procedia Engineering, 28, 808-812.
  50. Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”.
    Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
  51. ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water
    flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study

International Journal of Civil Engineering (2021)Cite this article

Abstract

이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.

그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.

이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.

다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.

저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.

이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.

This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.

Keywords

  • Dam spillway
  • Flip bucket
  • Ski jump
  • Dynamic pressure
  • Numerical modeling
  • FLOW-3D
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10

References

  1. 1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar 
  2. 2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar 
  3. 3.Novak P, Moffat AIB, Nalluri C, Narayanan R (2006) Hydraulics structures. Spon, LondonGoogle Scholar 
  4. 4.Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Co., New YorkGoogle Scholar 
  5. 5.Balloffet A (1961) Pressures on spillway flip buckets. J Hydraul Div ASCE 87(5):87–98. https://doi.org/10.1061/JYCEAJ.0000650Article Google Scholar 
  6. 6.Chen TC, Yu YS (1965) Pressure distribution on spillway flip buckets. J Hydraul Div ASCE 91(2):51–63. https://doi.org/10.1061/JYCEAJ.0001228Article Google Scholar 
  7. 7.Lenau CW, Cassidy JJ (1969) Flow through spillway flip bucket. Journal of the Hydraulics Division ASCE 95(2):633–648. https://doi.org/10.1061/JYCEAJ.0002029Article Google Scholar 
  8. 8.Juon R, Hager WH (2000) Flip bucket without and with deflectors. J Hydraul Eng 126(11):837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)Article Google Scholar 
  9. 9.Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  10. 10.Heller V, Hager WH, Minor HE (2005) Ski jump hydraulics. J Hydraul Eng 131(5):347–355. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)Article Google Scholar 
  11. 11.Larese A, Rossi R, Onate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4):385–425. https://doi.org/10.1108/02644400810874976Article MATH Google Scholar 
  12. 12.Steiner R, Heller V, Hager WH, Minor HE (2008) Deflector ski jump hydraulics. J Hydraul Eng 134(5):562–571. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(562)Article Google Scholar 
  13. 13.Kirkgoz MS, Akoz MS, Oner AA (2009) Numerical modeling of flow over a chute spillway. J Hydraul Res 47(6):790–797. https://doi.org/10.3826/jhr.2009.3467Article Google Scholar 
  14. 14.Jorabloo M, Maghsoodi R, Sarkardeh H (2011) 3D simulation of flow over flip buckets at dams. J Am Sci 7(6):931–936Google Scholar 
  15. 15.Nazari O, Jabbari E, Sarkardeh H (2015) Dynamic pressure analysis at chute flip buckets of five dam model studies. Int J Civil Eng 13(1):45–54. http://ijce.iust.ac.ir/article-1-951-en.html
  16. 16.Yamini OA, Kavianpour MR, Movahedi A (2015) Pressure distribution on the bed of the compound flip buckets. J Comput Multiphase Flows 7(3):181–194. https://doi.org/10.1260/1757-482X.7.3.181Article Google Scholar 
  17. 17.Hojjati SH, Mohammadiun S, Salehi Neyshabouri SAA (2016) Effects of different turbulence models on flow over a triangular flip- bucket. Modares Civil Eng J 16(4):69–81 (in Persian)Google Scholar 
  18. 18.Lauria A, Alfonsi G (2020) Numerical investigation of ski jump hydraulics. J Hydraul Eng 146(4):121–127. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001718Article MATH Google Scholar 
  19. 19.Muralha A, Melo J, Ramos HM (2020) Assessment of CFD solvers and turbulent models for water free jets in spillways. Fluids 5(3):104. https://doi.org/10.3390/fluids5030104Article Google Scholar 
  20. 20.Novak P, Cabelka J (1981) Model in hydraulic engineering. Pitman Advanced Publishing Program, LondonGoogle Scholar 
  21. 21.Flow Science, Inc. FLOW-3D User Manual Version 11.2.
  22. 22.Water Research Institute (2003) Hydraulic model of Shafaroud Dam flood control system. Final Report, vol 5. Hydraulic structures Divisions, Tehran, Iran, Chapter 5, pp 1–35 (in Persian)Google Scholar
Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Scientific Reports volume 9, Article number: 7265 (2019) Cite this article

Abstract

이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 위해 연속 흐름 마이크로 채널 내부의 비드 자기 영동에 대한 수치 흐름 중심 연구를 보고합니다.

수치 모델은 Lagrangian 접근 방식을 포함하며 영구 자석에 의해 생성 된 자기장의 적용에 의해 혈액에서 비드 분리 및 유동 버퍼로의 수집을 예측합니다.

다음 시나리오가 모델링됩니다. (i) 운동량이 유체에서 점 입자로 처리되는 비드로 전달되는 단방향 커플 링, (ii) 비드가 점 입자로 처리되고 운동량이 다음으로부터 전달되는 양방향 결합 비드를 유체로 또는 그 반대로, (iii) 유체 변위에서 비드 체적의 영향을 고려한 양방향 커플 링.

결과는 세 가지 시나리오에서 비드 궤적에 약간의 차이가 있지만 특히 높은 자기력이 비드에 적용될 때 유동장에 상당한 변화가 있음을 나타냅니다.

따라서 높은 자기력을 사용할 때 비드 운동과 유동장의 체적 효과를 고려한 정확한 전체 유동 중심 모델을 해결해야 합니다. 그럼에도 불구하고 비드가 중간 또는 낮은 자기력을 받을 때 계산적으로 저렴한 모델을 안전하게 사용하여 자기 영동을 모델링 할 수 있습니다.

Sketch of the magnetophoresis process in the continuous-flow microdevice.
Sketch of the magnetophoresis process in the continuous-flow microdevice.
Schematic view of the microdevice showing the working conditions set in the simulations.
Schematic view of the microdevice showing the working conditions set in the simulations.
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.

References

  1. 1.Keshipour, S. & Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organometal. Chem. 30, 653–656 (2016).CAS Article Google Scholar 
  2. 2.Neamtu, M. et al. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 8(1), 6278 (2018).ADS MathSciNet Article Google Scholar 
  3. 3.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014).Article Google Scholar 
  4. 4.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 47, 241–246 (2016).Google Scholar 
  5. 5.Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-Cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7(1), 7672 (2017).ADS Article Google Scholar 
  6. 6.Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017).Article Google Scholar 
  7. 7.Lee, H. Y. et al. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew. Chem. Int. Ed. 48, 1239–1243 (2009).CAS Article Google Scholar 
  8. 8.Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).Article Google Scholar 
  9. 9.Roux, S. et al. Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010).ADS CAS Article Google Scholar 
  10. 10.Gómez-Pastora, J., Bringas, E., Lázaro-Díez, M., Ramos-Vivas, J. & Ortiz, I. In Drug Delivery Systems (Stroeve, P. & Mahmoudi, M. ed) 207–244 (World Scientific, 2017).
  11. 11.Selmi, M., Gazzah, M. H. & Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 7(1), 5721 (2017).ADS Article Google Scholar 
  12. 12.Gómez-Pastora, J., González-Fernández, C., Fallanza, M., Bringas, E. & Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 344, 487–497 (2018).Article Google Scholar 
  13. 13.Pamme, N. Magnetism and microfluidics. Lab Chip 6, 24–38 (2006).CAS Article Google Scholar 
  14. 14.Alorabi, A. Q. et al. On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab Chip 17, 3785–3795 (2017).CAS Article Google Scholar 
  15. 15.Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep. Purif. Technol. 172, 16–31 (2017).Article Google Scholar 
  16. 16.Tarn, M. D. & Pamme, N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnosis. Methods Mol. Biol. 1547, 69–83 (2017).CAS Article Google Scholar 
  17. 17.Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci. Rep. 6, 19801 (2016).ADS CAS Article Google Scholar 
  18. 18.Gómez-Pastora, J. et al. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 121, 7466–7477 (2017).Article Google Scholar 
  19. 19.Furlani, E. P. Magnetic biotransport: analysis and applications. Materials 3, 2412–2446 (2010).ADS CAS Article Google Scholar 
  20. 20.Khashan, S. A. & Furlani, E. P. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 12, 565–580 (2012).Article Google Scholar 
  21. 21.Modak, N., Datta, A. & Ganguly, R. Cell separation in a microfluidic channel using magnetic microspheres. Microfluid. Nanofluid. 6, 647–660 (2009).CAS Article Google Scholar 
  22. 22.Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. & Monk, T. E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 9, 451–463 (2007).CAS Article Google Scholar 
  23. 23.Furlani, E. P. & Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D: Appl. Phys. 39, 1724–1732 (2006).ADS CAS Article Google Scholar 
  24. 24.Tarn, M. D. et al. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 321, 4115–4122 (2009).ADS CAS Article Google Scholar 
  25. 25.Fonnum, G., Johansson, C., Molteberg, A., Morup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).ADS CAS Article Google Scholar 
  26. 26.Xue, W., Moore, L. R., Nakano, N., Chalmers, J. J. & Zborowski, M. Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS – A comparison. J. Magn. Magn. Mater. 474, 152–160 (2019).ADS CAS Article Google Scholar 
  27. 27.Moore, L. R. et al. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol. Bioeng. 115, 1521–1530 (2018).CAS Article Google Scholar 
  28. 28.Furlani, E. P. & Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid. 13, 589–602 (2012).CAS Article Google Scholar 
  29. 29.Furlani, E. P. & Xue, X. A model for predicting field-directed particle transport in the magnetofection process. Pharm. Res. 29, 1366–1379 (2012).CAS Article Google Scholar 
  30. 30.Furlani, E. P. Permanent Magnet and Electromechanical Devices; MaterialsAnalysis and Applications, (Academic Press, 2001).
  31. 31.Balachandar, S. & Eaton, J. K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010).ADS Article Google Scholar 
  32. 32.Wakaba, L. & Balachandar, S. On the added mass force at finite Reynolds and acceleration number. Theor. Comput. Fluid. Dyn. 21, 147–153 (2007).Article Google Scholar 
  33. 33.White, F. M. Viscous Fluid Flow, (McGraw-Hill, 1974).
  34. 34.Rietema, K. & Van Den Akker, H. E. A. On the momentum equations in dispersed two-phase systems. Int. J. Multiphase Flow 9, 21–36 (1983).Article Google Scholar 
  35. 35.Furlani, E. P. & Ng, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 73, 1–10 (2006).Article Google Scholar 
  36. 36.Eibl, R., Eibl, D., Pörtner, R., Catapano, G. & Czermak, P. Cell and Tissue Reaction Engineering, (Springer, 2009).
  37. 37.Gómez-Pastora, J. et al. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 18, 1593–1606 (2018).Article Google Scholar 
  38. 38.Khashan, S. A. & Furlani, E. P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 125, 311–318 (2014).CAS Article Google Scholar 
  39. 39.Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. ProcFourth International ConfShip Hydro., National Academic of Science, Washington, DC., (1985).
  40. 40.Crank, J. Free and Moving Boundary Problems, (Oxford University Press, 1984).
  41. 41.Bruus, H. Theoretical Microfluidics, (Oxford University Press, 2008).
  42. 42.Liang, L. & Xuan, X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid. Nanofluid. 13, 637–643 (2012).

Author information

  1. Edward P. Furlani is deceased.

Affiliations

  1. Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, SpainJenifer Gómez-Pastora, Eugenio Bringas & Inmaculada Ortiz
  2. Flow Science, Inc, Santa Fe, New Mexico, 87505, USAIoannis H. Karampelas
  3. Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
  4. Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
A new dynamic masking technique for time resolved PIV analysis

A new dynamic masking technique for time resolved PIV analysis

시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술

물체 가시성을 허용하기 위해 형광 코팅과 결합 된 새로운 프리웨어 레이 캐스팅 도구

Journal of Visualization ( 2021 ) 이 기사 인용

Abstract

Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.

광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.

Keywords

  • Time resolved PIV, Dynamics masking, Image processing, Vibration inducers, Fluorescent coating

그래픽 개요

소개

PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.

흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.

조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.

PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006). 

이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다. 

DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.

많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.

몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.

카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.

이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.

위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).

객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.

본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다. 

우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다. 

논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.

행동 양식

제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조  ) 음영 영역의 마스킹을 수행합니다.

형광 코팅

코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이  실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.

우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림  3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).

대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.

마스킹 소프트웨어

DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.

각 단계에 대한 자세한 내용은 다음과 같습니다.

  1. (ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
  2. (비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
  3. (씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.

레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.

그림
그림 1
그림 1

DM 검증

이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.

그림 2
그림 2
그림 3
그림 3

실험 설정

진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 ​​유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조   ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.

VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는  Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.

시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .

PIV 체인 분석 평가

사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.

첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그⁡(지δ)+8.5];(1)

여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그⁡(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림  4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.

두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조  하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.

그림 4
그림 4
그림 5
그림 5

결과

그림 6을 참조하여  순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.

제안 된 DM (그림 6 의 패널 a  )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.

NM 접근법 (그림 6 의 패널 b1  )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.

그림 6 의 패널 b2는  SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.

그림  6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를  살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 ​​비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.

그림 6
그림 6
그림 7
그림 7

결론

이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은

메모

  1. 1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.

참고 문헌

  1. Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6 Google 학술 검색 
  2. Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271 Google 학술 검색 
  3. Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137 Google 학술 검색 
  4. Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21 Google 학술 검색 
  5. Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
  6. Case N (2015) 시력 및 조명. GitHub 저장소. https://github.com/ncase/sight-and-light
  7. Curatolo M, La Rosa M, Prestininzi P (2019) 바이 모르 프 압전 캔틸레버의 굽힘에서 평면 상태 가정의 타당성. J Intell Mater Syst Struct 30 (10) : 1508–1517 Google 학술 검색 
  8. Curatolo M, Lombardi V, Prestininzi P (2020) 얇은 압전 캔틸레버의 유동 유도 진동 향상 : 실험 분석. In : River Flow 2020— 유체 유압에 관한 국제 회의 절차
  9. DantecDynamics : DynamicStudio 6.4 (2018) https://www.dantecdynamics.com/dynamicstudio-6-4-release-with-new-dynamic-masking-add-on/
  10. Driscoll K, Sick V, Gray C (2003) 고밀도 연료 ​​스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115 Google 학술 검색 
  11. Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478 Google 학술 검색 
  12. Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
  13. Flow Science I (2019) FLOW-3D, 버전 12.0. 산타페, NM https://www.flow3d.com/
  14. Foeth EJ, Van Doorne C, Van Terwisga T, Wieneke B (2006) 시간은 3d 시트 캐비테이션의 piv 및 유동 시각화를 해결했습니다. Experim 유체 40 (4) : 503–513 Google 학술 검색 
  15. Grant I (1997) 입자 이미지 속도 측정 : 리뷰. Proc Inst Mech Eng CJ Mech Eng Sci 211 (1) : 55–76 Google 학술 검색 
  16. Guérin A, Derr J, Du Pont SC, Berhanu M (2020) 흐르는 물막에 의해 생성 된 Streamwise 용해 패턴. Phys Rev Lett 125 (19) : 194502 Google 학술 검색 
  17. Keane RD, Adrian RJ (1992) piv 이미지의 상호 상관 분석 이론. Appl Sci Res 49 (3) : 191–215 Google 학술 검색 
  18. Keulegan GH (1938) 열린 수로에서 난류의 법칙, vol. 21. 미국 표준 국 (National Bureau of Standards)
  19. Khalitov D, Longmire EK (2002) 2 개 매개 변수 위상 차별에 의한 동시 2 상 piv. Experim 유체 32 (2) : 252–268 Google 학술 검색 
  20. Lindken R, Rossi M, Große S, Westerweel J (2009) 미세 입자 영상 속도계 (piv) : 최근 개발, 응용 및 지침. 랩 칩 9 (17) : 2551–2567 Google 학술 검색 
  21. Masullo A, Theunissen R (2017) 픽셀 강도 통계를 기반으로 한 piv 이미지 분석을위한 자동화 된 마스크 생성. Experim 유체 58 (6) : 70 Google 학술 검색 
  22. Mohammadshahi S, Samsam-Khayani H, Cai T, Kim KC (2020) 수로에서 진동하는 제트의 흐름 특성과 열 전달에 대한 실험 및 수치 연구. Int J 열 유체 흐름 86 : 108701 Google 학술 검색 
  23. Narayan S, Moravec DB, Dallas AJ, Dutcher CS (2020) 4 채널 미세 유체 유체 역학 트랩에서 물방울 모양 이완. Phys Rev Fluids 5 (11) : 113603 Google 학술 검색 
  24. Pedocchi F, Martin JE, García MH (2008) 입자 이미지 속도계를 사용하는 대규모 실험을위한 저렴한 형광 입자. Experim 유체 45 (1) : 183–186 Google 학술 검색 
  25. Prasad AK (2000) 입체 입자 영상 유속계. Experim 유체 29 (2) : 103–116 Google 학술 검색 
  26. Prestininzi P, Lombardi V (2021) DM @ PIV. https://it.mathworks.com/matlabcentral/fileexchange/75398-dm-piv . MATLAB Central 파일 교환. 2021 년 5 월 6 일 확인
  27. Sanchis A, Jensen A (2011) 자유 표면 흐름에서 라돈 변환을 사용한 piv 이미지의 동적 마스킹. Experim 유체 51 (4) : 871–880 Google 학술 검색 
  28. Scarano F (2013) Tomographic piv : 원리와 실행. Meas Sci Technol 24 (1)
  29. Taniguchi M, Lindsey JS (2018) photochemcad에 사용하기위한> 300 개의 일반적인 화합물의 흡수 및 형광 스펙트럼 데이터베이스. Photochem Photobiol 94 (2) : 290–327 Google 학술 검색 
  30. Taniguchi M, Du H, Lindsey JS (2018) Photochemcad 3 : 다중 스펙트럼 데이터베이스를 사용한 광 물리 계산을위한 다양한 모듈. Photochem Photobiol 94 (2) : 277–289 Google 학술 검색 
  31. Thielicke W (2020) PIVlab (2020). https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool . MATLAB Central 파일 교환. 5 월 8 일 확인
  32. Thielicke W, Stamhuis E (2014) PIVlab-matlab의 사용자 친화적이고 저렴하며 정확한 디지털 입자 이미지 속도계를 지향합니다. J Open Res Softw 2 (1)
  33. TSI Instruments (2014) PIV 이미지에 대한 동적 마스킹. TSI Incorporated 애플리케이션 노트 PIV-018
  34. Vennemann B, Rösgen T (2020) 컨볼 루션 오토 인코더를 사용하는 입자 이미지 속도 측정을위한 동적 마스킹 기술. Experim 유체 61 (7) : 1–11 Google 학술 검색 
  35. Westerweel J, Elsinga GE, Adrian RJ (2013) 복잡하고 난류 흐름에 대한 입자 이미지 유속계. Ann Rev Fluid Mech 45 (1) : 409–436. https://doi.org/10.1146/annurev-fluid-120710-101204MathSciNet  수학 Google 학술 검색 

참조 다운로드

자금

CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.

작가 정보

제휴

  1. 이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi

교신 저자

Valentina Lombardi에 대한 서신 .

추가 정보

발행인의 메모

Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.

오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .

재판 및 허가

이 기사에 대해

이 기사 인용

Lombardi, V., Rocca, ML & Prestininzi, P. 시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술. J Vis (2021). https://doi.org/10.1007/s12650-021-00756-0

인용 다운로드

이 기사 공유

다음 링크를 공유하는 사람은 누구나이 콘텐츠를 읽을 수 있습니다.공유 가능한 링크 받기

Springer Nature SharedIt 콘텐츠 공유 이니셔티브 제공

키워드

  • 시간 해결 PIV
  • 역학 마스킹
  • 이미지 처리
  • 진동 유도제
  • 형광 코팅
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey

Abstract:

차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 차량의 탱크에서 유체 슬로싱의 복잡한 역학을 정확하게 시뮬레이션할 수 없다. 

유체 슬로쉬를 예측할 수 있는 컴퓨터 유체역학 CFD 분석 소프트웨어를 이용할 수 있지만, 군용 차량 애플리케이션용 유체 슬로쉬를 정확하게 예측하는데 이 소프트웨어의 사용은 입증되지 않았다. 이것은 차량 역학 분석과 결합된 CFD 분석의 사용을 개발 및 입증하여 유체 수송 시스템의 역학을 보다 정확하게 예측하는 다중 효소 프로그램의 첫 번째 단계다. 

이 단계의 목적은 일반적인 기동에 직면한 차량의 움직임에 따른 탱크에서 슬로시 역학을 예측하는 CFD 분석을 검증하는 것이다. 이를 위해, 5톤 FMTV 트럭을 시뮬레이션하는 시험 설비뿐만 아니라, 1/4 규모의 TOD 탱크 모델이 건설되었다. CFD 분석과 실험실 시험의 반응력과 유동 운동을 차선 변경과 요철을 포함한 6가지 모의 차량 기동에서 비교했다. 

CFD 분석은 상용 소프트웨어 패키지인 FLOW-3D-로 수행되었다. 테스트 탱크의 해당 측정값과 비교하기 위해 빈 탱크의 강체 동적 해석의 힘과 모멘트 예측에 순유체 힘과 모멘트 예측이 추가되었다. 

전반적으로, 그 결과는 CFD가 트럭에 탑재된 수상 수송 탱크의 유체 운동 및 유체 구조 상호작용 연구에 성공적으로 적용될 수 있음을 보여준다. 예측된 롤 모멘트와 측정된 롤 모멘트 사이에는 좋은 상관관계가 있다. 

여기에 제시된 CFD 시뮬레이션의 빠른 전환 시간을 감안할 때, 전술에 대한 전체 차량 반응의 높은 충실도 시뮬레이션을 위해 차량 강체 차체 동적 분석을 유체 역학 분석과 결합하는 것이 바람직하다는 전망이 나온다.

Computer simulation of vehicle dynamics has become a valuable tool in the design of vehicles. They are, however, unable to accurately simulate the complex dynamics of fluid sloshing in a tank on the vehicle. Computational Fluid Dynamics CFD analysis software is available that can predict fluid slosh, however, the use of this software in accurately predicting fluid slosh for a military vehicle application has not been demonstrated. This is the first phase of a multiphase program to develop and demonstrate the use of CFD analysis, coupled with vehicle dynamics analysis, to more accurately predict the dynamics of a fluid transport system. The objective of this phase is to validate the CFD analysis in predicting slosh dynamics on a tank subjected to motions of a vehicle encountering typical maneuvers. To accomplish this, a one-quarter-scale model of a TOLD tank was constructed, as well as a test fixture to simulate a five-ton FMTV truck. The reaction forces and the fluid motions of the CFD analysis and the laboratory test were compared for six simulated vehicle maneuvers including lane changes and bumps. The CFD analysis was conducted with the commercially available software package, FLOW-3D-. The net fluid force and moment predictions were added to the force and moment predictions of a rigid body dynamic analysis of the empty tank alone to compare to the corresponding measured values for the test tank. Overall, the results show that CFD can successfully be applied to the study of fluid motions and the fluid- structure interactions in truck-mounted water transport tanks. There is good correlation between the predicted and measured roll moment. Given the rapid turnaround time for the CFD simulations presented here, the outlook is encouraging for coupling a vehicle rigid body dynamics analysis to a fluid dynamics analysis for a high fidelity simulation of the complete vehicle response to maneuvers.

Keywords

Keywords: COMPUTATIONAL,FLUID,DYNAMICS,VEHICLES,*SLOSHING,TEST,AND,EVALUATION,COMPUTER,PROGRAMS,COMPUTERIZED,SIMULATION,COUPLING(INTERACTION),SIMULATION,ROLL,LABORATORY,TESTS,PREDICTIONS,VALIDATION,INTERACTIONS,MILITARY,VEHICLES,REACTION,TIME,MOTION,RESPONSE,TRANSPORT,MILITARY,APPLICATIONS,FLUIDS,TRUCKS,MANEUVERS,RIGIDITY,TEST,FIXTURES,WATER,TANKS

CFD 분석과 실험실 테스트의 작용력과 유체 운동은 다음과 같은 시뮬레이션 된 차량 기동에 대해 비교되었습니다.

  • AVTP Lane Change at 20 mph
  • AVTP Lane Change at 40 mph
  • 9” Half-Round Symmetric Bump at 10 mph
  • 12” Half-Round Symmetric Bump at 5 mph
  • 9” Trapezoidal Asymmetric Bump at 15 mph
  • 12” Trapezoidal Asymmetric Bump at 10 mph

CFD 분석은 상용 소프트웨어 패키지 FLOW-3D를 사용하여 수행되었습니다.

Rear Axle Roll Moment, 40-mph Lane Change.
Rear Axle Roll Moment, 40-mph Lane Change.
Figure 2.1.  Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.2.  Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 2.2. Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 3.1.  Computational Mesh Definition
Figure 3.1. Computational Mesh Definition
Figure 3.2.  Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.2. Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.3.  Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.3. Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.4.  Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.4. Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.5.  Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.5. Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.8.  Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.8. Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.